Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev)) {
604 if (ata_msg_drv(dev->ap))
605 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 ATA_DNXFER_QUIET);
608 dev->class++;
609 }
610 }
611
612 /**
613 * ata_devchk - PATA device presence detection
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
616 *
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
620 *
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
625 *
626 * LOCKING:
627 * caller.
628 */
629
630 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
631 {
632 struct ata_ioports *ioaddr = &ap->ioaddr;
633 u8 nsect, lbal;
634
635 ap->ops->dev_select(ap, device);
636
637 iowrite8(0x55, ioaddr->nsect_addr);
638 iowrite8(0xaa, ioaddr->lbal_addr);
639
640 iowrite8(0xaa, ioaddr->nsect_addr);
641 iowrite8(0x55, ioaddr->lbal_addr);
642
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
645
646 nsect = ioread8(ioaddr->nsect_addr);
647 lbal = ioread8(ioaddr->lbal_addr);
648
649 if ((nsect == 0x55) && (lbal == 0xaa))
650 return 1; /* we found a device */
651
652 return 0; /* nothing found */
653 }
654
655 /**
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
658 *
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
662 *
663 * LOCKING:
664 * None.
665 *
666 * RETURNS:
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
669 */
670
671 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
672 {
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
676 */
677
678 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
681 return ATA_DEV_ATA;
682 }
683
684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI;
688 }
689
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN;
692 }
693
694 /**
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
698 * @r_err: Value of error register on completion
699 *
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
703 * and diagnostics.
704 *
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
708 *
709 * LOCKING:
710 * caller.
711 *
712 * RETURNS:
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
714 */
715
716 unsigned int
717 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
718 {
719 struct ata_taskfile tf;
720 unsigned int class;
721 u8 err;
722
723 ap->ops->dev_select(ap, device);
724
725 memset(&tf, 0, sizeof(tf));
726
727 ap->ops->tf_read(ap, &tf);
728 err = tf.feature;
729 if (r_err)
730 *r_err = err;
731
732 /* see if device passed diags: if master then continue and warn later */
733 if (err == 0 && device == 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 else if (err == 1)
737 /* do nothing */ ;
738 else if ((device == 0) && (err == 0x81))
739 /* do nothing */ ;
740 else
741 return ATA_DEV_NONE;
742
743 /* determine if device is ATA or ATAPI */
744 class = ata_dev_classify(&tf);
745
746 if (class == ATA_DEV_UNKNOWN)
747 return ATA_DEV_NONE;
748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
749 return ATA_DEV_NONE;
750 return class;
751 }
752
753 /**
754 * ata_id_string - Convert IDENTIFY DEVICE page into string
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
759 *
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
763 *
764 * LOCKING:
765 * caller.
766 */
767
768 void ata_id_string(const u16 *id, unsigned char *s,
769 unsigned int ofs, unsigned int len)
770 {
771 unsigned int c;
772
773 while (len > 0) {
774 c = id[ofs] >> 8;
775 *s = c;
776 s++;
777
778 c = id[ofs] & 0xff;
779 *s = c;
780 s++;
781
782 ofs++;
783 len -= 2;
784 }
785 }
786
787 /**
788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
793 *
794 * This function is identical to ata_id_string except that it
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
797 *
798 * LOCKING:
799 * caller.
800 */
801 void ata_id_c_string(const u16 *id, unsigned char *s,
802 unsigned int ofs, unsigned int len)
803 {
804 unsigned char *p;
805
806 WARN_ON(!(len & 1));
807
808 ata_id_string(id, s, ofs, len - 1);
809
810 p = s + strnlen(s, len - 1);
811 while (p > s && p[-1] == ' ')
812 p--;
813 *p = '\0';
814 }
815
816 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817 {
818 u64 sectors = 0;
819
820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 sectors |= (tf->hob_lbal & 0xff) << 24;
823 sectors |= (tf->lbah & 0xff) << 16;
824 sectors |= (tf->lbam & 0xff) << 8;
825 sectors |= (tf->lbal & 0xff);
826
827 return ++sectors;
828 }
829
830 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831 {
832 u64 sectors = 0;
833
834 sectors |= (tf->device & 0x0f) << 24;
835 sectors |= (tf->lbah & 0xff) << 16;
836 sectors |= (tf->lbam & 0xff) << 8;
837 sectors |= (tf->lbal & 0xff);
838
839 return ++sectors;
840 }
841
842 /**
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
845 *
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
848 */
849
850 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851 {
852 unsigned int err;
853 struct ata_taskfile tf;
854
855 ata_tf_init(dev, &tf);
856
857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 tf.protocol |= ATA_PROT_NODATA;
860 tf.device |= 0x40;
861
862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 if (err)
864 return 0;
865
866 return ata_tf_to_lba48(&tf);
867 }
868
869 /**
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
872 *
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
875 */
876
877 static u64 ata_read_native_max_address(struct ata_device *dev)
878 {
879 unsigned int err;
880 struct ata_taskfile tf;
881
882 ata_tf_init(dev, &tf);
883
884 tf.command = ATA_CMD_READ_NATIVE_MAX;
885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 tf.protocol |= ATA_PROT_NODATA;
887 tf.device |= 0x40;
888
889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 if (err)
891 return 0;
892
893 return ata_tf_to_lba(&tf);
894 }
895
896 /**
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
899 * @new_sectors: new max sectors value to set for the device
900 *
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
903 */
904
905 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
906 {
907 unsigned int err;
908 struct ata_taskfile tf;
909
910 new_sectors--;
911
912 ata_tf_init(dev, &tf);
913
914 tf.command = ATA_CMD_SET_MAX_EXT;
915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 tf.protocol |= ATA_PROT_NODATA;
917 tf.device |= 0x40;
918
919 tf.lbal = (new_sectors >> 0) & 0xff;
920 tf.lbam = (new_sectors >> 8) & 0xff;
921 tf.lbah = (new_sectors >> 16) & 0xff;
922
923 tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 tf.hob_lbah = (new_sectors >> 40) & 0xff;
926
927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 if (err)
929 return 0;
930
931 return ata_tf_to_lba48(&tf);
932 }
933
934 /**
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
937 * @new_sectors: new max sectors value to set for the device
938 *
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
941 */
942
943 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
944 {
945 unsigned int err;
946 struct ata_taskfile tf;
947
948 new_sectors--;
949
950 ata_tf_init(dev, &tf);
951
952 tf.command = ATA_CMD_SET_MAX;
953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 tf.protocol |= ATA_PROT_NODATA;
955
956 tf.lbal = (new_sectors >> 0) & 0xff;
957 tf.lbam = (new_sectors >> 8) & 0xff;
958 tf.lbah = (new_sectors >> 16) & 0xff;
959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960
961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 if (err)
963 return 0;
964
965 return ata_tf_to_lba(&tf);
966 }
967
968 /**
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
971 *
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
975 */
976
977 static u64 ata_hpa_resize(struct ata_device *dev)
978 {
979 u64 sectors = dev->n_sectors;
980 u64 hpa_sectors;
981
982 if (ata_id_has_lba48(dev->id))
983 hpa_sectors = ata_read_native_max_address_ext(dev);
984 else
985 hpa_sectors = ata_read_native_max_address(dev);
986
987 if (hpa_sectors > sectors) {
988 ata_dev_printk(dev, KERN_INFO,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
992 (long long)sectors, (long long)hpa_sectors);
993
994 if (ata_ignore_hpa) {
995 if (ata_id_has_lba48(dev->id))
996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 else
998 hpa_sectors = ata_set_native_max_address(dev,
999 hpa_sectors);
1000
1001 if (hpa_sectors) {
1002 ata_dev_printk(dev, KERN_INFO, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors);
1005 return hpa_sectors;
1006 }
1007 }
1008 } else if (hpa_sectors < sectors)
1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 (long long)hpa_sectors, (long long)sectors);
1012
1013 return sectors;
1014 }
1015
1016 static u64 ata_id_n_sectors(const u16 *id)
1017 {
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029 }
1030
1031 /**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047 {
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071 }
1072
1073 /**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 {
1087 }
1088
1089
1090 /**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106 {
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116 }
1117
1118 /**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139 {
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154 }
1155
1156 /**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1159 *
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
1167 static inline void ata_dump_id(const u16 *id)
1168 {
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
1191 id[88],
1192 id[93]);
1193 }
1194
1195 /**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210 static unsigned int ata_id_xfermask(const u16 *id)
1211 {
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262 }
1263
1264 /**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1285 {
1286 int rc;
1287
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 return;
1290
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1293
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298 }
1299
1300 /**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310 void ata_port_flush_task(struct ata_port *ap)
1311 {
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1319
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
1332 cancel_work_sync(&ap->port_task.work);
1333 }
1334
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1338
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341 }
1342
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344 {
1345 struct completion *waiting = qc->private_data;
1346
1347 complete(waiting);
1348 }
1349
1350 /**
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
1370 */
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1375 {
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1384 int rc;
1385
1386 spin_lock_irqsave(ap->lock, flags);
1387
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1392 }
1393
1394 /* initialize internal qc */
1395
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1407 BUG();
1408 qc = __ata_qc_from_tag(ap, tag);
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
1422
1423 /* prepare & issue qc */
1424 qc->tf = *tf;
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1437 }
1438
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1441
1442 ata_qc_issue(qc);
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447
1448 ata_port_flush_task(ap);
1449
1450 if (!rc) {
1451 spin_lock_irqsave(ap->lock, flags);
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1457 */
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
1465
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1469 }
1470
1471 spin_unlock_irqrestore(ap->lock, flags);
1472 }
1473
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1488 }
1489
1490 /* finish up */
1491 spin_lock_irqsave(ap->lock, flags);
1492
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1500
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
1517 spin_unlock_irqrestore(ap->lock, flags);
1518
1519 return err_mask;
1520 }
1521
1522 /**
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543 {
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1546
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
1553
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555 }
1556
1557 /**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
1570 */
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572 {
1573 struct ata_taskfile tf;
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582 }
1583
1584 /**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
1591
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593 {
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 return 0;
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1603 return 1;
1604 return 0;
1605 }
1606
1607 /**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
1614
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616 {
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1626 }
1627 }
1628 return 3 << ATA_SHIFT_PIO;
1629 }
1630
1631 /**
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1637 *
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1642 *
1643 * LOCKING:
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1648 */
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1651 {
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1656 const char *reason;
1657 int may_fallback = 1, tried_spinup = 0;
1658 int rc;
1659
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664 retry:
1665 ata_tf_init(dev, &tf);
1666
1667 switch (class) {
1668 case ATA_DEV_ATA:
1669 tf.command = ATA_CMD_ID_ATA;
1670 break;
1671 case ATA_DEV_ATAPI:
1672 tf.command = ATA_CMD_ID_ATAPI;
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1678 }
1679
1680 tf.protocol = ATA_PROT_PIO;
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1691
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1694 if (err_mask) {
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1698 return -ENOENT;
1699 }
1700
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
1716 rc = -EIO;
1717 reason = "I/O error";
1718 goto err_out;
1719 }
1720
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
1726 swap_buf_le16(id, ATA_ID_WORDS);
1727
1728 /* sanity check */
1729 rc = -EINVAL;
1730 reason = "device reports invalid type";
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
1738 }
1739
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
1786 flags &= ~ATA_READID_POSTRESET;
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
1792
1793 return 0;
1794
1795 err_out:
1796 if (ata_msg_warn(ap))
1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 return rc;
1800 }
1801
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1803 {
1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1805 }
1806
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809 {
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
1821 if (ap->flags & ATA_FLAG_NCQ) {
1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830 }
1831
1832 /**
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1838 *
1839 * LOCKING:
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
1844 */
1845 int ata_dev_configure(struct ata_device *dev)
1846 {
1847 struct ata_port *ap = dev->ap;
1848 struct ata_eh_context *ehc = &ap->eh_context;
1849 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1850 const u16 *id = dev->id;
1851 unsigned int xfer_mask;
1852 char revbuf[7]; /* XYZ-99\0 */
1853 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1854 char modelbuf[ATA_ID_PROD_LEN+1];
1855 int rc;
1856
1857 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1858 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1859 __FUNCTION__);
1860 return 0;
1861 }
1862
1863 if (ata_msg_probe(ap))
1864 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1865
1866 /* let ACPI work its magic */
1867 rc = ata_acpi_on_devcfg(dev);
1868 if (rc)
1869 return rc;
1870
1871 /* print device capabilities */
1872 if (ata_msg_probe(ap))
1873 ata_dev_printk(dev, KERN_DEBUG,
1874 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1875 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1876 __FUNCTION__,
1877 id[49], id[82], id[83], id[84],
1878 id[85], id[86], id[87], id[88]);
1879
1880 /* initialize to-be-configured parameters */
1881 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1882 dev->max_sectors = 0;
1883 dev->cdb_len = 0;
1884 dev->n_sectors = 0;
1885 dev->cylinders = 0;
1886 dev->heads = 0;
1887 dev->sectors = 0;
1888
1889 /*
1890 * common ATA, ATAPI feature tests
1891 */
1892
1893 /* find max transfer mode; for printk only */
1894 xfer_mask = ata_id_xfermask(id);
1895
1896 if (ata_msg_probe(ap))
1897 ata_dump_id(id);
1898
1899 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1900 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1901 sizeof(fwrevbuf));
1902
1903 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1904 sizeof(modelbuf));
1905
1906 /* ATA-specific feature tests */
1907 if (dev->class == ATA_DEV_ATA) {
1908 if (ata_id_is_cfa(id)) {
1909 if (id[162] & 1) /* CPRM may make this media unusable */
1910 ata_dev_printk(dev, KERN_WARNING,
1911 "supports DRM functions and may "
1912 "not be fully accessable.\n");
1913 snprintf(revbuf, 7, "CFA");
1914 }
1915 else
1916 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1917
1918 dev->n_sectors = ata_id_n_sectors(id);
1919
1920 if (dev->id[59] & 0x100)
1921 dev->multi_count = dev->id[59] & 0xff;
1922
1923 if (ata_id_has_lba(id)) {
1924 const char *lba_desc;
1925 char ncq_desc[20];
1926
1927 lba_desc = "LBA";
1928 dev->flags |= ATA_DFLAG_LBA;
1929 if (ata_id_has_lba48(id)) {
1930 dev->flags |= ATA_DFLAG_LBA48;
1931 lba_desc = "LBA48";
1932
1933 if (dev->n_sectors >= (1UL << 28) &&
1934 ata_id_has_flush_ext(id))
1935 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1936 }
1937
1938 if (ata_id_hpa_enabled(dev->id))
1939 dev->n_sectors = ata_hpa_resize(dev);
1940
1941 /* config NCQ */
1942 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1943
1944 /* print device info to dmesg */
1945 if (ata_msg_drv(ap) && print_info) {
1946 ata_dev_printk(dev, KERN_INFO,
1947 "%s: %s, %s, max %s\n",
1948 revbuf, modelbuf, fwrevbuf,
1949 ata_mode_string(xfer_mask));
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%Lu sectors, multi %u: %s %s\n",
1952 (unsigned long long)dev->n_sectors,
1953 dev->multi_count, lba_desc, ncq_desc);
1954 }
1955 } else {
1956 /* CHS */
1957
1958 /* Default translation */
1959 dev->cylinders = id[1];
1960 dev->heads = id[3];
1961 dev->sectors = id[6];
1962
1963 if (ata_id_current_chs_valid(id)) {
1964 /* Current CHS translation is valid. */
1965 dev->cylinders = id[54];
1966 dev->heads = id[55];
1967 dev->sectors = id[56];
1968 }
1969
1970 /* print device info to dmesg */
1971 if (ata_msg_drv(ap) && print_info) {
1972 ata_dev_printk(dev, KERN_INFO,
1973 "%s: %s, %s, max %s\n",
1974 revbuf, modelbuf, fwrevbuf,
1975 ata_mode_string(xfer_mask));
1976 ata_dev_printk(dev, KERN_INFO,
1977 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1978 (unsigned long long)dev->n_sectors,
1979 dev->multi_count, dev->cylinders,
1980 dev->heads, dev->sectors);
1981 }
1982 }
1983
1984 dev->cdb_len = 16;
1985 }
1986
1987 /* ATAPI-specific feature tests */
1988 else if (dev->class == ATA_DEV_ATAPI) {
1989 char *cdb_intr_string = "";
1990
1991 rc = atapi_cdb_len(id);
1992 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1993 if (ata_msg_warn(ap))
1994 ata_dev_printk(dev, KERN_WARNING,
1995 "unsupported CDB len\n");
1996 rc = -EINVAL;
1997 goto err_out_nosup;
1998 }
1999 dev->cdb_len = (unsigned int) rc;
2000
2001 if (ata_id_cdb_intr(dev->id)) {
2002 dev->flags |= ATA_DFLAG_CDB_INTR;
2003 cdb_intr_string = ", CDB intr";
2004 }
2005
2006 /* print device info to dmesg */
2007 if (ata_msg_drv(ap) && print_info)
2008 ata_dev_printk(dev, KERN_INFO,
2009 "ATAPI: %s, %s, max %s%s\n",
2010 modelbuf, fwrevbuf,
2011 ata_mode_string(xfer_mask),
2012 cdb_intr_string);
2013 }
2014
2015 /* determine max_sectors */
2016 dev->max_sectors = ATA_MAX_SECTORS;
2017 if (dev->flags & ATA_DFLAG_LBA48)
2018 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2019
2020 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2021 /* Let the user know. We don't want to disallow opens for
2022 rescue purposes, or in case the vendor is just a blithering
2023 idiot */
2024 if (print_info) {
2025 ata_dev_printk(dev, KERN_WARNING,
2026 "Drive reports diagnostics failure. This may indicate a drive\n");
2027 ata_dev_printk(dev, KERN_WARNING,
2028 "fault or invalid emulation. Contact drive vendor for information.\n");
2029 }
2030 }
2031
2032 /* limit bridge transfers to udma5, 200 sectors */
2033 if (ata_dev_knobble(dev)) {
2034 if (ata_msg_drv(ap) && print_info)
2035 ata_dev_printk(dev, KERN_INFO,
2036 "applying bridge limits\n");
2037 dev->udma_mask &= ATA_UDMA5;
2038 dev->max_sectors = ATA_MAX_SECTORS;
2039 }
2040
2041 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2042 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2043 dev->max_sectors);
2044
2045 if (ap->ops->dev_config)
2046 ap->ops->dev_config(dev);
2047
2048 if (ata_msg_probe(ap))
2049 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2050 __FUNCTION__, ata_chk_status(ap));
2051 return 0;
2052
2053 err_out_nosup:
2054 if (ata_msg_probe(ap))
2055 ata_dev_printk(dev, KERN_DEBUG,
2056 "%s: EXIT, err\n", __FUNCTION__);
2057 return rc;
2058 }
2059
2060 /**
2061 * ata_cable_40wire - return 40 wire cable type
2062 * @ap: port
2063 *
2064 * Helper method for drivers which want to hardwire 40 wire cable
2065 * detection.
2066 */
2067
2068 int ata_cable_40wire(struct ata_port *ap)
2069 {
2070 return ATA_CBL_PATA40;
2071 }
2072
2073 /**
2074 * ata_cable_80wire - return 80 wire cable type
2075 * @ap: port
2076 *
2077 * Helper method for drivers which want to hardwire 80 wire cable
2078 * detection.
2079 */
2080
2081 int ata_cable_80wire(struct ata_port *ap)
2082 {
2083 return ATA_CBL_PATA80;
2084 }
2085
2086 /**
2087 * ata_cable_unknown - return unknown PATA cable.
2088 * @ap: port
2089 *
2090 * Helper method for drivers which have no PATA cable detection.
2091 */
2092
2093 int ata_cable_unknown(struct ata_port *ap)
2094 {
2095 return ATA_CBL_PATA_UNK;
2096 }
2097
2098 /**
2099 * ata_cable_sata - return SATA cable type
2100 * @ap: port
2101 *
2102 * Helper method for drivers which have SATA cables
2103 */
2104
2105 int ata_cable_sata(struct ata_port *ap)
2106 {
2107 return ATA_CBL_SATA;
2108 }
2109
2110 /**
2111 * ata_bus_probe - Reset and probe ATA bus
2112 * @ap: Bus to probe
2113 *
2114 * Master ATA bus probing function. Initiates a hardware-dependent
2115 * bus reset, then attempts to identify any devices found on
2116 * the bus.
2117 *
2118 * LOCKING:
2119 * PCI/etc. bus probe sem.
