Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jgarzi...
[deliverable/linux.git] / drivers / ata / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68
69 #include "libata.h"
70
71
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
84
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
87
88 struct workqueue_struct *ata_aux_wq;
89
90 int atapi_enabled = 1;
91 module_param(atapi_enabled, int, 0444);
92 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
93
94 int atapi_dmadir = 0;
95 module_param(atapi_dmadir, int, 0444);
96 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
97
98 int atapi_passthru16 = 1;
99 module_param(atapi_passthru16, int, 0444);
100 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
101
102 int libata_fua = 0;
103 module_param_named(fua, libata_fua, int, 0444);
104 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
105
106 static int ata_ignore_hpa;
107 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
108 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
109
110 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
111 module_param_named(dma, libata_dma_mask, int, 0444);
112 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
113
114 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
115 module_param(ata_probe_timeout, int, 0444);
116 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
117
118 int libata_noacpi = 0;
119 module_param_named(noacpi, libata_noacpi, int, 0444);
120 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
121
122 MODULE_AUTHOR("Jeff Garzik");
123 MODULE_DESCRIPTION("Library module for ATA devices");
124 MODULE_LICENSE("GPL");
125 MODULE_VERSION(DRV_VERSION);
126
127
128 /**
129 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
130 * @tf: Taskfile to convert
131 * @pmp: Port multiplier port
132 * @is_cmd: This FIS is for command
133 * @fis: Buffer into which data will output
134 *
135 * Converts a standard ATA taskfile to a Serial ATA
136 * FIS structure (Register - Host to Device).
137 *
138 * LOCKING:
139 * Inherited from caller.
140 */
141 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
142 {
143 fis[0] = 0x27; /* Register - Host to Device FIS */
144 fis[1] = pmp & 0xf; /* Port multiplier number*/
145 if (is_cmd)
146 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
147
148 fis[2] = tf->command;
149 fis[3] = tf->feature;
150
151 fis[4] = tf->lbal;
152 fis[5] = tf->lbam;
153 fis[6] = tf->lbah;
154 fis[7] = tf->device;
155
156 fis[8] = tf->hob_lbal;
157 fis[9] = tf->hob_lbam;
158 fis[10] = tf->hob_lbah;
159 fis[11] = tf->hob_feature;
160
161 fis[12] = tf->nsect;
162 fis[13] = tf->hob_nsect;
163 fis[14] = 0;
164 fis[15] = tf->ctl;
165
166 fis[16] = 0;
167 fis[17] = 0;
168 fis[18] = 0;
169 fis[19] = 0;
170 }
171
172 /**
173 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
174 * @fis: Buffer from which data will be input
175 * @tf: Taskfile to output
176 *
177 * Converts a serial ATA FIS structure to a standard ATA taskfile.
178 *
179 * LOCKING:
180 * Inherited from caller.
181 */
182
183 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
184 {
185 tf->command = fis[2]; /* status */
186 tf->feature = fis[3]; /* error */
187
188 tf->lbal = fis[4];
189 tf->lbam = fis[5];
190 tf->lbah = fis[6];
191 tf->device = fis[7];
192
193 tf->hob_lbal = fis[8];
194 tf->hob_lbam = fis[9];
195 tf->hob_lbah = fis[10];
196
197 tf->nsect = fis[12];
198 tf->hob_nsect = fis[13];
199 }
200
201 static const u8 ata_rw_cmds[] = {
202 /* pio multi */
203 ATA_CMD_READ_MULTI,
204 ATA_CMD_WRITE_MULTI,
205 ATA_CMD_READ_MULTI_EXT,
206 ATA_CMD_WRITE_MULTI_EXT,
207 0,
208 0,
209 0,
210 ATA_CMD_WRITE_MULTI_FUA_EXT,
211 /* pio */
212 ATA_CMD_PIO_READ,
213 ATA_CMD_PIO_WRITE,
214 ATA_CMD_PIO_READ_EXT,
215 ATA_CMD_PIO_WRITE_EXT,
216 0,
217 0,
218 0,
219 0,
220 /* dma */
221 ATA_CMD_READ,
222 ATA_CMD_WRITE,
223 ATA_CMD_READ_EXT,
224 ATA_CMD_WRITE_EXT,
225 0,
226 0,
227 0,
228 ATA_CMD_WRITE_FUA_EXT
229 };
230
231 /**
232 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
233 * @tf: command to examine and configure
234 * @dev: device tf belongs to
235 *
236 * Examine the device configuration and tf->flags to calculate
237 * the proper read/write commands and protocol to use.
238 *
239 * LOCKING:
240 * caller.
241 */
242 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
243 {
244 u8 cmd;
245
246 int index, fua, lba48, write;
247
248 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
249 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
250 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
251
252 if (dev->flags & ATA_DFLAG_PIO) {
253 tf->protocol = ATA_PROT_PIO;
254 index = dev->multi_count ? 0 : 8;
255 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
256 /* Unable to use DMA due to host limitation */
257 tf->protocol = ATA_PROT_PIO;
258 index = dev->multi_count ? 0 : 8;
259 } else {
260 tf->protocol = ATA_PROT_DMA;
261 index = 16;
262 }
263
264 cmd = ata_rw_cmds[index + fua + lba48 + write];
265 if (cmd) {
266 tf->command = cmd;
267 return 0;
268 }
269 return -1;
270 }
271
272 /**
273 * ata_tf_read_block - Read block address from ATA taskfile
274 * @tf: ATA taskfile of interest
275 * @dev: ATA device @tf belongs to
276 *
277 * LOCKING:
278 * None.
279 *
280 * Read block address from @tf. This function can handle all
281 * three address formats - LBA, LBA48 and CHS. tf->protocol and
282 * flags select the address format to use.
283 *
284 * RETURNS:
285 * Block address read from @tf.
286 */
287 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
288 {
289 u64 block = 0;
290
291 if (tf->flags & ATA_TFLAG_LBA) {
292 if (tf->flags & ATA_TFLAG_LBA48) {
293 block |= (u64)tf->hob_lbah << 40;
294 block |= (u64)tf->hob_lbam << 32;
295 block |= tf->hob_lbal << 24;
296 } else
297 block |= (tf->device & 0xf) << 24;
298
299 block |= tf->lbah << 16;
300 block |= tf->lbam << 8;
301 block |= tf->lbal;
302 } else {
303 u32 cyl, head, sect;
304
305 cyl = tf->lbam | (tf->lbah << 8);
306 head = tf->device & 0xf;
307 sect = tf->lbal;
308
309 block = (cyl * dev->heads + head) * dev->sectors + sect;
310 }
311
312 return block;
313 }
314
315 /**
316 * ata_build_rw_tf - Build ATA taskfile for given read/write request
317 * @tf: Target ATA taskfile
318 * @dev: ATA device @tf belongs to
319 * @block: Block address
320 * @n_block: Number of blocks
321 * @tf_flags: RW/FUA etc...
322 * @tag: tag
323 *
324 * LOCKING:
325 * None.
326 *
327 * Build ATA taskfile @tf for read/write request described by
328 * @block, @n_block, @tf_flags and @tag on @dev.
329 *
330 * RETURNS:
331 *
332 * 0 on success, -ERANGE if the request is too large for @dev,
333 * -EINVAL if the request is invalid.
334 */
335 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
336 u64 block, u32 n_block, unsigned int tf_flags,
337 unsigned int tag)
338 {
339 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
340 tf->flags |= tf_flags;
341
342 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
343 /* yay, NCQ */
344 if (!lba_48_ok(block, n_block))
345 return -ERANGE;
346
347 tf->protocol = ATA_PROT_NCQ;
348 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
349
350 if (tf->flags & ATA_TFLAG_WRITE)
351 tf->command = ATA_CMD_FPDMA_WRITE;
352 else
353 tf->command = ATA_CMD_FPDMA_READ;
354
355 tf->nsect = tag << 3;
356 tf->hob_feature = (n_block >> 8) & 0xff;
357 tf->feature = n_block & 0xff;
358
359 tf->hob_lbah = (block >> 40) & 0xff;
360 tf->hob_lbam = (block >> 32) & 0xff;
361 tf->hob_lbal = (block >> 24) & 0xff;
362 tf->lbah = (block >> 16) & 0xff;
363 tf->lbam = (block >> 8) & 0xff;
364 tf->lbal = block & 0xff;
365
366 tf->device = 1 << 6;
367 if (tf->flags & ATA_TFLAG_FUA)
368 tf->device |= 1 << 7;
369 } else if (dev->flags & ATA_DFLAG_LBA) {
370 tf->flags |= ATA_TFLAG_LBA;
371
372 if (lba_28_ok(block, n_block)) {
373 /* use LBA28 */
374 tf->device |= (block >> 24) & 0xf;
375 } else if (lba_48_ok(block, n_block)) {
376 if (!(dev->flags & ATA_DFLAG_LBA48))
377 return -ERANGE;
378
379 /* use LBA48 */
380 tf->flags |= ATA_TFLAG_LBA48;
381
382 tf->hob_nsect = (n_block >> 8) & 0xff;
383
384 tf->hob_lbah = (block >> 40) & 0xff;
385 tf->hob_lbam = (block >> 32) & 0xff;
386 tf->hob_lbal = (block >> 24) & 0xff;
387 } else
388 /* request too large even for LBA48 */
389 return -ERANGE;
390
391 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
392 return -EINVAL;
393
394 tf->nsect = n_block & 0xff;
395
396 tf->lbah = (block >> 16) & 0xff;
397 tf->lbam = (block >> 8) & 0xff;
398 tf->lbal = block & 0xff;
399
400 tf->device |= ATA_LBA;
401 } else {
402 /* CHS */
403 u32 sect, head, cyl, track;
404
405 /* The request -may- be too large for CHS addressing. */
406 if (!lba_28_ok(block, n_block))
407 return -ERANGE;
408
409 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
410 return -EINVAL;
411
412 /* Convert LBA to CHS */
413 track = (u32)block / dev->sectors;
414 cyl = track / dev->heads;
415 head = track % dev->heads;
416 sect = (u32)block % dev->sectors + 1;
417
418 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
419 (u32)block, track, cyl, head, sect);
420
421 /* Check whether the converted CHS can fit.
422 Cylinder: 0-65535
423 Head: 0-15
424 Sector: 1-255*/
425 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
426 return -ERANGE;
427
428 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
429 tf->lbal = sect;
430 tf->lbam = cyl;
431 tf->lbah = cyl >> 8;
432 tf->device |= head;
433 }
434
435 return 0;
436 }
437
438 /**
439 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
440 * @pio_mask: pio_mask
441 * @mwdma_mask: mwdma_mask
442 * @udma_mask: udma_mask
443 *
444 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
445 * unsigned int xfer_mask.
446 *
447 * LOCKING:
448 * None.
449 *
450 * RETURNS:
451 * Packed xfer_mask.
452 */
453 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
454 unsigned int mwdma_mask,
455 unsigned int udma_mask)
456 {
457 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
458 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
459 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
460 }
461
462 /**
463 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
464 * @xfer_mask: xfer_mask to unpack
465 * @pio_mask: resulting pio_mask
466 * @mwdma_mask: resulting mwdma_mask
467 * @udma_mask: resulting udma_mask
468 *
469 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
470 * Any NULL distination masks will be ignored.
471 */
472 static void ata_unpack_xfermask(unsigned int xfer_mask,
473 unsigned int *pio_mask,
474 unsigned int *mwdma_mask,
475 unsigned int *udma_mask)
476 {
477 if (pio_mask)
478 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
479 if (mwdma_mask)
480 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
481 if (udma_mask)
482 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
483 }
484
485 static const struct ata_xfer_ent {
486 int shift, bits;
487 u8 base;
488 } ata_xfer_tbl[] = {
489 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
490 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
491 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
492 { -1, },
493 };
494
495 /**
496 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
497 * @xfer_mask: xfer_mask of interest
498 *
499 * Return matching XFER_* value for @xfer_mask. Only the highest
500 * bit of @xfer_mask is considered.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * Matching XFER_* value, 0 if no match found.
