libata: fix probe time irq printouts
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
607 dev->class++;
608 }
609 }
610
611 /**
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
638
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
641
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
644
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652 }
653
654 /**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691 }
692
693 /**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713 */
714
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
726 ap->ops->tf_read(ap, &tf);
727 err = tf.feature;
728 if (r_err)
729 *r_err = err;
730
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
740 return ATA_DEV_NONE;
741
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
744
745 if (class == ATA_DEV_UNKNOWN)
746 return ATA_DEV_NONE;
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 return ATA_DEV_NONE;
749 return class;
750 }
751
752 /**
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
769 {
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784 }
785
786 /**
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
802 {
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
807 ata_id_string(id, s, ofs, len - 1);
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813 }
814
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827 }
828
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839 }
840
841 /**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866 }
867
868 /**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893 }
894
895 /**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 * @new_sectors: new max sectors value to set for the device
899 *
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
902 */
903
904 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905 {
906 unsigned int err;
907 struct ata_taskfile tf;
908
909 new_sectors--;
910
911 ata_tf_init(dev, &tf);
912
913 tf.command = ATA_CMD_SET_MAX_EXT;
914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 tf.protocol |= ATA_PROT_NODATA;
916 tf.device |= 0x40;
917
918 tf.lbal = (new_sectors >> 0) & 0xff;
919 tf.lbam = (new_sectors >> 8) & 0xff;
920 tf.lbah = (new_sectors >> 16) & 0xff;
921
922 tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 tf.hob_lbah = (new_sectors >> 40) & 0xff;
925
926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
927 if (err)
928 return 0;
929
930 return ata_tf_to_lba48(&tf);
931 }
932
933 /**
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
936 * @new_sectors: new max sectors value to set for the device
937 *
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
940 */
941
942 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
943 {
944 unsigned int err;
945 struct ata_taskfile tf;
946
947 new_sectors--;
948
949 ata_tf_init(dev, &tf);
950
951 tf.command = ATA_CMD_SET_MAX;
952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 tf.protocol |= ATA_PROT_NODATA;
954
955 tf.lbal = (new_sectors >> 0) & 0xff;
956 tf.lbam = (new_sectors >> 8) & 0xff;
957 tf.lbah = (new_sectors >> 16) & 0xff;
958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
959
960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
961 if (err)
962 return 0;
963
964 return ata_tf_to_lba(&tf);
965 }
966
967 /**
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
970 *
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
974 */
975
976 static u64 ata_hpa_resize(struct ata_device *dev)
977 {
978 u64 sectors = dev->n_sectors;
979 u64 hpa_sectors;
980
981 if (ata_id_has_lba48(dev->id))
982 hpa_sectors = ata_read_native_max_address_ext(dev);
983 else
984 hpa_sectors = ata_read_native_max_address(dev);
985
986 /* if no hpa, both should be equal */
987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
990
991 if (hpa_sectors > sectors) {
992 ata_dev_printk(dev, KERN_INFO,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
996 (long long)sectors, (long long)hpa_sectors);
997
998 if (ata_ignore_hpa) {
999 if (ata_id_has_lba48(dev->id))
1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 else
1002 hpa_sectors = ata_set_native_max_address(dev,
1003 hpa_sectors);
1004
1005 if (hpa_sectors) {
1006 ata_dev_printk(dev, KERN_INFO, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors);
1009 return hpa_sectors;
1010 }
1011 }
1012 }
1013 return sectors;
1014 }
1015
1016 static u64 ata_id_n_sectors(const u16 *id)
1017 {
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029 }
1030
1031 /**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047 {
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071 }
1072
1073 /**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 {
1087 }
1088
1089
1090 /**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106 {
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116 }
1117
1118 /**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139 {
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154 }
1155
1156 /**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1159 *
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
1167 static inline void ata_dump_id(const u16 *id)
1168 {
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
1191 id[88],
1192 id[93]);
1193 }
1194
1195 /**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210 static unsigned int ata_id_xfermask(const u16 *id)
1211 {
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262 }
1263
1264 /**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1285 {
1286 int rc;
1287
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 return;
1290
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1293
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298 }
1299
1300 /**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310 void ata_port_flush_task(struct ata_port *ap)
1311 {
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1319
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
1332 cancel_work_sync(&ap->port_task.work);
1333 }
1334
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1338
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341 }
1342
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344 {
1345 struct completion *waiting = qc->private_data;
1346
1347 complete(waiting);
1348 }
1349
1350 /**
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
1370 */
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1375 {
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1384 int rc;
1385
1386 spin_lock_irqsave(ap->lock, flags);
1387
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1392 }
1393
1394 /* initialize internal qc */
1395
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1407 BUG();
1408 qc = __ata_qc_from_tag(ap, tag);
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
1422
1423 /* prepare & issue qc */
1424 qc->tf = *tf;
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1437 }
1438
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1441
1442 ata_qc_issue(qc);
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447
1448 ata_port_flush_task(ap);
1449
1450 if (!rc) {
1451 spin_lock_irqsave(ap->lock, flags);
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1457 */
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
1465
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1469 }
1470
1471 spin_unlock_irqrestore(ap->lock, flags);
1472 }
1473
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1488 }
1489
1490 /* finish up */
1491 spin_lock_irqsave(ap->lock, flags);
1492
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1500
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
1517 spin_unlock_irqrestore(ap->lock, flags);
1518
1519 return err_mask;
1520 }
1521
1522 /**
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543 {
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1546
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
1553
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555 }
1556
1557 /**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
1570 */
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572 {
1573 struct ata_taskfile tf;
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582 }
1583
1584 /**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
1591
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593 {
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 return 0;
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1603 return 1;
1604 return 0;
1605 }
1606
1607 /**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
1614
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616 {
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1626 }
1627 }
1628 return 3 << ATA_SHIFT_PIO;
1629 }
1630
1631 /**
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1637 *
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1642 *
1643 * LOCKING:
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1648 */
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1651 {
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1656 const char *reason;
1657 int may_fallback = 1, tried_spinup = 0;
1658 int rc;
1659
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664 retry:
1665 ata_tf_init(dev, &tf);
1666
1667 switch (class) {
1668 case ATA_DEV_ATA:
1669 tf.command = ATA_CMD_ID_ATA;
1670 break;
1671 case ATA_DEV_ATAPI:
1672 tf.command = ATA_CMD_ID_ATAPI;
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1678 }
1679
1680 tf.protocol = ATA_PROT_PIO;
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1691
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1694 if (err_mask) {
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1698 return -ENOENT;
1699 }
1700
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
1716 rc = -EIO;
1717 reason = "I/O error";
1718 goto err_out;
1719 }
1720
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
1726 swap_buf_le16(id, ATA_ID_WORDS);
1727
1728 /* sanity check */
1729 rc = -EINVAL;
1730 reason = "device reports illegal type";
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
1738 }
1739
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
1786 flags &= ~ATA_READID_POSTRESET;
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
1792
1793 return 0;
1794
1795 err_out:
1796 if (ata_msg_warn(ap))
1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 return rc;
1800 }
1801
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1803 {
1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1805 }
1806
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809 {
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
1821 if (ap->flags & ATA_FLAG_NCQ) {
1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830 }
1831
1832 /**
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1838 *
1839 * LOCKING:
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
1844 */
1845 int ata_dev_configure(struct ata_device *dev)
1846 {
1847 struct ata_port *ap = dev->ap;
1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1849 const u16 *id = dev->id;
1850 unsigned int xfer_mask;
1851 char revbuf[7]; /* XYZ-99\0 */
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
1854 int rc;
1855
1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
1859 return 0;
1860 }
1861
1862 if (ata_msg_probe(ap))
1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1864
1865 /* set _SDD */
1866 rc = ata_acpi_push_id(dev);
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
1875 /* print device capabilities */
1876 if (ata_msg_probe(ap))
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1880 __FUNCTION__,
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
1883
1884 /* initialize to-be-configured parameters */
1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
1897 /* find max transfer mode; for printk only */
1898 xfer_mask = ata_id_xfermask(id);
1899
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1902
1903 /* ATA-specific feature tests */
1904 if (dev->class == ATA_DEV_ATA) {
1905 if (ata_id_is_cfa(id)) {
1906 if (id[162] & 1) /* CPRM may make this media unusable */
1907 ata_dev_printk(dev, KERN_WARNING,
1908 "supports DRM functions and may "
1909 "not be fully accessable.\n");
1910 snprintf(revbuf, 7, "CFA");
1911 }
1912 else
1913 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1914
1915 dev->n_sectors = ata_id_n_sectors(id);
1916
1917 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1918 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1919 sizeof(fwrevbuf));
1920
1921 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1922 sizeof(modelbuf));
1923
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1927 if (ata_id_has_lba(id)) {
1928 const char *lba_desc;
1929 char ncq_desc[20];
1930
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1933 if (ata_id_has_lba48(id)) {
1934 dev->flags |= ATA_DFLAG_LBA48;
1935 lba_desc = "LBA48";
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1940 }
1941
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
1948 /* print device info to dmesg */
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
1956 (unsigned long long)dev->n_sectors,
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
1959 } else {
1960 /* CHS */
1961
1962 /* Default translation */
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
1966
1967 if (ata_id_current_chs_valid(id)) {
1968 /* Current CHS translation is valid. */
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
1972 }
1973
1974 /* print device info to dmesg */
1975 if (ata_msg_drv(ap) && print_info) {
1976 ata_dev_printk(dev, KERN_INFO,
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
1980 ata_dev_printk(dev, KERN_INFO,
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
1986 }
1987
1988 dev->cdb_len = 16;
1989 }
1990
1991 /* ATAPI-specific feature tests */
1992 else if (dev->class == ATA_DEV_ATAPI) {
1993 char *cdb_intr_string = "";
1994
1995 rc = atapi_cdb_len(id);
1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1997 if (ata_msg_warn(ap))
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
2000 rc = -EINVAL;
2001 goto err_out_nosup;
2002 }
2003 dev->cdb_len = (unsigned int) rc;
2004
2005 if (ata_id_cdb_intr(dev->id)) {
2006 dev->flags |= ATA_DFLAG_CDB_INTR;
2007 cdb_intr_string = ", CDB intr";
2008 }
2009
2010 /* print device info to dmesg */
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
2013 ata_mode_string(xfer_mask),
2014 cdb_intr_string);
2015 }
2016
2017 /* determine max_sectors */
2018 dev->max_sectors = ATA_MAX_SECTORS;
2019 if (dev->flags & ATA_DFLAG_LBA48)
2020 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2021
2022 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2023 /* Let the user know. We don't want to disallow opens for
2024 rescue purposes, or in case the vendor is just a blithering
2025 idiot */
2026 if (print_info) {
2027 ata_dev_printk(dev, KERN_WARNING,
2028 "Drive reports diagnostics failure. This may indicate a drive\n");
2029 ata_dev_printk(dev, KERN_WARNING,
2030 "fault or invalid emulation. Contact drive vendor for information.\n");
2031 }
2032 }
2033
2034 /* limit bridge transfers to udma5, 200 sectors */
2035 if (ata_dev_knobble(dev)) {
2036 if (ata_msg_drv(ap) && print_info)
2037 ata_dev_printk(dev, KERN_INFO,
2038 "applying bridge limits\n");
2039 dev->udma_mask &= ATA_UDMA5;
2040 dev->max_sectors = ATA_MAX_SECTORS;
2041 }
2042
2043 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2044 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2045 dev->max_sectors);
2046
2047 /* limit ATAPI DMA to R/W commands only */
2048 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2049 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2050
2051 if (ap->ops->dev_config)
2052 ap->ops->dev_config(dev);
2053
2054 if (ata_msg_probe(ap))
2055 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2056 __FUNCTION__, ata_chk_status(ap));
2057 return 0;
2058
2059 err_out_nosup:
2060 if (ata_msg_probe(ap))
2061 ata_dev_printk(dev, KERN_DEBUG,
2062 "%s: EXIT, err\n", __FUNCTION__);
2063 return rc;
2064 }
2065
2066 /**
2067 * ata_cable_40wire - return 40 wire cable type
2068 * @ap: port
2069 *
2070 * Helper method for drivers which want to hardwire 40 wire cable
2071 * detection.
2072 */
2073
2074 int ata_cable_40wire(struct ata_port *ap)
2075 {
2076 return ATA_CBL_PATA40;
2077 }
2078
2079 /**
2080 * ata_cable_80wire - return 80 wire cable type
2081 * @ap: port
2082 *
2083 * Helper method for drivers which want to hardwire 80 wire cable
2084 * detection.
2085 */
2086
2087 int ata_cable_80wire(struct ata_port *ap)
2088 {
2089 return ATA_CBL_PATA80;
2090 }
2091
2092 /**
2093 * ata_cable_unknown - return unknown PATA cable.
2094 * @ap: port
2095 *
2096 * Helper method for drivers which have no PATA cable detection.
2097 */
2098
2099 int ata_cable_unknown(struct ata_port *ap)
2100 {
2101 return ATA_CBL_PATA_UNK;
2102 }
2103
2104 /**
2105 * ata_cable_sata - return SATA cable type
2106 * @ap: port
2107 *
2108 * Helper method for drivers which have SATA cables
2109 */
2110
2111 int ata_cable_sata(struct ata_port *ap)
2112 {
2113 return ATA_CBL_SATA;
2114 }
2115
2116 /**
2117 * ata_bus_probe - Reset and probe ATA bus
2118 * @ap: Bus to probe
2119 *
2120 * Master ATA bus probing function. Initiates a hardware-dependent
2121 * bus reset, then attempts to identify any devices found on
2122 * the bus.
2123 *
2124 * LOCKING:
2125 * PCI/etc. bus probe sem.
2126 *
2127 * RETURNS:
2128 * Zero on success, negative errno otherwise.
2129 */
2130
2131 int ata_bus_probe(struct ata_port *ap)
2132 {
2133 unsigned int classes[ATA_MAX_DEVICES];
2134 int tries[ATA_MAX_DEVICES];
2135 int i, rc;
2136 struct ata_device *dev;
2137
2138 ata_port_probe(ap);
2139
2140 for (i = 0; i < ATA_MAX_DEVICES; i++)
2141 tries[i] = ATA_PROBE_MAX_TRIES;
2142
2143 retry:
2144 /* reset and determine device classes */
2145 ap->ops->phy_reset(ap);
2146
2147 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2148 dev = &ap->device[i];
2149
2150 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2151 dev->class != ATA_DEV_UNKNOWN)
2152 classes[dev->devno] = dev->class;
2153 else
2154 classes[dev->devno] = ATA_DEV_NONE;
2155
2156 dev->class = ATA_DEV_UNKNOWN;
2157 }
2158
2159 ata_port_probe(ap);
2160
2161 /* after the reset the device state is PIO 0 and the controller
2162 state is undefined. Record the mode */
2163
2164 for (i = 0; i < ATA_MAX_DEVICES; i++)
2165 ap->device[i].pio_mode = XFER_PIO_0;
2166
2167 /* read IDENTIFY page and configure devices. We have to do the identify
2168 specific sequence bass-ackwards so that PDIAG- is released by
2169 the slave device */
2170
2171 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2172 dev = &ap->device[i];
2173
2174 if (tries[i])
2175 dev->class = classes[i];
2176
2177 if (!ata_dev_enabled(dev))
2178 continue;
2179
2180 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2181 dev->id);
2182 if (rc)
2183 goto fail;
2184 }
2185
2186 /* Now ask for the cable type as PDIAG- should have been released */
2187 if (ap->ops->cable_detect)
2188 ap->cbl = ap->ops->cable_detect(ap);
2189
2190 /* After the identify sequence we can now set up the devices. We do
2191 this in the normal order so that the user doesn't get confused */
2192
2193 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2194 dev = &ap->device[i];
2195 if (!ata_dev_enabled(dev))
2196 continue;
2197
2198 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2199 rc = ata_dev_configure(dev);
2200 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2201 if (rc)
2202 goto fail;
2203 }
2204
2205 /* configure transfer mode */
2206 rc = ata_set_mode(ap, &dev);
2207 if (rc)
2208 goto fail;
2209
2210 for (i = 0; i < ATA_MAX_DEVICES; i++)
2211 if (ata_dev_enabled(&ap->device[i]))
2212 return 0;
2213
2214 /* no device present, disable port */
2215 ata_port_disable(ap);
2216 ap->ops->port_disable(ap);
2217 return -ENODEV;
2218
2219 fail:
2220 tries[dev->devno]--;
2221
2222 switch (rc) {
2223 case -EINVAL:
2224 /* eeek, something went very wrong, give up */
2225 tries[dev->devno] = 0;
2226 break;
2227
2228 case -ENODEV:
2229 /* give it just one more chance */
2230 tries[dev->devno] = min(tries[dev->devno], 1);
2231 case -EIO:
2232 if (tries[dev->devno] == 1) {
2233 /* This is the last chance, better to slow
2234 * down than lose it.
2235 */
2236 sata_down_spd_limit(ap);
2237 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2238 }
2239 }
2240
2241 if (!tries[dev->devno])
2242 ata_dev_disable(dev);
2243
2244 goto retry;
2245 }
2246
2247 /**
2248 * ata_port_probe - Mark port as enabled
2249 * @ap: Port for which we indicate enablement
2250 *
2251 * Modify @ap data structure such that the system
2252 * thinks that the entire port is enabled.
2253 *
2254 * LOCKING: host lock, or some other form of
2255 * serialization.
2256 */
2257
2258 void ata_port_probe(struct ata_port *ap)
2259 {
2260 ap->flags &= ~ATA_FLAG_DISABLED;
2261 }
2262
2263 /**
2264 * sata_print_link_status - Print SATA link status
2265 * @ap: SATA port to printk link status about
2266 *
2267 * This function prints link speed and status of a SATA link.
2268 *
2269 * LOCKING:
2270 * None.
2271 */
2272 void sata_print_link_status(struct ata_port *ap)
2273 {
2274 u32 sstatus, scontrol, tmp;
2275
2276 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2277 return;
2278 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2279
2280 if (ata_port_online(ap)) {
2281 tmp = (sstatus >> 4) & 0xf;
2282 ata_port_printk(ap, KERN_INFO,
2283 "SATA link up %s (SStatus %X SControl %X)\n",
2284 sata_spd_string(tmp), sstatus, scontrol);
2285 } else {
2286 ata_port_printk(ap, KERN_INFO,
2287 "SATA link down (SStatus %X SControl %X)\n",
2288 sstatus, scontrol);
2289 }
2290 }
2291
2292 /**
2293 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2294 * @ap: SATA port associated with target SATA PHY.
2295 *
2296 * This function issues commands to standard SATA Sxxx
2297 * PHY registers, to wake up the phy (and device), and
2298 * clear any reset condition.
2299 *
2300 * LOCKING:
2301 * PCI/etc. bus probe sem.