2120 *
2121 * RETURNS:
2122 * Zero on success, negative errno otherwise.
2123 */
2124
2125 int ata_bus_probe(struct ata_port *ap)
2126 {
2127 unsigned int classes[ATA_MAX_DEVICES];
2128 int tries[ATA_MAX_DEVICES];
2129 int i, rc;
2130 struct ata_device *dev;
2131
2132 ata_port_probe(ap);
2133
2134 for (i = 0; i < ATA_MAX_DEVICES; i++)
2135 tries[i] = ATA_PROBE_MAX_TRIES;
2136
2137 retry:
2138 /* reset and determine device classes */
2139 ap->ops->phy_reset(ap);
2140
2141 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2142 dev = &ap->device[i];
2143
2144 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2145 dev->class != ATA_DEV_UNKNOWN)
2146 classes[dev->devno] = dev->class;
2147 else
2148 classes[dev->devno] = ATA_DEV_NONE;
2149
2150 dev->class = ATA_DEV_UNKNOWN;
2151 }
2152
2153 ata_port_probe(ap);
2154
2155 /* after the reset the device state is PIO 0 and the controller
2156 state is undefined. Record the mode */
2157
2158 for (i = 0; i < ATA_MAX_DEVICES; i++)
2159 ap->device[i].pio_mode = XFER_PIO_0;
2160
2161 /* read IDENTIFY page and configure devices. We have to do the identify
2162 specific sequence bass-ackwards so that PDIAG- is released by
2163 the slave device */
2164
2165 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2166 dev = &ap->device[i];
2167
2168 if (tries[i])
2169 dev->class = classes[i];
2170
2171 if (!ata_dev_enabled(dev))
2172 continue;
2173
2174 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2175 dev->id);
2176 if (rc)
2177 goto fail;
2178 }
2179
2180 /* Now ask for the cable type as PDIAG- should have been released */
2181 if (ap->ops->cable_detect)
2182 ap->cbl = ap->ops->cable_detect(ap);
2183
2184 /* After the identify sequence we can now set up the devices. We do
2185 this in the normal order so that the user doesn't get confused */
2186
2187 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2188 dev = &ap->device[i];
2189 if (!ata_dev_enabled(dev))
2190 continue;
2191
2192 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2193 rc = ata_dev_configure(dev);
2194 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2195 if (rc)
2196 goto fail;
2197 }
2198
2199 /* configure transfer mode */
2200 rc = ata_set_mode(ap, &dev);
2201 if (rc)
2202 goto fail;
2203
2204 for (i = 0; i < ATA_MAX_DEVICES; i++)
2205 if (ata_dev_enabled(&ap->device[i]))
2206 return 0;
2207
2208 /* no device present, disable port */
2209 ata_port_disable(ap);
2210 ap->ops->port_disable(ap);
2211 return -ENODEV;
2212
2213 fail:
2214 tries[dev->devno]--;
2215
2216 switch (rc) {
2217 case -EINVAL:
2218 /* eeek, something went very wrong, give up */
2219 tries[dev->devno] = 0;
2220 break;
2221
2222 case -ENODEV:
2223 /* give it just one more chance */
2224 tries[dev->devno] = min(tries[dev->devno], 1);
2225 case -EIO:
2226 if (tries[dev->devno] == 1) {
2227 /* This is the last chance, better to slow
2228 * down than lose it.
2229 */
2230 sata_down_spd_limit(ap);
2231 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2232 }
2233 }
2234
2235 if (!tries[dev->devno])
2236 ata_dev_disable(dev);
2237
2238 goto retry;
2239 }
2240
2241 /**
2242 * ata_port_probe - Mark port as enabled
2243 * @ap: Port for which we indicate enablement
2244 *
2245 * Modify @ap data structure such that the system
2246 * thinks that the entire port is enabled.
2247 *
2248 * LOCKING: host lock, or some other form of
2249 * serialization.
2250 */
2251
2252 void ata_port_probe(struct ata_port *ap)
2253 {
2254 ap->flags &= ~ATA_FLAG_DISABLED;
2255 }
2256
2257 /**
2258 * sata_print_link_status - Print SATA link status
2259 * @ap: SATA port to printk link status about
2260 *
2261 * This function prints link speed and status of a SATA link.
2262 *
2263 * LOCKING:
2264 * None.
2265 */
2266 void sata_print_link_status(struct ata_port *ap)
2267 {
2268 u32 sstatus, scontrol, tmp;
2269
2270 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2271 return;
2272 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2273
2274 if (ata_port_online(ap)) {
2275 tmp = (sstatus >> 4) & 0xf;
2276 ata_port_printk(ap, KERN_INFO,
2277 "SATA link up %s (SStatus %X SControl %X)\n",
2278 sata_spd_string(tmp), sstatus, scontrol);
2279 } else {
2280 ata_port_printk(ap, KERN_INFO,
2281 "SATA link down (SStatus %X SControl %X)\n",
2282 sstatus, scontrol);
2283 }
2284 }
2285
2286 /**
2287 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2288 * @ap: SATA port associated with target SATA PHY.
2289 *
2290 * This function issues commands to standard SATA Sxxx
2291 * PHY registers, to wake up the phy (and device), and
2292 * clear any reset condition.
2293 *
2294 * LOCKING:
2295 * PCI/etc. bus probe sem.
2296 *
2297 */
2298 void __sata_phy_reset(struct ata_port *ap)
2299 {
2300 u32 sstatus;
2301 unsigned long timeout = jiffies + (HZ * 5);
2302
2303 if (ap->flags & ATA_FLAG_SATA_RESET) {
2304 /* issue phy wake/reset */
2305 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2306 /* Couldn't find anything in SATA I/II specs, but
2307 * AHCI-1.1 10.4.2 says at least 1 ms. */
2308 mdelay(1);
2309 }
2310 /* phy wake/clear reset */
2311 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2312
2313 /* wait for phy to become ready, if necessary */
2314 do {
2315 msleep(200);
2316 sata_scr_read(ap, SCR_STATUS, &sstatus);
2317 if ((sstatus & 0xf) != 1)
2318 break;
2319 } while (time_before(jiffies, timeout));
2320
2321 /* print link status */
2322 sata_print_link_status(ap);
2323
2324 /* TODO: phy layer with polling, timeouts, etc. */
2325 if (!ata_port_offline(ap))
2326 ata_port_probe(ap);
2327 else
2328 ata_port_disable(ap);
2329
2330 if (ap->flags & ATA_FLAG_DISABLED)
2331 return;
2332
2333 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2334 ata_port_disable(ap);
2335 return;
2336 }
2337
2338 ap->cbl = ATA_CBL_SATA;
2339 }
2340
2341 /**
2342 * sata_phy_reset - Reset SATA bus.
2343 * @ap: SATA port associated with target SATA PHY.
2344 *
2345 * This function resets the SATA bus, and then probes
2346 * the bus for devices.
2347 *
2348 * LOCKING:
2349 * PCI/etc. bus probe sem.
2350 *
2351 */
2352 void sata_phy_reset(struct ata_port *ap)
2353 {
2354 __sata_phy_reset(ap);
2355 if (ap->flags & ATA_FLAG_DISABLED)
2356 return;
2357 ata_bus_reset(ap);
2358 }
2359
2360 /**
2361 * ata_dev_pair - return other device on cable
2362 * @adev: device
2363 *
2364 * Obtain the other device on the same cable, or if none is
2365 * present NULL is returned
2366 */
2367
2368 struct ata_device *ata_dev_pair(struct ata_device *adev)
2369 {
2370 struct ata_port *ap = adev->ap;
2371 struct ata_device *pair = &ap->device[1 - adev->devno];
2372 if (!ata_dev_enabled(pair))
2373 return NULL;
2374 return pair;
2375 }
2376
2377 /**
2378 * ata_port_disable - Disable port.
2379 * @ap: Port to be disabled.
2380 *
2381 * Modify @ap data structure such that the system
2382 * thinks that the entire port is disabled, and should
2383 * never attempt to probe or communicate with devices
2384 * on this port.
2385 *
2386 * LOCKING: host lock, or some other form of
2387 * serialization.
2388 */
2389
2390 void ata_port_disable(struct ata_port *ap)
2391 {
2392 ap->device[0].class = ATA_DEV_NONE;
2393 ap->device[1].class = ATA_DEV_NONE;
2394 ap->flags |= ATA_FLAG_DISABLED;
2395 }
2396
2397 /**
2398 * sata_down_spd_limit - adjust SATA spd limit downward
2399 * @ap: Port to adjust SATA spd limit for
2400 *
2401 * Adjust SATA spd limit of @ap downward. Note that this
2402 * function only adjusts the limit. The change must be applied
2403 * using sata_set_spd().
2404 *
2405 * LOCKING:
2406 * Inherited from caller.
2407 *
2408 * RETURNS:
2409 * 0 on success, negative errno on failure
2410 */
2411 int sata_down_spd_limit(struct ata_port *ap)
2412 {
2413 u32 sstatus, spd, mask;
2414 int rc, highbit;
2415
2416 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2417 if (rc)
2418 return rc;
2419
2420 mask = ap->sata_spd_limit;
2421 if (mask <= 1)
2422 return -EINVAL;
2423 highbit = fls(mask) - 1;
2424 mask &= ~(1 << highbit);
2425
2426 spd = (sstatus >> 4) & 0xf;
2427 if (spd <= 1)
2428 return -EINVAL;
2429 spd--;
2430 mask &= (1 << spd) - 1;
2431 if (!mask)
2432 return -EINVAL;
2433
2434 ap->sata_spd_limit = mask;
2435
2436 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2437 sata_spd_string(fls(mask)));
2438
2439 return 0;
2440 }
2441
2442 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2443 {
2444 u32 spd, limit;
2445
2446 if (ap->sata_spd_limit == UINT_MAX)
2447 limit = 0;
2448 else
2449 limit = fls(ap->sata_spd_limit);
2450
2451 spd = (*scontrol >> 4) & 0xf;
2452 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2453
2454 return spd != limit;
2455 }
2456
2457 /**
2458 * sata_set_spd_needed - is SATA spd configuration needed
2459 * @ap: Port in question
2460 *
2461 * Test whether the spd limit in SControl matches
2462 * @ap->sata_spd_limit. This function is used to determine
2463 * whether hardreset is necessary to apply SATA spd
2464 * configuration.
2465 *
2466 * LOCKING:
2467 * Inherited from caller.
2468 *
2469 * RETURNS:
2470 * 1 if SATA spd configuration is needed, 0 otherwise.
2471 */
2472 int sata_set_spd_needed(struct ata_port *ap)
2473 {
2474 u32 scontrol;
2475
2476 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2477 return 0;
2478
2479 return __sata_set_spd_needed(ap, &scontrol);
2480 }
2481
2482 /**
2483 * sata_set_spd - set SATA spd according to spd limit
2484 * @ap: Port to set SATA spd for
2485 *
2486 * Set SATA spd of @ap according to sata_spd_limit.
2487 *
2488 * LOCKING:
2489 * Inherited from caller.
2490 *
2491 * RETURNS:
2492 * 0 if spd doesn't need to be changed, 1 if spd has been
2493 * changed. Negative errno if SCR registers are inaccessible.
2494 */
2495 int sata_set_spd(struct ata_port *ap)
2496 {
2497 u32 scontrol;
2498 int rc;
2499
2500 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2501 return rc;
2502
2503 if (!__sata_set_spd_needed(ap, &scontrol))
2504 return 0;
2505
2506 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2507 return rc;
2508
2509 return 1;
2510 }
2511
2512 /*
2513 * This mode timing computation functionality is ported over from
2514 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2515 */
2516 /*
2517 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2518 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2519 * for UDMA6, which is currently supported only by Maxtor drives.
2520 *
2521 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2522 */
2523
2524 static const struct ata_timing ata_timing[] = {
2525
2526 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2527 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2528 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2529 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2530
2531 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2532 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2533 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2534 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2535 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2536
2537 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2538
2539 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2540 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2541 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2542
2543 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2544 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2545 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2546
2547 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2548 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2549 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2550 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2551
2552 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2553 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2554 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2555
2556 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2557
2558 { 0xFF }
2559 };
2560
2561 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2562 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2563
2564 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2565 {
2566 q->setup = EZ(t->setup * 1000, T);
2567 q->act8b = EZ(t->act8b * 1000, T);
2568 q->rec8b = EZ(t->rec8b * 1000, T);
2569 q->cyc8b = EZ(t->cyc8b * 1000, T);
2570 q->active = EZ(t->active * 1000, T);
2571 q->recover = EZ(t->recover * 1000, T);
2572 q->cycle = EZ(t->cycle * 1000, T);
2573 q->udma = EZ(t->udma * 1000, UT);
2574 }
2575
2576 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2577 struct ata_timing *m, unsigned int what)
2578 {
2579 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2580 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2581 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2582 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2583 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2584 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2585 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2586 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2587 }
2588
2589 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2590 {
2591 const struct ata_timing *t;
2592
2593 for (t = ata_timing; t->mode != speed; t++)
2594 if (t->mode == 0xFF)
2595 return NULL;
2596 return t;
2597 }
2598
2599 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2600 struct ata_timing *t, int T, int UT)
2601 {
2602 const struct ata_timing *s;
2603 struct ata_timing p;
2604
2605 /*
2606 * Find the mode.
2607 */
2608
2609 if (!(s = ata_timing_find_mode(speed)))
2610 return -EINVAL;
2611
2612 memcpy(t, s, sizeof(*s));
2613
2614 /*
2615 * If the drive is an EIDE drive, it can tell us it needs extended
2616 * PIO/MW_DMA cycle timing.
2617 */
2618
2619 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2620 memset(&p, 0, sizeof(p));
2621 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2622 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2623 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2624 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2625 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2626 }
2627 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2628 }
2629
2630 /*
2631 * Convert the timing to bus clock counts.
2632 */
2633
2634 ata_timing_quantize(t, t, T, UT);
2635
2636 /*
2637 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2638 * S.M.A.R.T * and some other commands. We have to ensure that the
2639 * DMA cycle timing is slower/equal than the fastest PIO timing.
2640 */
2641
2642 if (speed > XFER_PIO_6) {
2643 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2644 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2645 }
2646
2647 /*
2648 * Lengthen active & recovery time so that cycle time is correct.
2649 */
2650
2651 if (t->act8b + t->rec8b < t->cyc8b) {
2652 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2653 t->rec8b = t->cyc8b - t->act8b;
2654 }
2655
2656 if (t->active + t->recover < t->cycle) {
2657 t->active += (t->cycle - (t->active + t->recover)) / 2;
2658 t->recover = t->cycle - t->active;
2659 }
2660
2661 /* In a few cases quantisation may produce enough errors to
2662 leave t->cycle too low for the sum of active and recovery
2663 if so we must correct this */
2664 if (t->active + t->recover > t->cycle)
2665 t->cycle = t->active + t->recover;
2666
2667 return 0;
2668 }
2669
2670 /**
2671 * ata_down_xfermask_limit - adjust dev xfer masks downward
2672 * @dev: Device to adjust xfer masks
2673 * @sel: ATA_DNXFER_* selector
2674 *
2675 * Adjust xfer masks of @dev downward. Note that this function
2676 * does not apply the change. Invoking ata_set_mode() afterwards
2677 * will apply the limit.
2678 *
2679 * LOCKING:
2680 * Inherited from caller.
2681 *
2682 * RETURNS:
2683 * 0 on success, negative errno on failure
2684 */
2685 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2686 {
2687 char buf[32];
2688 unsigned int orig_mask, xfer_mask;
2689 unsigned int pio_mask, mwdma_mask, udma_mask;
2690 int quiet, highbit;
2691
2692 quiet = !!(sel & ATA_DNXFER_QUIET);
2693 sel &= ~ATA_DNXFER_QUIET;
2694
2695 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2696 dev->mwdma_mask,
2697 dev->udma_mask);
2698 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2699
2700 switch (sel) {
2701 case ATA_DNXFER_PIO:
2702 highbit = fls(pio_mask) - 1;
2703 pio_mask &= ~(1 << highbit);
2704 break;
2705
2706 case ATA_DNXFER_DMA:
2707 if (udma_mask) {
2708 highbit = fls(udma_mask) - 1;
2709 udma_mask &= ~(1 << highbit);
2710 if (!udma_mask)
2711 return -ENOENT;
2712 } else if (mwdma_mask) {
2713 highbit = fls(mwdma_mask) - 1;
2714 mwdma_mask &= ~(1 << highbit);
2715 if (!mwdma_mask)
2716 return -ENOENT;
2717 }
2718 break;
2719
2720 case ATA_DNXFER_40C:
2721 udma_mask &= ATA_UDMA_MASK_40C;
2722 break;
2723
2724 case ATA_DNXFER_FORCE_PIO0:
2725 pio_mask &= 1;
2726 case ATA_DNXFER_FORCE_PIO:
2727 mwdma_mask = 0;
2728 udma_mask = 0;
2729 break;
2730
2731 default:
2732 BUG();
2733 }
2734
2735 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2736
2737 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2738 return -ENOENT;
2739
2740 if (!quiet) {
2741 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2742 snprintf(buf, sizeof(buf), "%s:%s",
2743 ata_mode_string(xfer_mask),
2744 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2745 else
2746 snprintf(buf, sizeof(buf), "%s",
2747 ata_mode_string(xfer_mask));
2748
2749 ata_dev_printk(dev, KERN_WARNING,
2750 "limiting speed to %s\n", buf);
2751 }
2752
2753 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2754 &dev->udma_mask);
2755
2756 return 0;
2757 }
2758
2759 static int ata_dev_set_mode(struct ata_device *dev)
2760 {
2761 struct ata_eh_context *ehc = &dev->ap->eh_context;
2762 unsigned int err_mask;
2763 int rc;
2764
2765 dev->flags &= ~ATA_DFLAG_PIO;
2766 if (dev->xfer_shift == ATA_SHIFT_PIO)
2767 dev->flags |= ATA_DFLAG_PIO;
2768
2769 err_mask = ata_dev_set_xfermode(dev);
2770 /* Old CFA may refuse this command, which is just fine */
2771 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2772 err_mask &= ~AC_ERR_DEV;
2773
2774 if (err_mask) {
2775 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2776 "(err_mask=0x%x)\n", err_mask);
2777 return -EIO;
2778 }
2779
2780 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2781 rc = ata_dev_revalidate(dev, 0);
2782 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2783 if (rc)
2784 return rc;
2785
2786 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2787 dev->xfer_shift, (int)dev->xfer_mode);
2788
2789 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2790 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2791 return 0;
2792 }
2793
2794 /**
2795 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2796 * @ap: port on which timings will be programmed
2797 * @r_failed_dev: out paramter for failed device
2798 *
2799 * Standard implementation of the function used to tune and set
2800 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2801 * ata_dev_set_mode() fails, pointer to the failing device is
2802 * returned in @r_failed_dev.
2803 *
2804 * LOCKING:
2805 * PCI/etc. bus probe sem.
2806 *
2807 * RETURNS:
2808 * 0 on success, negative errno otherwise
2809 */
2810
2811 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2812 {
2813 struct ata_device *dev;
2814 int i, rc = 0, used_dma = 0, found = 0;
2815
2816
2817 /* step 1: calculate xfer_mask */
2818 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2819 unsigned int pio_mask, dma_mask;
2820
2821 dev = &ap->device[i];
2822
2823 if (!ata_dev_enabled(dev))
2824 continue;
2825
2826 ata_dev_xfermask(dev);
2827
2828 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2829 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2830 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2831 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2832
2833 found = 1;
2834 if (dev->dma_mode)
2835 used_dma = 1;
2836 }
2837 if (!found)
2838 goto out;
2839
2840 /* step 2: always set host PIO timings */
2841 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2842 dev = &ap->device[i];
2843 if (!ata_dev_enabled(dev))
2844 continue;
2845
2846 if (!dev->pio_mode) {
2847 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2848 rc = -EINVAL;
2849 goto out;
2850 }
2851
2852 dev->xfer_mode = dev->pio_mode;
2853 dev->xfer_shift = ATA_SHIFT_PIO;
2854 if (ap->ops->set_piomode)
2855 ap->ops->set_piomode(ap, dev);
2856 }
2857
2858 /* step 3: set host DMA timings */
2859 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2860 dev = &ap->device[i];
2861
2862 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2863 continue;
2864
2865 dev->xfer_mode = dev->dma_mode;
2866 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2867 if (ap->ops->set_dmamode)
2868 ap->ops->set_dmamode(ap, dev);
2869 }
2870
2871 /* step 4: update devices' xfer mode */
2872 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2873 dev = &ap->device[i];
2874
2875 /* don't update suspended devices' xfer mode */
2876 if (!ata_dev_enabled(dev))
2877 continue;
2878
2879 rc = ata_dev_set_mode(dev);
2880 if (rc)
2881 goto out;
2882 }
2883
2884 /* Record simplex status. If we selected DMA then the other
2885 * host channels are not permitted to do so.
