Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 #define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
74
75 unsigned int ata_print_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 struct workqueue_struct *ata_aux_wq;
79
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92 static int ata_ignore_hpa = 0;
93 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97 module_param(ata_probe_timeout, int, 0444);
98 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100 int libata_noacpi = 1;
101 module_param_named(noacpi, libata_noacpi, int, 0444);
102 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104 MODULE_AUTHOR("Jeff Garzik");
105 MODULE_DESCRIPTION("Library module for ATA devices");
106 MODULE_LICENSE("GPL");
107 MODULE_VERSION(DRV_VERSION);
108
109
110 /**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124 {
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150 }
151
152 /**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164 {
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179 }
180
181 static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209 };
210
211 /**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223 {
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250 }
251
252 /**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268 {
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293 }
294
295 /**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318 {
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416 }
417
418 /**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436 {
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440 }
441
442 /**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452 static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456 {
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 }
464
465 static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468 } ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473 };
474
475 /**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489 {
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497 }
498
499 /**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512 {
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519 }
520
521 /**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533 static int ata_xfer_mode2shift(unsigned int xfer_mode)
534 {
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541 }
542
543 /**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557 static const char *ata_mode_string(unsigned int xfer_mask)
558 {
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587 }
588
589 static const char *sata_spd_string(unsigned int spd)
590 {
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599 }
600
601 void ata_dev_disable(struct ata_device *dev)
602 {
603 if (ata_dev_enabled(dev)) {
604 if (ata_msg_drv(dev->ap))
605 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 ATA_DNXFER_QUIET);
608 dev->class++;
609 }
610 }
611
612 /**
613 * ata_devchk - PATA device presence detection
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
616 *
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
620 *
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
625 *
626 * LOCKING:
627 * caller.
628 */
629
630 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
631 {
632 struct ata_ioports *ioaddr = &ap->ioaddr;
633 u8 nsect, lbal;
634
635 ap->ops->dev_select(ap, device);
636
637 iowrite8(0x55, ioaddr->nsect_addr);
638 iowrite8(0xaa, ioaddr->lbal_addr);
639
640 iowrite8(0xaa, ioaddr->nsect_addr);
641 iowrite8(0x55, ioaddr->lbal_addr);
642
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
645
646 nsect = ioread8(ioaddr->nsect_addr);
647 lbal = ioread8(ioaddr->lbal_addr);
648
649 if ((nsect == 0x55) && (lbal == 0xaa))
650 return 1; /* we found a device */
651
652 return 0; /* nothing found */
653 }
654
655 /**
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
658 *
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
662 *
663 * LOCKING:
664 * None.
665 *
666 * RETURNS:
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
669 */
670
671 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
672 {
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
676 */
677
678 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
681 return ATA_DEV_ATA;
682 }
683
684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI;
688 }
689
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN;
692 }
693
694 /**
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
698 * @r_err: Value of error register on completion
699 *
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
703 * and diagnostics.
704 *
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
708 *
709 * LOCKING:
710 * caller.
711 *
712 * RETURNS:
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
714 */
715
716 unsigned int
717 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
718 {
719 struct ata_taskfile tf;
720 unsigned int class;
721 u8 err;
722
723 ap->ops->dev_select(ap, device);
724
725 memset(&tf, 0, sizeof(tf));
726
727 ap->ops->tf_read(ap, &tf);
728 err = tf.feature;
729 if (r_err)
730 *r_err = err;
731
732 /* see if device passed diags: if master then continue and warn later */
733 if (err == 0 && device == 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 else if (err == 1)
737 /* do nothing */ ;
738 else if ((device == 0) && (err == 0x81))
739 /* do nothing */ ;
740 else
741 return ATA_DEV_NONE;
742
743 /* determine if device is ATA or ATAPI */
744 class = ata_dev_classify(&tf);
745
746 if (class == ATA_DEV_UNKNOWN)
747 return ATA_DEV_NONE;
748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
749 return ATA_DEV_NONE;
750 return class;
751 }
752
753 /**
754 * ata_id_string - Convert IDENTIFY DEVICE page into string
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
759 *
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
763 *
764 * LOCKING:
765 * caller.
766 */
767
768 void ata_id_string(const u16 *id, unsigned char *s,
769 unsigned int ofs, unsigned int len)
770 {
771 unsigned int c;
772
773 while (len > 0) {
774 c = id[ofs] >> 8;
775 *s = c;
776 s++;
777
778 c = id[ofs] & 0xff;
779 *s = c;
780 s++;
781
782 ofs++;
783 len -= 2;
784 }
785 }
786
787 /**
788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
793 *
794 * This function is identical to ata_id_string except that it
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
797 *
798 * LOCKING:
799 * caller.
800 */
801 void ata_id_c_string(const u16 *id, unsigned char *s,
802 unsigned int ofs, unsigned int len)
803 {
804 unsigned char *p;
805
806 WARN_ON(!(len & 1));
807
808 ata_id_string(id, s, ofs, len - 1);
809
810 p = s + strnlen(s, len - 1);
811 while (p > s && p[-1] == ' ')
812 p--;
813 *p = '\0';
814 }
815
816 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817 {
818 u64 sectors = 0;
819
820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 sectors |= (tf->hob_lbal & 0xff) << 24;
823 sectors |= (tf->lbah & 0xff) << 16;
824 sectors |= (tf->lbam & 0xff) << 8;
825 sectors |= (tf->lbal & 0xff);
826
827 return ++sectors;
828 }
829
830 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831 {
832 u64 sectors = 0;
833
834 sectors |= (tf->device & 0x0f) << 24;
835 sectors |= (tf->lbah & 0xff) << 16;
836 sectors |= (tf->lbam & 0xff) << 8;
837 sectors |= (tf->lbal & 0xff);
838
839 return ++sectors;
840 }
841
842 /**
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
845 *
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
848 */
849
850 static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851 {
852 unsigned int err;
853 struct ata_taskfile tf;
854
855 ata_tf_init(dev, &tf);
856
857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 tf.protocol |= ATA_PROT_NODATA;
860 tf.device |= 0x40;
861
862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 if (err)
864 return 0;
865
866 return ata_tf_to_lba48(&tf);
867 }
868
869 /**
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
872 *
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
875 */
876
877 static u64 ata_read_native_max_address(struct ata_device *dev)
878 {
879 unsigned int err;
880 struct ata_taskfile tf;
881
882 ata_tf_init(dev, &tf);
883
884 tf.command = ATA_CMD_READ_NATIVE_MAX;
885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 tf.protocol |= ATA_PROT_NODATA;
887 tf.device |= 0x40;
888
889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 if (err)
891 return 0;
892
893 return ata_tf_to_lba(&tf);
894 }
895
896 /**
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
899 * @new_sectors: new max sectors value to set for the device
900 *
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
903 */
904
905 static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
906 {
907 unsigned int err;
908 struct ata_taskfile tf;
909
910 new_sectors--;
911
912 ata_tf_init(dev, &tf);
913
914 tf.command = ATA_CMD_SET_MAX_EXT;
915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 tf.protocol |= ATA_PROT_NODATA;
917 tf.device |= 0x40;
918
919 tf.lbal = (new_sectors >> 0) & 0xff;
920 tf.lbam = (new_sectors >> 8) & 0xff;
921 tf.lbah = (new_sectors >> 16) & 0xff;
922
923 tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 tf.hob_lbah = (new_sectors >> 40) & 0xff;
926
927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 if (err)
929 return 0;
930
931 return ata_tf_to_lba48(&tf);
932 }
933
934 /**
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
937 * @new_sectors: new max sectors value to set for the device
938 *
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
941 */
942
943 static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
944 {
945 unsigned int err;
946 struct ata_taskfile tf;
947
948 new_sectors--;
949
950 ata_tf_init(dev, &tf);
951
952 tf.command = ATA_CMD_SET_MAX;
953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 tf.protocol |= ATA_PROT_NODATA;
955
956 tf.lbal = (new_sectors >> 0) & 0xff;
957 tf.lbam = (new_sectors >> 8) & 0xff;
958 tf.lbah = (new_sectors >> 16) & 0xff;
959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960
961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 if (err)
963 return 0;
964
965 return ata_tf_to_lba(&tf);
966 }
967
968 /**
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
971 *
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
975 */
976
977 static u64 ata_hpa_resize(struct ata_device *dev)
978 {
979 u64 sectors = dev->n_sectors;
980 u64 hpa_sectors;
981
982 if (ata_id_has_lba48(dev->id))
983 hpa_sectors = ata_read_native_max_address_ext(dev);
984 else
985 hpa_sectors = ata_read_native_max_address(dev);
986
987 if (hpa_sectors > sectors) {
988 ata_dev_printk(dev, KERN_INFO,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
992 (long long)sectors, (long long)hpa_sectors);
993
994 if (ata_ignore_hpa) {
995 if (ata_id_has_lba48(dev->id))
996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 else
998 hpa_sectors = ata_set_native_max_address(dev,
999 hpa_sectors);
1000
1001 if (hpa_sectors) {
1002 ata_dev_printk(dev, KERN_INFO, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors);
1005 return hpa_sectors;
1006 }
1007 }
1008 } else if (hpa_sectors < sectors)
1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 (long long)hpa_sectors, (long long)sectors);
1012
1013 return sectors;
1014 }
1015
1016 static u64 ata_id_n_sectors(const u16 *id)
1017 {
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029 }
1030
1031 /**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047 {
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071 }
1072
1073 /**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1085 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086 {
1087 }
1088
1089
1090 /**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106 {
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116 }
1117
1118 /**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137 void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139 {
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154 }
1155
1156 /**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1159 *
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
1167 static inline void ata_dump_id(const u16 *id)
1168 {
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
1191 id[88],
1192 id[93]);
1193 }
1194
1195 /**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210 static unsigned int ata_id_xfermask(const u16 *id)
1211 {
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262 }
1263
1264 /**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
1283 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1285 {
1286 int rc;
1287
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 return;
1290
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1293
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298 }
1299
1300 /**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310 void ata_port_flush_task(struct ata_port *ap)
1311 {
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1319
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
1332 cancel_work_sync(&ap->port_task.work);
1333 }
1334
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1338
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341 }
1342
1343 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344 {
1345 struct completion *waiting = qc->private_data;
1346
1347 complete(waiting);
1348 }
1349
1350 /**
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
1370 */
1371 unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1375 {
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1384 int rc;
1385
1386 spin_lock_irqsave(ap->lock, flags);
1387
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1392 }
1393
1394 /* initialize internal qc */
1395
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1407 BUG();
1408 qc = __ata_qc_from_tag(ap, tag);
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
1422
1423 /* prepare & issue qc */
1424 qc->tf = *tf;
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1437 }
1438
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1441
1442 ata_qc_issue(qc);
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447
1448 ata_port_flush_task(ap);
1449
1450 if (!rc) {
1451 spin_lock_irqsave(ap->lock, flags);
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1457 */
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
1465
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1469 }
1470
1471 spin_unlock_irqrestore(ap->lock, flags);
1472 }
1473
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1488 }
1489
1490 /* finish up */
1491 spin_lock_irqsave(ap->lock, flags);
1492
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1500
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
1517 spin_unlock_irqrestore(ap->lock, flags);
1518
1519 return err_mask;
1520 }
1521
1522 /**
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540 unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543 {
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1546
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
1553
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555 }
1556
1557 /**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
1570 */
1571 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572 {
1573 struct ata_taskfile tf;
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582 }
1583
1584 /**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
1591
1592 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593 {
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 return 0;
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1603 return 1;
1604 return 0;
1605 }
1606
1607 /**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
1614
1615 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616 {
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1626 }
1627 }
1628 return 3 << ATA_SHIFT_PIO;
1629 }
1630
1631 /**
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1637 *
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1642 *
1643 * LOCKING:
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1648 */
1649 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1651 {
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1656 const char *reason;
1657 int may_fallback = 1, tried_spinup = 0;
1658 int rc;
1659
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664 retry:
1665 ata_tf_init(dev, &tf);
1666
1667 switch (class) {
1668 case ATA_DEV_ATA:
1669 tf.command = ATA_CMD_ID_ATA;
1670 break;
1671 case ATA_DEV_ATAPI:
1672 tf.command = ATA_CMD_ID_ATAPI;
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1678 }
1679
1680 tf.protocol = ATA_PROT_PIO;
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1691
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1694 if (err_mask) {
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1698 return -ENOENT;
1699 }
1700
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
1716 rc = -EIO;
1717 reason = "I/O error";
1718 goto err_out;
1719 }
1720
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
1726 swap_buf_le16(id, ATA_ID_WORDS);
1727
1728 /* sanity check */
1729 rc = -EINVAL;
1730 reason = "device reports invalid type";
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
1738 }
1739
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
1786 flags &= ~ATA_READID_POSTRESET;
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
1792
1793 return 0;
1794
1795 err_out:
1796 if (ata_msg_warn(ap))
1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 return rc;
1800 }
1801
1802 static inline u8 ata_dev_knobble(struct ata_device *dev)
1803 {
1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1805 }
1806
1807 static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809 {
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
1821 if (ap->flags & ATA_FLAG_NCQ) {
1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830 }
1831
1832 /**
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1838 *
1839 * LOCKING:
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
1844 */
1845 int ata_dev_configure(struct ata_device *dev)
1846 {
1847 struct ata_port *ap = dev->ap;
1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1849 const u16 *id = dev->id;
1850 unsigned int xfer_mask;
1851 char revbuf[7]; /* XYZ-99\0 */
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
1854 int rc;
1855
1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
1859 return 0;
1860 }
1861
1862 if (ata_msg_probe(ap))
1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1864
1865 /* set _SDD */
1866 rc = ata_acpi_push_id(dev);
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
1875 /* print device capabilities */
1876 if (ata_msg_probe(ap))
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1880 __FUNCTION__,
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
1883
1884 /* initialize to-be-configured parameters */
1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
1897 /* find max transfer mode; for printk only */
1898 xfer_mask = ata_id_xfermask(id);
1899
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1902
1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1905 sizeof(fwrevbuf));
1906
1907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1908 sizeof(modelbuf));
1909
1910 /* ATA-specific feature tests */
1911 if (dev->class == ATA_DEV_ATA) {
1912 if (ata_id_is_cfa(id)) {
1913 if (id[162] & 1) /* CPRM may make this media unusable */
1914 ata_dev_printk(dev, KERN_WARNING,
1915 "supports DRM functions and may "
1916 "not be fully accessable.\n");
1917 snprintf(revbuf, 7, "CFA");
1918 }
1919 else
1920 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1921
1922 dev->n_sectors = ata_id_n_sectors(id);
1923
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1927 if (ata_id_has_lba(id)) {
1928 const char *lba_desc;
1929 char ncq_desc[20];
1930
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1933 if (ata_id_has_lba48(id)) {
1934 dev->flags |= ATA_DFLAG_LBA48;
1935 lba_desc = "LBA48";
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1940 }
1941
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
1948 /* print device info to dmesg */
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
1956 (unsigned long long)dev->n_sectors,
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
1959 } else {
1960 /* CHS */
1961
1962 /* Default translation */
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
1966
1967 if (ata_id_current_chs_valid(id)) {
1968 /* Current CHS translation is valid. */
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
1972 }
1973
1974 /* print device info to dmesg */
1975 if (ata_msg_drv(ap) && print_info) {
1976 ata_dev_printk(dev, KERN_INFO,
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
1980 ata_dev_printk(dev, KERN_INFO,
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
1986 }
1987
1988 dev->cdb_len = 16;
1989 }
1990
1991 /* ATAPI-specific feature tests */
1992 else if (dev->class == ATA_DEV_ATAPI) {
1993 char *cdb_intr_string = "";
1994
1995 rc = atapi_cdb_len(id);
1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1997 if (ata_msg_warn(ap))
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
2000 rc = -EINVAL;
2001 goto err_out_nosup;
2002 }
2003 dev->cdb_len = (unsigned int) rc;
2004
2005 if (ata_id_cdb_intr(dev->id)) {
2006 dev->flags |= ATA_DFLAG_CDB_INTR;
2007 cdb_intr_string = ", CDB intr";
2008 }
2009
2010 /* print device info to dmesg */
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO,
2013 "ATAPI: %s, %s, max %s%s\n",
2014 modelbuf, fwrevbuf,
2015 ata_mode_string(xfer_mask),
2016 cdb_intr_string);
2017 }
2018
2019 /* determine max_sectors */
2020 dev->max_sectors = ATA_MAX_SECTORS;
2021 if (dev->flags & ATA_DFLAG_LBA48)
2022 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2023
2024 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2025 /* Let the user know. We don't want to disallow opens for
2026 rescue purposes, or in case the vendor is just a blithering
2027 idiot */
2028 if (print_info) {
2029 ata_dev_printk(dev, KERN_WARNING,
2030 "Drive reports diagnostics failure. This may indicate a drive\n");
2031 ata_dev_printk(dev, KERN_WARNING,
2032 "fault or invalid emulation. Contact drive vendor for information.\n");
2033 }
2034 }
2035
2036 /* limit bridge transfers to udma5, 200 sectors */
2037 if (ata_dev_knobble(dev)) {
2038 if (ata_msg_drv(ap) && print_info)
2039 ata_dev_printk(dev, KERN_INFO,
2040 "applying bridge limits\n");
2041 dev->udma_mask &= ATA_UDMA5;
2042 dev->max_sectors = ATA_MAX_SECTORS;
2043 }
2044
2045 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2046 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 dev->max_sectors);
2048
2049 if (ap->ops->dev_config)
2050 ap->ops->dev_config(dev);
2051
2052 if (ata_msg_probe(ap))
2053 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2054 __FUNCTION__, ata_chk_status(ap));
2055 return 0;
2056
2057 err_out_nosup:
2058 if (ata_msg_probe(ap))
2059 ata_dev_printk(dev, KERN_DEBUG,
2060 "%s: EXIT, err\n", __FUNCTION__);
2061 return rc;
2062 }
2063
2064 /**
2065 * ata_cable_40wire - return 40 wire cable type
2066 * @ap: port
2067 *
2068 * Helper method for drivers which want to hardwire 40 wire cable
2069 * detection.
2070 */
2071
2072 int ata_cable_40wire(struct ata_port *ap)
2073 {
2074 return ATA_CBL_PATA40;
2075 }
2076
2077 /**
2078 * ata_cable_80wire - return 80 wire cable type
2079 * @ap: port
2080 *
2081 * Helper method for drivers which want to hardwire 80 wire cable
2082 * detection.
2083 */
2084
2085 int ata_cable_80wire(struct ata_port *ap)
2086 {
2087 return ATA_CBL_PATA80;
2088 }
2089
2090 /**
2091 * ata_cable_unknown - return unknown PATA cable.
2092 * @ap: port
2093 *
2094 * Helper method for drivers which have no PATA cable detection.
2095 */
2096
2097 int ata_cable_unknown(struct ata_port *ap)
2098 {
2099 return ATA_CBL_PATA_UNK;
2100 }
2101
2102 /**
2103 * ata_cable_sata - return SATA cable type
2104 * @ap: port
2105 *
2106 * Helper method for drivers which have SATA cables
2107 */
2108
2109 int ata_cable_sata(struct ata_port *ap)
2110 {
2111 return ATA_CBL_SATA;
2112 }
2113
2114 /**
2115 * ata_bus_probe - Reset and probe ATA bus
2116 * @ap: Bus to probe
2117 *
2118 * Master ATA bus probing function. Initiates a hardware-dependent
2119 * bus reset, then attempts to identify any devices found on
2120 * the bus.
2121 *
2122 * LOCKING:
2123 * PCI/etc. bus probe sem.
2124 *
2125 * RETURNS:
2126 * Zero on success, negative errno otherwise.
