libata: more NONCQ devices
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
604 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
605 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
606 ATA_DNXFER_QUIET);
607 dev->class++;
608 }
609 }
610
611 /**
612 * ata_devchk - PATA device presence detection
613 * @ap: ATA channel to examine
614 * @device: Device to examine (starting at zero)
615 *
616 * This technique was originally described in
617 * Hale Landis's ATADRVR (www.ata-atapi.com), and
618 * later found its way into the ATA/ATAPI spec.
619 *
620 * Write a pattern to the ATA shadow registers,
621 * and if a device is present, it will respond by
622 * correctly storing and echoing back the
623 * ATA shadow register contents.
624 *
625 * LOCKING:
626 * caller.
627 */
628
629 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
630 {
631 struct ata_ioports *ioaddr = &ap->ioaddr;
632 u8 nsect, lbal;
633
634 ap->ops->dev_select(ap, device);
635
636 iowrite8(0x55, ioaddr->nsect_addr);
637 iowrite8(0xaa, ioaddr->lbal_addr);
638
639 iowrite8(0xaa, ioaddr->nsect_addr);
640 iowrite8(0x55, ioaddr->lbal_addr);
641
642 iowrite8(0x55, ioaddr->nsect_addr);
643 iowrite8(0xaa, ioaddr->lbal_addr);
644
645 nsect = ioread8(ioaddr->nsect_addr);
646 lbal = ioread8(ioaddr->lbal_addr);
647
648 if ((nsect == 0x55) && (lbal == 0xaa))
649 return 1; /* we found a device */
650
651 return 0; /* nothing found */
652 }
653
654 /**
655 * ata_dev_classify - determine device type based on ATA-spec signature
656 * @tf: ATA taskfile register set for device to be identified
657 *
658 * Determine from taskfile register contents whether a device is
659 * ATA or ATAPI, as per "Signature and persistence" section
660 * of ATA/PI spec (volume 1, sect 5.14).
661 *
662 * LOCKING:
663 * None.
664 *
665 * RETURNS:
666 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
667 * the event of failure.
668 */
669
670 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
671 {
672 /* Apple's open source Darwin code hints that some devices only
673 * put a proper signature into the LBA mid/high registers,
674 * So, we only check those. It's sufficient for uniqueness.
675 */
676
677 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
678 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
679 DPRINTK("found ATA device by sig\n");
680 return ATA_DEV_ATA;
681 }
682
683 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
684 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
685 DPRINTK("found ATAPI device by sig\n");
686 return ATA_DEV_ATAPI;
687 }
688
689 DPRINTK("unknown device\n");
690 return ATA_DEV_UNKNOWN;
691 }
692
693 /**
694 * ata_dev_try_classify - Parse returned ATA device signature
695 * @ap: ATA channel to examine
696 * @device: Device to examine (starting at zero)
697 * @r_err: Value of error register on completion
698 *
699 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
700 * an ATA/ATAPI-defined set of values is placed in the ATA
701 * shadow registers, indicating the results of device detection
702 * and diagnostics.
703 *
704 * Select the ATA device, and read the values from the ATA shadow
705 * registers. Then parse according to the Error register value,
706 * and the spec-defined values examined by ata_dev_classify().
707 *
708 * LOCKING:
709 * caller.
710 *
711 * RETURNS:
712 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
713 */
714
715 unsigned int
716 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
717 {
718 struct ata_taskfile tf;
719 unsigned int class;
720 u8 err;
721
722 ap->ops->dev_select(ap, device);
723
724 memset(&tf, 0, sizeof(tf));
725
726 ap->ops->tf_read(ap, &tf);
727 err = tf.feature;
728 if (r_err)
729 *r_err = err;
730
731 /* see if device passed diags: if master then continue and warn later */
732 if (err == 0 && device == 0)
733 /* diagnostic fail : do nothing _YET_ */
734 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
735 else if (err == 1)
736 /* do nothing */ ;
737 else if ((device == 0) && (err == 0x81))
738 /* do nothing */ ;
739 else
740 return ATA_DEV_NONE;
741
742 /* determine if device is ATA or ATAPI */
743 class = ata_dev_classify(&tf);
744
745 if (class == ATA_DEV_UNKNOWN)
746 return ATA_DEV_NONE;
747 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
748 return ATA_DEV_NONE;
749 return class;
750 }
751
752 /**
753 * ata_id_string - Convert IDENTIFY DEVICE page into string
754 * @id: IDENTIFY DEVICE results we will examine
755 * @s: string into which data is output
756 * @ofs: offset into identify device page
757 * @len: length of string to return. must be an even number.
758 *
759 * The strings in the IDENTIFY DEVICE page are broken up into
760 * 16-bit chunks. Run through the string, and output each
761 * 8-bit chunk linearly, regardless of platform.
762 *
763 * LOCKING:
764 * caller.
765 */
766
767 void ata_id_string(const u16 *id, unsigned char *s,
768 unsigned int ofs, unsigned int len)
769 {
770 unsigned int c;
771
772 while (len > 0) {
773 c = id[ofs] >> 8;
774 *s = c;
775 s++;
776
777 c = id[ofs] & 0xff;
778 *s = c;
779 s++;
780
781 ofs++;
782 len -= 2;
783 }
784 }
785
786 /**
787 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
788 * @id: IDENTIFY DEVICE results we will examine
789 * @s: string into which data is output
790 * @ofs: offset into identify device page
791 * @len: length of string to return. must be an odd number.
792 *
793 * This function is identical to ata_id_string except that it
794 * trims trailing spaces and terminates the resulting string with
795 * null. @len must be actual maximum length (even number) + 1.
796 *
797 * LOCKING:
798 * caller.
799 */
800 void ata_id_c_string(const u16 *id, unsigned char *s,
801 unsigned int ofs, unsigned int len)
802 {
803 unsigned char *p;
804
805 WARN_ON(!(len & 1));
806
807 ata_id_string(id, s, ofs, len - 1);
808
809 p = s + strnlen(s, len - 1);
810 while (p > s && p[-1] == ' ')
811 p--;
812 *p = '\0';
813 }
814
815 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
816 {
817 u64 sectors = 0;
818
819 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
820 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
821 sectors |= (tf->hob_lbal & 0xff) << 24;
822 sectors |= (tf->lbah & 0xff) << 16;
823 sectors |= (tf->lbam & 0xff) << 8;
824 sectors |= (tf->lbal & 0xff);
825
826 return ++sectors;
827 }
828
829 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
830 {
831 u64 sectors = 0;
832
833 sectors |= (tf->device & 0x0f) << 24;
834 sectors |= (tf->lbah & 0xff) << 16;
835 sectors |= (tf->lbam & 0xff) << 8;
836 sectors |= (tf->lbal & 0xff);
837
838 return ++sectors;
839 }
840
841 /**
842 * ata_read_native_max_address_ext - LBA48 native max query
843 * @dev: Device to query
844 *
845 * Perform an LBA48 size query upon the device in question. Return the
846 * actual LBA48 size or zero if the command fails.
847 */
848
849 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
850 {
851 unsigned int err;
852 struct ata_taskfile tf;
853
854 ata_tf_init(dev, &tf);
855
856 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
857 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
858 tf.protocol |= ATA_PROT_NODATA;
859 tf.device |= 0x40;
860
861 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
862 if (err)
863 return 0;
864
865 return ata_tf_to_lba48(&tf);
866 }
867
868 /**
869 * ata_read_native_max_address - LBA28 native max query
870 * @dev: Device to query
871 *
872 * Performa an LBA28 size query upon the device in question. Return the
873 * actual LBA28 size or zero if the command fails.
874 */
875
876 static u64 ata_read_native_max_address(struct ata_device *dev)
877 {
878 unsigned int err;
879 struct ata_taskfile tf;
880
881 ata_tf_init(dev, &tf);
882
883 tf.command = ATA_CMD_READ_NATIVE_MAX;
884 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
885 tf.protocol |= ATA_PROT_NODATA;
886 tf.device |= 0x40;
887
888 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
889 if (err)
890 return 0;
891
892 return ata_tf_to_lba(&tf);
893 }
894
895 /**
896 * ata_set_native_max_address_ext - LBA48 native max set
897 * @dev: Device to query
898 * @new_sectors: new max sectors value to set for the device
899 *
900 * Perform an LBA48 size set max upon the device in question. Return the
901 * actual LBA48 size or zero if the command fails.
902 */
903
904 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
905 {
906 unsigned int err;
907 struct ata_taskfile tf;
908
909 new_sectors--;
910
911 ata_tf_init(dev, &tf);
912
913 tf.command = ATA_CMD_SET_MAX_EXT;
914 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
915 tf.protocol |= ATA_PROT_NODATA;
916 tf.device |= 0x40;
917
918 tf.lbal = (new_sectors >> 0) & 0xff;
919 tf.lbam = (new_sectors >> 8) & 0xff;
920 tf.lbah = (new_sectors >> 16) & 0xff;
921
922 tf.hob_lbal = (new_sectors >> 24) & 0xff;
923 tf.hob_lbam = (new_sectors >> 32) & 0xff;
924 tf.hob_lbah = (new_sectors >> 40) & 0xff;
925
926 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
927 if (err)
928 return 0;
929
930 return ata_tf_to_lba48(&tf);
931 }
932
933 /**
934 * ata_set_native_max_address - LBA28 native max set
935 * @dev: Device to query
936 * @new_sectors: new max sectors value to set for the device
937 *
938 * Perform an LBA28 size set max upon the device in question. Return the
939 * actual LBA28 size or zero if the command fails.
940 */
941
942 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
943 {
944 unsigned int err;
945 struct ata_taskfile tf;
946
947 new_sectors--;
948
949 ata_tf_init(dev, &tf);
950
951 tf.command = ATA_CMD_SET_MAX;
952 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
953 tf.protocol |= ATA_PROT_NODATA;
954
955 tf.lbal = (new_sectors >> 0) & 0xff;
956 tf.lbam = (new_sectors >> 8) & 0xff;
957 tf.lbah = (new_sectors >> 16) & 0xff;
958 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
959
960 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
961 if (err)
962 return 0;
963
964 return ata_tf_to_lba(&tf);
965 }
966
967 /**
968 * ata_hpa_resize - Resize a device with an HPA set
969 * @dev: Device to resize
970 *
971 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
972 * it if required to the full size of the media. The caller must check
973 * the drive has the HPA feature set enabled.
974 */
975
976 static u64 ata_hpa_resize(struct ata_device *dev)
977 {
978 u64 sectors = dev->n_sectors;
979 u64 hpa_sectors;
980
981 if (ata_id_has_lba48(dev->id))
982 hpa_sectors = ata_read_native_max_address_ext(dev);
983 else
984 hpa_sectors = ata_read_native_max_address(dev);
985
986 /* if no hpa, both should be equal */
987 ata_dev_printk(dev, KERN_INFO, "%s 1: sectors = %lld, "
988 "hpa_sectors = %lld\n",
989 __FUNCTION__, (long long)sectors, (long long)hpa_sectors);
990
991 if (hpa_sectors > sectors) {
992 ata_dev_printk(dev, KERN_INFO,
993 "Host Protected Area detected:\n"
994 "\tcurrent size: %lld sectors\n"
995 "\tnative size: %lld sectors\n",
996 (long long)sectors, (long long)hpa_sectors);
997
998 if (ata_ignore_hpa) {
999 if (ata_id_has_lba48(dev->id))
1000 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
1001 else
1002 hpa_sectors = ata_set_native_max_address(dev,
1003 hpa_sectors);
1004
1005 if (hpa_sectors) {
1006 ata_dev_printk(dev, KERN_INFO, "native size "
1007 "increased to %lld sectors\n",
1008 (long long)hpa_sectors);
1009 return hpa_sectors;
1010 }
1011 }
1012 }
1013 return sectors;
1014 }
1015
1016 static u64 ata_id_n_sectors(const u16 *id)
1017 {
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029 }
1030
1031 /**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047 {
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071 }
1072
1073 /**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 {
1087 }
1088
1089
1090 /**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106 {
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116 }
1117
1118 /**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139 {
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154 }
1155
1156 /**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1159 *
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
1167 static inline void ata_dump_id(const u16 *id)
1168 {
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
1191 id[88],
1192 id[93]);
1193 }
1194
1195 /**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210 static unsigned int ata_id_xfermask(const u16 *id)
1211 {
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262 }
1263
1264 /**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1285 {
1286 int rc;
1287
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 return;
1290
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1293
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298 }
1299
1300 /**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310 void ata_port_flush_task(struct ata_port *ap)
1311 {
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1319
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
1332 cancel_work_sync(&ap->port_task.work);
1333 }
1334
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1338
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341 }
1342
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344 {
1345 struct completion *waiting = qc->private_data;
1346
1347 complete(waiting);
1348 }
1349
1350 /**
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
1370 */
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1375 {
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1384 int rc;
1385
1386 spin_lock_irqsave(ap->lock, flags);
1387
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1392 }
1393
1394 /* initialize internal qc */
1395
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1407 BUG();
1408 qc = __ata_qc_from_tag(ap, tag);
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
1422
1423 /* prepare & issue qc */
1424 qc->tf = *tf;
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1437 }
1438
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1441
1442 ata_qc_issue(qc);
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447
1448 ata_port_flush_task(ap);
1449
1450 if (!rc) {
1451 spin_lock_irqsave(ap->lock, flags);
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1457 */
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
1465
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1469 }
1470
1471 spin_unlock_irqrestore(ap->lock, flags);
1472 }
1473
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1488 }
1489
1490 /* finish up */
1491 spin_lock_irqsave(ap->lock, flags);
1492
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1500
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
1517 spin_unlock_irqrestore(ap->lock, flags);
1518
1519 return err_mask;
1520 }
1521
1522 /**
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543 {
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1546
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
1553
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555 }
1556
1557 /**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
1570 */
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572 {
1573 struct ata_taskfile tf;
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582 }
1583
1584 /**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
1591
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593 {
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 return 0;
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1603 return 1;
1604 return 0;
1605 }
1606
1607 /**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
1614
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616 {
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1626 }
1627 }
1628 return 3 << ATA_SHIFT_PIO;
1629 }
1630
1631 /**
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1637 *
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1642 *
1643 * LOCKING:
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1648 */
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1651 {
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1656 const char *reason;
1657 int may_fallback = 1, tried_spinup = 0;
1658 int rc;
1659
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664 retry:
1665 ata_tf_init(dev, &tf);
1666
1667 switch (class) {
1668 case ATA_DEV_ATA:
1669 tf.command = ATA_CMD_ID_ATA;
1670 break;
1671 case ATA_DEV_ATAPI:
1672 tf.command = ATA_CMD_ID_ATAPI;
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1678 }
1679
1680 tf.protocol = ATA_PROT_PIO;
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1691
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1694 if (err_mask) {
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1698 return -ENOENT;
1699 }
1700
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
1716 rc = -EIO;
1717 reason = "I/O error";
1718 goto err_out;
1719 }
1720
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
1726 swap_buf_le16(id, ATA_ID_WORDS);
1727
1728 /* sanity check */
1729 rc = -EINVAL;
1730 reason = "device reports invalid type";
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
1738 }
1739
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
1786 flags &= ~ATA_READID_POSTRESET;
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
1792
1793 return 0;
1794
1795 err_out:
1796 if (ata_msg_warn(ap))
1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 return rc;
1800 }
1801
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1803 {
1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1805 }
1806
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809 {
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
1821 if (ap->flags & ATA_FLAG_NCQ) {
1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830 }
1831
1832 /**
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1838 *
1839 * LOCKING:
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
1844 */
1845 int ata_dev_configure(struct ata_device *dev)
1846 {
1847 struct ata_port *ap = dev->ap;
1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1849 const u16 *id = dev->id;
1850 unsigned int xfer_mask;
1851 char revbuf[7]; /* XYZ-99\0 */
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
1854 int rc;
1855
1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
1859 return 0;
1860 }
1861
1862 if (ata_msg_probe(ap))
1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1864
1865 /* set _SDD */
1866 rc = ata_acpi_push_id(dev);
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
1875 /* print device capabilities */
1876 if (ata_msg_probe(ap))
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1880 __FUNCTION__,
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
1883
1884 /* initialize to-be-configured parameters */
1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
1897 /* find max transfer mode; for printk only */
1898 xfer_mask = ata_id_xfermask(id);
1899
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1902
1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1905 sizeof(fwrevbuf));
1906
1907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1908 sizeof(modelbuf));
1909
1910 /* ATA-specific feature tests */
1911 if (dev->class == ATA_DEV_ATA) {
1912 if (ata_id_is_cfa(id)) {
1913 if (id[162] & 1) /* CPRM may make this media unusable */
1914 ata_dev_printk(dev, KERN_WARNING,
1915 "supports DRM functions and may "
1916 "not be fully accessable.\n");
1917 snprintf(revbuf, 7, "CFA");
1918 }
1919 else
1920 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1921
1922 dev->n_sectors = ata_id_n_sectors(id);
1923
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1927 if (ata_id_has_lba(id)) {
1928 const char *lba_desc;
1929 char ncq_desc[20];
1930
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1933 if (ata_id_has_lba48(id)) {
1934 dev->flags |= ATA_DFLAG_LBA48;
1935 lba_desc = "LBA48";
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1940 }
1941
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
1948 /* print device info to dmesg */
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
1956 (unsigned long long)dev->n_sectors,
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
1959 } else {
1960 /* CHS */
1961
1962 /* Default translation */
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
1966
1967 if (ata_id_current_chs_valid(id)) {
1968 /* Current CHS translation is valid. */
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
1972 }
1973
1974 /* print device info to dmesg */
1975 if (ata_msg_drv(ap) && print_info) {
1976 ata_dev_printk(dev, KERN_INFO,
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
1980 ata_dev_printk(dev, KERN_INFO,
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
1986 }
1987
1988 dev->cdb_len = 16;
1989 }
1990
1991 /* ATAPI-specific feature tests */
1992 else if (dev->class == ATA_DEV_ATAPI) {
1993 char *cdb_intr_string = "";
1994
1995 rc = atapi_cdb_len(id);
1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1997 if (ata_msg_warn(ap))
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
2000 rc = -EINVAL;
2001 goto err_out_nosup;
2002 }
2003 dev->cdb_len = (unsigned int) rc;
2004
2005 if (ata_id_cdb_intr(dev->id)) {
2006 dev->flags |= ATA_DFLAG_CDB_INTR;
2007 cdb_intr_string = ", CDB intr";
2008 }
2009
2010 /* print device info to dmesg */
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO,
2013 "ATAPI: %s, %s, max %s%s\n",
2014 modelbuf, fwrevbuf,
2015 ata_mode_string(xfer_mask),
2016 cdb_intr_string);
2017 }
2018
2019 /* determine max_sectors */
2020 dev->max_sectors = ATA_MAX_SECTORS;
2021 if (dev->flags & ATA_DFLAG_LBA48)
2022 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2023
2024 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2025 /* Let the user know. We don't want to disallow opens for
2026 rescue purposes, or in case the vendor is just a blithering
2027 idiot */
2028 if (print_info) {
2029 ata_dev_printk(dev, KERN_WARNING,
2030 "Drive reports diagnostics failure. This may indicate a drive\n");
2031 ata_dev_printk(dev, KERN_WARNING,
2032 "fault or invalid emulation. Contact drive vendor for information.\n");
2033 }
2034 }
2035
2036 /* limit bridge transfers to udma5, 200 sectors */
2037 if (ata_dev_knobble(dev)) {
2038 if (ata_msg_drv(ap) && print_info)
2039 ata_dev_printk(dev, KERN_INFO,
2040 "applying bridge limits\n");
2041 dev->udma_mask &= ATA_UDMA5;
2042 dev->max_sectors = ATA_MAX_SECTORS;
2043 }
2044
2045 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2046 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 dev->max_sectors);
2048
2049 /* limit ATAPI DMA to R/W commands only */
2050 if (ata_device_blacklisted(dev) & ATA_HORKAGE_DMA_RW_ONLY)
2051 dev->horkage |= ATA_HORKAGE_DMA_RW_ONLY;
2052
2053 if (ap->ops->dev_config)
2054 ap->ops->dev_config(dev);
2055
2056 if (ata_msg_probe(ap))
2057 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2058 __FUNCTION__, ata_chk_status(ap));
2059 return 0;
2060
2061 err_out_nosup:
2062 if (ata_msg_probe(ap))
2063 ata_dev_printk(dev, KERN_DEBUG,
2064 "%s: EXIT, err\n", __FUNCTION__);
2065 return rc;
2066 }
2067
2068 /**
2069 * ata_cable_40wire - return 40 wire cable type
2070 * @ap: port
2071 *
2072 * Helper method for drivers which want to hardwire 40 wire cable
2073 * detection.