2886 */
2887 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2888 ap->host->simplex_claimed = ap;
2889
2890 out:
2891 if (rc)
2892 *r_failed_dev = dev;
2893 return rc;
2894 }
2895
2896 /**
2897 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2898 * @ap: port on which timings will be programmed
2899 * @r_failed_dev: out paramter for failed device
2900 *
2901 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2902 * ata_set_mode() fails, pointer to the failing device is
2903 * returned in @r_failed_dev.
2904 *
2905 * LOCKING:
2906 * PCI/etc. bus probe sem.
2907 *
2908 * RETURNS:
2909 * 0 on success, negative errno otherwise
2910 */
2911 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2912 {
2913 /* has private set_mode? */
2914 if (ap->ops->set_mode)
2915 return ap->ops->set_mode(ap, r_failed_dev);
2916 return ata_do_set_mode(ap, r_failed_dev);
2917 }
2918
2919 /**
2920 * ata_tf_to_host - issue ATA taskfile to host controller
2921 * @ap: port to which command is being issued
2922 * @tf: ATA taskfile register set
2923 *
2924 * Issues ATA taskfile register set to ATA host controller,
2925 * with proper synchronization with interrupt handler and
2926 * other threads.
2927 *
2928 * LOCKING:
2929 * spin_lock_irqsave(host lock)
2930 */
2931
2932 static inline void ata_tf_to_host(struct ata_port *ap,
2933 const struct ata_taskfile *tf)
2934 {
2935 ap->ops->tf_load(ap, tf);
2936 ap->ops->exec_command(ap, tf);
2937 }
2938
2939 /**
2940 * ata_busy_sleep - sleep until BSY clears, or timeout
2941 * @ap: port containing status register to be polled
2942 * @tmout_pat: impatience timeout
2943 * @tmout: overall timeout
2944 *
2945 * Sleep until ATA Status register bit BSY clears,
2946 * or a timeout occurs.
2947 *
2948 * LOCKING:
2949 * Kernel thread context (may sleep).
2950 *
2951 * RETURNS:
2952 * 0 on success, -errno otherwise.
2953 */
2954 int ata_busy_sleep(struct ata_port *ap,
2955 unsigned long tmout_pat, unsigned long tmout)
2956 {
2957 unsigned long timer_start, timeout;
2958 u8 status;
2959
2960 status = ata_busy_wait(ap, ATA_BUSY, 300);
2961 timer_start = jiffies;
2962 timeout = timer_start + tmout_pat;
2963 while (status != 0xff && (status & ATA_BUSY) &&
2964 time_before(jiffies, timeout)) {
2965 msleep(50);
2966 status = ata_busy_wait(ap, ATA_BUSY, 3);
2967 }
2968
2969 if (status != 0xff && (status & ATA_BUSY))
2970 ata_port_printk(ap, KERN_WARNING,
2971 "port is slow to respond, please be patient "
2972 "(Status 0x%x)\n", status);
2973
2974 timeout = timer_start + tmout;
2975 while (status != 0xff && (status & ATA_BUSY) &&
2976 time_before(jiffies, timeout)) {
2977 msleep(50);
2978 status = ata_chk_status(ap);
2979 }
2980
2981 if (status == 0xff)
2982 return -ENODEV;
2983
2984 if (status & ATA_BUSY) {
2985 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2986 "(%lu secs, Status 0x%x)\n",
2987 tmout / HZ, status);
2988 return -EBUSY;
2989 }
2990
2991 return 0;
2992 }
2993
2994 /**
2995 * ata_wait_ready - sleep until BSY clears, or timeout
2996 * @ap: port containing status register to be polled
2997 * @deadline: deadline jiffies for the operation
2998 *
2999 * Sleep until ATA Status register bit BSY clears, or timeout
3000 * occurs.
3001 *
3002 * LOCKING:
3003 * Kernel thread context (may sleep).
3004 *
3005 * RETURNS:
3006 * 0 on success, -errno otherwise.
3007 */
3008 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3009 {
3010 unsigned long start = jiffies;
3011 int warned = 0;
3012
3013 while (1) {
3014 u8 status = ata_chk_status(ap);
3015 unsigned long now = jiffies;
3016
3017 if (!(status & ATA_BUSY))
3018 return 0;
3019 if (!ata_port_online(ap) && status == 0xff)
3020 return -ENODEV;
3021 if (time_after(now, deadline))
3022 return -EBUSY;
3023
3024 if (!warned && time_after(now, start + 5 * HZ) &&
3025 (deadline - now > 3 * HZ)) {
3026 ata_port_printk(ap, KERN_WARNING,
3027 "port is slow to respond, please be patient "
3028 "(Status 0x%x)\n", status);
3029 warned = 1;
3030 }
3031
3032 msleep(50);
3033 }
3034 }
3035
3036 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3037 unsigned long deadline)
3038 {
3039 struct ata_ioports *ioaddr = &ap->ioaddr;
3040 unsigned int dev0 = devmask & (1 << 0);
3041 unsigned int dev1 = devmask & (1 << 1);
3042 int rc, ret = 0;
3043
3044 /* if device 0 was found in ata_devchk, wait for its
3045 * BSY bit to clear
3046 */
3047 if (dev0) {
3048 rc = ata_wait_ready(ap, deadline);
3049 if (rc) {
3050 if (rc != -ENODEV)
3051 return rc;
3052 ret = rc;
3053 }
3054 }
3055
3056 /* if device 1 was found in ata_devchk, wait for register
3057 * access briefly, then wait for BSY to clear.
3058 */
3059 if (dev1) {
3060 int i;
3061
3062 ap->ops->dev_select(ap, 1);
3063
3064 /* Wait for register access. Some ATAPI devices fail
3065 * to set nsect/lbal after reset, so don't waste too
3066 * much time on it. We're gonna wait for !BSY anyway.
3067 */
3068 for (i = 0; i < 2; i++) {
3069 u8 nsect, lbal;
3070
3071 nsect = ioread8(ioaddr->nsect_addr);
3072 lbal = ioread8(ioaddr->lbal_addr);
3073 if ((nsect == 1) && (lbal == 1))
3074 break;
3075 msleep(50); /* give drive a breather */
3076 }
3077
3078 rc = ata_wait_ready(ap, deadline);
3079 if (rc) {
3080 if (rc != -ENODEV)
3081 return rc;
3082 ret = rc;
3083 }
3084 }
3085
3086 /* is all this really necessary? */
3087 ap->ops->dev_select(ap, 0);
3088 if (dev1)
3089 ap->ops->dev_select(ap, 1);
3090 if (dev0)
3091 ap->ops->dev_select(ap, 0);
3092
3093 return ret;
3094 }
3095
3096 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3097 unsigned long deadline)
3098 {
3099 struct ata_ioports *ioaddr = &ap->ioaddr;
3100
3101 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3102
3103 /* software reset. causes dev0 to be selected */
3104 iowrite8(ap->ctl, ioaddr->ctl_addr);
3105 udelay(20); /* FIXME: flush */
3106 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3107 udelay(20); /* FIXME: flush */
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
3109
3110 /* spec mandates ">= 2ms" before checking status.
3111 * We wait 150ms, because that was the magic delay used for
3112 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3113 * between when the ATA command register is written, and then
3114 * status is checked. Because waiting for "a while" before
3115 * checking status is fine, post SRST, we perform this magic
3116 * delay here as well.
3117 *
3118 * Old drivers/ide uses the 2mS rule and then waits for ready
3119 */
3120 msleep(150);
3121
3122 /* Before we perform post reset processing we want to see if
3123 * the bus shows 0xFF because the odd clown forgets the D7
3124 * pulldown resistor.
3125 */
3126 if (ata_check_status(ap) == 0xFF)
3127 return -ENODEV;
3128
3129 return ata_bus_post_reset(ap, devmask, deadline);
3130 }
3131
3132 /**
3133 * ata_bus_reset - reset host port and associated ATA channel
3134 * @ap: port to reset
3135 *
3136 * This is typically the first time we actually start issuing
3137 * commands to the ATA channel. We wait for BSY to clear, then
3138 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3139 * result. Determine what devices, if any, are on the channel
3140 * by looking at the device 0/1 error register. Look at the signature
3141 * stored in each device's taskfile registers, to determine if
3142 * the device is ATA or ATAPI.
3143 *
3144 * LOCKING:
3145 * PCI/etc. bus probe sem.
3146 * Obtains host lock.
3147 *
3148 * SIDE EFFECTS:
3149 * Sets ATA_FLAG_DISABLED if bus reset fails.
3150 */
3151
3152 void ata_bus_reset(struct ata_port *ap)
3153 {
3154 struct ata_ioports *ioaddr = &ap->ioaddr;
3155 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3156 u8 err;
3157 unsigned int dev0, dev1 = 0, devmask = 0;
3158 int rc;
3159
3160 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3161
3162 /* determine if device 0/1 are present */
3163 if (ap->flags & ATA_FLAG_SATA_RESET)
3164 dev0 = 1;
3165 else {
3166 dev0 = ata_devchk(ap, 0);
3167 if (slave_possible)
3168 dev1 = ata_devchk(ap, 1);
3169 }
3170
3171 if (dev0)
3172 devmask |= (1 << 0);
3173 if (dev1)
3174 devmask |= (1 << 1);
3175
3176 /* select device 0 again */
3177 ap->ops->dev_select(ap, 0);
3178
3179 /* issue bus reset */
3180 if (ap->flags & ATA_FLAG_SRST) {
3181 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3182 if (rc && rc != -ENODEV)
3183 goto err_out;
3184 }
3185
3186 /*
3187 * determine by signature whether we have ATA or ATAPI devices
3188 */
3189 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3190 if ((slave_possible) && (err != 0x81))
3191 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3192
3193 /* re-enable interrupts */
3194 ap->ops->irq_on(ap);
3195
3196 /* is double-select really necessary? */
3197 if (ap->device[1].class != ATA_DEV_NONE)
3198 ap->ops->dev_select(ap, 1);
3199 if (ap->device[0].class != ATA_DEV_NONE)
3200 ap->ops->dev_select(ap, 0);
3201
3202 /* if no devices were detected, disable this port */
3203 if ((ap->device[0].class == ATA_DEV_NONE) &&
3204 (ap->device[1].class == ATA_DEV_NONE))
3205 goto err_out;
3206
3207 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3208 /* set up device control for ATA_FLAG_SATA_RESET */
3209 iowrite8(ap->ctl, ioaddr->ctl_addr);
3210 }
3211
3212 DPRINTK("EXIT\n");
3213 return;
3214
3215 err_out:
3216 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3217 ap->ops->port_disable(ap);
3218
3219 DPRINTK("EXIT\n");
3220 }
3221
3222 /**
3223 * sata_phy_debounce - debounce SATA phy status
3224 * @ap: ATA port to debounce SATA phy status for
3225 * @params: timing parameters { interval, duratinon, timeout } in msec
3226 * @deadline: deadline jiffies for the operation
3227 *
3228 * Make sure SStatus of @ap reaches stable state, determined by
3229 * holding the same value where DET is not 1 for @duration polled
3230 * every @interval, before @timeout. Timeout constraints the
3231 * beginning of the stable state. Because DET gets stuck at 1 on
3232 * some controllers after hot unplugging, this functions waits
3233 * until timeout then returns 0 if DET is stable at 1.
3234 *
3235 * @timeout is further limited by @deadline. The sooner of the
3236 * two is used.
3237 *
3238 * LOCKING:
3239 * Kernel thread context (may sleep)
3240 *
3241 * RETURNS:
3242 * 0 on success, -errno on failure.
3243 */
3244 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3245 unsigned long deadline)
3246 {
3247 unsigned long interval_msec = params[0];
3248 unsigned long duration = msecs_to_jiffies(params[1]);
3249 unsigned long last_jiffies, t;
3250 u32 last, cur;
3251 int rc;
3252
3253 t = jiffies + msecs_to_jiffies(params[2]);
3254 if (time_before(t, deadline))
3255 deadline = t;
3256
3257 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3258 return rc;
3259 cur &= 0xf;
3260
3261 last = cur;
3262 last_jiffies = jiffies;
3263
3264 while (1) {
3265 msleep(interval_msec);
3266 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3267 return rc;
3268 cur &= 0xf;
3269
3270 /* DET stable? */
3271 if (cur == last) {
3272 if (cur == 1 && time_before(jiffies, deadline))
3273 continue;
3274 if (time_after(jiffies, last_jiffies + duration))
3275 return 0;
3276 continue;
3277 }
3278
3279 /* unstable, start over */
3280 last = cur;
3281 last_jiffies = jiffies;
3282
3283 /* check deadline */
3284 if (time_after(jiffies, deadline))
3285 return -EBUSY;
3286 }
3287 }
3288
3289 /**
3290 * sata_phy_resume - resume SATA phy
3291 * @ap: ATA port to resume SATA phy for
3292 * @params: timing parameters { interval, duratinon, timeout } in msec
3293 * @deadline: deadline jiffies for the operation
3294 *
3295 * Resume SATA phy of @ap and debounce it.
3296 *
3297 * LOCKING:
3298 * Kernel thread context (may sleep)
3299 *
3300 * RETURNS:
3301 * 0 on success, -errno on failure.
3302 */
3303 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3304 unsigned long deadline)
3305 {
3306 u32 scontrol;
3307 int rc;
3308
3309 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3310 return rc;
3311
3312 scontrol = (scontrol & 0x0f0) | 0x300;
3313
3314 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3315 return rc;
3316
3317 /* Some PHYs react badly if SStatus is pounded immediately
3318 * after resuming. Delay 200ms before debouncing.
3319 */
3320 msleep(200);
3321
3322 return sata_phy_debounce(ap, params, deadline);
3323 }
3324
3325 /**
3326 * ata_std_prereset - prepare for reset
3327 * @ap: ATA port to be reset
3328 * @deadline: deadline jiffies for the operation
3329 *
3330 * @ap is about to be reset. Initialize it. Failure from
3331 * prereset makes libata abort whole reset sequence and give up
3332 * that port, so prereset should be best-effort. It does its
3333 * best to prepare for reset sequence but if things go wrong, it
3334 * should just whine, not fail.
3335 *
3336 * LOCKING:
3337 * Kernel thread context (may sleep)
3338 *
3339 * RETURNS:
3340 * 0 on success, -errno otherwise.
3341 */
3342 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3343 {
3344 struct ata_eh_context *ehc = &ap->eh_context;
3345 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3346 int rc;
3347
3348 /* handle link resume */
3349 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3350 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3351 ehc->i.action |= ATA_EH_HARDRESET;
3352
3353 /* if we're about to do hardreset, nothing more to do */
3354 if (ehc->i.action & ATA_EH_HARDRESET)
3355 return 0;
3356
3357 /* if SATA, resume phy */
3358 if (ap->flags & ATA_FLAG_SATA) {
3359 rc = sata_phy_resume(ap, timing, deadline);
3360 /* whine about phy resume failure but proceed */
3361 if (rc && rc != -EOPNOTSUPP)
3362 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3363 "link for reset (errno=%d)\n", rc);
3364 }
3365
3366 /* Wait for !BSY if the controller can wait for the first D2H
3367 * Reg FIS and we don't know that no device is attached.
3368 */
3369 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3370 rc = ata_wait_ready(ap, deadline);
3371 if (rc && rc != -ENODEV) {
3372 ata_port_printk(ap, KERN_WARNING, "device not ready "
3373 "(errno=%d), forcing hardreset\n", rc);
3374 ehc->i.action |= ATA_EH_HARDRESET;
3375 }
3376 }
3377
3378 return 0;
3379 }
3380
3381 /**
3382 * ata_std_softreset - reset host port via ATA SRST
3383 * @ap: port to reset
3384 * @classes: resulting classes of attached devices
3385 * @deadline: deadline jiffies for the operation
3386 *
3387 * Reset host port using ATA SRST.
3388 *
3389 * LOCKING:
3390 * Kernel thread context (may sleep)
3391 *
3392 * RETURNS:
3393 * 0 on success, -errno otherwise.
3394 */
3395 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3396 unsigned long deadline)
3397 {
3398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3399 unsigned int devmask = 0;
3400 int rc;
3401 u8 err;
3402
3403 DPRINTK("ENTER\n");
3404
3405 if (ata_port_offline(ap)) {
3406 classes[0] = ATA_DEV_NONE;
3407 goto out;
3408 }
3409
3410 /* determine if device 0/1 are present */
3411 if (ata_devchk(ap, 0))
3412 devmask |= (1 << 0);
3413 if (slave_possible && ata_devchk(ap, 1))
3414 devmask |= (1 << 1);
3415
3416 /* select device 0 again */
3417 ap->ops->dev_select(ap, 0);
3418
3419 /* issue bus reset */
3420 DPRINTK("about to softreset, devmask=%x\n", devmask);
3421 rc = ata_bus_softreset(ap, devmask, deadline);
3422 /* if link is occupied, -ENODEV too is an error */
3423 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3424 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3425 return rc;
3426 }
3427
3428 /* determine by signature whether we have ATA or ATAPI devices */
3429 classes[0] = ata_dev_try_classify(ap, 0, &err);
3430 if (slave_possible && err != 0x81)
3431 classes[1] = ata_dev_try_classify(ap, 1, &err);
3432
3433 out:
3434 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3435 return 0;
3436 }
3437
3438 /**
3439 * sata_port_hardreset - reset port via SATA phy reset
3440 * @ap: port to reset
3441 * @timing: timing parameters { interval, duratinon, timeout } in msec
3442 * @deadline: deadline jiffies for the operation
3443 *
3444 * SATA phy-reset host port using DET bits of SControl register.
3445 *
3446 * LOCKING:
3447 * Kernel thread context (may sleep)
3448 *
3449 * RETURNS:
3450 * 0 on success, -errno otherwise.
3451 */
3452 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3453 unsigned long deadline)
3454 {
3455 u32 scontrol;
3456 int rc;
3457
3458 DPRINTK("ENTER\n");
3459
3460 if (sata_set_spd_needed(ap)) {
3461 /* SATA spec says nothing about how to reconfigure
3462 * spd. To be on the safe side, turn off phy during
3463 * reconfiguration. This works for at least ICH7 AHCI
3464 * and Sil3124.
3465 */
3466 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3467 goto out;
3468
3469 scontrol = (scontrol & 0x0f0) | 0x304;
3470
3471 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3472 goto out;
3473
3474 sata_set_spd(ap);
3475 }
3476
3477 /* issue phy wake/reset */
3478 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3479 goto out;
3480
3481 scontrol = (scontrol & 0x0f0) | 0x301;
3482
3483 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3484 goto out;
3485
3486 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3487 * 10.4.2 says at least 1 ms.
3488 */
3489 msleep(1);
3490
3491 /* bring phy back */
3492 rc = sata_phy_resume(ap, timing, deadline);
3493 out:
3494 DPRINTK("EXIT, rc=%d\n", rc);
3495 return rc;
3496 }
3497
3498 /**
3499 * sata_std_hardreset - reset host port via SATA phy reset
3500 * @ap: port to reset
3501 * @class: resulting class of attached device
3502 * @deadline: deadline jiffies for the operation
3503 *
3504 * SATA phy-reset host port using DET bits of SControl register,
3505 * wait for !BSY and classify the attached device.
3506 *
3507 * LOCKING:
3508 * Kernel thread context (may sleep)
3509 *
3510 * RETURNS:
3511 * 0 on success, -errno otherwise.