2127 */
2128
2129 int ata_bus_probe(struct ata_port *ap)
2130 {
2131 unsigned int classes[ATA_MAX_DEVICES];
2132 int tries[ATA_MAX_DEVICES];
2133 int i, rc;
2134 struct ata_device *dev;
2135
2136 ata_port_probe(ap);
2137
2138 for (i = 0; i < ATA_MAX_DEVICES; i++)
2139 tries[i] = ATA_PROBE_MAX_TRIES;
2140
2141 retry:
2142 /* reset and determine device classes */
2143 ap->ops->phy_reset(ap);
2144
2145 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2146 dev = &ap->device[i];
2147
2148 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2149 dev->class != ATA_DEV_UNKNOWN)
2150 classes[dev->devno] = dev->class;
2151 else
2152 classes[dev->devno] = ATA_DEV_NONE;
2153
2154 dev->class = ATA_DEV_UNKNOWN;
2155 }
2156
2157 ata_port_probe(ap);
2158
2159 /* after the reset the device state is PIO 0 and the controller
2160 state is undefined. Record the mode */
2161
2162 for (i = 0; i < ATA_MAX_DEVICES; i++)
2163 ap->device[i].pio_mode = XFER_PIO_0;
2164
2165 /* read IDENTIFY page and configure devices. We have to do the identify
2166 specific sequence bass-ackwards so that PDIAG- is released by
2167 the slave device */
2168
2169 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2170 dev = &ap->device[i];
2171
2172 if (tries[i])
2173 dev->class = classes[i];
2174
2175 if (!ata_dev_enabled(dev))
2176 continue;
2177
2178 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2179 dev->id);
2180 if (rc)
2181 goto fail;
2182 }
2183
2184 /* Now ask for the cable type as PDIAG- should have been released */
2185 if (ap->ops->cable_detect)
2186 ap->cbl = ap->ops->cable_detect(ap);
2187
2188 /* After the identify sequence we can now set up the devices. We do
2189 this in the normal order so that the user doesn't get confused */
2190
2191 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2192 dev = &ap->device[i];
2193 if (!ata_dev_enabled(dev))
2194 continue;
2195
2196 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2197 rc = ata_dev_configure(dev);
2198 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2199 if (rc)
2200 goto fail;
2201 }
2202
2203 /* configure transfer mode */
2204 rc = ata_set_mode(ap, &dev);
2205 if (rc)
2206 goto fail;
2207
2208 for (i = 0; i < ATA_MAX_DEVICES; i++)
2209 if (ata_dev_enabled(&ap->device[i]))
2210 return 0;
2211
2212 /* no device present, disable port */
2213 ata_port_disable(ap);
2214 ap->ops->port_disable(ap);
2215 return -ENODEV;
2216
2217 fail:
2218 tries[dev->devno]--;
2219
2220 switch (rc) {
2221 case -EINVAL:
2222 /* eeek, something went very wrong, give up */
2223 tries[dev->devno] = 0;
2224 break;
2225
2226 case -ENODEV:
2227 /* give it just one more chance */
2228 tries[dev->devno] = min(tries[dev->devno], 1);
2229 case -EIO:
2230 if (tries[dev->devno] == 1) {
2231 /* This is the last chance, better to slow
2232 * down than lose it.
2233 */
2234 sata_down_spd_limit(ap);
2235 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2236 }
2237 }
2238
2239 if (!tries[dev->devno])
2240 ata_dev_disable(dev);
2241
2242 goto retry;
2243 }
2244
2245 /**
2246 * ata_port_probe - Mark port as enabled
2247 * @ap: Port for which we indicate enablement
2248 *
2249 * Modify @ap data structure such that the system
2250 * thinks that the entire port is enabled.
2251 *
2252 * LOCKING: host lock, or some other form of
2253 * serialization.
2254 */
2255
2256 void ata_port_probe(struct ata_port *ap)
2257 {
2258 ap->flags &= ~ATA_FLAG_DISABLED;
2259 }
2260
2261 /**
2262 * sata_print_link_status - Print SATA link status
2263 * @ap: SATA port to printk link status about
2264 *
2265 * This function prints link speed and status of a SATA link.
2266 *
2267 * LOCKING:
2268 * None.
2269 */
2270 void sata_print_link_status(struct ata_port *ap)
2271 {
2272 u32 sstatus, scontrol, tmp;
2273
2274 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2275 return;
2276 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2277
2278 if (ata_port_online(ap)) {
2279 tmp = (sstatus >> 4) & 0xf;
2280 ata_port_printk(ap, KERN_INFO,
2281 "SATA link up %s (SStatus %X SControl %X)\n",
2282 sata_spd_string(tmp), sstatus, scontrol);
2283 } else {
2284 ata_port_printk(ap, KERN_INFO,
2285 "SATA link down (SStatus %X SControl %X)\n",
2286 sstatus, scontrol);
2287 }
2288 }
2289
2290 /**
2291 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2292 * @ap: SATA port associated with target SATA PHY.
2293 *
2294 * This function issues commands to standard SATA Sxxx
2295 * PHY registers, to wake up the phy (and device), and
2296 * clear any reset condition.
2297 *
2298 * LOCKING:
2299 * PCI/etc. bus probe sem.
2300 *
2301 */
2302 void __sata_phy_reset(struct ata_port *ap)
2303 {
2304 u32 sstatus;
2305 unsigned long timeout = jiffies + (HZ * 5);
2306
2307 if (ap->flags & ATA_FLAG_SATA_RESET) {
2308 /* issue phy wake/reset */
2309 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2310 /* Couldn't find anything in SATA I/II specs, but
2311 * AHCI-1.1 10.4.2 says at least 1 ms. */
2312 mdelay(1);
2313 }
2314 /* phy wake/clear reset */
2315 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2316
2317 /* wait for phy to become ready, if necessary */
2318 do {
2319 msleep(200);
2320 sata_scr_read(ap, SCR_STATUS, &sstatus);
2321 if ((sstatus & 0xf) != 1)
2322 break;
2323 } while (time_before(jiffies, timeout));
2324
2325 /* print link status */
2326 sata_print_link_status(ap);
2327
2328 /* TODO: phy layer with polling, timeouts, etc. */
2329 if (!ata_port_offline(ap))
2330 ata_port_probe(ap);
2331 else
2332 ata_port_disable(ap);
2333
2334 if (ap->flags & ATA_FLAG_DISABLED)
2335 return;
2336
2337 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2338 ata_port_disable(ap);
2339 return;
2340 }
2341
2342 ap->cbl = ATA_CBL_SATA;
2343 }
2344
2345 /**
2346 * sata_phy_reset - Reset SATA bus.
2347 * @ap: SATA port associated with target SATA PHY.
2348 *
2349 * This function resets the SATA bus, and then probes
2350 * the bus for devices.
2351 *
2352 * LOCKING:
2353 * PCI/etc. bus probe sem.
2354 *
2355 */
2356 void sata_phy_reset(struct ata_port *ap)
2357 {
2358 __sata_phy_reset(ap);
2359 if (ap->flags & ATA_FLAG_DISABLED)
2360 return;
2361 ata_bus_reset(ap);
2362 }
2363
2364 /**
2365 * ata_dev_pair - return other device on cable
2366 * @adev: device
2367 *
2368 * Obtain the other device on the same cable, or if none is
2369 * present NULL is returned
2370 */
2371
2372 struct ata_device *ata_dev_pair(struct ata_device *adev)
2373 {
2374 struct ata_port *ap = adev->ap;
2375 struct ata_device *pair = &ap->device[1 - adev->devno];
2376 if (!ata_dev_enabled(pair))
2377 return NULL;
2378 return pair;
2379 }
2380
2381 /**
2382 * ata_port_disable - Disable port.
2383 * @ap: Port to be disabled.
2384 *
2385 * Modify @ap data structure such that the system
2386 * thinks that the entire port is disabled, and should
2387 * never attempt to probe or communicate with devices
2388 * on this port.
2389 *
2390 * LOCKING: host lock, or some other form of
2391 * serialization.
2392 */
2393
2394 void ata_port_disable(struct ata_port *ap)
2395 {
2396 ap->device[0].class = ATA_DEV_NONE;
2397 ap->device[1].class = ATA_DEV_NONE;
2398 ap->flags |= ATA_FLAG_DISABLED;
2399 }
2400
2401 /**
2402 * sata_down_spd_limit - adjust SATA spd limit downward
2403 * @ap: Port to adjust SATA spd limit for
2404 *
2405 * Adjust SATA spd limit of @ap downward. Note that this
2406 * function only adjusts the limit. The change must be applied
2407 * using sata_set_spd().
2408 *
2409 * LOCKING:
2410 * Inherited from caller.
2411 *
2412 * RETURNS:
2413 * 0 on success, negative errno on failure
2414 */
2415 int sata_down_spd_limit(struct ata_port *ap)
2416 {
2417 u32 sstatus, spd, mask;
2418 int rc, highbit;
2419
2420 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2421 if (rc)
2422 return rc;
2423
2424 mask = ap->sata_spd_limit;
2425 if (mask <= 1)
2426 return -EINVAL;
2427 highbit = fls(mask) - 1;
2428 mask &= ~(1 << highbit);
2429
2430 spd = (sstatus >> 4) & 0xf;
2431 if (spd <= 1)
2432 return -EINVAL;
2433 spd--;
2434 mask &= (1 << spd) - 1;
2435 if (!mask)
2436 return -EINVAL;
2437
2438 ap->sata_spd_limit = mask;
2439
2440 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2441 sata_spd_string(fls(mask)));
2442
2443 return 0;
2444 }
2445
2446 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2447 {
2448 u32 spd, limit;
2449
2450 if (ap->sata_spd_limit == UINT_MAX)
2451 limit = 0;
2452 else
2453 limit = fls(ap->sata_spd_limit);
2454
2455 spd = (*scontrol >> 4) & 0xf;
2456 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2457
2458 return spd != limit;
2459 }
2460
2461 /**
2462 * sata_set_spd_needed - is SATA spd configuration needed
2463 * @ap: Port in question
2464 *
2465 * Test whether the spd limit in SControl matches
2466 * @ap->sata_spd_limit. This function is used to determine
2467 * whether hardreset is necessary to apply SATA spd
2468 * configuration.
2469 *
2470 * LOCKING:
2471 * Inherited from caller.
2472 *
2473 * RETURNS:
2474 * 1 if SATA spd configuration is needed, 0 otherwise.
2475 */
2476 int sata_set_spd_needed(struct ata_port *ap)
2477 {
2478 u32 scontrol;
2479
2480 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2481 return 0;
2482
2483 return __sata_set_spd_needed(ap, &scontrol);
2484 }
2485
2486 /**
2487 * sata_set_spd - set SATA spd according to spd limit
2488 * @ap: Port to set SATA spd for
2489 *
2490 * Set SATA spd of @ap according to sata_spd_limit.
2491 *
2492 * LOCKING:
2493 * Inherited from caller.
2494 *
2495 * RETURNS:
2496 * 0 if spd doesn't need to be changed, 1 if spd has been
2497 * changed. Negative errno if SCR registers are inaccessible.
2498 */
2499 int sata_set_spd(struct ata_port *ap)
2500 {
2501 u32 scontrol;
2502 int rc;
2503
2504 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2505 return rc;
2506
2507 if (!__sata_set_spd_needed(ap, &scontrol))
2508 return 0;
2509
2510 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2511 return rc;
2512
2513 return 1;
2514 }
2515
2516 /*
2517 * This mode timing computation functionality is ported over from
2518 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2519 */
2520 /*
2521 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2522 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2523 * for UDMA6, which is currently supported only by Maxtor drives.
2524 *
2525 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2526 */
2527
2528 static const struct ata_timing ata_timing[] = {
2529
2530 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2531 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2532 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2533 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2534
2535 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2536 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2537 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2538 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2539 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2540
2541 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2542
2543 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2544 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2545 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2546
2547 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2548 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2549 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2550
2551 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2552 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2553 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2554 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2555
2556 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2557 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2558 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2559
2560 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2561
2562 { 0xFF }
2563 };
2564
2565 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2566 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2567
2568 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2569 {
2570 q->setup = EZ(t->setup * 1000, T);
2571 q->act8b = EZ(t->act8b * 1000, T);
2572 q->rec8b = EZ(t->rec8b * 1000, T);
2573 q->cyc8b = EZ(t->cyc8b * 1000, T);
2574 q->active = EZ(t->active * 1000, T);
2575 q->recover = EZ(t->recover * 1000, T);
2576 q->cycle = EZ(t->cycle * 1000, T);
2577 q->udma = EZ(t->udma * 1000, UT);
2578 }
2579
2580 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2581 struct ata_timing *m, unsigned int what)
2582 {
2583 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2584 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2585 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2586 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2587 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2588 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2589 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2590 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2591 }
2592
2593 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2594 {
2595 const struct ata_timing *t;
2596
2597 for (t = ata_timing; t->mode != speed; t++)
2598 if (t->mode == 0xFF)
2599 return NULL;
2600 return t;
2601 }
2602
2603 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2604 struct ata_timing *t, int T, int UT)
2605 {
2606 const struct ata_timing *s;
2607 struct ata_timing p;
2608
2609 /*
2610 * Find the mode.
2611 */
2612
2613 if (!(s = ata_timing_find_mode(speed)))
2614 return -EINVAL;
2615
2616 memcpy(t, s, sizeof(*s));
2617
2618 /*
2619 * If the drive is an EIDE drive, it can tell us it needs extended
2620 * PIO/MW_DMA cycle timing.
2621 */
2622
2623 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2624 memset(&p, 0, sizeof(p));
2625 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2626 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2627 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2628 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2629 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2630 }
2631 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2632 }
2633
2634 /*
2635 * Convert the timing to bus clock counts.
2636 */
2637
2638 ata_timing_quantize(t, t, T, UT);
2639
2640 /*
2641 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2642 * S.M.A.R.T * and some other commands. We have to ensure that the
2643 * DMA cycle timing is slower/equal than the fastest PIO timing.
2644 */
2645
2646 if (speed > XFER_PIO_6) {
2647 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2648 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2649 }
2650
2651 /*
2652 * Lengthen active & recovery time so that cycle time is correct.
2653 */
2654
2655 if (t->act8b + t->rec8b < t->cyc8b) {
2656 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2657 t->rec8b = t->cyc8b - t->act8b;
2658 }
2659
2660 if (t->active + t->recover < t->cycle) {
2661 t->active += (t->cycle - (t->active + t->recover)) / 2;
2662 t->recover = t->cycle - t->active;
2663 }
2664
2665 /* In a few cases quantisation may produce enough errors to
2666 leave t->cycle too low for the sum of active and recovery
2667 if so we must correct this */
2668 if (t->active + t->recover > t->cycle)
2669 t->cycle = t->active + t->recover;
2670
2671 return 0;
2672 }
2673
2674 /**
2675 * ata_down_xfermask_limit - adjust dev xfer masks downward
2676 * @dev: Device to adjust xfer masks
2677 * @sel: ATA_DNXFER_* selector
2678 *
2679 * Adjust xfer masks of @dev downward. Note that this function
2680 * does not apply the change. Invoking ata_set_mode() afterwards
2681 * will apply the limit.
2682 *
2683 * LOCKING:
2684 * Inherited from caller.
2685 *
2686 * RETURNS:
2687 * 0 on success, negative errno on failure
2688 */
2689 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2690 {
2691 char buf[32];
2692 unsigned int orig_mask, xfer_mask;
2693 unsigned int pio_mask, mwdma_mask, udma_mask;
2694 int quiet, highbit;
2695
2696 quiet = !!(sel & ATA_DNXFER_QUIET);
2697 sel &= ~ATA_DNXFER_QUIET;
2698
2699 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2700 dev->mwdma_mask,
2701 dev->udma_mask);
2702 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2703
2704 switch (sel) {
2705 case ATA_DNXFER_PIO:
2706 highbit = fls(pio_mask) - 1;
2707 pio_mask &= ~(1 << highbit);
2708 break;
2709
2710 case ATA_DNXFER_DMA:
2711 if (udma_mask) {
2712 highbit = fls(udma_mask) - 1;
2713 udma_mask &= ~(1 << highbit);
2714 if (!udma_mask)
2715 return -ENOENT;
2716 } else if (mwdma_mask) {
2717 highbit = fls(mwdma_mask) - 1;
2718 mwdma_mask &= ~(1 << highbit);
2719 if (!mwdma_mask)
2720 return -ENOENT;
2721 }
2722 break;
2723
2724 case ATA_DNXFER_40C:
2725 udma_mask &= ATA_UDMA_MASK_40C;
2726 break;
2727
2728 case ATA_DNXFER_FORCE_PIO0:
2729 pio_mask &= 1;
2730 case ATA_DNXFER_FORCE_PIO:
2731 mwdma_mask = 0;
2732 udma_mask = 0;
2733 break;
2734
2735 default:
2736 BUG();
2737 }
2738
2739 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2740
2741 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2742 return -ENOENT;
2743
2744 if (!quiet) {
2745 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2746 snprintf(buf, sizeof(buf), "%s:%s",
2747 ata_mode_string(xfer_mask),
2748 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2749 else
2750 snprintf(buf, sizeof(buf), "%s",
2751 ata_mode_string(xfer_mask));
2752
2753 ata_dev_printk(dev, KERN_WARNING,
2754 "limiting speed to %s\n", buf);
2755 }
2756
2757 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2758 &dev->udma_mask);
2759
2760 return 0;
2761 }
2762
2763 static int ata_dev_set_mode(struct ata_device *dev)
2764 {
2765 struct ata_eh_context *ehc = &dev->ap->eh_context;
2766 unsigned int err_mask;
2767 int rc;
2768
2769 dev->flags &= ~ATA_DFLAG_PIO;
2770 if (dev->xfer_shift == ATA_SHIFT_PIO)
2771 dev->flags |= ATA_DFLAG_PIO;
2772
2773 err_mask = ata_dev_set_xfermode(dev);
2774 /* Old CFA may refuse this command, which is just fine */
2775 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2776 err_mask &= ~AC_ERR_DEV;
2777
2778 if (err_mask) {
2779 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2780 "(err_mask=0x%x)\n", err_mask);
2781 return -EIO;
2782 }
2783
2784 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2785 rc = ata_dev_revalidate(dev, 0);
2786 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2787 if (rc)
2788 return rc;
2789
2790 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2791 dev->xfer_shift, (int)dev->xfer_mode);
2792
2793 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2794 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2795 return 0;
2796 }
2797
2798 /**
2799 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2800 * @ap: port on which timings will be programmed
2801 * @r_failed_dev: out paramter for failed device
2802 *
2803 * Standard implementation of the function used to tune and set
2804 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2805 * ata_dev_set_mode() fails, pointer to the failing device is
2806 * returned in @r_failed_dev.
2807 *
2808 * LOCKING:
2809 * PCI/etc. bus probe sem.
2810 *
2811 * RETURNS:
2812 * 0 on success, negative errno otherwise
2813 */
2814
2815 int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2816 {
2817 struct ata_device *dev;
2818 int i, rc = 0, used_dma = 0, found = 0;
2819
2820
2821 /* step 1: calculate xfer_mask */
2822 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2823 unsigned int pio_mask, dma_mask;
2824
2825 dev = &ap->device[i];
2826
2827 if (!ata_dev_enabled(dev))
2828 continue;
2829
2830 ata_dev_xfermask(dev);
2831
2832 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2833 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2834 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2835 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2836
2837 found = 1;
2838 if (dev->dma_mode)
2839 used_dma = 1;
2840 }
2841 if (!found)
2842 goto out;
2843
2844 /* step 2: always set host PIO timings */
2845 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2846 dev = &ap->device[i];
2847 if (!ata_dev_enabled(dev))
2848 continue;
2849
2850 if (!dev->pio_mode) {
2851 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2852 rc = -EINVAL;
2853 goto out;
2854 }
2855
2856 dev->xfer_mode = dev->pio_mode;
2857 dev->xfer_shift = ATA_SHIFT_PIO;
2858 if (ap->ops->set_piomode)
2859 ap->ops->set_piomode(ap, dev);
2860 }
2861
2862 /* step 3: set host DMA timings */
2863 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2864 dev = &ap->device[i];
2865
2866 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2867 continue;
2868
2869 dev->xfer_mode = dev->dma_mode;
2870 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2871 if (ap->ops->set_dmamode)
2872 ap->ops->set_dmamode(ap, dev);
2873 }
2874
2875 /* step 4: update devices' xfer mode */
2876 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2877 dev = &ap->device[i];
2878
2879 /* don't update suspended devices' xfer mode */
2880 if (!ata_dev_enabled(dev))
2881 continue;
2882
2883 rc = ata_dev_set_mode(dev);
2884 if (rc)
2885 goto out;
2886 }
2887
2888 /* Record simplex status. If we selected DMA then the other
2889 * host channels are not permitted to do so.