2074 */
2075
2076 int ata_cable_40wire(struct ata_port *ap)
2077 {
2078 return ATA_CBL_PATA40;
2079 }
2080
2081 /**
2082 * ata_cable_80wire - return 80 wire cable type
2083 * @ap: port
2084 *
2085 * Helper method for drivers which want to hardwire 80 wire cable
2086 * detection.
2087 */
2088
2089 int ata_cable_80wire(struct ata_port *ap)
2090 {
2091 return ATA_CBL_PATA80;
2092 }
2093
2094 /**
2095 * ata_cable_unknown - return unknown PATA cable.
2096 * @ap: port
2097 *
2098 * Helper method for drivers which have no PATA cable detection.
2099 */
2100
2101 int ata_cable_unknown(struct ata_port *ap)
2102 {
2103 return ATA_CBL_PATA_UNK;
2104 }
2105
2106 /**
2107 * ata_cable_sata - return SATA cable type
2108 * @ap: port
2109 *
2110 * Helper method for drivers which have SATA cables
2111 */
2112
2113 int ata_cable_sata(struct ata_port *ap)
2114 {
2115 return ATA_CBL_SATA;
2116 }
2117
2118 /**
2119 * ata_bus_probe - Reset and probe ATA bus
2120 * @ap: Bus to probe
2121 *
2122 * Master ATA bus probing function. Initiates a hardware-dependent
2123 * bus reset, then attempts to identify any devices found on
2124 * the bus.
2125 *
2126 * LOCKING:
2127 * PCI/etc. bus probe sem.
2128 *
2129 * RETURNS:
2130 * Zero on success, negative errno otherwise.
2131 */
2132
2133 int ata_bus_probe(struct ata_port *ap)
2134 {
2135 unsigned int classes[ATA_MAX_DEVICES];
2136 int tries[ATA_MAX_DEVICES];
2137 int i, rc;
2138 struct ata_device *dev;
2139
2140 ata_port_probe(ap);
2141
2142 for (i = 0; i < ATA_MAX_DEVICES; i++)
2143 tries[i] = ATA_PROBE_MAX_TRIES;
2144
2145 retry:
2146 /* reset and determine device classes */
2147 ap->ops->phy_reset(ap);
2148
2149 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2150 dev = &ap->device[i];
2151
2152 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2153 dev->class != ATA_DEV_UNKNOWN)
2154 classes[dev->devno] = dev->class;
2155 else
2156 classes[dev->devno] = ATA_DEV_NONE;
2157
2158 dev->class = ATA_DEV_UNKNOWN;
2159 }
2160
2161 ata_port_probe(ap);
2162
2163 /* after the reset the device state is PIO 0 and the controller
2164 state is undefined. Record the mode */
2165
2166 for (i = 0; i < ATA_MAX_DEVICES; i++)
2167 ap->device[i].pio_mode = XFER_PIO_0;
2168
2169 /* read IDENTIFY page and configure devices. We have to do the identify
2170 specific sequence bass-ackwards so that PDIAG- is released by
2171 the slave device */
2172
2173 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2174 dev = &ap->device[i];
2175
2176 if (tries[i])
2177 dev->class = classes[i];
2178
2179 if (!ata_dev_enabled(dev))
2180 continue;
2181
2182 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2183 dev->id);
2184 if (rc)
2185 goto fail;
2186 }
2187
2188 /* Now ask for the cable type as PDIAG- should have been released */
2189 if (ap->ops->cable_detect)
2190 ap->cbl = ap->ops->cable_detect(ap);
2191
2192 /* After the identify sequence we can now set up the devices. We do
2193 this in the normal order so that the user doesn't get confused */
2194
2195 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2196 dev = &ap->device[i];
2197 if (!ata_dev_enabled(dev))
2198 continue;
2199
2200 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2201 rc = ata_dev_configure(dev);
2202 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2203 if (rc)
2204 goto fail;
2205 }
2206
2207 /* configure transfer mode */
2208 rc = ata_set_mode(ap, &dev);
2209 if (rc)
2210 goto fail;
2211
2212 for (i = 0; i < ATA_MAX_DEVICES; i++)
2213 if (ata_dev_enabled(&ap->device[i]))
2214 return 0;
2215
2216 /* no device present, disable port */
2217 ata_port_disable(ap);
2218 ap->ops->port_disable(ap);
2219 return -ENODEV;
2220
2221 fail:
2222 tries[dev->devno]--;
2223
2224 switch (rc) {
2225 case -EINVAL:
2226 /* eeek, something went very wrong, give up */
2227 tries[dev->devno] = 0;
2228 break;
2229
2230 case -ENODEV:
2231 /* give it just one more chance */
2232 tries[dev->devno] = min(tries[dev->devno], 1);
2233 case -EIO:
2234 if (tries[dev->devno] == 1) {
2235 /* This is the last chance, better to slow
2236 * down than lose it.
2237 */
2238 sata_down_spd_limit(ap);
2239 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2240 }
2241 }
2242
2243 if (!tries[dev->devno])
2244 ata_dev_disable(dev);
2245
2246 goto retry;
2247 }
2248
2249 /**
2250 * ata_port_probe - Mark port as enabled
2251 * @ap: Port for which we indicate enablement
2252 *
2253 * Modify @ap data structure such that the system
2254 * thinks that the entire port is enabled.
2255 *
2256 * LOCKING: host lock, or some other form of
2257 * serialization.
2258 */
2259
2260 void ata_port_probe(struct ata_port *ap)
2261 {
2262 ap->flags &= ~ATA_FLAG_DISABLED;
2263 }
2264
2265 /**
2266 * sata_print_link_status - Print SATA link status
2267 * @ap: SATA port to printk link status about
2268 *
2269 * This function prints link speed and status of a SATA link.
2270 *
2271 * LOCKING:
2272 * None.
2273 */
2274 void sata_print_link_status(struct ata_port *ap)
2275 {
2276 u32 sstatus, scontrol, tmp;
2277
2278 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2279 return;
2280 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2281
2282 if (ata_port_online(ap)) {
2283 tmp = (sstatus >> 4) & 0xf;
2284 ata_port_printk(ap, KERN_INFO,
2285 "SATA link up %s (SStatus %X SControl %X)\n",
2286 sata_spd_string(tmp), sstatus, scontrol);
2287 } else {
2288 ata_port_printk(ap, KERN_INFO,
2289 "SATA link down (SStatus %X SControl %X)\n",
2290 sstatus, scontrol);
2291 }
2292 }
2293
2294 /**
2295 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2296 * @ap: SATA port associated with target SATA PHY.
2297 *
2298 * This function issues commands to standard SATA Sxxx
2299 * PHY registers, to wake up the phy (and device), and
2300 * clear any reset condition.
2301 *
2302 * LOCKING:
2303 * PCI/etc. bus probe sem.
2304 *
2305 */
2306 void __sata_phy_reset(struct ata_port *ap)
2307 {
2308 u32 sstatus;
2309 unsigned long timeout = jiffies + (HZ * 5);
2310
2311 if (ap->flags & ATA_FLAG_SATA_RESET) {
2312 /* issue phy wake/reset */
2313 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2314 /* Couldn't find anything in SATA I/II specs, but
2315 * AHCI-1.1 10.4.2 says at least 1 ms. */
2316 mdelay(1);
2317 }
2318 /* phy wake/clear reset */
2319 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2320
2321 /* wait for phy to become ready, if necessary */
2322 do {
2323 msleep(200);
2324 sata_scr_read(ap, SCR_STATUS, &sstatus);
2325 if ((sstatus & 0xf) != 1)
2326 break;
2327 } while (time_before(jiffies, timeout));
2328
2329 /* print link status */
2330 sata_print_link_status(ap);
2331
2332 /* TODO: phy layer with polling, timeouts, etc. */
2333 if (!ata_port_offline(ap))
2334 ata_port_probe(ap);
2335 else
2336 ata_port_disable(ap);
2337
2338 if (ap->flags & ATA_FLAG_DISABLED)
2339 return;
2340
2341 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2342 ata_port_disable(ap);
2343 return;
2344 }
2345
2346 ap->cbl = ATA_CBL_SATA;
2347 }
2348
2349 /**
2350 * sata_phy_reset - Reset SATA bus.
2351 * @ap: SATA port associated with target SATA PHY.
2352 *
2353 * This function resets the SATA bus, and then probes
2354 * the bus for devices.
2355 *
2356 * LOCKING:
2357 * PCI/etc. bus probe sem.
2358 *
2359 */
2360 void sata_phy_reset(struct ata_port *ap)
2361 {
2362 __sata_phy_reset(ap);
2363 if (ap->flags & ATA_FLAG_DISABLED)
2364 return;
2365 ata_bus_reset(ap);
2366 }
2367
2368 /**
2369 * ata_dev_pair - return other device on cable
2370 * @adev: device
2371 *
2372 * Obtain the other device on the same cable, or if none is
2373 * present NULL is returned
2374 */
2375
2376 struct ata_device *ata_dev_pair(struct ata_device *adev)
2377 {
2378 struct ata_port *ap = adev->ap;
2379 struct ata_device *pair = &ap->device[1 - adev->devno];
2380 if (!ata_dev_enabled(pair))
2381 return NULL;
2382 return pair;
2383 }
2384
2385 /**
2386 * ata_port_disable - Disable port.
2387 * @ap: Port to be disabled.
2388 *
2389 * Modify @ap data structure such that the system
2390 * thinks that the entire port is disabled, and should
2391 * never attempt to probe or communicate with devices
2392 * on this port.
2393 *
2394 * LOCKING: host lock, or some other form of
2395 * serialization.
2396 */
2397
2398 void ata_port_disable(struct ata_port *ap)
2399 {
2400 ap->device[0].class = ATA_DEV_NONE;
2401 ap->device[1].class = ATA_DEV_NONE;
2402 ap->flags |= ATA_FLAG_DISABLED;
2403 }
2404
2405 /**
2406 * sata_down_spd_limit - adjust SATA spd limit downward
2407 * @ap: Port to adjust SATA spd limit for
2408 *
2409 * Adjust SATA spd limit of @ap downward. Note that this
2410 * function only adjusts the limit. The change must be applied
2411 * using sata_set_spd().
2412 *
2413 * LOCKING:
2414 * Inherited from caller.
2415 *
2416 * RETURNS:
2417 * 0 on success, negative errno on failure
2418 */
2419 int sata_down_spd_limit(struct ata_port *ap)
2420 {
2421 u32 sstatus, spd, mask;
2422 int rc, highbit;
2423
2424 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2425 if (rc)
2426 return rc;
2427
2428 mask = ap->sata_spd_limit;
2429 if (mask <= 1)
2430 return -EINVAL;
2431 highbit = fls(mask) - 1;
2432 mask &= ~(1 << highbit);
2433
2434 spd = (sstatus >> 4) & 0xf;
2435 if (spd <= 1)
2436 return -EINVAL;
2437 spd--;
2438 mask &= (1 << spd) - 1;
2439 if (!mask)
2440 return -EINVAL;
2441
2442 ap->sata_spd_limit = mask;
2443
2444 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2445 sata_spd_string(fls(mask)));
2446
2447 return 0;
2448 }
2449
2450 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2451 {
2452 u32 spd, limit;
2453
2454 if (ap->sata_spd_limit == UINT_MAX)
2455 limit = 0;
2456 else
2457 limit = fls(ap->sata_spd_limit);
2458
2459 spd = (*scontrol >> 4) & 0xf;
2460 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2461
2462 return spd != limit;
2463 }
2464
2465 /**
2466 * sata_set_spd_needed - is SATA spd configuration needed
2467 * @ap: Port in question
2468 *
2469 * Test whether the spd limit in SControl matches
2470 * @ap->sata_spd_limit. This function is used to determine
2471 * whether hardreset is necessary to apply SATA spd
2472 * configuration.
2473 *
2474 * LOCKING:
2475 * Inherited from caller.
2476 *
2477 * RETURNS:
2478 * 1 if SATA spd configuration is needed, 0 otherwise.
2479 */
2480 int sata_set_spd_needed(struct ata_port *ap)
2481 {
2482 u32 scontrol;
2483
2484 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2485 return 0;
2486
2487 return __sata_set_spd_needed(ap, &scontrol);
2488 }
2489
2490 /**
2491 * sata_set_spd - set SATA spd according to spd limit
2492 * @ap: Port to set SATA spd for
2493 *
2494 * Set SATA spd of @ap according to sata_spd_limit.
2495 *
2496 * LOCKING:
2497 * Inherited from caller.
2498 *
2499 * RETURNS:
2500 * 0 if spd doesn't need to be changed, 1 if spd has been
2501 * changed. Negative errno if SCR registers are inaccessible.
2502 */
2503 int sata_set_spd(struct ata_port *ap)
2504 {
2505 u32 scontrol;
2506 int rc;
2507
2508 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2509 return rc;
2510
2511 if (!__sata_set_spd_needed(ap, &scontrol))
2512 return 0;
2513
2514 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2515 return rc;
2516
2517 return 1;
2518 }
2519
2520 /*
2521 * This mode timing computation functionality is ported over from
2522 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2523 */
2524 /*
2525 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2526 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2527 * for UDMA6, which is currently supported only by Maxtor drives.
2528 *
2529 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2530 */
2531
2532 static const struct ata_timing ata_timing[] = {
2533
2534 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2535 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2536 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2537 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2538
2539 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2540 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2541 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2542 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2543 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2544
2545 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2546
2547 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2548 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2549 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2550
2551 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2552 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2553 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2554
2555 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2556 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2557 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2558 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2559
2560 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2561 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2562 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2563
2564 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2565
2566 { 0xFF }
2567 };
2568
2569 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2570 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2571
2572 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2573 {
2574 q->setup = EZ(t->setup * 1000, T);
2575 q->act8b = EZ(t->act8b * 1000, T);
2576 q->rec8b = EZ(t->rec8b * 1000, T);
2577 q->cyc8b = EZ(t->cyc8b * 1000, T);
2578 q->active = EZ(t->active * 1000, T);
2579 q->recover = EZ(t->recover * 1000, T);
2580 q->cycle = EZ(t->cycle * 1000, T);
2581 q->udma = EZ(t->udma * 1000, UT);
2582 }
2583
2584 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2585 struct ata_timing *m, unsigned int what)
2586 {
2587 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2588 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2589 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2590 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2591 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2592 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2593 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2594 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2595 }
2596
2597 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2598 {
2599 const struct ata_timing *t;
2600
2601 for (t = ata_timing; t->mode != speed; t++)
2602 if (t->mode == 0xFF)
2603 return NULL;
2604 return t;
2605 }
2606
2607 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2608 struct ata_timing *t, int T, int UT)
2609 {
2610 const struct ata_timing *s;
2611 struct ata_timing p;
2612
2613 /*
2614 * Find the mode.
2615 */
2616
2617 if (!(s = ata_timing_find_mode(speed)))
2618 return -EINVAL;
2619
2620 memcpy(t, s, sizeof(*s));
2621
2622 /*
2623 * If the drive is an EIDE drive, it can tell us it needs extended
2624 * PIO/MW_DMA cycle timing.
2625 */
2626
2627 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2628 memset(&p, 0, sizeof(p));
2629 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2630 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2631 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2632 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2633 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2634 }
2635 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2636 }
2637
2638 /*
2639 * Convert the timing to bus clock counts.
2640 */
2641
2642 ata_timing_quantize(t, t, T, UT);
2643
2644 /*
2645 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2646 * S.M.A.R.T * and some other commands. We have to ensure that the
2647 * DMA cycle timing is slower/equal than the fastest PIO timing.
2648 */
2649
2650 if (speed > XFER_PIO_6) {
2651 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2652 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2653 }
2654
2655 /*
2656 * Lengthen active & recovery time so that cycle time is correct.
2657 */
2658
2659 if (t->act8b + t->rec8b < t->cyc8b) {
2660 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2661 t->rec8b = t->cyc8b - t->act8b;
2662 }
2663
2664 if (t->active + t->recover < t->cycle) {
2665 t->active += (t->cycle - (t->active + t->recover)) / 2;
2666 t->recover = t->cycle - t->active;
2667 }
2668
2669 /* In a few cases quantisation may produce enough errors to
2670 leave t->cycle too low for the sum of active and recovery
2671 if so we must correct this */
2672 if (t->active + t->recover > t->cycle)
2673 t->cycle = t->active + t->recover;
2674
2675 return 0;
2676 }
2677
2678 /**
2679 * ata_down_xfermask_limit - adjust dev xfer masks downward
2680 * @dev: Device to adjust xfer masks
2681 * @sel: ATA_DNXFER_* selector
2682 *
2683 * Adjust xfer masks of @dev downward. Note that this function
2684 * does not apply the change. Invoking ata_set_mode() afterwards
2685 * will apply the limit.
2686 *
2687 * LOCKING:
2688 * Inherited from caller.
2689 *
2690 * RETURNS:
2691 * 0 on success, negative errno on failure
2692 */
2693 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2694 {
2695 char buf[32];
2696 unsigned int orig_mask, xfer_mask;
2697 unsigned int pio_mask, mwdma_mask, udma_mask;
2698 int quiet, highbit;
2699
2700 quiet = !!(sel & ATA_DNXFER_QUIET);
2701 sel &= ~ATA_DNXFER_QUIET;
2702
2703 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2704 dev->mwdma_mask,
2705 dev->udma_mask);
2706 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2707
2708 switch (sel) {
2709 case ATA_DNXFER_PIO:
2710 highbit = fls(pio_mask) - 1;
2711 pio_mask &= ~(1 << highbit);
2712 break;
2713
2714 case ATA_DNXFER_DMA:
2715 if (udma_mask) {
2716 highbit = fls(udma_mask) - 1;
2717 udma_mask &= ~(1 << highbit);
2718 if (!udma_mask)
2719 return -ENOENT;
2720 } else if (mwdma_mask) {
2721 highbit = fls(mwdma_mask) - 1;
2722 mwdma_mask &= ~(1 << highbit);
2723 if (!mwdma_mask)
2724 return -ENOENT;
2725 }
2726 break;
2727
2728 case ATA_DNXFER_40C:
2729 udma_mask &= ATA_UDMA_MASK_40C;
2730 break;
2731
2732 case ATA_DNXFER_FORCE_PIO0:
2733 pio_mask &= 1;
2734 case ATA_DNXFER_FORCE_PIO:
2735 mwdma_mask = 0;
2736 udma_mask = 0;
2737 break;
2738
2739 default:
2740 BUG();
2741 }
2742
2743 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2744
2745 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2746 return -ENOENT;
2747
2748 if (!quiet) {
2749 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2750 snprintf(buf, sizeof(buf), "%s:%s",
2751 ata_mode_string(xfer_mask),
2752 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2753 else
2754 snprintf(buf, sizeof(buf), "%s",
2755 ata_mode_string(xfer_mask));
2756
2757 ata_dev_printk(dev, KERN_WARNING,
2758 "limiting speed to %s\n", buf);
2759 }
2760
2761 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2762 &dev->udma_mask);
2763
2764 return 0;
2765 }
2766
2767 static int ata_dev_set_mode(struct ata_device *dev)
2768 {
2769 struct ata_eh_context *ehc = &dev->ap->eh_context;
2770 unsigned int err_mask;
2771 int rc;
2772
2773 dev->flags &= ~ATA_DFLAG_PIO;
2774 if (dev->xfer_shift == ATA_SHIFT_PIO)
2775 dev->flags |= ATA_DFLAG_PIO;
2776
2777 err_mask = ata_dev_set_xfermode(dev);
2778 /* Old CFA may refuse this command, which is just fine */
2779 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2780 err_mask &= ~AC_ERR_DEV;
2781
2782 if (err_mask) {
2783 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2784 "(err_mask=0x%x)\n", err_mask);
2785 return -EIO;
2786 }
2787
2788 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2789 rc = ata_dev_revalidate(dev, 0);
2790 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2791 if (rc)
2792 return rc;
2793
2794 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2795 dev->xfer_shift, (int)dev->xfer_mode);
2796
2797 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2798 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2799 return 0;
2800 }
2801
2802 /**
2803 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2804 * @ap: port on which timings will be programmed
2805 * @r_failed_dev: out paramter for failed device
2806 *
2807 * Standard implementation of the function used to tune and set
2808 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2809 * ata_dev_set_mode() fails, pointer to the failing device is
2810 * returned in @r_failed_dev.