2302 *
2303 */
2304 void __sata_phy_reset(struct ata_port *ap)
2305 {
2306 u32 sstatus;
2307 unsigned long timeout = jiffies + (HZ * 5);
2308
2309 if (ap->flags & ATA_FLAG_SATA_RESET) {
2310 /* issue phy wake/reset */
2311 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2312 /* Couldn't find anything in SATA I/II specs, but
2313 * AHCI-1.1 10.4.2 says at least 1 ms. */
2314 mdelay(1);
2315 }
2316 /* phy wake/clear reset */
2317 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2318
2319 /* wait for phy to become ready, if necessary */
2320 do {
2321 msleep(200);
2322 sata_scr_read(ap, SCR_STATUS, &sstatus);
2323 if ((sstatus & 0xf) != 1)
2324 break;
2325 } while (time_before(jiffies, timeout));
2326
2327 /* print link status */
2328 sata_print_link_status(ap);
2329
2330 /* TODO: phy layer with polling, timeouts, etc. */
2331 if (!ata_port_offline(ap))
2332 ata_port_probe(ap);
2333 else
2334 ata_port_disable(ap);
2335
2336 if (ap->flags & ATA_FLAG_DISABLED)
2337 return;
2338
2339 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2340 ata_port_disable(ap);
2341 return;
2342 }
2343
2344 ap->cbl = ATA_CBL_SATA;
2345 }
2346
2347 /**
2348 * sata_phy_reset - Reset SATA bus.
2349 * @ap: SATA port associated with target SATA PHY.
2350 *
2351 * This function resets the SATA bus, and then probes
2352 * the bus for devices.
2353 *
2354 * LOCKING:
2355 * PCI/etc. bus probe sem.
2356 *
2357 */
2358 void sata_phy_reset(struct ata_port *ap)
2359 {
2360 __sata_phy_reset(ap);
2361 if (ap->flags & ATA_FLAG_DISABLED)
2362 return;
2363 ata_bus_reset(ap);
2364 }
2365
2366 /**
2367 * ata_dev_pair - return other device on cable
2368 * @adev: device
2369 *
2370 * Obtain the other device on the same cable, or if none is
2371 * present NULL is returned
2372 */
2373
2374 struct ata_device *ata_dev_pair(struct ata_device *adev)
2375 {
2376 struct ata_port *ap = adev->ap;
2377 struct ata_device *pair = &ap->device[1 - adev->devno];
2378 if (!ata_dev_enabled(pair))
2379 return NULL;
2380 return pair;
2381 }
2382
2383 /**
2384 * ata_port_disable - Disable port.
2385 * @ap: Port to be disabled.
2386 *
2387 * Modify @ap data structure such that the system
2388 * thinks that the entire port is disabled, and should
2389 * never attempt to probe or communicate with devices
2390 * on this port.
2391 *
2392 * LOCKING: host lock, or some other form of
2393 * serialization.
2394 */
2395
2396 void ata_port_disable(struct ata_port *ap)
2397 {
2398 ap->device[0].class = ATA_DEV_NONE;
2399 ap->device[1].class = ATA_DEV_NONE;
2400 ap->flags |= ATA_FLAG_DISABLED;
2401 }
2402
2403 /**
2404 * sata_down_spd_limit - adjust SATA spd limit downward
2405 * @ap: Port to adjust SATA spd limit for
2406 *
2407 * Adjust SATA spd limit of @ap downward. Note that this
2408 * function only adjusts the limit. The change must be applied
2409 * using sata_set_spd().
2410 *
2411 * LOCKING:
2412 * Inherited from caller.
2413 *
2414 * RETURNS:
2415 * 0 on success, negative errno on failure
2416 */
2417 int sata_down_spd_limit(struct ata_port *ap)
2418 {
2419 u32 sstatus, spd, mask;
2420 int rc, highbit;
2421
2422 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2423 if (rc)
2424 return rc;
2425
2426 mask = ap->sata_spd_limit;
2427 if (mask <= 1)
2428 return -EINVAL;
2429 highbit = fls(mask) - 1;
2430 mask &= ~(1 << highbit);
2431
2432 spd = (sstatus >> 4) & 0xf;
2433 if (spd <= 1)
2434 return -EINVAL;
2435 spd--;
2436 mask &= (1 << spd) - 1;
2437 if (!mask)
2438 return -EINVAL;
2439
2440 ap->sata_spd_limit = mask;
2441
2442 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2443 sata_spd_string(fls(mask)));
2444
2445 return 0;
2446 }
2447
2448 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2449 {
2450 u32 spd, limit;
2451
2452 if (ap->sata_spd_limit == UINT_MAX)
2453 limit = 0;
2454 else
2455 limit = fls(ap->sata_spd_limit);
2456
2457 spd = (*scontrol >> 4) & 0xf;
2458 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2459
2460 return spd != limit;
2461 }
2462
2463 /**
2464 * sata_set_spd_needed - is SATA spd configuration needed
2465 * @ap: Port in question
2466 *
2467 * Test whether the spd limit in SControl matches
2468 * @ap->sata_spd_limit. This function is used to determine
2469 * whether hardreset is necessary to apply SATA spd
2470 * configuration.
2471 *
2472 * LOCKING:
2473 * Inherited from caller.
2474 *
2475 * RETURNS:
2476 * 1 if SATA spd configuration is needed, 0 otherwise.
2477 */
2478 int sata_set_spd_needed(struct ata_port *ap)
2479 {
2480 u32 scontrol;
2481
2482 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2483 return 0;
2484
2485 return __sata_set_spd_needed(ap, &scontrol);
2486 }
2487
2488 /**
2489 * sata_set_spd - set SATA spd according to spd limit
2490 * @ap: Port to set SATA spd for
2491 *
2492 * Set SATA spd of @ap according to sata_spd_limit.
2493 *
2494 * LOCKING:
2495 * Inherited from caller.
2496 *
2497 * RETURNS:
2498 * 0 if spd doesn't need to be changed, 1 if spd has been
2499 * changed. Negative errno if SCR registers are inaccessible.
2500 */
2501 int sata_set_spd(struct ata_port *ap)
2502 {
2503 u32 scontrol;
2504 int rc;
2505
2506 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2507 return rc;
2508
2509 if (!__sata_set_spd_needed(ap, &scontrol))
2510 return 0;
2511
2512 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2513 return rc;
2514
2515 return 1;
2516 }
2517
2518 /*
2519 * This mode timing computation functionality is ported over from
2520 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2521 */
2522 /*
2523 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2524 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2525 * for UDMA6, which is currently supported only by Maxtor drives.
2526 *
2527 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2528 */
2529
2530 static const struct ata_timing ata_timing[] = {
2531
2532 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2533 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2534 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2535 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2536
2537 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2538 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2539 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2540 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2541 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2542
2543 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2544
2545 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2546 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2547 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2548
2549 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2550 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2551 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2552
2553 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2554 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2555 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2556 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2557
2558 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2559 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2560 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2561
2562 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2563
2564 { 0xFF }
2565 };
2566
2567 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2568 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2569
2570 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2571 {
2572 q->setup = EZ(t->setup * 1000, T);
2573 q->act8b = EZ(t->act8b * 1000, T);
2574 q->rec8b = EZ(t->rec8b * 1000, T);
2575 q->cyc8b = EZ(t->cyc8b * 1000, T);
2576 q->active = EZ(t->active * 1000, T);
2577 q->recover = EZ(t->recover * 1000, T);
2578 q->cycle = EZ(t->cycle * 1000, T);
2579 q->udma = EZ(t->udma * 1000, UT);
2580 }
2581
2582 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2583 struct ata_timing *m, unsigned int what)
2584 {
2585 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2586 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2587 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2588 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2589 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2590 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2591 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2592 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2593 }
2594
2595 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2596 {
2597 const struct ata_timing *t;
2598
2599 for (t = ata_timing; t->mode != speed; t++)
2600 if (t->mode == 0xFF)
2601 return NULL;
2602 return t;
2603 }
2604
2605 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2606 struct ata_timing *t, int T, int UT)
2607 {
2608 const struct ata_timing *s;
2609 struct ata_timing p;
2610
2611 /*
2612 * Find the mode.
2613 */
2614
2615 if (!(s = ata_timing_find_mode(speed)))
2616 return -EINVAL;
2617
2618 memcpy(t, s, sizeof(*s));
2619
2620 /*
2621 * If the drive is an EIDE drive, it can tell us it needs extended
2622 * PIO/MW_DMA cycle timing.
2623 */
2624
2625 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2626 memset(&p, 0, sizeof(p));
2627 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2628 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2629 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2630 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2631 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2632 }
2633 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2634 }
2635
2636 /*
2637 * Convert the timing to bus clock counts.
2638 */
2639
2640 ata_timing_quantize(t, t, T, UT);
2641
2642 /*
2643 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2644 * S.M.A.R.T * and some other commands. We have to ensure that the
2645 * DMA cycle timing is slower/equal than the fastest PIO timing.
2646 */
2647
2648 if (speed > XFER_PIO_6) {
2649 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2650 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2651 }
2652
2653 /*
2654 * Lengthen active & recovery time so that cycle time is correct.
2655 */
2656
2657 if (t->act8b + t->rec8b < t->cyc8b) {
2658 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2659 t->rec8b = t->cyc8b - t->act8b;
2660 }
2661
2662 if (t->active + t->recover < t->cycle) {
2663 t->active += (t->cycle - (t->active + t->recover)) / 2;
2664 t->recover = t->cycle - t->active;
2665 }
2666
2667 /* In a few cases quantisation may produce enough errors to
2668 leave t->cycle too low for the sum of active and recovery
2669 if so we must correct this */
2670 if (t->active + t->recover > t->cycle)
2671 t->cycle = t->active + t->recover;
2672
2673 return 0;
2674 }
2675
2676 /**
2677 * ata_down_xfermask_limit - adjust dev xfer masks downward
2678 * @dev: Device to adjust xfer masks
2679 * @sel: ATA_DNXFER_* selector
2680 *
2681 * Adjust xfer masks of @dev downward. Note that this function
2682 * does not apply the change. Invoking ata_set_mode() afterwards
2683 * will apply the limit.
2684 *
2685 * LOCKING:
2686 * Inherited from caller.
2687 *
2688 * RETURNS:
2689 * 0 on success, negative errno on failure
2690 */
2691 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2692 {
2693 char buf[32];
2694 unsigned int orig_mask, xfer_mask;
2695 unsigned int pio_mask, mwdma_mask, udma_mask;
2696 int quiet, highbit;
2697
2698 quiet = !!(sel & ATA_DNXFER_QUIET);
2699 sel &= ~ATA_DNXFER_QUIET;
2700
2701 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2702 dev->mwdma_mask,
2703 dev->udma_mask);
2704 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2705
2706 switch (sel) {
2707 case ATA_DNXFER_PIO:
2708 highbit = fls(pio_mask) - 1;
2709 pio_mask &= ~(1 << highbit);
2710 break;
2711
2712 case ATA_DNXFER_DMA:
2713 if (udma_mask) {
2714 highbit = fls(udma_mask) - 1;
2715 udma_mask &= ~(1 << highbit);
2716 if (!udma_mask)
2717 return -ENOENT;
2718 } else if (mwdma_mask) {
2719 highbit = fls(mwdma_mask) - 1;
2720 mwdma_mask &= ~(1 << highbit);
2721 if (!mwdma_mask)
2722 return -ENOENT;
2723 }
2724 break;
2725
2726 case ATA_DNXFER_40C:
2727 udma_mask &= ATA_UDMA_MASK_40C;
2728 break;
2729
2730 case ATA_DNXFER_FORCE_PIO0:
2731 pio_mask &= 1;
2732 case ATA_DNXFER_FORCE_PIO:
2733 mwdma_mask = 0;
2734 udma_mask = 0;
2735 break;
2736
2737 default:
2738 BUG();
2739 }
2740
2741 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2742
2743 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2744 return -ENOENT;
2745
2746 if (!quiet) {
2747 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2748 snprintf(buf, sizeof(buf), "%s:%s",
2749 ata_mode_string(xfer_mask),
2750 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2751 else
2752 snprintf(buf, sizeof(buf), "%s",
2753 ata_mode_string(xfer_mask));
2754
2755 ata_dev_printk(dev, KERN_WARNING,
2756 "limiting speed to %s\n", buf);
2757 }
2758
2759 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2760 &dev->udma_mask);
2761
2762 return 0;
2763 }
2764
2765 static int ata_dev_set_mode(struct ata_device *dev)
2766 {
2767 struct ata_eh_context *ehc = &dev->ap->eh_context;
2768 unsigned int err_mask;
2769 int rc;
2770
2771 dev->flags &= ~ATA_DFLAG_PIO;
2772 if (dev->xfer_shift == ATA_SHIFT_PIO)
2773 dev->flags |= ATA_DFLAG_PIO;
2774
2775 err_mask = ata_dev_set_xfermode(dev);
2776 /* Old CFA may refuse this command, which is just fine */
2777 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2778 err_mask &= ~AC_ERR_DEV;
2779
2780 if (err_mask) {
2781 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2782 "(err_mask=0x%x)\n", err_mask);
2783 return -EIO;
2784 }
2785
2786 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2787 rc = ata_dev_revalidate(dev, 0);
2788 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2789 if (rc)
2790 return rc;
2791
2792 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2793 dev->xfer_shift, (int)dev->xfer_mode);
2794
2795 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2796 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2797 return 0;
2798 }
2799
2800 /**
2801 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2802 * @ap: port on which timings will be programmed
2803 * @r_failed_dev: out paramter for failed device
2804 *
2805 * Standard implementation of the function used to tune and set
2806 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2807 * ata_dev_set_mode() fails, pointer to the failing device is
2808 * returned in @r_failed_dev.
2809 *
2810 * LOCKING:
2811 * PCI/etc. bus probe sem.
2812 *
2813 * RETURNS:
2814 * 0 on success, negative errno otherwise
2815 */
2816
2817 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2818 {
2819 struct ata_device *dev;
2820 int i, rc = 0, used_dma = 0, found = 0;
2821
2822
2823 /* step 1: calculate xfer_mask */
2824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2825 unsigned int pio_mask, dma_mask;
2826
2827 dev = &ap->device[i];
2828
2829 if (!ata_dev_enabled(dev))
2830 continue;
2831
2832 ata_dev_xfermask(dev);
2833
2834 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2835 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2836 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2837 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2838
2839 found = 1;
2840 if (dev->dma_mode)
2841 used_dma = 1;
2842 }
2843 if (!found)
2844 goto out;
2845
2846 /* step 2: always set host PIO timings */
2847 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2848 dev = &ap->device[i];
2849 if (!ata_dev_enabled(dev))
2850 continue;
2851
2852 if (!dev->pio_mode) {
2853 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2854 rc = -EINVAL;
2855 goto out;
2856 }
2857
2858 dev->xfer_mode = dev->pio_mode;
2859 dev->xfer_shift = ATA_SHIFT_PIO;
2860 if (ap->ops->set_piomode)
2861 ap->ops->set_piomode(ap, dev);
2862 }
2863
2864 /* step 3: set host DMA timings */
2865 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2866 dev = &ap->device[i];
2867
2868 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2869 continue;
2870
2871 dev->xfer_mode = dev->dma_mode;
2872 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2873 if (ap->ops->set_dmamode)
2874 ap->ops->set_dmamode(ap, dev);
2875 }
2876
2877 /* step 4: update devices' xfer mode */
2878 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2879 dev = &ap->device[i];
2880
2881 /* don't update suspended devices' xfer mode */
2882 if (!ata_dev_enabled(dev))
2883 continue;
2884
2885 rc = ata_dev_set_mode(dev);
2886 if (rc)
2887 goto out;
2888 }
2889
2890 /* Record simplex status. If we selected DMA then the other
2891 * host channels are not permitted to do so.
2892 */
2893 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2894 ap->host->simplex_claimed = ap;
2895
2896 out:
2897 if (rc)
2898 *r_failed_dev = dev;
2899 return rc;
2900 }
2901
2902 /**
2903 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2904 * @ap: port on which timings will be programmed
2905 * @r_failed_dev: out paramter for failed device
2906 *
2907 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2908 * ata_set_mode() fails, pointer to the failing device is
2909 * returned in @r_failed_dev.
2910 *
2911 * LOCKING:
2912 * PCI/etc. bus probe sem.
2913 *
2914 * RETURNS:
2915 * 0 on success, negative errno otherwise
2916 */
2917 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2918 {
2919 /* has private set_mode? */
2920 if (ap->ops->set_mode)
2921 return ap->ops->set_mode(ap, r_failed_dev);
2922 return ata_do_set_mode(ap, r_failed_dev);
2923 }
2924
2925 /**
2926 * ata_tf_to_host - issue ATA taskfile to host controller
2927 * @ap: port to which command is being issued
2928 * @tf: ATA taskfile register set
2929 *
2930 * Issues ATA taskfile register set to ATA host controller,
2931 * with proper synchronization with interrupt handler and
2932 * other threads.
2933 *
2934 * LOCKING:
2935 * spin_lock_irqsave(host lock)
2936 */
2937
2938 static inline void ata_tf_to_host(struct ata_port *ap,
2939 const struct ata_taskfile *tf)
2940 {
2941 ap->ops->tf_load(ap, tf);
2942 ap->ops->exec_command(ap, tf);
2943 }
2944
2945 /**
2946 * ata_busy_sleep - sleep until BSY clears, or timeout
2947 * @ap: port containing status register to be polled
2948 * @tmout_pat: impatience timeout
2949 * @tmout: overall timeout
2950 *
2951 * Sleep until ATA Status register bit BSY clears,
2952 * or a timeout occurs.
2953 *
2954 * LOCKING:
2955 * Kernel thread context (may sleep).
2956 *
2957 * RETURNS:
2958 * 0 on success, -errno otherwise.
2959 */
2960 int ata_busy_sleep(struct ata_port *ap,
2961 unsigned long tmout_pat, unsigned long tmout)
2962 {
2963 unsigned long timer_start, timeout;
2964 u8 status;
2965
2966 status = ata_busy_wait(ap, ATA_BUSY, 300);
2967 timer_start = jiffies;
2968 timeout = timer_start + tmout_pat;
2969 while (status != 0xff && (status & ATA_BUSY) &&
2970 time_before(jiffies, timeout)) {
2971 msleep(50);
2972 status = ata_busy_wait(ap, ATA_BUSY, 3);
2973 }
2974
2975 if (status != 0xff && (status & ATA_BUSY))
2976 ata_port_printk(ap, KERN_WARNING,
2977 "port is slow to respond, please be patient "
2978 "(Status 0x%x)\n", status);
2979
2980 timeout = timer_start + tmout;
2981 while (status != 0xff && (status & ATA_BUSY) &&
2982 time_before(jiffies, timeout)) {
2983 msleep(50);
2984 status = ata_chk_status(ap);
2985 }
2986
2987 if (status == 0xff)
2988 return -ENODEV;
2989
2990 if (status & ATA_BUSY) {
2991 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2992 "(%lu secs, Status 0x%x)\n",
2993 tmout / HZ, status);
2994 return -EBUSY;
2995 }
2996
2997 return 0;
2998 }
2999
3000 /**
3001 * ata_wait_ready - sleep until BSY clears, or timeout
3002 * @ap: port containing status register to be polled
3003 * @deadline: deadline jiffies for the operation
3004 *
3005 * Sleep until ATA Status register bit BSY clears, or timeout
3006 * occurs.
3007 *
3008 * LOCKING:
3009 * Kernel thread context (may sleep).
3010 *
3011 * RETURNS:
3012 * 0 on success, -errno otherwise.