2890 */
2891 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2892 ap->host->simplex_claimed = ap;
2893
2894 out:
2895 if (rc)
2896 *r_failed_dev = dev;
2897 return rc;
2898 }
2899
2900 /**
2901 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2902 * @ap: port on which timings will be programmed
2903 * @r_failed_dev: out paramter for failed device
2904 *
2905 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2906 * ata_set_mode() fails, pointer to the failing device is
2907 * returned in @r_failed_dev.
2908 *
2909 * LOCKING:
2910 * PCI/etc. bus probe sem.
2911 *
2912 * RETURNS:
2913 * 0 on success, negative errno otherwise
2914 */
2915 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2916 {
2917 /* has private set_mode? */
2918 if (ap->ops->set_mode)
2919 return ap->ops->set_mode(ap, r_failed_dev);
2920 return ata_do_set_mode(ap, r_failed_dev);
2921 }
2922
2923 /**
2924 * ata_tf_to_host - issue ATA taskfile to host controller
2925 * @ap: port to which command is being issued
2926 * @tf: ATA taskfile register set
2927 *
2928 * Issues ATA taskfile register set to ATA host controller,
2929 * with proper synchronization with interrupt handler and
2930 * other threads.
2931 *
2932 * LOCKING:
2933 * spin_lock_irqsave(host lock)
2934 */
2935
2936 static inline void ata_tf_to_host(struct ata_port *ap,
2937 const struct ata_taskfile *tf)
2938 {
2939 ap->ops->tf_load(ap, tf);
2940 ap->ops->exec_command(ap, tf);
2941 }
2942
2943 /**
2944 * ata_busy_sleep - sleep until BSY clears, or timeout
2945 * @ap: port containing status register to be polled
2946 * @tmout_pat: impatience timeout
2947 * @tmout: overall timeout
2948 *
2949 * Sleep until ATA Status register bit BSY clears,
2950 * or a timeout occurs.
2951 *
2952 * LOCKING:
2953 * Kernel thread context (may sleep).
2954 *
2955 * RETURNS:
2956 * 0 on success, -errno otherwise.
2957 */
2958 int ata_busy_sleep(struct ata_port *ap,
2959 unsigned long tmout_pat, unsigned long tmout)
2960 {
2961 unsigned long timer_start, timeout;
2962 u8 status;
2963
2964 status = ata_busy_wait(ap, ATA_BUSY, 300);
2965 timer_start = jiffies;
2966 timeout = timer_start + tmout_pat;
2967 while (status != 0xff && (status & ATA_BUSY) &&
2968 time_before(jiffies, timeout)) {
2969 msleep(50);
2970 status = ata_busy_wait(ap, ATA_BUSY, 3);
2971 }
2972
2973 if (status != 0xff && (status & ATA_BUSY))
2974 ata_port_printk(ap, KERN_WARNING,
2975 "port is slow to respond, please be patient "
2976 "(Status 0x%x)\n", status);
2977
2978 timeout = timer_start + tmout;
2979 while (status != 0xff && (status & ATA_BUSY) &&
2980 time_before(jiffies, timeout)) {
2981 msleep(50);
2982 status = ata_chk_status(ap);
2983 }
2984
2985 if (status == 0xff)
2986 return -ENODEV;
2987
2988 if (status & ATA_BUSY) {
2989 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2990 "(%lu secs, Status 0x%x)\n",
2991 tmout / HZ, status);
2992 return -EBUSY;
2993 }
2994
2995 return 0;
2996 }
2997
2998 /**
2999 * ata_wait_ready - sleep until BSY clears, or timeout
3000 * @ap: port containing status register to be polled
3001 * @deadline: deadline jiffies for the operation
3002 *
3003 * Sleep until ATA Status register bit BSY clears, or timeout
3004 * occurs.
3005 *
3006 * LOCKING:
3007 * Kernel thread context (may sleep).
3008 *
3009 * RETURNS:
3010 * 0 on success, -errno otherwise.
3011 */
3012 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3013 {
3014 unsigned long start = jiffies;
3015 int warned = 0;
3016
3017 while (1) {
3018 u8 status = ata_chk_status(ap);
3019 unsigned long now = jiffies;
3020
3021 if (!(status & ATA_BUSY))
3022 return 0;
3023 if (!ata_port_online(ap) && status == 0xff)
3024 return -ENODEV;
3025 if (time_after(now, deadline))
3026 return -EBUSY;
3027
3028 if (!warned && time_after(now, start + 5 * HZ) &&
3029 (deadline - now > 3 * HZ)) {
3030 ata_port_printk(ap, KERN_WARNING,
3031 "port is slow to respond, please be patient "
3032 "(Status 0x%x)\n", status);
3033 warned = 1;
3034 }
3035
3036 msleep(50);
3037 }
3038 }
3039
3040 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3041 unsigned long deadline)
3042 {
3043 struct ata_ioports *ioaddr = &ap->ioaddr;
3044 unsigned int dev0 = devmask & (1 << 0);
3045 unsigned int dev1 = devmask & (1 << 1);
3046 int rc, ret = 0;
3047
3048 /* if device 0 was found in ata_devchk, wait for its
3049 * BSY bit to clear
3050 */
3051 if (dev0) {
3052 rc = ata_wait_ready(ap, deadline);
3053 if (rc) {
3054 if (rc != -ENODEV)
3055 return rc;
3056 ret = rc;
3057 }
3058 }
3059
3060 /* if device 1 was found in ata_devchk, wait for register
3061 * access briefly, then wait for BSY to clear.
3062 */
3063 if (dev1) {
3064 int i;
3065
3066 ap->ops->dev_select(ap, 1);
3067
3068 /* Wait for register access. Some ATAPI devices fail
3069 * to set nsect/lbal after reset, so don't waste too
3070 * much time on it. We're gonna wait for !BSY anyway.
3071 */
3072 for (i = 0; i < 2; i++) {
3073 u8 nsect, lbal;
3074
3075 nsect = ioread8(ioaddr->nsect_addr);
3076 lbal = ioread8(ioaddr->lbal_addr);
3077 if ((nsect == 1) && (lbal == 1))
3078 break;
3079 msleep(50); /* give drive a breather */
3080 }
3081
3082 rc = ata_wait_ready(ap, deadline);
3083 if (rc) {
3084 if (rc != -ENODEV)
3085 return rc;
3086 ret = rc;
3087 }
3088 }
3089
3090 /* is all this really necessary? */
3091 ap->ops->dev_select(ap, 0);
3092 if (dev1)
3093 ap->ops->dev_select(ap, 1);
3094 if (dev0)
3095 ap->ops->dev_select(ap, 0);
3096
3097 return ret;
3098 }
3099
3100 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3101 unsigned long deadline)
3102 {
3103 struct ata_ioports *ioaddr = &ap->ioaddr;
3104
3105 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3106
3107 /* software reset. causes dev0 to be selected */
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
3109 udelay(20); /* FIXME: flush */
3110 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3111 udelay(20); /* FIXME: flush */
3112 iowrite8(ap->ctl, ioaddr->ctl_addr);
3113
3114 /* spec mandates ">= 2ms" before checking status.
3115 * We wait 150ms, because that was the magic delay used for
3116 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3117 * between when the ATA command register is written, and then
3118 * status is checked. Because waiting for "a while" before
3119 * checking status is fine, post SRST, we perform this magic
3120 * delay here as well.
3121 *
3122 * Old drivers/ide uses the 2mS rule and then waits for ready
3123 */
3124 msleep(150);
3125
3126 /* Before we perform post reset processing we want to see if
3127 * the bus shows 0xFF because the odd clown forgets the D7
3128 * pulldown resistor.
3129 */
3130 if (ata_check_status(ap) == 0xFF)
3131 return -ENODEV;
3132
3133 return ata_bus_post_reset(ap, devmask, deadline);
3134 }
3135
3136 /**
3137 * ata_bus_reset - reset host port and associated ATA channel
3138 * @ap: port to reset
3139 *
3140 * This is typically the first time we actually start issuing
3141 * commands to the ATA channel. We wait for BSY to clear, then
3142 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3143 * result. Determine what devices, if any, are on the channel
3144 * by looking at the device 0/1 error register. Look at the signature
3145 * stored in each device's taskfile registers, to determine if
3146 * the device is ATA or ATAPI.
3147 *
3148 * LOCKING:
3149 * PCI/etc. bus probe sem.
3150 * Obtains host lock.
3151 *
3152 * SIDE EFFECTS:
3153 * Sets ATA_FLAG_DISABLED if bus reset fails.
3154 */
3155
3156 void ata_bus_reset(struct ata_port *ap)
3157 {
3158 struct ata_ioports *ioaddr = &ap->ioaddr;
3159 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3160 u8 err;
3161 unsigned int dev0, dev1 = 0, devmask = 0;
3162 int rc;
3163
3164 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3165
3166 /* determine if device 0/1 are present */
3167 if (ap->flags & ATA_FLAG_SATA_RESET)
3168 dev0 = 1;
3169 else {
3170 dev0 = ata_devchk(ap, 0);
3171 if (slave_possible)
3172 dev1 = ata_devchk(ap, 1);
3173 }
3174
3175 if (dev0)
3176 devmask |= (1 << 0);
3177 if (dev1)
3178 devmask |= (1 << 1);
3179
3180 /* select device 0 again */
3181 ap->ops->dev_select(ap, 0);
3182
3183 /* issue bus reset */
3184 if (ap->flags & ATA_FLAG_SRST) {
3185 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3186 if (rc && rc != -ENODEV)
3187 goto err_out;
3188 }
3189
3190 /*
3191 * determine by signature whether we have ATA or ATAPI devices
3192 */
3193 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3194 if ((slave_possible) && (err != 0x81))
3195 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3196
3197 /* re-enable interrupts */
3198 ap->ops->irq_on(ap);
3199
3200 /* is double-select really necessary? */
3201 if (ap->device[1].class != ATA_DEV_NONE)
3202 ap->ops->dev_select(ap, 1);
3203 if (ap->device[0].class != ATA_DEV_NONE)
3204 ap->ops->dev_select(ap, 0);
3205
3206 /* if no devices were detected, disable this port */
3207 if ((ap->device[0].class == ATA_DEV_NONE) &&
3208 (ap->device[1].class == ATA_DEV_NONE))
3209 goto err_out;
3210
3211 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3212 /* set up device control for ATA_FLAG_SATA_RESET */
3213 iowrite8(ap->ctl, ioaddr->ctl_addr);
3214 }
3215
3216 DPRINTK("EXIT\n");
3217 return;
3218
3219 err_out:
3220 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3221 ap->ops->port_disable(ap);
3222
3223 DPRINTK("EXIT\n");
3224 }
3225
3226 /**
3227 * sata_phy_debounce - debounce SATA phy status
3228 * @ap: ATA port to debounce SATA phy status for
3229 * @params: timing parameters { interval, duratinon, timeout } in msec
3230 * @deadline: deadline jiffies for the operation
3231 *
3232 * Make sure SStatus of @ap reaches stable state, determined by
3233 * holding the same value where DET is not 1 for @duration polled
3234 * every @interval, before @timeout. Timeout constraints the
3235 * beginning of the stable state. Because DET gets stuck at 1 on
3236 * some controllers after hot unplugging, this functions waits
3237 * until timeout then returns 0 if DET is stable at 1.
3238 *
3239 * @timeout is further limited by @deadline. The sooner of the
3240 * two is used.
3241 *
3242 * LOCKING:
3243 * Kernel thread context (may sleep)
3244 *
3245 * RETURNS:
3246 * 0 on success, -errno on failure.
3247 */
3248 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3249 unsigned long deadline)
3250 {
3251 unsigned long interval_msec = params[0];
3252 unsigned long duration = msecs_to_jiffies(params[1]);
3253 unsigned long last_jiffies, t;
3254 u32 last, cur;
3255 int rc;
3256
3257 t = jiffies + msecs_to_jiffies(params[2]);
3258 if (time_before(t, deadline))
3259 deadline = t;
3260
3261 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3262 return rc;
3263 cur &= 0xf;
3264
3265 last = cur;
3266 last_jiffies = jiffies;
3267
3268 while (1) {
3269 msleep(interval_msec);
3270 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3271 return rc;
3272 cur &= 0xf;
3273
3274 /* DET stable? */
3275 if (cur == last) {
3276 if (cur == 1 && time_before(jiffies, deadline))
3277 continue;
3278 if (time_after(jiffies, last_jiffies + duration))
3279 return 0;
3280 continue;
3281 }
3282
3283 /* unstable, start over */
3284 last = cur;
3285 last_jiffies = jiffies;
3286
3287 /* check deadline */
3288 if (time_after(jiffies, deadline))
3289 return -EBUSY;
3290 }
3291 }
3292
3293 /**
3294 * sata_phy_resume - resume SATA phy
3295 * @ap: ATA port to resume SATA phy for
3296 * @params: timing parameters { interval, duratinon, timeout } in msec
3297 * @deadline: deadline jiffies for the operation
3298 *
3299 * Resume SATA phy of @ap and debounce it.
3300 *
3301 * LOCKING:
3302 * Kernel thread context (may sleep)
3303 *
3304 * RETURNS:
3305 * 0 on success, -errno on failure.
3306 */
3307 int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3308 unsigned long deadline)
3309 {
3310 u32 scontrol;
3311 int rc;
3312
3313 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3314 return rc;
3315
3316 scontrol = (scontrol & 0x0f0) | 0x300;
3317
3318 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3319 return rc;
3320
3321 /* Some PHYs react badly if SStatus is pounded immediately
3322 * after resuming. Delay 200ms before debouncing.
3323 */
3324 msleep(200);
3325
3326 return sata_phy_debounce(ap, params, deadline);
3327 }
3328
3329 /**
3330 * ata_std_prereset - prepare for reset
3331 * @ap: ATA port to be reset
3332 * @deadline: deadline jiffies for the operation
3333 *
3334 * @ap is about to be reset. Initialize it. Failure from
3335 * prereset makes libata abort whole reset sequence and give up
3336 * that port, so prereset should be best-effort. It does its
3337 * best to prepare for reset sequence but if things go wrong, it
3338 * should just whine, not fail.
3339 *
3340 * LOCKING:
3341 * Kernel thread context (may sleep)
3342 *
3343 * RETURNS:
3344 * 0 on success, -errno otherwise.
3345 */
3346 int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3347 {
3348 struct ata_eh_context *ehc = &ap->eh_context;
3349 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3350 int rc;
3351
3352 /* handle link resume */
3353 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3354 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3355 ehc->i.action |= ATA_EH_HARDRESET;
3356
3357 /* if we're about to do hardreset, nothing more to do */
3358 if (ehc->i.action & ATA_EH_HARDRESET)
3359 return 0;
3360
3361 /* if SATA, resume phy */
3362 if (ap->cbl == ATA_CBL_SATA) {
3363 rc = sata_phy_resume(ap, timing, deadline);
3364 /* whine about phy resume failure but proceed */
3365 if (rc && rc != -EOPNOTSUPP)
3366 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3367 "link for reset (errno=%d)\n", rc);
3368 }
3369
3370 /* Wait for !BSY if the controller can wait for the first D2H
3371 * Reg FIS and we don't know that no device is attached.
3372 */
3373 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3374 rc = ata_wait_ready(ap, deadline);
3375 if (rc && rc != -ENODEV) {
3376 ata_port_printk(ap, KERN_WARNING, "device not ready "
3377 "(errno=%d), forcing hardreset\n", rc);
3378 ehc->i.action |= ATA_EH_HARDRESET;
3379 }
3380 }
3381
3382 return 0;
3383 }
3384
3385 /**
3386 * ata_std_softreset - reset host port via ATA SRST
3387 * @ap: port to reset
3388 * @classes: resulting classes of attached devices
3389 * @deadline: deadline jiffies for the operation
3390 *
3391 * Reset host port using ATA SRST.
3392 *
3393 * LOCKING:
3394 * Kernel thread context (may sleep)
3395 *
3396 * RETURNS:
3397 * 0 on success, -errno otherwise.
3398 */
3399 int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3400 unsigned long deadline)
3401 {
3402 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3403 unsigned int devmask = 0;
3404 int rc;
3405 u8 err;
3406
3407 DPRINTK("ENTER\n");
3408
3409 if (ata_port_offline(ap)) {
3410 classes[0] = ATA_DEV_NONE;
3411 goto out;
3412 }
3413
3414 /* determine if device 0/1 are present */
3415 if (ata_devchk(ap, 0))
3416 devmask |= (1 << 0);
3417 if (slave_possible && ata_devchk(ap, 1))
3418 devmask |= (1 << 1);
3419
3420 /* select device 0 again */
3421 ap->ops->dev_select(ap, 0);
3422
3423 /* issue bus reset */
3424 DPRINTK("about to softreset, devmask=%x\n", devmask);
3425 rc = ata_bus_softreset(ap, devmask, deadline);
3426 /* if link is occupied, -ENODEV too is an error */
3427 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3428 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3429 return rc;
3430 }
3431
3432 /* determine by signature whether we have ATA or ATAPI devices */
3433 classes[0] = ata_dev_try_classify(ap, 0, &err);
3434 if (slave_possible && err != 0x81)
3435 classes[1] = ata_dev_try_classify(ap, 1, &err);
3436
3437 out:
3438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3439 return 0;
3440 }
3441
3442 /**
3443 * sata_port_hardreset - reset port via SATA phy reset
3444 * @ap: port to reset
3445 * @timing: timing parameters { interval, duratinon, timeout } in msec
3446 * @deadline: deadline jiffies for the operation
3447 *
3448 * SATA phy-reset host port using DET bits of SControl register.
3449 *
3450 * LOCKING:
3451 * Kernel thread context (may sleep)
3452 *
3453 * RETURNS:
3454 * 0 on success, -errno otherwise.
3455 */
3456 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3457 unsigned long deadline)
3458 {
3459 u32 scontrol;
3460 int rc;
3461
3462 DPRINTK("ENTER\n");
3463
3464 if (sata_set_spd_needed(ap)) {
3465 /* SATA spec says nothing about how to reconfigure
3466 * spd. To be on the safe side, turn off phy during
3467 * reconfiguration. This works for at least ICH7 AHCI
3468 * and Sil3124.
3469 */
3470 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3471 goto out;
3472
3473 scontrol = (scontrol & 0x0f0) | 0x304;
3474
3475 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3476 goto out;
3477
3478 sata_set_spd(ap);
3479 }
3480
3481 /* issue phy wake/reset */
3482 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3483 goto out;
3484
3485 scontrol = (scontrol & 0x0f0) | 0x301;
3486
3487 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3488 goto out;
3489
3490 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3491 * 10.4.2 says at least 1 ms.
3492 */
3493 msleep(1);
3494
3495 /* bring phy back */
3496 rc = sata_phy_resume(ap, timing, deadline);
3497 out:
3498 DPRINTK("EXIT, rc=%d\n", rc);
3499 return rc;
3500 }
3501
3502 /**
3503 * sata_std_hardreset - reset host port via SATA phy reset
3504 * @ap: port to reset
3505 * @class: resulting class of attached device
3506 * @deadline: deadline jiffies for the operation
3507 *
3508 * SATA phy-reset host port using DET bits of SControl register,
3509 * wait for !BSY and classify the attached device.
3510 *
3511 * LOCKING:
3512 * Kernel thread context (may sleep)
3513 *
3514 * RETURNS:
3515 * 0 on success, -errno otherwise.