3512 */
3513 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3514 unsigned long deadline)
3515 {
3516 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3517 int rc;
3518
3519 DPRINTK("ENTER\n");
3520
3521 /* do hardreset */
3522 rc = sata_port_hardreset(ap, timing, deadline);
3523 if (rc) {
3524 ata_port_printk(ap, KERN_ERR,
3525 "COMRESET failed (errno=%d)\n", rc);
3526 return rc;
3527 }
3528
3529 /* TODO: phy layer with polling, timeouts, etc. */
3530 if (ata_port_offline(ap)) {
3531 *class = ATA_DEV_NONE;
3532 DPRINTK("EXIT, link offline\n");
3533 return 0;
3534 }
3535
3536 /* wait a while before checking status, see SRST for more info */
3537 msleep(150);
3538
3539 rc = ata_wait_ready(ap, deadline);
3540 /* link occupied, -ENODEV too is an error */
3541 if (rc) {
3542 ata_port_printk(ap, KERN_ERR,
3543 "COMRESET failed (errno=%d)\n", rc);
3544 return rc;
3545 }
3546
3547 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3548
3549 *class = ata_dev_try_classify(ap, 0, NULL);
3550
3551 DPRINTK("EXIT, class=%u\n", *class);
3552 return 0;
3553 }
3554
3555 /**
3556 * ata_std_postreset - standard postreset callback
3557 * @ap: the target ata_port
3558 * @classes: classes of attached devices
3559 *
3560 * This function is invoked after a successful reset. Note that
3561 * the device might have been reset more than once using
3562 * different reset methods before postreset is invoked.
3563 *
3564 * LOCKING:
3565 * Kernel thread context (may sleep)
3566 */
3567 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3568 {
3569 u32 serror;
3570
3571 DPRINTK("ENTER\n");
3572
3573 /* print link status */
3574 sata_print_link_status(ap);
3575
3576 /* clear SError */
3577 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3578 sata_scr_write(ap, SCR_ERROR, serror);
3579
3580 /* re-enable interrupts */
3581 if (!ap->ops->error_handler)
3582 ap->ops->irq_on(ap);
3583
3584 /* is double-select really necessary? */
3585 if (classes[0] != ATA_DEV_NONE)
3586 ap->ops->dev_select(ap, 1);
3587 if (classes[1] != ATA_DEV_NONE)
3588 ap->ops->dev_select(ap, 0);
3589
3590 /* bail out if no device is present */
3591 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3592 DPRINTK("EXIT, no device\n");
3593 return;
3594 }
3595
3596 /* set up device control */
3597 if (ap->ioaddr.ctl_addr)
3598 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3599
3600 DPRINTK("EXIT\n");
3601 }
3602
3603 /**
3604 * ata_dev_same_device - Determine whether new ID matches configured device
3605 * @dev: device to compare against
3606 * @new_class: class of the new device
3607 * @new_id: IDENTIFY page of the new device
3608 *
3609 * Compare @new_class and @new_id against @dev and determine
3610 * whether @dev is the device indicated by @new_class and
3611 * @new_id.
3612 *
3613 * LOCKING:
3614 * None.
3615 *
3616 * RETURNS:
3617 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3618 */
3619 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3620 const u16 *new_id)
3621 {
3622 const u16 *old_id = dev->id;
3623 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3624 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3625
3626 if (dev->class != new_class) {
3627 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3628 dev->class, new_class);
3629 return 0;
3630 }
3631
3632 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3633 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3634 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3635 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3636
3637 if (strcmp(model[0], model[1])) {
3638 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3639 "'%s' != '%s'\n", model[0], model[1]);
3640 return 0;
3641 }
3642
3643 if (strcmp(serial[0], serial[1])) {
3644 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3645 "'%s' != '%s'\n", serial[0], serial[1]);
3646 return 0;
3647 }
3648
3649 return 1;
3650 }
3651
3652 /**
3653 * ata_dev_reread_id - Re-read IDENTIFY data
3654 * @dev: target ATA device
3655 * @readid_flags: read ID flags
3656 *
3657 * Re-read IDENTIFY page and make sure @dev is still attached to
3658 * the port.
3659 *
3660 * LOCKING:
3661 * Kernel thread context (may sleep)
3662 *
3663 * RETURNS:
3664 * 0 on success, negative errno otherwise
3665 */
3666 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3667 {
3668 unsigned int class = dev->class;
3669 u16 *id = (void *)dev->ap->sector_buf;
3670 int rc;
3671
3672 /* read ID data */
3673 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3674 if (rc)
3675 return rc;
3676
3677 /* is the device still there? */
3678 if (!ata_dev_same_device(dev, class, id))
3679 return -ENODEV;
3680
3681 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3682 return 0;
3683 }
3684
3685 /**
3686 * ata_dev_revalidate - Revalidate ATA device
3687 * @dev: device to revalidate
3688 * @readid_flags: read ID flags
3689 *
3690 * Re-read IDENTIFY page, make sure @dev is still attached to the
3691 * port and reconfigure it according to the new IDENTIFY page.
3692 *
3693 * LOCKING:
3694 * Kernel thread context (may sleep)
3695 *
3696 * RETURNS:
3697 * 0 on success, negative errno otherwise
3698 */
3699 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3700 {
3701 u64 n_sectors = dev->n_sectors;
3702 int rc;
3703
3704 if (!ata_dev_enabled(dev))
3705 return -ENODEV;
3706
3707 /* re-read ID */
3708 rc = ata_dev_reread_id(dev, readid_flags);
3709 if (rc)
3710 goto fail;
3711
3712 /* configure device according to the new ID */
3713 rc = ata_dev_configure(dev);
3714 if (rc)
3715 goto fail;
3716
3717 /* verify n_sectors hasn't changed */
3718 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3719 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3720 "%llu != %llu\n",
3721 (unsigned long long)n_sectors,
3722 (unsigned long long)dev->n_sectors);
3723 rc = -ENODEV;
3724 goto fail;
3725 }
3726
3727 return 0;
3728
3729 fail:
3730 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3731 return rc;
3732 }
3733
3734 struct ata_blacklist_entry {
3735 const char *model_num;
3736 const char *model_rev;
3737 unsigned long horkage;
3738 };
3739
3740 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3741 /* Devices with DMA related problems under Linux */
3742 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3743 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3744 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3745 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3746 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3748 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3749 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3750 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3751 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3752 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3753 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3754 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3755 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3756 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3757 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3758 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3759 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3760 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3761 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3762 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3763 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3764 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3765 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3766 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3767 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3768 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3769 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3771 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3772 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3773
3774 /* Weird ATAPI devices */
3775 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3776
3777 /* Devices we expect to fail diagnostics */
3778
3779 /* Devices where NCQ should be avoided */
3780 /* NCQ is slow */
3781 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3782 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3783 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3784 /* NCQ is broken */
3785 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3786 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3787 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3788 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3789 /* Blacklist entries taken from Silicon Image 3124/3132
3790 Windows driver .inf file - also several Linux problem reports */
3791 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3792 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3793 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3794 /* Drives which do spurious command completion */
3795 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3796 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3797 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3798 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3799
3800 /* Devices with NCQ limits */
3801
3802 /* End Marker */
3803 { }
3804 };
3805
3806 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3807 {
3808 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3809 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3810 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3811
3812 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3813 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3814
3815 while (ad->model_num) {
3816 if (!strcmp(ad->model_num, model_num)) {
3817 if (ad->model_rev == NULL)
3818 return ad->horkage;
3819 if (!strcmp(ad->model_rev, model_rev))
3820 return ad->horkage;
3821 }
3822 ad++;
3823 }
3824 return 0;
3825 }
3826
3827 static int ata_dma_blacklisted(const struct ata_device *dev)
3828 {
3829 /* We don't support polling DMA.
3830 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3831 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3832 */
3833 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3834 (dev->flags & ATA_DFLAG_CDB_INTR))
3835 return 1;
3836 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3837 }
3838
3839 /**
3840 * ata_dev_xfermask - Compute supported xfermask of the given device
3841 * @dev: Device to compute xfermask for
3842 *
3843 * Compute supported xfermask of @dev and store it in
3844 * dev->*_mask. This function is responsible for applying all
3845 * known limits including host controller limits, device
3846 * blacklist, etc...
3847 *
3848 * LOCKING:
3849 * None.
3850 */
3851 static void ata_dev_xfermask(struct ata_device *dev)
3852 {
3853 struct ata_port *ap = dev->ap;
3854 struct ata_host *host = ap->host;
3855 unsigned long xfer_mask;
3856
3857 /* controller modes available */
3858 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3859 ap->mwdma_mask, ap->udma_mask);
3860
3861 /* drive modes available */
3862 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3863 dev->mwdma_mask, dev->udma_mask);
3864 xfer_mask &= ata_id_xfermask(dev->id);
3865
3866 /*
3867 * CFA Advanced TrueIDE timings are not allowed on a shared
3868 * cable
3869 */
3870 if (ata_dev_pair(dev)) {
3871 /* No PIO5 or PIO6 */
3872 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3873 /* No MWDMA3 or MWDMA 4 */
3874 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3875 }
3876
3877 if (ata_dma_blacklisted(dev)) {
3878 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3879 ata_dev_printk(dev, KERN_WARNING,
3880 "device is on DMA blacklist, disabling DMA\n");
3881 }
3882
3883 if ((host->flags & ATA_HOST_SIMPLEX) &&
3884 host->simplex_claimed && host->simplex_claimed != ap) {
3885 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3886 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3887 "other device, disabling DMA\n");
3888 }
3889
3890 if (ap->flags & ATA_FLAG_NO_IORDY)
3891 xfer_mask &= ata_pio_mask_no_iordy(dev);
3892
3893 if (ap->ops->mode_filter)
3894 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3895
3896 /* Apply cable rule here. Don't apply it early because when
3897 * we handle hot plug the cable type can itself change.
3898 * Check this last so that we know if the transfer rate was
3899 * solely limited by the cable.
3900 * Unknown or 80 wire cables reported host side are checked
3901 * drive side as well. Cases where we know a 40wire cable
3902 * is used safely for 80 are not checked here.
3903 */
3904 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3905 /* UDMA/44 or higher would be available */
3906 if((ap->cbl == ATA_CBL_PATA40) ||
3907 (ata_drive_40wire(dev->id) &&
3908 (ap->cbl == ATA_CBL_PATA_UNK ||
3909 ap->cbl == ATA_CBL_PATA80))) {
3910 ata_dev_printk(dev, KERN_WARNING,
3911 "limited to UDMA/33 due to 40-wire cable\n");
3912 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3913 }
3914
3915 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3916 &dev->mwdma_mask, &dev->udma_mask);
3917 }
3918
3919 /**
3920 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3921 * @dev: Device to which command will be sent
3922 *
3923 * Issue SET FEATURES - XFER MODE command to device @dev
3924 * on port @ap.
3925 *
3926 * LOCKING:
3927 * PCI/etc. bus probe sem.
3928 *
3929 * RETURNS:
3930 * 0 on success, AC_ERR_* mask otherwise.
3931 */
3932
3933 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3934 {
3935 struct ata_taskfile tf;
3936 unsigned int err_mask;
3937
3938 /* set up set-features taskfile */
3939 DPRINTK("set features - xfer mode\n");
3940
3941 /* Some controllers and ATAPI devices show flaky interrupt
3942 * behavior after setting xfer mode. Use polling instead.
3943 */
3944 ata_tf_init(dev, &tf);
3945 tf.command = ATA_CMD_SET_FEATURES;
3946 tf.feature = SETFEATURES_XFER;
3947 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3948 tf.protocol = ATA_PROT_NODATA;
3949 tf.nsect = dev->xfer_mode;
3950
3951 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3952
3953 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3954 return err_mask;
3955 }
3956
3957 /**
3958 * ata_dev_init_params - Issue INIT DEV PARAMS command
3959 * @dev: Device to which command will be sent
3960 * @heads: Number of heads (taskfile parameter)
3961 * @sectors: Number of sectors (taskfile parameter)
3962 *
3963 * LOCKING:
3964 * Kernel thread context (may sleep)
3965 *
3966 * RETURNS:
3967 * 0 on success, AC_ERR_* mask otherwise.
3968 */
3969 static unsigned int ata_dev_init_params(struct ata_device *dev,
3970 u16 heads, u16 sectors)
3971 {
3972 struct ata_taskfile tf;
3973 unsigned int err_mask;
3974
3975 /* Number of sectors per track 1-255. Number of heads 1-16 */
3976 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3977 return AC_ERR_INVALID;
3978
3979 /* set up init dev params taskfile */
3980 DPRINTK("init dev params \n");
3981
3982 ata_tf_init(dev, &tf);
3983 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3984 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3985 tf.protocol = ATA_PROT_NODATA;
3986 tf.nsect = sectors;
3987 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3988
3989 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3990
3991 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3992 return err_mask;
3993 }
3994
3995 /**
3996 * ata_sg_clean - Unmap DMA memory associated with command
3997 * @qc: Command containing DMA memory to be released
3998 *
3999 * Unmap all mapped DMA memory associated with this command.
4000 *
4001 * LOCKING:
4002 * spin_lock_irqsave(host lock)
4003 */
4004 void ata_sg_clean(struct ata_queued_cmd *qc)
4005 {
4006 struct ata_port *ap = qc->ap;
4007 struct scatterlist *sg = qc->__sg;
4008 int dir = qc->dma_dir;
4009 void *pad_buf = NULL;
4010
4011 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4012 WARN_ON(sg == NULL);
4013
4014 if (qc->flags & ATA_QCFLAG_SINGLE)
4015 WARN_ON(qc->n_elem > 1);
4016
4017 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4018
4019 /* if we padded the buffer out to 32-bit bound, and data
4020 * xfer direction is from-device, we must copy from the
4021 * pad buffer back into the supplied buffer
4022 */
4023 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4024 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4025
4026 if (qc->flags & ATA_QCFLAG_SG) {
4027 if (qc->n_elem)
4028 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4029 /* restore last sg */
4030 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4031 if (pad_buf) {
4032 struct scatterlist *psg = &qc->pad_sgent;
4033 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4034 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4035 kunmap_atomic(addr, KM_IRQ0);
4036 }
4037 } else {
4038 if (qc->n_elem)
4039 dma_unmap_single(ap->dev,
4040 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4041 dir);
4042 /* restore sg */
4043 sg->length += qc->pad_len;
4044 if (pad_buf)
4045 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4046 pad_buf, qc->pad_len);
4047 }
4048
4049 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4050 qc->__sg = NULL;
4051 }
4052
4053 /**
4054 * ata_fill_sg - Fill PCI IDE PRD table
4055 * @qc: Metadata associated with taskfile to be transferred
4056 *
4057 * Fill PCI IDE PRD (scatter-gather) table with segments
4058 * associated with the current disk command.
4059 *
4060 * LOCKING:
4061 * spin_lock_irqsave(host lock)
4062 *
4063 */
4064 static void ata_fill_sg(struct ata_queued_cmd *qc)
4065 {
4066 struct ata_port *ap = qc->ap;
4067 struct scatterlist *sg;
4068 unsigned int idx;
4069
4070 WARN_ON(qc->__sg == NULL);
4071 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4072
4073 idx = 0;
4074 ata_for_each_sg(sg, qc) {
4075 u32 addr, offset;
4076 u32 sg_len, len;
4077
4078 /* determine if physical DMA addr spans 64K boundary.
4079 * Note h/w doesn't support 64-bit, so we unconditionally
4080 * truncate dma_addr_t to u32.
4081 */
4082 addr = (u32) sg_dma_address(sg);
4083 sg_len = sg_dma_len(sg);
4084
4085 while (sg_len) {
4086 offset = addr & 0xffff;
4087 len = sg_len;
4088 if ((offset + sg_len) > 0x10000)
4089 len = 0x10000 - offset;
4090
4091 ap->prd[idx].addr = cpu_to_le32(addr);
4092 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4093 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4094
4095 idx++;
4096 sg_len -= len;
4097 addr += len;
4098 }
4099 }
4100
4101 if (idx)
4102 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4103 }
4104
4105 /**
4106 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4107 * @qc: Metadata associated with taskfile to be transferred
4108 *
4109 * Fill PCI IDE PRD (scatter-gather) table with segments
4110 * associated with the current disk command. Perform the fill
4111 * so that we avoid writing any length 64K records for
4112 * controllers that don't follow the spec.
4113 *
4114 * LOCKING:
4115 * spin_lock_irqsave(host lock)
4116 *
4117 */
4118 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4119 {
4120 struct ata_port *ap = qc->ap;
4121 struct scatterlist *sg;
4122 unsigned int idx;
4123
4124 WARN_ON(qc->__sg == NULL);
4125 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4126
4127 idx = 0;
4128 ata_for_each_sg(sg, qc) {
4129 u32 addr, offset;
4130 u32 sg_len, len, blen;
4131
4132 /* determine if physical DMA addr spans 64K boundary.
4133 * Note h/w doesn't support 64-bit, so we unconditionally
4134 * truncate dma_addr_t to u32.
4135 */
4136 addr = (u32) sg_dma_address(sg);
4137 sg_len = sg_dma_len(sg);
4138
4139 while (sg_len) {
4140 offset = addr & 0xffff;
4141 len = sg_len;
4142 if ((offset + sg_len) > 0x10000)
4143 len = 0x10000 - offset;
4144
4145 blen = len & 0xffff;
4146 ap->prd[idx].addr = cpu_to_le32(addr);
4147 if (blen == 0) {
4148 /* Some PATA chipsets like the CS5530 can't
4149 cope with 0x0000 meaning 64K as the spec says */
4150 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4151 blen = 0x8000;
4152 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4153 }
4154 ap->prd[idx].flags_len = cpu_to_le32(blen);
4155 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4156
4157 idx++;
4158 sg_len -= len;
4159 addr += len;
4160 }
4161 }
4162
4163 if (idx)
4164 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4165 }
4166
4167 /**
4168 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4169 * @qc: Metadata associated with taskfile to check
4170 *
4171 * Allow low-level driver to filter ATA PACKET commands, returning
4172 * a status indicating whether or not it is OK to use DMA for the
4173 * supplied PACKET command.
4174 *
4175 * LOCKING:
4176 * spin_lock_irqsave(host lock)
4177 *
4178 * RETURNS: 0 when ATAPI DMA can be used
4179 * nonzero otherwise
4180 */
4181 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4182 {
4183 struct ata_port *ap = qc->ap;
4184
4185 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4186 * few ATAPI devices choke on such DMA requests.
4187 */
4188 if (unlikely(qc->nbytes & 15))
4189 return 1;
4190
4191 if (ap->ops->check_atapi_dma)
4192 return ap->ops->check_atapi_dma(qc);
4193
4194 return 0;
4195 }
4196
4197 /**
4198 * ata_qc_prep - Prepare taskfile for submission
4199 * @qc: Metadata associated with taskfile to be prepared
4200 *
4201 * Prepare ATA taskfile for submission.
4202 *
4203 * LOCKING:
4204 * spin_lock_irqsave(host lock)
4205 */
4206 void ata_qc_prep(struct ata_queued_cmd *qc)
4207 {
4208 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4209 return;
4210
4211 ata_fill_sg(qc);
4212 }
4213
4214 /**
4215 * ata_dumb_qc_prep - Prepare taskfile for submission
4216 * @qc: Metadata associated with taskfile to be prepared
4217 *
4218 * Prepare ATA taskfile for submission.
4219 *
4220 * LOCKING:
4221 * spin_lock_irqsave(host lock)
4222 */
4223 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4224 {
4225 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4226 return;
4227
4228 ata_fill_sg_dumb(qc);
4229 }
4230
4231 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4232
4233 /**
4234 * ata_sg_init_one - Associate command with memory buffer
4235 * @qc: Command to be associated
4236 * @buf: Memory buffer
4237 * @buflen: Length of memory buffer, in bytes.
4238 *
4239 * Initialize the data-related elements of queued_cmd @qc
4240 * to point to a single memory buffer, @buf of byte length @buflen.
4241 *
4242 * LOCKING:
4243 * spin_lock_irqsave(host lock)
4244 */
4245
4246 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4247 {
4248 qc->flags |= ATA_QCFLAG_SINGLE;
4249
4250 qc->__sg = &qc->sgent;
4251 qc->n_elem = 1;
4252 qc->orig_n_elem = 1;
4253 qc->buf_virt = buf;
4254 qc->nbytes = buflen;
4255
4256 sg_init_one(&qc->sgent, buf, buflen);
4257 }
4258
4259 /**
4260 * ata_sg_init - Associate command with scatter-gather table.
4261 * @qc: Command to be associated
4262 * @sg: Scatter-gather table.
4263 * @n_elem: Number of elements in s/g table.
4264 *
4265 * Initialize the data-related elements of queued_cmd @qc
4266 * to point to a scatter-gather table @sg, containing @n_elem
4267 * elements.