507 */
508 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
509 {
510 int highbit = fls(xfer_mask) - 1;
511 const struct ata_xfer_ent *ent;
512
513 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
514 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
515 return ent->base + highbit - ent->shift;
516 return 0;
517 }
518
519 /**
520 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
521 * @xfer_mode: XFER_* of interest
522 *
523 * Return matching xfer_mask for @xfer_mode.
524 *
525 * LOCKING:
526 * None.
527 *
528 * RETURNS:
529 * Matching xfer_mask, 0 if no match found.
530 */
531 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
532 {
533 const struct ata_xfer_ent *ent;
534
535 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
536 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
537 return 1 << (ent->shift + xfer_mode - ent->base);
538 return 0;
539 }
540
541 /**
542 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
543 * @xfer_mode: XFER_* of interest
544 *
545 * Return matching xfer_shift for @xfer_mode.
546 *
547 * LOCKING:
548 * None.
549 *
550 * RETURNS:
551 * Matching xfer_shift, -1 if no match found.
552 */
553 static int ata_xfer_mode2shift(unsigned int xfer_mode)
554 {
555 const struct ata_xfer_ent *ent;
556
557 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
558 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
559 return ent->shift;
560 return -1;
561 }
562
563 /**
564 * ata_mode_string - convert xfer_mask to string
565 * @xfer_mask: mask of bits supported; only highest bit counts.
566 *
567 * Determine string which represents the highest speed
568 * (highest bit in @modemask).
569 *
570 * LOCKING:
571 * None.
572 *
573 * RETURNS:
574 * Constant C string representing highest speed listed in
575 * @mode_mask, or the constant C string "<n/a>".
576 */
577 static const char *ata_mode_string(unsigned int xfer_mask)
578 {
579 static const char * const xfer_mode_str[] = {
580 "PIO0",
581 "PIO1",
582 "PIO2",
583 "PIO3",
584 "PIO4",
585 "PIO5",
586 "PIO6",
587 "MWDMA0",
588 "MWDMA1",
589 "MWDMA2",
590 "MWDMA3",
591 "MWDMA4",
592 "UDMA/16",
593 "UDMA/25",
594 "UDMA/33",
595 "UDMA/44",
596 "UDMA/66",
597 "UDMA/100",
598 "UDMA/133",
599 "UDMA7",
600 };
601 int highbit;
602
603 highbit = fls(xfer_mask) - 1;
604 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
605 return xfer_mode_str[highbit];
606 return "<n/a>";
607 }
608
609 static const char *sata_spd_string(unsigned int spd)
610 {
611 static const char * const spd_str[] = {
612 "1.5 Gbps",
613 "3.0 Gbps",
614 };
615
616 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
617 return "<unknown>";
618 return spd_str[spd - 1];
619 }
620
621 void ata_dev_disable(struct ata_device *dev)
622 {
623 if (ata_dev_enabled(dev)) {
624 if (ata_msg_drv(dev->link->ap))
625 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
626 ata_acpi_on_disable(dev);
627 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
628 ATA_DNXFER_QUIET);
629 dev->class++;
630 }
631 }
632
633 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
634 {
635 struct ata_link *link = dev->link;
636 struct ata_port *ap = link->ap;
637 u32 scontrol;
638 unsigned int err_mask;
639 int rc;
640
641 /*
642 * disallow DIPM for drivers which haven't set
643 * ATA_FLAG_IPM. This is because when DIPM is enabled,
644 * phy ready will be set in the interrupt status on
645 * state changes, which will cause some drivers to
646 * think there are errors - additionally drivers will
647 * need to disable hot plug.
648 */
649 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
650 ap->pm_policy = NOT_AVAILABLE;
651 return -EINVAL;
652 }
653
654 /*
655 * For DIPM, we will only enable it for the
656 * min_power setting.
657 *
658 * Why? Because Disks are too stupid to know that
659 * If the host rejects a request to go to SLUMBER
660 * they should retry at PARTIAL, and instead it
661 * just would give up. So, for medium_power to
662 * work at all, we need to only allow HIPM.
663 */
664 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
665 if (rc)
666 return rc;
667
668 switch (policy) {
669 case MIN_POWER:
670 /* no restrictions on IPM transitions */
671 scontrol &= ~(0x3 << 8);
672 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
673 if (rc)
674 return rc;
675
676 /* enable DIPM */
677 if (dev->flags & ATA_DFLAG_DIPM)
678 err_mask = ata_dev_set_feature(dev,
679 SETFEATURES_SATA_ENABLE, SATA_DIPM);
680 break;
681 case MEDIUM_POWER:
682 /* allow IPM to PARTIAL */
683 scontrol &= ~(0x1 << 8);
684 scontrol |= (0x2 << 8);
685 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
686 if (rc)
687 return rc;
688
689 /*
690 * we don't have to disable DIPM since IPM flags
691 * disallow transitions to SLUMBER, which effectively
692 * disable DIPM if it does not support PARTIAL
693 */
694 break;
695 case NOT_AVAILABLE:
696 case MAX_PERFORMANCE:
697 /* disable all IPM transitions */
698 scontrol |= (0x3 << 8);
699 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
700 if (rc)
701 return rc;
702
703 /*
704 * we don't have to disable DIPM since IPM flags
705 * disallow all transitions which effectively
706 * disable DIPM anyway.
707 */
708 break;
709 }
710
711 /* FIXME: handle SET FEATURES failure */
712 (void) err_mask;
713
714 return 0;
715 }
716
717 /**
718 * ata_dev_enable_pm - enable SATA interface power management
719 * @dev: device to enable power management
720 * @policy: the link power management policy
721 *
722 * Enable SATA Interface power management. This will enable
723 * Device Interface Power Management (DIPM) for min_power
724 * policy, and then call driver specific callbacks for
725 * enabling Host Initiated Power management.
726 *
727 * Locking: Caller.
728 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
729 */
730 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
731 {
732 int rc = 0;
733 struct ata_port *ap = dev->link->ap;
734
735 /* set HIPM first, then DIPM */
736 if (ap->ops->enable_pm)
737 rc = ap->ops->enable_pm(ap, policy);
738 if (rc)
739 goto enable_pm_out;
740 rc = ata_dev_set_dipm(dev, policy);
741
742 enable_pm_out:
743 if (rc)
744 ap->pm_policy = MAX_PERFORMANCE;
745 else
746 ap->pm_policy = policy;
747 return /* rc */; /* hopefully we can use 'rc' eventually */
748 }
749
750 #ifdef CONFIG_PM
751 /**
752 * ata_dev_disable_pm - disable SATA interface power management
753 * @dev: device to disable power management
754 *
755 * Disable SATA Interface power management. This will disable
756 * Device Interface Power Management (DIPM) without changing
757 * policy, call driver specific callbacks for disabling Host
758 * Initiated Power management.
759 *
760 * Locking: Caller.
761 * Returns: void
762 */
763 static void ata_dev_disable_pm(struct ata_device *dev)
764 {
765 struct ata_port *ap = dev->link->ap;
766
767 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
768 if (ap->ops->disable_pm)
769 ap->ops->disable_pm(ap);
770 }
771 #endif /* CONFIG_PM */
772
773 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
774 {
775 ap->pm_policy = policy;
776 ap->link.eh_info.action |= ATA_EHI_LPM;
777 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
778 ata_port_schedule_eh(ap);
779 }
780
781 #ifdef CONFIG_PM
782 static void ata_lpm_enable(struct ata_host *host)
783 {
784 struct ata_link *link;
785 struct ata_port *ap;
786 struct ata_device *dev;
787 int i;
788
789 for (i = 0; i < host->n_ports; i++) {
790 ap = host->ports[i];
791 ata_port_for_each_link(link, ap) {
792 ata_link_for_each_dev(dev, link)
793 ata_dev_disable_pm(dev);
794 }
795 }
796 }
797
798 static void ata_lpm_disable(struct ata_host *host)
799 {
800 int i;
801
802 for (i = 0; i < host->n_ports; i++) {
803 struct ata_port *ap = host->ports[i];
804 ata_lpm_schedule(ap, ap->pm_policy);
805 }
806 }
807 #endif /* CONFIG_PM */
808
809
810 /**
811 * ata_devchk - PATA device presence detection
812 * @ap: ATA channel to examine
813 * @device: Device to examine (starting at zero)
814 *
815 * This technique was originally described in
816 * Hale Landis's ATADRVR (www.ata-atapi.com), and
817 * later found its way into the ATA/ATAPI spec.
818 *
819 * Write a pattern to the ATA shadow registers,
820 * and if a device is present, it will respond by
821 * correctly storing and echoing back the
822 * ATA shadow register contents.
823 *
824 * LOCKING:
825 * caller.
826 */
827
828 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
829 {
830 struct ata_ioports *ioaddr = &ap->ioaddr;
831 u8 nsect, lbal;
832
833 ap->ops->dev_select(ap, device);
834
835 iowrite8(0x55, ioaddr->nsect_addr);
836 iowrite8(0xaa, ioaddr->lbal_addr);
837
838 iowrite8(0xaa, ioaddr->nsect_addr);
839 iowrite8(0x55, ioaddr->lbal_addr);
840
841 iowrite8(0x55, ioaddr->nsect_addr);
842 iowrite8(0xaa, ioaddr->lbal_addr);
843
844 nsect = ioread8(ioaddr->nsect_addr);
845 lbal = ioread8(ioaddr->lbal_addr);
846
847 if ((nsect == 0x55) && (lbal == 0xaa))
848 return 1; /* we found a device */
849
850 return 0; /* nothing found */
851 }
852
853 /**
854 * ata_dev_classify - determine device type based on ATA-spec signature
855 * @tf: ATA taskfile register set for device to be identified
856 *
857 * Determine from taskfile register contents whether a device is
858 * ATA or ATAPI, as per "Signature and persistence" section
859 * of ATA/PI spec (volume 1, sect 5.14).
860 *
861 * LOCKING:
862 * None.
863 *
864 * RETURNS:
865 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
866 * %ATA_DEV_UNKNOWN the event of failure.
867 */
868 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
869 {
870 /* Apple's open source Darwin code hints that some devices only
871 * put a proper signature into the LBA mid/high registers,
872 * So, we only check those. It's sufficient for uniqueness.
873 *
874 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
875 * signatures for ATA and ATAPI devices attached on SerialATA,
876 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
877 * spec has never mentioned about using different signatures
878 * for ATA/ATAPI devices. Then, Serial ATA II: Port
879 * Multiplier specification began to use 0x69/0x96 to identify
880 * port multpliers and 0x3c/0xc3 to identify SEMB device.
881 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
882 * 0x69/0x96 shortly and described them as reserved for
883 * SerialATA.
884 *
885 * We follow the current spec and consider that 0x69/0x96
886 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
887 */
888 if ((tf->lbam == 0) && (tf->lbah == 0)) {
889 DPRINTK("found ATA device by sig\n");
890 return ATA_DEV_ATA;
891 }
892
893 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
894 DPRINTK("found ATAPI device by sig\n");
895 return ATA_DEV_ATAPI;
896 }
897
898 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
899 DPRINTK("found PMP device by sig\n");
900 return ATA_DEV_PMP;
901 }
902
903 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
904 printk(KERN_INFO "ata: SEMB device ignored\n");
905 return ATA_DEV_SEMB_UNSUP; /* not yet */
906 }
907
908 DPRINTK("unknown device\n");
909 return ATA_DEV_UNKNOWN;
910 }
911
912 /**
913 * ata_dev_try_classify - Parse returned ATA device signature
914 * @dev: ATA device to classify (starting at zero)
915 * @present: device seems present
916 * @r_err: Value of error register on completion
917 *
918 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
919 * an ATA/ATAPI-defined set of values is placed in the ATA
920 * shadow registers, indicating the results of device detection
921 * and diagnostics.