2811 *
2812 * LOCKING:
2813 * PCI/etc. bus probe sem.
2814 *
2815 * RETURNS:
2816 * 0 on success, negative errno otherwise
2817 */
2818
2819 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2820 {
2821 struct ata_device *dev;
2822 int i, rc = 0, used_dma = 0, found = 0;
2823
2824
2825 /* step 1: calculate xfer_mask */
2826 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2827 unsigned int pio_mask, dma_mask;
2828
2829 dev = &ap->device[i];
2830
2831 if (!ata_dev_enabled(dev))
2832 continue;
2833
2834 ata_dev_xfermask(dev);
2835
2836 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2837 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2838 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2839 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2840
2841 found = 1;
2842 if (dev->dma_mode)
2843 used_dma = 1;
2844 }
2845 if (!found)
2846 goto out;
2847
2848 /* step 2: always set host PIO timings */
2849 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2850 dev = &ap->device[i];
2851 if (!ata_dev_enabled(dev))
2852 continue;
2853
2854 if (!dev->pio_mode) {
2855 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2856 rc = -EINVAL;
2857 goto out;
2858 }
2859
2860 dev->xfer_mode = dev->pio_mode;
2861 dev->xfer_shift = ATA_SHIFT_PIO;
2862 if (ap->ops->set_piomode)
2863 ap->ops->set_piomode(ap, dev);
2864 }
2865
2866 /* step 3: set host DMA timings */
2867 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2868 dev = &ap->device[i];
2869
2870 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2871 continue;
2872
2873 dev->xfer_mode = dev->dma_mode;
2874 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2875 if (ap->ops->set_dmamode)
2876 ap->ops->set_dmamode(ap, dev);
2877 }
2878
2879 /* step 4: update devices' xfer mode */
2880 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2881 dev = &ap->device[i];
2882
2883 /* don't update suspended devices' xfer mode */
2884 if (!ata_dev_enabled(dev))
2885 continue;
2886
2887 rc = ata_dev_set_mode(dev);
2888 if (rc)
2889 goto out;
2890 }
2891
2892 /* Record simplex status. If we selected DMA then the other
2893 * host channels are not permitted to do so.
2894 */
2895 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2896 ap->host->simplex_claimed = ap;
2897
2898 out:
2899 if (rc)
2900 *r_failed_dev = dev;
2901 return rc;
2902 }
2903
2904 /**
2905 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2906 * @ap: port on which timings will be programmed
2907 * @r_failed_dev: out paramter for failed device
2908 *
2909 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2910 * ata_set_mode() fails, pointer to the failing device is
2911 * returned in @r_failed_dev.
2912 *
2913 * LOCKING:
2914 * PCI/etc. bus probe sem.
2915 *
2916 * RETURNS:
2917 * 0 on success, negative errno otherwise
2918 */
2919 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2920 {
2921 /* has private set_mode? */
2922 if (ap->ops->set_mode)
2923 return ap->ops->set_mode(ap, r_failed_dev);
2924 return ata_do_set_mode(ap, r_failed_dev);
2925 }
2926
2927 /**
2928 * ata_tf_to_host - issue ATA taskfile to host controller
2929 * @ap: port to which command is being issued
2930 * @tf: ATA taskfile register set
2931 *
2932 * Issues ATA taskfile register set to ATA host controller,
2933 * with proper synchronization with interrupt handler and
2934 * other threads.
2935 *
2936 * LOCKING:
2937 * spin_lock_irqsave(host lock)
2938 */
2939
2940 static inline void ata_tf_to_host(struct ata_port *ap,
2941 const struct ata_taskfile *tf)
2942 {
2943 ap->ops->tf_load(ap, tf);
2944 ap->ops->exec_command(ap, tf);
2945 }
2946
2947 /**
2948 * ata_busy_sleep - sleep until BSY clears, or timeout
2949 * @ap: port containing status register to be polled
2950 * @tmout_pat: impatience timeout
2951 * @tmout: overall timeout
2952 *
2953 * Sleep until ATA Status register bit BSY clears,
2954 * or a timeout occurs.
2955 *
2956 * LOCKING:
2957 * Kernel thread context (may sleep).
2958 *
2959 * RETURNS:
2960 * 0 on success, -errno otherwise.
2961 */
2962 int ata_busy_sleep(struct ata_port *ap,
2963 unsigned long tmout_pat, unsigned long tmout)
2964 {
2965 unsigned long timer_start, timeout;
2966 u8 status;
2967
2968 status = ata_busy_wait(ap, ATA_BUSY, 300);
2969 timer_start = jiffies;
2970 timeout = timer_start + tmout_pat;
2971 while (status != 0xff && (status & ATA_BUSY) &&
2972 time_before(jiffies, timeout)) {
2973 msleep(50);
2974 status = ata_busy_wait(ap, ATA_BUSY, 3);
2975 }
2976
2977 if (status != 0xff && (status & ATA_BUSY))
2978 ata_port_printk(ap, KERN_WARNING,
2979 "port is slow to respond, please be patient "
2980 "(Status 0x%x)\n", status);
2981
2982 timeout = timer_start + tmout;
2983 while (status != 0xff && (status & ATA_BUSY) &&
2984 time_before(jiffies, timeout)) {
2985 msleep(50);
2986 status = ata_chk_status(ap);
2987 }
2988
2989 if (status == 0xff)
2990 return -ENODEV;
2991
2992 if (status & ATA_BUSY) {
2993 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2994 "(%lu secs, Status 0x%x)\n",
2995 tmout / HZ, status);
2996 return -EBUSY;
2997 }
2998
2999 return 0;
3000 }
3001
3002 /**
3003 * ata_wait_ready - sleep until BSY clears, or timeout
3004 * @ap: port containing status register to be polled
3005 * @deadline: deadline jiffies for the operation
3006 *
3007 * Sleep until ATA Status register bit BSY clears, or timeout
3008 * occurs.
3009 *
3010 * LOCKING:
3011 * Kernel thread context (may sleep).
3012 *
3013 * RETURNS:
3014 * 0 on success, -errno otherwise.
3015 */
3016 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3017 {
3018 unsigned long start = jiffies;
3019 int warned = 0;
3020
3021 while (1) {
3022 u8 status = ata_chk_status(ap);
3023 unsigned long now = jiffies;
3024
3025 if (!(status & ATA_BUSY))
3026 return 0;
3027 if (!ata_port_online(ap) && status == 0xff)
3028 return -ENODEV;
3029 if (time_after(now, deadline))
3030 return -EBUSY;
3031
3032 if (!warned && time_after(now, start + 5 * HZ) &&
3033 (deadline - now > 3 * HZ)) {
3034 ata_port_printk(ap, KERN_WARNING,
3035 "port is slow to respond, please be patient "
3036 "(Status 0x%x)\n", status);
3037 warned = 1;
3038 }
3039
3040 msleep(50);
3041 }
3042 }
3043
3044 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3045 unsigned long deadline)
3046 {
3047 struct ata_ioports *ioaddr = &ap->ioaddr;
3048 unsigned int dev0 = devmask & (1 << 0);
3049 unsigned int dev1 = devmask & (1 << 1);
3050 int rc, ret = 0;
3051
3052 /* if device 0 was found in ata_devchk, wait for its
3053 * BSY bit to clear
3054 */
3055 if (dev0) {
3056 rc = ata_wait_ready(ap, deadline);
3057 if (rc) {
3058 if (rc != -ENODEV)
3059 return rc;
3060 ret = rc;
3061 }
3062 }
3063
3064 /* if device 1 was found in ata_devchk, wait for register
3065 * access briefly, then wait for BSY to clear.
3066 */
3067 if (dev1) {
3068 int i;
3069
3070 ap->ops->dev_select(ap, 1);
3071
3072 /* Wait for register access. Some ATAPI devices fail
3073 * to set nsect/lbal after reset, so don't waste too
3074 * much time on it. We're gonna wait for !BSY anyway.
3075 */
3076 for (i = 0; i < 2; i++) {
3077 u8 nsect, lbal;
3078
3079 nsect = ioread8(ioaddr->nsect_addr);
3080 lbal = ioread8(ioaddr->lbal_addr);
3081 if ((nsect == 1) && (lbal == 1))
3082 break;
3083 msleep(50); /* give drive a breather */
3084 }
3085
3086 rc = ata_wait_ready(ap, deadline);
3087 if (rc) {
3088 if (rc != -ENODEV)
3089 return rc;
3090 ret = rc;
3091 }
3092 }
3093
3094 /* is all this really necessary? */
3095 ap->ops->dev_select(ap, 0);
3096 if (dev1)
3097 ap->ops->dev_select(ap, 1);
3098 if (dev0)
3099 ap->ops->dev_select(ap, 0);
3100
3101 return ret;
3102 }
3103
3104 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3105 unsigned long deadline)
3106 {
3107 struct ata_ioports *ioaddr = &ap->ioaddr;
3108
3109 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3110
3111 /* software reset. causes dev0 to be selected */
3112 iowrite8(ap->ctl, ioaddr->ctl_addr);
3113 udelay(20); /* FIXME: flush */
3114 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3115 udelay(20); /* FIXME: flush */
3116 iowrite8(ap->ctl, ioaddr->ctl_addr);
3117
3118 /* spec mandates ">= 2ms" before checking status.
3119 * We wait 150ms, because that was the magic delay used for
3120 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3121 * between when the ATA command register is written, and then
3122 * status is checked. Because waiting for "a while" before
3123 * checking status is fine, post SRST, we perform this magic
3124 * delay here as well.
3125 *
3126 * Old drivers/ide uses the 2mS rule and then waits for ready
3127 */
3128 msleep(150);
3129
3130 /* Before we perform post reset processing we want to see if
3131 * the bus shows 0xFF because the odd clown forgets the D7
3132 * pulldown resistor.
3133 */
3134 if (ata_check_status(ap) == 0xFF)
3135 return -ENODEV;
3136
3137 return ata_bus_post_reset(ap, devmask, deadline);
3138 }
3139
3140 /**
3141 * ata_bus_reset - reset host port and associated ATA channel
3142 * @ap: port to reset
3143 *
3144 * This is typically the first time we actually start issuing
3145 * commands to the ATA channel. We wait for BSY to clear, then
3146 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3147 * result. Determine what devices, if any, are on the channel
3148 * by looking at the device 0/1 error register. Look at the signature
3149 * stored in each device's taskfile registers, to determine if
3150 * the device is ATA or ATAPI.
3151 *
3152 * LOCKING:
3153 * PCI/etc. bus probe sem.
3154 * Obtains host lock.
3155 *
3156 * SIDE EFFECTS:
3157 * Sets ATA_FLAG_DISABLED if bus reset fails.
3158 */
3159
3160 void ata_bus_reset(struct ata_port *ap)
3161 {
3162 struct ata_ioports *ioaddr = &ap->ioaddr;
3163 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3164 u8 err;
3165 unsigned int dev0, dev1 = 0, devmask = 0;
3166 int rc;
3167
3168 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3169
3170 /* determine if device 0/1 are present */
3171 if (ap->flags & ATA_FLAG_SATA_RESET)
3172 dev0 = 1;
3173 else {
3174 dev0 = ata_devchk(ap, 0);
3175 if (slave_possible)
3176 dev1 = ata_devchk(ap, 1);
3177 }
3178
3179 if (dev0)
3180 devmask |= (1 << 0);
3181 if (dev1)
3182 devmask |= (1 << 1);
3183
3184 /* select device 0 again */
3185 ap->ops->dev_select(ap, 0);
3186
3187 /* issue bus reset */
3188 if (ap->flags & ATA_FLAG_SRST) {
3189 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3190 if (rc && rc != -ENODEV)
3191 goto err_out;
3192 }
3193
3194 /*
3195 * determine by signature whether we have ATA or ATAPI devices
3196 */
3197 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3198 if ((slave_possible) && (err != 0x81))
3199 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3200
3201 /* re-enable interrupts */
3202 ap->ops->irq_on(ap);
3203
3204 /* is double-select really necessary? */
3205 if (ap->device[1].class != ATA_DEV_NONE)
3206 ap->ops->dev_select(ap, 1);
3207 if (ap->device[0].class != ATA_DEV_NONE)
3208 ap->ops->dev_select(ap, 0);
3209
3210 /* if no devices were detected, disable this port */
3211 if ((ap->device[0].class == ATA_DEV_NONE) &&
3212 (ap->device[1].class == ATA_DEV_NONE))
3213 goto err_out;
3214
3215 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3216 /* set up device control for ATA_FLAG_SATA_RESET */
3217 iowrite8(ap->ctl, ioaddr->ctl_addr);
3218 }
3219
3220 DPRINTK("EXIT\n");
3221 return;
3222
3223 err_out:
3224 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3225 ap->ops->port_disable(ap);
3226
3227 DPRINTK("EXIT\n");
3228 }
3229
3230 /**
3231 * sata_phy_debounce - debounce SATA phy status
3232 * @ap: ATA port to debounce SATA phy status for
3233 * @params: timing parameters { interval, duratinon, timeout } in msec
3234 * @deadline: deadline jiffies for the operation
3235 *
3236 * Make sure SStatus of @ap reaches stable state, determined by
3237 * holding the same value where DET is not 1 for @duration polled
3238 * every @interval, before @timeout. Timeout constraints the
3239 * beginning of the stable state. Because DET gets stuck at 1 on
3240 * some controllers after hot unplugging, this functions waits
3241 * until timeout then returns 0 if DET is stable at 1.
3242 *
3243 * @timeout is further limited by @deadline. The sooner of the
3244 * two is used.
3245 *
3246 * LOCKING:
3247 * Kernel thread context (may sleep)
3248 *
3249 * RETURNS:
3250 * 0 on success, -errno on failure.
3251 */
3252 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3253 unsigned long deadline)
3254 {
3255 unsigned long interval_msec = params[0];
3256 unsigned long duration = msecs_to_jiffies(params[1]);
3257 unsigned long last_jiffies, t;
3258 u32 last, cur;
3259 int rc;
3260
3261 t = jiffies + msecs_to_jiffies(params[2]);
3262 if (time_before(t, deadline))
3263 deadline = t;
3264
3265 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3266 return rc;
3267 cur &= 0xf;
3268
3269 last = cur;
3270 last_jiffies = jiffies;
3271
3272 while (1) {
3273 msleep(interval_msec);
3274 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3275 return rc;
3276 cur &= 0xf;
3277
3278 /* DET stable? */
3279 if (cur == last) {
3280 if (cur == 1 && time_before(jiffies, deadline))
3281 continue;
3282 if (time_after(jiffies, last_jiffies + duration))
3283 return 0;
3284 continue;
3285 }
3286
3287 /* unstable, start over */
3288 last = cur;
3289 last_jiffies = jiffies;
3290
3291 /* check deadline */
3292 if (time_after(jiffies, deadline))
3293 return -EBUSY;
3294 }
3295 }
3296
3297 /**
3298 * sata_phy_resume - resume SATA phy
3299 * @ap: ATA port to resume SATA phy for
3300 * @params: timing parameters { interval, duratinon, timeout } in msec
3301 * @deadline: deadline jiffies for the operation
3302 *
3303 * Resume SATA phy of @ap and debounce it.
3304 *
3305 * LOCKING:
3306 * Kernel thread context (may sleep)
3307 *
3308 * RETURNS:
3309 * 0 on success, -errno on failure.
3310 */
3311 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3312 unsigned long deadline)
3313 {
3314 u32 scontrol;
3315 int rc;
3316
3317 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3318 return rc;
3319
3320 scontrol = (scontrol & 0x0f0) | 0x300;
3321
3322 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3323 return rc;
3324
3325 /* Some PHYs react badly if SStatus is pounded immediately
3326 * after resuming. Delay 200ms before debouncing.
3327 */
3328 msleep(200);
3329
3330 return sata_phy_debounce(ap, params, deadline);
3331 }
3332
3333 /**
3334 * ata_std_prereset - prepare for reset
3335 * @ap: ATA port to be reset
3336 * @deadline: deadline jiffies for the operation
3337 *
3338 * @ap is about to be reset. Initialize it. Failure from
3339 * prereset makes libata abort whole reset sequence and give up
3340 * that port, so prereset should be best-effort. It does its
3341 * best to prepare for reset sequence but if things go wrong, it
3342 * should just whine, not fail.
3343 *
3344 * LOCKING:
3345 * Kernel thread context (may sleep)
3346 *
3347 * RETURNS:
3348 * 0 on success, -errno otherwise.
3349 */
3350 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3351 {
3352 struct ata_eh_context *ehc = &ap->eh_context;
3353 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3354 int rc;
3355
3356 /* handle link resume */
3357 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3358 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3359 ehc->i.action |= ATA_EH_HARDRESET;
3360
3361 /* if we're about to do hardreset, nothing more to do */
3362 if (ehc->i.action & ATA_EH_HARDRESET)
3363 return 0;
3364
3365 /* if SATA, resume phy */
3366 if (ap->cbl == ATA_CBL_SATA) {
3367 rc = sata_phy_resume(ap, timing, deadline);
3368 /* whine about phy resume failure but proceed */
3369 if (rc && rc != -EOPNOTSUPP)
3370 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3371 "link for reset (errno=%d)\n", rc);
3372 }
3373
3374 /* Wait for !BSY if the controller can wait for the first D2H
3375 * Reg FIS and we don't know that no device is attached.
3376 */
3377 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3378 rc = ata_wait_ready(ap, deadline);
3379 if (rc && rc != -ENODEV) {
3380 ata_port_printk(ap, KERN_WARNING, "device not ready "
3381 "(errno=%d), forcing hardreset\n", rc);
3382 ehc->i.action |= ATA_EH_HARDRESET;
3383 }
3384 }
3385
3386 return 0;
3387 }
3388
3389 /**
3390 * ata_std_softreset - reset host port via ATA SRST
3391 * @ap: port to reset
3392 * @classes: resulting classes of attached devices
3393 * @deadline: deadline jiffies for the operation
3394 *
3395 * Reset host port using ATA SRST.
3396 *
3397 * LOCKING:
3398 * Kernel thread context (may sleep)
3399 *
3400 * RETURNS:
3401 * 0 on success, -errno otherwise.
3402 */
3403 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3404 unsigned long deadline)
3405 {
3406 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3407 unsigned int devmask = 0;
3408 int rc;
3409 u8 err;
3410
3411 DPRINTK("ENTER\n");
3412
3413 if (ata_port_offline(ap)) {
3414 classes[0] = ATA_DEV_NONE;
3415 goto out;
3416 }
3417
3418 /* determine if device 0/1 are present */
3419 if (ata_devchk(ap, 0))
3420 devmask |= (1 << 0);
3421 if (slave_possible && ata_devchk(ap, 1))
3422 devmask |= (1 << 1);
3423
3424 /* select device 0 again */
3425 ap->ops->dev_select(ap, 0);
3426
3427 /* issue bus reset */
3428 DPRINTK("about to softreset, devmask=%x\n", devmask);
3429 rc = ata_bus_softreset(ap, devmask, deadline);
3430 /* if link is occupied, -ENODEV too is an error */
3431 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3432 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3433 return rc;
3434 }
3435
3436 /* determine by signature whether we have ATA or ATAPI devices */
3437 classes[0] = ata_dev_try_classify(ap, 0, &err);
3438 if (slave_possible && err != 0x81)
3439 classes[1] = ata_dev_try_classify(ap, 1, &err);
3440
3441 out:
3442 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3443 return 0;
3444 }
3445
3446 /**
3447 * sata_port_hardreset - reset port via SATA phy reset
3448 * @ap: port to reset
3449 * @timing: timing parameters { interval, duratinon, timeout } in msec
3450 * @deadline: deadline jiffies for the operation
3451 *
3452 * SATA phy-reset host port using DET bits of SControl register.
3453 *
3454 * LOCKING:
3455 * Kernel thread context (may sleep)
3456 *
3457 * RETURNS:
3458 * 0 on success, -errno otherwise.
3459 */
3460 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3461 unsigned long deadline)
3462 {
3463 u32 scontrol;
3464 int rc;
3465
3466 DPRINTK("ENTER\n");
3467
3468 if (sata_set_spd_needed(ap)) {
3469 /* SATA spec says nothing about how to reconfigure
3470 * spd. To be on the safe side, turn off phy during
3471 * reconfiguration. This works for at least ICH7 AHCI
3472 * and Sil3124.