4268 *
4269 * LOCKING:
4270 * spin_lock_irqsave(host lock)
4271 */
4272
4273 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4274 unsigned int n_elem)
4275 {
4276 qc->flags |= ATA_QCFLAG_SG;
4277 qc->__sg = sg;
4278 qc->n_elem = n_elem;
4279 qc->orig_n_elem = n_elem;
4280 }
4281
4282 /**
4283 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4284 * @qc: Command with memory buffer to be mapped.
4285 *
4286 * DMA-map the memory buffer associated with queued_cmd @qc.
4287 *
4288 * LOCKING:
4289 * spin_lock_irqsave(host lock)
4290 *
4291 * RETURNS:
4292 * Zero on success, negative on error.
4293 */
4294
4295 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4296 {
4297 struct ata_port *ap = qc->ap;
4298 int dir = qc->dma_dir;
4299 struct scatterlist *sg = qc->__sg;
4300 dma_addr_t dma_address;
4301 int trim_sg = 0;
4302
4303 /* we must lengthen transfers to end on a 32-bit boundary */
4304 qc->pad_len = sg->length & 3;
4305 if (qc->pad_len) {
4306 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4307 struct scatterlist *psg = &qc->pad_sgent;
4308
4309 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4310
4311 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4312
4313 if (qc->tf.flags & ATA_TFLAG_WRITE)
4314 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4315 qc->pad_len);
4316
4317 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4318 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4319 /* trim sg */
4320 sg->length -= qc->pad_len;
4321 if (sg->length == 0)
4322 trim_sg = 1;
4323
4324 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4325 sg->length, qc->pad_len);
4326 }
4327
4328 if (trim_sg) {
4329 qc->n_elem--;
4330 goto skip_map;
4331 }
4332
4333 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4334 sg->length, dir);
4335 if (dma_mapping_error(dma_address)) {
4336 /* restore sg */
4337 sg->length += qc->pad_len;
4338 return -1;
4339 }
4340
4341 sg_dma_address(sg) = dma_address;
4342 sg_dma_len(sg) = sg->length;
4343
4344 skip_map:
4345 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4346 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4347
4348 return 0;
4349 }
4350
4351 /**
4352 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4353 * @qc: Command with scatter-gather table to be mapped.
4354 *
4355 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4356 *
4357 * LOCKING:
4358 * spin_lock_irqsave(host lock)
4359 *
4360 * RETURNS:
4361 * Zero on success, negative on error.
4362 *
4363 */
4364
4365 static int ata_sg_setup(struct ata_queued_cmd *qc)
4366 {
4367 struct ata_port *ap = qc->ap;
4368 struct scatterlist *sg = qc->__sg;
4369 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4370 int n_elem, pre_n_elem, dir, trim_sg = 0;
4371
4372 VPRINTK("ENTER, ata%u\n", ap->print_id);
4373 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4374
4375 /* we must lengthen transfers to end on a 32-bit boundary */
4376 qc->pad_len = lsg->length & 3;
4377 if (qc->pad_len) {
4378 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4379 struct scatterlist *psg = &qc->pad_sgent;
4380 unsigned int offset;
4381
4382 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4383
4384 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4385
4386 /*
4387 * psg->page/offset are used to copy to-be-written
4388 * data in this function or read data in ata_sg_clean.
4389 */
4390 offset = lsg->offset + lsg->length - qc->pad_len;
4391 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4392 psg->offset = offset_in_page(offset);
4393
4394 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4395 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4396 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4397 kunmap_atomic(addr, KM_IRQ0);
4398 }
4399
4400 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4401 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4402 /* trim last sg */
4403 lsg->length -= qc->pad_len;
4404 if (lsg->length == 0)
4405 trim_sg = 1;
4406
4407 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4408 qc->n_elem - 1, lsg->length, qc->pad_len);
4409 }
4410
4411 pre_n_elem = qc->n_elem;
4412 if (trim_sg && pre_n_elem)
4413 pre_n_elem--;
4414
4415 if (!pre_n_elem) {
4416 n_elem = 0;
4417 goto skip_map;
4418 }
4419
4420 dir = qc->dma_dir;
4421 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4422 if (n_elem < 1) {
4423 /* restore last sg */
4424 lsg->length += qc->pad_len;
4425 return -1;
4426 }
4427
4428 DPRINTK("%d sg elements mapped\n", n_elem);
4429
4430 skip_map:
4431 qc->n_elem = n_elem;
4432
4433 return 0;
4434 }
4435
4436 /**
4437 * swap_buf_le16 - swap halves of 16-bit words in place
4438 * @buf: Buffer to swap
4439 * @buf_words: Number of 16-bit words in buffer.
4440 *
4441 * Swap halves of 16-bit words if needed to convert from
4442 * little-endian byte order to native cpu byte order, or
4443 * vice-versa.
4444 *
4445 * LOCKING:
4446 * Inherited from caller.
4447 */
4448 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4449 {
4450 #ifdef __BIG_ENDIAN
4451 unsigned int i;
4452
4453 for (i = 0; i < buf_words; i++)
4454 buf[i] = le16_to_cpu(buf[i]);
4455 #endif /* __BIG_ENDIAN */
4456 }
4457
4458 /**
4459 * ata_data_xfer - Transfer data by PIO
4460 * @adev: device to target
4461 * @buf: data buffer
4462 * @buflen: buffer length
4463 * @write_data: read/write
4464 *
4465 * Transfer data from/to the device data register by PIO.
4466 *
4467 * LOCKING:
4468 * Inherited from caller.
4469 */
4470 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4471 unsigned int buflen, int write_data)
4472 {
4473 struct ata_port *ap = adev->ap;
4474 unsigned int words = buflen >> 1;
4475
4476 /* Transfer multiple of 2 bytes */
4477 if (write_data)
4478 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4479 else
4480 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4481
4482 /* Transfer trailing 1 byte, if any. */
4483 if (unlikely(buflen & 0x01)) {
4484 u16 align_buf[1] = { 0 };
4485 unsigned char *trailing_buf = buf + buflen - 1;
4486
4487 if (write_data) {
4488 memcpy(align_buf, trailing_buf, 1);
4489 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4490 } else {
4491 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4492 memcpy(trailing_buf, align_buf, 1);
4493 }
4494 }
4495 }
4496
4497 /**
4498 * ata_data_xfer_noirq - Transfer data by PIO
4499 * @adev: device to target
4500 * @buf: data buffer
4501 * @buflen: buffer length
4502 * @write_data: read/write
4503 *
4504 * Transfer data from/to the device data register by PIO. Do the
4505 * transfer with interrupts disabled.
4506 *
4507 * LOCKING:
4508 * Inherited from caller.
4509 */
4510 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4511 unsigned int buflen, int write_data)
4512 {
4513 unsigned long flags;
4514 local_irq_save(flags);
4515 ata_data_xfer(adev, buf, buflen, write_data);
4516 local_irq_restore(flags);
4517 }
4518
4519
4520 /**
4521 * ata_pio_sector - Transfer a sector of data.
4522 * @qc: Command on going
4523 *
4524 * Transfer qc->sect_size bytes of data from/to the ATA device.
4525 *
4526 * LOCKING:
4527 * Inherited from caller.
4528 */
4529
4530 static void ata_pio_sector(struct ata_queued_cmd *qc)
4531 {
4532 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4533 struct scatterlist *sg = qc->__sg;
4534 struct ata_port *ap = qc->ap;
4535 struct page *page;
4536 unsigned int offset;
4537 unsigned char *buf;
4538
4539 if (qc->curbytes == qc->nbytes - qc->sect_size)
4540 ap->hsm_task_state = HSM_ST_LAST;
4541
4542 page = sg[qc->cursg].page;
4543 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4544
4545 /* get the current page and offset */
4546 page = nth_page(page, (offset >> PAGE_SHIFT));
4547 offset %= PAGE_SIZE;
4548
4549 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4550
4551 if (PageHighMem(page)) {
4552 unsigned long flags;
4553
4554 /* FIXME: use a bounce buffer */
4555 local_irq_save(flags);
4556 buf = kmap_atomic(page, KM_IRQ0);
4557
4558 /* do the actual data transfer */
4559 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4560
4561 kunmap_atomic(buf, KM_IRQ0);
4562 local_irq_restore(flags);
4563 } else {
4564 buf = page_address(page);
4565 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4566 }
4567
4568 qc->curbytes += qc->sect_size;
4569 qc->cursg_ofs += qc->sect_size;
4570
4571 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4572 qc->cursg++;
4573 qc->cursg_ofs = 0;
4574 }
4575 }
4576
4577 /**
4578 * ata_pio_sectors - Transfer one or many sectors.
4579 * @qc: Command on going
4580 *
4581 * Transfer one or many sectors of data from/to the
4582 * ATA device for the DRQ request.
4583 *
4584 * LOCKING:
4585 * Inherited from caller.
4586 */
4587
4588 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4589 {
4590 if (is_multi_taskfile(&qc->tf)) {
4591 /* READ/WRITE MULTIPLE */
4592 unsigned int nsect;
4593
4594 WARN_ON(qc->dev->multi_count == 0);
4595
4596 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4597 qc->dev->multi_count);
4598 while (nsect--)
4599 ata_pio_sector(qc);
4600 } else
4601 ata_pio_sector(qc);
4602 }
4603
4604 /**
4605 * atapi_send_cdb - Write CDB bytes to hardware
4606 * @ap: Port to which ATAPI device is attached.
4607 * @qc: Taskfile currently active
4608 *
4609 * When device has indicated its readiness to accept
4610 * a CDB, this function is called. Send the CDB.
4611 *
4612 * LOCKING:
4613 * caller.
4614 */
4615
4616 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4617 {
4618 /* send SCSI cdb */
4619 DPRINTK("send cdb\n");
4620 WARN_ON(qc->dev->cdb_len < 12);
4621
4622 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4623 ata_altstatus(ap); /* flush */
4624
4625 switch (qc->tf.protocol) {
4626 case ATA_PROT_ATAPI:
4627 ap->hsm_task_state = HSM_ST;
4628 break;
4629 case ATA_PROT_ATAPI_NODATA:
4630 ap->hsm_task_state = HSM_ST_LAST;
4631 break;
4632 case ATA_PROT_ATAPI_DMA:
4633 ap->hsm_task_state = HSM_ST_LAST;
4634 /* initiate bmdma */
4635 ap->ops->bmdma_start(qc);
4636 break;
4637 }
4638 }
4639
4640 /**
4641 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4642 * @qc: Command on going
4643 * @bytes: number of bytes
4644 *
4645 * Transfer Transfer data from/to the ATAPI device.
4646 *
4647 * LOCKING:
4648 * Inherited from caller.
4649 *
4650 */
4651
4652 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4653 {
4654 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4655 struct scatterlist *sg = qc->__sg;
4656 struct ata_port *ap = qc->ap;
4657 struct page *page;
4658 unsigned char *buf;
4659 unsigned int offset, count;
4660
4661 if (qc->curbytes + bytes >= qc->nbytes)
4662 ap->hsm_task_state = HSM_ST_LAST;
4663
4664 next_sg:
4665 if (unlikely(qc->cursg >= qc->n_elem)) {
4666 /*
4667 * The end of qc->sg is reached and the device expects
4668 * more data to transfer. In order not to overrun qc->sg
4669 * and fulfill length specified in the byte count register,
4670 * - for read case, discard trailing data from the device
4671 * - for write case, padding zero data to the device
4672 */
4673 u16 pad_buf[1] = { 0 };
4674 unsigned int words = bytes >> 1;
4675 unsigned int i;
4676
4677 if (words) /* warning if bytes > 1 */
4678 ata_dev_printk(qc->dev, KERN_WARNING,
4679 "%u bytes trailing data\n", bytes);
4680
4681 for (i = 0; i < words; i++)
4682 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4683
4684 ap->hsm_task_state = HSM_ST_LAST;
4685 return;
4686 }
4687
4688 sg = &qc->__sg[qc->cursg];
4689
4690 page = sg->page;
4691 offset = sg->offset + qc->cursg_ofs;
4692
4693 /* get the current page and offset */
4694 page = nth_page(page, (offset >> PAGE_SHIFT));
4695 offset %= PAGE_SIZE;
4696
4697 /* don't overrun current sg */
4698 count = min(sg->length - qc->cursg_ofs, bytes);
4699
4700 /* don't cross page boundaries */
4701 count = min(count, (unsigned int)PAGE_SIZE - offset);
4702
4703 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4704
4705 if (PageHighMem(page)) {
4706 unsigned long flags;
4707
4708 /* FIXME: use bounce buffer */
4709 local_irq_save(flags);
4710 buf = kmap_atomic(page, KM_IRQ0);
4711
4712 /* do the actual data transfer */
4713 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4714
4715 kunmap_atomic(buf, KM_IRQ0);
4716 local_irq_restore(flags);
4717 } else {
4718 buf = page_address(page);
4719 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4720 }
4721
4722 bytes -= count;
4723 qc->curbytes += count;
4724 qc->cursg_ofs += count;
4725
4726 if (qc->cursg_ofs == sg->length) {
4727 qc->cursg++;
4728 qc->cursg_ofs = 0;
4729 }
4730
4731 if (bytes)
4732 goto next_sg;
4733 }
4734
4735 /**
4736 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4737 * @qc: Command on going
4738 *
4739 * Transfer Transfer data from/to the ATAPI device.
4740 *
4741 * LOCKING:
4742 * Inherited from caller.
4743 */
4744
4745 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4746 {
4747 struct ata_port *ap = qc->ap;
4748 struct ata_device *dev = qc->dev;
4749 unsigned int ireason, bc_lo, bc_hi, bytes;
4750 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4751
4752 /* Abuse qc->result_tf for temp storage of intermediate TF
4753 * here to save some kernel stack usage.
4754 * For normal completion, qc->result_tf is not relevant. For
4755 * error, qc->result_tf is later overwritten by ata_qc_complete().
4756 * So, the correctness of qc->result_tf is not affected.
4757 */
4758 ap->ops->tf_read(ap, &qc->result_tf);
4759 ireason = qc->result_tf.nsect;
4760 bc_lo = qc->result_tf.lbam;
4761 bc_hi = qc->result_tf.lbah;
4762 bytes = (bc_hi << 8) | bc_lo;
4763
4764 /* shall be cleared to zero, indicating xfer of data */
4765 if (ireason & (1 << 0))
4766 goto err_out;
4767
4768 /* make sure transfer direction matches expected */
4769 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4770 if (do_write != i_write)
4771 goto err_out;
4772
4773 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4774
4775 __atapi_pio_bytes(qc, bytes);
4776
4777 return;
4778
4779 err_out:
4780 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4781 qc->err_mask |= AC_ERR_HSM;
4782 ap->hsm_task_state = HSM_ST_ERR;
4783 }
4784
4785 /**
4786 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4787 * @ap: the target ata_port
4788 * @qc: qc on going
4789 *
4790 * RETURNS:
4791 * 1 if ok in workqueue, 0 otherwise.
4792 */
4793
4794 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4795 {
4796 if (qc->tf.flags & ATA_TFLAG_POLLING)
4797 return 1;
4798
4799 if (ap->hsm_task_state == HSM_ST_FIRST) {
4800 if (qc->tf.protocol == ATA_PROT_PIO &&
4801 (qc->tf.flags & ATA_TFLAG_WRITE))
4802 return 1;
4803
4804 if (is_atapi_taskfile(&qc->tf) &&
4805 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4806 return 1;
4807 }
4808
4809 return 0;
4810 }
4811
4812 /**
4813 * ata_hsm_qc_complete - finish a qc running on standard HSM
4814 * @qc: Command to complete
4815 * @in_wq: 1 if called from workqueue, 0 otherwise
4816 *
4817 * Finish @qc which is running on standard HSM.
4818 *
4819 * LOCKING:
4820 * If @in_wq is zero, spin_lock_irqsave(host lock).
4821 * Otherwise, none on entry and grabs host lock.
4822 */
4823 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4824 {
4825 struct ata_port *ap = qc->ap;
4826 unsigned long flags;
4827
4828 if (ap->ops->error_handler) {
4829 if (in_wq) {
4830 spin_lock_irqsave(ap->lock, flags);
4831
4832 /* EH might have kicked in while host lock is
4833 * released.
4834 */
4835 qc = ata_qc_from_tag(ap, qc->tag);
4836 if (qc) {
4837 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4838 ap->ops->irq_on(ap);
4839 ata_qc_complete(qc);
4840 } else
4841 ata_port_freeze(ap);
4842 }
4843
4844 spin_unlock_irqrestore(ap->lock, flags);
4845 } else {
4846 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4847 ata_qc_complete(qc);
4848 else
4849 ata_port_freeze(ap);
4850 }
4851 } else {
4852 if (in_wq) {
4853 spin_lock_irqsave(ap->lock, flags);
4854 ap->ops->irq_on(ap);
4855 ata_qc_complete(qc);
4856 spin_unlock_irqrestore(ap->lock, flags);
4857 } else
4858 ata_qc_complete(qc);
4859 }
4860 }
4861
4862 /**
4863 * ata_hsm_move - move the HSM to the next state.
4864 * @ap: the target ata_port
4865 * @qc: qc on going
4866 * @status: current device status
4867 * @in_wq: 1 if called from workqueue, 0 otherwise
4868 *
4869 * RETURNS:
4870 * 1 when poll next status needed, 0 otherwise.
4871 */
4872 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4873 u8 status, int in_wq)
4874 {
4875 unsigned long flags = 0;
4876 int poll_next;
4877
4878 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4879
4880 /* Make sure ata_qc_issue_prot() does not throw things
4881 * like DMA polling into the workqueue. Notice that
4882 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4883 */
4884 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4885
4886 fsm_start:
4887 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4888 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4889
4890 switch (ap->hsm_task_state) {
4891 case HSM_ST_FIRST:
4892 /* Send first data block or PACKET CDB */
4893
4894 /* If polling, we will stay in the work queue after
4895 * sending the data. Otherwise, interrupt handler
4896 * takes over after sending the data.
4897 */
4898 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4899
4900 /* check device status */
4901 if (unlikely((status & ATA_DRQ) == 0)) {
4902 /* handle BSY=0, DRQ=0 as error */
4903 if (likely(status & (ATA_ERR | ATA_DF)))
4904 /* device stops HSM for abort/error */
4905 qc->err_mask |= AC_ERR_DEV;
4906 else
4907 /* HSM violation. Let EH handle this */
4908 qc->err_mask |= AC_ERR_HSM;
4909
4910 ap->hsm_task_state = HSM_ST_ERR;
4911 goto fsm_start;
4912 }
4913
4914 /* Device should not ask for data transfer (DRQ=1)
4915 * when it finds something wrong.
4916 * We ignore DRQ here and stop the HSM by
4917 * changing hsm_task_state to HSM_ST_ERR and
4918 * let the EH abort the command or reset the device.
4919 */
4920 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4921 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4922 "error, dev_stat 0x%X\n", status);
4923 qc->err_mask |= AC_ERR_HSM;
4924 ap->hsm_task_state = HSM_ST_ERR;
4925 goto fsm_start;
4926 }
4927
4928 /* Send the CDB (atapi) or the first data block (ata pio out).
4929 * During the state transition, interrupt handler shouldn't
4930 * be invoked before the data transfer is complete and
4931 * hsm_task_state is changed. Hence, the following locking.
4932 */
4933 if (in_wq)
4934 spin_lock_irqsave(ap->lock, flags);
4935
4936 if (qc->tf.protocol == ATA_PROT_PIO) {
4937 /* PIO data out protocol.
4938 * send first data block.
4939 */
4940
4941 /* ata_pio_sectors() might change the state
4942 * to HSM_ST_LAST. so, the state is changed here
4943 * before ata_pio_sectors().
4944 */
4945 ap->hsm_task_state = HSM_ST;
4946 ata_pio_sectors(qc);
4947 ata_altstatus(ap); /* flush */
4948 } else
4949 /* send CDB */
4950 atapi_send_cdb(ap, qc);
4951
4952 if (in_wq)
4953 spin_unlock_irqrestore(ap->lock, flags);
4954
4955 /* if polling, ata_pio_task() handles the rest.
4956 * otherwise, interrupt handler takes over from here.
4957 */
4958 break;
4959
4960 case HSM_ST:
4961 /* complete command or read/write the data register */
4962 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4963 /* ATAPI PIO protocol */
4964 if ((status & ATA_DRQ) == 0) {
4965 /* No more data to transfer or device error.
4966 * Device error will be tagged in HSM_ST_LAST.