922 *
923 * Select the ATA device, and read the values from the ATA shadow
924 * registers. Then parse according to the Error register value,
925 * and the spec-defined values examined by ata_dev_classify().
926 *
927 * LOCKING:
928 * caller.
929 *
930 * RETURNS:
931 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
932 */
933 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
934 u8 *r_err)
935 {
936 struct ata_port *ap = dev->link->ap;
937 struct ata_taskfile tf;
938 unsigned int class;
939 u8 err;
940
941 ap->ops->dev_select(ap, dev->devno);
942
943 memset(&tf, 0, sizeof(tf));
944
945 ap->ops->tf_read(ap, &tf);
946 err = tf.feature;
947 if (r_err)
948 *r_err = err;
949
950 /* see if device passed diags: if master then continue and warn later */
951 if (err == 0 && dev->devno == 0)
952 /* diagnostic fail : do nothing _YET_ */
953 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
954 else if (err == 1)
955 /* do nothing */ ;
956 else if ((dev->devno == 0) && (err == 0x81))
957 /* do nothing */ ;
958 else
959 return ATA_DEV_NONE;
960
961 /* determine if device is ATA or ATAPI */
962 class = ata_dev_classify(&tf);
963
964 if (class == ATA_DEV_UNKNOWN) {
965 /* If the device failed diagnostic, it's likely to
966 * have reported incorrect device signature too.
967 * Assume ATA device if the device seems present but
968 * device signature is invalid with diagnostic
969 * failure.
970 */
971 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
972 class = ATA_DEV_ATA;
973 else
974 class = ATA_DEV_NONE;
975 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
976 class = ATA_DEV_NONE;
977
978 return class;
979 }
980
981 /**
982 * ata_id_string - Convert IDENTIFY DEVICE page into string
983 * @id: IDENTIFY DEVICE results we will examine
984 * @s: string into which data is output
985 * @ofs: offset into identify device page
986 * @len: length of string to return. must be an even number.
987 *
988 * The strings in the IDENTIFY DEVICE page are broken up into
989 * 16-bit chunks. Run through the string, and output each
990 * 8-bit chunk linearly, regardless of platform.
991 *
992 * LOCKING:
993 * caller.
994 */
995
996 void ata_id_string(const u16 *id, unsigned char *s,
997 unsigned int ofs, unsigned int len)
998 {
999 unsigned int c;
1000
1001 while (len > 0) {
1002 c = id[ofs] >> 8;
1003 *s = c;
1004 s++;
1005
1006 c = id[ofs] & 0xff;
1007 *s = c;
1008 s++;
1009
1010 ofs++;
1011 len -= 2;
1012 }
1013 }
1014
1015 /**
1016 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1017 * @id: IDENTIFY DEVICE results we will examine
1018 * @s: string into which data is output
1019 * @ofs: offset into identify device page
1020 * @len: length of string to return. must be an odd number.
1021 *
1022 * This function is identical to ata_id_string except that it
1023 * trims trailing spaces and terminates the resulting string with
1024 * null. @len must be actual maximum length (even number) + 1.
1025 *
1026 * LOCKING:
1027 * caller.
1028 */
1029 void ata_id_c_string(const u16 *id, unsigned char *s,
1030 unsigned int ofs, unsigned int len)
1031 {
1032 unsigned char *p;
1033
1034 WARN_ON(!(len & 1));
1035
1036 ata_id_string(id, s, ofs, len - 1);
1037
1038 p = s + strnlen(s, len - 1);
1039 while (p > s && p[-1] == ' ')
1040 p--;
1041 *p = '\0';
1042 }
1043
1044 static u64 ata_id_n_sectors(const u16 *id)
1045 {
1046 if (ata_id_has_lba(id)) {
1047 if (ata_id_has_lba48(id))
1048 return ata_id_u64(id, 100);
1049 else
1050 return ata_id_u32(id, 60);
1051 } else {
1052 if (ata_id_current_chs_valid(id))
1053 return ata_id_u32(id, 57);
1054 else
1055 return id[1] * id[3] * id[6];
1056 }
1057 }
1058
1059 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1060 {
1061 u64 sectors = 0;
1062
1063 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1064 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1065 sectors |= (tf->hob_lbal & 0xff) << 24;
1066 sectors |= (tf->lbah & 0xff) << 16;
1067 sectors |= (tf->lbam & 0xff) << 8;
1068 sectors |= (tf->lbal & 0xff);
1069
1070 return ++sectors;
1071 }
1072
1073 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1074 {
1075 u64 sectors = 0;
1076
1077 sectors |= (tf->device & 0x0f) << 24;
1078 sectors |= (tf->lbah & 0xff) << 16;
1079 sectors |= (tf->lbam & 0xff) << 8;
1080 sectors |= (tf->lbal & 0xff);
1081
1082 return ++sectors;
1083 }
1084
1085 /**
1086 * ata_read_native_max_address - Read native max address
1087 * @dev: target device
1088 * @max_sectors: out parameter for the result native max address
1089 *
1090 * Perform an LBA48 or LBA28 native size query upon the device in
1091 * question.
1092 *
1093 * RETURNS:
1094 * 0 on success, -EACCES if command is aborted by the drive.
1095 * -EIO on other errors.
1096 */
1097 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1098 {
1099 unsigned int err_mask;
1100 struct ata_taskfile tf;
1101 int lba48 = ata_id_has_lba48(dev->id);
1102
1103 ata_tf_init(dev, &tf);
1104
1105 /* always clear all address registers */
1106 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1107
1108 if (lba48) {
1109 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1110 tf.flags |= ATA_TFLAG_LBA48;
1111 } else
1112 tf.command = ATA_CMD_READ_NATIVE_MAX;
1113
1114 tf.protocol |= ATA_PROT_NODATA;
1115 tf.device |= ATA_LBA;
1116
1117 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1118 if (err_mask) {
1119 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1120 "max address (err_mask=0x%x)\n", err_mask);
1121 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1122 return -EACCES;
1123 return -EIO;
1124 }
1125
1126 if (lba48)
1127 *max_sectors = ata_tf_to_lba48(&tf);
1128 else
1129 *max_sectors = ata_tf_to_lba(&tf);
1130 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1131 (*max_sectors)--;
1132 return 0;
1133 }
1134
1135 /**
1136 * ata_set_max_sectors - Set max sectors
1137 * @dev: target device
1138 * @new_sectors: new max sectors value to set for the device
1139 *
1140 * Set max sectors of @dev to @new_sectors.
1141 *
1142 * RETURNS:
1143 * 0 on success, -EACCES if command is aborted or denied (due to
1144 * previous non-volatile SET_MAX) by the drive. -EIO on other
1145 * errors.
1146 */
1147 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1148 {
1149 unsigned int err_mask;
1150 struct ata_taskfile tf;
1151 int lba48 = ata_id_has_lba48(dev->id);
1152
1153 new_sectors--;
1154
1155 ata_tf_init(dev, &tf);
1156
1157 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1158
1159 if (lba48) {
1160 tf.command = ATA_CMD_SET_MAX_EXT;
1161 tf.flags |= ATA_TFLAG_LBA48;
1162
1163 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1164 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1165 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1166 } else {
1167 tf.command = ATA_CMD_SET_MAX;
1168
1169 tf.device |= (new_sectors >> 24) & 0xf;
1170 }
1171
1172 tf.protocol |= ATA_PROT_NODATA;
1173 tf.device |= ATA_LBA;
1174
1175 tf.lbal = (new_sectors >> 0) & 0xff;
1176 tf.lbam = (new_sectors >> 8) & 0xff;
1177 tf.lbah = (new_sectors >> 16) & 0xff;
1178
1179 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1180 if (err_mask) {
1181 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1182 "max address (err_mask=0x%x)\n", err_mask);
1183 if (err_mask == AC_ERR_DEV &&
1184 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1185 return -EACCES;
1186 return -EIO;
1187 }
1188
1189 return 0;
1190 }
1191
1192 /**
1193 * ata_hpa_resize - Resize a device with an HPA set
1194 * @dev: Device to resize
1195 *
1196 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1197 * it if required to the full size of the media. The caller must check
1198 * the drive has the HPA feature set enabled.
1199 *
1200 * RETURNS:
1201 * 0 on success, -errno on failure.
1202 */
1203 static int ata_hpa_resize(struct ata_device *dev)
1204 {
1205 struct ata_eh_context *ehc = &dev->link->eh_context;
1206 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1207 u64 sectors = ata_id_n_sectors(dev->id);
1208 u64 native_sectors;
1209 int rc;
1210
1211 /* do we need to do it? */
1212 if (dev->class != ATA_DEV_ATA ||
1213 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1214 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1215 return 0;
1216
1217 /* read native max address */
1218 rc = ata_read_native_max_address(dev, &native_sectors);
1219 if (rc) {
1220 /* If HPA isn't going to be unlocked, skip HPA
1221 * resizing from the next try.
1222 */
1223 if (!ata_ignore_hpa) {
1224 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1225 "broken, will skip HPA handling\n");
1226 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1227
1228 /* we can continue if device aborted the command */
1229 if (rc == -EACCES)
1230 rc = 0;
1231 }
1232
1233 return rc;
1234 }
1235
1236 /* nothing to do? */
1237 if (native_sectors <= sectors || !ata_ignore_hpa) {
1238 if (!print_info || native_sectors == sectors)
1239 return 0;
1240
1241 if (native_sectors > sectors)
1242 ata_dev_printk(dev, KERN_INFO,
1243 "HPA detected: current %llu, native %llu\n",
1244 (unsigned long long)sectors,
1245 (unsigned long long)native_sectors);
1246 else if (native_sectors < sectors)
1247 ata_dev_printk(dev, KERN_WARNING,
1248 "native sectors (%llu) is smaller than "
1249 "sectors (%llu)\n",
1250 (unsigned long long)native_sectors,
1251 (unsigned long long)sectors);
1252 return 0;
1253 }
1254
1255 /* let's unlock HPA */
1256 rc = ata_set_max_sectors(dev, native_sectors);
1257 if (rc == -EACCES) {
1258 /* if device aborted the command, skip HPA resizing */
1259 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1260 "(%llu -> %llu), skipping HPA handling\n",
1261 (unsigned long long)sectors,
1262 (unsigned long long)native_sectors);
1263 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1264 return 0;
1265 } else if (rc)
1266 return rc;
1267
1268 /* re-read IDENTIFY data */
1269 rc = ata_dev_reread_id(dev, 0);
1270 if (rc) {
1271 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1272 "data after HPA resizing\n");
1273 return rc;
1274 }
1275
1276 if (print_info) {
1277 u64 new_sectors = ata_id_n_sectors(dev->id);
1278 ata_dev_printk(dev, KERN_INFO,
1279 "HPA unlocked: %llu -> %llu, native %llu\n",
1280 (unsigned long long)sectors,
1281 (unsigned long long)new_sectors,
1282 (unsigned long long)native_sectors);
1283 }
1284
1285 return 0;
1286 }
1287
1288 /**
1289 * ata_id_to_dma_mode - Identify DMA mode from id block
1290 * @dev: device to identify
1291 * @unknown: mode to assume if we cannot tell
1292 *
1293 * Set up the timing values for the device based upon the identify
1294 * reported values for the DMA mode. This function is used by drivers
1295 * which rely upon firmware configured modes, but wish to report the
1296 * mode correctly when possible.
1297 *
1298 * In addition we emit similarly formatted messages to the default
1299 * ata_dev_set_mode handler, in order to provide consistency of
1300 * presentation.