3013 */
3014 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3015 {
3016 unsigned long start = jiffies;
3017 int warned = 0;
3018
3019 while (1) {
3020 u8 status = ata_chk_status(ap);
3021 unsigned long now = jiffies;
3022
3023 if (!(status & ATA_BUSY))
3024 return 0;
3025 if (!ata_port_online(ap) && status == 0xff)
3026 return -ENODEV;
3027 if (time_after(now, deadline))
3028 return -EBUSY;
3029
3030 if (!warned && time_after(now, start + 5 * HZ) &&
3031 (deadline - now > 3 * HZ)) {
3032 ata_port_printk(ap, KERN_WARNING,
3033 "port is slow to respond, please be patient "
3034 "(Status 0x%x)\n", status);
3035 warned = 1;
3036 }
3037
3038 msleep(50);
3039 }
3040 }
3041
3042 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3043 unsigned long deadline)
3044 {
3045 struct ata_ioports *ioaddr = &ap->ioaddr;
3046 unsigned int dev0 = devmask & (1 << 0);
3047 unsigned int dev1 = devmask & (1 << 1);
3048 int rc, ret = 0;
3049
3050 /* if device 0 was found in ata_devchk, wait for its
3051 * BSY bit to clear
3052 */
3053 if (dev0) {
3054 rc = ata_wait_ready(ap, deadline);
3055 if (rc) {
3056 if (rc != -ENODEV)
3057 return rc;
3058 ret = rc;
3059 }
3060 }
3061
3062 /* if device 1 was found in ata_devchk, wait for
3063 * register access, then wait for BSY to clear
3064 */
3065 while (dev1) {
3066 u8 nsect, lbal;
3067
3068 ap->ops->dev_select(ap, 1);
3069 nsect = ioread8(ioaddr->nsect_addr);
3070 lbal = ioread8(ioaddr->lbal_addr);
3071 if ((nsect == 1) && (lbal == 1))
3072 break;
3073 if (time_after(jiffies, deadline))
3074 return -EBUSY;
3075 msleep(50); /* give drive a breather */
3076 }
3077 if (dev1) {
3078 rc = ata_wait_ready(ap, deadline);
3079 if (rc) {
3080 if (rc != -ENODEV)
3081 return rc;
3082 ret = rc;
3083 }
3084 }
3085
3086 /* is all this really necessary? */
3087 ap->ops->dev_select(ap, 0);
3088 if (dev1)
3089 ap->ops->dev_select(ap, 1);
3090 if (dev0)
3091 ap->ops->dev_select(ap, 0);
3092
3093 return ret;
3094 }
3095
3096 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3097 unsigned long deadline)
3098 {
3099 struct ata_ioports *ioaddr = &ap->ioaddr;
3100
3101 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3102
3103 /* software reset. causes dev0 to be selected */
3104 iowrite8(ap->ctl, ioaddr->ctl_addr);
3105 udelay(20); /* FIXME: flush */
3106 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
3109
3110 /* spec mandates ">= 2ms" before checking status.
3111 * We wait 150ms, because that was the magic delay used for
3112 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3113 * between when the ATA command register is written, and then
3114 * status is checked. Because waiting for "a while" before
3115 * checking status is fine, post SRST, we perform this magic
3116 * delay here as well.
3117 *
3118 * Old drivers/ide uses the 2mS rule and then waits for ready
3119 */
3120 msleep(150);
3121
3122 /* Before we perform post reset processing we want to see if
3123 * the bus shows 0xFF because the odd clown forgets the D7
3124 * pulldown resistor.
3125 */
3126 if (ata_check_status(ap) == 0xFF)
3127 return -ENODEV;
3128
3129 return ata_bus_post_reset(ap, devmask, deadline);
3130 }
3131
3132 /**
3133 * ata_bus_reset - reset host port and associated ATA channel
3134 * @ap: port to reset
3135 *
3136 * This is typically the first time we actually start issuing
3137 * commands to the ATA channel. We wait for BSY to clear, then
3138 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3139 * result. Determine what devices, if any, are on the channel
3140 * by looking at the device 0/1 error register. Look at the signature
3141 * stored in each device's taskfile registers, to determine if
3142 * the device is ATA or ATAPI.
3143 *
3144 * LOCKING:
3145 * PCI/etc. bus probe sem.
3146 * Obtains host lock.
3147 *
3148 * SIDE EFFECTS:
3149 * Sets ATA_FLAG_DISABLED if bus reset fails.
3150 */
3151
3152 void ata_bus_reset(struct ata_port *ap)
3153 {
3154 struct ata_ioports *ioaddr = &ap->ioaddr;
3155 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3156 u8 err;
3157 unsigned int dev0, dev1 = 0, devmask = 0;
3158 int rc;
3159
3160 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3161
3162 /* determine if device 0/1 are present */
3163 if (ap->flags & ATA_FLAG_SATA_RESET)
3164 dev0 = 1;
3165 else {
3166 dev0 = ata_devchk(ap, 0);
3167 if (slave_possible)
3168 dev1 = ata_devchk(ap, 1);
3169 }
3170
3171 if (dev0)
3172 devmask |= (1 << 0);
3173 if (dev1)
3174 devmask |= (1 << 1);
3175
3176 /* select device 0 again */
3177 ap->ops->dev_select(ap, 0);
3178
3179 /* issue bus reset */
3180 if (ap->flags & ATA_FLAG_SRST) {
3181 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3182 if (rc && rc != -ENODEV)
3183 goto err_out;
3184 }
3185
3186 /*
3187 * determine by signature whether we have ATA or ATAPI devices
3188 */
3189 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3190 if ((slave_possible) && (err != 0x81))
3191 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3192
3193 /* re-enable interrupts */
3194 ap->ops->irq_on(ap);
3195
3196 /* is double-select really necessary? */
3197 if (ap->device[1].class != ATA_DEV_NONE)
3198 ap->ops->dev_select(ap, 1);
3199 if (ap->device[0].class != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 0);
3201
3202 /* if no devices were detected, disable this port */
3203 if ((ap->device[0].class == ATA_DEV_NONE) &&
3204 (ap->device[1].class == ATA_DEV_NONE))
3205 goto err_out;
3206
3207 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3208 /* set up device control for ATA_FLAG_SATA_RESET */
3209 iowrite8(ap->ctl, ioaddr->ctl_addr);
3210 }
3211
3212 DPRINTK("EXIT\n");
3213 return;
3214
3215 err_out:
3216 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3217 ap->ops->port_disable(ap);
3218
3219 DPRINTK("EXIT\n");
3220 }
3221
3222 /**
3223 * sata_phy_debounce - debounce SATA phy status
3224 * @ap: ATA port to debounce SATA phy status for
3225 * @params: timing parameters { interval, duratinon, timeout } in msec
3226 * @deadline: deadline jiffies for the operation
3227 *
3228 * Make sure SStatus of @ap reaches stable state, determined by
3229 * holding the same value where DET is not 1 for @duration polled
3230 * every @interval, before @timeout. Timeout constraints the
3231 * beginning of the stable state. Because DET gets stuck at 1 on
3232 * some controllers after hot unplugging, this functions waits
3233 * until timeout then returns 0 if DET is stable at 1.
3234 *
3235 * @timeout is further limited by @deadline. The sooner of the
3236 * two is used.
3237 *
3238 * LOCKING:
3239 * Kernel thread context (may sleep)
3240 *
3241 * RETURNS:
3242 * 0 on success, -errno on failure.
3243 */
3244 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3245 unsigned long deadline)
3246 {
3247 unsigned long interval_msec = params[0];
3248 unsigned long duration = msecs_to_jiffies(params[1]);
3249 unsigned long last_jiffies, t;
3250 u32 last, cur;
3251 int rc;
3252
3253 t = jiffies + msecs_to_jiffies(params[2]);
3254 if (time_before(t, deadline))
3255 deadline = t;
3256
3257 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3258 return rc;
3259 cur &= 0xf;
3260
3261 last = cur;
3262 last_jiffies = jiffies;
3263
3264 while (1) {
3265 msleep(interval_msec);
3266 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3267 return rc;
3268 cur &= 0xf;
3269
3270 /* DET stable? */
3271 if (cur == last) {
3272 if (cur == 1 && time_before(jiffies, deadline))
3273 continue;
3274 if (time_after(jiffies, last_jiffies + duration))
3275 return 0;
3276 continue;
3277 }
3278
3279 /* unstable, start over */
3280 last = cur;
3281 last_jiffies = jiffies;
3282
3283 /* check deadline */
3284 if (time_after(jiffies, deadline))
3285 return -EBUSY;
3286 }
3287 }
3288
3289 /**
3290 * sata_phy_resume - resume SATA phy
3291 * @ap: ATA port to resume SATA phy for
3292 * @params: timing parameters { interval, duratinon, timeout } in msec
3293 * @deadline: deadline jiffies for the operation
3294 *
3295 * Resume SATA phy of @ap and debounce it.
3296 *
3297 * LOCKING:
3298 * Kernel thread context (may sleep)
3299 *
3300 * RETURNS:
3301 * 0 on success, -errno on failure.
3302 */
3303 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3304 unsigned long deadline)
3305 {
3306 u32 scontrol;
3307 int rc;
3308
3309 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3310 return rc;
3311
3312 scontrol = (scontrol & 0x0f0) | 0x300;
3313
3314 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3315 return rc;
3316
3317 /* Some PHYs react badly if SStatus is pounded immediately
3318 * after resuming. Delay 200ms before debouncing.
3319 */
3320 msleep(200);
3321
3322 return sata_phy_debounce(ap, params, deadline);
3323 }
3324
3325 /**
3326 * ata_std_prereset - prepare for reset
3327 * @ap: ATA port to be reset
3328 * @deadline: deadline jiffies for the operation
3329 *
3330 * @ap is about to be reset. Initialize it. Failure from
3331 * prereset makes libata abort whole reset sequence and give up
3332 * that port, so prereset should be best-effort. It does its
3333 * best to prepare for reset sequence but if things go wrong, it
3334 * should just whine, not fail.
3335 *
3336 * LOCKING:
3337 * Kernel thread context (may sleep)
3338 *
3339 * RETURNS:
3340 * 0 on success, -errno otherwise.
3341 */
3342 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3343 {
3344 struct ata_eh_context *ehc = &ap->eh_context;
3345 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3346 int rc;
3347
3348 /* handle link resume */
3349 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3350 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3351 ehc->i.action |= ATA_EH_HARDRESET;
3352
3353 /* if we're about to do hardreset, nothing more to do */
3354 if (ehc->i.action & ATA_EH_HARDRESET)
3355 return 0;
3356
3357 /* if SATA, resume phy */
3358 if (ap->cbl == ATA_CBL_SATA) {
3359 rc = sata_phy_resume(ap, timing, deadline);
3360 /* whine about phy resume failure but proceed */
3361 if (rc && rc != -EOPNOTSUPP)
3362 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3363 "link for reset (errno=%d)\n", rc);
3364 }
3365
3366 /* Wait for !BSY if the controller can wait for the first D2H
3367 * Reg FIS and we don't know that no device is attached.
3368 */
3369 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3370 rc = ata_wait_ready(ap, deadline);
3371 if (rc && rc != -ENODEV) {
3372 ata_port_printk(ap, KERN_WARNING, "device not ready "
3373 "(errno=%d), forcing hardreset\n", rc);
3374 ehc->i.action |= ATA_EH_HARDRESET;
3375 }
3376 }
3377
3378 return 0;
3379 }
3380
3381 /**
3382 * ata_std_softreset - reset host port via ATA SRST
3383 * @ap: port to reset
3384 * @classes: resulting classes of attached devices
3385 * @deadline: deadline jiffies for the operation
3386 *
3387 * Reset host port using ATA SRST.
3388 *
3389 * LOCKING:
3390 * Kernel thread context (may sleep)
3391 *
3392 * RETURNS:
3393 * 0 on success, -errno otherwise.
3394 */
3395 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3396 unsigned long deadline)
3397 {
3398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3399 unsigned int devmask = 0;
3400 int rc;
3401 u8 err;
3402
3403 DPRINTK("ENTER\n");
3404
3405 if (ata_port_offline(ap)) {
3406 classes[0] = ATA_DEV_NONE;
3407 goto out;
3408 }
3409
3410 /* determine if device 0/1 are present */
3411 if (ata_devchk(ap, 0))
3412 devmask |= (1 << 0);
3413 if (slave_possible && ata_devchk(ap, 1))
3414 devmask |= (1 << 1);
3415
3416 /* select device 0 again */
3417 ap->ops->dev_select(ap, 0);
3418
3419 /* issue bus reset */
3420 DPRINTK("about to softreset, devmask=%x\n", devmask);
3421 rc = ata_bus_softreset(ap, devmask, deadline);
3422 /* if link is occupied, -ENODEV too is an error */
3423 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3424 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3425 return rc;
3426 }
3427
3428 /* determine by signature whether we have ATA or ATAPI devices */
3429 classes[0] = ata_dev_try_classify(ap, 0, &err);
3430 if (slave_possible && err != 0x81)
3431 classes[1] = ata_dev_try_classify(ap, 1, &err);
3432
3433 out:
3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3435 return 0;
3436 }
3437
3438 /**
3439 * sata_port_hardreset - reset port via SATA phy reset
3440 * @ap: port to reset
3441 * @timing: timing parameters { interval, duratinon, timeout } in msec
3442 * @deadline: deadline jiffies for the operation
3443 *
3444 * SATA phy-reset host port using DET bits of SControl register.
3445 *
3446 * LOCKING:
3447 * Kernel thread context (may sleep)
3448 *
3449 * RETURNS:
3450 * 0 on success, -errno otherwise.
3451 */
3452 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3453 unsigned long deadline)
3454 {
3455 u32 scontrol;
3456 int rc;
3457
3458 DPRINTK("ENTER\n");
3459
3460 if (sata_set_spd_needed(ap)) {
3461 /* SATA spec says nothing about how to reconfigure
3462 * spd. To be on the safe side, turn off phy during
3463 * reconfiguration. This works for at least ICH7 AHCI
3464 * and Sil3124.
3465 */
3466 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3467 goto out;
3468
3469 scontrol = (scontrol & 0x0f0) | 0x304;
3470
3471 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3472 goto out;
3473
3474 sata_set_spd(ap);
3475 }
3476
3477 /* issue phy wake/reset */
3478 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3479 goto out;
3480
3481 scontrol = (scontrol & 0x0f0) | 0x301;
3482
3483 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3484 goto out;
3485
3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3487 * 10.4.2 says at least 1 ms.
3488 */
3489 msleep(1);
3490
3491 /* bring phy back */
3492 rc = sata_phy_resume(ap, timing, deadline);
3493 out:
3494 DPRINTK("EXIT, rc=%d\n", rc);
3495 return rc;
3496 }
3497
3498 /**
3499 * sata_std_hardreset - reset host port via SATA phy reset
3500 * @ap: port to reset
3501 * @class: resulting class of attached device
3502 * @deadline: deadline jiffies for the operation
3503 *
3504 * SATA phy-reset host port using DET bits of SControl register,
3505 * wait for !BSY and classify the attached device.
3506 *
3507 * LOCKING:
3508 * Kernel thread context (may sleep)
3509 *
3510 * RETURNS:
3511 * 0 on success, -errno otherwise.
3512 */
3513 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3514 unsigned long deadline)
3515 {
3516 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3517 int rc;
3518
3519 DPRINTK("ENTER\n");
3520
3521 /* do hardreset */
3522 rc = sata_port_hardreset(ap, timing, deadline);
3523 if (rc) {
3524 ata_port_printk(ap, KERN_ERR,
3525 "COMRESET failed (errno=%d)\n", rc);
3526 return rc;
3527 }
3528
3529 /* TODO: phy layer with polling, timeouts, etc. */
3530 if (ata_port_offline(ap)) {
3531 *class = ATA_DEV_NONE;
3532 DPRINTK("EXIT, link offline\n");
3533 return 0;
3534 }
3535
3536 /* wait a while before checking status, see SRST for more info */
3537 msleep(150);
3538
3539 rc = ata_wait_ready(ap, deadline);
3540 /* link occupied, -ENODEV too is an error */
3541 if (rc) {
3542 ata_port_printk(ap, KERN_ERR,
3543 "COMRESET failed (errno=%d)\n", rc);
3544 return rc;
3545 }
3546
3547 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3548
3549 *class = ata_dev_try_classify(ap, 0, NULL);
3550
3551 DPRINTK("EXIT, class=%u\n", *class);
3552 return 0;
3553 }
3554
3555 /**
3556 * ata_std_postreset - standard postreset callback
3557 * @ap: the target ata_port
3558 * @classes: classes of attached devices
3559 *
3560 * This function is invoked after a successful reset. Note that
3561 * the device might have been reset more than once using
3562 * different reset methods before postreset is invoked.
3563 *
3564 * LOCKING:
3565 * Kernel thread context (may sleep)
3566 */
3567 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3568 {
3569 u32 serror;
3570
3571 DPRINTK("ENTER\n");
3572
3573 /* print link status */
3574 sata_print_link_status(ap);
3575
3576 /* clear SError */
3577 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3578 sata_scr_write(ap, SCR_ERROR, serror);
3579
3580 /* re-enable interrupts */
3581 if (!ap->ops->error_handler)
3582 ap->ops->irq_on(ap);
3583
3584 /* is double-select really necessary? */
3585 if (classes[0] != ATA_DEV_NONE)
3586 ap->ops->dev_select(ap, 1);
3587 if (classes[1] != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 0);
3589
3590 /* bail out if no device is present */
3591 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3592 DPRINTK("EXIT, no device\n");
3593 return;
3594 }
3595
3596 /* set up device control */
3597 if (ap->ioaddr.ctl_addr)
3598 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3599
3600 DPRINTK("EXIT\n");
3601 }
3602
3603 /**
3604 * ata_dev_same_device - Determine whether new ID matches configured device
3605 * @dev: device to compare against
3606 * @new_class: class of the new device
3607 * @new_id: IDENTIFY page of the new device
3608 *
3609 * Compare @new_class and @new_id against @dev and determine
3610 * whether @dev is the device indicated by @new_class and
3611 * @new_id.
3612 *
3613 * LOCKING:
3614 * None.
3615 *
3616 * RETURNS:
3617 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3618 */
3619 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3620 const u16 *new_id)
3621 {
3622 const u16 *old_id = dev->id;
3623 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3624 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3625
3626 if (dev->class != new_class) {
3627 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3628 dev->class, new_class);
3629 return 0;
3630 }
3631
3632 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3633 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3634 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3635 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3636
3637 if (strcmp(model[0], model[1])) {
3638 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3639 "'%s' != '%s'\n", model[0], model[1]);
3640 return 0;
3641 }
3642
3643 if (strcmp(serial[0], serial[1])) {
3644 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3645 "'%s' != '%s'\n", serial[0], serial[1]);
3646 return 0;
3647 }
3648
3649 return 1;
3650 }
3651
3652 /**
3653 * ata_dev_reread_id - Re-read IDENTIFY data
3654 * @adev: target ATA device
3655 * @readid_flags: read ID flags
3656 *
3657 * Re-read IDENTIFY page and make sure @dev is still attached to
3658 * the port.