4967 */
4968 ap->hsm_task_state = HSM_ST_LAST;
4969 goto fsm_start;
4970 }
4971
4972 /* Device should not ask for data transfer (DRQ=1)
4973 * when it finds something wrong.
4974 * We ignore DRQ here and stop the HSM by
4975 * changing hsm_task_state to HSM_ST_ERR and
4976 * let the EH abort the command or reset the device.
4977 */
4978 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4979 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4980 "device error, dev_stat 0x%X\n",
4981 status);
4982 qc->err_mask |= AC_ERR_HSM;
4983 ap->hsm_task_state = HSM_ST_ERR;
4984 goto fsm_start;
4985 }
4986
4987 atapi_pio_bytes(qc);
4988
4989 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4990 /* bad ireason reported by device */
4991 goto fsm_start;
4992
4993 } else {
4994 /* ATA PIO protocol */
4995 if (unlikely((status & ATA_DRQ) == 0)) {
4996 /* handle BSY=0, DRQ=0 as error */
4997 if (likely(status & (ATA_ERR | ATA_DF)))
4998 /* device stops HSM for abort/error */
4999 qc->err_mask |= AC_ERR_DEV;
5000 else
5001 /* HSM violation. Let EH handle this.
5002 * Phantom devices also trigger this
5003 * condition. Mark hint.
5004 */
5005 qc->err_mask |= AC_ERR_HSM |
5006 AC_ERR_NODEV_HINT;
5007
5008 ap->hsm_task_state = HSM_ST_ERR;
5009 goto fsm_start;
5010 }
5011
5012 /* For PIO reads, some devices may ask for
5013 * data transfer (DRQ=1) alone with ERR=1.
5014 * We respect DRQ here and transfer one
5015 * block of junk data before changing the
5016 * hsm_task_state to HSM_ST_ERR.
5017 *
5018 * For PIO writes, ERR=1 DRQ=1 doesn't make
5019 * sense since the data block has been
5020 * transferred to the device.
5021 */
5022 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5023 /* data might be corrputed */
5024 qc->err_mask |= AC_ERR_DEV;
5025
5026 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5027 ata_pio_sectors(qc);
5028 ata_altstatus(ap);
5029 status = ata_wait_idle(ap);
5030 }
5031
5032 if (status & (ATA_BUSY | ATA_DRQ))
5033 qc->err_mask |= AC_ERR_HSM;
5034
5035 /* ata_pio_sectors() might change the
5036 * state to HSM_ST_LAST. so, the state
5037 * is changed after ata_pio_sectors().
5038 */
5039 ap->hsm_task_state = HSM_ST_ERR;
5040 goto fsm_start;
5041 }
5042
5043 ata_pio_sectors(qc);
5044
5045 if (ap->hsm_task_state == HSM_ST_LAST &&
5046 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5047 /* all data read */
5048 ata_altstatus(ap);
5049 status = ata_wait_idle(ap);
5050 goto fsm_start;
5051 }
5052 }
5053
5054 ata_altstatus(ap); /* flush */
5055 poll_next = 1;
5056 break;
5057
5058 case HSM_ST_LAST:
5059 if (unlikely(!ata_ok(status))) {
5060 qc->err_mask |= __ac_err_mask(status);
5061 ap->hsm_task_state = HSM_ST_ERR;
5062 goto fsm_start;
5063 }
5064
5065 /* no more data to transfer */
5066 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5067 ap->print_id, qc->dev->devno, status);
5068
5069 WARN_ON(qc->err_mask);
5070
5071 ap->hsm_task_state = HSM_ST_IDLE;
5072
5073 /* complete taskfile transaction */
5074 ata_hsm_qc_complete(qc, in_wq);
5075
5076 poll_next = 0;
5077 break;
5078
5079 case HSM_ST_ERR:
5080 /* make sure qc->err_mask is available to
5081 * know what's wrong and recover
5082 */
5083 WARN_ON(qc->err_mask == 0);
5084
5085 ap->hsm_task_state = HSM_ST_IDLE;
5086
5087 /* complete taskfile transaction */
5088 ata_hsm_qc_complete(qc, in_wq);
5089
5090 poll_next = 0;
5091 break;
5092 default:
5093 poll_next = 0;
5094 BUG();
5095 }
5096
5097 return poll_next;
5098 }
5099
5100 static void ata_pio_task(struct work_struct *work)
5101 {
5102 struct ata_port *ap =
5103 container_of(work, struct ata_port, port_task.work);
5104 struct ata_queued_cmd *qc = ap->port_task_data;
5105 u8 status;
5106 int poll_next;
5107
5108 fsm_start:
5109 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5110
5111 /*
5112 * This is purely heuristic. This is a fast path.
5113 * Sometimes when we enter, BSY will be cleared in
5114 * a chk-status or two. If not, the drive is probably seeking
5115 * or something. Snooze for a couple msecs, then
5116 * chk-status again. If still busy, queue delayed work.
5117 */
5118 status = ata_busy_wait(ap, ATA_BUSY, 5);
5119 if (status & ATA_BUSY) {
5120 msleep(2);
5121 status = ata_busy_wait(ap, ATA_BUSY, 10);
5122 if (status & ATA_BUSY) {
5123 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5124 return;
5125 }
5126 }
5127
5128 /* move the HSM */
5129 poll_next = ata_hsm_move(ap, qc, status, 1);
5130
5131 /* another command or interrupt handler
5132 * may be running at this point.
5133 */
5134 if (poll_next)
5135 goto fsm_start;
5136 }
5137
5138 /**
5139 * ata_qc_new - Request an available ATA command, for queueing
5140 * @ap: Port associated with device @dev
5141 * @dev: Device from whom we request an available command structure
5142 *
5143 * LOCKING:
5144 * None.
5145 */
5146
5147 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5148 {
5149 struct ata_queued_cmd *qc = NULL;
5150 unsigned int i;
5151
5152 /* no command while frozen */
5153 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5154 return NULL;
5155
5156 /* the last tag is reserved for internal command. */
5157 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5158 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5159 qc = __ata_qc_from_tag(ap, i);
5160 break;
5161 }
5162
5163 if (qc)
5164 qc->tag = i;
5165
5166 return qc;
5167 }
5168
5169 /**
5170 * ata_qc_new_init - Request an available ATA command, and initialize it
5171 * @dev: Device from whom we request an available command structure
5172 *
5173 * LOCKING:
5174 * None.
5175 */
5176
5177 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5178 {
5179 struct ata_port *ap = dev->ap;
5180 struct ata_queued_cmd *qc;
5181
5182 qc = ata_qc_new(ap);
5183 if (qc) {
5184 qc->scsicmd = NULL;
5185 qc->ap = ap;
5186 qc->dev = dev;
5187
5188 ata_qc_reinit(qc);
5189 }
5190
5191 return qc;
5192 }
5193
5194 /**
5195 * ata_qc_free - free unused ata_queued_cmd
5196 * @qc: Command to complete
5197 *
5198 * Designed to free unused ata_queued_cmd object
5199 * in case something prevents using it.
5200 *
5201 * LOCKING:
5202 * spin_lock_irqsave(host lock)
5203 */
5204 void ata_qc_free(struct ata_queued_cmd *qc)
5205 {
5206 struct ata_port *ap = qc->ap;
5207 unsigned int tag;
5208
5209 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5210
5211 qc->flags = 0;
5212 tag = qc->tag;
5213 if (likely(ata_tag_valid(tag))) {
5214 qc->tag = ATA_TAG_POISON;
5215 clear_bit(tag, &ap->qc_allocated);
5216 }
5217 }
5218
5219 void __ata_qc_complete(struct ata_queued_cmd *qc)
5220 {
5221 struct ata_port *ap = qc->ap;
5222
5223 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5224 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5225
5226 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5227 ata_sg_clean(qc);
5228
5229 /* command should be marked inactive atomically with qc completion */
5230 if (qc->tf.protocol == ATA_PROT_NCQ)
5231 ap->sactive &= ~(1 << qc->tag);
5232 else
5233 ap->active_tag = ATA_TAG_POISON;
5234
5235 /* atapi: mark qc as inactive to prevent the interrupt handler
5236 * from completing the command twice later, before the error handler
5237 * is called. (when rc != 0 and atapi request sense is needed)
5238 */
5239 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5240 ap->qc_active &= ~(1 << qc->tag);
5241
5242 /* call completion callback */
5243 qc->complete_fn(qc);
5244 }
5245
5246 static void fill_result_tf(struct ata_queued_cmd *qc)
5247 {
5248 struct ata_port *ap = qc->ap;
5249
5250 qc->result_tf.flags = qc->tf.flags;
5251 ap->ops->tf_read(ap, &qc->result_tf);
5252 }
5253
5254 /**
5255 * ata_qc_complete - Complete an active ATA command
5256 * @qc: Command to complete
5257 * @err_mask: ATA Status register contents
5258 *
5259 * Indicate to the mid and upper layers that an ATA
5260 * command has completed, with either an ok or not-ok status.
5261 *
5262 * LOCKING:
5263 * spin_lock_irqsave(host lock)
5264 */
5265 void ata_qc_complete(struct ata_queued_cmd *qc)
5266 {
5267 struct ata_port *ap = qc->ap;
5268
5269 /* XXX: New EH and old EH use different mechanisms to
5270 * synchronize EH with regular execution path.
5271 *
5272 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5273 * Normal execution path is responsible for not accessing a
5274 * failed qc. libata core enforces the rule by returning NULL
5275 * from ata_qc_from_tag() for failed qcs.
5276 *
5277 * Old EH depends on ata_qc_complete() nullifying completion
5278 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5279 * not synchronize with interrupt handler. Only PIO task is
5280 * taken care of.
5281 */
5282 if (ap->ops->error_handler) {
5283 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5284
5285 if (unlikely(qc->err_mask))
5286 qc->flags |= ATA_QCFLAG_FAILED;
5287
5288 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5289 if (!ata_tag_internal(qc->tag)) {
5290 /* always fill result TF for failed qc */
5291 fill_result_tf(qc);
5292 ata_qc_schedule_eh(qc);
5293 return;
5294 }
5295 }
5296
5297 /* read result TF if requested */
5298 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5299 fill_result_tf(qc);
5300
5301 __ata_qc_complete(qc);
5302 } else {
5303 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5304 return;
5305
5306 /* read result TF if failed or requested */
5307 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5308 fill_result_tf(qc);
5309
5310 __ata_qc_complete(qc);
5311 }
5312 }
5313
5314 /**
5315 * ata_qc_complete_multiple - Complete multiple qcs successfully
5316 * @ap: port in question
5317 * @qc_active: new qc_active mask
5318 * @finish_qc: LLDD callback invoked before completing a qc
5319 *
5320 * Complete in-flight commands. This functions is meant to be
5321 * called from low-level driver's interrupt routine to complete
5322 * requests normally. ap->qc_active and @qc_active is compared
5323 * and commands are completed accordingly.
5324 *
5325 * LOCKING:
5326 * spin_lock_irqsave(host lock)
5327 *
5328 * RETURNS:
5329 * Number of completed commands on success, -errno otherwise.
5330 */
5331 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5332 void (*finish_qc)(struct ata_queued_cmd *))
5333 {
5334 int nr_done = 0;
5335 u32 done_mask;
5336 int i;
5337
5338 done_mask = ap->qc_active ^ qc_active;
5339
5340 if (unlikely(done_mask & qc_active)) {
5341 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5342 "(%08x->%08x)\n", ap->qc_active, qc_active);
5343 return -EINVAL;
5344 }
5345
5346 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5347 struct ata_queued_cmd *qc;
5348
5349 if (!(done_mask & (1 << i)))
5350 continue;
5351
5352 if ((qc = ata_qc_from_tag(ap, i))) {
5353 if (finish_qc)
5354 finish_qc(qc);
5355 ata_qc_complete(qc);
5356 nr_done++;
5357 }
5358 }
5359
5360 return nr_done;
5361 }
5362
5363 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5364 {
5365 struct ata_port *ap = qc->ap;
5366
5367 switch (qc->tf.protocol) {
5368 case ATA_PROT_NCQ:
5369 case ATA_PROT_DMA:
5370 case ATA_PROT_ATAPI_DMA:
5371 return 1;
5372
5373 case ATA_PROT_ATAPI:
5374 case ATA_PROT_PIO:
5375 if (ap->flags & ATA_FLAG_PIO_DMA)
5376 return 1;
5377
5378 /* fall through */
5379
5380 default:
5381 return 0;
5382 }
5383
5384 /* never reached */
5385 }
5386
5387 /**
5388 * ata_qc_issue - issue taskfile to device
5389 * @qc: command to issue to device
5390 *
5391 * Prepare an ATA command to submission to device.
5392 * This includes mapping the data into a DMA-able
5393 * area, filling in the S/G table, and finally
5394 * writing the taskfile to hardware, starting the command.
5395 *
5396 * LOCKING:
5397 * spin_lock_irqsave(host lock)
5398 */
5399 void ata_qc_issue(struct ata_queued_cmd *qc)
5400 {
5401 struct ata_port *ap = qc->ap;
5402
5403 /* Make sure only one non-NCQ command is outstanding. The
5404 * check is skipped for old EH because it reuses active qc to
5405 * request ATAPI sense.
5406 */
5407 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5408
5409 if (qc->tf.protocol == ATA_PROT_NCQ) {
5410 WARN_ON(ap->sactive & (1 << qc->tag));
5411 ap->sactive |= 1 << qc->tag;
5412 } else {
5413 WARN_ON(ap->sactive);
5414 ap->active_tag = qc->tag;
5415 }
5416
5417 qc->flags |= ATA_QCFLAG_ACTIVE;
5418 ap->qc_active |= 1 << qc->tag;
5419
5420 if (ata_should_dma_map(qc)) {
5421 if (qc->flags & ATA_QCFLAG_SG) {
5422 if (ata_sg_setup(qc))
5423 goto sg_err;
5424 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5425 if (ata_sg_setup_one(qc))
5426 goto sg_err;
5427 }
5428 } else {
5429 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5430 }
5431
5432 ap->ops->qc_prep(qc);
5433
5434 qc->err_mask |= ap->ops->qc_issue(qc);
5435 if (unlikely(qc->err_mask))
5436 goto err;
5437 return;
5438
5439 sg_err:
5440 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5441 qc->err_mask |= AC_ERR_SYSTEM;
5442 err:
5443 ata_qc_complete(qc);
5444 }
5445
5446 /**
5447 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5448 * @qc: command to issue to device
5449 *
5450 * Using various libata functions and hooks, this function
5451 * starts an ATA command. ATA commands are grouped into
5452 * classes called "protocols", and issuing each type of protocol
5453 * is slightly different.
5454 *
5455 * May be used as the qc_issue() entry in ata_port_operations.
5456 *
5457 * LOCKING:
5458 * spin_lock_irqsave(host lock)
5459 *
5460 * RETURNS:
5461 * Zero on success, AC_ERR_* mask on failure
5462 */
5463
5464 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5465 {
5466 struct ata_port *ap = qc->ap;
5467
5468 /* Use polling pio if the LLD doesn't handle
5469 * interrupt driven pio and atapi CDB interrupt.
5470 */
5471 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5472 switch (qc->tf.protocol) {
5473 case ATA_PROT_PIO:
5474 case ATA_PROT_NODATA:
5475 case ATA_PROT_ATAPI:
5476 case ATA_PROT_ATAPI_NODATA:
5477 qc->tf.flags |= ATA_TFLAG_POLLING;
5478 break;
5479 case ATA_PROT_ATAPI_DMA:
5480 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5481 /* see ata_dma_blacklisted() */
5482 BUG();
5483 break;
5484 default:
5485 break;
5486 }
5487 }
5488
5489 /* select the device */
5490 ata_dev_select(ap, qc->dev->devno, 1, 0);
5491
5492 /* start the command */
5493 switch (qc->tf.protocol) {
5494 case ATA_PROT_NODATA:
5495 if (qc->tf.flags & ATA_TFLAG_POLLING)
5496 ata_qc_set_polling(qc);
5497
5498 ata_tf_to_host(ap, &qc->tf);
5499 ap->hsm_task_state = HSM_ST_LAST;
5500
5501 if (qc->tf.flags & ATA_TFLAG_POLLING)
5502 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5503
5504 break;
5505
5506 case ATA_PROT_DMA:
5507 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5508
5509 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5510 ap->ops->bmdma_setup(qc); /* set up bmdma */
5511 ap->ops->bmdma_start(qc); /* initiate bmdma */
5512 ap->hsm_task_state = HSM_ST_LAST;
5513 break;
5514
5515 case ATA_PROT_PIO:
5516 if (qc->tf.flags & ATA_TFLAG_POLLING)
5517 ata_qc_set_polling(qc);
5518
5519 ata_tf_to_host(ap, &qc->tf);
5520
5521 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5522 /* PIO data out protocol */
5523 ap->hsm_task_state = HSM_ST_FIRST;
5524 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5525
5526 /* always send first data block using
5527 * the ata_pio_task() codepath.
5528 */
5529 } else {
5530 /* PIO data in protocol */
5531 ap->hsm_task_state = HSM_ST;
5532
5533 if (qc->tf.flags & ATA_TFLAG_POLLING)
5534 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5535
5536 /* if polling, ata_pio_task() handles the rest.
5537 * otherwise, interrupt handler takes over from here.
5538 */
5539 }
5540
5541 break;
5542
5543 case ATA_PROT_ATAPI:
5544 case ATA_PROT_ATAPI_NODATA:
5545 if (qc->tf.flags & ATA_TFLAG_POLLING)
5546 ata_qc_set_polling(qc);
5547
5548 ata_tf_to_host(ap, &qc->tf);
5549
5550 ap->hsm_task_state = HSM_ST_FIRST;
5551
5552 /* send cdb by polling if no cdb interrupt */
5553 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5554 (qc->tf.flags & ATA_TFLAG_POLLING))
5555 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5556 break;
5557
5558 case ATA_PROT_ATAPI_DMA:
5559 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5560
5561 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5562 ap->ops->bmdma_setup(qc); /* set up bmdma */
5563 ap->hsm_task_state = HSM_ST_FIRST;
5564
5565 /* send cdb by polling if no cdb interrupt */
5566 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5567 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5568 break;
5569
5570 default:
5571 WARN_ON(1);
5572 return AC_ERR_SYSTEM;
5573 }
5574
5575 return 0;
5576 }
5577
5578 /**
5579 * ata_host_intr - Handle host interrupt for given (port, task)
5580 * @ap: Port on which interrupt arrived (possibly...)
5581 * @qc: Taskfile currently active in engine
5582 *
5583 * Handle host interrupt for given queued command. Currently,
5584 * only DMA interrupts are handled. All other commands are
5585 * handled via polling with interrupts disabled (nIEN bit).
5586 *
5587 * LOCKING:
5588 * spin_lock_irqsave(host lock)
5589 *
5590 * RETURNS:
5591 * One if interrupt was handled, zero if not (shared irq).
5592 */
5593
5594 inline unsigned int ata_host_intr (struct ata_port *ap,
5595 struct ata_queued_cmd *qc)
5596 {
5597 struct ata_eh_info *ehi = &ap->eh_info;
5598 u8 status, host_stat = 0;
5599
5600 VPRINTK("ata%u: protocol %d task_state %d\n",
5601 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5602
5603 /* Check whether we are expecting interrupt in this state */
5604 switch (ap->hsm_task_state) {
5605 case HSM_ST_FIRST:
5606 /* Some pre-ATAPI-4 devices assert INTRQ
5607 * at this state when ready to receive CDB.
5608 */
5609
5610 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5611 * The flag was turned on only for atapi devices.
5612 * No need to check is_atapi_taskfile(&qc->tf) again.