1301 */
1302
1303 void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1304 {
1305 unsigned int mask;
1306 u8 mode;
1307
1308 /* Pack the DMA modes */
1309 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1310 if (dev->id[53] & 0x04)
1311 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1312
1313 /* Select the mode in use */
1314 mode = ata_xfer_mask2mode(mask);
1315
1316 if (mode != 0) {
1317 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1318 ata_mode_string(mask));
1319 } else {
1320 /* SWDMA perhaps ? */
1321 mode = unknown;
1322 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1323 }
1324
1325 /* Configure the device reporting */
1326 dev->xfer_mode = mode;
1327 dev->xfer_shift = ata_xfer_mode2shift(mode);
1328 }
1329
1330 /**
1331 * ata_noop_dev_select - Select device 0/1 on ATA bus
1332 * @ap: ATA channel to manipulate
1333 * @device: ATA device (numbered from zero) to select
1334 *
1335 * This function performs no actual function.
1336 *
1337 * May be used as the dev_select() entry in ata_port_operations.
1338 *
1339 * LOCKING:
1340 * caller.
1341 */
1342 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1343 {
1344 }
1345
1346
1347 /**
1348 * ata_std_dev_select - Select device 0/1 on ATA bus
1349 * @ap: ATA channel to manipulate
1350 * @device: ATA device (numbered from zero) to select
1351 *
1352 * Use the method defined in the ATA specification to
1353 * make either device 0, or device 1, active on the
1354 * ATA channel. Works with both PIO and MMIO.
1355 *
1356 * May be used as the dev_select() entry in ata_port_operations.
1357 *
1358 * LOCKING:
1359 * caller.
1360 */
1361
1362 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1363 {
1364 u8 tmp;
1365
1366 if (device == 0)
1367 tmp = ATA_DEVICE_OBS;
1368 else
1369 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1370
1371 iowrite8(tmp, ap->ioaddr.device_addr);
1372 ata_pause(ap); /* needed; also flushes, for mmio */
1373 }
1374
1375 /**
1376 * ata_dev_select - Select device 0/1 on ATA bus
1377 * @ap: ATA channel to manipulate
1378 * @device: ATA device (numbered from zero) to select
1379 * @wait: non-zero to wait for Status register BSY bit to clear
1380 * @can_sleep: non-zero if context allows sleeping
1381 *
1382 * Use the method defined in the ATA specification to
1383 * make either device 0, or device 1, active on the
1384 * ATA channel.
1385 *
1386 * This is a high-level version of ata_std_dev_select(),
1387 * which additionally provides the services of inserting
1388 * the proper pauses and status polling, where needed.
1389 *
1390 * LOCKING:
1391 * caller.
1392 */
1393
1394 void ata_dev_select(struct ata_port *ap, unsigned int device,
1395 unsigned int wait, unsigned int can_sleep)
1396 {
1397 if (ata_msg_probe(ap))
1398 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1399 "device %u, wait %u\n", device, wait);
1400
1401 if (wait)
1402 ata_wait_idle(ap);
1403
1404 ap->ops->dev_select(ap, device);
1405
1406 if (wait) {
1407 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1408 msleep(150);
1409 ata_wait_idle(ap);
1410 }
1411 }
1412
1413 /**
1414 * ata_dump_id - IDENTIFY DEVICE info debugging output
1415 * @id: IDENTIFY DEVICE page to dump
1416 *
1417 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1418 * page.
1419 *
1420 * LOCKING:
1421 * caller.
1422 */
1423
1424 static inline void ata_dump_id(const u16 *id)
1425 {
1426 DPRINTK("49==0x%04x "
1427 "53==0x%04x "
1428 "63==0x%04x "
1429 "64==0x%04x "
1430 "75==0x%04x \n",
1431 id[49],
1432 id[53],
1433 id[63],
1434 id[64],
1435 id[75]);
1436 DPRINTK("80==0x%04x "
1437 "81==0x%04x "
1438 "82==0x%04x "
1439 "83==0x%04x "
1440 "84==0x%04x \n",
1441 id[80],
1442 id[81],
1443 id[82],
1444 id[83],
1445 id[84]);
1446 DPRINTK("88==0x%04x "
1447 "93==0x%04x\n",
1448 id[88],
1449 id[93]);
1450 }
1451
1452 /**
1453 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1454 * @id: IDENTIFY data to compute xfer mask from
1455 *
1456 * Compute the xfermask for this device. This is not as trivial
1457 * as it seems if we must consider early devices correctly.
1458 *
1459 * FIXME: pre IDE drive timing (do we care ?).
1460 *
1461 * LOCKING:
1462 * None.
1463 *
1464 * RETURNS:
1465 * Computed xfermask
1466 */
1467 static unsigned int ata_id_xfermask(const u16 *id)
1468 {
1469 unsigned int pio_mask, mwdma_mask, udma_mask;
1470
1471 /* Usual case. Word 53 indicates word 64 is valid */
1472 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1473 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1474 pio_mask <<= 3;
1475 pio_mask |= 0x7;
1476 } else {
1477 /* If word 64 isn't valid then Word 51 high byte holds
1478 * the PIO timing number for the maximum. Turn it into
1479 * a mask.
1480 */
1481 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1482 if (mode < 5) /* Valid PIO range */
1483 pio_mask = (2 << mode) - 1;
1484 else
1485 pio_mask = 1;
1486
1487 /* But wait.. there's more. Design your standards by
1488 * committee and you too can get a free iordy field to
1489 * process. However its the speeds not the modes that
1490 * are supported... Note drivers using the timing API
1491 * will get this right anyway
1492 */
1493 }
1494
1495 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1496
1497 if (ata_id_is_cfa(id)) {
1498 /*
1499 * Process compact flash extended modes
1500 */
1501 int pio = id[163] & 0x7;
1502 int dma = (id[163] >> 3) & 7;
1503
1504 if (pio)
1505 pio_mask |= (1 << 5);
1506 if (pio > 1)
1507 pio_mask |= (1 << 6);
1508 if (dma)
1509 mwdma_mask |= (1 << 3);
1510 if (dma > 1)
1511 mwdma_mask |= (1 << 4);
1512 }
1513
1514 udma_mask = 0;
1515 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1516 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1517
1518 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1519 }
1520
1521 /**
1522 * ata_port_queue_task - Queue port_task
1523 * @ap: The ata_port to queue port_task for
1524 * @fn: workqueue function to be scheduled
1525 * @data: data for @fn to use
1526 * @delay: delay time for workqueue function
1527 *
1528 * Schedule @fn(@data) for execution after @delay jiffies using
1529 * port_task. There is one port_task per port and it's the
1530 * user(low level driver)'s responsibility to make sure that only
1531 * one task is active at any given time.
1532 *
1533 * libata core layer takes care of synchronization between
1534 * port_task and EH. ata_port_queue_task() may be ignored for EH
1535 * synchronization.
1536 *
1537 * LOCKING:
1538 * Inherited from caller.
1539 */
1540 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1541 unsigned long delay)
1542 {
1543 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1544 ap->port_task_data = data;
1545
1546 /* may fail if ata_port_flush_task() in progress */
1547 queue_delayed_work(ata_wq, &ap->port_task, delay);
1548 }
1549
1550 /**
1551 * ata_port_flush_task - Flush port_task
1552 * @ap: The ata_port to flush port_task for
1553 *
1554 * After this function completes, port_task is guranteed not to
1555 * be running or scheduled.
1556 *
1557 * LOCKING:
1558 * Kernel thread context (may sleep)
1559 */
1560 void ata_port_flush_task(struct ata_port *ap)
1561 {
1562 DPRINTK("ENTER\n");
1563
1564 cancel_rearming_delayed_work(&ap->port_task);
1565
1566 if (ata_msg_ctl(ap))
1567 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1568 }
1569
1570 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1571 {
1572 struct completion *waiting = qc->private_data;
1573
1574 complete(waiting);
1575 }
1576
1577 /**
1578 * ata_exec_internal_sg - execute libata internal command
1579 * @dev: Device to which the command is sent
1580 * @tf: Taskfile registers for the command and the result
1581 * @cdb: CDB for packet command
1582 * @dma_dir: Data tranfer direction of the command
1583 * @sgl: sg list for the data buffer of the command
1584 * @n_elem: Number of sg entries
1585 * @timeout: Timeout in msecs (0 for default)
1586 *
1587 * Executes libata internal command with timeout. @tf contains
1588 * command on entry and result on return. Timeout and error
1589 * conditions are reported via return value. No recovery action
1590 * is taken after a command times out. It's caller's duty to
1591 * clean up after timeout.
1592 *
1593 * LOCKING:
1594 * None. Should be called with kernel context, might sleep.
1595 *
1596 * RETURNS:
1597 * Zero on success, AC_ERR_* mask on failure
1598 */
1599 unsigned ata_exec_internal_sg(struct ata_device *dev,
1600 struct ata_taskfile *tf, const u8 *cdb,
1601 int dma_dir, struct scatterlist *sgl,
1602 unsigned int n_elem, unsigned long timeout)
1603 {
1604 struct ata_link *link = dev->link;
1605 struct ata_port *ap = link->ap;
1606 u8 command = tf->command;
1607 struct ata_queued_cmd *qc;
1608 unsigned int tag, preempted_tag;
1609 u32 preempted_sactive, preempted_qc_active;
1610 int preempted_nr_active_links;
1611 DECLARE_COMPLETION_ONSTACK(wait);
1612 unsigned long flags;
1613 unsigned int err_mask;
1614 int rc;
1615
1616 spin_lock_irqsave(ap->lock, flags);
1617
1618 /* no internal command while frozen */
1619 if (ap->pflags & ATA_PFLAG_FROZEN) {
1620 spin_unlock_irqrestore(ap->lock, flags);
1621 return AC_ERR_SYSTEM;
1622 }
1623
1624 /* initialize internal qc */
1625
1626 /* XXX: Tag 0 is used for drivers with legacy EH as some
1627 * drivers choke if any other tag is given. This breaks
1628 * ata_tag_internal() test for those drivers. Don't use new
1629 * EH stuff without converting to it.
1630 */
1631 if (ap->ops->error_handler)
1632 tag = ATA_TAG_INTERNAL;
1633 else
1634 tag = 0;
1635
1636 if (test_and_set_bit(tag, &ap->qc_allocated))
1637 BUG();
1638 qc = __ata_qc_from_tag(ap, tag);
1639
1640 qc->tag = tag;
1641 qc->scsicmd = NULL;
1642 qc->ap = ap;
1643 qc->dev = dev;
1644 ata_qc_reinit(qc);
1645
1646 preempted_tag = link->active_tag;
1647 preempted_sactive = link->sactive;
1648 preempted_qc_active = ap->qc_active;
1649 preempted_nr_active_links = ap->nr_active_links;
1650 link->active_tag = ATA_TAG_POISON;
1651 link->sactive = 0;
1652 ap->qc_active = 0;
1653 ap->nr_active_links = 0;
1654
1655 /* prepare & issue qc */
1656 qc->tf = *tf;
1657 if (cdb)
1658 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1659 qc->flags |= ATA_QCFLAG_RESULT_TF;
1660 qc->dma_dir = dma_dir;
1661 if (dma_dir != DMA_NONE) {
1662 unsigned int i, buflen = 0;
1663 struct scatterlist *sg;
1664
1665 for_each_sg(sgl, sg, n_elem, i)
1666 buflen += sg->length;
1667
1668 ata_sg_init(qc, sgl, n_elem);
1669 qc->nbytes = buflen;
1670 }
1671
1672 qc->private_data = &wait;
1673 qc->complete_fn = ata_qc_complete_internal;
1674
1675 ata_qc_issue(qc);
1676
1677 spin_unlock_irqrestore(ap->lock, flags);
1678
1679 if (!timeout)
1680 timeout = ata_probe_timeout * 1000 / HZ;
1681
1682 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1683
1684 ata_port_flush_task(ap);
1685
1686 if (!rc) {
1687 spin_lock_irqsave(ap->lock, flags);
1688
1689 /* We're racing with irq here. If we lose, the
1690 * following test prevents us from completing the qc
1691 * twice. If we win, the port is frozen and will be
1692 * cleaned up by ->post_internal_cmd().