3473 */
3474 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3475 goto out;
3476
3477 scontrol = (scontrol & 0x0f0) | 0x304;
3478
3479 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3480 goto out;
3481
3482 sata_set_spd(ap);
3483 }
3484
3485 /* issue phy wake/reset */
3486 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3487 goto out;
3488
3489 scontrol = (scontrol & 0x0f0) | 0x301;
3490
3491 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3492 goto out;
3493
3494 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3495 * 10.4.2 says at least 1 ms.
3496 */
3497 msleep(1);
3498
3499 /* bring phy back */
3500 rc = sata_phy_resume(ap, timing, deadline);
3501 out:
3502 DPRINTK("EXIT, rc=%d\n", rc);
3503 return rc;
3504 }
3505
3506 /**
3507 * sata_std_hardreset - reset host port via SATA phy reset
3508 * @ap: port to reset
3509 * @class: resulting class of attached device
3510 * @deadline: deadline jiffies for the operation
3511 *
3512 * SATA phy-reset host port using DET bits of SControl register,
3513 * wait for !BSY and classify the attached device.
3514 *
3515 * LOCKING:
3516 * Kernel thread context (may sleep)
3517 *
3518 * RETURNS:
3519 * 0 on success, -errno otherwise.
3520 */
3521 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3522 unsigned long deadline)
3523 {
3524 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3525 int rc;
3526
3527 DPRINTK("ENTER\n");
3528
3529 /* do hardreset */
3530 rc = sata_port_hardreset(ap, timing, deadline);
3531 if (rc) {
3532 ata_port_printk(ap, KERN_ERR,
3533 "COMRESET failed (errno=%d)\n", rc);
3534 return rc;
3535 }
3536
3537 /* TODO: phy layer with polling, timeouts, etc. */
3538 if (ata_port_offline(ap)) {
3539 *class = ATA_DEV_NONE;
3540 DPRINTK("EXIT, link offline\n");
3541 return 0;
3542 }
3543
3544 /* wait a while before checking status, see SRST for more info */
3545 msleep(150);
3546
3547 rc = ata_wait_ready(ap, deadline);
3548 /* link occupied, -ENODEV too is an error */
3549 if (rc) {
3550 ata_port_printk(ap, KERN_ERR,
3551 "COMRESET failed (errno=%d)\n", rc);
3552 return rc;
3553 }
3554
3555 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3556
3557 *class = ata_dev_try_classify(ap, 0, NULL);
3558
3559 DPRINTK("EXIT, class=%u\n", *class);
3560 return 0;
3561 }
3562
3563 /**
3564 * ata_std_postreset - standard postreset callback
3565 * @ap: the target ata_port
3566 * @classes: classes of attached devices
3567 *
3568 * This function is invoked after a successful reset. Note that
3569 * the device might have been reset more than once using
3570 * different reset methods before postreset is invoked.
3571 *
3572 * LOCKING:
3573 * Kernel thread context (may sleep)
3574 */
3575 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3576 {
3577 u32 serror;
3578
3579 DPRINTK("ENTER\n");
3580
3581 /* print link status */
3582 sata_print_link_status(ap);
3583
3584 /* clear SError */
3585 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3586 sata_scr_write(ap, SCR_ERROR, serror);
3587
3588 /* re-enable interrupts */
3589 if (!ap->ops->error_handler)
3590 ap->ops->irq_on(ap);
3591
3592 /* is double-select really necessary? */
3593 if (classes[0] != ATA_DEV_NONE)
3594 ap->ops->dev_select(ap, 1);
3595 if (classes[1] != ATA_DEV_NONE)
3596 ap->ops->dev_select(ap, 0);
3597
3598 /* bail out if no device is present */
3599 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3600 DPRINTK("EXIT, no device\n");
3601 return;
3602 }
3603
3604 /* set up device control */
3605 if (ap->ioaddr.ctl_addr)
3606 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3607
3608 DPRINTK("EXIT\n");
3609 }
3610
3611 /**
3612 * ata_dev_same_device - Determine whether new ID matches configured device
3613 * @dev: device to compare against
3614 * @new_class: class of the new device
3615 * @new_id: IDENTIFY page of the new device
3616 *
3617 * Compare @new_class and @new_id against @dev and determine
3618 * whether @dev is the device indicated by @new_class and
3619 * @new_id.
3620 *
3621 * LOCKING:
3622 * None.
3623 *
3624 * RETURNS:
3625 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3626 */
3627 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3628 const u16 *new_id)
3629 {
3630 const u16 *old_id = dev->id;
3631 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3632 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3633
3634 if (dev->class != new_class) {
3635 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3636 dev->class, new_class);
3637 return 0;
3638 }
3639
3640 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3641 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3642 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3643 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3644
3645 if (strcmp(model[0], model[1])) {
3646 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3647 "'%s' != '%s'\n", model[0], model[1]);
3648 return 0;
3649 }
3650
3651 if (strcmp(serial[0], serial[1])) {
3652 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3653 "'%s' != '%s'\n", serial[0], serial[1]);
3654 return 0;
3655 }
3656
3657 return 1;
3658 }
3659
3660 /**
3661 * ata_dev_reread_id - Re-read IDENTIFY data
3662 * @adev: target ATA device
3663 * @readid_flags: read ID flags
3664 *
3665 * Re-read IDENTIFY page and make sure @dev is still attached to
3666 * the port.
3667 *
3668 * LOCKING:
3669 * Kernel thread context (may sleep)
3670 *
3671 * RETURNS:
3672 * 0 on success, negative errno otherwise
3673 */
3674 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3675 {
3676 unsigned int class = dev->class;
3677 u16 *id = (void *)dev->ap->sector_buf;
3678 int rc;
3679
3680 /* read ID data */
3681 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3682 if (rc)
3683 return rc;
3684
3685 /* is the device still there? */
3686 if (!ata_dev_same_device(dev, class, id))
3687 return -ENODEV;
3688
3689 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3690 return 0;
3691 }
3692
3693 /**
3694 * ata_dev_revalidate - Revalidate ATA device
3695 * @dev: device to revalidate
3696 * @readid_flags: read ID flags
3697 *
3698 * Re-read IDENTIFY page, make sure @dev is still attached to the
3699 * port and reconfigure it according to the new IDENTIFY page.
3700 *
3701 * LOCKING:
3702 * Kernel thread context (may sleep)
3703 *
3704 * RETURNS:
3705 * 0 on success, negative errno otherwise
3706 */
3707 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3708 {
3709 u64 n_sectors = dev->n_sectors;
3710 int rc;
3711
3712 if (!ata_dev_enabled(dev))
3713 return -ENODEV;
3714
3715 /* re-read ID */
3716 rc = ata_dev_reread_id(dev, readid_flags);
3717 if (rc)
3718 goto fail;
3719
3720 /* configure device according to the new ID */
3721 rc = ata_dev_configure(dev);
3722 if (rc)
3723 goto fail;
3724
3725 /* verify n_sectors hasn't changed */
3726 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3727 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3728 "%llu != %llu\n",
3729 (unsigned long long)n_sectors,
3730 (unsigned long long)dev->n_sectors);
3731 rc = -ENODEV;
3732 goto fail;
3733 }
3734
3735 return 0;
3736
3737 fail:
3738 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3739 return rc;
3740 }
3741
3742 struct ata_blacklist_entry {
3743 const char *model_num;
3744 const char *model_rev;
3745 unsigned long horkage;
3746 };
3747
3748 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3749 /* Devices with DMA related problems under Linux */
3750 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3751 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3752 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3753 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3754 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3755 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3756 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3757 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3758 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3759 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3760 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3761 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3762 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3763 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3764 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3765 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3766 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3767 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3768 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3769 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3770 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3771 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3772 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3773 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3774 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3775 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3776 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3777 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3778 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3779 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3780 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3781
3782 /* Weird ATAPI devices */
3783 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 |
3784 ATA_HORKAGE_DMA_RW_ONLY },
3785
3786 /* Devices we expect to fail diagnostics */
3787
3788 /* Devices where NCQ should be avoided */
3789 /* NCQ is slow */
3790 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3791 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3792 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3793 /* NCQ is broken */
3794 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3795 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3796 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3797 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3798 /* Blacklist entries taken from Silicon Image 3124/3132
3799 Windows driver .inf file - also several Linux problem reports */
3800 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3801 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3802 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3803 /* Drives which do spurious command completion */
3804 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3805 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3806 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3807
3808 /* Devices with NCQ limits */
3809
3810 /* End Marker */
3811 { }
3812 };
3813
3814 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3815 {
3816 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3817 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3818 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3819
3820 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3821 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3822
3823 while (ad->model_num) {
3824 if (!strcmp(ad->model_num, model_num)) {
3825 if (ad->model_rev == NULL)
3826 return ad->horkage;
3827 if (!strcmp(ad->model_rev, model_rev))
3828 return ad->horkage;
3829 }
3830 ad++;
3831 }
3832 return 0;
3833 }
3834
3835 static int ata_dma_blacklisted(const struct ata_device *dev)
3836 {
3837 /* We don't support polling DMA.
3838 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3839 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3840 */
3841 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3842 (dev->flags & ATA_DFLAG_CDB_INTR))
3843 return 1;
3844 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3845 }
3846
3847 /**
3848 * ata_dev_xfermask - Compute supported xfermask of the given device
3849 * @dev: Device to compute xfermask for
3850 *
3851 * Compute supported xfermask of @dev and store it in
3852 * dev->*_mask. This function is responsible for applying all
3853 * known limits including host controller limits, device
3854 * blacklist, etc...
3855 *
3856 * LOCKING:
3857 * None.
3858 */
3859 static void ata_dev_xfermask(struct ata_device *dev)
3860 {
3861 struct ata_port *ap = dev->ap;
3862 struct ata_host *host = ap->host;
3863 unsigned long xfer_mask;
3864
3865 /* controller modes available */
3866 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3867 ap->mwdma_mask, ap->udma_mask);
3868
3869 /* drive modes available */
3870 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3871 dev->mwdma_mask, dev->udma_mask);
3872 xfer_mask &= ata_id_xfermask(dev->id);
3873
3874 /*
3875 * CFA Advanced TrueIDE timings are not allowed on a shared
3876 * cable
3877 */
3878 if (ata_dev_pair(dev)) {
3879 /* No PIO5 or PIO6 */
3880 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3881 /* No MWDMA3 or MWDMA 4 */
3882 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3883 }
3884
3885 if (ata_dma_blacklisted(dev)) {
3886 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3887 ata_dev_printk(dev, KERN_WARNING,
3888 "device is on DMA blacklist, disabling DMA\n");
3889 }
3890
3891 if ((host->flags & ATA_HOST_SIMPLEX) &&
3892 host->simplex_claimed && host->simplex_claimed != ap) {
3893 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3894 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3895 "other device, disabling DMA\n");
3896 }
3897
3898 if (ap->flags & ATA_FLAG_NO_IORDY)
3899 xfer_mask &= ata_pio_mask_no_iordy(dev);
3900
3901 if (ap->ops->mode_filter)
3902 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3903
3904 /* Apply cable rule here. Don't apply it early because when
3905 * we handle hot plug the cable type can itself change.
3906 * Check this last so that we know if the transfer rate was
3907 * solely limited by the cable.
3908 * Unknown or 80 wire cables reported host side are checked
3909 * drive side as well. Cases where we know a 40wire cable
3910 * is used safely for 80 are not checked here.
3911 */
3912 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3913 /* UDMA/44 or higher would be available */
3914 if((ap->cbl == ATA_CBL_PATA40) ||
3915 (ata_drive_40wire(dev->id) &&
3916 (ap->cbl == ATA_CBL_PATA_UNK ||
3917 ap->cbl == ATA_CBL_PATA80))) {
3918 ata_dev_printk(dev, KERN_WARNING,
3919 "limited to UDMA/33 due to 40-wire cable\n");
3920 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3921 }
3922
3923 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3924 &dev->mwdma_mask, &dev->udma_mask);
3925 }
3926
3927 /**
3928 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3929 * @dev: Device to which command will be sent
3930 *
3931 * Issue SET FEATURES - XFER MODE command to device @dev
3932 * on port @ap.
3933 *
3934 * LOCKING:
3935 * PCI/etc. bus probe sem.
3936 *
3937 * RETURNS:
3938 * 0 on success, AC_ERR_* mask otherwise.
3939 */
3940
3941 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3942 {
3943 struct ata_taskfile tf;
3944 unsigned int err_mask;
3945
3946 /* set up set-features taskfile */
3947 DPRINTK("set features - xfer mode\n");
3948
3949 /* Some controllers and ATAPI devices show flaky interrupt
3950 * behavior after setting xfer mode. Use polling instead.
3951 */
3952 ata_tf_init(dev, &tf);
3953 tf.command = ATA_CMD_SET_FEATURES;
3954 tf.feature = SETFEATURES_XFER;
3955 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3956 tf.protocol = ATA_PROT_NODATA;
3957 tf.nsect = dev->xfer_mode;
3958
3959 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3960
3961 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3962 return err_mask;
3963 }
3964
3965 /**
3966 * ata_dev_init_params - Issue INIT DEV PARAMS command
3967 * @dev: Device to which command will be sent
3968 * @heads: Number of heads (taskfile parameter)
3969 * @sectors: Number of sectors (taskfile parameter)
3970 *
3971 * LOCKING:
3972 * Kernel thread context (may sleep)
3973 *
3974 * RETURNS:
3975 * 0 on success, AC_ERR_* mask otherwise.
3976 */
3977 static unsigned int ata_dev_init_params(struct ata_device *dev,
3978 u16 heads, u16 sectors)
3979 {
3980 struct ata_taskfile tf;
3981 unsigned int err_mask;
3982
3983 /* Number of sectors per track 1-255. Number of heads 1-16 */
3984 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3985 return AC_ERR_INVALID;
3986
3987 /* set up init dev params taskfile */
3988 DPRINTK("init dev params \n");
3989
3990 ata_tf_init(dev, &tf);
3991 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3992 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3993 tf.protocol = ATA_PROT_NODATA;
3994 tf.nsect = sectors;
3995 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3996
3997 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3998
3999 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4000 return err_mask;
4001 }
4002
4003 /**
4004 * ata_sg_clean - Unmap DMA memory associated with command
4005 * @qc: Command containing DMA memory to be released
4006 *
4007 * Unmap all mapped DMA memory associated with this command.
4008 *
4009 * LOCKING:
4010 * spin_lock_irqsave(host lock)
4011 */
4012 void ata_sg_clean(struct ata_queued_cmd *qc)
4013 {
4014 struct ata_port *ap = qc->ap;
4015 struct scatterlist *sg = qc->__sg;
4016 int dir = qc->dma_dir;
4017 void *pad_buf = NULL;
4018
4019 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4020 WARN_ON(sg == NULL);
4021
4022 if (qc->flags & ATA_QCFLAG_SINGLE)
4023 WARN_ON(qc->n_elem > 1);
4024
4025 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4026
4027 /* if we padded the buffer out to 32-bit bound, and data
4028 * xfer direction is from-device, we must copy from the
4029 * pad buffer back into the supplied buffer
4030 */
4031 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4032 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4033
4034 if (qc->flags & ATA_QCFLAG_SG) {
4035 if (qc->n_elem)
4036 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4037 /* restore last sg */
4038 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4039 if (pad_buf) {
4040 struct scatterlist *psg = &qc->pad_sgent;
4041 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4042 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4043 kunmap_atomic(addr, KM_IRQ0);
4044 }
4045 } else {
4046 if (qc->n_elem)
4047 dma_unmap_single(ap->dev,
4048 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4049 dir);
4050 /* restore sg */
4051 sg->length += qc->pad_len;
4052 if (pad_buf)
4053 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4054 pad_buf, qc->pad_len);
4055 }
4056
4057 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4058 qc->__sg = NULL;
4059 }
4060
4061 /**
4062 * ata_fill_sg - Fill PCI IDE PRD table
4063 * @qc: Metadata associated with taskfile to be transferred
4064 *
4065 * Fill PCI IDE PRD (scatter-gather) table with segments
4066 * associated with the current disk command.
4067 *
4068 * LOCKING:
4069 * spin_lock_irqsave(host lock)
4070 *
4071 */
4072 static void ata_fill_sg(struct ata_queued_cmd *qc)
4073 {
4074 struct ata_port *ap = qc->ap;
4075 struct scatterlist *sg;
4076 unsigned int idx;
4077
4078 WARN_ON(qc->__sg == NULL);
4079 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4080
4081 idx = 0;
4082 ata_for_each_sg(sg, qc) {
4083 u32 addr, offset;
4084 u32 sg_len, len;
4085
4086 /* determine if physical DMA addr spans 64K boundary.
4087 * Note h/w doesn't support 64-bit, so we unconditionally
4088 * truncate dma_addr_t to u32.
4089 */
4090 addr = (u32) sg_dma_address(sg);
4091 sg_len = sg_dma_len(sg);
4092
4093 while (sg_len) {
4094 offset = addr & 0xffff;
4095 len = sg_len;
4096 if ((offset + sg_len) > 0x10000)
4097 len = 0x10000 - offset;
4098
4099 ap->prd[idx].addr = cpu_to_le32(addr);
4100 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4101 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4102
4103 idx++;
4104 sg_len -= len;
4105 addr += len;
4106 }
4107 }
4108
4109 if (idx)
4110 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4111 }
4112 /**
4113 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4114 * @qc: Metadata associated with taskfile to check
4115 *
4116 * Allow low-level driver to filter ATA PACKET commands, returning
4117 * a status indicating whether or not it is OK to use DMA for the
4118 * supplied PACKET command.
4119 *
4120 * LOCKING:
4121 * spin_lock_irqsave(host lock)
4122 *
4123 * RETURNS: 0 when ATAPI DMA can be used
4124 * nonzero otherwise
4125 */
4126 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4127 {
4128 struct ata_port *ap = qc->ap;
4129 int rc = 0; /* Assume ATAPI DMA is OK by default */
4130
4131 /* some drives can only do ATAPI DMA on read/write */
4132 if (unlikely(qc->dev->horkage & ATA_HORKAGE_DMA_RW_ONLY)) {
4133 struct scsi_cmnd *cmd = qc->scsicmd;
4134 u8 *scsicmd = cmd->cmnd;
4135
4136 switch (scsicmd[0]) {
4137 case READ_10:
4138 case WRITE_10:
4139 case READ_12:
4140 case WRITE_12:
4141 case READ_6:
4142 case WRITE_6:
4143 /* atapi dma maybe ok */
4144 break;
4145 default:
4146 /* turn off atapi dma */
4147 return 1;
4148 }
4149 }
4150
4151 if (ap->ops->check_atapi_dma)
4152 rc = ap->ops->check_atapi_dma(qc);
4153
4154 return rc;
4155 }
4156 /**
4157 * ata_qc_prep - Prepare taskfile for submission
4158 * @qc: Metadata associated with taskfile to be prepared
4159 *
4160 * Prepare ATA taskfile for submission.
4161 *
4162 * LOCKING:
4163 * spin_lock_irqsave(host lock)
4164 */
4165 void ata_qc_prep(struct ata_queued_cmd *qc)
4166 {
4167 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4168 return;
4169
4170 ata_fill_sg(qc);
4171 }
4172
4173 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4174
4175 /**
4176 * ata_sg_init_one - Associate command with memory buffer
4177 * @qc: Command to be associated
4178 * @buf: Memory buffer
4179 * @buflen: Length of memory buffer, in bytes.
4180 *
4181 * Initialize the data-related elements of queued_cmd @qc
4182 * to point to a single memory buffer, @buf of byte length @buflen.
4183 *
4184 * LOCKING:
4185 * spin_lock_irqsave(host lock)
4186 */
4187
4188 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4189 {
4190 qc->flags |= ATA_QCFLAG_SINGLE;
4191
4192 qc->__sg = &qc->sgent;
4193 qc->n_elem = 1;
4194 qc->orig_n_elem = 1;
4195 qc->buf_virt = buf;
4196 qc->nbytes = buflen;
4197
4198 sg_init_one(&qc->sgent, buf, buflen);
4199 }
4200
4201 /**
4202 * ata_sg_init - Associate command with scatter-gather table.
4203 * @qc: Command to be associated
4204 * @sg: Scatter-gather table.
4205 * @n_elem: Number of elements in s/g table.
4206 *
4207 * Initialize the data-related elements of queued_cmd @qc
4208 * to point to a scatter-gather table @sg, containing @n_elem
4209 * elements.