5613 */
5614 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5615 goto idle_irq;
5616 break;
5617 case HSM_ST_LAST:
5618 if (qc->tf.protocol == ATA_PROT_DMA ||
5619 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5620 /* check status of DMA engine */
5621 host_stat = ap->ops->bmdma_status(ap);
5622 VPRINTK("ata%u: host_stat 0x%X\n",
5623 ap->print_id, host_stat);
5624
5625 /* if it's not our irq... */
5626 if (!(host_stat & ATA_DMA_INTR))
5627 goto idle_irq;
5628
5629 /* before we do anything else, clear DMA-Start bit */
5630 ap->ops->bmdma_stop(qc);
5631
5632 if (unlikely(host_stat & ATA_DMA_ERR)) {
5633 /* error when transfering data to/from memory */
5634 qc->err_mask |= AC_ERR_HOST_BUS;
5635 ap->hsm_task_state = HSM_ST_ERR;
5636 }
5637 }
5638 break;
5639 case HSM_ST:
5640 break;
5641 default:
5642 goto idle_irq;
5643 }
5644
5645 /* check altstatus */
5646 status = ata_altstatus(ap);
5647 if (status & ATA_BUSY)
5648 goto idle_irq;
5649
5650 /* check main status, clearing INTRQ */
5651 status = ata_chk_status(ap);
5652 if (unlikely(status & ATA_BUSY))
5653 goto idle_irq;
5654
5655 /* ack bmdma irq events */
5656 ap->ops->irq_clear(ap);
5657
5658 ata_hsm_move(ap, qc, status, 0);
5659
5660 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5661 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5662 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5663
5664 return 1; /* irq handled */
5665
5666 idle_irq:
5667 ap->stats.idle_irq++;
5668
5669 #ifdef ATA_IRQ_TRAP
5670 if ((ap->stats.idle_irq % 1000) == 0) {
5671 ap->ops->irq_ack(ap, 0); /* debug trap */
5672 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5673 return 1;
5674 }
5675 #endif
5676 return 0; /* irq not handled */
5677 }
5678
5679 /**
5680 * ata_interrupt - Default ATA host interrupt handler
5681 * @irq: irq line (unused)
5682 * @dev_instance: pointer to our ata_host information structure
5683 *
5684 * Default interrupt handler for PCI IDE devices. Calls
5685 * ata_host_intr() for each port that is not disabled.
5686 *
5687 * LOCKING:
5688 * Obtains host lock during operation.
5689 *
5690 * RETURNS:
5691 * IRQ_NONE or IRQ_HANDLED.
5692 */
5693
5694 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5695 {
5696 struct ata_host *host = dev_instance;
5697 unsigned int i;
5698 unsigned int handled = 0;
5699 unsigned long flags;
5700
5701 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5702 spin_lock_irqsave(&host->lock, flags);
5703
5704 for (i = 0; i < host->n_ports; i++) {
5705 struct ata_port *ap;
5706
5707 ap = host->ports[i];
5708 if (ap &&
5709 !(ap->flags & ATA_FLAG_DISABLED)) {
5710 struct ata_queued_cmd *qc;
5711
5712 qc = ata_qc_from_tag(ap, ap->active_tag);
5713 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5714 (qc->flags & ATA_QCFLAG_ACTIVE))
5715 handled |= ata_host_intr(ap, qc);
5716 }
5717 }
5718
5719 spin_unlock_irqrestore(&host->lock, flags);
5720
5721 return IRQ_RETVAL(handled);
5722 }
5723
5724 /**
5725 * sata_scr_valid - test whether SCRs are accessible
5726 * @ap: ATA port to test SCR accessibility for
5727 *
5728 * Test whether SCRs are accessible for @ap.
5729 *
5730 * LOCKING:
5731 * None.
5732 *
5733 * RETURNS:
5734 * 1 if SCRs are accessible, 0 otherwise.
5735 */
5736 int sata_scr_valid(struct ata_port *ap)
5737 {
5738 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5739 }
5740
5741 /**
5742 * sata_scr_read - read SCR register of the specified port
5743 * @ap: ATA port to read SCR for
5744 * @reg: SCR to read
5745 * @val: Place to store read value
5746 *
5747 * Read SCR register @reg of @ap into *@val. This function is
5748 * guaranteed to succeed if the cable type of the port is SATA
5749 * and the port implements ->scr_read.
5750 *
5751 * LOCKING:
5752 * None.
5753 *
5754 * RETURNS:
5755 * 0 on success, negative errno on failure.
5756 */
5757 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5758 {
5759 if (sata_scr_valid(ap)) {
5760 *val = ap->ops->scr_read(ap, reg);
5761 return 0;
5762 }
5763 return -EOPNOTSUPP;
5764 }
5765
5766 /**
5767 * sata_scr_write - write SCR register of the specified port
5768 * @ap: ATA port to write SCR for
5769 * @reg: SCR to write
5770 * @val: value to write
5771 *
5772 * Write @val to SCR register @reg of @ap. This function is
5773 * guaranteed to succeed if the cable type of the port is SATA
5774 * and the port implements ->scr_read.
5775 *
5776 * LOCKING:
5777 * None.
5778 *
5779 * RETURNS:
5780 * 0 on success, negative errno on failure.
5781 */
5782 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5783 {
5784 if (sata_scr_valid(ap)) {
5785 ap->ops->scr_write(ap, reg, val);
5786 return 0;
5787 }
5788 return -EOPNOTSUPP;
5789 }
5790
5791 /**
5792 * sata_scr_write_flush - write SCR register of the specified port and flush
5793 * @ap: ATA port to write SCR for
5794 * @reg: SCR to write
5795 * @val: value to write
5796 *
5797 * This function is identical to sata_scr_write() except that this
5798 * function performs flush after writing to the register.
5799 *
5800 * LOCKING:
5801 * None.
5802 *
5803 * RETURNS:
5804 * 0 on success, negative errno on failure.
5805 */
5806 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5807 {
5808 if (sata_scr_valid(ap)) {
5809 ap->ops->scr_write(ap, reg, val);
5810 ap->ops->scr_read(ap, reg);
5811 return 0;
5812 }
5813 return -EOPNOTSUPP;
5814 }
5815
5816 /**
5817 * ata_port_online - test whether the given port is online
5818 * @ap: ATA port to test
5819 *
5820 * Test whether @ap is online. Note that this function returns 0
5821 * if online status of @ap cannot be obtained, so
5822 * ata_port_online(ap) != !ata_port_offline(ap).
5823 *
5824 * LOCKING:
5825 * None.
5826 *
5827 * RETURNS:
5828 * 1 if the port online status is available and online.
5829 */
5830 int ata_port_online(struct ata_port *ap)
5831 {
5832 u32 sstatus;
5833
5834 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5835 return 1;
5836 return 0;
5837 }
5838
5839 /**
5840 * ata_port_offline - test whether the given port is offline
5841 * @ap: ATA port to test
5842 *
5843 * Test whether @ap is offline. Note that this function returns
5844 * 0 if offline status of @ap cannot be obtained, so
5845 * ata_port_online(ap) != !ata_port_offline(ap).
5846 *
5847 * LOCKING:
5848 * None.
5849 *
5850 * RETURNS:
5851 * 1 if the port offline status is available and offline.
5852 */
5853 int ata_port_offline(struct ata_port *ap)
5854 {
5855 u32 sstatus;
5856
5857 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5858 return 1;
5859 return 0;
5860 }
5861
5862 int ata_flush_cache(struct ata_device *dev)
5863 {
5864 unsigned int err_mask;
5865 u8 cmd;
5866
5867 if (!ata_try_flush_cache(dev))
5868 return 0;
5869
5870 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5871 cmd = ATA_CMD_FLUSH_EXT;
5872 else
5873 cmd = ATA_CMD_FLUSH;
5874
5875 err_mask = ata_do_simple_cmd(dev, cmd);
5876 if (err_mask) {
5877 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5878 return -EIO;
5879 }
5880
5881 return 0;
5882 }
5883
5884 #ifdef CONFIG_PM
5885 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5886 unsigned int action, unsigned int ehi_flags,
5887 int wait)
5888 {
5889 unsigned long flags;
5890 int i, rc;
5891
5892 for (i = 0; i < host->n_ports; i++) {
5893 struct ata_port *ap = host->ports[i];
5894
5895 /* Previous resume operation might still be in
5896 * progress. Wait for PM_PENDING to clear.
5897 */
5898 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5899 ata_port_wait_eh(ap);
5900 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5901 }
5902
5903 /* request PM ops to EH */
5904 spin_lock_irqsave(ap->lock, flags);
5905
5906 ap->pm_mesg = mesg;
5907 if (wait) {
5908 rc = 0;
5909 ap->pm_result = &rc;
5910 }
5911
5912 ap->pflags |= ATA_PFLAG_PM_PENDING;
5913 ap->eh_info.action |= action;
5914 ap->eh_info.flags |= ehi_flags;
5915
5916 ata_port_schedule_eh(ap);
5917
5918 spin_unlock_irqrestore(ap->lock, flags);
5919
5920 /* wait and check result */
5921 if (wait) {
5922 ata_port_wait_eh(ap);
5923 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5924 if (rc)
5925 return rc;
5926 }
5927 }
5928
5929 return 0;
5930 }
5931
5932 /**
5933 * ata_host_suspend - suspend host
5934 * @host: host to suspend
5935 * @mesg: PM message
5936 *
5937 * Suspend @host. Actual operation is performed by EH. This
5938 * function requests EH to perform PM operations and waits for EH
5939 * to finish.
5940 *
5941 * LOCKING:
5942 * Kernel thread context (may sleep).
5943 *
5944 * RETURNS:
5945 * 0 on success, -errno on failure.
5946 */
5947 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5948 {
5949 int rc;
5950
5951 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5952 if (rc == 0)
5953 host->dev->power.power_state = mesg;
5954 return rc;
5955 }
5956
5957 /**
5958 * ata_host_resume - resume host
5959 * @host: host to resume
5960 *
5961 * Resume @host. Actual operation is performed by EH. This
5962 * function requests EH to perform PM operations and returns.
5963 * Note that all resume operations are performed parallely.
5964 *
5965 * LOCKING:
5966 * Kernel thread context (may sleep).
5967 */
5968 void ata_host_resume(struct ata_host *host)
5969 {
5970 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5971 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5972 host->dev->power.power_state = PMSG_ON;
5973 }
5974 #endif
5975
5976 /**
5977 * ata_port_start - Set port up for dma.
5978 * @ap: Port to initialize
5979 *
5980 * Called just after data structures for each port are
5981 * initialized. Allocates space for PRD table.
5982 *
5983 * May be used as the port_start() entry in ata_port_operations.
5984 *
5985 * LOCKING:
5986 * Inherited from caller.
5987 */
5988 int ata_port_start(struct ata_port *ap)
5989 {
5990 struct device *dev = ap->dev;
5991 int rc;
5992
5993 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5994 GFP_KERNEL);
5995 if (!ap->prd)
5996 return -ENOMEM;
5997
5998 rc = ata_pad_alloc(ap, dev);
5999 if (rc)
6000 return rc;
6001
6002 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6003 (unsigned long long)ap->prd_dma);
6004 return 0;
6005 }
6006
6007 /**
6008 * ata_dev_init - Initialize an ata_device structure
6009 * @dev: Device structure to initialize
6010 *
6011 * Initialize @dev in preparation for probing.
6012 *
6013 * LOCKING:
6014 * Inherited from caller.
6015 */
6016 void ata_dev_init(struct ata_device *dev)
6017 {
6018 struct ata_port *ap = dev->ap;
6019 unsigned long flags;
6020
6021 /* SATA spd limit is bound to the first device */
6022 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6023
6024 /* High bits of dev->flags are used to record warm plug
6025 * requests which occur asynchronously. Synchronize using
6026 * host lock.
6027 */
6028 spin_lock_irqsave(ap->lock, flags);
6029 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6030 spin_unlock_irqrestore(ap->lock, flags);
6031
6032 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6033 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6034 dev->pio_mask = UINT_MAX;
6035 dev->mwdma_mask = UINT_MAX;
6036 dev->udma_mask = UINT_MAX;
6037 }
6038
6039 /**
6040 * ata_port_alloc - allocate and initialize basic ATA port resources
6041 * @host: ATA host this allocated port belongs to
6042 *
6043 * Allocate and initialize basic ATA port resources.
6044 *
6045 * RETURNS:
6046 * Allocate ATA port on success, NULL on failure.
6047 *
6048 * LOCKING:
6049 * Inherited from calling layer (may sleep).
6050 */
6051 struct ata_port *ata_port_alloc(struct ata_host *host)
6052 {
6053 struct ata_port *ap;
6054 unsigned int i;
6055
6056 DPRINTK("ENTER\n");
6057
6058 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6059 if (!ap)
6060 return NULL;
6061
6062 ap->pflags |= ATA_PFLAG_INITIALIZING;
6063 ap->lock = &host->lock;
6064 ap->flags = ATA_FLAG_DISABLED;
6065 ap->print_id = -1;
6066 ap->ctl = ATA_DEVCTL_OBS;
6067 ap->host = host;
6068 ap->dev = host->dev;
6069
6070 ap->hw_sata_spd_limit = UINT_MAX;
6071 ap->active_tag = ATA_TAG_POISON;
6072 ap->last_ctl = 0xFF;
6073
6074 #if defined(ATA_VERBOSE_DEBUG)
6075 /* turn on all debugging levels */
6076 ap->msg_enable = 0x00FF;
6077 #elif defined(ATA_DEBUG)
6078 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6079 #else
6080 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6081 #endif
6082
6083 INIT_DELAYED_WORK(&ap->port_task, NULL);
6084 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6085 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6086 INIT_LIST_HEAD(&ap->eh_done_q);
6087 init_waitqueue_head(&ap->eh_wait_q);
6088
6089 ap->cbl = ATA_CBL_NONE;
6090
6091 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6092 struct ata_device *dev = &ap->device[i];
6093 dev->ap = ap;
6094 dev->devno = i;
6095 ata_dev_init(dev);
6096 }
6097
6098 #ifdef ATA_IRQ_TRAP
6099 ap->stats.unhandled_irq = 1;
6100 ap->stats.idle_irq = 1;
6101 #endif
6102 return ap;
6103 }
6104
6105 static void ata_host_release(struct device *gendev, void *res)
6106 {
6107 struct ata_host *host = dev_get_drvdata(gendev);
6108 int i;
6109
6110 for (i = 0; i < host->n_ports; i++) {
6111 struct ata_port *ap = host->ports[i];
6112
6113 if (!ap)
6114 continue;
6115
6116 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6117 ap->ops->port_stop(ap);
6118 }
6119
6120 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6121 host->ops->host_stop(host);
6122
6123 for (i = 0; i < host->n_ports; i++) {
6124 struct ata_port *ap = host->ports[i];
6125
6126 if (!ap)
6127 continue;
6128
6129 if (ap->scsi_host)
6130 scsi_host_put(ap->scsi_host);
6131
6132 kfree(ap);
6133 host->ports[i] = NULL;
6134 }
6135
6136 dev_set_drvdata(gendev, NULL);
6137 }
6138
6139 /**
6140 * ata_host_alloc - allocate and init basic ATA host resources
6141 * @dev: generic device this host is associated with
6142 * @max_ports: maximum number of ATA ports associated with this host
6143 *
6144 * Allocate and initialize basic ATA host resources. LLD calls
6145 * this function to allocate a host, initializes it fully and
6146 * attaches it using ata_host_register().
6147 *
6148 * @max_ports ports are allocated and host->n_ports is
6149 * initialized to @max_ports. The caller is allowed to decrease
6150 * host->n_ports before calling ata_host_register(). The unused
6151 * ports will be automatically freed on registration.
6152 *
6153 * RETURNS:
6154 * Allocate ATA host on success, NULL on failure.
6155 *
6156 * LOCKING:
6157 * Inherited from calling layer (may sleep).
6158 */
6159 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6160 {
6161 struct ata_host *host;
6162 size_t sz;
6163 int i;
6164
6165 DPRINTK("ENTER\n");
6166
6167 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6168 return NULL;
6169
6170 /* alloc a container for our list of ATA ports (buses) */
6171 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6172 /* alloc a container for our list of ATA ports (buses) */
6173 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6174 if (!host)
6175 goto err_out;
6176
6177 devres_add(dev, host);
6178 dev_set_drvdata(dev, host);
6179
6180 spin_lock_init(&host->lock);
6181 host->dev = dev;
6182 host->n_ports = max_ports;
6183
6184 /* allocate ports bound to this host */
6185 for (i = 0; i < max_ports; i++) {
6186 struct ata_port *ap;
6187
6188 ap = ata_port_alloc(host);
6189 if (!ap)
6190 goto err_out;
6191
6192 ap->port_no = i;
6193 host->ports[i] = ap;
6194 }
6195
6196 devres_remove_group(dev, NULL);
6197 return host;
6198
6199 err_out:
6200 devres_release_group(dev, NULL);
6201 return NULL;
6202 }
6203
6204 /**
6205 * ata_host_alloc_pinfo - alloc host and init with port_info array
6206 * @dev: generic device this host is associated with
6207 * @ppi: array of ATA port_info to initialize host with
6208 * @n_ports: number of ATA ports attached to this host
6209 *
6210 * Allocate ATA host and initialize with info from @ppi. If NULL
6211 * terminated, @ppi may contain fewer entries than @n_ports. The
6212 * last entry will be used for the remaining ports.
6213 *
6214 * RETURNS:
6215 * Allocate ATA host on success, NULL on failure.
6216 *
6217 * LOCKING:
6218 * Inherited from calling layer (may sleep).
6219 */
6220 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6221 const struct ata_port_info * const * ppi,
6222 int n_ports)
6223 {
6224 const struct ata_port_info *pi;
6225 struct ata_host *host;
6226 int i, j;
6227
6228 host = ata_host_alloc(dev, n_ports);
6229 if (!host)
6230 return NULL;
6231
6232 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6233 struct ata_port *ap = host->ports[i];
6234
6235 if (ppi[j])
6236 pi = ppi[j++];
6237
6238 ap->pio_mask = pi->pio_mask;
6239 ap->mwdma_mask = pi->mwdma_mask;
6240 ap->udma_mask = pi->udma_mask;
6241 ap->flags |= pi->flags;
6242 ap->ops = pi->port_ops;
6243
6244 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6245 host->ops = pi->port_ops;
6246 if (!host->private_data && pi->private_data)
6247 host->private_data = pi->private_data;
6248 }
6249
6250 return host;
6251 }
6252
6253 /**
6254 * ata_host_start - start and freeze ports of an ATA host
6255 * @host: ATA host to start ports for
6256 *
6257 * Start and then freeze ports of @host. Started status is
6258 * recorded in host->flags, so this function can be called
6259 * multiple times. Ports are guaranteed to get started only
6260 * once. If host->ops isn't initialized yet, its set to the
6261 * first non-dummy port ops.
6262 *
6263 * LOCKING:
6264 * Inherited from calling layer (may sleep).
6265 *
6266 * RETURNS:
6267 * 0 if all ports are started successfully, -errno otherwise.
6268 */
6269 int ata_host_start(struct ata_host *host)
6270 {
6271 int i, rc;
6272
6273 if (host->flags & ATA_HOST_STARTED)
6274 return 0;
6275
6276 for (i = 0; i < host->n_ports; i++) {
6277 struct ata_port *ap = host->ports[i];
6278
6279 if (!host->ops && !ata_port_is_dummy(ap))
6280 host->ops = ap->ops;
6281
6282 if (ap->ops->port_start) {
6283 rc = ap->ops->port_start(ap);
6284 if (rc) {
6285 ata_port_printk(ap, KERN_ERR, "failed to "
6286 "start port (errno=%d)\n", rc);
6287 goto err_out;
6288 }
6289 }
6290
6291 ata_eh_freeze_port(ap);
6292 }
6293
6294 host->flags |= ATA_HOST_STARTED;
6295 return 0;
6296
6297 err_out:
6298 while (--i >= 0) {
6299 struct ata_port *ap = host->ports[i];
6300
6301 if (ap->ops->port_stop)
6302 ap->ops->port_stop(ap);
6303 }
6304 return rc;
6305 }
6306
6307 /**
6308 * ata_sas_host_init - Initialize a host struct
6309 * @host: host to initialize
6310 * @dev: device host is attached to
6311 * @flags: host flags
6312 * @ops: port_ops
6313 *
6314 * LOCKING:
6315 * PCI/etc. bus probe sem.
6316 *
6317 */
6318 /* KILLME - the only user left is ipr */
6319 void ata_host_init(struct ata_host *host, struct device *dev,
6320 unsigned long flags, const struct ata_port_operations *ops)
6321 {
6322 spin_lock_init(&host->lock);
6323 host->dev = dev;
6324 host->flags = flags;
6325 host->ops = ops;
6326 }
6327
6328 /**
6329 * ata_host_register - register initialized ATA host
6330 * @host: ATA host to register
6331 * @sht: template for SCSI host
6332 *
6333 * Register initialized ATA host. @host is allocated using
6334 * ata_host_alloc() and fully initialized by LLD. This function
6335 * starts ports, registers @host with ATA and SCSI layers and
6336 * probe registered devices.