3516 */
3517 int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3518 unsigned long deadline)
3519 {
3520 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3521 int rc;
3522
3523 DPRINTK("ENTER\n");
3524
3525 /* do hardreset */
3526 rc = sata_port_hardreset(ap, timing, deadline);
3527 if (rc) {
3528 ata_port_printk(ap, KERN_ERR,
3529 "COMRESET failed (errno=%d)\n", rc);
3530 return rc;
3531 }
3532
3533 /* TODO: phy layer with polling, timeouts, etc. */
3534 if (ata_port_offline(ap)) {
3535 *class = ATA_DEV_NONE;
3536 DPRINTK("EXIT, link offline\n");
3537 return 0;
3538 }
3539
3540 /* wait a while before checking status, see SRST for more info */
3541 msleep(150);
3542
3543 rc = ata_wait_ready(ap, deadline);
3544 /* link occupied, -ENODEV too is an error */
3545 if (rc) {
3546 ata_port_printk(ap, KERN_ERR,
3547 "COMRESET failed (errno=%d)\n", rc);
3548 return rc;
3549 }
3550
3551 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3552
3553 *class = ata_dev_try_classify(ap, 0, NULL);
3554
3555 DPRINTK("EXIT, class=%u\n", *class);
3556 return 0;
3557 }
3558
3559 /**
3560 * ata_std_postreset - standard postreset callback
3561 * @ap: the target ata_port
3562 * @classes: classes of attached devices
3563 *
3564 * This function is invoked after a successful reset. Note that
3565 * the device might have been reset more than once using
3566 * different reset methods before postreset is invoked.
3567 *
3568 * LOCKING:
3569 * Kernel thread context (may sleep)
3570 */
3571 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3572 {
3573 u32 serror;
3574
3575 DPRINTK("ENTER\n");
3576
3577 /* print link status */
3578 sata_print_link_status(ap);
3579
3580 /* clear SError */
3581 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3582 sata_scr_write(ap, SCR_ERROR, serror);
3583
3584 /* re-enable interrupts */
3585 if (!ap->ops->error_handler)
3586 ap->ops->irq_on(ap);
3587
3588 /* is double-select really necessary? */
3589 if (classes[0] != ATA_DEV_NONE)
3590 ap->ops->dev_select(ap, 1);
3591 if (classes[1] != ATA_DEV_NONE)
3592 ap->ops->dev_select(ap, 0);
3593
3594 /* bail out if no device is present */
3595 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3596 DPRINTK("EXIT, no device\n");
3597 return;
3598 }
3599
3600 /* set up device control */
3601 if (ap->ioaddr.ctl_addr)
3602 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3603
3604 DPRINTK("EXIT\n");
3605 }
3606
3607 /**
3608 * ata_dev_same_device - Determine whether new ID matches configured device
3609 * @dev: device to compare against
3610 * @new_class: class of the new device
3611 * @new_id: IDENTIFY page of the new device
3612 *
3613 * Compare @new_class and @new_id against @dev and determine
3614 * whether @dev is the device indicated by @new_class and
3615 * @new_id.
3616 *
3617 * LOCKING:
3618 * None.
3619 *
3620 * RETURNS:
3621 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3622 */
3623 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3624 const u16 *new_id)
3625 {
3626 const u16 *old_id = dev->id;
3627 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3628 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3629
3630 if (dev->class != new_class) {
3631 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3632 dev->class, new_class);
3633 return 0;
3634 }
3635
3636 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3637 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3638 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3639 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3640
3641 if (strcmp(model[0], model[1])) {
3642 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3643 "'%s' != '%s'\n", model[0], model[1]);
3644 return 0;
3645 }
3646
3647 if (strcmp(serial[0], serial[1])) {
3648 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3649 "'%s' != '%s'\n", serial[0], serial[1]);
3650 return 0;
3651 }
3652
3653 return 1;
3654 }
3655
3656 /**
3657 * ata_dev_reread_id - Re-read IDENTIFY data
3658 * @dev: target ATA device
3659 * @readid_flags: read ID flags
3660 *
3661 * Re-read IDENTIFY page and make sure @dev is still attached to
3662 * the port.
3663 *
3664 * LOCKING:
3665 * Kernel thread context (may sleep)
3666 *
3667 * RETURNS:
3668 * 0 on success, negative errno otherwise
3669 */
3670 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3671 {
3672 unsigned int class = dev->class;
3673 u16 *id = (void *)dev->ap->sector_buf;
3674 int rc;
3675
3676 /* read ID data */
3677 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3678 if (rc)
3679 return rc;
3680
3681 /* is the device still there? */
3682 if (!ata_dev_same_device(dev, class, id))
3683 return -ENODEV;
3684
3685 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3686 return 0;
3687 }
3688
3689 /**
3690 * ata_dev_revalidate - Revalidate ATA device
3691 * @dev: device to revalidate
3692 * @readid_flags: read ID flags
3693 *
3694 * Re-read IDENTIFY page, make sure @dev is still attached to the
3695 * port and reconfigure it according to the new IDENTIFY page.
3696 *
3697 * LOCKING:
3698 * Kernel thread context (may sleep)
3699 *
3700 * RETURNS:
3701 * 0 on success, negative errno otherwise
3702 */
3703 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3704 {
3705 u64 n_sectors = dev->n_sectors;
3706 int rc;
3707
3708 if (!ata_dev_enabled(dev))
3709 return -ENODEV;
3710
3711 /* re-read ID */
3712 rc = ata_dev_reread_id(dev, readid_flags);
3713 if (rc)
3714 goto fail;
3715
3716 /* configure device according to the new ID */
3717 rc = ata_dev_configure(dev);
3718 if (rc)
3719 goto fail;
3720
3721 /* verify n_sectors hasn't changed */
3722 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3723 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3724 "%llu != %llu\n",
3725 (unsigned long long)n_sectors,
3726 (unsigned long long)dev->n_sectors);
3727 rc = -ENODEV;
3728 goto fail;
3729 }
3730
3731 return 0;
3732
3733 fail:
3734 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3735 return rc;
3736 }
3737
3738 struct ata_blacklist_entry {
3739 const char *model_num;
3740 const char *model_rev;
3741 unsigned long horkage;
3742 };
3743
3744 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3745 /* Devices with DMA related problems under Linux */
3746 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3748 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3749 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3750 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3751 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3752 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3753 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3754 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3755 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3756 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3757 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3758 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3759 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3760 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3761 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3762 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3763 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3764 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3765 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3766 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3767 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3768 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3769 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3771 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3772 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3773 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3774 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3775 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3776 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3777
3778 /* Weird ATAPI devices */
3779 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3780
3781 /* Devices we expect to fail diagnostics */
3782
3783 /* Devices where NCQ should be avoided */
3784 /* NCQ is slow */
3785 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3786 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3787 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3788 /* NCQ is broken */
3789 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3790 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3791 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3792 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3793 /* Blacklist entries taken from Silicon Image 3124/3132
3794 Windows driver .inf file - also several Linux problem reports */
3795 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3796 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3797 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3798 /* Drives which do spurious command completion */
3799 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3800 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3801 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3802
3803 /* Devices with NCQ limits */
3804
3805 /* End Marker */
3806 { }
3807 };
3808
3809 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3810 {
3811 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3812 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3813 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3814
3815 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3816 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3817
3818 while (ad->model_num) {
3819 if (!strcmp(ad->model_num, model_num)) {
3820 if (ad->model_rev == NULL)
3821 return ad->horkage;
3822 if (!strcmp(ad->model_rev, model_rev))
3823 return ad->horkage;
3824 }
3825 ad++;
3826 }
3827 return 0;
3828 }
3829
3830 static int ata_dma_blacklisted(const struct ata_device *dev)
3831 {
3832 /* We don't support polling DMA.
3833 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3834 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3835 */
3836 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3837 (dev->flags & ATA_DFLAG_CDB_INTR))
3838 return 1;
3839 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3840 }
3841
3842 /**
3843 * ata_dev_xfermask - Compute supported xfermask of the given device
3844 * @dev: Device to compute xfermask for
3845 *
3846 * Compute supported xfermask of @dev and store it in
3847 * dev->*_mask. This function is responsible for applying all
3848 * known limits including host controller limits, device
3849 * blacklist, etc...
3850 *
3851 * LOCKING:
3852 * None.
3853 */
3854 static void ata_dev_xfermask(struct ata_device *dev)
3855 {
3856 struct ata_port *ap = dev->ap;
3857 struct ata_host *host = ap->host;
3858 unsigned long xfer_mask;
3859
3860 /* controller modes available */
3861 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3862 ap->mwdma_mask, ap->udma_mask);
3863
3864 /* drive modes available */
3865 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3866 dev->mwdma_mask, dev->udma_mask);
3867 xfer_mask &= ata_id_xfermask(dev->id);
3868
3869 /*
3870 * CFA Advanced TrueIDE timings are not allowed on a shared
3871 * cable
3872 */
3873 if (ata_dev_pair(dev)) {
3874 /* No PIO5 or PIO6 */
3875 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3876 /* No MWDMA3 or MWDMA 4 */
3877 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3878 }
3879
3880 if (ata_dma_blacklisted(dev)) {
3881 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3882 ata_dev_printk(dev, KERN_WARNING,
3883 "device is on DMA blacklist, disabling DMA\n");
3884 }
3885
3886 if ((host->flags & ATA_HOST_SIMPLEX) &&
3887 host->simplex_claimed && host->simplex_claimed != ap) {
3888 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3889 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3890 "other device, disabling DMA\n");
3891 }
3892
3893 if (ap->flags & ATA_FLAG_NO_IORDY)
3894 xfer_mask &= ata_pio_mask_no_iordy(dev);
3895
3896 if (ap->ops->mode_filter)
3897 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3898
3899 /* Apply cable rule here. Don't apply it early because when
3900 * we handle hot plug the cable type can itself change.
3901 * Check this last so that we know if the transfer rate was
3902 * solely limited by the cable.
3903 * Unknown or 80 wire cables reported host side are checked
3904 * drive side as well. Cases where we know a 40wire cable
3905 * is used safely for 80 are not checked here.
3906 */
3907 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3908 /* UDMA/44 or higher would be available */
3909 if((ap->cbl == ATA_CBL_PATA40) ||
3910 (ata_drive_40wire(dev->id) &&
3911 (ap->cbl == ATA_CBL_PATA_UNK ||
3912 ap->cbl == ATA_CBL_PATA80))) {
3913 ata_dev_printk(dev, KERN_WARNING,
3914 "limited to UDMA/33 due to 40-wire cable\n");
3915 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3916 }
3917
3918 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3919 &dev->mwdma_mask, &dev->udma_mask);
3920 }
3921
3922 /**
3923 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3924 * @dev: Device to which command will be sent
3925 *
3926 * Issue SET FEATURES - XFER MODE command to device @dev
3927 * on port @ap.
3928 *
3929 * LOCKING:
3930 * PCI/etc. bus probe sem.
3931 *
3932 * RETURNS:
3933 * 0 on success, AC_ERR_* mask otherwise.
3934 */
3935
3936 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3937 {
3938 struct ata_taskfile tf;
3939 unsigned int err_mask;
3940
3941 /* set up set-features taskfile */
3942 DPRINTK("set features - xfer mode\n");
3943
3944 /* Some controllers and ATAPI devices show flaky interrupt
3945 * behavior after setting xfer mode. Use polling instead.
3946 */
3947 ata_tf_init(dev, &tf);
3948 tf.command = ATA_CMD_SET_FEATURES;
3949 tf.feature = SETFEATURES_XFER;
3950 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3951 tf.protocol = ATA_PROT_NODATA;
3952 tf.nsect = dev->xfer_mode;
3953
3954 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3955
3956 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3957 return err_mask;
3958 }
3959
3960 /**
3961 * ata_dev_init_params - Issue INIT DEV PARAMS command
3962 * @dev: Device to which command will be sent
3963 * @heads: Number of heads (taskfile parameter)
3964 * @sectors: Number of sectors (taskfile parameter)
3965 *
3966 * LOCKING:
3967 * Kernel thread context (may sleep)
3968 *
3969 * RETURNS:
3970 * 0 on success, AC_ERR_* mask otherwise.
3971 */
3972 static unsigned int ata_dev_init_params(struct ata_device *dev,
3973 u16 heads, u16 sectors)
3974 {
3975 struct ata_taskfile tf;
3976 unsigned int err_mask;
3977
3978 /* Number of sectors per track 1-255. Number of heads 1-16 */
3979 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3980 return AC_ERR_INVALID;
3981
3982 /* set up init dev params taskfile */
3983 DPRINTK("init dev params \n");
3984
3985 ata_tf_init(dev, &tf);
3986 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3987 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3988 tf.protocol = ATA_PROT_NODATA;
3989 tf.nsect = sectors;
3990 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3991
3992 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3993
3994 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3995 return err_mask;
3996 }
3997
3998 /**
3999 * ata_sg_clean - Unmap DMA memory associated with command
4000 * @qc: Command containing DMA memory to be released
4001 *
4002 * Unmap all mapped DMA memory associated with this command.
4003 *
4004 * LOCKING:
4005 * spin_lock_irqsave(host lock)
4006 */
4007 void ata_sg_clean(struct ata_queued_cmd *qc)
4008 {
4009 struct ata_port *ap = qc->ap;
4010 struct scatterlist *sg = qc->__sg;
4011 int dir = qc->dma_dir;
4012 void *pad_buf = NULL;
4013
4014 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4015 WARN_ON(sg == NULL);
4016
4017 if (qc->flags & ATA_QCFLAG_SINGLE)
4018 WARN_ON(qc->n_elem > 1);
4019
4020 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4021
4022 /* if we padded the buffer out to 32-bit bound, and data
4023 * xfer direction is from-device, we must copy from the
4024 * pad buffer back into the supplied buffer
4025 */
4026 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4027 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4028
4029 if (qc->flags & ATA_QCFLAG_SG) {
4030 if (qc->n_elem)
4031 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4032 /* restore last sg */
4033 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4034 if (pad_buf) {
4035 struct scatterlist *psg = &qc->pad_sgent;
4036 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4037 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4038 kunmap_atomic(addr, KM_IRQ0);
4039 }
4040 } else {
4041 if (qc->n_elem)
4042 dma_unmap_single(ap->dev,
4043 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4044 dir);
4045 /* restore sg */
4046 sg->length += qc->pad_len;
4047 if (pad_buf)
4048 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4049 pad_buf, qc->pad_len);
4050 }
4051
4052 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4053 qc->__sg = NULL;
4054 }
4055
4056 /**
4057 * ata_fill_sg - Fill PCI IDE PRD table
4058 * @qc: Metadata associated with taskfile to be transferred
4059 *
4060 * Fill PCI IDE PRD (scatter-gather) table with segments
4061 * associated with the current disk command.
4062 *
4063 * LOCKING:
4064 * spin_lock_irqsave(host lock)
4065 *
4066 */
4067 static void ata_fill_sg(struct ata_queued_cmd *qc)
4068 {
4069 struct ata_port *ap = qc->ap;
4070 struct scatterlist *sg;
4071 unsigned int idx;
4072
4073 WARN_ON(qc->__sg == NULL);
4074 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4075
4076 idx = 0;
4077 ata_for_each_sg(sg, qc) {
4078 u32 addr, offset;
4079 u32 sg_len, len;
4080
4081 /* determine if physical DMA addr spans 64K boundary.
4082 * Note h/w doesn't support 64-bit, so we unconditionally
4083 * truncate dma_addr_t to u32.
4084 */
4085 addr = (u32) sg_dma_address(sg);
4086 sg_len = sg_dma_len(sg);
4087
4088 while (sg_len) {
4089 offset = addr & 0xffff;
4090 len = sg_len;
4091 if ((offset + sg_len) > 0x10000)
4092 len = 0x10000 - offset;
4093
4094 ap->prd[idx].addr = cpu_to_le32(addr);
4095 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4096 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4097
4098 idx++;
4099 sg_len -= len;
4100 addr += len;
4101 }
4102 }
4103
4104 if (idx)
4105 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4106 }
4107
4108 /**
4109 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4110 * @qc: Metadata associated with taskfile to check
4111 *
4112 * Allow low-level driver to filter ATA PACKET commands, returning
4113 * a status indicating whether or not it is OK to use DMA for the
4114 * supplied PACKET command.
4115 *
4116 * LOCKING:
4117 * spin_lock_irqsave(host lock)
4118 *
4119 * RETURNS: 0 when ATAPI DMA can be used
4120 * nonzero otherwise
4121 */
4122 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4123 {
4124 struct ata_port *ap = qc->ap;
4125
4126 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4127 * few ATAPI devices choke on such DMA requests.
4128 */
4129 if (unlikely(qc->nbytes & 15))
4130 return 1;
4131
4132 if (ap->ops->check_atapi_dma)
4133 return ap->ops->check_atapi_dma(qc);
4134
4135 return 0;
4136 }
4137
4138 /**
4139 * ata_qc_prep - Prepare taskfile for submission
4140 * @qc: Metadata associated with taskfile to be prepared
4141 *
4142 * Prepare ATA taskfile for submission.
4143 *
4144 * LOCKING:
4145 * spin_lock_irqsave(host lock)
4146 */
4147 void ata_qc_prep(struct ata_queued_cmd *qc)
4148 {
4149 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4150 return;
4151
4152 ata_fill_sg(qc);
4153 }
4154
4155 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4156
4157 /**
4158 * ata_sg_init_one - Associate command with memory buffer
4159 * @qc: Command to be associated
4160 * @buf: Memory buffer
4161 * @buflen: Length of memory buffer, in bytes.
4162 *
4163 * Initialize the data-related elements of queued_cmd @qc
4164 * to point to a single memory buffer, @buf of byte length @buflen.
4165 *
4166 * LOCKING:
4167 * spin_lock_irqsave(host lock)
4168 */
4169
4170 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4171 {
4172 qc->flags |= ATA_QCFLAG_SINGLE;
4173
4174 qc->__sg = &qc->sgent;
4175 qc->n_elem = 1;
4176 qc->orig_n_elem = 1;
4177 qc->buf_virt = buf;
4178 qc->nbytes = buflen;
4179
4180 sg_init_one(&qc->sgent, buf, buflen);
4181 }
4182
4183 /**
4184 * ata_sg_init - Associate command with scatter-gather table.
4185 * @qc: Command to be associated
4186 * @sg: Scatter-gather table.
4187 * @n_elem: Number of elements in s/g table.
4188 *
4189 * Initialize the data-related elements of queued_cmd @qc
4190 * to point to a scatter-gather table @sg, containing @n_elem
4191 * elements.
4192 *
4193 * LOCKING:
4194 * spin_lock_irqsave(host lock)
4195 */
4196
4197 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4198 unsigned int n_elem)
4199 {
4200 qc->flags |= ATA_QCFLAG_SG;
4201 qc->__sg = sg;
4202 qc->n_elem = n_elem;
4203 qc->orig_n_elem = n_elem;
4204 }
4205
4206 /**
4207 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4208 * @qc: Command with memory buffer to be mapped.
4209 *
4210 * DMA-map the memory buffer associated with queued_cmd @qc.
4211 *
4212 * LOCKING:
4213 * spin_lock_irqsave(host lock)
4214 *
4215 * RETURNS:
4216 * Zero on success, negative on error.
4217 */
4218
4219 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4220 {
4221 struct ata_port *ap = qc->ap;
4222 int dir = qc->dma_dir;
4223 struct scatterlist *sg = qc->__sg;
4224 dma_addr_t dma_address;
4225 int trim_sg = 0;
4226
4227 /* we must lengthen transfers to end on a 32-bit boundary */
4228 qc->pad_len = sg->length & 3;
4229 if (qc->pad_len) {
4230 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4231 struct scatterlist *psg = &qc->pad_sgent;
4232
4233 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4234
4235 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4236
4237 if (qc->tf.flags & ATA_TFLAG_WRITE)
4238 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4239 qc->pad_len);
4240
4241 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4242 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4243 /* trim sg */
4244 sg->length -= qc->pad_len;
4245 if (sg->length == 0)
4246 trim_sg = 1;
4247
4248 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4249 sg->length, qc->pad_len);
4250 }
4251
4252 if (trim_sg) {
4253 qc->n_elem--;
4254 goto skip_map;
4255 }
4256
4257 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4258 sg->length, dir);
4259 if (dma_mapping_error(dma_address)) {
4260 /* restore sg */
4261 sg->length += qc->pad_len;
4262 return -1;
4263 }
4264
4265 sg_dma_address(sg) = dma_address;
4266 sg_dma_len(sg) = sg->length;
4267
4268 skip_map:
4269 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4270 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4271
4272 return 0;
4273 }
4274
4275 /**
4276 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4277 * @qc: Command with scatter-gather table to be mapped.