3659 *
3660 * LOCKING:
3661 * Kernel thread context (may sleep)
3662 *
3663 * RETURNS:
3664 * 0 on success, negative errno otherwise
3665 */
3666 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3667 {
3668 unsigned int class = dev->class;
3669 u16 *id = (void *)dev->ap->sector_buf;
3670 int rc;
3671
3672 /* read ID data */
3673 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3674 if (rc)
3675 return rc;
3676
3677 /* is the device still there? */
3678 if (!ata_dev_same_device(dev, class, id))
3679 return -ENODEV;
3680
3681 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3682 return 0;
3683 }
3684
3685 /**
3686 * ata_dev_revalidate - Revalidate ATA device
3687 * @dev: device to revalidate
3688 * @readid_flags: read ID flags
3689 *
3690 * Re-read IDENTIFY page, make sure @dev is still attached to the
3691 * port and reconfigure it according to the new IDENTIFY page.
3692 *
3693 * LOCKING:
3694 * Kernel thread context (may sleep)
3695 *
3696 * RETURNS:
3697 * 0 on success, negative errno otherwise
3698 */
3699 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3700 {
3701 u64 n_sectors = dev->n_sectors;
3702 int rc;
3703
3704 if (!ata_dev_enabled(dev))
3705 return -ENODEV;
3706
3707 /* re-read ID */
3708 rc = ata_dev_reread_id(dev, readid_flags);
3709 if (rc)
3710 goto fail;
3711
3712 /* configure device according to the new ID */
3713 rc = ata_dev_configure(dev);
3714 if (rc)
3715 goto fail;
3716
3717 /* verify n_sectors hasn't changed */
3718 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3719 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3720 "%llu != %llu\n",
3721 (unsigned long long)n_sectors,
3722 (unsigned long long)dev->n_sectors);
3723 rc = -ENODEV;
3724 goto fail;
3725 }
3726
3727 return 0;
3728
3729 fail:
3730 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3731 return rc;
3732 }
3733
3734 struct ata_blacklist_entry {
3735 const char *model_num;
3736 const char *model_rev;
3737 unsigned long horkage;
3738 };
3739
3740 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3741 /* Devices with DMA related problems under Linux */
3742 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3743 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3744 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3745 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3748 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3749 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3750 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3751 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3752 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3754 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3755 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3756 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3757 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3758 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3759 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3760 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3761 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3762 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3763 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3764 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3765 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3766 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3767 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3768 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3769 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3771 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3772
3773 /* Weird ATAPI devices */
3774 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3775 ATA_HORKAGE_DMA_RW_ONLY },
3776
3777 /* Devices we expect to fail diagnostics */
3778
3779 /* Devices where NCQ should be avoided */
3780 /* NCQ is slow */
3781 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3782 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3783 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3784 /* NCQ is broken */
3785 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3786 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3787 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3788 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3789 /* Blacklist entries taken from Silicon Image 3124/3132
3790 Windows driver .inf file - also several Linux problem reports */
3791 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3792 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3793 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3794 /* Drives which do spurious command completion */
3795 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3796
3797 /* Devices with NCQ limits */
3798
3799 /* End Marker */
3800 { }
3801 };
3802
3803 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3804 {
3805 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3806 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3807 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3808
3809 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3810 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3811
3812 while (ad->model_num) {
3813 if (!strcmp(ad->model_num, model_num)) {
3814 if (ad->model_rev == NULL)
3815 return ad->horkage;
3816 if (!strcmp(ad->model_rev, model_rev))
3817 return ad->horkage;
3818 }
3819 ad++;
3820 }
3821 return 0;
3822 }
3823
3824 static int ata_dma_blacklisted(const struct ata_device *dev)
3825 {
3826 /* We don't support polling DMA.
3827 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3828 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3829 */
3830 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3831 (dev->flags & ATA_DFLAG_CDB_INTR))
3832 return 1;
3833 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3834 }
3835
3836 /**
3837 * ata_dev_xfermask - Compute supported xfermask of the given device
3838 * @dev: Device to compute xfermask for
3839 *
3840 * Compute supported xfermask of @dev and store it in
3841 * dev->*_mask. This function is responsible for applying all
3842 * known limits including host controller limits, device
3843 * blacklist, etc...
3844 *
3845 * LOCKING:
3846 * None.
3847 */
3848 static void ata_dev_xfermask(struct ata_device *dev)
3849 {
3850 struct ata_port *ap = dev->ap;
3851 struct ata_host *host = ap->host;
3852 unsigned long xfer_mask;
3853
3854 /* controller modes available */
3855 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3856 ap->mwdma_mask, ap->udma_mask);
3857
3858 /* drive modes available */
3859 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3860 dev->mwdma_mask, dev->udma_mask);
3861 xfer_mask &= ata_id_xfermask(dev->id);
3862
3863 /*
3864 * CFA Advanced TrueIDE timings are not allowed on a shared
3865 * cable
3866 */
3867 if (ata_dev_pair(dev)) {
3868 /* No PIO5 or PIO6 */
3869 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3870 /* No MWDMA3 or MWDMA 4 */
3871 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3872 }
3873
3874 if (ata_dma_blacklisted(dev)) {
3875 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3876 ata_dev_printk(dev, KERN_WARNING,
3877 "device is on DMA blacklist, disabling DMA\n");
3878 }
3879
3880 if ((host->flags & ATA_HOST_SIMPLEX) &&
3881 host->simplex_claimed && host->simplex_claimed != ap) {
3882 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3883 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3884 "other device, disabling DMA\n");
3885 }
3886
3887 if (ap->flags & ATA_FLAG_NO_IORDY)
3888 xfer_mask &= ata_pio_mask_no_iordy(dev);
3889
3890 if (ap->ops->mode_filter)
3891 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3892
3893 /* Apply cable rule here. Don't apply it early because when
3894 * we handle hot plug the cable type can itself change.
3895 * Check this last so that we know if the transfer rate was
3896 * solely limited by the cable.
3897 * Unknown or 80 wire cables reported host side are checked
3898 * drive side as well. Cases where we know a 40wire cable
3899 * is used safely for 80 are not checked here.
3900 */
3901 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3902 /* UDMA/44 or higher would be available */
3903 if((ap->cbl == ATA_CBL_PATA40) ||
3904 (ata_drive_40wire(dev->id) &&
3905 (ap->cbl == ATA_CBL_PATA_UNK ||
3906 ap->cbl == ATA_CBL_PATA80))) {
3907 ata_dev_printk(dev, KERN_WARNING,
3908 "limited to UDMA/33 due to 40-wire cable\n");
3909 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3910 }
3911
3912 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3913 &dev->mwdma_mask, &dev->udma_mask);
3914 }
3915
3916 /**
3917 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3918 * @dev: Device to which command will be sent
3919 *
3920 * Issue SET FEATURES - XFER MODE command to device @dev
3921 * on port @ap.
3922 *
3923 * LOCKING:
3924 * PCI/etc. bus probe sem.
3925 *
3926 * RETURNS:
3927 * 0 on success, AC_ERR_* mask otherwise.
3928 */
3929
3930 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3931 {
3932 struct ata_taskfile tf;
3933 unsigned int err_mask;
3934
3935 /* set up set-features taskfile */
3936 DPRINTK("set features - xfer mode\n");
3937
3938 /* Some controllers and ATAPI devices show flaky interrupt
3939 * behavior after setting xfer mode. Use polling instead.
3940 */
3941 ata_tf_init(dev, &tf);
3942 tf.command = ATA_CMD_SET_FEATURES;
3943 tf.feature = SETFEATURES_XFER;
3944 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3945 tf.protocol = ATA_PROT_NODATA;
3946 tf.nsect = dev->xfer_mode;
3947
3948 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3949
3950 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3951 return err_mask;
3952 }
3953
3954 /**
3955 * ata_dev_init_params - Issue INIT DEV PARAMS command
3956 * @dev: Device to which command will be sent
3957 * @heads: Number of heads (taskfile parameter)
3958 * @sectors: Number of sectors (taskfile parameter)
3959 *
3960 * LOCKING:
3961 * Kernel thread context (may sleep)
3962 *
3963 * RETURNS:
3964 * 0 on success, AC_ERR_* mask otherwise.
3965 */
3966 static unsigned int ata_dev_init_params(struct ata_device *dev,
3967 u16 heads, u16 sectors)
3968 {
3969 struct ata_taskfile tf;
3970 unsigned int err_mask;
3971
3972 /* Number of sectors per track 1-255. Number of heads 1-16 */
3973 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3974 return AC_ERR_INVALID;
3975
3976 /* set up init dev params taskfile */
3977 DPRINTK("init dev params \n");
3978
3979 ata_tf_init(dev, &tf);
3980 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3981 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3982 tf.protocol = ATA_PROT_NODATA;
3983 tf.nsect = sectors;
3984 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3985
3986 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3987
3988 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3989 return err_mask;
3990 }
3991
3992 /**
3993 * ata_sg_clean - Unmap DMA memory associated with command
3994 * @qc: Command containing DMA memory to be released
3995 *
3996 * Unmap all mapped DMA memory associated with this command.
3997 *
3998 * LOCKING:
3999 * spin_lock_irqsave(host lock)
4000 */
4001 void ata_sg_clean(struct ata_queued_cmd *qc)
4002 {
4003 struct ata_port *ap = qc->ap;
4004 struct scatterlist *sg = qc->__sg;
4005 int dir = qc->dma_dir;
4006 void *pad_buf = NULL;
4007
4008 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4009 WARN_ON(sg == NULL);
4010
4011 if (qc->flags & ATA_QCFLAG_SINGLE)
4012 WARN_ON(qc->n_elem > 1);
4013
4014 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4015
4016 /* if we padded the buffer out to 32-bit bound, and data
4017 * xfer direction is from-device, we must copy from the
4018 * pad buffer back into the supplied buffer
4019 */
4020 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4021 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4022
4023 if (qc->flags & ATA_QCFLAG_SG) {
4024 if (qc->n_elem)
4025 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4026 /* restore last sg */
4027 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4028 if (pad_buf) {
4029 struct scatterlist *psg = &qc->pad_sgent;
4030 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4031 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4032 kunmap_atomic(addr, KM_IRQ0);
4033 }
4034 } else {
4035 if (qc->n_elem)
4036 dma_unmap_single(ap->dev,
4037 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4038 dir);
4039 /* restore sg */
4040 sg->length += qc->pad_len;
4041 if (pad_buf)
4042 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4043 pad_buf, qc->pad_len);
4044 }
4045
4046 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4047 qc->__sg = NULL;
4048 }
4049
4050 /**
4051 * ata_fill_sg - Fill PCI IDE PRD table
4052 * @qc: Metadata associated with taskfile to be transferred
4053 *
4054 * Fill PCI IDE PRD (scatter-gather) table with segments
4055 * associated with the current disk command.
4056 *
4057 * LOCKING:
4058 * spin_lock_irqsave(host lock)
4059 *
4060 */
4061 static void ata_fill_sg(struct ata_queued_cmd *qc)
4062 {
4063 struct ata_port *ap = qc->ap;
4064 struct scatterlist *sg;
4065 unsigned int idx;
4066
4067 WARN_ON(qc->__sg == NULL);
4068 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4069
4070 idx = 0;
4071 ata_for_each_sg(sg, qc) {
4072 u32 addr, offset;
4073 u32 sg_len, len;
4074
4075 /* determine if physical DMA addr spans 64K boundary.
4076 * Note h/w doesn't support 64-bit, so we unconditionally
4077 * truncate dma_addr_t to u32.
4078 */
4079 addr = (u32) sg_dma_address(sg);
4080 sg_len = sg_dma_len(sg);
4081
4082 while (sg_len) {
4083 offset = addr & 0xffff;
4084 len = sg_len;
4085 if ((offset + sg_len) > 0x10000)
4086 len = 0x10000 - offset;
4087
4088 ap->prd[idx].addr = cpu_to_le32(addr);
4089 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4090 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4091
4092 idx++;
4093 sg_len -= len;
4094 addr += len;
4095 }
4096 }
4097
4098 if (idx)
4099 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4100 }
4101 /**
4102 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4103 * @qc: Metadata associated with taskfile to check
4104 *
4105 * Allow low-level driver to filter ATA PACKET commands, returning
4106 * a status indicating whether or not it is OK to use DMA for the
4107 * supplied PACKET command.
4108 *
4109 * LOCKING:
4110 * spin_lock_irqsave(host lock)
4111 *
4112 * RETURNS: 0 when ATAPI DMA can be used
4113 * nonzero otherwise
4114 */
4115 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4116 {
4117 struct ata_port *ap = qc->ap;
4118 int rc = 0; /* Assume ATAPI DMA is OK by default */
4119
4120 /* some drives can only do ATAPI DMA on read/write */
4121 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4122 struct scsi_cmnd *cmd = qc->scsicmd;
4123 u8 *scsicmd = cmd->cmnd;
4124
4125 switch (scsicmd[0]) {
4126 case READ_10:
4127 case WRITE_10:
4128 case READ_12:
4129 case WRITE_12:
4130 case READ_6:
4131 case WRITE_6:
4132 /* atapi dma maybe ok */
4133 break;
4134 default:
4135 /* turn off atapi dma */
4136 return 1;
4137 }
4138 }
4139
4140 if (ap->ops->check_atapi_dma)
4141 rc = ap->ops->check_atapi_dma(qc);
4142
4143 return rc;
4144 }
4145 /**
4146 * ata_qc_prep - Prepare taskfile for submission
4147 * @qc: Metadata associated with taskfile to be prepared
4148 *
4149 * Prepare ATA taskfile for submission.
4150 *
4151 * LOCKING:
4152 * spin_lock_irqsave(host lock)
4153 */
4154 void ata_qc_prep(struct ata_queued_cmd *qc)
4155 {
4156 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4157 return;
4158
4159 ata_fill_sg(qc);
4160 }
4161
4162 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4163
4164 /**
4165 * ata_sg_init_one - Associate command with memory buffer
4166 * @qc: Command to be associated
4167 * @buf: Memory buffer
4168 * @buflen: Length of memory buffer, in bytes.
4169 *
4170 * Initialize the data-related elements of queued_cmd @qc
4171 * to point to a single memory buffer, @buf of byte length @buflen.
4172 *
4173 * LOCKING:
4174 * spin_lock_irqsave(host lock)
4175 */
4176
4177 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4178 {
4179 qc->flags |= ATA_QCFLAG_SINGLE;
4180
4181 qc->__sg = &qc->sgent;
4182 qc->n_elem = 1;
4183 qc->orig_n_elem = 1;
4184 qc->buf_virt = buf;
4185 qc->nbytes = buflen;
4186
4187 sg_init_one(&qc->sgent, buf, buflen);
4188 }
4189
4190 /**
4191 * ata_sg_init - Associate command with scatter-gather table.
4192 * @qc: Command to be associated
4193 * @sg: Scatter-gather table.
4194 * @n_elem: Number of elements in s/g table.
4195 *
4196 * Initialize the data-related elements of queued_cmd @qc
4197 * to point to a scatter-gather table @sg, containing @n_elem
4198 * elements.
4199 *
4200 * LOCKING:
4201 * spin_lock_irqsave(host lock)
4202 */
4203
4204 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4205 unsigned int n_elem)
4206 {
4207 qc->flags |= ATA_QCFLAG_SG;
4208 qc->__sg = sg;
4209 qc->n_elem = n_elem;
4210 qc->orig_n_elem = n_elem;
4211 }
4212
4213 /**
4214 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4215 * @qc: Command with memory buffer to be mapped.
4216 *
4217 * DMA-map the memory buffer associated with queued_cmd @qc.
4218 *
4219 * LOCKING:
4220 * spin_lock_irqsave(host lock)
4221 *
4222 * RETURNS:
4223 * Zero on success, negative on error.
4224 */
4225
4226 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4227 {
4228 struct ata_port *ap = qc->ap;
4229 int dir = qc->dma_dir;
4230 struct scatterlist *sg = qc->__sg;
4231 dma_addr_t dma_address;
4232 int trim_sg = 0;
4233
4234 /* we must lengthen transfers to end on a 32-bit boundary */
4235 qc->pad_len = sg->length & 3;
4236 if (qc->pad_len) {
4237 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4238 struct scatterlist *psg = &qc->pad_sgent;
4239
4240 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4241
4242 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4243
4244 if (qc->tf.flags & ATA_TFLAG_WRITE)
4245 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4246 qc->pad_len);
4247
4248 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4249 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4250 /* trim sg */
4251 sg->length -= qc->pad_len;
4252 if (sg->length == 0)
4253 trim_sg = 1;
4254
4255 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4256 sg->length, qc->pad_len);
4257 }
4258
4259 if (trim_sg) {
4260 qc->n_elem--;
4261 goto skip_map;
4262 }
4263
4264 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4265 sg->length, dir);
4266 if (dma_mapping_error(dma_address)) {
4267 /* restore sg */
4268 sg->length += qc->pad_len;
4269 return -1;
4270 }
4271
4272 sg_dma_address(sg) = dma_address;
4273 sg_dma_len(sg) = sg->length;
4274
4275 skip_map:
4276 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4277 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4278
4279 return 0;
4280 }
4281
4282 /**
4283 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4284 * @qc: Command with scatter-gather table to be mapped.
4285 *
4286 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4287 *
4288 * LOCKING:
4289 * spin_lock_irqsave(host lock)
4290 *
4291 * RETURNS:
4292 * Zero on success, negative on error.
4293 *
4294 */
4295
4296 static int ata_sg_setup(struct ata_queued_cmd *qc)
4297 {
4298 struct ata_port *ap = qc->ap;
4299 struct scatterlist *sg = qc->__sg;
4300 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4301 int n_elem, pre_n_elem, dir, trim_sg = 0;
4302
4303 VPRINTK("ENTER, ata%u\n", ap->print_id);
4304 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4305
4306 /* we must lengthen transfers to end on a 32-bit boundary */
4307 qc->pad_len = lsg->length & 3;
4308 if (qc->pad_len) {
4309 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4310 struct scatterlist *psg = &qc->pad_sgent;
4311 unsigned int offset;
4312
4313 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4314
4315 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4316
4317 /*
4318 * psg->page/offset are used to copy to-be-written
4319 * data in this function or read data in ata_sg_clean.
4320 */
4321 offset = lsg->offset + lsg->length - qc->pad_len;
4322 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4323 psg->offset = offset_in_page(offset);
4324
4325 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4326 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4327 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4328 kunmap_atomic(addr, KM_IRQ0);
4329 }
4330
4331 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4332 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4333 /* trim last sg */
4334 lsg->length -= qc->pad_len;
4335 if (lsg->length == 0)
4336 trim_sg = 1;
4337
4338 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4339 qc->n_elem - 1, lsg->length, qc->pad_len);
4340 }
4341
4342 pre_n_elem = qc->n_elem;
4343 if (trim_sg && pre_n_elem)
4344 pre_n_elem--;
4345
4346 if (!pre_n_elem) {
4347 n_elem = 0;
4348 goto skip_map;
4349 }
4350
4351 dir = qc->dma_dir;
4352 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4353 if (n_elem < 1) {
4354 /* restore last sg */
4355 lsg->length += qc->pad_len;
4356 return -1;
4357 }
4358
4359 DPRINTK("%d sg elements mapped\n", n_elem);
4360
4361 skip_map:
4362 qc->n_elem = n_elem;
4363
4364 return 0;
4365 }
4366
4367 /**
4368 * swap_buf_le16 - swap halves of 16-bit words in place
4369 * @buf: Buffer to swap
4370 * @buf_words: Number of 16-bit words in buffer.