1693 */
1694 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1695 qc->err_mask |= AC_ERR_TIMEOUT;
1696
1697 if (ap->ops->error_handler)
1698 ata_port_freeze(ap);
1699 else
1700 ata_qc_complete(qc);
1701
1702 if (ata_msg_warn(ap))
1703 ata_dev_printk(dev, KERN_WARNING,
1704 "qc timeout (cmd 0x%x)\n", command);
1705 }
1706
1707 spin_unlock_irqrestore(ap->lock, flags);
1708 }
1709
1710 /* do post_internal_cmd */
1711 if (ap->ops->post_internal_cmd)
1712 ap->ops->post_internal_cmd(qc);
1713
1714 /* perform minimal error analysis */
1715 if (qc->flags & ATA_QCFLAG_FAILED) {
1716 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1717 qc->err_mask |= AC_ERR_DEV;
1718
1719 if (!qc->err_mask)
1720 qc->err_mask |= AC_ERR_OTHER;
1721
1722 if (qc->err_mask & ~AC_ERR_OTHER)
1723 qc->err_mask &= ~AC_ERR_OTHER;
1724 }
1725
1726 /* finish up */
1727 spin_lock_irqsave(ap->lock, flags);
1728
1729 *tf = qc->result_tf;
1730 err_mask = qc->err_mask;
1731
1732 ata_qc_free(qc);
1733 link->active_tag = preempted_tag;
1734 link->sactive = preempted_sactive;
1735 ap->qc_active = preempted_qc_active;
1736 ap->nr_active_links = preempted_nr_active_links;
1737
1738 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1739 * Until those drivers are fixed, we detect the condition
1740 * here, fail the command with AC_ERR_SYSTEM and reenable the
1741 * port.
1742 *
1743 * Note that this doesn't change any behavior as internal
1744 * command failure results in disabling the device in the
1745 * higher layer for LLDDs without new reset/EH callbacks.
1746 *
1747 * Kill the following code as soon as those drivers are fixed.
1748 */
1749 if (ap->flags & ATA_FLAG_DISABLED) {
1750 err_mask |= AC_ERR_SYSTEM;
1751 ata_port_probe(ap);
1752 }
1753
1754 spin_unlock_irqrestore(ap->lock, flags);
1755
1756 return err_mask;
1757 }
1758
1759 /**
1760 * ata_exec_internal - execute libata internal command
1761 * @dev: Device to which the command is sent
1762 * @tf: Taskfile registers for the command and the result
1763 * @cdb: CDB for packet command
1764 * @dma_dir: Data tranfer direction of the command
1765 * @buf: Data buffer of the command
1766 * @buflen: Length of data buffer
1767 * @timeout: Timeout in msecs (0 for default)
1768 *
1769 * Wrapper around ata_exec_internal_sg() which takes simple
1770 * buffer instead of sg list.
1771 *
1772 * LOCKING:
1773 * None. Should be called with kernel context, might sleep.
1774 *
1775 * RETURNS:
1776 * Zero on success, AC_ERR_* mask on failure
1777 */
1778 unsigned ata_exec_internal(struct ata_device *dev,
1779 struct ata_taskfile *tf, const u8 *cdb,
1780 int dma_dir, void *buf, unsigned int buflen,
1781 unsigned long timeout)
1782 {
1783 struct scatterlist *psg = NULL, sg;
1784 unsigned int n_elem = 0;
1785
1786 if (dma_dir != DMA_NONE) {
1787 WARN_ON(!buf);
1788 sg_init_one(&sg, buf, buflen);
1789 psg = &sg;
1790 n_elem++;
1791 }
1792
1793 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1794 timeout);
1795 }
1796
1797 /**
1798 * ata_do_simple_cmd - execute simple internal command
1799 * @dev: Device to which the command is sent
1800 * @cmd: Opcode to execute
1801 *
1802 * Execute a 'simple' command, that only consists of the opcode
1803 * 'cmd' itself, without filling any other registers
1804 *
1805 * LOCKING:
1806 * Kernel thread context (may sleep).
1807 *
1808 * RETURNS:
1809 * Zero on success, AC_ERR_* mask on failure
1810 */
1811 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1812 {
1813 struct ata_taskfile tf;
1814
1815 ata_tf_init(dev, &tf);
1816
1817 tf.command = cmd;
1818 tf.flags |= ATA_TFLAG_DEVICE;
1819 tf.protocol = ATA_PROT_NODATA;
1820
1821 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1822 }
1823
1824 /**
1825 * ata_pio_need_iordy - check if iordy needed
1826 * @adev: ATA device
1827 *
1828 * Check if the current speed of the device requires IORDY. Used
1829 * by various controllers for chip configuration.
1830 */
1831
1832 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1833 {
1834 /* Controller doesn't support IORDY. Probably a pointless check
1835 as the caller should know this */
1836 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1837 return 0;
1838 /* PIO3 and higher it is mandatory */
1839 if (adev->pio_mode > XFER_PIO_2)
1840 return 1;
1841 /* We turn it on when possible */
1842 if (ata_id_has_iordy(adev->id))
1843 return 1;
1844 return 0;
1845 }
1846
1847 /**
1848 * ata_pio_mask_no_iordy - Return the non IORDY mask
1849 * @adev: ATA device
1850 *
1851 * Compute the highest mode possible if we are not using iordy. Return
1852 * -1 if no iordy mode is available.
1853 */
1854
1855 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1856 {
1857 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1858 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1859 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1860 /* Is the speed faster than the drive allows non IORDY ? */
1861 if (pio) {
1862 /* This is cycle times not frequency - watch the logic! */
1863 if (pio > 240) /* PIO2 is 240nS per cycle */
1864 return 3 << ATA_SHIFT_PIO;
1865 return 7 << ATA_SHIFT_PIO;
1866 }
1867 }
1868 return 3 << ATA_SHIFT_PIO;
1869 }
1870
1871 /**
1872 * ata_dev_read_id - Read ID data from the specified device
1873 * @dev: target device
1874 * @p_class: pointer to class of the target device (may be changed)
1875 * @flags: ATA_READID_* flags
1876 * @id: buffer to read IDENTIFY data into
1877 *
1878 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1879 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1880 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1881 * for pre-ATA4 drives.
1882 *
1883 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1884 * now we abort if we hit that case.
1885 *
1886 * LOCKING:
1887 * Kernel thread context (may sleep)
1888 *
1889 * RETURNS:
1890 * 0 on success, -errno otherwise.
1891 */
1892 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1893 unsigned int flags, u16 *id)
1894 {
1895 struct ata_port *ap = dev->link->ap;
1896 unsigned int class = *p_class;
1897 struct ata_taskfile tf;
1898 unsigned int err_mask = 0;
1899 const char *reason;
1900 int may_fallback = 1, tried_spinup = 0;
1901 int rc;
1902
1903 if (ata_msg_ctl(ap))
1904 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1905
1906 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1907 retry:
1908 ata_tf_init(dev, &tf);
1909
1910 switch (class) {
1911 case ATA_DEV_ATA:
1912 tf.command = ATA_CMD_ID_ATA;
1913 break;
1914 case ATA_DEV_ATAPI:
1915 tf.command = ATA_CMD_ID_ATAPI;
1916 break;
1917 default:
1918 rc = -ENODEV;
1919 reason = "unsupported class";
1920 goto err_out;
1921 }
1922
1923 tf.protocol = ATA_PROT_PIO;
1924
1925 /* Some devices choke if TF registers contain garbage. Make
1926 * sure those are properly initialized.
1927 */
1928 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1929
1930 /* Device presence detection is unreliable on some
1931 * controllers. Always poll IDENTIFY if available.
1932 */
1933 tf.flags |= ATA_TFLAG_POLLING;
1934
1935 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1936 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1937 if (err_mask) {
1938 if (err_mask & AC_ERR_NODEV_HINT) {
1939 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1940 ap->print_id, dev->devno);
1941 return -ENOENT;
1942 }
1943
1944 /* Device or controller might have reported the wrong
1945 * device class. Give a shot at the other IDENTIFY if
1946 * the current one is aborted by the device.
1947 */
1948 if (may_fallback &&
1949 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1950 may_fallback = 0;
1951
1952 if (class == ATA_DEV_ATA)
1953 class = ATA_DEV_ATAPI;
1954 else
1955 class = ATA_DEV_ATA;
1956 goto retry;
1957 }
1958
1959 rc = -EIO;
1960 reason = "I/O error";
1961 goto err_out;
1962 }
1963
1964 /* Falling back doesn't make sense if ID data was read
1965 * successfully at least once.
1966 */
1967 may_fallback = 0;
1968
1969 swap_buf_le16(id, ATA_ID_WORDS);
1970
1971 /* sanity check */
1972 rc = -EINVAL;
1973 reason = "device reports invalid type";
1974
1975 if (class == ATA_DEV_ATA) {
1976 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977 goto err_out;
1978 } else {
1979 if (ata_id_is_ata(id))
1980 goto err_out;
1981 }
1982
1983 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1984 tried_spinup = 1;
1985 /*
1986 * Drive powered-up in standby mode, and requires a specific
1987 * SET_FEATURES spin-up subcommand before it will accept
1988 * anything other than the original IDENTIFY command.
1989 */
1990 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1991 if (err_mask && id[2] != 0x738c) {
1992 rc = -EIO;
1993 reason = "SPINUP failed";
1994 goto err_out;
1995 }
1996 /*
1997 * If the drive initially returned incomplete IDENTIFY info,
1998 * we now must reissue the IDENTIFY command.
1999 */
2000 if (id[2] == 0x37c8)
2001 goto retry;
2002 }
2003
2004 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2005 /*
2006 * The exact sequence expected by certain pre-ATA4 drives is:
2007 * SRST RESET
2008 * IDENTIFY (optional in early ATA)
2009 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2010 * anything else..
2011 * Some drives were very specific about that exact sequence.
2012 *
2013 * Note that ATA4 says lba is mandatory so the second check
2014 * shoud never trigger.
2015 */
2016 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2017 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2018 if (err_mask) {
2019 rc = -EIO;
2020 reason = "INIT_DEV_PARAMS failed";
2021 goto err_out;
2022 }
2023
2024 /* current CHS translation info (id[53-58]) might be
2025 * changed. reread the identify device info.
2026 */
2027 flags &= ~ATA_READID_POSTRESET;
2028 goto retry;
2029 }
2030 }
2031
2032 *p_class = class;
2033
2034 return 0;
2035
2036 err_out:
2037 if (ata_msg_warn(ap))
2038 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2039 "(%s, err_mask=0x%x)\n", reason, err_mask);
2040 return rc;
2041 }
2042
2043 static inline u8 ata_dev_knobble(struct ata_device *dev)
2044 {
2045 struct ata_port *ap = dev->link->ap;
2046 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2047 }
2048
2049 static void ata_dev_config_ncq(struct ata_device *dev,
2050 char *desc, size_t desc_sz)
2051 {
2052 struct ata_port *ap = dev->link->ap;
2053 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2054
2055 if (!ata_id_has_ncq(dev->id)) {
2056 desc[0] = '\0';
2057 return;
2058 }
2059 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2060 snprintf(desc, desc_sz, "NCQ (not used)");
2061 return;
2062 }
2063 if (ap->flags & ATA_FLAG_NCQ) {
2064 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2065 dev->flags |= ATA_DFLAG_NCQ;
2066 }
2067
2068 if (hdepth >= ddepth)
2069 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2070 else
2071 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2072 }
2073
2074 /**
2075 * ata_dev_configure - Configure the specified ATA/ATAPI device
2076 * @dev: Target device to configure
2077 *
2078 * Configure @dev according to @dev->id. Generic and low-level
2079 * driver specific fixups are also applied.