4278 *
4279 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4280 *
4281 * LOCKING:
4282 * spin_lock_irqsave(host lock)
4283 *
4284 * RETURNS:
4285 * Zero on success, negative on error.
4286 *
4287 */
4288
4289 static int ata_sg_setup(struct ata_queued_cmd *qc)
4290 {
4291 struct ata_port *ap = qc->ap;
4292 struct scatterlist *sg = qc->__sg;
4293 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4294 int n_elem, pre_n_elem, dir, trim_sg = 0;
4295
4296 VPRINTK("ENTER, ata%u\n", ap->print_id);
4297 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4298
4299 /* we must lengthen transfers to end on a 32-bit boundary */
4300 qc->pad_len = lsg->length & 3;
4301 if (qc->pad_len) {
4302 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4303 struct scatterlist *psg = &qc->pad_sgent;
4304 unsigned int offset;
4305
4306 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4307
4308 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4309
4310 /*
4311 * psg->page/offset are used to copy to-be-written
4312 * data in this function or read data in ata_sg_clean.
4313 */
4314 offset = lsg->offset + lsg->length - qc->pad_len;
4315 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4316 psg->offset = offset_in_page(offset);
4317
4318 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4319 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4320 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4321 kunmap_atomic(addr, KM_IRQ0);
4322 }
4323
4324 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4325 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4326 /* trim last sg */
4327 lsg->length -= qc->pad_len;
4328 if (lsg->length == 0)
4329 trim_sg = 1;
4330
4331 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4332 qc->n_elem - 1, lsg->length, qc->pad_len);
4333 }
4334
4335 pre_n_elem = qc->n_elem;
4336 if (trim_sg && pre_n_elem)
4337 pre_n_elem--;
4338
4339 if (!pre_n_elem) {
4340 n_elem = 0;
4341 goto skip_map;
4342 }
4343
4344 dir = qc->dma_dir;
4345 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4346 if (n_elem < 1) {
4347 /* restore last sg */
4348 lsg->length += qc->pad_len;
4349 return -1;
4350 }
4351
4352 DPRINTK("%d sg elements mapped\n", n_elem);
4353
4354 skip_map:
4355 qc->n_elem = n_elem;
4356
4357 return 0;
4358 }
4359
4360 /**
4361 * swap_buf_le16 - swap halves of 16-bit words in place
4362 * @buf: Buffer to swap
4363 * @buf_words: Number of 16-bit words in buffer.
4364 *
4365 * Swap halves of 16-bit words if needed to convert from
4366 * little-endian byte order to native cpu byte order, or
4367 * vice-versa.
4368 *
4369 * LOCKING:
4370 * Inherited from caller.
4371 */
4372 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4373 {
4374 #ifdef __BIG_ENDIAN
4375 unsigned int i;
4376
4377 for (i = 0; i < buf_words; i++)
4378 buf[i] = le16_to_cpu(buf[i]);
4379 #endif /* __BIG_ENDIAN */
4380 }
4381
4382 /**
4383 * ata_data_xfer - Transfer data by PIO
4384 * @adev: device to target
4385 * @buf: data buffer
4386 * @buflen: buffer length
4387 * @write_data: read/write
4388 *
4389 * Transfer data from/to the device data register by PIO.
4390 *
4391 * LOCKING:
4392 * Inherited from caller.
4393 */
4394 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4395 unsigned int buflen, int write_data)
4396 {
4397 struct ata_port *ap = adev->ap;
4398 unsigned int words = buflen >> 1;
4399
4400 /* Transfer multiple of 2 bytes */
4401 if (write_data)
4402 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4403 else
4404 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4405
4406 /* Transfer trailing 1 byte, if any. */
4407 if (unlikely(buflen & 0x01)) {
4408 u16 align_buf[1] = { 0 };
4409 unsigned char *trailing_buf = buf + buflen - 1;
4410
4411 if (write_data) {
4412 memcpy(align_buf, trailing_buf, 1);
4413 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4414 } else {
4415 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4416 memcpy(trailing_buf, align_buf, 1);
4417 }
4418 }
4419 }
4420
4421 /**
4422 * ata_data_xfer_noirq - Transfer data by PIO
4423 * @adev: device to target
4424 * @buf: data buffer
4425 * @buflen: buffer length
4426 * @write_data: read/write
4427 *
4428 * Transfer data from/to the device data register by PIO. Do the
4429 * transfer with interrupts disabled.
4430 *
4431 * LOCKING:
4432 * Inherited from caller.
4433 */
4434 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4435 unsigned int buflen, int write_data)
4436 {
4437 unsigned long flags;
4438 local_irq_save(flags);
4439 ata_data_xfer(adev, buf, buflen, write_data);
4440 local_irq_restore(flags);
4441 }
4442
4443
4444 /**
4445 * ata_pio_sector - Transfer a sector of data.
4446 * @qc: Command on going
4447 *
4448 * Transfer qc->sect_size bytes of data from/to the ATA device.
4449 *
4450 * LOCKING:
4451 * Inherited from caller.
4452 */
4453
4454 static void ata_pio_sector(struct ata_queued_cmd *qc)
4455 {
4456 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4457 struct scatterlist *sg = qc->__sg;
4458 struct ata_port *ap = qc->ap;
4459 struct page *page;
4460 unsigned int offset;
4461 unsigned char *buf;
4462
4463 if (qc->curbytes == qc->nbytes - qc->sect_size)
4464 ap->hsm_task_state = HSM_ST_LAST;
4465
4466 page = sg[qc->cursg].page;
4467 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4468
4469 /* get the current page and offset */
4470 page = nth_page(page, (offset >> PAGE_SHIFT));
4471 offset %= PAGE_SIZE;
4472
4473 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4474
4475 if (PageHighMem(page)) {
4476 unsigned long flags;
4477
4478 /* FIXME: use a bounce buffer */
4479 local_irq_save(flags);
4480 buf = kmap_atomic(page, KM_IRQ0);
4481
4482 /* do the actual data transfer */
4483 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4484
4485 kunmap_atomic(buf, KM_IRQ0);
4486 local_irq_restore(flags);
4487 } else {
4488 buf = page_address(page);
4489 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4490 }
4491
4492 qc->curbytes += qc->sect_size;
4493 qc->cursg_ofs += qc->sect_size;
4494
4495 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4496 qc->cursg++;
4497 qc->cursg_ofs = 0;
4498 }
4499 }
4500
4501 /**
4502 * ata_pio_sectors - Transfer one or many sectors.
4503 * @qc: Command on going
4504 *
4505 * Transfer one or many sectors of data from/to the
4506 * ATA device for the DRQ request.
4507 *
4508 * LOCKING:
4509 * Inherited from caller.
4510 */
4511
4512 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4513 {
4514 if (is_multi_taskfile(&qc->tf)) {
4515 /* READ/WRITE MULTIPLE */
4516 unsigned int nsect;
4517
4518 WARN_ON(qc->dev->multi_count == 0);
4519
4520 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4521 qc->dev->multi_count);
4522 while (nsect--)
4523 ata_pio_sector(qc);
4524 } else
4525 ata_pio_sector(qc);
4526 }
4527
4528 /**
4529 * atapi_send_cdb - Write CDB bytes to hardware
4530 * @ap: Port to which ATAPI device is attached.
4531 * @qc: Taskfile currently active
4532 *
4533 * When device has indicated its readiness to accept
4534 * a CDB, this function is called. Send the CDB.
4535 *
4536 * LOCKING:
4537 * caller.
4538 */
4539
4540 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4541 {
4542 /* send SCSI cdb */
4543 DPRINTK("send cdb\n");
4544 WARN_ON(qc->dev->cdb_len < 12);
4545
4546 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4547 ata_altstatus(ap); /* flush */
4548
4549 switch (qc->tf.protocol) {
4550 case ATA_PROT_ATAPI:
4551 ap->hsm_task_state = HSM_ST;
4552 break;
4553 case ATA_PROT_ATAPI_NODATA:
4554 ap->hsm_task_state = HSM_ST_LAST;
4555 break;
4556 case ATA_PROT_ATAPI_DMA:
4557 ap->hsm_task_state = HSM_ST_LAST;
4558 /* initiate bmdma */
4559 ap->ops->bmdma_start(qc);
4560 break;
4561 }
4562 }
4563
4564 /**
4565 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4566 * @qc: Command on going
4567 * @bytes: number of bytes
4568 *
4569 * Transfer Transfer data from/to the ATAPI device.
4570 *
4571 * LOCKING:
4572 * Inherited from caller.
4573 *
4574 */
4575
4576 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4577 {
4578 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4579 struct scatterlist *sg = qc->__sg;
4580 struct ata_port *ap = qc->ap;
4581 struct page *page;
4582 unsigned char *buf;
4583 unsigned int offset, count;
4584
4585 if (qc->curbytes + bytes >= qc->nbytes)
4586 ap->hsm_task_state = HSM_ST_LAST;
4587
4588 next_sg:
4589 if (unlikely(qc->cursg >= qc->n_elem)) {
4590 /*
4591 * The end of qc->sg is reached and the device expects
4592 * more data to transfer. In order not to overrun qc->sg
4593 * and fulfill length specified in the byte count register,
4594 * - for read case, discard trailing data from the device
4595 * - for write case, padding zero data to the device
4596 */
4597 u16 pad_buf[1] = { 0 };
4598 unsigned int words = bytes >> 1;
4599 unsigned int i;
4600
4601 if (words) /* warning if bytes > 1 */
4602 ata_dev_printk(qc->dev, KERN_WARNING,
4603 "%u bytes trailing data\n", bytes);
4604
4605 for (i = 0; i < words; i++)
4606 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4607
4608 ap->hsm_task_state = HSM_ST_LAST;
4609 return;
4610 }
4611
4612 sg = &qc->__sg[qc->cursg];
4613
4614 page = sg->page;
4615 offset = sg->offset + qc->cursg_ofs;
4616
4617 /* get the current page and offset */
4618 page = nth_page(page, (offset >> PAGE_SHIFT));
4619 offset %= PAGE_SIZE;
4620
4621 /* don't overrun current sg */
4622 count = min(sg->length - qc->cursg_ofs, bytes);
4623
4624 /* don't cross page boundaries */
4625 count = min(count, (unsigned int)PAGE_SIZE - offset);
4626
4627 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4628
4629 if (PageHighMem(page)) {
4630 unsigned long flags;
4631
4632 /* FIXME: use bounce buffer */
4633 local_irq_save(flags);
4634 buf = kmap_atomic(page, KM_IRQ0);
4635
4636 /* do the actual data transfer */
4637 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4638
4639 kunmap_atomic(buf, KM_IRQ0);
4640 local_irq_restore(flags);
4641 } else {
4642 buf = page_address(page);
4643 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4644 }
4645
4646 bytes -= count;
4647 qc->curbytes += count;
4648 qc->cursg_ofs += count;
4649
4650 if (qc->cursg_ofs == sg->length) {
4651 qc->cursg++;
4652 qc->cursg_ofs = 0;
4653 }
4654
4655 if (bytes)
4656 goto next_sg;
4657 }
4658
4659 /**
4660 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4661 * @qc: Command on going
4662 *
4663 * Transfer Transfer data from/to the ATAPI device.
4664 *
4665 * LOCKING:
4666 * Inherited from caller.
4667 */
4668
4669 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4670 {
4671 struct ata_port *ap = qc->ap;
4672 struct ata_device *dev = qc->dev;
4673 unsigned int ireason, bc_lo, bc_hi, bytes;
4674 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4675
4676 /* Abuse qc->result_tf for temp storage of intermediate TF
4677 * here to save some kernel stack usage.
4678 * For normal completion, qc->result_tf is not relevant. For
4679 * error, qc->result_tf is later overwritten by ata_qc_complete().
4680 * So, the correctness of qc->result_tf is not affected.
4681 */
4682 ap->ops->tf_read(ap, &qc->result_tf);
4683 ireason = qc->result_tf.nsect;
4684 bc_lo = qc->result_tf.lbam;
4685 bc_hi = qc->result_tf.lbah;
4686 bytes = (bc_hi << 8) | bc_lo;
4687
4688 /* shall be cleared to zero, indicating xfer of data */
4689 if (ireason & (1 << 0))
4690 goto err_out;
4691
4692 /* make sure transfer direction matches expected */
4693 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4694 if (do_write != i_write)
4695 goto err_out;
4696
4697 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4698
4699 __atapi_pio_bytes(qc, bytes);
4700
4701 return;
4702
4703 err_out:
4704 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4705 qc->err_mask |= AC_ERR_HSM;
4706 ap->hsm_task_state = HSM_ST_ERR;
4707 }
4708
4709 /**
4710 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4711 * @ap: the target ata_port
4712 * @qc: qc on going
4713 *
4714 * RETURNS:
4715 * 1 if ok in workqueue, 0 otherwise.
4716 */
4717
4718 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4719 {
4720 if (qc->tf.flags & ATA_TFLAG_POLLING)
4721 return 1;
4722
4723 if (ap->hsm_task_state == HSM_ST_FIRST) {
4724 if (qc->tf.protocol == ATA_PROT_PIO &&
4725 (qc->tf.flags & ATA_TFLAG_WRITE))
4726 return 1;
4727
4728 if (is_atapi_taskfile(&qc->tf) &&
4729 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4730 return 1;
4731 }
4732
4733 return 0;
4734 }
4735
4736 /**
4737 * ata_hsm_qc_complete - finish a qc running on standard HSM
4738 * @qc: Command to complete
4739 * @in_wq: 1 if called from workqueue, 0 otherwise
4740 *
4741 * Finish @qc which is running on standard HSM.
4742 *
4743 * LOCKING:
4744 * If @in_wq is zero, spin_lock_irqsave(host lock).
4745 * Otherwise, none on entry and grabs host lock.
4746 */
4747 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4748 {
4749 struct ata_port *ap = qc->ap;
4750 unsigned long flags;
4751
4752 if (ap->ops->error_handler) {
4753 if (in_wq) {
4754 spin_lock_irqsave(ap->lock, flags);
4755
4756 /* EH might have kicked in while host lock is
4757 * released.
4758 */
4759 qc = ata_qc_from_tag(ap, qc->tag);
4760 if (qc) {
4761 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4762 ap->ops->irq_on(ap);
4763 ata_qc_complete(qc);
4764 } else
4765 ata_port_freeze(ap);
4766 }
4767
4768 spin_unlock_irqrestore(ap->lock, flags);
4769 } else {
4770 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4771 ata_qc_complete(qc);
4772 else
4773 ata_port_freeze(ap);
4774 }
4775 } else {
4776 if (in_wq) {
4777 spin_lock_irqsave(ap->lock, flags);
4778 ap->ops->irq_on(ap);
4779 ata_qc_complete(qc);
4780 spin_unlock_irqrestore(ap->lock, flags);
4781 } else
4782 ata_qc_complete(qc);
4783 }
4784
4785 ata_altstatus(ap); /* flush */
4786 }
4787
4788 /**
4789 * ata_hsm_move - move the HSM to the next state.
4790 * @ap: the target ata_port
4791 * @qc: qc on going
4792 * @status: current device status
4793 * @in_wq: 1 if called from workqueue, 0 otherwise
4794 *
4795 * RETURNS:
4796 * 1 when poll next status needed, 0 otherwise.
4797 */
4798 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4799 u8 status, int in_wq)
4800 {
4801 unsigned long flags = 0;
4802 int poll_next;
4803
4804 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4805
4806 /* Make sure ata_qc_issue_prot() does not throw things
4807 * like DMA polling into the workqueue. Notice that
4808 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4809 */
4810 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4811
4812 fsm_start:
4813 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4814 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4815
4816 switch (ap->hsm_task_state) {
4817 case HSM_ST_FIRST:
4818 /* Send first data block or PACKET CDB */
4819
4820 /* If polling, we will stay in the work queue after
4821 * sending the data. Otherwise, interrupt handler
4822 * takes over after sending the data.
4823 */
4824 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4825
4826 /* check device status */
4827 if (unlikely((status & ATA_DRQ) == 0)) {
4828 /* handle BSY=0, DRQ=0 as error */
4829 if (likely(status & (ATA_ERR | ATA_DF)))
4830 /* device stops HSM for abort/error */
4831 qc->err_mask |= AC_ERR_DEV;
4832 else
4833 /* HSM violation. Let EH handle this */
4834 qc->err_mask |= AC_ERR_HSM;
4835
4836 ap->hsm_task_state = HSM_ST_ERR;
4837 goto fsm_start;
4838 }
4839
4840 /* Device should not ask for data transfer (DRQ=1)
4841 * when it finds something wrong.
4842 * We ignore DRQ here and stop the HSM by
4843 * changing hsm_task_state to HSM_ST_ERR and
4844 * let the EH abort the command or reset the device.
4845 */
4846 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4847 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4848 "error, dev_stat 0x%X\n", status);
4849 qc->err_mask |= AC_ERR_HSM;
4850 ap->hsm_task_state = HSM_ST_ERR;
4851 goto fsm_start;
4852 }
4853
4854 /* Send the CDB (atapi) or the first data block (ata pio out).
4855 * During the state transition, interrupt handler shouldn't
4856 * be invoked before the data transfer is complete and
4857 * hsm_task_state is changed. Hence, the following locking.
4858 */
4859 if (in_wq)
4860 spin_lock_irqsave(ap->lock, flags);
4861
4862 if (qc->tf.protocol == ATA_PROT_PIO) {
4863 /* PIO data out protocol.
4864 * send first data block.
4865 */
4866
4867 /* ata_pio_sectors() might change the state
4868 * to HSM_ST_LAST. so, the state is changed here
4869 * before ata_pio_sectors().
4870 */
4871 ap->hsm_task_state = HSM_ST;
4872 ata_pio_sectors(qc);
4873 ata_altstatus(ap); /* flush */
4874 } else
4875 /* send CDB */
4876 atapi_send_cdb(ap, qc);
4877
4878 if (in_wq)
4879 spin_unlock_irqrestore(ap->lock, flags);
4880
4881 /* if polling, ata_pio_task() handles the rest.
4882 * otherwise, interrupt handler takes over from here.
4883 */
4884 break;
4885
4886 case HSM_ST:
4887 /* complete command or read/write the data register */
4888 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4889 /* ATAPI PIO protocol */
4890 if ((status & ATA_DRQ) == 0) {
4891 /* No more data to transfer or device error.
4892 * Device error will be tagged in HSM_ST_LAST.
4893 */
4894 ap->hsm_task_state = HSM_ST_LAST;
4895 goto fsm_start;
4896 }
4897
4898 /* Device should not ask for data transfer (DRQ=1)
4899 * when it finds something wrong.
4900 * We ignore DRQ here and stop the HSM by
4901 * changing hsm_task_state to HSM_ST_ERR and
4902 * let the EH abort the command or reset the device.
4903 */
4904 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4905 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4906 "device error, dev_stat 0x%X\n",
4907 status);
4908 qc->err_mask |= AC_ERR_HSM;
4909 ap->hsm_task_state = HSM_ST_ERR;
4910 goto fsm_start;
4911 }
4912
4913 atapi_pio_bytes(qc);
4914
4915 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4916 /* bad ireason reported by device */
4917 goto fsm_start;
4918
4919 } else {
4920 /* ATA PIO protocol */
4921 if (unlikely((status & ATA_DRQ) == 0)) {
4922 /* handle BSY=0, DRQ=0 as error */
4923 if (likely(status & (ATA_ERR | ATA_DF)))
4924 /* device stops HSM for abort/error */
4925 qc->err_mask |= AC_ERR_DEV;
4926 else
4927 /* HSM violation. Let EH handle this.