4371 *
4372 * Swap halves of 16-bit words if needed to convert from
4373 * little-endian byte order to native cpu byte order, or
4374 * vice-versa.
4375 *
4376 * LOCKING:
4377 * Inherited from caller.
4378 */
4379 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4380 {
4381 #ifdef __BIG_ENDIAN
4382 unsigned int i;
4383
4384 for (i = 0; i < buf_words; i++)
4385 buf[i] = le16_to_cpu(buf[i]);
4386 #endif /* __BIG_ENDIAN */
4387 }
4388
4389 /**
4390 * ata_data_xfer - Transfer data by PIO
4391 * @adev: device to target
4392 * @buf: data buffer
4393 * @buflen: buffer length
4394 * @write_data: read/write
4395 *
4396 * Transfer data from/to the device data register by PIO.
4397 *
4398 * LOCKING:
4399 * Inherited from caller.
4400 */
4401 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4402 unsigned int buflen, int write_data)
4403 {
4404 struct ata_port *ap = adev->ap;
4405 unsigned int words = buflen >> 1;
4406
4407 /* Transfer multiple of 2 bytes */
4408 if (write_data)
4409 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4410 else
4411 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4412
4413 /* Transfer trailing 1 byte, if any. */
4414 if (unlikely(buflen & 0x01)) {
4415 u16 align_buf[1] = { 0 };
4416 unsigned char *trailing_buf = buf + buflen - 1;
4417
4418 if (write_data) {
4419 memcpy(align_buf, trailing_buf, 1);
4420 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4421 } else {
4422 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4423 memcpy(trailing_buf, align_buf, 1);
4424 }
4425 }
4426 }
4427
4428 /**
4429 * ata_data_xfer_noirq - Transfer data by PIO
4430 * @adev: device to target
4431 * @buf: data buffer
4432 * @buflen: buffer length
4433 * @write_data: read/write
4434 *
4435 * Transfer data from/to the device data register by PIO. Do the
4436 * transfer with interrupts disabled.
4437 *
4438 * LOCKING:
4439 * Inherited from caller.
4440 */
4441 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4442 unsigned int buflen, int write_data)
4443 {
4444 unsigned long flags;
4445 local_irq_save(flags);
4446 ata_data_xfer(adev, buf, buflen, write_data);
4447 local_irq_restore(flags);
4448 }
4449
4450
4451 /**
4452 * ata_pio_sector - Transfer a sector of data.
4453 * @qc: Command on going
4454 *
4455 * Transfer qc->sect_size bytes of data from/to the ATA device.
4456 *
4457 * LOCKING:
4458 * Inherited from caller.
4459 */
4460
4461 static void ata_pio_sector(struct ata_queued_cmd *qc)
4462 {
4463 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4464 struct scatterlist *sg = qc->__sg;
4465 struct ata_port *ap = qc->ap;
4466 struct page *page;
4467 unsigned int offset;
4468 unsigned char *buf;
4469
4470 if (qc->curbytes == qc->nbytes - qc->sect_size)
4471 ap->hsm_task_state = HSM_ST_LAST;
4472
4473 page = sg[qc->cursg].page;
4474 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4475
4476 /* get the current page and offset */
4477 page = nth_page(page, (offset >> PAGE_SHIFT));
4478 offset %= PAGE_SIZE;
4479
4480 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4481
4482 if (PageHighMem(page)) {
4483 unsigned long flags;
4484
4485 /* FIXME: use a bounce buffer */
4486 local_irq_save(flags);
4487 buf = kmap_atomic(page, KM_IRQ0);
4488
4489 /* do the actual data transfer */
4490 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4491
4492 kunmap_atomic(buf, KM_IRQ0);
4493 local_irq_restore(flags);
4494 } else {
4495 buf = page_address(page);
4496 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4497 }
4498
4499 qc->curbytes += qc->sect_size;
4500 qc->cursg_ofs += qc->sect_size;
4501
4502 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4503 qc->cursg++;
4504 qc->cursg_ofs = 0;
4505 }
4506 }
4507
4508 /**
4509 * ata_pio_sectors - Transfer one or many sectors.
4510 * @qc: Command on going
4511 *
4512 * Transfer one or many sectors of data from/to the
4513 * ATA device for the DRQ request.
4514 *
4515 * LOCKING:
4516 * Inherited from caller.
4517 */
4518
4519 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4520 {
4521 if (is_multi_taskfile(&qc->tf)) {
4522 /* READ/WRITE MULTIPLE */
4523 unsigned int nsect;
4524
4525 WARN_ON(qc->dev->multi_count == 0);
4526
4527 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4528 qc->dev->multi_count);
4529 while (nsect--)
4530 ata_pio_sector(qc);
4531 } else
4532 ata_pio_sector(qc);
4533 }
4534
4535 /**
4536 * atapi_send_cdb - Write CDB bytes to hardware
4537 * @ap: Port to which ATAPI device is attached.
4538 * @qc: Taskfile currently active
4539 *
4540 * When device has indicated its readiness to accept
4541 * a CDB, this function is called. Send the CDB.
4542 *
4543 * LOCKING:
4544 * caller.
4545 */
4546
4547 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4548 {
4549 /* send SCSI cdb */
4550 DPRINTK("send cdb\n");
4551 WARN_ON(qc->dev->cdb_len < 12);
4552
4553 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4554 ata_altstatus(ap); /* flush */
4555
4556 switch (qc->tf.protocol) {
4557 case ATA_PROT_ATAPI:
4558 ap->hsm_task_state = HSM_ST;
4559 break;
4560 case ATA_PROT_ATAPI_NODATA:
4561 ap->hsm_task_state = HSM_ST_LAST;
4562 break;
4563 case ATA_PROT_ATAPI_DMA:
4564 ap->hsm_task_state = HSM_ST_LAST;
4565 /* initiate bmdma */
4566 ap->ops->bmdma_start(qc);
4567 break;
4568 }
4569 }
4570
4571 /**
4572 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4573 * @qc: Command on going
4574 * @bytes: number of bytes
4575 *
4576 * Transfer Transfer data from/to the ATAPI device.
4577 *
4578 * LOCKING:
4579 * Inherited from caller.
4580 *
4581 */
4582
4583 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4584 {
4585 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4586 struct scatterlist *sg = qc->__sg;
4587 struct ata_port *ap = qc->ap;
4588 struct page *page;
4589 unsigned char *buf;
4590 unsigned int offset, count;
4591
4592 if (qc->curbytes + bytes >= qc->nbytes)
4593 ap->hsm_task_state = HSM_ST_LAST;
4594
4595 next_sg:
4596 if (unlikely(qc->cursg >= qc->n_elem)) {
4597 /*
4598 * The end of qc->sg is reached and the device expects
4599 * more data to transfer. In order not to overrun qc->sg
4600 * and fulfill length specified in the byte count register,
4601 * - for read case, discard trailing data from the device
4602 * - for write case, padding zero data to the device
4603 */
4604 u16 pad_buf[1] = { 0 };
4605 unsigned int words = bytes >> 1;
4606 unsigned int i;
4607
4608 if (words) /* warning if bytes > 1 */
4609 ata_dev_printk(qc->dev, KERN_WARNING,
4610 "%u bytes trailing data\n", bytes);
4611
4612 for (i = 0; i < words; i++)
4613 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4614
4615 ap->hsm_task_state = HSM_ST_LAST;
4616 return;
4617 }
4618
4619 sg = &qc->__sg[qc->cursg];
4620
4621 page = sg->page;
4622 offset = sg->offset + qc->cursg_ofs;
4623
4624 /* get the current page and offset */
4625 page = nth_page(page, (offset >> PAGE_SHIFT));
4626 offset %= PAGE_SIZE;
4627
4628 /* don't overrun current sg */
4629 count = min(sg->length - qc->cursg_ofs, bytes);
4630
4631 /* don't cross page boundaries */
4632 count = min(count, (unsigned int)PAGE_SIZE - offset);
4633
4634 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4635
4636 if (PageHighMem(page)) {
4637 unsigned long flags;
4638
4639 /* FIXME: use bounce buffer */
4640 local_irq_save(flags);
4641 buf = kmap_atomic(page, KM_IRQ0);
4642
4643 /* do the actual data transfer */
4644 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4645
4646 kunmap_atomic(buf, KM_IRQ0);
4647 local_irq_restore(flags);
4648 } else {
4649 buf = page_address(page);
4650 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4651 }
4652
4653 bytes -= count;
4654 qc->curbytes += count;
4655 qc->cursg_ofs += count;
4656
4657 if (qc->cursg_ofs == sg->length) {
4658 qc->cursg++;
4659 qc->cursg_ofs = 0;
4660 }
4661
4662 if (bytes)
4663 goto next_sg;
4664 }
4665
4666 /**
4667 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4668 * @qc: Command on going
4669 *
4670 * Transfer Transfer data from/to the ATAPI device.
4671 *
4672 * LOCKING:
4673 * Inherited from caller.
4674 */
4675
4676 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4677 {
4678 struct ata_port *ap = qc->ap;
4679 struct ata_device *dev = qc->dev;
4680 unsigned int ireason, bc_lo, bc_hi, bytes;
4681 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4682
4683 /* Abuse qc->result_tf for temp storage of intermediate TF
4684 * here to save some kernel stack usage.
4685 * For normal completion, qc->result_tf is not relevant. For
4686 * error, qc->result_tf is later overwritten by ata_qc_complete().
4687 * So, the correctness of qc->result_tf is not affected.
4688 */
4689 ap->ops->tf_read(ap, &qc->result_tf);
4690 ireason = qc->result_tf.nsect;
4691 bc_lo = qc->result_tf.lbam;
4692 bc_hi = qc->result_tf.lbah;
4693 bytes = (bc_hi << 8) | bc_lo;
4694
4695 /* shall be cleared to zero, indicating xfer of data */
4696 if (ireason & (1 << 0))
4697 goto err_out;
4698
4699 /* make sure transfer direction matches expected */
4700 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4701 if (do_write != i_write)
4702 goto err_out;
4703
4704 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4705
4706 __atapi_pio_bytes(qc, bytes);
4707
4708 return;
4709
4710 err_out:
4711 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4712 qc->err_mask |= AC_ERR_HSM;
4713 ap->hsm_task_state = HSM_ST_ERR;
4714 }
4715
4716 /**
4717 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4718 * @ap: the target ata_port
4719 * @qc: qc on going
4720 *
4721 * RETURNS:
4722 * 1 if ok in workqueue, 0 otherwise.
4723 */
4724
4725 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4726 {
4727 if (qc->tf.flags & ATA_TFLAG_POLLING)
4728 return 1;
4729
4730 if (ap->hsm_task_state == HSM_ST_FIRST) {
4731 if (qc->tf.protocol == ATA_PROT_PIO &&
4732 (qc->tf.flags & ATA_TFLAG_WRITE))
4733 return 1;
4734
4735 if (is_atapi_taskfile(&qc->tf) &&
4736 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4737 return 1;
4738 }
4739
4740 return 0;
4741 }
4742
4743 /**
4744 * ata_hsm_qc_complete - finish a qc running on standard HSM
4745 * @qc: Command to complete
4746 * @in_wq: 1 if called from workqueue, 0 otherwise
4747 *
4748 * Finish @qc which is running on standard HSM.
4749 *
4750 * LOCKING:
4751 * If @in_wq is zero, spin_lock_irqsave(host lock).
4752 * Otherwise, none on entry and grabs host lock.
4753 */
4754 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4755 {
4756 struct ata_port *ap = qc->ap;
4757 unsigned long flags;
4758
4759 if (ap->ops->error_handler) {
4760 if (in_wq) {
4761 spin_lock_irqsave(ap->lock, flags);
4762
4763 /* EH might have kicked in while host lock is
4764 * released.
4765 */
4766 qc = ata_qc_from_tag(ap, qc->tag);
4767 if (qc) {
4768 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4769 ap->ops->irq_on(ap);
4770 ata_qc_complete(qc);
4771 } else
4772 ata_port_freeze(ap);
4773 }
4774
4775 spin_unlock_irqrestore(ap->lock, flags);
4776 } else {
4777 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4778 ata_qc_complete(qc);
4779 else
4780 ata_port_freeze(ap);
4781 }
4782 } else {
4783 if (in_wq) {
4784 spin_lock_irqsave(ap->lock, flags);
4785 ap->ops->irq_on(ap);
4786 ata_qc_complete(qc);
4787 spin_unlock_irqrestore(ap->lock, flags);
4788 } else
4789 ata_qc_complete(qc);
4790 }
4791
4792 ata_altstatus(ap); /* flush */
4793 }
4794
4795 /**
4796 * ata_hsm_move - move the HSM to the next state.
4797 * @ap: the target ata_port
4798 * @qc: qc on going
4799 * @status: current device status
4800 * @in_wq: 1 if called from workqueue, 0 otherwise
4801 *
4802 * RETURNS:
4803 * 1 when poll next status needed, 0 otherwise.
4804 */
4805 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4806 u8 status, int in_wq)
4807 {
4808 unsigned long flags = 0;
4809 int poll_next;
4810
4811 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4812
4813 /* Make sure ata_qc_issue_prot() does not throw things
4814 * like DMA polling into the workqueue. Notice that
4815 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4816 */
4817 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4818
4819 fsm_start:
4820 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4821 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4822
4823 switch (ap->hsm_task_state) {
4824 case HSM_ST_FIRST:
4825 /* Send first data block or PACKET CDB */
4826
4827 /* If polling, we will stay in the work queue after
4828 * sending the data. Otherwise, interrupt handler
4829 * takes over after sending the data.
4830 */
4831 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4832
4833 /* check device status */
4834 if (unlikely((status & ATA_DRQ) == 0)) {
4835 /* handle BSY=0, DRQ=0 as error */
4836 if (likely(status & (ATA_ERR | ATA_DF)))
4837 /* device stops HSM for abort/error */
4838 qc->err_mask |= AC_ERR_DEV;
4839 else
4840 /* HSM violation. Let EH handle this */
4841 qc->err_mask |= AC_ERR_HSM;
4842
4843 ap->hsm_task_state = HSM_ST_ERR;
4844 goto fsm_start;
4845 }
4846
4847 /* Device should not ask for data transfer (DRQ=1)
4848 * when it finds something wrong.
4849 * We ignore DRQ here and stop the HSM by
4850 * changing hsm_task_state to HSM_ST_ERR and
4851 * let the EH abort the command or reset the device.
4852 */
4853 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4854 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4855 "error, dev_stat 0x%X\n", status);
4856 qc->err_mask |= AC_ERR_HSM;
4857 ap->hsm_task_state = HSM_ST_ERR;
4858 goto fsm_start;
4859 }
4860
4861 /* Send the CDB (atapi) or the first data block (ata pio out).
4862 * During the state transition, interrupt handler shouldn't
4863 * be invoked before the data transfer is complete and
4864 * hsm_task_state is changed. Hence, the following locking.
4865 */
4866 if (in_wq)
4867 spin_lock_irqsave(ap->lock, flags);
4868
4869 if (qc->tf.protocol == ATA_PROT_PIO) {
4870 /* PIO data out protocol.
4871 * send first data block.
4872 */
4873
4874 /* ata_pio_sectors() might change the state
4875 * to HSM_ST_LAST. so, the state is changed here
4876 * before ata_pio_sectors().
4877 */
4878 ap->hsm_task_state = HSM_ST;
4879 ata_pio_sectors(qc);
4880 ata_altstatus(ap); /* flush */
4881 } else
4882 /* send CDB */
4883 atapi_send_cdb(ap, qc);
4884
4885 if (in_wq)
4886 spin_unlock_irqrestore(ap->lock, flags);
4887
4888 /* if polling, ata_pio_task() handles the rest.
4889 * otherwise, interrupt handler takes over from here.
4890 */
4891 break;
4892
4893 case HSM_ST:
4894 /* complete command or read/write the data register */
4895 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4896 /* ATAPI PIO protocol */
4897 if ((status & ATA_DRQ) == 0) {
4898 /* No more data to transfer or device error.
4899 * Device error will be tagged in HSM_ST_LAST.
4900 */
4901 ap->hsm_task_state = HSM_ST_LAST;
4902 goto fsm_start;
4903 }
4904
4905 /* Device should not ask for data transfer (DRQ=1)
4906 * when it finds something wrong.
4907 * We ignore DRQ here and stop the HSM by
4908 * changing hsm_task_state to HSM_ST_ERR and
4909 * let the EH abort the command or reset the device.
4910 */
4911 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4912 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4913 "device error, dev_stat 0x%X\n",
4914 status);
4915 qc->err_mask |= AC_ERR_HSM;
4916 ap->hsm_task_state = HSM_ST_ERR;
4917 goto fsm_start;
4918 }
4919
4920 atapi_pio_bytes(qc);
4921
4922 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4923 /* bad ireason reported by device */
4924 goto fsm_start;
4925
4926 } else {
4927 /* ATA PIO protocol */
4928 if (unlikely((status & ATA_DRQ) == 0)) {
4929 /* handle BSY=0, DRQ=0 as error */
4930 if (likely(status & (ATA_ERR | ATA_DF)))
4931 /* device stops HSM for abort/error */
4932 qc->err_mask |= AC_ERR_DEV;
4933 else
4934 /* HSM violation. Let EH handle this.
4935 * Phantom devices also trigger this
4936 * condition. Mark hint.
4937 */
4938 qc->err_mask |= AC_ERR_HSM |
4939 AC_ERR_NODEV_HINT;
4940
4941 ap->hsm_task_state = HSM_ST_ERR;
4942 goto fsm_start;
4943 }
4944
4945 /* For PIO reads, some devices may ask for
4946 * data transfer (DRQ=1) alone with ERR=1.
4947 * We respect DRQ here and transfer one
4948 * block of junk data before changing the
4949 * hsm_task_state to HSM_ST_ERR.
4950 *
4951 * For PIO writes, ERR=1 DRQ=1 doesn't make
4952 * sense since the data block has been
4953 * transferred to the device.
4954 */
4955 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4956 /* data might be corrputed */
4957 qc->err_mask |= AC_ERR_DEV;
4958
4959 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4960 ata_pio_sectors(qc);
4961 ata_altstatus(ap);
4962 status = ata_wait_idle(ap);
4963 }
4964
4965 if (status & (ATA_BUSY | ATA_DRQ))
4966 qc->err_mask |= AC_ERR_HSM;
4967
4968 /* ata_pio_sectors() might change the
4969 * state to HSM_ST_LAST. so, the state
4970 * is changed after ata_pio_sectors().