2080 *
2081 * LOCKING:
2082 * Kernel thread context (may sleep)
2083 *
2084 * RETURNS:
2085 * 0 on success, -errno otherwise
2086 */
2087 int ata_dev_configure(struct ata_device *dev)
2088 {
2089 struct ata_port *ap = dev->link->ap;
2090 struct ata_eh_context *ehc = &dev->link->eh_context;
2091 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2092 const u16 *id = dev->id;
2093 unsigned int xfer_mask;
2094 char revbuf[7]; /* XYZ-99\0 */
2095 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2096 char modelbuf[ATA_ID_PROD_LEN+1];
2097 int rc;
2098
2099 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2100 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2101 __FUNCTION__);
2102 return 0;
2103 }
2104
2105 if (ata_msg_probe(ap))
2106 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
2107
2108 /* set horkage */
2109 dev->horkage |= ata_dev_blacklisted(dev);
2110
2111 /* let ACPI work its magic */
2112 rc = ata_acpi_on_devcfg(dev);
2113 if (rc)
2114 return rc;
2115
2116 /* massage HPA, do it early as it might change IDENTIFY data */
2117 rc = ata_hpa_resize(dev);
2118 if (rc)
2119 return rc;
2120
2121 /* print device capabilities */
2122 if (ata_msg_probe(ap))
2123 ata_dev_printk(dev, KERN_DEBUG,
2124 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2125 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2126 __FUNCTION__,
2127 id[49], id[82], id[83], id[84],
2128 id[85], id[86], id[87], id[88]);
2129
2130 /* initialize to-be-configured parameters */
2131 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2132 dev->max_sectors = 0;
2133 dev->cdb_len = 0;
2134 dev->n_sectors = 0;
2135 dev->cylinders = 0;
2136 dev->heads = 0;
2137 dev->sectors = 0;
2138
2139 /*
2140 * common ATA, ATAPI feature tests
2141 */
2142
2143 /* find max transfer mode; for printk only */
2144 xfer_mask = ata_id_xfermask(id);
2145
2146 if (ata_msg_probe(ap))
2147 ata_dump_id(id);
2148
2149 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2150 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2151 sizeof(fwrevbuf));
2152
2153 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2154 sizeof(modelbuf));
2155
2156 /* ATA-specific feature tests */
2157 if (dev->class == ATA_DEV_ATA) {
2158 if (ata_id_is_cfa(id)) {
2159 if (id[162] & 1) /* CPRM may make this media unusable */
2160 ata_dev_printk(dev, KERN_WARNING,
2161 "supports DRM functions and may "
2162 "not be fully accessable.\n");
2163 snprintf(revbuf, 7, "CFA");
2164 } else
2165 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2166
2167 dev->n_sectors = ata_id_n_sectors(id);
2168
2169 if (dev->id[59] & 0x100)
2170 dev->multi_count = dev->id[59] & 0xff;
2171
2172 if (ata_id_has_lba(id)) {
2173 const char *lba_desc;
2174 char ncq_desc[20];
2175
2176 lba_desc = "LBA";
2177 dev->flags |= ATA_DFLAG_LBA;
2178 if (ata_id_has_lba48(id)) {
2179 dev->flags |= ATA_DFLAG_LBA48;
2180 lba_desc = "LBA48";
2181
2182 if (dev->n_sectors >= (1UL << 28) &&
2183 ata_id_has_flush_ext(id))
2184 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2185 }
2186
2187 /* config NCQ */
2188 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2189
2190 /* print device info to dmesg */
2191 if (ata_msg_drv(ap) && print_info) {
2192 ata_dev_printk(dev, KERN_INFO,
2193 "%s: %s, %s, max %s\n",
2194 revbuf, modelbuf, fwrevbuf,
2195 ata_mode_string(xfer_mask));
2196 ata_dev_printk(dev, KERN_INFO,
2197 "%Lu sectors, multi %u: %s %s\n",
2198 (unsigned long long)dev->n_sectors,
2199 dev->multi_count, lba_desc, ncq_desc);
2200 }
2201 } else {
2202 /* CHS */
2203
2204 /* Default translation */
2205 dev->cylinders = id[1];
2206 dev->heads = id[3];
2207 dev->sectors = id[6];
2208
2209 if (ata_id_current_chs_valid(id)) {
2210 /* Current CHS translation is valid. */
2211 dev->cylinders = id[54];
2212 dev->heads = id[55];
2213 dev->sectors = id[56];
2214 }
2215
2216 /* print device info to dmesg */
2217 if (ata_msg_drv(ap) && print_info) {
2218 ata_dev_printk(dev, KERN_INFO,
2219 "%s: %s, %s, max %s\n",
2220 revbuf, modelbuf, fwrevbuf,
2221 ata_mode_string(xfer_mask));
2222 ata_dev_printk(dev, KERN_INFO,
2223 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2224 (unsigned long long)dev->n_sectors,
2225 dev->multi_count, dev->cylinders,
2226 dev->heads, dev->sectors);
2227 }
2228 }
2229
2230 dev->cdb_len = 16;
2231 }
2232
2233 /* ATAPI-specific feature tests */
2234 else if (dev->class == ATA_DEV_ATAPI) {
2235 const char *cdb_intr_string = "";
2236 const char *atapi_an_string = "";
2237 u32 sntf;
2238
2239 rc = atapi_cdb_len(id);
2240 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2241 if (ata_msg_warn(ap))
2242 ata_dev_printk(dev, KERN_WARNING,
2243 "unsupported CDB len\n");
2244 rc = -EINVAL;
2245 goto err_out_nosup;
2246 }
2247 dev->cdb_len = (unsigned int) rc;
2248
2249 /* Enable ATAPI AN if both the host and device have
2250 * the support. If PMP is attached, SNTF is required
2251 * to enable ATAPI AN to discern between PHY status
2252 * changed notifications and ATAPI ANs.
2253 */
2254 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2255 (!ap->nr_pmp_links ||
2256 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2257 unsigned int err_mask;
2258
2259 /* issue SET feature command to turn this on */
2260 err_mask = ata_dev_set_feature(dev,
2261 SETFEATURES_SATA_ENABLE, SATA_AN);
2262 if (err_mask)
2263 ata_dev_printk(dev, KERN_ERR,
2264 "failed to enable ATAPI AN "
2265 "(err_mask=0x%x)\n", err_mask);
2266 else {
2267 dev->flags |= ATA_DFLAG_AN;
2268 atapi_an_string = ", ATAPI AN";
2269 }
2270 }
2271
2272 if (ata_id_cdb_intr(dev->id)) {
2273 dev->flags |= ATA_DFLAG_CDB_INTR;
2274 cdb_intr_string = ", CDB intr";
2275 }
2276
2277 /* print device info to dmesg */
2278 if (ata_msg_drv(ap) && print_info)
2279 ata_dev_printk(dev, KERN_INFO,
2280 "ATAPI: %s, %s, max %s%s%s\n",
2281 modelbuf, fwrevbuf,
2282 ata_mode_string(xfer_mask),
2283 cdb_intr_string, atapi_an_string);
2284 }
2285
2286 /* determine max_sectors */
2287 dev->max_sectors = ATA_MAX_SECTORS;
2288 if (dev->flags & ATA_DFLAG_LBA48)
2289 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2290
2291 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2292 if (ata_id_has_hipm(dev->id))
2293 dev->flags |= ATA_DFLAG_HIPM;
2294 if (ata_id_has_dipm(dev->id))
2295 dev->flags |= ATA_DFLAG_DIPM;
2296 }
2297
2298 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2299 /* Let the user know. We don't want to disallow opens for
2300 rescue purposes, or in case the vendor is just a blithering
2301 idiot */
2302 if (print_info) {
2303 ata_dev_printk(dev, KERN_WARNING,
2304 "Drive reports diagnostics failure. This may indicate a drive\n");
2305 ata_dev_printk(dev, KERN_WARNING,
2306 "fault or invalid emulation. Contact drive vendor for information.\n");
2307 }
2308 }
2309
2310 /* limit bridge transfers to udma5, 200 sectors */
2311 if (ata_dev_knobble(dev)) {
2312 if (ata_msg_drv(ap) && print_info)
2313 ata_dev_printk(dev, KERN_INFO,
2314 "applying bridge limits\n");
2315 dev->udma_mask &= ATA_UDMA5;
2316 dev->max_sectors = ATA_MAX_SECTORS;
2317 }
2318
2319 if ((dev->class == ATA_DEV_ATAPI) &&
2320 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2321 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2322 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2323 }
2324
2325 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2326 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2327 dev->max_sectors);
2328
2329 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2330 dev->horkage |= ATA_HORKAGE_IPM;
2331
2332 /* reset link pm_policy for this port to no pm */
2333 ap->pm_policy = MAX_PERFORMANCE;
2334 }
2335
2336 if (ap->ops->dev_config)
2337 ap->ops->dev_config(dev);
2338
2339 if (ata_msg_probe(ap))
2340 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2341 __FUNCTION__, ata_chk_status(ap));
2342 return 0;
2343
2344 err_out_nosup:
2345 if (ata_msg_probe(ap))
2346 ata_dev_printk(dev, KERN_DEBUG,
2347 "%s: EXIT, err\n", __FUNCTION__);
2348 return rc;
2349 }
2350
2351 /**
2352 * ata_cable_40wire - return 40 wire cable type
2353 * @ap: port
2354 *
2355 * Helper method for drivers which want to hardwire 40 wire cable
2356 * detection.
2357 */
2358
2359 int ata_cable_40wire(struct ata_port *ap)
2360 {
2361 return ATA_CBL_PATA40;
2362 }
2363
2364 /**
2365 * ata_cable_80wire - return 80 wire cable type
2366 * @ap: port
2367 *
2368 * Helper method for drivers which want to hardwire 80 wire cable
2369 * detection.
2370 */
2371
2372 int ata_cable_80wire(struct ata_port *ap)
2373 {
2374 return ATA_CBL_PATA80;
2375 }
2376
2377 /**
2378 * ata_cable_unknown - return unknown PATA cable.
2379 * @ap: port
2380 *
2381 * Helper method for drivers which have no PATA cable detection.
2382 */
2383
2384 int ata_cable_unknown(struct ata_port *ap)
2385 {
2386 return ATA_CBL_PATA_UNK;
2387 }
2388
2389 /**
2390 * ata_cable_sata - return SATA cable type
2391 * @ap: port
2392 *
2393 * Helper method for drivers which have SATA cables
2394 */
2395
2396 int ata_cable_sata(struct ata_port *ap)
2397 {
2398 return ATA_CBL_SATA;
2399 }
2400
2401 /**
2402 * ata_bus_probe - Reset and probe ATA bus
2403 * @ap: Bus to probe
2404 *
2405 * Master ATA bus probing function. Initiates a hardware-dependent
2406 * bus reset, then attempts to identify any devices found on
2407 * the bus.
2408 *
2409 * LOCKING:
2410 * PCI/etc. bus probe sem.
2411 *
2412 * RETURNS:
2413 * Zero on success, negative errno otherwise.
2414 */
2415
2416 int ata_bus_probe(struct ata_port *ap)
2417 {
2418 unsigned int classes[ATA_MAX_DEVICES];
2419 int tries[ATA_MAX_DEVICES];
2420 int rc;
2421 struct ata_device *dev;
2422
2423 ata_port_probe(ap);
2424
2425 ata_link_for_each_dev(dev, &ap->link)
2426 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2427
2428 retry:
2429 ata_link_for_each_dev(dev, &ap->link) {
2430 /* If we issue an SRST then an ATA drive (not ATAPI)
2431 * may change configuration and be in PIO0 timing. If
2432 * we do a hard reset (or are coming from power on)
2433 * this is true for ATA or ATAPI. Until we've set a
2434 * suitable controller mode we should not touch the
2435 * bus as we may be talking too fast.