6337 *
6338 * LOCKING:
6339 * Inherited from calling layer (may sleep).
6340 *
6341 * RETURNS:
6342 * 0 on success, -errno otherwise.
6343 */
6344 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6345 {
6346 int i, rc;
6347
6348 /* host must have been started */
6349 if (!(host->flags & ATA_HOST_STARTED)) {
6350 dev_printk(KERN_ERR, host->dev,
6351 "BUG: trying to register unstarted host\n");
6352 WARN_ON(1);
6353 return -EINVAL;
6354 }
6355
6356 /* Blow away unused ports. This happens when LLD can't
6357 * determine the exact number of ports to allocate at
6358 * allocation time.
6359 */
6360 for (i = host->n_ports; host->ports[i]; i++)
6361 kfree(host->ports[i]);
6362
6363 /* give ports names and add SCSI hosts */
6364 for (i = 0; i < host->n_ports; i++)
6365 host->ports[i]->print_id = ata_print_id++;
6366
6367 rc = ata_scsi_add_hosts(host, sht);
6368 if (rc)
6369 return rc;
6370
6371 /* associate with ACPI nodes */
6372 ata_acpi_associate(host);
6373
6374 /* set cable, sata_spd_limit and report */
6375 for (i = 0; i < host->n_ports; i++) {
6376 struct ata_port *ap = host->ports[i];
6377 int irq_line;
6378 u32 scontrol;
6379 unsigned long xfer_mask;
6380
6381 /* set SATA cable type if still unset */
6382 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6383 ap->cbl = ATA_CBL_SATA;
6384
6385 /* init sata_spd_limit to the current value */
6386 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6387 int spd = (scontrol >> 4) & 0xf;
6388 if (spd)
6389 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6390 }
6391 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6392
6393 /* report the secondary IRQ for second channel legacy */
6394 irq_line = host->irq;
6395 if (i == 1 && host->irq2)
6396 irq_line = host->irq2;
6397
6398 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6399 ap->udma_mask);
6400
6401 /* print per-port info to dmesg */
6402 if (!ata_port_is_dummy(ap))
6403 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6404 "ctl 0x%p bmdma 0x%p irq %d\n",
6405 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6406 ata_mode_string(xfer_mask),
6407 ap->ioaddr.cmd_addr,
6408 ap->ioaddr.ctl_addr,
6409 ap->ioaddr.bmdma_addr,
6410 irq_line);
6411 else
6412 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6413 }
6414
6415 /* perform each probe synchronously */
6416 DPRINTK("probe begin\n");
6417 for (i = 0; i < host->n_ports; i++) {
6418 struct ata_port *ap = host->ports[i];
6419 int rc;
6420
6421 /* probe */
6422 if (ap->ops->error_handler) {
6423 struct ata_eh_info *ehi = &ap->eh_info;
6424 unsigned long flags;
6425
6426 ata_port_probe(ap);
6427
6428 /* kick EH for boot probing */
6429 spin_lock_irqsave(ap->lock, flags);
6430
6431 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6432 ehi->action |= ATA_EH_SOFTRESET;
6433 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6434
6435 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6436 ap->pflags |= ATA_PFLAG_LOADING;
6437 ata_port_schedule_eh(ap);
6438
6439 spin_unlock_irqrestore(ap->lock, flags);
6440
6441 /* wait for EH to finish */
6442 ata_port_wait_eh(ap);
6443 } else {
6444 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6445 rc = ata_bus_probe(ap);
6446 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6447
6448 if (rc) {
6449 /* FIXME: do something useful here?
6450 * Current libata behavior will
6451 * tear down everything when
6452 * the module is removed
6453 * or the h/w is unplugged.
6454 */
6455 }
6456 }
6457 }
6458
6459 /* probes are done, now scan each port's disk(s) */
6460 DPRINTK("host probe begin\n");
6461 for (i = 0; i < host->n_ports; i++) {
6462 struct ata_port *ap = host->ports[i];
6463
6464 ata_scsi_scan_host(ap);
6465 }
6466
6467 return 0;
6468 }
6469
6470 /**
6471 * ata_host_activate - start host, request IRQ and register it
6472 * @host: target ATA host
6473 * @irq: IRQ to request
6474 * @irq_handler: irq_handler used when requesting IRQ
6475 * @irq_flags: irq_flags used when requesting IRQ
6476 * @sht: scsi_host_template to use when registering the host
6477 *
6478 * After allocating an ATA host and initializing it, most libata
6479 * LLDs perform three steps to activate the host - start host,
6480 * request IRQ and register it. This helper takes necessasry
6481 * arguments and performs the three steps in one go.
6482 *
6483 * LOCKING:
6484 * Inherited from calling layer (may sleep).
6485 *
6486 * RETURNS:
6487 * 0 on success, -errno otherwise.
6488 */
6489 int ata_host_activate(struct ata_host *host, int irq,
6490 irq_handler_t irq_handler, unsigned long irq_flags,
6491 struct scsi_host_template *sht)
6492 {
6493 int rc;
6494
6495 rc = ata_host_start(host);
6496 if (rc)
6497 return rc;
6498
6499 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6500 dev_driver_string(host->dev), host);
6501 if (rc)
6502 return rc;
6503
6504 /* Used to print device info at probe */
6505 host->irq = irq;
6506
6507 rc = ata_host_register(host, sht);
6508 /* if failed, just free the IRQ and leave ports alone */
6509 if (rc)
6510 devm_free_irq(host->dev, irq, host);
6511
6512 return rc;
6513 }
6514
6515 /**
6516 * ata_port_detach - Detach ATA port in prepration of device removal
6517 * @ap: ATA port to be detached
6518 *
6519 * Detach all ATA devices and the associated SCSI devices of @ap;
6520 * then, remove the associated SCSI host. @ap is guaranteed to
6521 * be quiescent on return from this function.
6522 *
6523 * LOCKING:
6524 * Kernel thread context (may sleep).
6525 */
6526 void ata_port_detach(struct ata_port *ap)
6527 {
6528 unsigned long flags;
6529 int i;
6530
6531 if (!ap->ops->error_handler)
6532 goto skip_eh;
6533
6534 /* tell EH we're leaving & flush EH */
6535 spin_lock_irqsave(ap->lock, flags);
6536 ap->pflags |= ATA_PFLAG_UNLOADING;
6537 spin_unlock_irqrestore(ap->lock, flags);
6538
6539 ata_port_wait_eh(ap);
6540
6541 /* EH is now guaranteed to see UNLOADING, so no new device
6542 * will be attached. Disable all existing devices.
6543 */
6544 spin_lock_irqsave(ap->lock, flags);
6545
6546 for (i = 0; i < ATA_MAX_DEVICES; i++)
6547 ata_dev_disable(&ap->device[i]);
6548
6549 spin_unlock_irqrestore(ap->lock, flags);
6550
6551 /* Final freeze & EH. All in-flight commands are aborted. EH
6552 * will be skipped and retrials will be terminated with bad
6553 * target.
6554 */
6555 spin_lock_irqsave(ap->lock, flags);
6556 ata_port_freeze(ap); /* won't be thawed */
6557 spin_unlock_irqrestore(ap->lock, flags);
6558
6559 ata_port_wait_eh(ap);
6560
6561 /* Flush hotplug task. The sequence is similar to
6562 * ata_port_flush_task().
6563 */
6564 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6565 cancel_delayed_work(&ap->hotplug_task);
6566 cancel_work_sync(&ap->hotplug_task.work);
6567
6568 skip_eh:
6569 /* remove the associated SCSI host */
6570 scsi_remove_host(ap->scsi_host);
6571 }
6572
6573 /**
6574 * ata_host_detach - Detach all ports of an ATA host
6575 * @host: Host to detach
6576 *
6577 * Detach all ports of @host.
6578 *
6579 * LOCKING:
6580 * Kernel thread context (may sleep).
6581 */
6582 void ata_host_detach(struct ata_host *host)
6583 {
6584 int i;
6585
6586 for (i = 0; i < host->n_ports; i++)
6587 ata_port_detach(host->ports[i]);
6588 }
6589
6590 /**
6591 * ata_std_ports - initialize ioaddr with standard port offsets.
6592 * @ioaddr: IO address structure to be initialized
6593 *
6594 * Utility function which initializes data_addr, error_addr,
6595 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6596 * device_addr, status_addr, and command_addr to standard offsets
6597 * relative to cmd_addr.
6598 *
6599 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6600 */
6601
6602 void ata_std_ports(struct ata_ioports *ioaddr)
6603 {
6604 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6605 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6606 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6607 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6608 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6609 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6610 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6611 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6612 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6613 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6614 }
6615
6616
6617 #ifdef CONFIG_PCI
6618
6619 /**
6620 * ata_pci_remove_one - PCI layer callback for device removal
6621 * @pdev: PCI device that was removed
6622 *
6623 * PCI layer indicates to libata via this hook that hot-unplug or
6624 * module unload event has occurred. Detach all ports. Resource
6625 * release is handled via devres.
6626 *
6627 * LOCKING:
6628 * Inherited from PCI layer (may sleep).
6629 */
6630 void ata_pci_remove_one(struct pci_dev *pdev)
6631 {
6632 struct device *dev = pci_dev_to_dev(pdev);
6633 struct ata_host *host = dev_get_drvdata(dev);
6634
6635 ata_host_detach(host);
6636 }
6637
6638 /* move to PCI subsystem */
6639 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6640 {
6641 unsigned long tmp = 0;
6642
6643 switch (bits->width) {
6644 case 1: {
6645 u8 tmp8 = 0;
6646 pci_read_config_byte(pdev, bits->reg, &tmp8);
6647 tmp = tmp8;
6648 break;
6649 }
6650 case 2: {
6651 u16 tmp16 = 0;
6652 pci_read_config_word(pdev, bits->reg, &tmp16);
6653 tmp = tmp16;
6654 break;
6655 }
6656 case 4: {
6657 u32 tmp32 = 0;
6658 pci_read_config_dword(pdev, bits->reg, &tmp32);
6659 tmp = tmp32;
6660 break;
6661 }
6662
6663 default:
6664 return -EINVAL;
6665 }
6666
6667 tmp &= bits->mask;
6668
6669 return (tmp == bits->val) ? 1 : 0;
6670 }
6671
6672 #ifdef CONFIG_PM
6673 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6674 {
6675 pci_save_state(pdev);
6676 pci_disable_device(pdev);
6677
6678 if (mesg.event == PM_EVENT_SUSPEND)
6679 pci_set_power_state(pdev, PCI_D3hot);
6680 }
6681
6682 int ata_pci_device_do_resume(struct pci_dev *pdev)
6683 {
6684 int rc;
6685
6686 pci_set_power_state(pdev, PCI_D0);
6687 pci_restore_state(pdev);
6688
6689 rc = pcim_enable_device(pdev);
6690 if (rc) {
6691 dev_printk(KERN_ERR, &pdev->dev,
6692 "failed to enable device after resume (%d)\n", rc);
6693 return rc;
6694 }
6695
6696 pci_set_master(pdev);
6697 return 0;
6698 }
6699
6700 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6701 {
6702 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6703 int rc = 0;
6704
6705 rc = ata_host_suspend(host, mesg);
6706 if (rc)
6707 return rc;
6708
6709 ata_pci_device_do_suspend(pdev, mesg);
6710
6711 return 0;
6712 }
6713
6714 int ata_pci_device_resume(struct pci_dev *pdev)
6715 {
6716 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6717 int rc;
6718
6719 rc = ata_pci_device_do_resume(pdev);
6720 if (rc == 0)
6721 ata_host_resume(host);
6722 return rc;
6723 }
6724 #endif /* CONFIG_PM */
6725
6726 #endif /* CONFIG_PCI */
6727
6728
6729 static int __init ata_init(void)
6730 {
6731 ata_probe_timeout *= HZ;
6732 ata_wq = create_workqueue("ata");
6733 if (!ata_wq)
6734 return -ENOMEM;
6735
6736 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6737 if (!ata_aux_wq) {
6738 destroy_workqueue(ata_wq);
6739 return -ENOMEM;
6740 }
6741
6742 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6743 return 0;
6744 }
6745
6746 static void __exit ata_exit(void)
6747 {
6748 destroy_workqueue(ata_wq);
6749 destroy_workqueue(ata_aux_wq);
6750 }
6751
6752 subsys_initcall(ata_init);
6753 module_exit(ata_exit);
6754
6755 static unsigned long ratelimit_time;
6756 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6757
6758 int ata_ratelimit(void)
6759 {
6760 int rc;
6761 unsigned long flags;
6762
6763 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6764
6765 if (time_after(jiffies, ratelimit_time)) {
6766 rc = 1;
6767 ratelimit_time = jiffies + (HZ/5);
6768 } else
6769 rc = 0;
6770
6771 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6772
6773 return rc;
6774 }
6775
6776 /**
6777 * ata_wait_register - wait until register value changes
6778 * @reg: IO-mapped register
6779 * @mask: Mask to apply to read register value
6780 * @val: Wait condition
6781 * @interval_msec: polling interval in milliseconds
6782 * @timeout_msec: timeout in milliseconds
6783 *
6784 * Waiting for some bits of register to change is a common
6785 * operation for ATA controllers. This function reads 32bit LE
6786 * IO-mapped register @reg and tests for the following condition.
6787 *
6788 * (*@reg & mask) != val
6789 *
6790 * If the condition is met, it returns; otherwise, the process is
6791 * repeated after @interval_msec until timeout.
6792 *
6793 * LOCKING:
6794 * Kernel thread context (may sleep)
6795 *
6796 * RETURNS:
6797 * The final register value.
6798 */
6799 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6800 unsigned long interval_msec,
6801 unsigned long timeout_msec)
6802 {
6803 unsigned long timeout;
6804 u32 tmp;
6805
6806 tmp = ioread32(reg);
6807
6808 /* Calculate timeout _after_ the first read to make sure
6809 * preceding writes reach the controller before starting to
6810 * eat away the timeout.
6811 */
6812 timeout = jiffies + (timeout_msec * HZ) / 1000;
6813
6814 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6815 msleep(interval_msec);
6816 tmp = ioread32(reg);
6817 }
6818
6819 return tmp;
6820 }
6821
6822 /*
6823 * Dummy port_ops
6824 */
6825 static void ata_dummy_noret(struct ata_port *ap) { }
6826 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6827 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6828
6829 static u8 ata_dummy_check_status(struct ata_port *ap)
6830 {
6831 return ATA_DRDY;
6832 }
6833
6834 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6835 {
6836 return AC_ERR_SYSTEM;
6837 }
6838
6839 const struct ata_port_operations ata_dummy_port_ops = {
6840 .port_disable = ata_port_disable,
6841 .check_status = ata_dummy_check_status,
6842 .check_altstatus = ata_dummy_check_status,
6843 .dev_select = ata_noop_dev_select,
6844 .qc_prep = ata_noop_qc_prep,
6845 .qc_issue = ata_dummy_qc_issue,
6846 .freeze = ata_dummy_noret,
6847 .thaw = ata_dummy_noret,
6848 .error_handler = ata_dummy_noret,
6849 .post_internal_cmd = ata_dummy_qc_noret,
6850 .irq_clear = ata_dummy_noret,
6851 .port_start = ata_dummy_ret0,
6852 .port_stop = ata_dummy_noret,
6853 };
6854
6855 const struct ata_port_info ata_dummy_port_info = {
6856 .port_ops = &ata_dummy_port_ops,
6857 };
6858
6859 /*
6860 * libata is essentially a library of internal helper functions for
6861 * low-level ATA host controller drivers. As such, the API/ABI is
6862 * likely to change as new drivers are added and updated.
6863 * Do not depend on ABI/API stability.
6864 */
6865
6866 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6867 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6868 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6869 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6870 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6871 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6872 EXPORT_SYMBOL_GPL(ata_std_ports);
6873 EXPORT_SYMBOL_GPL(ata_host_init);
6874 EXPORT_SYMBOL_GPL(ata_host_alloc);
6875 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6876 EXPORT_SYMBOL_GPL(ata_host_start);
6877 EXPORT_SYMBOL_GPL(ata_host_register);
6878 EXPORT_SYMBOL_GPL(ata_host_activate);
6879 EXPORT_SYMBOL_GPL(ata_host_detach);
6880 EXPORT_SYMBOL_GPL(ata_sg_init);
6881 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6882 EXPORT_SYMBOL_GPL(ata_hsm_move);
6883 EXPORT_SYMBOL_GPL(ata_qc_complete);
6884 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6885 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6886 EXPORT_SYMBOL_GPL(ata_tf_load);
6887 EXPORT_SYMBOL_GPL(ata_tf_read);
6888 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6889 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6890 EXPORT_SYMBOL_GPL(sata_print_link_status);
6891 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6892 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6893 EXPORT_SYMBOL_GPL(ata_check_status);
6894 EXPORT_SYMBOL_GPL(ata_altstatus);
6895 EXPORT_SYMBOL_GPL(ata_exec_command);
6896 EXPORT_SYMBOL_GPL(ata_port_start);
6897 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6898 EXPORT_SYMBOL_GPL(ata_interrupt);
6899 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6900 EXPORT_SYMBOL_GPL(ata_data_xfer);
6901 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6902 EXPORT_SYMBOL_GPL(ata_qc_prep);
6903 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
6904 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6905 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6906 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6907 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6908 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6909 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6910 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6911 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6912 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6913 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6914 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6915 EXPORT_SYMBOL_GPL(ata_port_probe);
6916 EXPORT_SYMBOL_GPL(ata_dev_disable);
6917 EXPORT_SYMBOL_GPL(sata_set_spd);
6918 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6919 EXPORT_SYMBOL_GPL(sata_phy_resume);
6920 EXPORT_SYMBOL_GPL(sata_phy_reset);
6921 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6922 EXPORT_SYMBOL_GPL(ata_bus_reset);
6923 EXPORT_SYMBOL_GPL(ata_std_prereset);
6924 EXPORT_SYMBOL_GPL(ata_std_softreset);
6925 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6926 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6927 EXPORT_SYMBOL_GPL(ata_std_postreset);
6928 EXPORT_SYMBOL_GPL(ata_dev_classify);
6929 EXPORT_SYMBOL_GPL(ata_dev_pair);
6930 EXPORT_SYMBOL_GPL(ata_port_disable);
6931 EXPORT_SYMBOL_GPL(ata_ratelimit);
6932 EXPORT_SYMBOL_GPL(ata_wait_register);
6933 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6934 EXPORT_SYMBOL_GPL(ata_wait_ready);
6935 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6936 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6937 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6938 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6939 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6940 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6941 EXPORT_SYMBOL_GPL(ata_host_intr);
6942 EXPORT_SYMBOL_GPL(sata_scr_valid);
6943 EXPORT_SYMBOL_GPL(sata_scr_read);
6944 EXPORT_SYMBOL_GPL(sata_scr_write);
6945 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6946 EXPORT_SYMBOL_GPL(ata_port_online);
6947 EXPORT_SYMBOL_GPL(ata_port_offline);
6948 #ifdef CONFIG_PM
6949 EXPORT_SYMBOL_GPL(ata_host_suspend);
6950 EXPORT_SYMBOL_GPL(ata_host_resume);
6951 #endif /* CONFIG_PM */
6952 EXPORT_SYMBOL_GPL(ata_id_string);
6953 EXPORT_SYMBOL_GPL(ata_id_c_string);
6954 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6955 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6956 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6957
6958 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6959 EXPORT_SYMBOL_GPL(ata_timing_compute);
6960 EXPORT_SYMBOL_GPL(ata_timing_merge);
6961
6962 #ifdef CONFIG_PCI
6963 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6964 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6965 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6966 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6967 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6968 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6969 #ifdef CONFIG_PM
6970 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6971 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6972 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6973 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6974 #endif /* CONFIG_PM */
6975 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6976 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6977 #endif /* CONFIG_PCI */
6978
6979 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6980 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6981 EXPORT_SYMBOL_GPL(ata_port_abort);
6982 EXPORT_SYMBOL_GPL(ata_port_freeze);
6983 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6984 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6985 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6986 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6987 EXPORT_SYMBOL_GPL(ata_do_eh);
6988 EXPORT_SYMBOL_GPL(ata_irq_on);
6989 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6990 EXPORT_SYMBOL_GPL(ata_irq_ack);
6991 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6992 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6993
6994 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6995 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6996 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6997 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.35141 seconds and 6 git commands to generate.