4971 */
4972 ap->hsm_task_state = HSM_ST_ERR;
4973 goto fsm_start;
4974 }
4975
4976 ata_pio_sectors(qc);
4977
4978 if (ap->hsm_task_state == HSM_ST_LAST &&
4979 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4980 /* all data read */
4981 ata_altstatus(ap);
4982 status = ata_wait_idle(ap);
4983 goto fsm_start;
4984 }
4985 }
4986
4987 ata_altstatus(ap); /* flush */
4988 poll_next = 1;
4989 break;
4990
4991 case HSM_ST_LAST:
4992 if (unlikely(!ata_ok(status))) {
4993 qc->err_mask |= __ac_err_mask(status);
4994 ap->hsm_task_state = HSM_ST_ERR;
4995 goto fsm_start;
4996 }
4997
4998 /* no more data to transfer */
4999 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5000 ap->print_id, qc->dev->devno, status);
5001
5002 WARN_ON(qc->err_mask);
5003
5004 ap->hsm_task_state = HSM_ST_IDLE;
5005
5006 /* complete taskfile transaction */
5007 ata_hsm_qc_complete(qc, in_wq);
5008
5009 poll_next = 0;
5010 break;
5011
5012 case HSM_ST_ERR:
5013 /* make sure qc->err_mask is available to
5014 * know what's wrong and recover
5015 */
5016 WARN_ON(qc->err_mask == 0);
5017
5018 ap->hsm_task_state = HSM_ST_IDLE;
5019
5020 /* complete taskfile transaction */
5021 ata_hsm_qc_complete(qc, in_wq);
5022
5023 poll_next = 0;
5024 break;
5025 default:
5026 poll_next = 0;
5027 BUG();
5028 }
5029
5030 return poll_next;
5031 }
5032
5033 static void ata_pio_task(struct work_struct *work)
5034 {
5035 struct ata_port *ap =
5036 container_of(work, struct ata_port, port_task.work);
5037 struct ata_queued_cmd *qc = ap->port_task_data;
5038 u8 status;
5039 int poll_next;
5040
5041 fsm_start:
5042 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5043
5044 /*
5045 * This is purely heuristic. This is a fast path.
5046 * Sometimes when we enter, BSY will be cleared in
5047 * a chk-status or two. If not, the drive is probably seeking
5048 * or something. Snooze for a couple msecs, then
5049 * chk-status again. If still busy, queue delayed work.
5050 */
5051 status = ata_busy_wait(ap, ATA_BUSY, 5);
5052 if (status & ATA_BUSY) {
5053 msleep(2);
5054 status = ata_busy_wait(ap, ATA_BUSY, 10);
5055 if (status & ATA_BUSY) {
5056 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5057 return;
5058 }
5059 }
5060
5061 /* move the HSM */
5062 poll_next = ata_hsm_move(ap, qc, status, 1);
5063
5064 /* another command or interrupt handler
5065 * may be running at this point.
5066 */
5067 if (poll_next)
5068 goto fsm_start;
5069 }
5070
5071 /**
5072 * ata_qc_new - Request an available ATA command, for queueing
5073 * @ap: Port associated with device @dev
5074 * @dev: Device from whom we request an available command structure
5075 *
5076 * LOCKING:
5077 * None.
5078 */
5079
5080 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5081 {
5082 struct ata_queued_cmd *qc = NULL;
5083 unsigned int i;
5084
5085 /* no command while frozen */
5086 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5087 return NULL;
5088
5089 /* the last tag is reserved for internal command. */
5090 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5091 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5092 qc = __ata_qc_from_tag(ap, i);
5093 break;
5094 }
5095
5096 if (qc)
5097 qc->tag = i;
5098
5099 return qc;
5100 }
5101
5102 /**
5103 * ata_qc_new_init - Request an available ATA command, and initialize it
5104 * @dev: Device from whom we request an available command structure
5105 *
5106 * LOCKING:
5107 * None.
5108 */
5109
5110 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5111 {
5112 struct ata_port *ap = dev->ap;
5113 struct ata_queued_cmd *qc;
5114
5115 qc = ata_qc_new(ap);
5116 if (qc) {
5117 qc->scsicmd = NULL;
5118 qc->ap = ap;
5119 qc->dev = dev;
5120
5121 ata_qc_reinit(qc);
5122 }
5123
5124 return qc;
5125 }
5126
5127 /**
5128 * ata_qc_free - free unused ata_queued_cmd
5129 * @qc: Command to complete
5130 *
5131 * Designed to free unused ata_queued_cmd object
5132 * in case something prevents using it.
5133 *
5134 * LOCKING:
5135 * spin_lock_irqsave(host lock)
5136 */
5137 void ata_qc_free(struct ata_queued_cmd *qc)
5138 {
5139 struct ata_port *ap = qc->ap;
5140 unsigned int tag;
5141
5142 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5143
5144 qc->flags = 0;
5145 tag = qc->tag;
5146 if (likely(ata_tag_valid(tag))) {
5147 qc->tag = ATA_TAG_POISON;
5148 clear_bit(tag, &ap->qc_allocated);
5149 }
5150 }
5151
5152 void __ata_qc_complete(struct ata_queued_cmd *qc)
5153 {
5154 struct ata_port *ap = qc->ap;
5155
5156 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5157 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5158
5159 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5160 ata_sg_clean(qc);
5161
5162 /* command should be marked inactive atomically with qc completion */
5163 if (qc->tf.protocol == ATA_PROT_NCQ)
5164 ap->sactive &= ~(1 << qc->tag);
5165 else
5166 ap->active_tag = ATA_TAG_POISON;
5167
5168 /* atapi: mark qc as inactive to prevent the interrupt handler
5169 * from completing the command twice later, before the error handler
5170 * is called. (when rc != 0 and atapi request sense is needed)
5171 */
5172 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5173 ap->qc_active &= ~(1 << qc->tag);
5174
5175 /* call completion callback */
5176 qc->complete_fn(qc);
5177 }
5178
5179 static void fill_result_tf(struct ata_queued_cmd *qc)
5180 {
5181 struct ata_port *ap = qc->ap;
5182
5183 qc->result_tf.flags = qc->tf.flags;
5184 ap->ops->tf_read(ap, &qc->result_tf);
5185 }
5186
5187 /**
5188 * ata_qc_complete - Complete an active ATA command
5189 * @qc: Command to complete
5190 * @err_mask: ATA Status register contents
5191 *
5192 * Indicate to the mid and upper layers that an ATA
5193 * command has completed, with either an ok or not-ok status.
5194 *
5195 * LOCKING:
5196 * spin_lock_irqsave(host lock)
5197 */
5198 void ata_qc_complete(struct ata_queued_cmd *qc)
5199 {
5200 struct ata_port *ap = qc->ap;
5201
5202 /* XXX: New EH and old EH use different mechanisms to
5203 * synchronize EH with regular execution path.
5204 *
5205 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5206 * Normal execution path is responsible for not accessing a
5207 * failed qc. libata core enforces the rule by returning NULL
5208 * from ata_qc_from_tag() for failed qcs.
5209 *
5210 * Old EH depends on ata_qc_complete() nullifying completion
5211 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5212 * not synchronize with interrupt handler. Only PIO task is
5213 * taken care of.
5214 */
5215 if (ap->ops->error_handler) {
5216 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5217
5218 if (unlikely(qc->err_mask))
5219 qc->flags |= ATA_QCFLAG_FAILED;
5220
5221 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5222 if (!ata_tag_internal(qc->tag)) {
5223 /* always fill result TF for failed qc */
5224 fill_result_tf(qc);
5225 ata_qc_schedule_eh(qc);
5226 return;
5227 }
5228 }
5229
5230 /* read result TF if requested */
5231 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5232 fill_result_tf(qc);
5233
5234 __ata_qc_complete(qc);
5235 } else {
5236 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5237 return;
5238
5239 /* read result TF if failed or requested */
5240 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5241 fill_result_tf(qc);
5242
5243 __ata_qc_complete(qc);
5244 }
5245 }
5246
5247 /**
5248 * ata_qc_complete_multiple - Complete multiple qcs successfully
5249 * @ap: port in question
5250 * @qc_active: new qc_active mask
5251 * @finish_qc: LLDD callback invoked before completing a qc
5252 *
5253 * Complete in-flight commands. This functions is meant to be
5254 * called from low-level driver's interrupt routine to complete
5255 * requests normally. ap->qc_active and @qc_active is compared
5256 * and commands are completed accordingly.
5257 *
5258 * LOCKING:
5259 * spin_lock_irqsave(host lock)
5260 *
5261 * RETURNS:
5262 * Number of completed commands on success, -errno otherwise.
5263 */
5264 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5265 void (*finish_qc)(struct ata_queued_cmd *))
5266 {
5267 int nr_done = 0;
5268 u32 done_mask;
5269 int i;
5270
5271 done_mask = ap->qc_active ^ qc_active;
5272
5273 if (unlikely(done_mask & qc_active)) {
5274 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5275 "(%08x->%08x)\n", ap->qc_active, qc_active);
5276 return -EINVAL;
5277 }
5278
5279 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5280 struct ata_queued_cmd *qc;
5281
5282 if (!(done_mask & (1 << i)))
5283 continue;
5284
5285 if ((qc = ata_qc_from_tag(ap, i))) {
5286 if (finish_qc)
5287 finish_qc(qc);
5288 ata_qc_complete(qc);
5289 nr_done++;
5290 }
5291 }
5292
5293 return nr_done;
5294 }
5295
5296 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5297 {
5298 struct ata_port *ap = qc->ap;
5299
5300 switch (qc->tf.protocol) {
5301 case ATA_PROT_NCQ:
5302 case ATA_PROT_DMA:
5303 case ATA_PROT_ATAPI_DMA:
5304 return 1;
5305
5306 case ATA_PROT_ATAPI:
5307 case ATA_PROT_PIO:
5308 if (ap->flags & ATA_FLAG_PIO_DMA)
5309 return 1;
5310
5311 /* fall through */
5312
5313 default:
5314 return 0;
5315 }
5316
5317 /* never reached */
5318 }
5319
5320 /**
5321 * ata_qc_issue - issue taskfile to device
5322 * @qc: command to issue to device
5323 *
5324 * Prepare an ATA command to submission to device.
5325 * This includes mapping the data into a DMA-able
5326 * area, filling in the S/G table, and finally
5327 * writing the taskfile to hardware, starting the command.
5328 *
5329 * LOCKING:
5330 * spin_lock_irqsave(host lock)
5331 */
5332 void ata_qc_issue(struct ata_queued_cmd *qc)
5333 {
5334 struct ata_port *ap = qc->ap;
5335
5336 /* Make sure only one non-NCQ command is outstanding. The
5337 * check is skipped for old EH because it reuses active qc to
5338 * request ATAPI sense.
5339 */
5340 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5341
5342 if (qc->tf.protocol == ATA_PROT_NCQ) {
5343 WARN_ON(ap->sactive & (1 << qc->tag));
5344 ap->sactive |= 1 << qc->tag;
5345 } else {
5346 WARN_ON(ap->sactive);
5347 ap->active_tag = qc->tag;
5348 }
5349
5350 qc->flags |= ATA_QCFLAG_ACTIVE;
5351 ap->qc_active |= 1 << qc->tag;
5352
5353 if (ata_should_dma_map(qc)) {
5354 if (qc->flags & ATA_QCFLAG_SG) {
5355 if (ata_sg_setup(qc))
5356 goto sg_err;
5357 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5358 if (ata_sg_setup_one(qc))
5359 goto sg_err;
5360 }
5361 } else {
5362 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5363 }
5364
5365 ap->ops->qc_prep(qc);
5366
5367 qc->err_mask |= ap->ops->qc_issue(qc);
5368 if (unlikely(qc->err_mask))
5369 goto err;
5370 return;
5371
5372 sg_err:
5373 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5374 qc->err_mask |= AC_ERR_SYSTEM;
5375 err:
5376 ata_qc_complete(qc);
5377 }
5378
5379 /**
5380 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5381 * @qc: command to issue to device
5382 *
5383 * Using various libata functions and hooks, this function
5384 * starts an ATA command. ATA commands are grouped into
5385 * classes called "protocols", and issuing each type of protocol
5386 * is slightly different.
5387 *
5388 * May be used as the qc_issue() entry in ata_port_operations.
5389 *
5390 * LOCKING:
5391 * spin_lock_irqsave(host lock)
5392 *
5393 * RETURNS:
5394 * Zero on success, AC_ERR_* mask on failure
5395 */
5396
5397 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5398 {
5399 struct ata_port *ap = qc->ap;
5400
5401 /* Use polling pio if the LLD doesn't handle
5402 * interrupt driven pio and atapi CDB interrupt.
5403 */
5404 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5405 switch (qc->tf.protocol) {
5406 case ATA_PROT_PIO:
5407 case ATA_PROT_NODATA:
5408 case ATA_PROT_ATAPI:
5409 case ATA_PROT_ATAPI_NODATA:
5410 qc->tf.flags |= ATA_TFLAG_POLLING;
5411 break;
5412 case ATA_PROT_ATAPI_DMA:
5413 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5414 /* see ata_dma_blacklisted() */
5415 BUG();
5416 break;
5417 default:
5418 break;
5419 }
5420 }
5421
5422 /* select the device */
5423 ata_dev_select(ap, qc->dev->devno, 1, 0);
5424
5425 /* start the command */
5426 switch (qc->tf.protocol) {
5427 case ATA_PROT_NODATA:
5428 if (qc->tf.flags & ATA_TFLAG_POLLING)
5429 ata_qc_set_polling(qc);
5430
5431 ata_tf_to_host(ap, &qc->tf);
5432 ap->hsm_task_state = HSM_ST_LAST;
5433
5434 if (qc->tf.flags & ATA_TFLAG_POLLING)
5435 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5436
5437 break;
5438
5439 case ATA_PROT_DMA:
5440 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5441
5442 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5443 ap->ops->bmdma_setup(qc); /* set up bmdma */
5444 ap->ops->bmdma_start(qc); /* initiate bmdma */
5445 ap->hsm_task_state = HSM_ST_LAST;
5446 break;
5447
5448 case ATA_PROT_PIO:
5449 if (qc->tf.flags & ATA_TFLAG_POLLING)
5450 ata_qc_set_polling(qc);
5451
5452 ata_tf_to_host(ap, &qc->tf);
5453
5454 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5455 /* PIO data out protocol */
5456 ap->hsm_task_state = HSM_ST_FIRST;
5457 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5458
5459 /* always send first data block using
5460 * the ata_pio_task() codepath.
5461 */
5462 } else {
5463 /* PIO data in protocol */
5464 ap->hsm_task_state = HSM_ST;
5465
5466 if (qc->tf.flags & ATA_TFLAG_POLLING)
5467 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5468
5469 /* if polling, ata_pio_task() handles the rest.
5470 * otherwise, interrupt handler takes over from here.
5471 */
5472 }
5473
5474 break;
5475
5476 case ATA_PROT_ATAPI:
5477 case ATA_PROT_ATAPI_NODATA:
5478 if (qc->tf.flags & ATA_TFLAG_POLLING)
5479 ata_qc_set_polling(qc);
5480
5481 ata_tf_to_host(ap, &qc->tf);
5482
5483 ap->hsm_task_state = HSM_ST_FIRST;
5484
5485 /* send cdb by polling if no cdb interrupt */
5486 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5487 (qc->tf.flags & ATA_TFLAG_POLLING))
5488 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5489 break;
5490
5491 case ATA_PROT_ATAPI_DMA:
5492 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5493
5494 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5495 ap->ops->bmdma_setup(qc); /* set up bmdma */
5496 ap->hsm_task_state = HSM_ST_FIRST;
5497
5498 /* send cdb by polling if no cdb interrupt */
5499 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5500 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5501 break;
5502
5503 default:
5504 WARN_ON(1);
5505 return AC_ERR_SYSTEM;
5506 }
5507
5508 return 0;
5509 }
5510
5511 /**
5512 * ata_host_intr - Handle host interrupt for given (port, task)
5513 * @ap: Port on which interrupt arrived (possibly...)
5514 * @qc: Taskfile currently active in engine
5515 *
5516 * Handle host interrupt for given queued command. Currently,
5517 * only DMA interrupts are handled. All other commands are
5518 * handled via polling with interrupts disabled (nIEN bit).
5519 *
5520 * LOCKING:
5521 * spin_lock_irqsave(host lock)
5522 *
5523 * RETURNS:
5524 * One if interrupt was handled, zero if not (shared irq).
5525 */
5526
5527 inline unsigned int ata_host_intr (struct ata_port *ap,
5528 struct ata_queued_cmd *qc)
5529 {
5530 struct ata_eh_info *ehi = &ap->eh_info;
5531 u8 status, host_stat = 0;
5532
5533 VPRINTK("ata%u: protocol %d task_state %d\n",
5534 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5535
5536 /* Check whether we are expecting interrupt in this state */
5537 switch (ap->hsm_task_state) {
5538 case HSM_ST_FIRST:
5539 /* Some pre-ATAPI-4 devices assert INTRQ
5540 * at this state when ready to receive CDB.
5541 */
5542
5543 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5544 * The flag was turned on only for atapi devices.
5545 * No need to check is_atapi_taskfile(&qc->tf) again.
5546 */
5547 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5548 goto idle_irq;
5549 break;
5550 case HSM_ST_LAST:
5551 if (qc->tf.protocol == ATA_PROT_DMA ||
5552 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5553 /* check status of DMA engine */
5554 host_stat = ap->ops->bmdma_status(ap);
5555 VPRINTK("ata%u: host_stat 0x%X\n",
5556 ap->print_id, host_stat);
5557
5558 /* if it's not our irq... */
5559 if (!(host_stat & ATA_DMA_INTR))
5560 goto idle_irq;
5561
5562 /* before we do anything else, clear DMA-Start bit */
5563 ap->ops->bmdma_stop(qc);
5564
5565 if (unlikely(host_stat & ATA_DMA_ERR)) {
5566 /* error when transfering data to/from memory */
5567 qc->err_mask |= AC_ERR_HOST_BUS;
5568 ap->hsm_task_state = HSM_ST_ERR;
5569 }
5570 }
5571 break;
5572 case HSM_ST:
5573 break;
5574 default:
5575 goto idle_irq;
5576 }
5577
5578 /* check altstatus */
5579 status = ata_altstatus(ap);
5580 if (status & ATA_BUSY)
5581 goto idle_irq;
5582
5583 /* check main status, clearing INTRQ */
5584 status = ata_chk_status(ap);
5585 if (unlikely(status & ATA_BUSY))
5586 goto idle_irq;
5587
5588 /* ack bmdma irq events */
5589 ap->ops->irq_clear(ap);
5590
5591 ata_hsm_move(ap, qc, status, 0);
5592
5593 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5594 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5595 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5596
5597 return 1; /* irq handled */
5598
5599 idle_irq:
5600 ap->stats.idle_irq++;
5601
5602 #ifdef ATA_IRQ_TRAP
5603 if ((ap->stats.idle_irq % 1000) == 0) {
5604 ap->ops->irq_ack(ap, 0); /* debug trap */
5605 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5606 return 1;
5607 }
5608 #endif
5609 return 0; /* irq not handled */
5610 }
5611
5612 /**
5613 * ata_interrupt - Default ATA host interrupt handler
5614 * @irq: irq line (unused)
5615 * @dev_instance: pointer to our ata_host information structure
5616 *
5617 * Default interrupt handler for PCI IDE devices. Calls
5618 * ata_host_intr() for each port that is not disabled.
5619 *
5620 * LOCKING:
5621 * Obtains host lock during operation.
5622 *
5623 * RETURNS:
5624 * IRQ_NONE or IRQ_HANDLED.