4210 *
4211 * LOCKING:
4212 * spin_lock_irqsave(host lock)
4213 */
4214
4215 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4216 unsigned int n_elem)
4217 {
4218 qc->flags |= ATA_QCFLAG_SG;
4219 qc->__sg = sg;
4220 qc->n_elem = n_elem;
4221 qc->orig_n_elem = n_elem;
4222 }
4223
4224 /**
4225 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4226 * @qc: Command with memory buffer to be mapped.
4227 *
4228 * DMA-map the memory buffer associated with queued_cmd @qc.
4229 *
4230 * LOCKING:
4231 * spin_lock_irqsave(host lock)
4232 *
4233 * RETURNS:
4234 * Zero on success, negative on error.
4235 */
4236
4237 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4238 {
4239 struct ata_port *ap = qc->ap;
4240 int dir = qc->dma_dir;
4241 struct scatterlist *sg = qc->__sg;
4242 dma_addr_t dma_address;
4243 int trim_sg = 0;
4244
4245 /* we must lengthen transfers to end on a 32-bit boundary */
4246 qc->pad_len = sg->length & 3;
4247 if (qc->pad_len) {
4248 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4249 struct scatterlist *psg = &qc->pad_sgent;
4250
4251 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4252
4253 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4254
4255 if (qc->tf.flags & ATA_TFLAG_WRITE)
4256 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4257 qc->pad_len);
4258
4259 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4260 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4261 /* trim sg */
4262 sg->length -= qc->pad_len;
4263 if (sg->length == 0)
4264 trim_sg = 1;
4265
4266 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4267 sg->length, qc->pad_len);
4268 }
4269
4270 if (trim_sg) {
4271 qc->n_elem--;
4272 goto skip_map;
4273 }
4274
4275 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4276 sg->length, dir);
4277 if (dma_mapping_error(dma_address)) {
4278 /* restore sg */
4279 sg->length += qc->pad_len;
4280 return -1;
4281 }
4282
4283 sg_dma_address(sg) = dma_address;
4284 sg_dma_len(sg) = sg->length;
4285
4286 skip_map:
4287 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4288 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4289
4290 return 0;
4291 }
4292
4293 /**
4294 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4295 * @qc: Command with scatter-gather table to be mapped.
4296 *
4297 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4298 *
4299 * LOCKING:
4300 * spin_lock_irqsave(host lock)
4301 *
4302 * RETURNS:
4303 * Zero on success, negative on error.
4304 *
4305 */
4306
4307 static int ata_sg_setup(struct ata_queued_cmd *qc)
4308 {
4309 struct ata_port *ap = qc->ap;
4310 struct scatterlist *sg = qc->__sg;
4311 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4312 int n_elem, pre_n_elem, dir, trim_sg = 0;
4313
4314 VPRINTK("ENTER, ata%u\n", ap->print_id);
4315 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4316
4317 /* we must lengthen transfers to end on a 32-bit boundary */
4318 qc->pad_len = lsg->length & 3;
4319 if (qc->pad_len) {
4320 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4321 struct scatterlist *psg = &qc->pad_sgent;
4322 unsigned int offset;
4323
4324 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4325
4326 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4327
4328 /*
4329 * psg->page/offset are used to copy to-be-written
4330 * data in this function or read data in ata_sg_clean.
4331 */
4332 offset = lsg->offset + lsg->length - qc->pad_len;
4333 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4334 psg->offset = offset_in_page(offset);
4335
4336 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4337 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4338 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4339 kunmap_atomic(addr, KM_IRQ0);
4340 }
4341
4342 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4343 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4344 /* trim last sg */
4345 lsg->length -= qc->pad_len;
4346 if (lsg->length == 0)
4347 trim_sg = 1;
4348
4349 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4350 qc->n_elem - 1, lsg->length, qc->pad_len);
4351 }
4352
4353 pre_n_elem = qc->n_elem;
4354 if (trim_sg && pre_n_elem)
4355 pre_n_elem--;
4356
4357 if (!pre_n_elem) {
4358 n_elem = 0;
4359 goto skip_map;
4360 }
4361
4362 dir = qc->dma_dir;
4363 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4364 if (n_elem < 1) {
4365 /* restore last sg */
4366 lsg->length += qc->pad_len;
4367 return -1;
4368 }
4369
4370 DPRINTK("%d sg elements mapped\n", n_elem);
4371
4372 skip_map:
4373 qc->n_elem = n_elem;
4374
4375 return 0;
4376 }
4377
4378 /**
4379 * swap_buf_le16 - swap halves of 16-bit words in place
4380 * @buf: Buffer to swap
4381 * @buf_words: Number of 16-bit words in buffer.
4382 *
4383 * Swap halves of 16-bit words if needed to convert from
4384 * little-endian byte order to native cpu byte order, or
4385 * vice-versa.
4386 *
4387 * LOCKING:
4388 * Inherited from caller.
4389 */
4390 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4391 {
4392 #ifdef __BIG_ENDIAN
4393 unsigned int i;
4394
4395 for (i = 0; i < buf_words; i++)
4396 buf[i] = le16_to_cpu(buf[i]);
4397 #endif /* __BIG_ENDIAN */
4398 }
4399
4400 /**
4401 * ata_data_xfer - Transfer data by PIO
4402 * @adev: device to target
4403 * @buf: data buffer
4404 * @buflen: buffer length
4405 * @write_data: read/write
4406 *
4407 * Transfer data from/to the device data register by PIO.
4408 *
4409 * LOCKING:
4410 * Inherited from caller.
4411 */
4412 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4413 unsigned int buflen, int write_data)
4414 {
4415 struct ata_port *ap = adev->ap;
4416 unsigned int words = buflen >> 1;
4417
4418 /* Transfer multiple of 2 bytes */
4419 if (write_data)
4420 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4421 else
4422 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4423
4424 /* Transfer trailing 1 byte, if any. */
4425 if (unlikely(buflen & 0x01)) {
4426 u16 align_buf[1] = { 0 };
4427 unsigned char *trailing_buf = buf + buflen - 1;
4428
4429 if (write_data) {
4430 memcpy(align_buf, trailing_buf, 1);
4431 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4432 } else {
4433 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4434 memcpy(trailing_buf, align_buf, 1);
4435 }
4436 }
4437 }
4438
4439 /**
4440 * ata_data_xfer_noirq - Transfer data by PIO
4441 * @adev: device to target
4442 * @buf: data buffer
4443 * @buflen: buffer length
4444 * @write_data: read/write
4445 *
4446 * Transfer data from/to the device data register by PIO. Do the
4447 * transfer with interrupts disabled.
4448 *
4449 * LOCKING:
4450 * Inherited from caller.
4451 */
4452 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4453 unsigned int buflen, int write_data)
4454 {
4455 unsigned long flags;
4456 local_irq_save(flags);
4457 ata_data_xfer(adev, buf, buflen, write_data);
4458 local_irq_restore(flags);
4459 }
4460
4461
4462 /**
4463 * ata_pio_sector - Transfer a sector of data.
4464 * @qc: Command on going
4465 *
4466 * Transfer qc->sect_size bytes of data from/to the ATA device.
4467 *
4468 * LOCKING:
4469 * Inherited from caller.
4470 */
4471
4472 static void ata_pio_sector(struct ata_queued_cmd *qc)
4473 {
4474 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4475 struct scatterlist *sg = qc->__sg;
4476 struct ata_port *ap = qc->ap;
4477 struct page *page;
4478 unsigned int offset;
4479 unsigned char *buf;
4480
4481 if (qc->curbytes == qc->nbytes - qc->sect_size)
4482 ap->hsm_task_state = HSM_ST_LAST;
4483
4484 page = sg[qc->cursg].page;
4485 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4486
4487 /* get the current page and offset */
4488 page = nth_page(page, (offset >> PAGE_SHIFT));
4489 offset %= PAGE_SIZE;
4490
4491 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4492
4493 if (PageHighMem(page)) {
4494 unsigned long flags;
4495
4496 /* FIXME: use a bounce buffer */
4497 local_irq_save(flags);
4498 buf = kmap_atomic(page, KM_IRQ0);
4499
4500 /* do the actual data transfer */
4501 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4502
4503 kunmap_atomic(buf, KM_IRQ0);
4504 local_irq_restore(flags);
4505 } else {
4506 buf = page_address(page);
4507 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4508 }
4509
4510 qc->curbytes += qc->sect_size;
4511 qc->cursg_ofs += qc->sect_size;
4512
4513 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4514 qc->cursg++;
4515 qc->cursg_ofs = 0;
4516 }
4517 }
4518
4519 /**
4520 * ata_pio_sectors - Transfer one or many sectors.
4521 * @qc: Command on going
4522 *
4523 * Transfer one or many sectors of data from/to the
4524 * ATA device for the DRQ request.
4525 *
4526 * LOCKING:
4527 * Inherited from caller.
4528 */
4529
4530 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4531 {
4532 if (is_multi_taskfile(&qc->tf)) {
4533 /* READ/WRITE MULTIPLE */
4534 unsigned int nsect;
4535
4536 WARN_ON(qc->dev->multi_count == 0);
4537
4538 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4539 qc->dev->multi_count);
4540 while (nsect--)
4541 ata_pio_sector(qc);
4542 } else
4543 ata_pio_sector(qc);
4544 }
4545
4546 /**
4547 * atapi_send_cdb - Write CDB bytes to hardware
4548 * @ap: Port to which ATAPI device is attached.
4549 * @qc: Taskfile currently active
4550 *
4551 * When device has indicated its readiness to accept
4552 * a CDB, this function is called. Send the CDB.
4553 *
4554 * LOCKING:
4555 * caller.
4556 */
4557
4558 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4559 {
4560 /* send SCSI cdb */
4561 DPRINTK("send cdb\n");
4562 WARN_ON(qc->dev->cdb_len < 12);
4563
4564 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4565 ata_altstatus(ap); /* flush */
4566
4567 switch (qc->tf.protocol) {
4568 case ATA_PROT_ATAPI:
4569 ap->hsm_task_state = HSM_ST;
4570 break;
4571 case ATA_PROT_ATAPI_NODATA:
4572 ap->hsm_task_state = HSM_ST_LAST;
4573 break;
4574 case ATA_PROT_ATAPI_DMA:
4575 ap->hsm_task_state = HSM_ST_LAST;
4576 /* initiate bmdma */
4577 ap->ops->bmdma_start(qc);
4578 break;
4579 }
4580 }
4581
4582 /**
4583 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4584 * @qc: Command on going
4585 * @bytes: number of bytes
4586 *
4587 * Transfer Transfer data from/to the ATAPI device.
4588 *
4589 * LOCKING:
4590 * Inherited from caller.
4591 *
4592 */
4593
4594 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4595 {
4596 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4597 struct scatterlist *sg = qc->__sg;
4598 struct ata_port *ap = qc->ap;
4599 struct page *page;
4600 unsigned char *buf;
4601 unsigned int offset, count;
4602
4603 if (qc->curbytes + bytes >= qc->nbytes)
4604 ap->hsm_task_state = HSM_ST_LAST;
4605
4606 next_sg:
4607 if (unlikely(qc->cursg >= qc->n_elem)) {
4608 /*
4609 * The end of qc->sg is reached and the device expects
4610 * more data to transfer. In order not to overrun qc->sg
4611 * and fulfill length specified in the byte count register,
4612 * - for read case, discard trailing data from the device
4613 * - for write case, padding zero data to the device
4614 */
4615 u16 pad_buf[1] = { 0 };
4616 unsigned int words = bytes >> 1;
4617 unsigned int i;
4618
4619 if (words) /* warning if bytes > 1 */
4620 ata_dev_printk(qc->dev, KERN_WARNING,
4621 "%u bytes trailing data\n", bytes);
4622
4623 for (i = 0; i < words; i++)
4624 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4625
4626 ap->hsm_task_state = HSM_ST_LAST;
4627 return;
4628 }
4629
4630 sg = &qc->__sg[qc->cursg];
4631
4632 page = sg->page;
4633 offset = sg->offset + qc->cursg_ofs;
4634
4635 /* get the current page and offset */
4636 page = nth_page(page, (offset >> PAGE_SHIFT));
4637 offset %= PAGE_SIZE;
4638
4639 /* don't overrun current sg */
4640 count = min(sg->length - qc->cursg_ofs, bytes);
4641
4642 /* don't cross page boundaries */
4643 count = min(count, (unsigned int)PAGE_SIZE - offset);
4644
4645 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4646
4647 if (PageHighMem(page)) {
4648 unsigned long flags;
4649
4650 /* FIXME: use bounce buffer */
4651 local_irq_save(flags);
4652 buf = kmap_atomic(page, KM_IRQ0);
4653
4654 /* do the actual data transfer */
4655 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4656
4657 kunmap_atomic(buf, KM_IRQ0);
4658 local_irq_restore(flags);
4659 } else {
4660 buf = page_address(page);
4661 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4662 }
4663
4664 bytes -= count;
4665 qc->curbytes += count;
4666 qc->cursg_ofs += count;
4667
4668 if (qc->cursg_ofs == sg->length) {
4669 qc->cursg++;
4670 qc->cursg_ofs = 0;
4671 }
4672
4673 if (bytes)
4674 goto next_sg;
4675 }
4676
4677 /**
4678 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4679 * @qc: Command on going
4680 *
4681 * Transfer Transfer data from/to the ATAPI device.
4682 *
4683 * LOCKING:
4684 * Inherited from caller.
4685 */
4686
4687 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4688 {
4689 struct ata_port *ap = qc->ap;
4690 struct ata_device *dev = qc->dev;
4691 unsigned int ireason, bc_lo, bc_hi, bytes;
4692 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4693
4694 /* Abuse qc->result_tf for temp storage of intermediate TF
4695 * here to save some kernel stack usage.
4696 * For normal completion, qc->result_tf is not relevant. For
4697 * error, qc->result_tf is later overwritten by ata_qc_complete().
4698 * So, the correctness of qc->result_tf is not affected.
4699 */
4700 ap->ops->tf_read(ap, &qc->result_tf);
4701 ireason = qc->result_tf.nsect;
4702 bc_lo = qc->result_tf.lbam;
4703 bc_hi = qc->result_tf.lbah;
4704 bytes = (bc_hi << 8) | bc_lo;
4705
4706 /* shall be cleared to zero, indicating xfer of data */
4707 if (ireason & (1 << 0))
4708 goto err_out;
4709
4710 /* make sure transfer direction matches expected */
4711 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4712 if (do_write != i_write)
4713 goto err_out;
4714
4715 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4716
4717 __atapi_pio_bytes(qc, bytes);
4718
4719 return;
4720
4721 err_out:
4722 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4723 qc->err_mask |= AC_ERR_HSM;
4724 ap->hsm_task_state = HSM_ST_ERR;
4725 }
4726
4727 /**
4728 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4729 * @ap: the target ata_port
4730 * @qc: qc on going
4731 *
4732 * RETURNS:
4733 * 1 if ok in workqueue, 0 otherwise.
4734 */
4735
4736 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4737 {
4738 if (qc->tf.flags & ATA_TFLAG_POLLING)
4739 return 1;
4740
4741 if (ap->hsm_task_state == HSM_ST_FIRST) {
4742 if (qc->tf.protocol == ATA_PROT_PIO &&
4743 (qc->tf.flags & ATA_TFLAG_WRITE))
4744 return 1;
4745
4746 if (is_atapi_taskfile(&qc->tf) &&
4747 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4748 return 1;
4749 }
4750
4751 return 0;
4752 }
4753
4754 /**
4755 * ata_hsm_qc_complete - finish a qc running on standard HSM
4756 * @qc: Command to complete
4757 * @in_wq: 1 if called from workqueue, 0 otherwise
4758 *
4759 * Finish @qc which is running on standard HSM.
4760 *
4761 * LOCKING:
4762 * If @in_wq is zero, spin_lock_irqsave(host lock).
4763 * Otherwise, none on entry and grabs host lock.
4764 */
4765 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4766 {
4767 struct ata_port *ap = qc->ap;
4768 unsigned long flags;
4769
4770 if (ap->ops->error_handler) {
4771 if (in_wq) {
4772 spin_lock_irqsave(ap->lock, flags);
4773
4774 /* EH might have kicked in while host lock is
4775 * released.
4776 */
4777 qc = ata_qc_from_tag(ap, qc->tag);
4778 if (qc) {
4779 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4780 ap->ops->irq_on(ap);
4781 ata_qc_complete(qc);
4782 } else
4783 ata_port_freeze(ap);
4784 }
4785
4786 spin_unlock_irqrestore(ap->lock, flags);
4787 } else {
4788 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4789 ata_qc_complete(qc);
4790 else
4791 ata_port_freeze(ap);
4792 }
4793 } else {
4794 if (in_wq) {
4795 spin_lock_irqsave(ap->lock, flags);
4796 ap->ops->irq_on(ap);
4797 ata_qc_complete(qc);
4798 spin_unlock_irqrestore(ap->lock, flags);
4799 } else
4800 ata_qc_complete(qc);
4801 }
4802
4803 ata_altstatus(ap); /* flush */
4804 }
4805
4806 /**
4807 * ata_hsm_move - move the HSM to the next state.
4808 * @ap: the target ata_port
4809 * @qc: qc on going
4810 * @status: current device status
4811 * @in_wq: 1 if called from workqueue, 0 otherwise
4812 *
4813 * RETURNS:
4814 * 1 when poll next status needed, 0 otherwise.
4815 */
4816 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4817 u8 status, int in_wq)
4818 {
4819 unsigned long flags = 0;
4820 int poll_next;
4821
4822 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4823
4824 /* Make sure ata_qc_issue_prot() does not throw things
4825 * like DMA polling into the workqueue. Notice that
4826 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4827 */
4828 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4829
4830 fsm_start:
4831 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4832 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4833
4834 switch (ap->hsm_task_state) {
4835 case HSM_ST_FIRST:
4836 /* Send first data block or PACKET CDB */
4837
4838 /* If polling, we will stay in the work queue after
4839 * sending the data. Otherwise, interrupt handler
4840 * takes over after sending the data.
4841 */
4842 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4843
4844 /* check device status */
4845 if (unlikely((status & ATA_DRQ) == 0)) {
4846 /* handle BSY=0, DRQ=0 as error */
4847 if (likely(status & (ATA_ERR | ATA_DF)))
4848 /* device stops HSM for abort/error */
4849 qc->err_mask |= AC_ERR_DEV;
4850 else
4851 /* HSM violation. Let EH handle this */
4852 qc->err_mask |= AC_ERR_HSM;
4853
4854 ap->hsm_task_state = HSM_ST_ERR;
4855 goto fsm_start;
4856 }
4857
4858 /* Device should not ask for data transfer (DRQ=1)
4859 * when it finds something wrong.
4860 * We ignore DRQ here and stop the HSM by
4861 * changing hsm_task_state to HSM_ST_ERR and
4862 * let the EH abort the command or reset the device.
4863 */
4864 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4865 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4866 "error, dev_stat 0x%X\n", status);
4867 qc->err_mask |= AC_ERR_HSM;
4868 ap->hsm_task_state = HSM_ST_ERR;
4869 goto fsm_start;
4870 }
4871
4872 /* Send the CDB (atapi) or the first data block (ata pio out).
4873 * During the state transition, interrupt handler shouldn't
4874 * be invoked before the data transfer is complete and
4875 * hsm_task_state is changed. Hence, the following locking.
4876 */
4877 if (in_wq)
4878 spin_lock_irqsave(ap->lock, flags);
4879
4880 if (qc->tf.protocol == ATA_PROT_PIO) {
4881 /* PIO data out protocol.
4882 * send first data block.
4883 */
4884
4885 /* ata_pio_sectors() might change the state
4886 * to HSM_ST_LAST. so, the state is changed here
4887 * before ata_pio_sectors().
4888 */
4889 ap->hsm_task_state = HSM_ST;
4890 ata_pio_sectors(qc);
4891 ata_altstatus(ap); /* flush */
4892 } else
4893 /* send CDB */
4894 atapi_send_cdb(ap, qc);
4895
4896 if (in_wq)
4897 spin_unlock_irqrestore(ap->lock, flags);
4898
4899 /* if polling, ata_pio_task() handles the rest.
4900 * otherwise, interrupt handler takes over from here.
4901 */
4902 break;
4903
4904 case HSM_ST:
4905 /* complete command or read/write the data register */
4906 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4907 /* ATAPI PIO protocol */
4908 if ((status & ATA_DRQ) == 0) {
4909 /* No more data to transfer or device error.