4928 * Phantom devices also trigger this
4929 * condition. Mark hint.
4930 */
4931 qc->err_mask |= AC_ERR_HSM |
4932 AC_ERR_NODEV_HINT;
4933
4934 ap->hsm_task_state = HSM_ST_ERR;
4935 goto fsm_start;
4936 }
4937
4938 /* For PIO reads, some devices may ask for
4939 * data transfer (DRQ=1) alone with ERR=1.
4940 * We respect DRQ here and transfer one
4941 * block of junk data before changing the
4942 * hsm_task_state to HSM_ST_ERR.
4943 *
4944 * For PIO writes, ERR=1 DRQ=1 doesn't make
4945 * sense since the data block has been
4946 * transferred to the device.
4947 */
4948 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4949 /* data might be corrputed */
4950 qc->err_mask |= AC_ERR_DEV;
4951
4952 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4953 ata_pio_sectors(qc);
4954 ata_altstatus(ap);
4955 status = ata_wait_idle(ap);
4956 }
4957
4958 if (status & (ATA_BUSY | ATA_DRQ))
4959 qc->err_mask |= AC_ERR_HSM;
4960
4961 /* ata_pio_sectors() might change the
4962 * state to HSM_ST_LAST. so, the state
4963 * is changed after ata_pio_sectors().
4964 */
4965 ap->hsm_task_state = HSM_ST_ERR;
4966 goto fsm_start;
4967 }
4968
4969 ata_pio_sectors(qc);
4970
4971 if (ap->hsm_task_state == HSM_ST_LAST &&
4972 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4973 /* all data read */
4974 ata_altstatus(ap);
4975 status = ata_wait_idle(ap);
4976 goto fsm_start;
4977 }
4978 }
4979
4980 ata_altstatus(ap); /* flush */
4981 poll_next = 1;
4982 break;
4983
4984 case HSM_ST_LAST:
4985 if (unlikely(!ata_ok(status))) {
4986 qc->err_mask |= __ac_err_mask(status);
4987 ap->hsm_task_state = HSM_ST_ERR;
4988 goto fsm_start;
4989 }
4990
4991 /* no more data to transfer */
4992 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4993 ap->print_id, qc->dev->devno, status);
4994
4995 WARN_ON(qc->err_mask);
4996
4997 ap->hsm_task_state = HSM_ST_IDLE;
4998
4999 /* complete taskfile transaction */
5000 ata_hsm_qc_complete(qc, in_wq);
5001
5002 poll_next = 0;
5003 break;
5004
5005 case HSM_ST_ERR:
5006 /* make sure qc->err_mask is available to
5007 * know what's wrong and recover
5008 */
5009 WARN_ON(qc->err_mask == 0);
5010
5011 ap->hsm_task_state = HSM_ST_IDLE;
5012
5013 /* complete taskfile transaction */
5014 ata_hsm_qc_complete(qc, in_wq);
5015
5016 poll_next = 0;
5017 break;
5018 default:
5019 poll_next = 0;
5020 BUG();
5021 }
5022
5023 return poll_next;
5024 }
5025
5026 static void ata_pio_task(struct work_struct *work)
5027 {
5028 struct ata_port *ap =
5029 container_of(work, struct ata_port, port_task.work);
5030 struct ata_queued_cmd *qc = ap->port_task_data;
5031 u8 status;
5032 int poll_next;
5033
5034 fsm_start:
5035 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5036
5037 /*
5038 * This is purely heuristic. This is a fast path.
5039 * Sometimes when we enter, BSY will be cleared in
5040 * a chk-status or two. If not, the drive is probably seeking
5041 * or something. Snooze for a couple msecs, then
5042 * chk-status again. If still busy, queue delayed work.
5043 */
5044 status = ata_busy_wait(ap, ATA_BUSY, 5);
5045 if (status & ATA_BUSY) {
5046 msleep(2);
5047 status = ata_busy_wait(ap, ATA_BUSY, 10);
5048 if (status & ATA_BUSY) {
5049 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5050 return;
5051 }
5052 }
5053
5054 /* move the HSM */
5055 poll_next = ata_hsm_move(ap, qc, status, 1);
5056
5057 /* another command or interrupt handler
5058 * may be running at this point.
5059 */
5060 if (poll_next)
5061 goto fsm_start;
5062 }
5063
5064 /**
5065 * ata_qc_new - Request an available ATA command, for queueing
5066 * @ap: Port associated with device @dev
5067 * @dev: Device from whom we request an available command structure
5068 *
5069 * LOCKING:
5070 * None.
5071 */
5072
5073 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5074 {
5075 struct ata_queued_cmd *qc = NULL;
5076 unsigned int i;
5077
5078 /* no command while frozen */
5079 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5080 return NULL;
5081
5082 /* the last tag is reserved for internal command. */
5083 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5084 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5085 qc = __ata_qc_from_tag(ap, i);
5086 break;
5087 }
5088
5089 if (qc)
5090 qc->tag = i;
5091
5092 return qc;
5093 }
5094
5095 /**
5096 * ata_qc_new_init - Request an available ATA command, and initialize it
5097 * @dev: Device from whom we request an available command structure
5098 *
5099 * LOCKING:
5100 * None.
5101 */
5102
5103 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5104 {
5105 struct ata_port *ap = dev->ap;
5106 struct ata_queued_cmd *qc;
5107
5108 qc = ata_qc_new(ap);
5109 if (qc) {
5110 qc->scsicmd = NULL;
5111 qc->ap = ap;
5112 qc->dev = dev;
5113
5114 ata_qc_reinit(qc);
5115 }
5116
5117 return qc;
5118 }
5119
5120 /**
5121 * ata_qc_free - free unused ata_queued_cmd
5122 * @qc: Command to complete
5123 *
5124 * Designed to free unused ata_queued_cmd object
5125 * in case something prevents using it.
5126 *
5127 * LOCKING:
5128 * spin_lock_irqsave(host lock)
5129 */
5130 void ata_qc_free(struct ata_queued_cmd *qc)
5131 {
5132 struct ata_port *ap = qc->ap;
5133 unsigned int tag;
5134
5135 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5136
5137 qc->flags = 0;
5138 tag = qc->tag;
5139 if (likely(ata_tag_valid(tag))) {
5140 qc->tag = ATA_TAG_POISON;
5141 clear_bit(tag, &ap->qc_allocated);
5142 }
5143 }
5144
5145 void __ata_qc_complete(struct ata_queued_cmd *qc)
5146 {
5147 struct ata_port *ap = qc->ap;
5148
5149 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5150 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5151
5152 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5153 ata_sg_clean(qc);
5154
5155 /* command should be marked inactive atomically with qc completion */
5156 if (qc->tf.protocol == ATA_PROT_NCQ)
5157 ap->sactive &= ~(1 << qc->tag);
5158 else
5159 ap->active_tag = ATA_TAG_POISON;
5160
5161 /* atapi: mark qc as inactive to prevent the interrupt handler
5162 * from completing the command twice later, before the error handler
5163 * is called. (when rc != 0 and atapi request sense is needed)
5164 */
5165 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5166 ap->qc_active &= ~(1 << qc->tag);
5167
5168 /* call completion callback */
5169 qc->complete_fn(qc);
5170 }
5171
5172 static void fill_result_tf(struct ata_queued_cmd *qc)
5173 {
5174 struct ata_port *ap = qc->ap;
5175
5176 qc->result_tf.flags = qc->tf.flags;
5177 ap->ops->tf_read(ap, &qc->result_tf);
5178 }
5179
5180 /**
5181 * ata_qc_complete - Complete an active ATA command
5182 * @qc: Command to complete
5183 * @err_mask: ATA Status register contents
5184 *
5185 * Indicate to the mid and upper layers that an ATA
5186 * command has completed, with either an ok or not-ok status.
5187 *
5188 * LOCKING:
5189 * spin_lock_irqsave(host lock)
5190 */
5191 void ata_qc_complete(struct ata_queued_cmd *qc)
5192 {
5193 struct ata_port *ap = qc->ap;
5194
5195 /* XXX: New EH and old EH use different mechanisms to
5196 * synchronize EH with regular execution path.
5197 *
5198 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5199 * Normal execution path is responsible for not accessing a
5200 * failed qc. libata core enforces the rule by returning NULL
5201 * from ata_qc_from_tag() for failed qcs.
5202 *
5203 * Old EH depends on ata_qc_complete() nullifying completion
5204 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5205 * not synchronize with interrupt handler. Only PIO task is
5206 * taken care of.
5207 */
5208 if (ap->ops->error_handler) {
5209 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5210
5211 if (unlikely(qc->err_mask))
5212 qc->flags |= ATA_QCFLAG_FAILED;
5213
5214 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5215 if (!ata_tag_internal(qc->tag)) {
5216 /* always fill result TF for failed qc */
5217 fill_result_tf(qc);
5218 ata_qc_schedule_eh(qc);
5219 return;
5220 }
5221 }
5222
5223 /* read result TF if requested */
5224 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5225 fill_result_tf(qc);
5226
5227 __ata_qc_complete(qc);
5228 } else {
5229 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5230 return;
5231
5232 /* read result TF if failed or requested */
5233 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5234 fill_result_tf(qc);
5235
5236 __ata_qc_complete(qc);
5237 }
5238 }
5239
5240 /**
5241 * ata_qc_complete_multiple - Complete multiple qcs successfully
5242 * @ap: port in question
5243 * @qc_active: new qc_active mask
5244 * @finish_qc: LLDD callback invoked before completing a qc
5245 *
5246 * Complete in-flight commands. This functions is meant to be
5247 * called from low-level driver's interrupt routine to complete
5248 * requests normally. ap->qc_active and @qc_active is compared
5249 * and commands are completed accordingly.
5250 *
5251 * LOCKING:
5252 * spin_lock_irqsave(host lock)
5253 *
5254 * RETURNS:
5255 * Number of completed commands on success, -errno otherwise.
5256 */
5257 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5258 void (*finish_qc)(struct ata_queued_cmd *))
5259 {
5260 int nr_done = 0;
5261 u32 done_mask;
5262 int i;
5263
5264 done_mask = ap->qc_active ^ qc_active;
5265
5266 if (unlikely(done_mask & qc_active)) {
5267 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5268 "(%08x->%08x)\n", ap->qc_active, qc_active);
5269 return -EINVAL;
5270 }
5271
5272 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5273 struct ata_queued_cmd *qc;
5274
5275 if (!(done_mask & (1 << i)))
5276 continue;
5277
5278 if ((qc = ata_qc_from_tag(ap, i))) {
5279 if (finish_qc)
5280 finish_qc(qc);
5281 ata_qc_complete(qc);
5282 nr_done++;
5283 }
5284 }
5285
5286 return nr_done;
5287 }
5288
5289 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5290 {
5291 struct ata_port *ap = qc->ap;
5292
5293 switch (qc->tf.protocol) {
5294 case ATA_PROT_NCQ:
5295 case ATA_PROT_DMA:
5296 case ATA_PROT_ATAPI_DMA:
5297 return 1;
5298
5299 case ATA_PROT_ATAPI:
5300 case ATA_PROT_PIO:
5301 if (ap->flags & ATA_FLAG_PIO_DMA)
5302 return 1;
5303
5304 /* fall through */
5305
5306 default:
5307 return 0;
5308 }
5309
5310 /* never reached */
5311 }
5312
5313 /**
5314 * ata_qc_issue - issue taskfile to device
5315 * @qc: command to issue to device
5316 *
5317 * Prepare an ATA command to submission to device.
5318 * This includes mapping the data into a DMA-able
5319 * area, filling in the S/G table, and finally
5320 * writing the taskfile to hardware, starting the command.
5321 *
5322 * LOCKING:
5323 * spin_lock_irqsave(host lock)
5324 */
5325 void ata_qc_issue(struct ata_queued_cmd *qc)
5326 {
5327 struct ata_port *ap = qc->ap;
5328
5329 /* Make sure only one non-NCQ command is outstanding. The
5330 * check is skipped for old EH because it reuses active qc to
5331 * request ATAPI sense.
5332 */
5333 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5334
5335 if (qc->tf.protocol == ATA_PROT_NCQ) {
5336 WARN_ON(ap->sactive & (1 << qc->tag));
5337 ap->sactive |= 1 << qc->tag;
5338 } else {
5339 WARN_ON(ap->sactive);
5340 ap->active_tag = qc->tag;
5341 }
5342
5343 qc->flags |= ATA_QCFLAG_ACTIVE;
5344 ap->qc_active |= 1 << qc->tag;
5345
5346 if (ata_should_dma_map(qc)) {
5347 if (qc->flags & ATA_QCFLAG_SG) {
5348 if (ata_sg_setup(qc))
5349 goto sg_err;
5350 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5351 if (ata_sg_setup_one(qc))
5352 goto sg_err;
5353 }
5354 } else {
5355 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5356 }
5357
5358 ap->ops->qc_prep(qc);
5359
5360 qc->err_mask |= ap->ops->qc_issue(qc);
5361 if (unlikely(qc->err_mask))
5362 goto err;
5363 return;
5364
5365 sg_err:
5366 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5367 qc->err_mask |= AC_ERR_SYSTEM;
5368 err:
5369 ata_qc_complete(qc);
5370 }
5371
5372 /**
5373 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5374 * @qc: command to issue to device
5375 *
5376 * Using various libata functions and hooks, this function
5377 * starts an ATA command. ATA commands are grouped into
5378 * classes called "protocols", and issuing each type of protocol
5379 * is slightly different.
5380 *
5381 * May be used as the qc_issue() entry in ata_port_operations.
5382 *
5383 * LOCKING:
5384 * spin_lock_irqsave(host lock)
5385 *
5386 * RETURNS:
5387 * Zero on success, AC_ERR_* mask on failure
5388 */
5389
5390 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5391 {
5392 struct ata_port *ap = qc->ap;
5393
5394 /* Use polling pio if the LLD doesn't handle
5395 * interrupt driven pio and atapi CDB interrupt.
5396 */
5397 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5398 switch (qc->tf.protocol) {
5399 case ATA_PROT_PIO:
5400 case ATA_PROT_NODATA:
5401 case ATA_PROT_ATAPI:
5402 case ATA_PROT_ATAPI_NODATA:
5403 qc->tf.flags |= ATA_TFLAG_POLLING;
5404 break;
5405 case ATA_PROT_ATAPI_DMA:
5406 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5407 /* see ata_dma_blacklisted() */
5408 BUG();
5409 break;
5410 default:
5411 break;
5412 }
5413 }
5414
5415 /* select the device */
5416 ata_dev_select(ap, qc->dev->devno, 1, 0);
5417
5418 /* start the command */
5419 switch (qc->tf.protocol) {
5420 case ATA_PROT_NODATA:
5421 if (qc->tf.flags & ATA_TFLAG_POLLING)
5422 ata_qc_set_polling(qc);
5423
5424 ata_tf_to_host(ap, &qc->tf);
5425 ap->hsm_task_state = HSM_ST_LAST;
5426
5427 if (qc->tf.flags & ATA_TFLAG_POLLING)
5428 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5429
5430 break;
5431
5432 case ATA_PROT_DMA:
5433 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5434
5435 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5436 ap->ops->bmdma_setup(qc); /* set up bmdma */
5437 ap->ops->bmdma_start(qc); /* initiate bmdma */
5438 ap->hsm_task_state = HSM_ST_LAST;
5439 break;
5440
5441 case ATA_PROT_PIO:
5442 if (qc->tf.flags & ATA_TFLAG_POLLING)
5443 ata_qc_set_polling(qc);
5444
5445 ata_tf_to_host(ap, &qc->tf);
5446
5447 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5448 /* PIO data out protocol */
5449 ap->hsm_task_state = HSM_ST_FIRST;
5450 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5451
5452 /* always send first data block using
5453 * the ata_pio_task() codepath.
5454 */
5455 } else {
5456 /* PIO data in protocol */
5457 ap->hsm_task_state = HSM_ST;
5458
5459 if (qc->tf.flags & ATA_TFLAG_POLLING)
5460 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5461
5462 /* if polling, ata_pio_task() handles the rest.
5463 * otherwise, interrupt handler takes over from here.
5464 */
5465 }
5466
5467 break;
5468
5469 case ATA_PROT_ATAPI:
5470 case ATA_PROT_ATAPI_NODATA:
5471 if (qc->tf.flags & ATA_TFLAG_POLLING)
5472 ata_qc_set_polling(qc);
5473
5474 ata_tf_to_host(ap, &qc->tf);
5475
5476 ap->hsm_task_state = HSM_ST_FIRST;
5477
5478 /* send cdb by polling if no cdb interrupt */
5479 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5480 (qc->tf.flags & ATA_TFLAG_POLLING))
5481 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5482 break;
5483
5484 case ATA_PROT_ATAPI_DMA:
5485 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5486
5487 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5488 ap->ops->bmdma_setup(qc); /* set up bmdma */
5489 ap->hsm_task_state = HSM_ST_FIRST;
5490
5491 /* send cdb by polling if no cdb interrupt */
5492 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5493 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5494 break;
5495
5496 default:
5497 WARN_ON(1);
5498 return AC_ERR_SYSTEM;
5499 }
5500
5501 return 0;
5502 }
5503
5504 /**
5505 * ata_host_intr - Handle host interrupt for given (port, task)
5506 * @ap: Port on which interrupt arrived (possibly...)
5507 * @qc: Taskfile currently active in engine
5508 *
5509 * Handle host interrupt for given queued command. Currently,
5510 * only DMA interrupts are handled. All other commands are
5511 * handled via polling with interrupts disabled (nIEN bit).
5512 *
5513 * LOCKING:
5514 * spin_lock_irqsave(host lock)
5515 *
5516 * RETURNS:
5517 * One if interrupt was handled, zero if not (shared irq).
5518 */
5519
5520 inline unsigned int ata_host_intr (struct ata_port *ap,
5521 struct ata_queued_cmd *qc)
5522 {
5523 struct ata_eh_info *ehi = &ap->eh_info;
5524 u8 status, host_stat = 0;
5525
5526 VPRINTK("ata%u: protocol %d task_state %d\n",
5527 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5528
5529 /* Check whether we are expecting interrupt in this state */
5530 switch (ap->hsm_task_state) {
5531 case HSM_ST_FIRST:
5532 /* Some pre-ATAPI-4 devices assert INTRQ
5533 * at this state when ready to receive CDB.
5534 */
5535
5536 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5537 * The flag was turned on only for atapi devices.
5538 * No need to check is_atapi_taskfile(&qc->tf) again.
5539 */
5540 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5541 goto idle_irq;
5542 break;
5543 case HSM_ST_LAST:
5544 if (qc->tf.protocol == ATA_PROT_DMA ||
5545 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5546 /* check status of DMA engine */
5547 host_stat = ap->ops->bmdma_status(ap);
5548 VPRINTK("ata%u: host_stat 0x%X\n",
5549 ap->print_id, host_stat);
5550
5551 /* if it's not our irq... */
5552 if (!(host_stat & ATA_DMA_INTR))
5553 goto idle_irq;
5554
5555 /* before we do anything else, clear DMA-Start bit */
5556 ap->ops->bmdma_stop(qc);
5557
5558 if (unlikely(host_stat & ATA_DMA_ERR)) {
5559 /* error when transfering data to/from memory */
5560 qc->err_mask |= AC_ERR_HOST_BUS;
5561 ap->hsm_task_state = HSM_ST_ERR;
5562 }
5563 }
5564 break;
5565 case HSM_ST:
5566 break;
5567 default:
5568 goto idle_irq;
5569 }
5570
5571 /* check altstatus */
5572 status = ata_altstatus(ap);
5573 if (status & ATA_BUSY)
5574 goto idle_irq;
5575
5576 /* check main status, clearing INTRQ */
5577 status = ata_chk_status(ap);
5578 if (unlikely(status & ATA_BUSY))
5579 goto idle_irq;
5580
5581 /* ack bmdma irq events */
5582 ap->ops->irq_clear(ap);
5583
5584 ata_hsm_move(ap, qc, status, 0);
5585
5586 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5587 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5588 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5589
5590 return 1; /* irq handled */
5591
5592 idle_irq:
5593 ap->stats.idle_irq++;
5594
5595 #ifdef ATA_IRQ_TRAP
5596 if ((ap->stats.idle_irq % 1000) == 0) {
5597 ap->ops->irq_ack(ap, 0); /* debug trap */
5598 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5599 return 1;
5600 }
5601 #endif
5602 return 0; /* irq not handled */
5603 }
5604
5605 /**
5606 * ata_interrupt - Default ATA host interrupt handler
5607 * @irq: irq line (unused)
5608 * @dev_instance: pointer to our ata_host information structure
5609 *
5610 * Default interrupt handler for PCI IDE devices. Calls
5611 * ata_host_intr() for each port that is not disabled.