5625 */
5626
5627 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5628 {
5629 struct ata_host *host = dev_instance;
5630 unsigned int i;
5631 unsigned int handled = 0;
5632 unsigned long flags;
5633
5634 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5635 spin_lock_irqsave(&host->lock, flags);
5636
5637 for (i = 0; i < host->n_ports; i++) {
5638 struct ata_port *ap;
5639
5640 ap = host->ports[i];
5641 if (ap &&
5642 !(ap->flags & ATA_FLAG_DISABLED)) {
5643 struct ata_queued_cmd *qc;
5644
5645 qc = ata_qc_from_tag(ap, ap->active_tag);
5646 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5647 (qc->flags & ATA_QCFLAG_ACTIVE))
5648 handled |= ata_host_intr(ap, qc);
5649 }
5650 }
5651
5652 spin_unlock_irqrestore(&host->lock, flags);
5653
5654 return IRQ_RETVAL(handled);
5655 }
5656
5657 /**
5658 * sata_scr_valid - test whether SCRs are accessible
5659 * @ap: ATA port to test SCR accessibility for
5660 *
5661 * Test whether SCRs are accessible for @ap.
5662 *
5663 * LOCKING:
5664 * None.
5665 *
5666 * RETURNS:
5667 * 1 if SCRs are accessible, 0 otherwise.
5668 */
5669 int sata_scr_valid(struct ata_port *ap)
5670 {
5671 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5672 }
5673
5674 /**
5675 * sata_scr_read - read SCR register of the specified port
5676 * @ap: ATA port to read SCR for
5677 * @reg: SCR to read
5678 * @val: Place to store read value
5679 *
5680 * Read SCR register @reg of @ap into *@val. This function is
5681 * guaranteed to succeed if the cable type of the port is SATA
5682 * and the port implements ->scr_read.
5683 *
5684 * LOCKING:
5685 * None.
5686 *
5687 * RETURNS:
5688 * 0 on success, negative errno on failure.
5689 */
5690 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5691 {
5692 if (sata_scr_valid(ap)) {
5693 *val = ap->ops->scr_read(ap, reg);
5694 return 0;
5695 }
5696 return -EOPNOTSUPP;
5697 }
5698
5699 /**
5700 * sata_scr_write - write SCR register of the specified port
5701 * @ap: ATA port to write SCR for
5702 * @reg: SCR to write
5703 * @val: value to write
5704 *
5705 * Write @val to SCR register @reg of @ap. This function is
5706 * guaranteed to succeed if the cable type of the port is SATA
5707 * and the port implements ->scr_read.
5708 *
5709 * LOCKING:
5710 * None.
5711 *
5712 * RETURNS:
5713 * 0 on success, negative errno on failure.
5714 */
5715 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5716 {
5717 if (sata_scr_valid(ap)) {
5718 ap->ops->scr_write(ap, reg, val);
5719 return 0;
5720 }
5721 return -EOPNOTSUPP;
5722 }
5723
5724 /**
5725 * sata_scr_write_flush - write SCR register of the specified port and flush
5726 * @ap: ATA port to write SCR for
5727 * @reg: SCR to write
5728 * @val: value to write
5729 *
5730 * This function is identical to sata_scr_write() except that this
5731 * function performs flush after writing to the register.
5732 *
5733 * LOCKING:
5734 * None.
5735 *
5736 * RETURNS:
5737 * 0 on success, negative errno on failure.
5738 */
5739 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5740 {
5741 if (sata_scr_valid(ap)) {
5742 ap->ops->scr_write(ap, reg, val);
5743 ap->ops->scr_read(ap, reg);
5744 return 0;
5745 }
5746 return -EOPNOTSUPP;
5747 }
5748
5749 /**
5750 * ata_port_online - test whether the given port is online
5751 * @ap: ATA port to test
5752 *
5753 * Test whether @ap is online. Note that this function returns 0
5754 * if online status of @ap cannot be obtained, so
5755 * ata_port_online(ap) != !ata_port_offline(ap).
5756 *
5757 * LOCKING:
5758 * None.
5759 *
5760 * RETURNS:
5761 * 1 if the port online status is available and online.
5762 */
5763 int ata_port_online(struct ata_port *ap)
5764 {
5765 u32 sstatus;
5766
5767 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5768 return 1;
5769 return 0;
5770 }
5771
5772 /**
5773 * ata_port_offline - test whether the given port is offline
5774 * @ap: ATA port to test
5775 *
5776 * Test whether @ap is offline. Note that this function returns
5777 * 0 if offline status of @ap cannot be obtained, so
5778 * ata_port_online(ap) != !ata_port_offline(ap).
5779 *
5780 * LOCKING:
5781 * None.
5782 *
5783 * RETURNS:
5784 * 1 if the port offline status is available and offline.
5785 */
5786 int ata_port_offline(struct ata_port *ap)
5787 {
5788 u32 sstatus;
5789
5790 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5791 return 1;
5792 return 0;
5793 }
5794
5795 int ata_flush_cache(struct ata_device *dev)
5796 {
5797 unsigned int err_mask;
5798 u8 cmd;
5799
5800 if (!ata_try_flush_cache(dev))
5801 return 0;
5802
5803 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5804 cmd = ATA_CMD_FLUSH_EXT;
5805 else
5806 cmd = ATA_CMD_FLUSH;
5807
5808 err_mask = ata_do_simple_cmd(dev, cmd);
5809 if (err_mask) {
5810 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5811 return -EIO;
5812 }
5813
5814 return 0;
5815 }
5816
5817 #ifdef CONFIG_PM
5818 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5819 unsigned int action, unsigned int ehi_flags,
5820 int wait)
5821 {
5822 unsigned long flags;
5823 int i, rc;
5824
5825 for (i = 0; i < host->n_ports; i++) {
5826 struct ata_port *ap = host->ports[i];
5827
5828 /* Previous resume operation might still be in
5829 * progress. Wait for PM_PENDING to clear.
5830 */
5831 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5832 ata_port_wait_eh(ap);
5833 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5834 }
5835
5836 /* request PM ops to EH */
5837 spin_lock_irqsave(ap->lock, flags);
5838
5839 ap->pm_mesg = mesg;
5840 if (wait) {
5841 rc = 0;
5842 ap->pm_result = &rc;
5843 }
5844
5845 ap->pflags |= ATA_PFLAG_PM_PENDING;
5846 ap->eh_info.action |= action;
5847 ap->eh_info.flags |= ehi_flags;
5848
5849 ata_port_schedule_eh(ap);
5850
5851 spin_unlock_irqrestore(ap->lock, flags);
5852
5853 /* wait and check result */
5854 if (wait) {
5855 ata_port_wait_eh(ap);
5856 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5857 if (rc)
5858 return rc;
5859 }
5860 }
5861
5862 return 0;
5863 }
5864
5865 /**
5866 * ata_host_suspend - suspend host
5867 * @host: host to suspend
5868 * @mesg: PM message
5869 *
5870 * Suspend @host. Actual operation is performed by EH. This
5871 * function requests EH to perform PM operations and waits for EH
5872 * to finish.
5873 *
5874 * LOCKING:
5875 * Kernel thread context (may sleep).
5876 *
5877 * RETURNS:
5878 * 0 on success, -errno on failure.
5879 */
5880 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5881 {
5882 int rc;
5883
5884 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5885 if (rc == 0)
5886 host->dev->power.power_state = mesg;
5887 return rc;
5888 }
5889
5890 /**
5891 * ata_host_resume - resume host
5892 * @host: host to resume
5893 *
5894 * Resume @host. Actual operation is performed by EH. This
5895 * function requests EH to perform PM operations and returns.
5896 * Note that all resume operations are performed parallely.
5897 *
5898 * LOCKING:
5899 * Kernel thread context (may sleep).
5900 */
5901 void ata_host_resume(struct ata_host *host)
5902 {
5903 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5904 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5905 host->dev->power.power_state = PMSG_ON;
5906 }
5907 #endif
5908
5909 /**
5910 * ata_port_start - Set port up for dma.
5911 * @ap: Port to initialize
5912 *
5913 * Called just after data structures for each port are
5914 * initialized. Allocates space for PRD table.
5915 *
5916 * May be used as the port_start() entry in ata_port_operations.
5917 *
5918 * LOCKING:
5919 * Inherited from caller.
5920 */
5921 int ata_port_start(struct ata_port *ap)
5922 {
5923 struct device *dev = ap->dev;
5924 int rc;
5925
5926 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5927 GFP_KERNEL);
5928 if (!ap->prd)
5929 return -ENOMEM;
5930
5931 rc = ata_pad_alloc(ap, dev);
5932 if (rc)
5933 return rc;
5934
5935 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5936 (unsigned long long)ap->prd_dma);
5937 return 0;
5938 }
5939
5940 /**
5941 * ata_dev_init - Initialize an ata_device structure
5942 * @dev: Device structure to initialize
5943 *
5944 * Initialize @dev in preparation for probing.
5945 *
5946 * LOCKING:
5947 * Inherited from caller.
5948 */
5949 void ata_dev_init(struct ata_device *dev)
5950 {
5951 struct ata_port *ap = dev->ap;
5952 unsigned long flags;
5953
5954 /* SATA spd limit is bound to the first device */
5955 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5956
5957 /* High bits of dev->flags are used to record warm plug
5958 * requests which occur asynchronously. Synchronize using
5959 * host lock.
5960 */
5961 spin_lock_irqsave(ap->lock, flags);
5962 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5963 spin_unlock_irqrestore(ap->lock, flags);
5964
5965 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5966 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5967 dev->pio_mask = UINT_MAX;
5968 dev->mwdma_mask = UINT_MAX;
5969 dev->udma_mask = UINT_MAX;
5970 }
5971
5972 /**
5973 * ata_port_alloc - allocate and initialize basic ATA port resources
5974 * @host: ATA host this allocated port belongs to
5975 *
5976 * Allocate and initialize basic ATA port resources.
5977 *
5978 * RETURNS:
5979 * Allocate ATA port on success, NULL on failure.
5980 *
5981 * LOCKING:
5982 * Inherited from calling layer (may sleep).
5983 */
5984 struct ata_port *ata_port_alloc(struct ata_host *host)
5985 {
5986 struct ata_port *ap;
5987 unsigned int i;
5988
5989 DPRINTK("ENTER\n");
5990
5991 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5992 if (!ap)
5993 return NULL;
5994
5995 ap->pflags |= ATA_PFLAG_INITIALIZING;
5996 ap->lock = &host->lock;
5997 ap->flags = ATA_FLAG_DISABLED;
5998 ap->print_id = -1;
5999 ap->ctl = ATA_DEVCTL_OBS;
6000 ap->host = host;
6001 ap->dev = host->dev;
6002
6003 ap->hw_sata_spd_limit = UINT_MAX;
6004 ap->active_tag = ATA_TAG_POISON;
6005 ap->last_ctl = 0xFF;
6006
6007 #if defined(ATA_VERBOSE_DEBUG)
6008 /* turn on all debugging levels */
6009 ap->msg_enable = 0x00FF;
6010 #elif defined(ATA_DEBUG)
6011 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6012 #else
6013 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6014 #endif
6015
6016 INIT_DELAYED_WORK(&ap->port_task, NULL);
6017 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6018 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6019 INIT_LIST_HEAD(&ap->eh_done_q);
6020 init_waitqueue_head(&ap->eh_wait_q);
6021
6022 ap->cbl = ATA_CBL_NONE;
6023
6024 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6025 struct ata_device *dev = &ap->device[i];
6026 dev->ap = ap;
6027 dev->devno = i;
6028 ata_dev_init(dev);
6029 }
6030
6031 #ifdef ATA_IRQ_TRAP
6032 ap->stats.unhandled_irq = 1;
6033 ap->stats.idle_irq = 1;
6034 #endif
6035 return ap;
6036 }
6037
6038 static void ata_host_release(struct device *gendev, void *res)
6039 {
6040 struct ata_host *host = dev_get_drvdata(gendev);
6041 int i;
6042
6043 for (i = 0; i < host->n_ports; i++) {
6044 struct ata_port *ap = host->ports[i];
6045
6046 if (!ap)
6047 continue;
6048
6049 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6050 ap->ops->port_stop(ap);
6051 }
6052
6053 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6054 host->ops->host_stop(host);
6055
6056 for (i = 0; i < host->n_ports; i++) {
6057 struct ata_port *ap = host->ports[i];
6058
6059 if (!ap)
6060 continue;
6061
6062 if (ap->scsi_host)
6063 scsi_host_put(ap->scsi_host);
6064
6065 kfree(ap);
6066 host->ports[i] = NULL;
6067 }
6068
6069 dev_set_drvdata(gendev, NULL);
6070 }
6071
6072 /**
6073 * ata_host_alloc - allocate and init basic ATA host resources
6074 * @dev: generic device this host is associated with
6075 * @max_ports: maximum number of ATA ports associated with this host
6076 *
6077 * Allocate and initialize basic ATA host resources. LLD calls
6078 * this function to allocate a host, initializes it fully and
6079 * attaches it using ata_host_register().
6080 *
6081 * @max_ports ports are allocated and host->n_ports is
6082 * initialized to @max_ports. The caller is allowed to decrease
6083 * host->n_ports before calling ata_host_register(). The unused
6084 * ports will be automatically freed on registration.
6085 *
6086 * RETURNS:
6087 * Allocate ATA host on success, NULL on failure.
6088 *
6089 * LOCKING:
6090 * Inherited from calling layer (may sleep).
6091 */
6092 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6093 {
6094 struct ata_host *host;
6095 size_t sz;
6096 int i;
6097
6098 DPRINTK("ENTER\n");
6099
6100 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6101 return NULL;
6102
6103 /* alloc a container for our list of ATA ports (buses) */
6104 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6105 /* alloc a container for our list of ATA ports (buses) */
6106 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6107 if (!host)
6108 goto err_out;
6109
6110 devres_add(dev, host);
6111 dev_set_drvdata(dev, host);
6112
6113 spin_lock_init(&host->lock);
6114 host->dev = dev;
6115 host->n_ports = max_ports;
6116
6117 /* allocate ports bound to this host */
6118 for (i = 0; i < max_ports; i++) {
6119 struct ata_port *ap;
6120
6121 ap = ata_port_alloc(host);
6122 if (!ap)
6123 goto err_out;
6124
6125 ap->port_no = i;
6126 host->ports[i] = ap;
6127 }
6128
6129 devres_remove_group(dev, NULL);
6130 return host;
6131
6132 err_out:
6133 devres_release_group(dev, NULL);
6134 return NULL;
6135 }
6136
6137 /**
6138 * ata_host_alloc_pinfo - alloc host and init with port_info array
6139 * @dev: generic device this host is associated with
6140 * @ppi: array of ATA port_info to initialize host with
6141 * @n_ports: number of ATA ports attached to this host
6142 *
6143 * Allocate ATA host and initialize with info from @ppi. If NULL
6144 * terminated, @ppi may contain fewer entries than @n_ports. The
6145 * last entry will be used for the remaining ports.
6146 *
6147 * RETURNS:
6148 * Allocate ATA host on success, NULL on failure.
6149 *
6150 * LOCKING:
6151 * Inherited from calling layer (may sleep).
6152 */
6153 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6154 const struct ata_port_info * const * ppi,
6155 int n_ports)
6156 {
6157 const struct ata_port_info *pi;
6158 struct ata_host *host;
6159 int i, j;
6160
6161 host = ata_host_alloc(dev, n_ports);
6162 if (!host)
6163 return NULL;
6164
6165 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6166 struct ata_port *ap = host->ports[i];
6167
6168 if (ppi[j])
6169 pi = ppi[j++];
6170
6171 ap->pio_mask = pi->pio_mask;
6172 ap->mwdma_mask = pi->mwdma_mask;
6173 ap->udma_mask = pi->udma_mask;
6174 ap->flags |= pi->flags;
6175 ap->ops = pi->port_ops;
6176
6177 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6178 host->ops = pi->port_ops;
6179 if (!host->private_data && pi->private_data)
6180 host->private_data = pi->private_data;
6181 }
6182
6183 return host;
6184 }
6185
6186 /**
6187 * ata_host_start - start and freeze ports of an ATA host
6188 * @host: ATA host to start ports for
6189 *
6190 * Start and then freeze ports of @host. Started status is
6191 * recorded in host->flags, so this function can be called
6192 * multiple times. Ports are guaranteed to get started only
6193 * once. If host->ops isn't initialized yet, its set to the
6194 * first non-dummy port ops.
6195 *
6196 * LOCKING:
6197 * Inherited from calling layer (may sleep).
6198 *
6199 * RETURNS:
6200 * 0 if all ports are started successfully, -errno otherwise.
6201 */
6202 int ata_host_start(struct ata_host *host)
6203 {
6204 int i, rc;
6205
6206 if (host->flags & ATA_HOST_STARTED)
6207 return 0;
6208
6209 for (i = 0; i < host->n_ports; i++) {
6210 struct ata_port *ap = host->ports[i];
6211
6212 if (!host->ops && !ata_port_is_dummy(ap))
6213 host->ops = ap->ops;
6214
6215 if (ap->ops->port_start) {
6216 rc = ap->ops->port_start(ap);
6217 if (rc) {
6218 ata_port_printk(ap, KERN_ERR, "failed to "
6219 "start port (errno=%d)\n", rc);
6220 goto err_out;
6221 }
6222 }
6223
6224 ata_eh_freeze_port(ap);
6225 }
6226
6227 host->flags |= ATA_HOST_STARTED;
6228 return 0;
6229
6230 err_out:
6231 while (--i >= 0) {
6232 struct ata_port *ap = host->ports[i];
6233
6234 if (ap->ops->port_stop)
6235 ap->ops->port_stop(ap);
6236 }
6237 return rc;
6238 }
6239
6240 /**
6241 * ata_sas_host_init - Initialize a host struct
6242 * @host: host to initialize
6243 * @dev: device host is attached to
6244 * @flags: host flags
6245 * @ops: port_ops
6246 *
6247 * LOCKING:
6248 * PCI/etc. bus probe sem.
6249 *
6250 */
6251 /* KILLME - the only user left is ipr */
6252 void ata_host_init(struct ata_host *host, struct device *dev,
6253 unsigned long flags, const struct ata_port_operations *ops)
6254 {
6255 spin_lock_init(&host->lock);
6256 host->dev = dev;
6257 host->flags = flags;
6258 host->ops = ops;
6259 }
6260
6261 /**
6262 * ata_host_register - register initialized ATA host
6263 * @host: ATA host to register
6264 * @sht: template for SCSI host
6265 *
6266 * Register initialized ATA host. @host is allocated using
6267 * ata_host_alloc() and fully initialized by LLD. This function
6268 * starts ports, registers @host with ATA and SCSI layers and
6269 * probe registered devices.
6270 *
6271 * LOCKING:
6272 * Inherited from calling layer (may sleep).
6273 *
6274 * RETURNS:
6275 * 0 on success, -errno otherwise.
6276 */
6277 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6278 {
6279 int i, rc;
6280
6281 /* host must have been started */
6282 if (!(host->flags & ATA_HOST_STARTED)) {
6283 dev_printk(KERN_ERR, host->dev,
6284 "BUG: trying to register unstarted host\n");
6285 WARN_ON(1);
6286 return -EINVAL;
6287 }
6288
6289 /* Blow away unused ports. This happens when LLD can't
6290 * determine the exact number of ports to allocate at
6291 * allocation time.