2436 */
2437 dev->pio_mode = XFER_PIO_0;
2438
2439 /* If the controller has a pio mode setup function
2440 * then use it to set the chipset to rights. Don't
2441 * touch the DMA setup as that will be dealt with when
2442 * configuring devices.
2443 */
2444 if (ap->ops->set_piomode)
2445 ap->ops->set_piomode(ap, dev);
2446 }
2447
2448 /* reset and determine device classes */
2449 ap->ops->phy_reset(ap);
2450
2451 ata_link_for_each_dev(dev, &ap->link) {
2452 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2453 dev->class != ATA_DEV_UNKNOWN)
2454 classes[dev->devno] = dev->class;
2455 else
2456 classes[dev->devno] = ATA_DEV_NONE;
2457
2458 dev->class = ATA_DEV_UNKNOWN;
2459 }
2460
2461 ata_port_probe(ap);
2462
2463 /* read IDENTIFY page and configure devices. We have to do the identify
2464 specific sequence bass-ackwards so that PDIAG- is released by
2465 the slave device */
2466
2467 ata_link_for_each_dev(dev, &ap->link) {
2468 if (tries[dev->devno])
2469 dev->class = classes[dev->devno];
2470
2471 if (!ata_dev_enabled(dev))
2472 continue;
2473
2474 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2475 dev->id);
2476 if (rc)
2477 goto fail;
2478 }
2479
2480 /* Now ask for the cable type as PDIAG- should have been released */
2481 if (ap->ops->cable_detect)
2482 ap->cbl = ap->ops->cable_detect(ap);
2483
2484 /* We may have SATA bridge glue hiding here irrespective of the
2485 reported cable types and sensed types */
2486 ata_link_for_each_dev(dev, &ap->link) {
2487 if (!ata_dev_enabled(dev))
2488 continue;
2489 /* SATA drives indicate we have a bridge. We don't know which
2490 end of the link the bridge is which is a problem */
2491 if (ata_id_is_sata(dev->id))
2492 ap->cbl = ATA_CBL_SATA;
2493 }
2494
2495 /* After the identify sequence we can now set up the devices. We do
2496 this in the normal order so that the user doesn't get confused */
2497
2498 ata_link_for_each_dev(dev, &ap->link) {
2499 if (!ata_dev_enabled(dev))
2500 continue;
2501
2502 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2503 rc = ata_dev_configure(dev);
2504 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2505 if (rc)
2506 goto fail;
2507 }
2508
2509 /* configure transfer mode */
2510 rc = ata_set_mode(&ap->link, &dev);
2511 if (rc)
2512 goto fail;
2513
2514 ata_link_for_each_dev(dev, &ap->link)
2515 if (ata_dev_enabled(dev))
2516 return 0;
2517
2518 /* no device present, disable port */
2519 ata_port_disable(ap);
2520 return -ENODEV;
2521
2522 fail:
2523 tries[dev->devno]--;
2524
2525 switch (rc) {
2526 case -EINVAL:
2527 /* eeek, something went very wrong, give up */
2528 tries[dev->devno] = 0;
2529 break;
2530
2531 case -ENODEV:
2532 /* give it just one more chance */
2533 tries[dev->devno] = min(tries[dev->devno], 1);
2534 case -EIO:
2535 if (tries[dev->devno] == 1) {
2536 /* This is the last chance, better to slow
2537 * down than lose it.
2538 */
2539 sata_down_spd_limit(&ap->link);
2540 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2541 }
2542 }
2543
2544 if (!tries[dev->devno])
2545 ata_dev_disable(dev);
2546
2547 goto retry;
2548 }
2549
2550 /**
2551 * ata_port_probe - Mark port as enabled
2552 * @ap: Port for which we indicate enablement
2553 *
2554 * Modify @ap data structure such that the system
2555 * thinks that the entire port is enabled.
2556 *
2557 * LOCKING: host lock, or some other form of
2558 * serialization.
2559 */
2560
2561 void ata_port_probe(struct ata_port *ap)
2562 {
2563 ap->flags &= ~ATA_FLAG_DISABLED;
2564 }
2565
2566 /**
2567 * sata_print_link_status - Print SATA link status
2568 * @link: SATA link to printk link status about
2569 *
2570 * This function prints link speed and status of a SATA link.
2571 *
2572 * LOCKING:
2573 * None.
2574 */
2575 void sata_print_link_status(struct ata_link *link)
2576 {
2577 u32 sstatus, scontrol, tmp;
2578
2579 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2580 return;
2581 sata_scr_read(link, SCR_CONTROL, &scontrol);
2582
2583 if (ata_link_online(link)) {
2584 tmp = (sstatus >> 4) & 0xf;
2585 ata_link_printk(link, KERN_INFO,
2586 "SATA link up %s (SStatus %X SControl %X)\n",
2587 sata_spd_string(tmp), sstatus, scontrol);
2588 } else {
2589 ata_link_printk(link, KERN_INFO,
2590 "SATA link down (SStatus %X SControl %X)\n",
2591 sstatus, scontrol);
2592 }
2593 }
2594
2595 /**
2596 * ata_dev_pair - return other device on cable
2597 * @adev: device
2598 *
2599 * Obtain the other device on the same cable, or if none is
2600 * present NULL is returned
2601 */
2602
2603 struct ata_device *ata_dev_pair(struct ata_device *adev)
2604 {
2605 struct ata_link *link = adev->link;
2606 struct ata_device *pair = &link->device[1 - adev->devno];
2607 if (!ata_dev_enabled(pair))
2608 return NULL;
2609 return pair;
2610 }
2611
2612 /**
2613 * ata_port_disable - Disable port.
2614 * @ap: Port to be disabled.
2615 *
2616 * Modify @ap data structure such that the system
2617 * thinks that the entire port is disabled, and should
2618 * never attempt to probe or communicate with devices
2619 * on this port.
2620 *
2621 * LOCKING: host lock, or some other form of
2622 * serialization.
2623 */
2624
2625 void ata_port_disable(struct ata_port *ap)
2626 {
2627 ap->link.device[0].class = ATA_DEV_NONE;
2628 ap->link.device[1].class = ATA_DEV_NONE;
2629 ap->flags |= ATA_FLAG_DISABLED;
2630 }
2631
2632 /**
2633 * sata_down_spd_limit - adjust SATA spd limit downward
2634 * @link: Link to adjust SATA spd limit for
2635 *
2636 * Adjust SATA spd limit of @link downward. Note that this
2637 * function only adjusts the limit. The change must be applied
2638 * using sata_set_spd().
2639 *
2640 * LOCKING:
2641 * Inherited from caller.
2642 *
2643 * RETURNS:
2644 * 0 on success, negative errno on failure
2645 */
2646 int sata_down_spd_limit(struct ata_link *link)
2647 {
2648 u32 sstatus, spd, mask;
2649 int rc, highbit;
2650
2651 if (!sata_scr_valid(link))
2652 return -EOPNOTSUPP;
2653
2654 /* If SCR can be read, use it to determine the current SPD.
2655 * If not, use cached value in link->sata_spd.
2656 */
2657 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2658 if (rc == 0)
2659 spd = (sstatus >> 4) & 0xf;
2660 else
2661 spd = link->sata_spd;
2662
2663 mask = link->sata_spd_limit;
2664 if (mask <= 1)
2665 return -EINVAL;
2666
2667 /* unconditionally mask off the highest bit */
2668 highbit = fls(mask) - 1;
2669 mask &= ~(1 << highbit);
2670
2671 /* Mask off all speeds higher than or equal to the current
2672 * one. Force 1.5Gbps if current SPD is not available.
2673 */
2674 if (spd > 1)
2675 mask &= (1 << (spd - 1)) - 1;
2676 else
2677 mask &= 1;
2678
2679 /* were we already at the bottom? */
2680 if (!mask)
2681 return -EINVAL;
2682
2683 link->sata_spd_limit = mask;
2684
2685 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2686 sata_spd_string(fls(mask)));
2687
2688 return 0;
2689 }
2690
2691 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2692 {
2693 struct ata_link *host_link = &link->ap->link;
2694 u32 limit, target, spd;
2695
2696 limit = link->sata_spd_limit;
2697
2698 /* Don't configure downstream link faster than upstream link.
2699 * It doesn't speed up anything and some PMPs choke on such
2700 * configuration.
2701 */
2702 if (!ata_is_host_link(link) && host_link->sata_spd)
2703 limit &= (1 << host_link->sata_spd) - 1;
2704
2705 if (limit == UINT_MAX)
2706 target = 0;
2707 else
2708 target = fls(limit);
2709
2710 spd = (*scontrol >> 4) & 0xf;
2711 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2712
2713 return spd != target;
2714 }
2715
2716 /**
2717 * sata_set_spd_needed - is SATA spd configuration needed
2718 * @link: Link in question
2719 *
2720 * Test whether the spd limit in SControl matches
2721 * @link->sata_spd_limit. This function is used to determine
2722 * whether hardreset is necessary to apply SATA spd
2723 * configuration.
2724 *
2725 * LOCKING:
2726 * Inherited from caller.
2727 *
2728 * RETURNS:
2729 * 1 if SATA spd configuration is needed, 0 otherwise.
2730 */
2731 int sata_set_spd_needed(struct ata_link *link)
2732 {
2733 u32 scontrol;
2734
2735 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2736 return 1;
2737
2738 return __sata_set_spd_needed(link, &scontrol);
2739 }
2740
2741 /**
2742 * sata_set_spd - set SATA spd according to spd limit
2743 * @link: Link to set SATA spd for
2744 *
2745 * Set SATA spd of @link according to sata_spd_limit.
2746 *
2747 * LOCKING:
2748 * Inherited from caller.
2749 *
2750 * RETURNS:
2751 * 0 if spd doesn't need to be changed, 1 if spd has been
2752 * changed. Negative errno if SCR registers are inaccessible.
2753 */
2754 int sata_set_spd(struct ata_link *link)
2755 {
2756 u32 scontrol;
2757 int rc;
2758
2759 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2760 return rc;
2761
2762 if (!__sata_set_spd_needed(link, &scontrol))
2763 return 0;
2764
2765 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2766 return rc;
2767
2768 return 1;
2769 }
2770
2771 /*
2772 * This mode timing computation functionality is ported over from
2773 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2774 */
2775 /*
2776 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2777 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2778 * for UDMA6, which is currently supported only by Maxtor drives.
2779 *
2780 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2781 */
2782
2783 static const struct ata_timing ata_timing[] = {
2784
2785 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2786 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2787 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2788 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2789
2790 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2791 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2792 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2793 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2794 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2795
2796 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2797
2798 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2799 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2800 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2801
2802 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2803 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2804 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2805
2806 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2807 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2808 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2809 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2810
2811 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2812 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2813 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2814
2815 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2816
2817 { 0xFF }
2818 };
2819
2820 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2821 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2822
2823 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2824 {
2825 q->setup = EZ(t->setup * 1000, T);
2826 q->act8b = EZ(t->act8b * 1000, T);
2827 q->rec8b = EZ(t->rec8b * 1000, T);
2828 q->cyc8b = EZ(t->cyc8b * 1000, T);
2829 q->active = EZ(t->active * 1000, T);
2830 q->recover = EZ(t->recover * 1000, T);
2831 q->cycle = EZ(t->cycle * 1000, T);
2832 q->udma = EZ(t->udma * 1000, UT);
2833 }
2834
2835 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2836 struct ata_timing *m, unsigned int what)
2837 {
2838 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2839 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2840 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2841 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2842 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2843 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2844 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2845 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2846 }
2847
2848 static const struct ata_timing *ata_timing_find_mode(unsigned short speed)
2849 {
2850 const struct ata_timing *t;
2851
2852 for (t = ata_timing; t->mode != speed; t++)
2853 if (t->mode == 0xFF)
2854 return NULL;
2855 return t;
2856 }
2857
2858 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2859 struct ata_timing *t, int T, int UT)
2860 {
2861 const struct ata_timing *s;
2862 struct ata_timing p;
2863
2864 /*
2865 * Find the mode.