5612 *
5613 * LOCKING:
5614 * Obtains host lock during operation.
5615 *
5616 * RETURNS:
5617 * IRQ_NONE or IRQ_HANDLED.
5618 */
5619
5620 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5621 {
5622 struct ata_host *host = dev_instance;
5623 unsigned int i;
5624 unsigned int handled = 0;
5625 unsigned long flags;
5626
5627 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5628 spin_lock_irqsave(&host->lock, flags);
5629
5630 for (i = 0; i < host->n_ports; i++) {
5631 struct ata_port *ap;
5632
5633 ap = host->ports[i];
5634 if (ap &&
5635 !(ap->flags & ATA_FLAG_DISABLED)) {
5636 struct ata_queued_cmd *qc;
5637
5638 qc = ata_qc_from_tag(ap, ap->active_tag);
5639 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5640 (qc->flags & ATA_QCFLAG_ACTIVE))
5641 handled |= ata_host_intr(ap, qc);
5642 }
5643 }
5644
5645 spin_unlock_irqrestore(&host->lock, flags);
5646
5647 return IRQ_RETVAL(handled);
5648 }
5649
5650 /**
5651 * sata_scr_valid - test whether SCRs are accessible
5652 * @ap: ATA port to test SCR accessibility for
5653 *
5654 * Test whether SCRs are accessible for @ap.
5655 *
5656 * LOCKING:
5657 * None.
5658 *
5659 * RETURNS:
5660 * 1 if SCRs are accessible, 0 otherwise.
5661 */
5662 int sata_scr_valid(struct ata_port *ap)
5663 {
5664 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5665 }
5666
5667 /**
5668 * sata_scr_read - read SCR register of the specified port
5669 * @ap: ATA port to read SCR for
5670 * @reg: SCR to read
5671 * @val: Place to store read value
5672 *
5673 * Read SCR register @reg of @ap into *@val. This function is
5674 * guaranteed to succeed if the cable type of the port is SATA
5675 * and the port implements ->scr_read.
5676 *
5677 * LOCKING:
5678 * None.
5679 *
5680 * RETURNS:
5681 * 0 on success, negative errno on failure.
5682 */
5683 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5684 {
5685 if (sata_scr_valid(ap)) {
5686 *val = ap->ops->scr_read(ap, reg);
5687 return 0;
5688 }
5689 return -EOPNOTSUPP;
5690 }
5691
5692 /**
5693 * sata_scr_write - write SCR register of the specified port
5694 * @ap: ATA port to write SCR for
5695 * @reg: SCR to write
5696 * @val: value to write
5697 *
5698 * Write @val to SCR register @reg of @ap. This function is
5699 * guaranteed to succeed if the cable type of the port is SATA
5700 * and the port implements ->scr_read.
5701 *
5702 * LOCKING:
5703 * None.
5704 *
5705 * RETURNS:
5706 * 0 on success, negative errno on failure.
5707 */
5708 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5709 {
5710 if (sata_scr_valid(ap)) {
5711 ap->ops->scr_write(ap, reg, val);
5712 return 0;
5713 }
5714 return -EOPNOTSUPP;
5715 }
5716
5717 /**
5718 * sata_scr_write_flush - write SCR register of the specified port and flush
5719 * @ap: ATA port to write SCR for
5720 * @reg: SCR to write
5721 * @val: value to write
5722 *
5723 * This function is identical to sata_scr_write() except that this
5724 * function performs flush after writing to the register.
5725 *
5726 * LOCKING:
5727 * None.
5728 *
5729 * RETURNS:
5730 * 0 on success, negative errno on failure.
5731 */
5732 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5733 {
5734 if (sata_scr_valid(ap)) {
5735 ap->ops->scr_write(ap, reg, val);
5736 ap->ops->scr_read(ap, reg);
5737 return 0;
5738 }
5739 return -EOPNOTSUPP;
5740 }
5741
5742 /**
5743 * ata_port_online - test whether the given port is online
5744 * @ap: ATA port to test
5745 *
5746 * Test whether @ap is online. Note that this function returns 0
5747 * if online status of @ap cannot be obtained, so
5748 * ata_port_online(ap) != !ata_port_offline(ap).
5749 *
5750 * LOCKING:
5751 * None.
5752 *
5753 * RETURNS:
5754 * 1 if the port online status is available and online.
5755 */
5756 int ata_port_online(struct ata_port *ap)
5757 {
5758 u32 sstatus;
5759
5760 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5761 return 1;
5762 return 0;
5763 }
5764
5765 /**
5766 * ata_port_offline - test whether the given port is offline
5767 * @ap: ATA port to test
5768 *
5769 * Test whether @ap is offline. Note that this function returns
5770 * 0 if offline status of @ap cannot be obtained, so
5771 * ata_port_online(ap) != !ata_port_offline(ap).
5772 *
5773 * LOCKING:
5774 * None.
5775 *
5776 * RETURNS:
5777 * 1 if the port offline status is available and offline.
5778 */
5779 int ata_port_offline(struct ata_port *ap)
5780 {
5781 u32 sstatus;
5782
5783 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5784 return 1;
5785 return 0;
5786 }
5787
5788 int ata_flush_cache(struct ata_device *dev)
5789 {
5790 unsigned int err_mask;
5791 u8 cmd;
5792
5793 if (!ata_try_flush_cache(dev))
5794 return 0;
5795
5796 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5797 cmd = ATA_CMD_FLUSH_EXT;
5798 else
5799 cmd = ATA_CMD_FLUSH;
5800
5801 err_mask = ata_do_simple_cmd(dev, cmd);
5802 if (err_mask) {
5803 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5804 return -EIO;
5805 }
5806
5807 return 0;
5808 }
5809
5810 #ifdef CONFIG_PM
5811 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5812 unsigned int action, unsigned int ehi_flags,
5813 int wait)
5814 {
5815 unsigned long flags;
5816 int i, rc;
5817
5818 for (i = 0; i < host->n_ports; i++) {
5819 struct ata_port *ap = host->ports[i];
5820
5821 /* Previous resume operation might still be in
5822 * progress. Wait for PM_PENDING to clear.
5823 */
5824 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5825 ata_port_wait_eh(ap);
5826 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5827 }
5828
5829 /* request PM ops to EH */
5830 spin_lock_irqsave(ap->lock, flags);
5831
5832 ap->pm_mesg = mesg;
5833 if (wait) {
5834 rc = 0;
5835 ap->pm_result = &rc;
5836 }
5837
5838 ap->pflags |= ATA_PFLAG_PM_PENDING;
5839 ap->eh_info.action |= action;
5840 ap->eh_info.flags |= ehi_flags;
5841
5842 ata_port_schedule_eh(ap);
5843
5844 spin_unlock_irqrestore(ap->lock, flags);
5845
5846 /* wait and check result */
5847 if (wait) {
5848 ata_port_wait_eh(ap);
5849 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5850 if (rc)
5851 return rc;
5852 }
5853 }
5854
5855 return 0;
5856 }
5857
5858 /**
5859 * ata_host_suspend - suspend host
5860 * @host: host to suspend
5861 * @mesg: PM message
5862 *
5863 * Suspend @host. Actual operation is performed by EH. This
5864 * function requests EH to perform PM operations and waits for EH
5865 * to finish.
5866 *
5867 * LOCKING:
5868 * Kernel thread context (may sleep).
5869 *
5870 * RETURNS:
5871 * 0 on success, -errno on failure.
5872 */
5873 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5874 {
5875 int rc;
5876
5877 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5878 if (rc == 0)
5879 host->dev->power.power_state = mesg;
5880 return rc;
5881 }
5882
5883 /**
5884 * ata_host_resume - resume host
5885 * @host: host to resume
5886 *
5887 * Resume @host. Actual operation is performed by EH. This
5888 * function requests EH to perform PM operations and returns.
5889 * Note that all resume operations are performed parallely.
5890 *
5891 * LOCKING:
5892 * Kernel thread context (may sleep).
5893 */
5894 void ata_host_resume(struct ata_host *host)
5895 {
5896 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5897 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5898 host->dev->power.power_state = PMSG_ON;
5899 }
5900 #endif
5901
5902 /**
5903 * ata_port_start - Set port up for dma.
5904 * @ap: Port to initialize
5905 *
5906 * Called just after data structures for each port are
5907 * initialized. Allocates space for PRD table.
5908 *
5909 * May be used as the port_start() entry in ata_port_operations.
5910 *
5911 * LOCKING:
5912 * Inherited from caller.
5913 */
5914 int ata_port_start(struct ata_port *ap)
5915 {
5916 struct device *dev = ap->dev;
5917 int rc;
5918
5919 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5920 GFP_KERNEL);
5921 if (!ap->prd)
5922 return -ENOMEM;
5923
5924 rc = ata_pad_alloc(ap, dev);
5925 if (rc)
5926 return rc;
5927
5928 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5929 (unsigned long long)ap->prd_dma);
5930 return 0;
5931 }
5932
5933 /**
5934 * ata_dev_init - Initialize an ata_device structure
5935 * @dev: Device structure to initialize
5936 *
5937 * Initialize @dev in preparation for probing.
5938 *
5939 * LOCKING:
5940 * Inherited from caller.
5941 */
5942 void ata_dev_init(struct ata_device *dev)
5943 {
5944 struct ata_port *ap = dev->ap;
5945 unsigned long flags;
5946
5947 /* SATA spd limit is bound to the first device */
5948 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5949
5950 /* High bits of dev->flags are used to record warm plug
5951 * requests which occur asynchronously. Synchronize using
5952 * host lock.
5953 */
5954 spin_lock_irqsave(ap->lock, flags);
5955 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5956 spin_unlock_irqrestore(ap->lock, flags);
5957
5958 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5959 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5960 dev->pio_mask = UINT_MAX;
5961 dev->mwdma_mask = UINT_MAX;
5962 dev->udma_mask = UINT_MAX;
5963 }
5964
5965 /**
5966 * ata_port_alloc - allocate and initialize basic ATA port resources
5967 * @host: ATA host this allocated port belongs to
5968 *
5969 * Allocate and initialize basic ATA port resources.
5970 *
5971 * RETURNS:
5972 * Allocate ATA port on success, NULL on failure.
5973 *
5974 * LOCKING:
5975 * Inherited from calling layer (may sleep).
5976 */
5977 struct ata_port *ata_port_alloc(struct ata_host *host)
5978 {
5979 struct ata_port *ap;
5980 unsigned int i;
5981
5982 DPRINTK("ENTER\n");
5983
5984 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5985 if (!ap)
5986 return NULL;
5987
5988 ap->pflags |= ATA_PFLAG_INITIALIZING;
5989 ap->lock = &host->lock;
5990 ap->flags = ATA_FLAG_DISABLED;
5991 ap->print_id = -1;
5992 ap->ctl = ATA_DEVCTL_OBS;
5993 ap->host = host;
5994 ap->dev = host->dev;
5995
5996 ap->hw_sata_spd_limit = UINT_MAX;
5997 ap->active_tag = ATA_TAG_POISON;
5998 ap->last_ctl = 0xFF;
5999
6000 #if defined(ATA_VERBOSE_DEBUG)
6001 /* turn on all debugging levels */
6002 ap->msg_enable = 0x00FF;
6003 #elif defined(ATA_DEBUG)
6004 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6005 #else
6006 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6007 #endif
6008
6009 INIT_DELAYED_WORK(&ap->port_task, NULL);
6010 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6011 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6012 INIT_LIST_HEAD(&ap->eh_done_q);
6013 init_waitqueue_head(&ap->eh_wait_q);
6014
6015 ap->cbl = ATA_CBL_NONE;
6016
6017 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6018 struct ata_device *dev = &ap->device[i];
6019 dev->ap = ap;
6020 dev->devno = i;
6021 ata_dev_init(dev);
6022 }
6023
6024 #ifdef ATA_IRQ_TRAP
6025 ap->stats.unhandled_irq = 1;
6026 ap->stats.idle_irq = 1;
6027 #endif
6028 return ap;
6029 }
6030
6031 static void ata_host_release(struct device *gendev, void *res)
6032 {
6033 struct ata_host *host = dev_get_drvdata(gendev);
6034 int i;
6035
6036 for (i = 0; i < host->n_ports; i++) {
6037 struct ata_port *ap = host->ports[i];
6038
6039 if (!ap)
6040 continue;
6041
6042 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6043 ap->ops->port_stop(ap);
6044 }
6045
6046 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6047 host->ops->host_stop(host);
6048
6049 for (i = 0; i < host->n_ports; i++) {
6050 struct ata_port *ap = host->ports[i];
6051
6052 if (!ap)
6053 continue;
6054
6055 if (ap->scsi_host)
6056 scsi_host_put(ap->scsi_host);
6057
6058 kfree(ap);
6059 host->ports[i] = NULL;
6060 }
6061
6062 dev_set_drvdata(gendev, NULL);
6063 }
6064
6065 /**
6066 * ata_host_alloc - allocate and init basic ATA host resources
6067 * @dev: generic device this host is associated with
6068 * @max_ports: maximum number of ATA ports associated with this host
6069 *
6070 * Allocate and initialize basic ATA host resources. LLD calls
6071 * this function to allocate a host, initializes it fully and
6072 * attaches it using ata_host_register().
6073 *
6074 * @max_ports ports are allocated and host->n_ports is
6075 * initialized to @max_ports. The caller is allowed to decrease
6076 * host->n_ports before calling ata_host_register(). The unused
6077 * ports will be automatically freed on registration.
6078 *
6079 * RETURNS:
6080 * Allocate ATA host on success, NULL on failure.
6081 *
6082 * LOCKING:
6083 * Inherited from calling layer (may sleep).
6084 */
6085 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6086 {
6087 struct ata_host *host;
6088 size_t sz;
6089 int i;
6090
6091 DPRINTK("ENTER\n");
6092
6093 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6094 return NULL;
6095
6096 /* alloc a container for our list of ATA ports (buses) */
6097 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6098 /* alloc a container for our list of ATA ports (buses) */
6099 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6100 if (!host)
6101 goto err_out;
6102
6103 devres_add(dev, host);
6104 dev_set_drvdata(dev, host);
6105
6106 spin_lock_init(&host->lock);
6107 host->dev = dev;
6108 host->n_ports = max_ports;
6109
6110 /* allocate ports bound to this host */
6111 for (i = 0; i < max_ports; i++) {
6112 struct ata_port *ap;
6113
6114 ap = ata_port_alloc(host);
6115 if (!ap)
6116 goto err_out;
6117
6118 ap->port_no = i;
6119 host->ports[i] = ap;
6120 }
6121
6122 devres_remove_group(dev, NULL);
6123 return host;
6124
6125 err_out:
6126 devres_release_group(dev, NULL);
6127 return NULL;
6128 }
6129
6130 /**
6131 * ata_host_alloc_pinfo - alloc host and init with port_info array
6132 * @dev: generic device this host is associated with
6133 * @ppi: array of ATA port_info to initialize host with
6134 * @n_ports: number of ATA ports attached to this host
6135 *
6136 * Allocate ATA host and initialize with info from @ppi. If NULL
6137 * terminated, @ppi may contain fewer entries than @n_ports. The
6138 * last entry will be used for the remaining ports.
6139 *
6140 * RETURNS:
6141 * Allocate ATA host on success, NULL on failure.
6142 *
6143 * LOCKING:
6144 * Inherited from calling layer (may sleep).
6145 */
6146 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6147 const struct ata_port_info * const * ppi,
6148 int n_ports)
6149 {
6150 const struct ata_port_info *pi;
6151 struct ata_host *host;
6152 int i, j;
6153
6154 host = ata_host_alloc(dev, n_ports);
6155 if (!host)
6156 return NULL;
6157
6158 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6159 struct ata_port *ap = host->ports[i];
6160
6161 if (ppi[j])
6162 pi = ppi[j++];
6163
6164 ap->pio_mask = pi->pio_mask;
6165 ap->mwdma_mask = pi->mwdma_mask;
6166 ap->udma_mask = pi->udma_mask;
6167 ap->flags |= pi->flags;
6168 ap->ops = pi->port_ops;
6169
6170 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6171 host->ops = pi->port_ops;
6172 if (!host->private_data && pi->private_data)
6173 host->private_data = pi->private_data;
6174 }
6175
6176 return host;
6177 }
6178
6179 /**
6180 * ata_host_start - start and freeze ports of an ATA host
6181 * @host: ATA host to start ports for
6182 *
6183 * Start and then freeze ports of @host. Started status is
6184 * recorded in host->flags, so this function can be called
6185 * multiple times. Ports are guaranteed to get started only
6186 * once. If host->ops isn't initialized yet, its set to the
6187 * first non-dummy port ops.
6188 *
6189 * LOCKING:
6190 * Inherited from calling layer (may sleep).
6191 *
6192 * RETURNS:
6193 * 0 if all ports are started successfully, -errno otherwise.
6194 */
6195 int ata_host_start(struct ata_host *host)
6196 {
6197 int i, rc;
6198
6199 if (host->flags & ATA_HOST_STARTED)
6200 return 0;
6201
6202 for (i = 0; i < host->n_ports; i++) {
6203 struct ata_port *ap = host->ports[i];
6204
6205 if (!host->ops && !ata_port_is_dummy(ap))
6206 host->ops = ap->ops;
6207
6208 if (ap->ops->port_start) {
6209 rc = ap->ops->port_start(ap);
6210 if (rc) {
6211 ata_port_printk(ap, KERN_ERR, "failed to "
6212 "start port (errno=%d)\n", rc);
6213 goto err_out;
6214 }
6215 }
6216
6217 ata_eh_freeze_port(ap);
6218 }
6219
6220 host->flags |= ATA_HOST_STARTED;
6221 return 0;
6222
6223 err_out:
6224 while (--i >= 0) {
6225 struct ata_port *ap = host->ports[i];
6226
6227 if (ap->ops->port_stop)
6228 ap->ops->port_stop(ap);
6229 }
6230 return rc;
6231 }
6232
6233 /**
6234 * ata_sas_host_init - Initialize a host struct
6235 * @host: host to initialize
6236 * @dev: device host is attached to
6237 * @flags: host flags
6238 * @ops: port_ops
6239 *
6240 * LOCKING:
6241 * PCI/etc. bus probe sem.
6242 *
6243 */
6244 /* KILLME - the only user left is ipr */
6245 void ata_host_init(struct ata_host *host, struct device *dev,
6246 unsigned long flags, const struct ata_port_operations *ops)
6247 {
6248 spin_lock_init(&host->lock);
6249 host->dev = dev;
6250 host->flags = flags;
6251 host->ops = ops;
6252 }
6253
6254 /**
6255 * ata_host_register - register initialized ATA host
6256 * @host: ATA host to register
6257 * @sht: template for SCSI host
6258 *
6259 * Register initialized ATA host. @host is allocated using
6260 * ata_host_alloc() and fully initialized by LLD. This function
6261 * starts ports, registers @host with ATA and SCSI layers and
6262 * probe registered devices.
6263 *
6264 * LOCKING:
6265 * Inherited from calling layer (may sleep).
6266 *
6267 * RETURNS:
6268 * 0 on success, -errno otherwise.