6292 */
6293 for (i = host->n_ports; host->ports[i]; i++)
6294 kfree(host->ports[i]);
6295
6296 /* give ports names and add SCSI hosts */
6297 for (i = 0; i < host->n_ports; i++)
6298 host->ports[i]->print_id = ata_print_id++;
6299
6300 rc = ata_scsi_add_hosts(host, sht);
6301 if (rc)
6302 return rc;
6303
6304 /* set cable, sata_spd_limit and report */
6305 for (i = 0; i < host->n_ports; i++) {
6306 struct ata_port *ap = host->ports[i];
6307 int irq_line;
6308 u32 scontrol;
6309 unsigned long xfer_mask;
6310
6311 /* set SATA cable type if still unset */
6312 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6313 ap->cbl = ATA_CBL_SATA;
6314
6315 /* init sata_spd_limit to the current value */
6316 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6317 int spd = (scontrol >> 4) & 0xf;
6318 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6319 }
6320 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6321
6322 /* report the secondary IRQ for second channel legacy */
6323 irq_line = host->irq;
6324 if (i == 1 && host->irq2)
6325 irq_line = host->irq2;
6326
6327 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6328 ap->udma_mask);
6329
6330 /* print per-port info to dmesg */
6331 if (!ata_port_is_dummy(ap))
6332 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6333 "ctl 0x%p bmdma 0x%p irq %d\n",
6334 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6335 ata_mode_string(xfer_mask),
6336 ap->ioaddr.cmd_addr,
6337 ap->ioaddr.ctl_addr,
6338 ap->ioaddr.bmdma_addr,
6339 irq_line);
6340 else
6341 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6342 }
6343
6344 /* perform each probe synchronously */
6345 DPRINTK("probe begin\n");
6346 for (i = 0; i < host->n_ports; i++) {
6347 struct ata_port *ap = host->ports[i];
6348 int rc;
6349
6350 /* probe */
6351 if (ap->ops->error_handler) {
6352 struct ata_eh_info *ehi = &ap->eh_info;
6353 unsigned long flags;
6354
6355 ata_port_probe(ap);
6356
6357 /* kick EH for boot probing */
6358 spin_lock_irqsave(ap->lock, flags);
6359
6360 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6361 ehi->action |= ATA_EH_SOFTRESET;
6362 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6363
6364 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6365 ap->pflags |= ATA_PFLAG_LOADING;
6366 ata_port_schedule_eh(ap);
6367
6368 spin_unlock_irqrestore(ap->lock, flags);
6369
6370 /* wait for EH to finish */
6371 ata_port_wait_eh(ap);
6372 } else {
6373 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6374 rc = ata_bus_probe(ap);
6375 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6376
6377 if (rc) {
6378 /* FIXME: do something useful here?
6379 * Current libata behavior will
6380 * tear down everything when
6381 * the module is removed
6382 * or the h/w is unplugged.
6383 */
6384 }
6385 }
6386 }
6387
6388 /* probes are done, now scan each port's disk(s) */
6389 DPRINTK("host probe begin\n");
6390 for (i = 0; i < host->n_ports; i++) {
6391 struct ata_port *ap = host->ports[i];
6392
6393 ata_scsi_scan_host(ap);
6394 }
6395
6396 return 0;
6397 }
6398
6399 /**
6400 * ata_host_activate - start host, request IRQ and register it
6401 * @host: target ATA host
6402 * @irq: IRQ to request
6403 * @irq_handler: irq_handler used when requesting IRQ
6404 * @irq_flags: irq_flags used when requesting IRQ
6405 * @sht: scsi_host_template to use when registering the host
6406 *
6407 * After allocating an ATA host and initializing it, most libata
6408 * LLDs perform three steps to activate the host - start host,
6409 * request IRQ and register it. This helper takes necessasry
6410 * arguments and performs the three steps in one go.
6411 *
6412 * LOCKING:
6413 * Inherited from calling layer (may sleep).
6414 *
6415 * RETURNS:
6416 * 0 on success, -errno otherwise.
6417 */
6418 int ata_host_activate(struct ata_host *host, int irq,
6419 irq_handler_t irq_handler, unsigned long irq_flags,
6420 struct scsi_host_template *sht)
6421 {
6422 int rc;
6423
6424 rc = ata_host_start(host);
6425 if (rc)
6426 return rc;
6427
6428 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6429 dev_driver_string(host->dev), host);
6430 if (rc)
6431 return rc;
6432
6433 rc = ata_host_register(host, sht);
6434 /* if failed, just free the IRQ and leave ports alone */
6435 if (rc)
6436 devm_free_irq(host->dev, irq, host);
6437
6438 /* Used to print device info at probe */
6439 host->irq = irq;
6440
6441 return rc;
6442 }
6443
6444 /**
6445 * ata_port_detach - Detach ATA port in prepration of device removal
6446 * @ap: ATA port to be detached
6447 *
6448 * Detach all ATA devices and the associated SCSI devices of @ap;
6449 * then, remove the associated SCSI host. @ap is guaranteed to
6450 * be quiescent on return from this function.
6451 *
6452 * LOCKING:
6453 * Kernel thread context (may sleep).
6454 */
6455 void ata_port_detach(struct ata_port *ap)
6456 {
6457 unsigned long flags;
6458 int i;
6459
6460 if (!ap->ops->error_handler)
6461 goto skip_eh;
6462
6463 /* tell EH we're leaving & flush EH */
6464 spin_lock_irqsave(ap->lock, flags);
6465 ap->pflags |= ATA_PFLAG_UNLOADING;
6466 spin_unlock_irqrestore(ap->lock, flags);
6467
6468 ata_port_wait_eh(ap);
6469
6470 /* EH is now guaranteed to see UNLOADING, so no new device
6471 * will be attached. Disable all existing devices.
6472 */
6473 spin_lock_irqsave(ap->lock, flags);
6474
6475 for (i = 0; i < ATA_MAX_DEVICES; i++)
6476 ata_dev_disable(&ap->device[i]);
6477
6478 spin_unlock_irqrestore(ap->lock, flags);
6479
6480 /* Final freeze & EH. All in-flight commands are aborted. EH
6481 * will be skipped and retrials will be terminated with bad
6482 * target.
6483 */
6484 spin_lock_irqsave(ap->lock, flags);
6485 ata_port_freeze(ap); /* won't be thawed */
6486 spin_unlock_irqrestore(ap->lock, flags);
6487
6488 ata_port_wait_eh(ap);
6489
6490 /* Flush hotplug task. The sequence is similar to
6491 * ata_port_flush_task().
6492 */
6493 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6494 cancel_delayed_work(&ap->hotplug_task);
6495 cancel_work_sync(&ap->hotplug_task.work);
6496
6497 skip_eh:
6498 /* remove the associated SCSI host */
6499 scsi_remove_host(ap->scsi_host);
6500 }
6501
6502 /**
6503 * ata_host_detach - Detach all ports of an ATA host
6504 * @host: Host to detach
6505 *
6506 * Detach all ports of @host.
6507 *
6508 * LOCKING:
6509 * Kernel thread context (may sleep).
6510 */
6511 void ata_host_detach(struct ata_host *host)
6512 {
6513 int i;
6514
6515 for (i = 0; i < host->n_ports; i++)
6516 ata_port_detach(host->ports[i]);
6517 }
6518
6519 /**
6520 * ata_std_ports - initialize ioaddr with standard port offsets.
6521 * @ioaddr: IO address structure to be initialized
6522 *
6523 * Utility function which initializes data_addr, error_addr,
6524 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6525 * device_addr, status_addr, and command_addr to standard offsets
6526 * relative to cmd_addr.
6527 *
6528 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6529 */
6530
6531 void ata_std_ports(struct ata_ioports *ioaddr)
6532 {
6533 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6534 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6535 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6536 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6537 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6538 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6539 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6540 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6541 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6542 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6543 }
6544
6545
6546 #ifdef CONFIG_PCI
6547
6548 /**
6549 * ata_pci_remove_one - PCI layer callback for device removal
6550 * @pdev: PCI device that was removed
6551 *
6552 * PCI layer indicates to libata via this hook that hot-unplug or
6553 * module unload event has occurred. Detach all ports. Resource
6554 * release is handled via devres.
6555 *
6556 * LOCKING:
6557 * Inherited from PCI layer (may sleep).
6558 */
6559 void ata_pci_remove_one(struct pci_dev *pdev)
6560 {
6561 struct device *dev = pci_dev_to_dev(pdev);
6562 struct ata_host *host = dev_get_drvdata(dev);
6563
6564 ata_host_detach(host);
6565 }
6566
6567 /* move to PCI subsystem */
6568 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6569 {
6570 unsigned long tmp = 0;
6571
6572 switch (bits->width) {
6573 case 1: {
6574 u8 tmp8 = 0;
6575 pci_read_config_byte(pdev, bits->reg, &tmp8);
6576 tmp = tmp8;
6577 break;
6578 }
6579 case 2: {
6580 u16 tmp16 = 0;
6581 pci_read_config_word(pdev, bits->reg, &tmp16);
6582 tmp = tmp16;
6583 break;
6584 }
6585 case 4: {
6586 u32 tmp32 = 0;
6587 pci_read_config_dword(pdev, bits->reg, &tmp32);
6588 tmp = tmp32;
6589 break;
6590 }
6591
6592 default:
6593 return -EINVAL;
6594 }
6595
6596 tmp &= bits->mask;
6597
6598 return (tmp == bits->val) ? 1 : 0;
6599 }
6600
6601 #ifdef CONFIG_PM
6602 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6603 {
6604 pci_save_state(pdev);
6605 pci_disable_device(pdev);
6606
6607 if (mesg.event == PM_EVENT_SUSPEND)
6608 pci_set_power_state(pdev, PCI_D3hot);
6609 }
6610
6611 int ata_pci_device_do_resume(struct pci_dev *pdev)
6612 {
6613 int rc;
6614
6615 pci_set_power_state(pdev, PCI_D0);
6616 pci_restore_state(pdev);
6617
6618 rc = pcim_enable_device(pdev);
6619 if (rc) {
6620 dev_printk(KERN_ERR, &pdev->dev,
6621 "failed to enable device after resume (%d)\n", rc);
6622 return rc;
6623 }
6624
6625 pci_set_master(pdev);
6626 return 0;
6627 }
6628
6629 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6630 {
6631 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6632 int rc = 0;
6633
6634 rc = ata_host_suspend(host, mesg);
6635 if (rc)
6636 return rc;
6637
6638 ata_pci_device_do_suspend(pdev, mesg);
6639
6640 return 0;
6641 }
6642
6643 int ata_pci_device_resume(struct pci_dev *pdev)
6644 {
6645 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6646 int rc;
6647
6648 rc = ata_pci_device_do_resume(pdev);
6649 if (rc == 0)
6650 ata_host_resume(host);
6651 return rc;
6652 }
6653 #endif /* CONFIG_PM */
6654
6655 #endif /* CONFIG_PCI */
6656
6657
6658 static int __init ata_init(void)
6659 {
6660 ata_probe_timeout *= HZ;
6661 ata_wq = create_workqueue("ata");
6662 if (!ata_wq)
6663 return -ENOMEM;
6664
6665 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6666 if (!ata_aux_wq) {
6667 destroy_workqueue(ata_wq);
6668 return -ENOMEM;
6669 }
6670
6671 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6672 return 0;
6673 }
6674
6675 static void __exit ata_exit(void)
6676 {
6677 destroy_workqueue(ata_wq);
6678 destroy_workqueue(ata_aux_wq);
6679 }
6680
6681 subsys_initcall(ata_init);
6682 module_exit(ata_exit);
6683
6684 static unsigned long ratelimit_time;
6685 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6686
6687 int ata_ratelimit(void)
6688 {
6689 int rc;
6690 unsigned long flags;
6691
6692 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6693
6694 if (time_after(jiffies, ratelimit_time)) {
6695 rc = 1;
6696 ratelimit_time = jiffies + (HZ/5);
6697 } else
6698 rc = 0;
6699
6700 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6701
6702 return rc;
6703 }
6704
6705 /**
6706 * ata_wait_register - wait until register value changes
6707 * @reg: IO-mapped register
6708 * @mask: Mask to apply to read register value
6709 * @val: Wait condition
6710 * @interval_msec: polling interval in milliseconds
6711 * @timeout_msec: timeout in milliseconds
6712 *
6713 * Waiting for some bits of register to change is a common
6714 * operation for ATA controllers. This function reads 32bit LE
6715 * IO-mapped register @reg and tests for the following condition.
6716 *
6717 * (*@reg & mask) != val
6718 *
6719 * If the condition is met, it returns; otherwise, the process is
6720 * repeated after @interval_msec until timeout.
6721 *
6722 * LOCKING:
6723 * Kernel thread context (may sleep)
6724 *
6725 * RETURNS:
6726 * The final register value.
6727 */
6728 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6729 unsigned long interval_msec,
6730 unsigned long timeout_msec)
6731 {
6732 unsigned long timeout;
6733 u32 tmp;
6734
6735 tmp = ioread32(reg);
6736
6737 /* Calculate timeout _after_ the first read to make sure
6738 * preceding writes reach the controller before starting to
6739 * eat away the timeout.
6740 */
6741 timeout = jiffies + (timeout_msec * HZ) / 1000;
6742
6743 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6744 msleep(interval_msec);
6745 tmp = ioread32(reg);
6746 }
6747
6748 return tmp;
6749 }
6750
6751 /*
6752 * Dummy port_ops
6753 */
6754 static void ata_dummy_noret(struct ata_port *ap) { }
6755 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6756 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6757
6758 static u8 ata_dummy_check_status(struct ata_port *ap)
6759 {
6760 return ATA_DRDY;
6761 }
6762
6763 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6764 {
6765 return AC_ERR_SYSTEM;
6766 }
6767
6768 const struct ata_port_operations ata_dummy_port_ops = {
6769 .port_disable = ata_port_disable,
6770 .check_status = ata_dummy_check_status,
6771 .check_altstatus = ata_dummy_check_status,
6772 .dev_select = ata_noop_dev_select,
6773 .qc_prep = ata_noop_qc_prep,
6774 .qc_issue = ata_dummy_qc_issue,
6775 .freeze = ata_dummy_noret,
6776 .thaw = ata_dummy_noret,
6777 .error_handler = ata_dummy_noret,
6778 .post_internal_cmd = ata_dummy_qc_noret,
6779 .irq_clear = ata_dummy_noret,
6780 .port_start = ata_dummy_ret0,
6781 .port_stop = ata_dummy_noret,
6782 };
6783
6784 const struct ata_port_info ata_dummy_port_info = {
6785 .port_ops = &ata_dummy_port_ops,
6786 };
6787
6788 /*
6789 * libata is essentially a library of internal helper functions for
6790 * low-level ATA host controller drivers. As such, the API/ABI is
6791 * likely to change as new drivers are added and updated.
6792 * Do not depend on ABI/API stability.
6793 */
6794
6795 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6796 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6797 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6798 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6799 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6800 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6801 EXPORT_SYMBOL_GPL(ata_std_ports);
6802 EXPORT_SYMBOL_GPL(ata_host_init);
6803 EXPORT_SYMBOL_GPL(ata_host_alloc);
6804 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6805 EXPORT_SYMBOL_GPL(ata_host_start);
6806 EXPORT_SYMBOL_GPL(ata_host_register);
6807 EXPORT_SYMBOL_GPL(ata_host_activate);
6808 EXPORT_SYMBOL_GPL(ata_host_detach);
6809 EXPORT_SYMBOL_GPL(ata_sg_init);
6810 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6811 EXPORT_SYMBOL_GPL(ata_hsm_move);
6812 EXPORT_SYMBOL_GPL(ata_qc_complete);
6813 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6814 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6815 EXPORT_SYMBOL_GPL(ata_tf_load);
6816 EXPORT_SYMBOL_GPL(ata_tf_read);
6817 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6818 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6819 EXPORT_SYMBOL_GPL(sata_print_link_status);
6820 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6821 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6822 EXPORT_SYMBOL_GPL(ata_check_status);
6823 EXPORT_SYMBOL_GPL(ata_altstatus);
6824 EXPORT_SYMBOL_GPL(ata_exec_command);
6825 EXPORT_SYMBOL_GPL(ata_port_start);
6826 EXPORT_SYMBOL_GPL(ata_interrupt);
6827 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6828 EXPORT_SYMBOL_GPL(ata_data_xfer);
6829 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6830 EXPORT_SYMBOL_GPL(ata_qc_prep);
6831 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6832 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6833 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6834 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6835 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6836 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6837 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6838 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6839 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6840 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6841 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6842 EXPORT_SYMBOL_GPL(ata_port_probe);
6843 EXPORT_SYMBOL_GPL(ata_dev_disable);
6844 EXPORT_SYMBOL_GPL(sata_set_spd);
6845 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6846 EXPORT_SYMBOL_GPL(sata_phy_resume);
6847 EXPORT_SYMBOL_GPL(sata_phy_reset);
6848 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6849 EXPORT_SYMBOL_GPL(ata_bus_reset);
6850 EXPORT_SYMBOL_GPL(ata_std_prereset);
6851 EXPORT_SYMBOL_GPL(ata_std_softreset);
6852 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6853 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6854 EXPORT_SYMBOL_GPL(ata_std_postreset);
6855 EXPORT_SYMBOL_GPL(ata_dev_classify);
6856 EXPORT_SYMBOL_GPL(ata_dev_pair);
6857 EXPORT_SYMBOL_GPL(ata_port_disable);
6858 EXPORT_SYMBOL_GPL(ata_ratelimit);
6859 EXPORT_SYMBOL_GPL(ata_wait_register);
6860 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6861 EXPORT_SYMBOL_GPL(ata_wait_ready);
6862 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6863 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6864 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6865 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6866 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6867 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6868 EXPORT_SYMBOL_GPL(ata_host_intr);
6869 EXPORT_SYMBOL_GPL(sata_scr_valid);
6870 EXPORT_SYMBOL_GPL(sata_scr_read);
6871 EXPORT_SYMBOL_GPL(sata_scr_write);
6872 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6873 EXPORT_SYMBOL_GPL(ata_port_online);
6874 EXPORT_SYMBOL_GPL(ata_port_offline);
6875 #ifdef CONFIG_PM
6876 EXPORT_SYMBOL_GPL(ata_host_suspend);
6877 EXPORT_SYMBOL_GPL(ata_host_resume);
6878 #endif /* CONFIG_PM */
6879 EXPORT_SYMBOL_GPL(ata_id_string);
6880 EXPORT_SYMBOL_GPL(ata_id_c_string);
6881 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6882 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6883 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6884
6885 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6886 EXPORT_SYMBOL_GPL(ata_timing_compute);
6887 EXPORT_SYMBOL_GPL(ata_timing_merge);
6888
6889 #ifdef CONFIG_PCI
6890 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6891 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6892 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6893 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6894 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6895 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6896 #ifdef CONFIG_PM
6897 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6898 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6899 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6900 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6901 #endif /* CONFIG_PM */
6902 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6903 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6904 #endif /* CONFIG_PCI */
6905
6906 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6907 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6908 EXPORT_SYMBOL_GPL(ata_port_abort);
6909 EXPORT_SYMBOL_GPL(ata_port_freeze);
6910 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6911 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6912 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6913 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6914 EXPORT_SYMBOL_GPL(ata_do_eh);
6915 EXPORT_SYMBOL_GPL(ata_irq_on);
6916 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6917 EXPORT_SYMBOL_GPL(ata_irq_ack);
6918 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6919 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6920
6921 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6922 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6923 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6924 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.264408 seconds and 6 git commands to generate.