4910 * Device error will be tagged in HSM_ST_LAST.
4911 */
4912 ap->hsm_task_state = HSM_ST_LAST;
4913 goto fsm_start;
4914 }
4915
4916 /* Device should not ask for data transfer (DRQ=1)
4917 * when it finds something wrong.
4918 * We ignore DRQ here and stop the HSM by
4919 * changing hsm_task_state to HSM_ST_ERR and
4920 * let the EH abort the command or reset the device.
4921 */
4922 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4923 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4924 "device error, dev_stat 0x%X\n",
4925 status);
4926 qc->err_mask |= AC_ERR_HSM;
4927 ap->hsm_task_state = HSM_ST_ERR;
4928 goto fsm_start;
4929 }
4930
4931 atapi_pio_bytes(qc);
4932
4933 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4934 /* bad ireason reported by device */
4935 goto fsm_start;
4936
4937 } else {
4938 /* ATA PIO protocol */
4939 if (unlikely((status & ATA_DRQ) == 0)) {
4940 /* handle BSY=0, DRQ=0 as error */
4941 if (likely(status & (ATA_ERR | ATA_DF)))
4942 /* device stops HSM for abort/error */
4943 qc->err_mask |= AC_ERR_DEV;
4944 else
4945 /* HSM violation. Let EH handle this.
4946 * Phantom devices also trigger this
4947 * condition. Mark hint.
4948 */
4949 qc->err_mask |= AC_ERR_HSM |
4950 AC_ERR_NODEV_HINT;
4951
4952 ap->hsm_task_state = HSM_ST_ERR;
4953 goto fsm_start;
4954 }
4955
4956 /* For PIO reads, some devices may ask for
4957 * data transfer (DRQ=1) alone with ERR=1.
4958 * We respect DRQ here and transfer one
4959 * block of junk data before changing the
4960 * hsm_task_state to HSM_ST_ERR.
4961 *
4962 * For PIO writes, ERR=1 DRQ=1 doesn't make
4963 * sense since the data block has been
4964 * transferred to the device.
4965 */
4966 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4967 /* data might be corrputed */
4968 qc->err_mask |= AC_ERR_DEV;
4969
4970 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4971 ata_pio_sectors(qc);
4972 ata_altstatus(ap);
4973 status = ata_wait_idle(ap);
4974 }
4975
4976 if (status & (ATA_BUSY | ATA_DRQ))
4977 qc->err_mask |= AC_ERR_HSM;
4978
4979 /* ata_pio_sectors() might change the
4980 * state to HSM_ST_LAST. so, the state
4981 * is changed after ata_pio_sectors().
4982 */
4983 ap->hsm_task_state = HSM_ST_ERR;
4984 goto fsm_start;
4985 }
4986
4987 ata_pio_sectors(qc);
4988
4989 if (ap->hsm_task_state == HSM_ST_LAST &&
4990 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4991 /* all data read */
4992 ata_altstatus(ap);
4993 status = ata_wait_idle(ap);
4994 goto fsm_start;
4995 }
4996 }
4997
4998 ata_altstatus(ap); /* flush */
4999 poll_next = 1;
5000 break;
5001
5002 case HSM_ST_LAST:
5003 if (unlikely(!ata_ok(status))) {
5004 qc->err_mask |= __ac_err_mask(status);
5005 ap->hsm_task_state = HSM_ST_ERR;
5006 goto fsm_start;
5007 }
5008
5009 /* no more data to transfer */
5010 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5011 ap->print_id, qc->dev->devno, status);
5012
5013 WARN_ON(qc->err_mask);
5014
5015 ap->hsm_task_state = HSM_ST_IDLE;
5016
5017 /* complete taskfile transaction */
5018 ata_hsm_qc_complete(qc, in_wq);
5019
5020 poll_next = 0;
5021 break;
5022
5023 case HSM_ST_ERR:
5024 /* make sure qc->err_mask is available to
5025 * know what's wrong and recover
5026 */
5027 WARN_ON(qc->err_mask == 0);
5028
5029 ap->hsm_task_state = HSM_ST_IDLE;
5030
5031 /* complete taskfile transaction */
5032 ata_hsm_qc_complete(qc, in_wq);
5033
5034 poll_next = 0;
5035 break;
5036 default:
5037 poll_next = 0;
5038 BUG();
5039 }
5040
5041 return poll_next;
5042 }
5043
5044 static void ata_pio_task(struct work_struct *work)
5045 {
5046 struct ata_port *ap =
5047 container_of(work, struct ata_port, port_task.work);
5048 struct ata_queued_cmd *qc = ap->port_task_data;
5049 u8 status;
5050 int poll_next;
5051
5052 fsm_start:
5053 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5054
5055 /*
5056 * This is purely heuristic. This is a fast path.
5057 * Sometimes when we enter, BSY will be cleared in
5058 * a chk-status or two. If not, the drive is probably seeking
5059 * or something. Snooze for a couple msecs, then
5060 * chk-status again. If still busy, queue delayed work.
5061 */
5062 status = ata_busy_wait(ap, ATA_BUSY, 5);
5063 if (status & ATA_BUSY) {
5064 msleep(2);
5065 status = ata_busy_wait(ap, ATA_BUSY, 10);
5066 if (status & ATA_BUSY) {
5067 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5068 return;
5069 }
5070 }
5071
5072 /* move the HSM */
5073 poll_next = ata_hsm_move(ap, qc, status, 1);
5074
5075 /* another command or interrupt handler
5076 * may be running at this point.
5077 */
5078 if (poll_next)
5079 goto fsm_start;
5080 }
5081
5082 /**
5083 * ata_qc_new - Request an available ATA command, for queueing
5084 * @ap: Port associated with device @dev
5085 * @dev: Device from whom we request an available command structure
5086 *
5087 * LOCKING:
5088 * None.
5089 */
5090
5091 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5092 {
5093 struct ata_queued_cmd *qc = NULL;
5094 unsigned int i;
5095
5096 /* no command while frozen */
5097 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5098 return NULL;
5099
5100 /* the last tag is reserved for internal command. */
5101 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5102 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5103 qc = __ata_qc_from_tag(ap, i);
5104 break;
5105 }
5106
5107 if (qc)
5108 qc->tag = i;
5109
5110 return qc;
5111 }
5112
5113 /**
5114 * ata_qc_new_init - Request an available ATA command, and initialize it
5115 * @dev: Device from whom we request an available command structure
5116 *
5117 * LOCKING:
5118 * None.
5119 */
5120
5121 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5122 {
5123 struct ata_port *ap = dev->ap;
5124 struct ata_queued_cmd *qc;
5125
5126 qc = ata_qc_new(ap);
5127 if (qc) {
5128 qc->scsicmd = NULL;
5129 qc->ap = ap;
5130 qc->dev = dev;
5131
5132 ata_qc_reinit(qc);
5133 }
5134
5135 return qc;
5136 }
5137
5138 /**
5139 * ata_qc_free - free unused ata_queued_cmd
5140 * @qc: Command to complete
5141 *
5142 * Designed to free unused ata_queued_cmd object
5143 * in case something prevents using it.
5144 *
5145 * LOCKING:
5146 * spin_lock_irqsave(host lock)
5147 */
5148 void ata_qc_free(struct ata_queued_cmd *qc)
5149 {
5150 struct ata_port *ap = qc->ap;
5151 unsigned int tag;
5152
5153 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5154
5155 qc->flags = 0;
5156 tag = qc->tag;
5157 if (likely(ata_tag_valid(tag))) {
5158 qc->tag = ATA_TAG_POISON;
5159 clear_bit(tag, &ap->qc_allocated);
5160 }
5161 }
5162
5163 void __ata_qc_complete(struct ata_queued_cmd *qc)
5164 {
5165 struct ata_port *ap = qc->ap;
5166
5167 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5168 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5169
5170 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5171 ata_sg_clean(qc);
5172
5173 /* command should be marked inactive atomically with qc completion */
5174 if (qc->tf.protocol == ATA_PROT_NCQ)
5175 ap->sactive &= ~(1 << qc->tag);
5176 else
5177 ap->active_tag = ATA_TAG_POISON;
5178
5179 /* atapi: mark qc as inactive to prevent the interrupt handler
5180 * from completing the command twice later, before the error handler
5181 * is called. (when rc != 0 and atapi request sense is needed)
5182 */
5183 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5184 ap->qc_active &= ~(1 << qc->tag);
5185
5186 /* call completion callback */
5187 qc->complete_fn(qc);
5188 }
5189
5190 static void fill_result_tf(struct ata_queued_cmd *qc)
5191 {
5192 struct ata_port *ap = qc->ap;
5193
5194 qc->result_tf.flags = qc->tf.flags;
5195 ap->ops->tf_read(ap, &qc->result_tf);
5196 }
5197
5198 /**
5199 * ata_qc_complete - Complete an active ATA command
5200 * @qc: Command to complete
5201 * @err_mask: ATA Status register contents
5202 *
5203 * Indicate to the mid and upper layers that an ATA
5204 * command has completed, with either an ok or not-ok status.
5205 *
5206 * LOCKING:
5207 * spin_lock_irqsave(host lock)
5208 */
5209 void ata_qc_complete(struct ata_queued_cmd *qc)
5210 {
5211 struct ata_port *ap = qc->ap;
5212
5213 /* XXX: New EH and old EH use different mechanisms to
5214 * synchronize EH with regular execution path.
5215 *
5216 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5217 * Normal execution path is responsible for not accessing a
5218 * failed qc. libata core enforces the rule by returning NULL
5219 * from ata_qc_from_tag() for failed qcs.
5220 *
5221 * Old EH depends on ata_qc_complete() nullifying completion
5222 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5223 * not synchronize with interrupt handler. Only PIO task is
5224 * taken care of.
5225 */
5226 if (ap->ops->error_handler) {
5227 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5228
5229 if (unlikely(qc->err_mask))
5230 qc->flags |= ATA_QCFLAG_FAILED;
5231
5232 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5233 if (!ata_tag_internal(qc->tag)) {
5234 /* always fill result TF for failed qc */
5235 fill_result_tf(qc);
5236 ata_qc_schedule_eh(qc);
5237 return;
5238 }
5239 }
5240
5241 /* read result TF if requested */
5242 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5243 fill_result_tf(qc);
5244
5245 __ata_qc_complete(qc);
5246 } else {
5247 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5248 return;
5249
5250 /* read result TF if failed or requested */
5251 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5252 fill_result_tf(qc);
5253
5254 __ata_qc_complete(qc);
5255 }
5256 }
5257
5258 /**
5259 * ata_qc_complete_multiple - Complete multiple qcs successfully
5260 * @ap: port in question
5261 * @qc_active: new qc_active mask
5262 * @finish_qc: LLDD callback invoked before completing a qc
5263 *
5264 * Complete in-flight commands. This functions is meant to be
5265 * called from low-level driver's interrupt routine to complete
5266 * requests normally. ap->qc_active and @qc_active is compared
5267 * and commands are completed accordingly.
5268 *
5269 * LOCKING:
5270 * spin_lock_irqsave(host lock)
5271 *
5272 * RETURNS:
5273 * Number of completed commands on success, -errno otherwise.
5274 */
5275 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5276 void (*finish_qc)(struct ata_queued_cmd *))
5277 {
5278 int nr_done = 0;
5279 u32 done_mask;
5280 int i;
5281
5282 done_mask = ap->qc_active ^ qc_active;
5283
5284 if (unlikely(done_mask & qc_active)) {
5285 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5286 "(%08x->%08x)\n", ap->qc_active, qc_active);
5287 return -EINVAL;
5288 }
5289
5290 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5291 struct ata_queued_cmd *qc;
5292
5293 if (!(done_mask & (1 << i)))
5294 continue;
5295
5296 if ((qc = ata_qc_from_tag(ap, i))) {
5297 if (finish_qc)
5298 finish_qc(qc);
5299 ata_qc_complete(qc);
5300 nr_done++;
5301 }
5302 }
5303
5304 return nr_done;
5305 }
5306
5307 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5308 {
5309 struct ata_port *ap = qc->ap;
5310
5311 switch (qc->tf.protocol) {
5312 case ATA_PROT_NCQ:
5313 case ATA_PROT_DMA:
5314 case ATA_PROT_ATAPI_DMA:
5315 return 1;
5316
5317 case ATA_PROT_ATAPI:
5318 case ATA_PROT_PIO:
5319 if (ap->flags & ATA_FLAG_PIO_DMA)
5320 return 1;
5321
5322 /* fall through */
5323
5324 default:
5325 return 0;
5326 }
5327
5328 /* never reached */
5329 }
5330
5331 /**
5332 * ata_qc_issue - issue taskfile to device
5333 * @qc: command to issue to device
5334 *
5335 * Prepare an ATA command to submission to device.
5336 * This includes mapping the data into a DMA-able
5337 * area, filling in the S/G table, and finally
5338 * writing the taskfile to hardware, starting the command.
5339 *
5340 * LOCKING:
5341 * spin_lock_irqsave(host lock)
5342 */
5343 void ata_qc_issue(struct ata_queued_cmd *qc)
5344 {
5345 struct ata_port *ap = qc->ap;
5346
5347 /* Make sure only one non-NCQ command is outstanding. The
5348 * check is skipped for old EH because it reuses active qc to
5349 * request ATAPI sense.
5350 */
5351 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5352
5353 if (qc->tf.protocol == ATA_PROT_NCQ) {
5354 WARN_ON(ap->sactive & (1 << qc->tag));
5355 ap->sactive |= 1 << qc->tag;
5356 } else {
5357 WARN_ON(ap->sactive);
5358 ap->active_tag = qc->tag;
5359 }
5360
5361 qc->flags |= ATA_QCFLAG_ACTIVE;
5362 ap->qc_active |= 1 << qc->tag;
5363
5364 if (ata_should_dma_map(qc)) {
5365 if (qc->flags & ATA_QCFLAG_SG) {
5366 if (ata_sg_setup(qc))
5367 goto sg_err;
5368 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5369 if (ata_sg_setup_one(qc))
5370 goto sg_err;
5371 }
5372 } else {
5373 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5374 }
5375
5376 ap->ops->qc_prep(qc);
5377
5378 qc->err_mask |= ap->ops->qc_issue(qc);
5379 if (unlikely(qc->err_mask))
5380 goto err;
5381 return;
5382
5383 sg_err:
5384 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5385 qc->err_mask |= AC_ERR_SYSTEM;
5386 err:
5387 ata_qc_complete(qc);
5388 }
5389
5390 /**
5391 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5392 * @qc: command to issue to device
5393 *
5394 * Using various libata functions and hooks, this function
5395 * starts an ATA command. ATA commands are grouped into
5396 * classes called "protocols", and issuing each type of protocol
5397 * is slightly different.
5398 *
5399 * May be used as the qc_issue() entry in ata_port_operations.
5400 *
5401 * LOCKING:
5402 * spin_lock_irqsave(host lock)
5403 *
5404 * RETURNS:
5405 * Zero on success, AC_ERR_* mask on failure
5406 */
5407
5408 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5409 {
5410 struct ata_port *ap = qc->ap;
5411
5412 /* Use polling pio if the LLD doesn't handle
5413 * interrupt driven pio and atapi CDB interrupt.
5414 */
5415 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5416 switch (qc->tf.protocol) {
5417 case ATA_PROT_PIO:
5418 case ATA_PROT_NODATA:
5419 case ATA_PROT_ATAPI:
5420 case ATA_PROT_ATAPI_NODATA:
5421 qc->tf.flags |= ATA_TFLAG_POLLING;
5422 break;
5423 case ATA_PROT_ATAPI_DMA:
5424 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5425 /* see ata_dma_blacklisted() */
5426 BUG();
5427 break;
5428 default:
5429 break;
5430 }
5431 }
5432
5433 /* select the device */
5434 ata_dev_select(ap, qc->dev->devno, 1, 0);
5435
5436 /* start the command */
5437 switch (qc->tf.protocol) {
5438 case ATA_PROT_NODATA:
5439 if (qc->tf.flags & ATA_TFLAG_POLLING)
5440 ata_qc_set_polling(qc);
5441
5442 ata_tf_to_host(ap, &qc->tf);
5443 ap->hsm_task_state = HSM_ST_LAST;
5444
5445 if (qc->tf.flags & ATA_TFLAG_POLLING)
5446 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5447
5448 break;
5449
5450 case ATA_PROT_DMA:
5451 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5452
5453 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5454 ap->ops->bmdma_setup(qc); /* set up bmdma */
5455 ap->ops->bmdma_start(qc); /* initiate bmdma */
5456 ap->hsm_task_state = HSM_ST_LAST;
5457 break;
5458
5459 case ATA_PROT_PIO:
5460 if (qc->tf.flags & ATA_TFLAG_POLLING)
5461 ata_qc_set_polling(qc);
5462
5463 ata_tf_to_host(ap, &qc->tf);
5464
5465 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5466 /* PIO data out protocol */
5467 ap->hsm_task_state = HSM_ST_FIRST;
5468 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5469
5470 /* always send first data block using
5471 * the ata_pio_task() codepath.
5472 */
5473 } else {
5474 /* PIO data in protocol */
5475 ap->hsm_task_state = HSM_ST;
5476
5477 if (qc->tf.flags & ATA_TFLAG_POLLING)
5478 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5479
5480 /* if polling, ata_pio_task() handles the rest.
5481 * otherwise, interrupt handler takes over from here.
5482 */
5483 }
5484
5485 break;
5486
5487 case ATA_PROT_ATAPI:
5488 case ATA_PROT_ATAPI_NODATA:
5489 if (qc->tf.flags & ATA_TFLAG_POLLING)
5490 ata_qc_set_polling(qc);
5491
5492 ata_tf_to_host(ap, &qc->tf);
5493
5494 ap->hsm_task_state = HSM_ST_FIRST;
5495
5496 /* send cdb by polling if no cdb interrupt */
5497 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5498 (qc->tf.flags & ATA_TFLAG_POLLING))
5499 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5500 break;
5501
5502 case ATA_PROT_ATAPI_DMA:
5503 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5504
5505 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5506 ap->ops->bmdma_setup(qc); /* set up bmdma */
5507 ap->hsm_task_state = HSM_ST_FIRST;
5508
5509 /* send cdb by polling if no cdb interrupt */
5510 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5511 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5512 break;
5513
5514 default:
5515 WARN_ON(1);
5516 return AC_ERR_SYSTEM;
5517 }
5518
5519 return 0;
5520 }
5521
5522 /**
5523 * ata_host_intr - Handle host interrupt for given (port, task)
5524 * @ap: Port on which interrupt arrived (possibly...)
5525 * @qc: Taskfile currently active in engine
5526 *
5527 * Handle host interrupt for given queued command. Currently,
5528 * only DMA interrupts are handled. All other commands are
5529 * handled via polling with interrupts disabled (nIEN bit).
5530 *
5531 * LOCKING:
5532 * spin_lock_irqsave(host lock)
5533 *
5534 * RETURNS:
5535 * One if interrupt was handled, zero if not (shared irq).
5536 */
5537
5538 inline unsigned int ata_host_intr (struct ata_port *ap,
5539 struct ata_queued_cmd *qc)
5540 {
5541 struct ata_eh_info *ehi = &ap->eh_info;
5542 u8 status, host_stat = 0;
5543
5544 VPRINTK("ata%u: protocol %d task_state %d\n",
5545 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5546
5547 /* Check whether we are expecting interrupt in this state */
5548 switch (ap->hsm_task_state) {
5549 case HSM_ST_FIRST:
5550 /* Some pre-ATAPI-4 devices assert INTRQ
5551 * at this state when ready to receive CDB.
5552 */
5553
5554 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5555 * The flag was turned on only for atapi devices.
5556 * No need to check is_atapi_taskfile(&qc->tf) again.