6269 */
6270 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6271 {
6272 int i, rc;
6273
6274 /* host must have been started */
6275 if (!(host->flags & ATA_HOST_STARTED)) {
6276 dev_printk(KERN_ERR, host->dev,
6277 "BUG: trying to register unstarted host\n");
6278 WARN_ON(1);
6279 return -EINVAL;
6280 }
6281
6282 /* Blow away unused ports. This happens when LLD can't
6283 * determine the exact number of ports to allocate at
6284 * allocation time.
6285 */
6286 for (i = host->n_ports; host->ports[i]; i++)
6287 kfree(host->ports[i]);
6288
6289 /* give ports names and add SCSI hosts */
6290 for (i = 0; i < host->n_ports; i++)
6291 host->ports[i]->print_id = ata_print_id++;
6292
6293 rc = ata_scsi_add_hosts(host, sht);
6294 if (rc)
6295 return rc;
6296
6297 /* set cable, sata_spd_limit and report */
6298 for (i = 0; i < host->n_ports; i++) {
6299 struct ata_port *ap = host->ports[i];
6300 int irq_line;
6301 u32 scontrol;
6302 unsigned long xfer_mask;
6303
6304 /* set SATA cable type if still unset */
6305 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6306 ap->cbl = ATA_CBL_SATA;
6307
6308 /* init sata_spd_limit to the current value */
6309 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6310 int spd = (scontrol >> 4) & 0xf;
6311 if (spd)
6312 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6313 }
6314 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6315
6316 /* report the secondary IRQ for second channel legacy */
6317 irq_line = host->irq;
6318 if (i == 1 && host->irq2)
6319 irq_line = host->irq2;
6320
6321 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6322 ap->udma_mask);
6323
6324 /* print per-port info to dmesg */
6325 if (!ata_port_is_dummy(ap))
6326 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6327 "ctl 0x%p bmdma 0x%p irq %d\n",
6328 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6329 ata_mode_string(xfer_mask),
6330 ap->ioaddr.cmd_addr,
6331 ap->ioaddr.ctl_addr,
6332 ap->ioaddr.bmdma_addr,
6333 irq_line);
6334 else
6335 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6336 }
6337
6338 /* perform each probe synchronously */
6339 DPRINTK("probe begin\n");
6340 for (i = 0; i < host->n_ports; i++) {
6341 struct ata_port *ap = host->ports[i];
6342 int rc;
6343
6344 /* probe */
6345 if (ap->ops->error_handler) {
6346 struct ata_eh_info *ehi = &ap->eh_info;
6347 unsigned long flags;
6348
6349 ata_port_probe(ap);
6350
6351 /* kick EH for boot probing */
6352 spin_lock_irqsave(ap->lock, flags);
6353
6354 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6355 ehi->action |= ATA_EH_SOFTRESET;
6356 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6357
6358 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6359 ap->pflags |= ATA_PFLAG_LOADING;
6360 ata_port_schedule_eh(ap);
6361
6362 spin_unlock_irqrestore(ap->lock, flags);
6363
6364 /* wait for EH to finish */
6365 ata_port_wait_eh(ap);
6366 } else {
6367 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6368 rc = ata_bus_probe(ap);
6369 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6370
6371 if (rc) {
6372 /* FIXME: do something useful here?
6373 * Current libata behavior will
6374 * tear down everything when
6375 * the module is removed
6376 * or the h/w is unplugged.
6377 */
6378 }
6379 }
6380 }
6381
6382 /* probes are done, now scan each port's disk(s) */
6383 DPRINTK("host probe begin\n");
6384 for (i = 0; i < host->n_ports; i++) {
6385 struct ata_port *ap = host->ports[i];
6386
6387 ata_scsi_scan_host(ap);
6388 }
6389
6390 return 0;
6391 }
6392
6393 /**
6394 * ata_host_activate - start host, request IRQ and register it
6395 * @host: target ATA host
6396 * @irq: IRQ to request
6397 * @irq_handler: irq_handler used when requesting IRQ
6398 * @irq_flags: irq_flags used when requesting IRQ
6399 * @sht: scsi_host_template to use when registering the host
6400 *
6401 * After allocating an ATA host and initializing it, most libata
6402 * LLDs perform three steps to activate the host - start host,
6403 * request IRQ and register it. This helper takes necessasry
6404 * arguments and performs the three steps in one go.
6405 *
6406 * LOCKING:
6407 * Inherited from calling layer (may sleep).
6408 *
6409 * RETURNS:
6410 * 0 on success, -errno otherwise.
6411 */
6412 int ata_host_activate(struct ata_host *host, int irq,
6413 irq_handler_t irq_handler, unsigned long irq_flags,
6414 struct scsi_host_template *sht)
6415 {
6416 int rc;
6417
6418 rc = ata_host_start(host);
6419 if (rc)
6420 return rc;
6421
6422 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6423 dev_driver_string(host->dev), host);
6424 if (rc)
6425 return rc;
6426
6427 rc = ata_host_register(host, sht);
6428 /* if failed, just free the IRQ and leave ports alone */
6429 if (rc)
6430 devm_free_irq(host->dev, irq, host);
6431
6432 /* Used to print device info at probe */
6433 host->irq = irq;
6434
6435 return rc;
6436 }
6437
6438 /**
6439 * ata_port_detach - Detach ATA port in prepration of device removal
6440 * @ap: ATA port to be detached
6441 *
6442 * Detach all ATA devices and the associated SCSI devices of @ap;
6443 * then, remove the associated SCSI host. @ap is guaranteed to
6444 * be quiescent on return from this function.
6445 *
6446 * LOCKING:
6447 * Kernel thread context (may sleep).
6448 */
6449 void ata_port_detach(struct ata_port *ap)
6450 {
6451 unsigned long flags;
6452 int i;
6453
6454 if (!ap->ops->error_handler)
6455 goto skip_eh;
6456
6457 /* tell EH we're leaving & flush EH */
6458 spin_lock_irqsave(ap->lock, flags);
6459 ap->pflags |= ATA_PFLAG_UNLOADING;
6460 spin_unlock_irqrestore(ap->lock, flags);
6461
6462 ata_port_wait_eh(ap);
6463
6464 /* EH is now guaranteed to see UNLOADING, so no new device
6465 * will be attached. Disable all existing devices.
6466 */
6467 spin_lock_irqsave(ap->lock, flags);
6468
6469 for (i = 0; i < ATA_MAX_DEVICES; i++)
6470 ata_dev_disable(&ap->device[i]);
6471
6472 spin_unlock_irqrestore(ap->lock, flags);
6473
6474 /* Final freeze & EH. All in-flight commands are aborted. EH
6475 * will be skipped and retrials will be terminated with bad
6476 * target.
6477 */
6478 spin_lock_irqsave(ap->lock, flags);
6479 ata_port_freeze(ap); /* won't be thawed */
6480 spin_unlock_irqrestore(ap->lock, flags);
6481
6482 ata_port_wait_eh(ap);
6483
6484 /* Flush hotplug task. The sequence is similar to
6485 * ata_port_flush_task().
6486 */
6487 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6488 cancel_delayed_work(&ap->hotplug_task);
6489 cancel_work_sync(&ap->hotplug_task.work);
6490
6491 skip_eh:
6492 /* remove the associated SCSI host */
6493 scsi_remove_host(ap->scsi_host);
6494 }
6495
6496 /**
6497 * ata_host_detach - Detach all ports of an ATA host
6498 * @host: Host to detach
6499 *
6500 * Detach all ports of @host.
6501 *
6502 * LOCKING:
6503 * Kernel thread context (may sleep).
6504 */
6505 void ata_host_detach(struct ata_host *host)
6506 {
6507 int i;
6508
6509 for (i = 0; i < host->n_ports; i++)
6510 ata_port_detach(host->ports[i]);
6511 }
6512
6513 /**
6514 * ata_std_ports - initialize ioaddr with standard port offsets.
6515 * @ioaddr: IO address structure to be initialized
6516 *
6517 * Utility function which initializes data_addr, error_addr,
6518 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6519 * device_addr, status_addr, and command_addr to standard offsets
6520 * relative to cmd_addr.
6521 *
6522 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6523 */
6524
6525 void ata_std_ports(struct ata_ioports *ioaddr)
6526 {
6527 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6528 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6529 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6530 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6531 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6532 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6533 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6534 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6535 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6536 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6537 }
6538
6539
6540 #ifdef CONFIG_PCI
6541
6542 /**
6543 * ata_pci_remove_one - PCI layer callback for device removal
6544 * @pdev: PCI device that was removed
6545 *
6546 * PCI layer indicates to libata via this hook that hot-unplug or
6547 * module unload event has occurred. Detach all ports. Resource
6548 * release is handled via devres.
6549 *
6550 * LOCKING:
6551 * Inherited from PCI layer (may sleep).
6552 */
6553 void ata_pci_remove_one(struct pci_dev *pdev)
6554 {
6555 struct device *dev = pci_dev_to_dev(pdev);
6556 struct ata_host *host = dev_get_drvdata(dev);
6557
6558 ata_host_detach(host);
6559 }
6560
6561 /* move to PCI subsystem */
6562 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6563 {
6564 unsigned long tmp = 0;
6565
6566 switch (bits->width) {
6567 case 1: {
6568 u8 tmp8 = 0;
6569 pci_read_config_byte(pdev, bits->reg, &tmp8);
6570 tmp = tmp8;
6571 break;
6572 }
6573 case 2: {
6574 u16 tmp16 = 0;
6575 pci_read_config_word(pdev, bits->reg, &tmp16);
6576 tmp = tmp16;
6577 break;
6578 }
6579 case 4: {
6580 u32 tmp32 = 0;
6581 pci_read_config_dword(pdev, bits->reg, &tmp32);
6582 tmp = tmp32;
6583 break;
6584 }
6585
6586 default:
6587 return -EINVAL;
6588 }
6589
6590 tmp &= bits->mask;
6591
6592 return (tmp == bits->val) ? 1 : 0;
6593 }
6594
6595 #ifdef CONFIG_PM
6596 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6597 {
6598 pci_save_state(pdev);
6599 pci_disable_device(pdev);
6600
6601 if (mesg.event == PM_EVENT_SUSPEND)
6602 pci_set_power_state(pdev, PCI_D3hot);
6603 }
6604
6605 int ata_pci_device_do_resume(struct pci_dev *pdev)
6606 {
6607 int rc;
6608
6609 pci_set_power_state(pdev, PCI_D0);
6610 pci_restore_state(pdev);
6611
6612 rc = pcim_enable_device(pdev);
6613 if (rc) {
6614 dev_printk(KERN_ERR, &pdev->dev,
6615 "failed to enable device after resume (%d)\n", rc);
6616 return rc;
6617 }
6618
6619 pci_set_master(pdev);
6620 return 0;
6621 }
6622
6623 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6624 {
6625 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6626 int rc = 0;
6627
6628 rc = ata_host_suspend(host, mesg);
6629 if (rc)
6630 return rc;
6631
6632 ata_pci_device_do_suspend(pdev, mesg);
6633
6634 return 0;
6635 }
6636
6637 int ata_pci_device_resume(struct pci_dev *pdev)
6638 {
6639 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6640 int rc;
6641
6642 rc = ata_pci_device_do_resume(pdev);
6643 if (rc == 0)
6644 ata_host_resume(host);
6645 return rc;
6646 }
6647 #endif /* CONFIG_PM */
6648
6649 #endif /* CONFIG_PCI */
6650
6651
6652 static int __init ata_init(void)
6653 {
6654 ata_probe_timeout *= HZ;
6655 ata_wq = create_workqueue("ata");
6656 if (!ata_wq)
6657 return -ENOMEM;
6658
6659 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6660 if (!ata_aux_wq) {
6661 destroy_workqueue(ata_wq);
6662 return -ENOMEM;
6663 }
6664
6665 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6666 return 0;
6667 }
6668
6669 static void __exit ata_exit(void)
6670 {
6671 destroy_workqueue(ata_wq);
6672 destroy_workqueue(ata_aux_wq);
6673 }
6674
6675 subsys_initcall(ata_init);
6676 module_exit(ata_exit);
6677
6678 static unsigned long ratelimit_time;
6679 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6680
6681 int ata_ratelimit(void)
6682 {
6683 int rc;
6684 unsigned long flags;
6685
6686 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6687
6688 if (time_after(jiffies, ratelimit_time)) {
6689 rc = 1;
6690 ratelimit_time = jiffies + (HZ/5);
6691 } else
6692 rc = 0;
6693
6694 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6695
6696 return rc;
6697 }
6698
6699 /**
6700 * ata_wait_register - wait until register value changes
6701 * @reg: IO-mapped register
6702 * @mask: Mask to apply to read register value
6703 * @val: Wait condition
6704 * @interval_msec: polling interval in milliseconds
6705 * @timeout_msec: timeout in milliseconds
6706 *
6707 * Waiting for some bits of register to change is a common
6708 * operation for ATA controllers. This function reads 32bit LE
6709 * IO-mapped register @reg and tests for the following condition.
6710 *
6711 * (*@reg & mask) != val
6712 *
6713 * If the condition is met, it returns; otherwise, the process is
6714 * repeated after @interval_msec until timeout.
6715 *
6716 * LOCKING:
6717 * Kernel thread context (may sleep)
6718 *
6719 * RETURNS:
6720 * The final register value.
6721 */
6722 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6723 unsigned long interval_msec,
6724 unsigned long timeout_msec)
6725 {
6726 unsigned long timeout;
6727 u32 tmp;
6728
6729 tmp = ioread32(reg);
6730
6731 /* Calculate timeout _after_ the first read to make sure
6732 * preceding writes reach the controller before starting to
6733 * eat away the timeout.
6734 */
6735 timeout = jiffies + (timeout_msec * HZ) / 1000;
6736
6737 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6738 msleep(interval_msec);
6739 tmp = ioread32(reg);
6740 }
6741
6742 return tmp;
6743 }
6744
6745 /*
6746 * Dummy port_ops
6747 */
6748 static void ata_dummy_noret(struct ata_port *ap) { }
6749 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6750 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6751
6752 static u8 ata_dummy_check_status(struct ata_port *ap)
6753 {
6754 return ATA_DRDY;
6755 }
6756
6757 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6758 {
6759 return AC_ERR_SYSTEM;
6760 }
6761
6762 const struct ata_port_operations ata_dummy_port_ops = {
6763 .port_disable = ata_port_disable,
6764 .check_status = ata_dummy_check_status,
6765 .check_altstatus = ata_dummy_check_status,
6766 .dev_select = ata_noop_dev_select,
6767 .qc_prep = ata_noop_qc_prep,
6768 .qc_issue = ata_dummy_qc_issue,
6769 .freeze = ata_dummy_noret,
6770 .thaw = ata_dummy_noret,
6771 .error_handler = ata_dummy_noret,
6772 .post_internal_cmd = ata_dummy_qc_noret,
6773 .irq_clear = ata_dummy_noret,
6774 .port_start = ata_dummy_ret0,
6775 .port_stop = ata_dummy_noret,
6776 };
6777
6778 const struct ata_port_info ata_dummy_port_info = {
6779 .port_ops = &ata_dummy_port_ops,
6780 };
6781
6782 /*
6783 * libata is essentially a library of internal helper functions for
6784 * low-level ATA host controller drivers. As such, the API/ABI is
6785 * likely to change as new drivers are added and updated.
6786 * Do not depend on ABI/API stability.
6787 */
6788
6789 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6790 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6791 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6792 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6793 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6794 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6795 EXPORT_SYMBOL_GPL(ata_std_ports);
6796 EXPORT_SYMBOL_GPL(ata_host_init);
6797 EXPORT_SYMBOL_GPL(ata_host_alloc);
6798 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6799 EXPORT_SYMBOL_GPL(ata_host_start);
6800 EXPORT_SYMBOL_GPL(ata_host_register);
6801 EXPORT_SYMBOL_GPL(ata_host_activate);
6802 EXPORT_SYMBOL_GPL(ata_host_detach);
6803 EXPORT_SYMBOL_GPL(ata_sg_init);
6804 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6805 EXPORT_SYMBOL_GPL(ata_hsm_move);
6806 EXPORT_SYMBOL_GPL(ata_qc_complete);
6807 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6808 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6809 EXPORT_SYMBOL_GPL(ata_tf_load);
6810 EXPORT_SYMBOL_GPL(ata_tf_read);
6811 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6812 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6813 EXPORT_SYMBOL_GPL(sata_print_link_status);
6814 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6815 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6816 EXPORT_SYMBOL_GPL(ata_check_status);
6817 EXPORT_SYMBOL_GPL(ata_altstatus);
6818 EXPORT_SYMBOL_GPL(ata_exec_command);
6819 EXPORT_SYMBOL_GPL(ata_port_start);
6820 EXPORT_SYMBOL_GPL(ata_sff_port_start);
6821 EXPORT_SYMBOL_GPL(ata_interrupt);
6822 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6823 EXPORT_SYMBOL_GPL(ata_data_xfer);
6824 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6825 EXPORT_SYMBOL_GPL(ata_qc_prep);
6826 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6827 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6828 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6829 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6830 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6831 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6832 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6833 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6834 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6835 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6836 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6837 EXPORT_SYMBOL_GPL(ata_port_probe);
6838 EXPORT_SYMBOL_GPL(ata_dev_disable);
6839 EXPORT_SYMBOL_GPL(sata_set_spd);
6840 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6841 EXPORT_SYMBOL_GPL(sata_phy_resume);
6842 EXPORT_SYMBOL_GPL(sata_phy_reset);
6843 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6844 EXPORT_SYMBOL_GPL(ata_bus_reset);
6845 EXPORT_SYMBOL_GPL(ata_std_prereset);
6846 EXPORT_SYMBOL_GPL(ata_std_softreset);
6847 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6848 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6849 EXPORT_SYMBOL_GPL(ata_std_postreset);
6850 EXPORT_SYMBOL_GPL(ata_dev_classify);
6851 EXPORT_SYMBOL_GPL(ata_dev_pair);
6852 EXPORT_SYMBOL_GPL(ata_port_disable);
6853 EXPORT_SYMBOL_GPL(ata_ratelimit);
6854 EXPORT_SYMBOL_GPL(ata_wait_register);
6855 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6856 EXPORT_SYMBOL_GPL(ata_wait_ready);
6857 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6858 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6859 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6860 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6861 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6862 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6863 EXPORT_SYMBOL_GPL(ata_host_intr);
6864 EXPORT_SYMBOL_GPL(sata_scr_valid);
6865 EXPORT_SYMBOL_GPL(sata_scr_read);
6866 EXPORT_SYMBOL_GPL(sata_scr_write);
6867 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6868 EXPORT_SYMBOL_GPL(ata_port_online);
6869 EXPORT_SYMBOL_GPL(ata_port_offline);
6870 #ifdef CONFIG_PM
6871 EXPORT_SYMBOL_GPL(ata_host_suspend);
6872 EXPORT_SYMBOL_GPL(ata_host_resume);
6873 #endif /* CONFIG_PM */
6874 EXPORT_SYMBOL_GPL(ata_id_string);
6875 EXPORT_SYMBOL_GPL(ata_id_c_string);
6876 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6877 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6878 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6879
6880 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6881 EXPORT_SYMBOL_GPL(ata_timing_compute);
6882 EXPORT_SYMBOL_GPL(ata_timing_merge);
6883
6884 #ifdef CONFIG_PCI
6885 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6886 EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6887 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6888 EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6889 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6890 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6891 #ifdef CONFIG_PM
6892 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6893 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6894 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6895 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6896 #endif /* CONFIG_PM */
6897 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6898 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6899 #endif /* CONFIG_PCI */
6900
6901 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6902 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6903 EXPORT_SYMBOL_GPL(ata_port_abort);
6904 EXPORT_SYMBOL_GPL(ata_port_freeze);
6905 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6906 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6907 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6908 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6909 EXPORT_SYMBOL_GPL(ata_do_eh);
6910 EXPORT_SYMBOL_GPL(ata_irq_on);
6911 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6912 EXPORT_SYMBOL_GPL(ata_irq_ack);
6913 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6914 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6915
6916 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6917 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6918 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6919 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.277784 seconds and 6 git commands to generate.