5557 */
5558 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5559 goto idle_irq;
5560 break;
5561 case HSM_ST_LAST:
5562 if (qc->tf.protocol == ATA_PROT_DMA ||
5563 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5564 /* check status of DMA engine */
5565 host_stat = ap->ops->bmdma_status(ap);
5566 VPRINTK("ata%u: host_stat 0x%X\n",
5567 ap->print_id, host_stat);
5568
5569 /* if it's not our irq... */
5570 if (!(host_stat & ATA_DMA_INTR))
5571 goto idle_irq;
5572
5573 /* before we do anything else, clear DMA-Start bit */
5574 ap->ops->bmdma_stop(qc);
5575
5576 if (unlikely(host_stat & ATA_DMA_ERR)) {
5577 /* error when transfering data to/from memory */
5578 qc->err_mask |= AC_ERR_HOST_BUS;
5579 ap->hsm_task_state = HSM_ST_ERR;
5580 }
5581 }
5582 break;
5583 case HSM_ST:
5584 break;
5585 default:
5586 goto idle_irq;
5587 }
5588
5589 /* check altstatus */
5590 status = ata_altstatus(ap);
5591 if (status & ATA_BUSY)
5592 goto idle_irq;
5593
5594 /* check main status, clearing INTRQ */
5595 status = ata_chk_status(ap);
5596 if (unlikely(status & ATA_BUSY))
5597 goto idle_irq;
5598
5599 /* ack bmdma irq events */
5600 ap->ops->irq_clear(ap);
5601
5602 ata_hsm_move(ap, qc, status, 0);
5603
5604 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5605 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5606 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5607
5608 return 1; /* irq handled */
5609
5610 idle_irq:
5611 ap->stats.idle_irq++;
5612
5613 #ifdef ATA_IRQ_TRAP
5614 if ((ap->stats.idle_irq % 1000) == 0) {
5615 ap->ops->irq_ack(ap, 0); /* debug trap */
5616 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5617 return 1;
5618 }
5619 #endif
5620 return 0; /* irq not handled */
5621 }
5622
5623 /**
5624 * ata_interrupt - Default ATA host interrupt handler
5625 * @irq: irq line (unused)
5626 * @dev_instance: pointer to our ata_host information structure
5627 *
5628 * Default interrupt handler for PCI IDE devices. Calls
5629 * ata_host_intr() for each port that is not disabled.
5630 *
5631 * LOCKING:
5632 * Obtains host lock during operation.
5633 *
5634 * RETURNS:
5635 * IRQ_NONE or IRQ_HANDLED.
5636 */
5637
5638 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5639 {
5640 struct ata_host *host = dev_instance;
5641 unsigned int i;
5642 unsigned int handled = 0;
5643 unsigned long flags;
5644
5645 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5646 spin_lock_irqsave(&host->lock, flags);
5647
5648 for (i = 0; i < host->n_ports; i++) {
5649 struct ata_port *ap;
5650
5651 ap = host->ports[i];
5652 if (ap &&
5653 !(ap->flags & ATA_FLAG_DISABLED)) {
5654 struct ata_queued_cmd *qc;
5655
5656 qc = ata_qc_from_tag(ap, ap->active_tag);
5657 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5658 (qc->flags & ATA_QCFLAG_ACTIVE))
5659 handled |= ata_host_intr(ap, qc);
5660 }
5661 }
5662
5663 spin_unlock_irqrestore(&host->lock, flags);
5664
5665 return IRQ_RETVAL(handled);
5666 }
5667
5668 /**
5669 * sata_scr_valid - test whether SCRs are accessible
5670 * @ap: ATA port to test SCR accessibility for
5671 *
5672 * Test whether SCRs are accessible for @ap.
5673 *
5674 * LOCKING:
5675 * None.
5676 *
5677 * RETURNS:
5678 * 1 if SCRs are accessible, 0 otherwise.
5679 */
5680 int sata_scr_valid(struct ata_port *ap)
5681 {
5682 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5683 }
5684
5685 /**
5686 * sata_scr_read - read SCR register of the specified port
5687 * @ap: ATA port to read SCR for
5688 * @reg: SCR to read
5689 * @val: Place to store read value
5690 *
5691 * Read SCR register @reg of @ap into *@val. This function is
5692 * guaranteed to succeed if the cable type of the port is SATA
5693 * and the port implements ->scr_read.
5694 *
5695 * LOCKING:
5696 * None.
5697 *
5698 * RETURNS:
5699 * 0 on success, negative errno on failure.
5700 */
5701 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5702 {
5703 if (sata_scr_valid(ap)) {
5704 *val = ap->ops->scr_read(ap, reg);
5705 return 0;
5706 }
5707 return -EOPNOTSUPP;
5708 }
5709
5710 /**
5711 * sata_scr_write - write SCR register of the specified port
5712 * @ap: ATA port to write SCR for
5713 * @reg: SCR to write
5714 * @val: value to write
5715 *
5716 * Write @val to SCR register @reg of @ap. This function is
5717 * guaranteed to succeed if the cable type of the port is SATA
5718 * and the port implements ->scr_read.
5719 *
5720 * LOCKING:
5721 * None.
5722 *
5723 * RETURNS:
5724 * 0 on success, negative errno on failure.
5725 */
5726 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5727 {
5728 if (sata_scr_valid(ap)) {
5729 ap->ops->scr_write(ap, reg, val);
5730 return 0;
5731 }
5732 return -EOPNOTSUPP;
5733 }
5734
5735 /**
5736 * sata_scr_write_flush - write SCR register of the specified port and flush
5737 * @ap: ATA port to write SCR for
5738 * @reg: SCR to write
5739 * @val: value to write
5740 *
5741 * This function is identical to sata_scr_write() except that this
5742 * function performs flush after writing to the register.
5743 *
5744 * LOCKING:
5745 * None.
5746 *
5747 * RETURNS:
5748 * 0 on success, negative errno on failure.
5749 */
5750 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5751 {
5752 if (sata_scr_valid(ap)) {
5753 ap->ops->scr_write(ap, reg, val);
5754 ap->ops->scr_read(ap, reg);
5755 return 0;
5756 }
5757 return -EOPNOTSUPP;
5758 }
5759
5760 /**
5761 * ata_port_online - test whether the given port is online
5762 * @ap: ATA port to test
5763 *
5764 * Test whether @ap is online. Note that this function returns 0
5765 * if online status of @ap cannot be obtained, so
5766 * ata_port_online(ap) != !ata_port_offline(ap).
5767 *
5768 * LOCKING:
5769 * None.
5770 *
5771 * RETURNS:
5772 * 1 if the port online status is available and online.
5773 */
5774 int ata_port_online(struct ata_port *ap)
5775 {
5776 u32 sstatus;
5777
5778 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5779 return 1;
5780 return 0;
5781 }
5782
5783 /**
5784 * ata_port_offline - test whether the given port is offline
5785 * @ap: ATA port to test
5786 *
5787 * Test whether @ap is offline. Note that this function returns
5788 * 0 if offline status of @ap cannot be obtained, so
5789 * ata_port_online(ap) != !ata_port_offline(ap).
5790 *
5791 * LOCKING:
5792 * None.
5793 *
5794 * RETURNS:
5795 * 1 if the port offline status is available and offline.
5796 */
5797 int ata_port_offline(struct ata_port *ap)
5798 {
5799 u32 sstatus;
5800
5801 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5802 return 1;
5803 return 0;
5804 }
5805
5806 int ata_flush_cache(struct ata_device *dev)
5807 {
5808 unsigned int err_mask;
5809 u8 cmd;
5810
5811 if (!ata_try_flush_cache(dev))
5812 return 0;
5813
5814 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5815 cmd = ATA_CMD_FLUSH_EXT;
5816 else
5817 cmd = ATA_CMD_FLUSH;
5818
5819 err_mask = ata_do_simple_cmd(dev, cmd);
5820 if (err_mask) {
5821 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5822 return -EIO;
5823 }
5824
5825 return 0;
5826 }
5827
5828 #ifdef CONFIG_PM
5829 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5830 unsigned int action, unsigned int ehi_flags,
5831 int wait)
5832 {
5833 unsigned long flags;
5834 int i, rc;
5835
5836 for (i = 0; i < host->n_ports; i++) {
5837 struct ata_port *ap = host->ports[i];
5838
5839 /* Previous resume operation might still be in
5840 * progress. Wait for PM_PENDING to clear.
5841 */
5842 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5843 ata_port_wait_eh(ap);
5844 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5845 }
5846
5847 /* request PM ops to EH */
5848 spin_lock_irqsave(ap->lock, flags);
5849
5850 ap->pm_mesg = mesg;
5851 if (wait) {
5852 rc = 0;
5853 ap->pm_result = &rc;
5854 }
5855
5856 ap->pflags |= ATA_PFLAG_PM_PENDING;
5857 ap->eh_info.action |= action;
5858 ap->eh_info.flags |= ehi_flags;
5859
5860 ata_port_schedule_eh(ap);
5861
5862 spin_unlock_irqrestore(ap->lock, flags);
5863
5864 /* wait and check result */
5865 if (wait) {
5866 ata_port_wait_eh(ap);
5867 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5868 if (rc)
5869 return rc;
5870 }
5871 }
5872
5873 return 0;
5874 }
5875
5876 /**
5877 * ata_host_suspend - suspend host
5878 * @host: host to suspend
5879 * @mesg: PM message
5880 *
5881 * Suspend @host. Actual operation is performed by EH. This
5882 * function requests EH to perform PM operations and waits for EH
5883 * to finish.
5884 *
5885 * LOCKING:
5886 * Kernel thread context (may sleep).
5887 *
5888 * RETURNS:
5889 * 0 on success, -errno on failure.
5890 */
5891 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5892 {
5893 int rc;
5894
5895 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5896 if (rc == 0)
5897 host->dev->power.power_state = mesg;
5898 return rc;
5899 }
5900
5901 /**
5902 * ata_host_resume - resume host
5903 * @host: host to resume
5904 *
5905 * Resume @host. Actual operation is performed by EH. This
5906 * function requests EH to perform PM operations and returns.
5907 * Note that all resume operations are performed parallely.
5908 *
5909 * LOCKING:
5910 * Kernel thread context (may sleep).
5911 */
5912 void ata_host_resume(struct ata_host *host)
5913 {
5914 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5915 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5916 host->dev->power.power_state = PMSG_ON;
5917 }
5918 #endif
5919
5920 /**
5921 * ata_port_start - Set port up for dma.
5922 * @ap: Port to initialize
5923 *
5924 * Called just after data structures for each port are
5925 * initialized. Allocates space for PRD table.
5926 *
5927 * May be used as the port_start() entry in ata_port_operations.
5928 *
5929 * LOCKING:
5930 * Inherited from caller.
5931 */
5932 int ata_port_start(struct ata_port *ap)
5933 {
5934 struct device *dev = ap->dev;
5935 int rc;
5936
5937 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5938 GFP_KERNEL);
5939 if (!ap->prd)
5940 return -ENOMEM;
5941
5942 rc = ata_pad_alloc(ap, dev);
5943 if (rc)
5944 return rc;
5945
5946 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5947 (unsigned long long)ap->prd_dma);
5948 return 0;
5949 }
5950
5951 /**
5952 * ata_dev_init - Initialize an ata_device structure
5953 * @dev: Device structure to initialize
5954 *
5955 * Initialize @dev in preparation for probing.
5956 *
5957 * LOCKING:
5958 * Inherited from caller.
5959 */
5960 void ata_dev_init(struct ata_device *dev)
5961 {
5962 struct ata_port *ap = dev->ap;
5963 unsigned long flags;
5964
5965 /* SATA spd limit is bound to the first device */
5966 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5967
5968 /* High bits of dev->flags are used to record warm plug
5969 * requests which occur asynchronously. Synchronize using
5970 * host lock.
5971 */
5972 spin_lock_irqsave(ap->lock, flags);
5973 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5974 spin_unlock_irqrestore(ap->lock, flags);
5975
5976 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5977 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5978 dev->pio_mask = UINT_MAX;
5979 dev->mwdma_mask = UINT_MAX;
5980 dev->udma_mask = UINT_MAX;
5981 }
5982
5983 /**
5984 * ata_port_alloc - allocate and initialize basic ATA port resources
5985 * @host: ATA host this allocated port belongs to
5986 *
5987 * Allocate and initialize basic ATA port resources.
5988 *
5989 * RETURNS:
5990 * Allocate ATA port on success, NULL on failure.
5991 *
5992 * LOCKING:
5993 * Inherited from calling layer (may sleep).
5994 */
5995 struct ata_port *ata_port_alloc(struct ata_host *host)
5996 {
5997 struct ata_port *ap;
5998 unsigned int i;
5999
6000 DPRINTK("ENTER\n");
6001
6002 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6003 if (!ap)
6004 return NULL;
6005
6006 ap->pflags |= ATA_PFLAG_INITIALIZING;
6007 ap->lock = &host->lock;
6008 ap->flags = ATA_FLAG_DISABLED;
6009 ap->print_id = -1;
6010 ap->ctl = ATA_DEVCTL_OBS;
6011 ap->host = host;
6012 ap->dev = host->dev;
6013
6014 ap->hw_sata_spd_limit = UINT_MAX;
6015 ap->active_tag = ATA_TAG_POISON;
6016 ap->last_ctl = 0xFF;
6017
6018 #if defined(ATA_VERBOSE_DEBUG)
6019 /* turn on all debugging levels */
6020 ap->msg_enable = 0x00FF;
6021 #elif defined(ATA_DEBUG)
6022 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6023 #else
6024 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6025 #endif
6026
6027 INIT_DELAYED_WORK(&ap->port_task, NULL);
6028 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6029 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6030 INIT_LIST_HEAD(&ap->eh_done_q);
6031 init_waitqueue_head(&ap->eh_wait_q);
6032
6033 ap->cbl = ATA_CBL_NONE;
6034
6035 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6036 struct ata_device *dev = &ap->device[i];
6037 dev->ap = ap;
6038 dev->devno = i;
6039 ata_dev_init(dev);
6040 }
6041
6042 #ifdef ATA_IRQ_TRAP
6043 ap->stats.unhandled_irq = 1;
6044 ap->stats.idle_irq = 1;
6045 #endif
6046 return ap;
6047 }
6048
6049 static void ata_host_release(struct device *gendev, void *res)
6050 {
6051 struct ata_host *host = dev_get_drvdata(gendev);
6052 int i;
6053
6054 for (i = 0; i < host->n_ports; i++) {
6055 struct ata_port *ap = host->ports[i];
6056
6057 if (!ap)
6058 continue;
6059
6060 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6061 ap->ops->port_stop(ap);
6062 }
6063
6064 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6065 host->ops->host_stop(host);
6066
6067 for (i = 0; i < host->n_ports; i++) {
6068 struct ata_port *ap = host->ports[i];
6069
6070 if (!ap)
6071 continue;
6072
6073 if (ap->scsi_host)
6074 scsi_host_put(ap->scsi_host);
6075
6076 kfree(ap);
6077 host->ports[i] = NULL;
6078 }
6079
6080 dev_set_drvdata(gendev, NULL);
6081 }
6082
6083 /**
6084 * ata_host_alloc - allocate and init basic ATA host resources
6085 * @dev: generic device this host is associated with
6086 * @max_ports: maximum number of ATA ports associated with this host
6087 *
6088 * Allocate and initialize basic ATA host resources. LLD calls
6089 * this function to allocate a host, initializes it fully and
6090 * attaches it using ata_host_register().
6091 *
6092 * @max_ports ports are allocated and host->n_ports is
6093 * initialized to @max_ports. The caller is allowed to decrease
6094 * host->n_ports before calling ata_host_register(). The unused
6095 * ports will be automatically freed on registration.
6096 *
6097 * RETURNS:
6098 * Allocate ATA host on success, NULL on failure.
6099 *
6100 * LOCKING:
6101 * Inherited from calling layer (may sleep).
6102 */
6103 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6104 {
6105 struct ata_host *host;
6106 size_t sz;
6107 int i;
6108
6109 DPRINTK("ENTER\n");
6110
6111 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6112 return NULL;
6113
6114 /* alloc a container for our list of ATA ports (buses) */
6115 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6116 /* alloc a container for our list of ATA ports (buses) */
6117 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6118 if (!host)
6119 goto err_out;
6120
6121 devres_add(dev, host);
6122 dev_set_drvdata(dev, host);
6123
6124 spin_lock_init(&host->lock);
6125 host->dev = dev;
6126 host->n_ports = max_ports;
6127
6128 /* allocate ports bound to this host */
6129 for (i = 0; i < max_ports; i++) {
6130 struct ata_port *ap;
6131
6132 ap = ata_port_alloc(host);
6133 if (!ap)
6134 goto err_out;
6135
6136 ap->port_no = i;
6137 host->ports[i] = ap;
6138 }
6139
6140 devres_remove_group(dev, NULL);
6141 return host;
6142
6143 err_out:
6144 devres_release_group(dev, NULL);
6145 return NULL;
6146 }
6147
6148 /**
6149 * ata_host_alloc_pinfo - alloc host and init with port_info array
6150 * @dev: generic device this host is associated with
6151 * @ppi: array of ATA port_info to initialize host with
6152 * @n_ports: number of ATA ports attached to this host
6153 *
6154 * Allocate ATA host and initialize with info from @ppi. If NULL
6155 * terminated, @ppi may contain fewer entries than @n_ports. The
6156 * last entry will be used for the remaining ports.
6157 *
6158 * RETURNS:
6159 * Allocate ATA host on success, NULL on failure.
6160 *
6161 * LOCKING:
6162 * Inherited from calling layer (may sleep).
6163 */
6164 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6165 const struct ata_port_info * const * ppi,
6166 int n_ports)
6167 {
6168 const struct ata_port_info *pi;
6169 struct ata_host *host;
6170 int i, j;
6171
6172 host = ata_host_alloc(dev, n_ports);
6173 if (!host)
6174 return NULL;
6175
6176 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6177 struct ata_port *ap = host->ports[i];
6178
6179 if (ppi[j])
6180 pi = ppi[j++];
6181
6182 ap->pio_mask = pi->pio_mask;
6183 ap->mwdma_mask = pi->mwdma_mask;
6184 ap->udma_mask = pi->udma_mask;
6185 ap->flags |= pi->flags;
6186 ap->ops = pi->port_ops;
6187
6188 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6189 host->ops = pi->port_ops;
6190 if (!host->private_data && pi->private_data)
6191 host->private_data = pi->private_data;
6192 }
6193
6194 return host;
6195 }
6196
6197 /**
6198 * ata_host_start - start and freeze ports of an ATA host
6199 * @host: ATA host to start ports for
6200 *
6201 * Start and then freeze ports of @host. Started status is
6202 * recorded in host->flags, so this function can be called
6203 * multiple times. Ports are guaranteed to get started only
6204 * once. If host->ops isn't initialized yet, its set to the
6205 * first non-dummy port ops.
6206 *
6207 * LOCKING:
6208 * Inherited from calling layer (may sleep).
6209 *
6210 * RETURNS:
6211 * 0 if all ports are started successfully, -errno otherwise.
6212 */
6213 int ata_host_start(struct ata_host *host)
6214 {
6215 int i, rc;
6216
6217 if (host->flags & ATA_HOST_STARTED)
6218 return 0;
6219
6220 for (i = 0; i < host->n_ports; i++) {
6221 struct ata_port *ap = host->ports[i];
6222
6223 if (!host->ops && !ata_port_is_dummy(ap))
6224 host->ops = ap->ops;
6225
6226 if (ap->ops->port_start) {
6227 rc = ap->ops->port_start(ap);
6228 if (rc) {
6229 ata_port_printk(ap, KERN_ERR, "failed to "
6230 "start port (errno=%d)\n", rc);
6231 goto err_out;
6232 }
6233 }
6234
6235 ata_eh_freeze_port(ap);
6236 }
6237
6238 host->flags |= ATA_HOST_STARTED;
6239 return 0;
6240
6241 err_out:
6242 while (--i >= 0) {
6243 struct ata_port *ap = host->ports[i];
6244
6245 if (ap->ops->port_stop)
6246 ap->ops->port_stop(ap);
6247 }
6248 return rc;
6249 }
6250
6251 /**
6252 * ata_sas_host_init - Initialize a host struct
6253 * @host: host to initialize
6254 * @dev: device host is attached to
6255 * @flags: host flags
6256 * @ops: port_ops
6257 *
6258 * LOCKING:
6259 * PCI/etc. bus probe sem.
6260 *
6261 */
6262 /* KILLME - the only user left is ipr */
6263 void ata_host_init(struct ata_host *host, struct device *dev,
6264 unsigned long flags, const struct ata_port_operations *ops)
6265 {
6266 spin_lock_init(&host->lock);
6267 host->dev = dev;
6268 host->flags = flags;
6269 host->ops = ops;
6270 }
6271
6272 /**
6273 * ata_host_register - register initialized ATA host
6274 * @host: ATA host to register
6275 * @sht: template for SCSI host
6276 *
6277 * Register initialized ATA host. @host is allocated using
6278 * ata_host_alloc() and fully initialized by LLD. This function
6279 * starts ports, registers @host with ATA and SCSI layers and
6280 * probe registered devices.
6281 *
6282 * LOCKING:
6283 * Inherited from calling layer (may sleep).
6284 *
6285 * RETURNS:
6286 * 0 on success, -errno otherwise.
6287 */
6288 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6289 {
6290 int i, rc;
6291
6292 /* host must have been started */
6293 if (!(host->flags & ATA_HOST_STARTED)) {
6294 dev_printk(KERN_ERR, host->dev,
6295 "BUG: trying to register unstarted host\n");
6296 WARN_ON(1);
6297 return -EINVAL;
6298 }
6299
6300 /* Blow away unused ports. This happens when LLD can't
6301 * determine the exact number of ports to allocate at
6302 * allocation time.
6303 */
6304 for (i = host->n_ports; host->ports[i]; i++)
6305 kfree(host->ports[i]);
6306
6307 /* give ports names and add SCSI hosts */
6308 for (i = 0; i < host->n_ports; i++)
6309 host->ports[i]->print_id = ata_print_id++;
6310
6311 rc = ata_scsi_add_hosts(host, sht);
6312 if (rc)
6313 return rc;
6314
6315 /* set cable, sata_spd_limit and report */
6316 for (i = 0; i < host->n_ports; i++) {
6317 struct ata_port *ap = host->ports[i];
6318 int irq_line;
6319 u32 scontrol;
6320 unsigned long xfer_mask;
6321
6322 /* set SATA cable type if still unset */
6323 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6324 ap->cbl = ATA_CBL_SATA;
6325
6326 /* init sata_spd_limit to the current value */
6327 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6328 int spd = (scontrol >> 4) & 0xf;
6329 if (spd)
6330 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6331 }
6332 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6333
6334 /* report the secondary IRQ for second channel legacy */
6335 irq_line = host->irq;
6336 if (i == 1 && host->irq2)
6337 irq_line = host->irq2;
6338
6339 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6340 ap->udma_mask);
6341
6342 /* print per-port info to dmesg */
6343 if (!ata_port_is_dummy(ap))
6344 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6345 "ctl 0x%p bmdma 0x%p irq %d\n",
6346 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6347 ata_mode_string(xfer_mask),
6348 ap->ioaddr.cmd_addr,
6349 ap->ioaddr.ctl_addr,
6350 ap->ioaddr.bmdma_addr,
6351 irq_line);
6352 else
6353 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6354 }
6355
6356 /* perform each probe synchronously */
6357 DPRINTK("probe begin\n");
6358 for (i = 0; i < host->n_ports; i++) {
6359 struct ata_port *ap = host->ports[i];
6360 int rc;
6361
6362 /* probe */
6363 if (ap->ops->error_handler) {
6364 struct ata_eh_info *ehi = &ap->eh_info;
6365 unsigned long flags;
6366
6367 ata_port_probe(ap);
6368
6369 /* kick EH for boot probing */
6370 spin_lock_irqsave(ap->lock, flags);
6371
6372 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6373 ehi->action |= ATA_EH_SOFTRESET;
6374 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6375
6376 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6377 ap->pflags |= ATA_PFLAG_LOADING;
6378 ata_port_schedule_eh(ap);
6379
6380 spin_unlock_irqrestore(ap->lock, flags);
6381
6382 /* wait for EH to finish */
6383 ata_port_wait_eh(ap);
6384 } else {
6385 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6386 rc = ata_bus_probe(ap);
6387 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6388
6389 if (rc) {
6390 /* FIXME: do something useful here?
6391 * Current libata behavior will
6392 * tear down everything when
6393 * the module is removed
6394 * or the h/w is unplugged.
6395 */
6396 }
6397 }
6398 }
6399
6400 /* probes are done, now scan each port's disk(s) */
6401 DPRINTK("host probe begin\n");
6402 for (i = 0; i < host->n_ports; i++) {
6403 struct ata_port *ap = host->ports[i];
6404
6405 ata_scsi_scan_host(ap);
6406 }
6407
6408 return 0;
6409 }
6410
6411 /**
6412 * ata_host_activate - start host, request IRQ and register it
6413 * @host: target ATA host
6414 * @irq: IRQ to request
6415 * @irq_handler: irq_handler used when requesting IRQ
6416 * @irq_flags: irq_flags used when requesting IRQ
6417 * @sht: scsi_host_template to use when registering the host
6418 *
6419 * After allocating an ATA host and initializing it, most libata
6420 * LLDs perform three steps to activate the host - start host,
6421 * request IRQ and register it. This helper takes necessasry
6422 * arguments and performs the three steps in one go.
6423 *
6424 * LOCKING:
6425 * Inherited from calling layer (may sleep).
6426 *
6427 * RETURNS:
6428 * 0 on success, -errno otherwise.
6429 */
6430 int ata_host_activate(struct ata_host *host, int irq,
6431 irq_handler_t irq_handler, unsigned long irq_flags,
6432 struct scsi_host_template *sht)
6433 {
6434 int rc;
6435
6436 rc = ata_host_start(host);
6437 if (rc)
6438 return rc;
6439
6440 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6441 dev_driver_string(host->dev), host);
6442 if (rc)
6443 return rc;
6444
6445 rc = ata_host_register(host, sht);
6446 /* if failed, just free the IRQ and leave ports alone */
6447 if (rc)
6448 devm_free_irq(host->dev, irq, host);
6449
6450 /* Used to print device info at probe */
6451 host->irq = irq;
6452
6453 return rc;
6454 }
6455
6456 /**
6457 * ata_port_detach - Detach ATA port in prepration of device removal
6458 * @ap: ATA port to be detached
6459 *
6460 * Detach all ATA devices and the associated SCSI devices of @ap;
6461 * then, remove the associated SCSI host. @ap is guaranteed to
6462 * be quiescent on return from this function.
6463 *
6464 * LOCKING:
6465 * Kernel thread context (may sleep).
6466 */
6467 void ata_port_detach(struct ata_port *ap)
6468 {
6469 unsigned long flags;
6470 int i;
6471
6472 if (!ap->ops->error_handler)
6473 goto skip_eh;
6474
6475 /* tell EH we're leaving & flush EH */
6476 spin_lock_irqsave(ap->lock, flags);
6477 ap->pflags |= ATA_PFLAG_UNLOADING;
6478 spin_unlock_irqrestore(ap->lock, flags);
6479
6480 ata_port_wait_eh(ap);
6481
6482 /* EH is now guaranteed to see UNLOADING, so no new device
6483 * will be attached. Disable all existing devices.
6484 */
6485 spin_lock_irqsave(ap->lock, flags);
6486
6487 for (i = 0; i < ATA_MAX_DEVICES; i++)
6488 ata_dev_disable(&ap->device[i]);
6489
6490 spin_unlock_irqrestore(ap->lock, flags);
6491
6492 /* Final freeze & EH. All in-flight commands are aborted. EH
6493 * will be skipped and retrials will be terminated with bad
6494 * target.
6495 */
6496 spin_lock_irqsave(ap->lock, flags);
6497 ata_port_freeze(ap); /* won't be thawed */
6498 spin_unlock_irqrestore(ap->lock, flags);
6499
6500 ata_port_wait_eh(ap);
6501
6502 /* Flush hotplug task. The sequence is similar to
6503 * ata_port_flush_task().
6504 */
6505 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6506 cancel_delayed_work(&ap->hotplug_task);
6507 cancel_work_sync(&ap->hotplug_task.work);
6508
6509 skip_eh:
6510 /* remove the associated SCSI host */
6511 scsi_remove_host(ap->scsi_host);
6512 }
6513
6514 /**
6515 * ata_host_detach - Detach all ports of an ATA host
6516 * @host: Host to detach
6517 *
6518 * Detach all ports of @host.
6519 *
6520 * LOCKING:
6521 * Kernel thread context (may sleep).
6522 */
6523 void ata_host_detach(struct ata_host *host)
6524 {
6525 int i;
6526
6527 for (i = 0; i < host->n_ports; i++)
6528 ata_port_detach(host->ports[i]);
6529 }
6530
6531 /**
6532 * ata_std_ports - initialize ioaddr with standard port offsets.
6533 * @ioaddr: IO address structure to be initialized
6534 *
6535 * Utility function which initializes data_addr, error_addr,
6536 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6537 * device_addr, status_addr, and command_addr to standard offsets
6538 * relative to cmd_addr.
6539 *
6540 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6541 */
6542
6543 void ata_std_ports(struct ata_ioports *ioaddr)
6544 {
6545 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6546 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6547 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6548 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6549 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6550 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6551 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6552 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6553 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6554 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6555 }
6556
6557
6558 #ifdef CONFIG_PCI
6559
6560 /**
6561 * ata_pci_remove_one - PCI layer callback for device removal
6562 * @pdev: PCI device that was removed
6563 *
6564 * PCI layer indicates to libata via this hook that hot-unplug or
6565 * module unload event has occurred. Detach all ports. Resource
6566 * release is handled via devres.
6567 *
6568 * LOCKING:
6569 * Inherited from PCI layer (may sleep).
6570 */
6571 void ata_pci_remove_one(struct pci_dev *pdev)
6572 {
6573 struct device *dev = pci_dev_to_dev(pdev);
6574 struct ata_host *host = dev_get_drvdata(dev);
6575
6576 ata_host_detach(host);
6577 }
6578
6579 /* move to PCI subsystem */
6580 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6581 {
6582 unsigned long tmp = 0;
6583
6584 switch (bits->width) {
6585 case 1: {
6586 u8 tmp8 = 0;
6587 pci_read_config_byte(pdev, bits->reg, &tmp8);
6588 tmp = tmp8;
6589 break;
6590 }
6591 case 2: {
6592 u16 tmp16 = 0;
6593 pci_read_config_word(pdev, bits->reg, &tmp16);
6594 tmp = tmp16;
6595 break;
6596 }
6597 case 4: {
6598 u32 tmp32 = 0;
6599 pci_read_config_dword(pdev, bits->reg, &tmp32);
6600 tmp = tmp32;
6601 break;
6602 }
6603
6604 default:
6605 return -EINVAL;
6606 }
6607
6608 tmp &= bits->mask;
6609
6610 return (tmp == bits->val) ? 1 : 0;
6611 }
6612
6613 #ifdef CONFIG_PM
6614 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6615 {
6616 pci_save_state(pdev);
6617 pci_disable_device(pdev);
6618
6619 if (mesg.event == PM_EVENT_SUSPEND)
6620 pci_set_power_state(pdev, PCI_D3hot);
6621 }
6622
6623 int ata_pci_device_do_resume(struct pci_dev *pdev)
6624 {
6625 int rc;
6626
6627 pci_set_power_state(pdev, PCI_D0);
6628 pci_restore_state(pdev);
6629
6630 rc = pcim_enable_device(pdev);
6631 if (rc) {
6632 dev_printk(KERN_ERR, &pdev->dev,
6633 "failed to enable device after resume (%d)\n", rc);
6634 return rc;
6635 }
6636
6637 pci_set_master(pdev);
6638 return 0;
6639 }
6640
6641 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6642 {
6643 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6644 int rc = 0;
6645
6646 rc = ata_host_suspend(host, mesg);
6647 if (rc)
6648 return rc;
6649
6650 ata_pci_device_do_suspend(pdev, mesg);
6651
6652 return 0;
6653 }
6654
6655 int ata_pci_device_resume(struct pci_dev *pdev)
6656 {
6657 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6658 int rc;
6659
6660 rc = ata_pci_device_do_resume(pdev);
6661 if (rc == 0)
6662 ata_host_resume(host);
6663 return rc;
6664 }
6665 #endif /* CONFIG_PM */
6666
6667 #endif /* CONFIG_PCI */
6668
6669
6670 static int __init ata_init(void)
6671 {
6672 ata_probe_timeout *= HZ;
6673 ata_wq = create_workqueue("ata");
6674 if (!ata_wq)
6675 return -ENOMEM;
6676
6677 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6678 if (!ata_aux_wq) {
6679 destroy_workqueue(ata_wq);
6680 return -ENOMEM;
6681 }
6682
6683 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6684 return 0;
6685 }
6686
6687 static void __exit ata_exit(void)
6688 {
6689 destroy_workqueue(ata_wq);
6690 destroy_workqueue(ata_aux_wq);
6691 }
6692
6693 subsys_initcall(ata_init);
6694 module_exit(ata_exit);
6695
6696 static unsigned long ratelimit_time;
6697 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6698
6699 int ata_ratelimit(void)
6700 {
6701 int rc;
6702 unsigned long flags;
6703
6704 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6705
6706 if (time_after(jiffies, ratelimit_time)) {
6707 rc = 1;
6708 ratelimit_time = jiffies + (HZ/5);
6709 } else
6710 rc = 0;
6711
6712 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6713
6714 return rc;
6715 }
6716
6717 /**
6718 * ata_wait_register - wait until register value changes
6719 * @reg: IO-mapped register
6720 * @mask: Mask to apply to read register value
6721 * @val: Wait condition
6722 * @interval_msec: polling interval in milliseconds
6723 * @timeout_msec: timeout in milliseconds
6724 *
6725 * Waiting for some bits of register to change is a common
6726 * operation for ATA controllers. This function reads 32bit LE
6727 * IO-mapped register @reg and tests for the following condition.
6728 *
6729 * (*@reg & mask) != val
6730 *
6731 * If the condition is met, it returns; otherwise, the process is
6732 * repeated after @interval_msec until timeout.
6733 *
6734 * LOCKING:
6735 * Kernel thread context (may sleep)
6736 *
6737 * RETURNS:
6738 * The final register value.
6739 */
6740 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6741 unsigned long interval_msec,
6742 unsigned long timeout_msec)
6743 {
6744 unsigned long timeout;
6745 u32 tmp;
6746
6747 tmp = ioread32(reg);
6748
6749 /* Calculate timeout _after_ the first read to make sure
6750 * preceding writes reach the controller before starting to
6751 * eat away the timeout.
6752 */
6753 timeout = jiffies + (timeout_msec * HZ) / 1000;
6754
6755 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6756 msleep(interval_msec);
6757 tmp = ioread32(reg);
6758 }
6759
6760 return tmp;
6761 }
6762
6763 /*
6764 * Dummy port_ops
6765 */
6766 static void ata_dummy_noret(struct ata_port *ap) { }
6767 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6768 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6769
6770 static u8 ata_dummy_check_status(struct ata_port *ap)
6771 {
6772 return ATA_DRDY;
6773 }
6774
6775 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6776 {
6777 return AC_ERR_SYSTEM;
6778 }
6779
6780 const struct ata_port_operations ata_dummy_port_ops = {
6781 .port_disable = ata_port_disable,
6782 .check_status = ata_dummy_check_status,
6783 .check_altstatus = ata_dummy_check_status,
6784 .dev_select = ata_noop_dev_select,
6785 .qc_prep = ata_noop_qc_prep,
6786 .qc_issue = ata_dummy_qc_issue,
6787 .freeze = ata_dummy_noret,
6788 .thaw = ata_dummy_noret,
6789 .error_handler = ata_dummy_noret,
6790 .post_internal_cmd = ata_dummy_qc_noret,
6791 .irq_clear = ata_dummy_noret,
6792 .port_start = ata_dummy_ret0,
6793 .port_stop = ata_dummy_noret,
6794 };
6795
6796 const struct ata_port_info ata_dummy_port_info = {
6797 .port_ops = &ata_dummy_port_ops,
6798 };
6799
6800 /*
6801 * libata is essentially a library of internal helper functions for
6802 * low-level ATA host controller drivers. As such, the API/ABI is
6803 * likely to change as new drivers are added and updated.
6804 * Do not depend on ABI/API stability.
6805 */
6806
6807 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6808 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6809 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6810 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6811 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6812 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6813 EXPORT_SYMBOL_GPL(ata_std_ports);
6814 EXPORT_SYMBOL_GPL(ata_host_init);
6815 EXPORT_SYMBOL_GPL(ata_host_alloc);
6816 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6817 EXPORT_SYMBOL_GPL(ata_host_start);
6818 EXPORT_SYMBOL_GPL(ata_host_register);
6819 EXPORT_SYMBOL_GPL(ata_host_activate);
6820 EXPORT_SYMBOL_GPL(ata_host_detach);
6821 EXPORT_SYMBOL_GPL(ata_sg_init);
6822 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6823 EXPORT_SYMBOL_GPL(ata_hsm_move);
6824 EXPORT_SYMBOL_GPL(ata_qc_complete);
6825 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6826 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6827 EXPORT_SYMBOL_GPL(ata_tf_load);
6828 EXPORT_SYMBOL_GPL(ata_tf_read);
6829 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6830 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6831 EXPORT_SYMBOL_GPL(sata_print_link_status);
6832 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6833 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6834 EXPORT_SYMBOL_GPL(ata_check_status);
6835 EXPORT_SYMBOL_GPL(ata_altstatus);
6836 EXPORT_SYMBOL_GPL(ata_exec_command);
6837 EXPORT_SYMBOL_GPL(ata_port_start);
6838 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6839 EXPORT_SYMBOL_GPL(ata_interrupt);
6840 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6841 EXPORT_SYMBOL_GPL(ata_data_xfer);
6842 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6843 EXPORT_SYMBOL_GPL(ata_qc_prep);
6844 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6845 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6846 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6847 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6848 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6849 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6850 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6851 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6852 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6853 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6854 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6855 EXPORT_SYMBOL_GPL(ata_port_probe);
6856 EXPORT_SYMBOL_GPL(ata_dev_disable);
6857 EXPORT_SYMBOL_GPL(sata_set_spd);
6858 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6859 EXPORT_SYMBOL_GPL(sata_phy_resume);
6860 EXPORT_SYMBOL_GPL(sata_phy_reset);
6861 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6862 EXPORT_SYMBOL_GPL(ata_bus_reset);
6863 EXPORT_SYMBOL_GPL(ata_std_prereset);
6864 EXPORT_SYMBOL_GPL(ata_std_softreset);
6865 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6866 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6867 EXPORT_SYMBOL_GPL(ata_std_postreset);
6868 EXPORT_SYMBOL_GPL(ata_dev_classify);
6869 EXPORT_SYMBOL_GPL(ata_dev_pair);
6870 EXPORT_SYMBOL_GPL(ata_port_disable);
6871 EXPORT_SYMBOL_GPL(ata_ratelimit);
6872 EXPORT_SYMBOL_GPL(ata_wait_register);
6873 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6874 EXPORT_SYMBOL_GPL(ata_wait_ready);
6875 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6876 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6877 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6878 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6879 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6880 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6881 EXPORT_SYMBOL_GPL(ata_host_intr);
6882 EXPORT_SYMBOL_GPL(sata_scr_valid);
6883 EXPORT_SYMBOL_GPL(sata_scr_read);
6884 EXPORT_SYMBOL_GPL(sata_scr_write);
6885 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6886 EXPORT_SYMBOL_GPL(ata_port_online);
6887 EXPORT_SYMBOL_GPL(ata_port_offline);
6888 #ifdef CONFIG_PM
6889 EXPORT_SYMBOL_GPL(ata_host_suspend);
6890 EXPORT_SYMBOL_GPL(ata_host_resume);
6891 #endif /* CONFIG_PM */
6892 EXPORT_SYMBOL_GPL(ata_id_string);
6893 EXPORT_SYMBOL_GPL(ata_id_c_string);
6894 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6895 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6896 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6897
6898 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6899 EXPORT_SYMBOL_GPL(ata_timing_compute);
6900 EXPORT_SYMBOL_GPL(ata_timing_merge);
6901
6902 #ifdef CONFIG_PCI
6903 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6904 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6905 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6906 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6907 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6908 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6909 #ifdef CONFIG_PM
6910 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6911 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6912 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6913 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6914 #endif /* CONFIG_PM */
6915 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6916 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6917 #endif /* CONFIG_PCI */
6918
6919 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6920 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6921 EXPORT_SYMBOL_GPL(ata_port_abort);
6922 EXPORT_SYMBOL_GPL(ata_port_freeze);
6923 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6924 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6925 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6926 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6927 EXPORT_SYMBOL_GPL(ata_do_eh);
6928 EXPORT_SYMBOL_GPL(ata_irq_on);
6929 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6930 EXPORT_SYMBOL_GPL(ata_irq_ack);
6931 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6932 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6933
6934 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6935 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6936 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6937 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.370323 seconds and 6 git commands to generate.