2866 */
2867
2868 if (!(s = ata_timing_find_mode(speed)))
2869 return -EINVAL;
2870
2871 memcpy(t, s, sizeof(*s));
2872
2873 /*
2874 * If the drive is an EIDE drive, it can tell us it needs extended
2875 * PIO/MW_DMA cycle timing.
2876 */
2877
2878 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2879 memset(&p, 0, sizeof(p));
2880 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2881 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2882 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2883 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2884 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2885 }
2886 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2887 }
2888
2889 /*
2890 * Convert the timing to bus clock counts.
2891 */
2892
2893 ata_timing_quantize(t, t, T, UT);
2894
2895 /*
2896 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2897 * S.M.A.R.T * and some other commands. We have to ensure that the
2898 * DMA cycle timing is slower/equal than the fastest PIO timing.
2899 */
2900
2901 if (speed > XFER_PIO_6) {
2902 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2903 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2904 }
2905
2906 /*
2907 * Lengthen active & recovery time so that cycle time is correct.
2908 */
2909
2910 if (t->act8b + t->rec8b < t->cyc8b) {
2911 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2912 t->rec8b = t->cyc8b - t->act8b;
2913 }
2914
2915 if (t->active + t->recover < t->cycle) {
2916 t->active += (t->cycle - (t->active + t->recover)) / 2;
2917 t->recover = t->cycle - t->active;
2918 }
2919
2920 /* In a few cases quantisation may produce enough errors to
2921 leave t->cycle too low for the sum of active and recovery
2922 if so we must correct this */
2923 if (t->active + t->recover > t->cycle)
2924 t->cycle = t->active + t->recover;
2925
2926 return 0;
2927 }
2928
2929 /**
2930 * ata_down_xfermask_limit - adjust dev xfer masks downward
2931 * @dev: Device to adjust xfer masks
2932 * @sel: ATA_DNXFER_* selector
2933 *
2934 * Adjust xfer masks of @dev downward. Note that this function
2935 * does not apply the change. Invoking ata_set_mode() afterwards
2936 * will apply the limit.
2937 *
2938 * LOCKING:
2939 * Inherited from caller.
2940 *
2941 * RETURNS:
2942 * 0 on success, negative errno on failure
2943 */
2944 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2945 {
2946 char buf[32];
2947 unsigned int orig_mask, xfer_mask;
2948 unsigned int pio_mask, mwdma_mask, udma_mask;
2949 int quiet, highbit;
2950
2951 quiet = !!(sel & ATA_DNXFER_QUIET);
2952 sel &= ~ATA_DNXFER_QUIET;
2953
2954 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2955 dev->mwdma_mask,
2956 dev->udma_mask);
2957 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2958
2959 switch (sel) {
2960 case ATA_DNXFER_PIO:
2961 highbit = fls(pio_mask) - 1;
2962 pio_mask &= ~(1 << highbit);
2963 break;
2964
2965 case ATA_DNXFER_DMA:
2966 if (udma_mask) {
2967 highbit = fls(udma_mask) - 1;
2968 udma_mask &= ~(1 << highbit);
2969 if (!udma_mask)
2970 return -ENOENT;
2971 } else if (mwdma_mask) {
2972 highbit = fls(mwdma_mask) - 1;
2973 mwdma_mask &= ~(1 << highbit);
2974 if (!mwdma_mask)
2975 return -ENOENT;
2976 }
2977 break;
2978
2979 case ATA_DNXFER_40C:
2980 udma_mask &= ATA_UDMA_MASK_40C;
2981 break;
2982
2983 case ATA_DNXFER_FORCE_PIO0:
2984 pio_mask &= 1;
2985 case ATA_DNXFER_FORCE_PIO:
2986 mwdma_mask = 0;
2987 udma_mask = 0;
2988 break;
2989
2990 default:
2991 BUG();
2992 }
2993
2994 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2995
2996 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2997 return -ENOENT;
2998
2999 if (!quiet) {
3000 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3001 snprintf(buf, sizeof(buf), "%s:%s",
3002 ata_mode_string(xfer_mask),
3003 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3004 else
3005 snprintf(buf, sizeof(buf), "%s",
3006 ata_mode_string(xfer_mask));
3007
3008 ata_dev_printk(dev, KERN_WARNING,
3009 "limiting speed to %s\n", buf);
3010 }
3011
3012 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3013 &dev->udma_mask);
3014
3015 return 0;
3016 }
3017
3018 static int ata_dev_set_mode(struct ata_device *dev)
3019 {
3020 struct ata_eh_context *ehc = &dev->link->eh_context;
3021 unsigned int err_mask;
3022 int rc;
3023
3024 dev->flags &= ~ATA_DFLAG_PIO;
3025 if (dev->xfer_shift == ATA_SHIFT_PIO)
3026 dev->flags |= ATA_DFLAG_PIO;
3027
3028 err_mask = ata_dev_set_xfermode(dev);
3029
3030 /* Old CFA may refuse this command, which is just fine */
3031 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3032 err_mask &= ~AC_ERR_DEV;
3033
3034 /* Some very old devices and some bad newer ones fail any kind of
3035 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3036 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3037 dev->pio_mode <= XFER_PIO_2)
3038 err_mask &= ~AC_ERR_DEV;
3039
3040 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3041 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3042 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3043 dev->dma_mode == XFER_MW_DMA_0 &&
3044 (dev->id[63] >> 8) & 1)
3045 err_mask &= ~AC_ERR_DEV;
3046
3047 if (err_mask) {
3048 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3049 "(err_mask=0x%x)\n", err_mask);
3050 return -EIO;
3051 }
3052
3053 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3054 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3055 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3056 if (rc)
3057 return rc;
3058
3059 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3060 dev->xfer_shift, (int)dev->xfer_mode);
3061
3062 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
3063 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
3064 return 0;
3065 }
3066
3067 /**
3068 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3069 * @link: link on which timings will be programmed
3070 * @r_failed_dev: out paramter for failed device
3071 *
3072 * Standard implementation of the function used to tune and set
3073 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3074 * ata_dev_set_mode() fails, pointer to the failing device is
3075 * returned in @r_failed_dev.
3076 *
3077 * LOCKING:
3078 * PCI/etc. bus probe sem.
3079 *
3080 * RETURNS:
3081 * 0 on success, negative errno otherwise
3082 */
3083
3084 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3085 {
3086 struct ata_port *ap = link->ap;
3087 struct ata_device *dev;
3088 int rc = 0, used_dma = 0, found = 0;
3089
3090 /* step 1: calculate xfer_mask */
3091 ata_link_for_each_dev(dev, link) {
3092 unsigned int pio_mask, dma_mask;
3093 unsigned int mode_mask;
3094
3095 if (!ata_dev_enabled(dev))
3096 continue;
3097
3098 mode_mask = ATA_DMA_MASK_ATA;
3099 if (dev->class == ATA_DEV_ATAPI)
3100 mode_mask = ATA_DMA_MASK_ATAPI;
3101 else if (ata_id_is_cfa(dev->id))
3102 mode_mask = ATA_DMA_MASK_CFA;
3103
3104 ata_dev_xfermask(dev);
3105
3106 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3107 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3108
3109 if (libata_dma_mask & mode_mask)
3110 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3111 else
3112 dma_mask = 0;
3113
3114 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3115 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3116
3117 found = 1;
3118 if (dev->dma_mode)
3119 used_dma = 1;
3120 }
3121 if (!found)
3122 goto out;
3123
3124 /* step 2: always set host PIO timings */
3125 ata_link_for_each_dev(dev, link) {
3126 if (!ata_dev_enabled(dev))
3127 continue;
3128
3129 if (!dev->pio_mode) {
3130 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3131 rc = -EINVAL;
3132 goto out;
3133 }
3134
3135 dev->xfer_mode = dev->pio_mode;
3136 dev->xfer_shift = ATA_SHIFT_PIO;
3137 if (ap->ops->set_piomode)
3138 ap->ops->set_piomode(ap, dev);
3139 }
3140
3141 /* step 3: set host DMA timings */
3142 ata_link_for_each_dev(dev, link) {
3143 if (!ata_dev_enabled(dev) || !dev->dma_mode)
3144 continue;
3145
3146 dev->xfer_mode = dev->dma_mode;
3147 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3148 if (ap->ops->set_dmamode)
3149 ap->ops->set_dmamode(ap, dev);
3150 }
3151
3152 /* step 4: update devices' xfer mode */
3153 ata_link_for_each_dev(dev, link) {
3154 /* don't update suspended devices' xfer mode */
3155 if (!ata_dev_enabled(dev))
3156 continue;
3157
3158 rc = ata_dev_set_mode(dev);
3159 if (rc)
3160 goto out;
3161 }
3162
3163 /* Record simplex status. If we selected DMA then the other
3164 * host channels are not permitted to do so.
3165 */
3166 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3167 ap->host->simplex_claimed = ap;
3168
3169 out:
3170 if (rc)
3171 *r_failed_dev = dev;
3172 return rc;
3173 }
3174
3175 /**
3176 * ata_set_mode - Program timings and issue SET FEATURES - XFER
3177 * @link: link on which timings will be programmed
3178 * @r_failed_dev: out paramter for failed device
3179 *
3180 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3181 * ata_set_mode() fails, pointer to the failing device is
3182 * returned in @r_failed_dev.
3183 *
3184 * LOCKING:
3185 * PCI/etc. bus probe sem.
3186 *
3187 * RETURNS:
3188 * 0 on success, negative errno otherwise
3189 */
3190 int ata_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3191 {
3192 struct ata_port *ap = link->ap;
3193
3194 /* has private set_mode? */
3195 if (ap->ops->set_mode)
3196 return ap->ops->set_mode(link, r_failed_dev);
3197 return ata_do_set_mode(link, r_failed_dev);
3198 }
3199
3200 /**
3201 * ata_tf_to_host - issue ATA taskfile to host controller
3202 * @ap: port to which command is being issued
3203 * @tf: ATA taskfile register set
3204 *
3205 * Issues ATA taskfile register set to ATA host controller,
3206 * with proper synchronization with interrupt handler and
3207 * other threads.
3208 *
3209 * LOCKING:
3210 * spin_lock_irqsave(host lock)
3211 */
3212
3213 static inline void ata_tf_to_host(struct ata_port *ap,
3214 const struct ata_taskfile *tf)
3215 {
3216 ap->ops->tf_load(ap, tf);
3217 ap->ops->exec_command(ap, tf);
3218 }
3219
3220 /**
3221 * ata_busy_sleep - sleep until BSY clears, or timeout
3222 * @ap: port containing status register to be polled
3223 * @tmout_pat: impatience timeout
3224 * @tmout: overall timeout
3225 *
3226 * Sleep until ATA Status register bit BSY clears,
3227 * or a timeout occurs.
3228 *
3229 * LOCKING:
3230 * Kernel thread context (may sleep).
3231 *
3232 * RETURNS:
3233 * 0 on success, -errno otherwise.
3234 */
3235 int ata_busy_sleep(struct ata_port *ap,
3236 unsigned long tmout_pat, unsigned long tmout)
3237 {
3238 unsigned long timer_start, timeout;
3239 u8 status;
3240
3241 status = ata_busy_wait(ap, ATA_BUSY, 300);
3242 timer_start = jiffies;
3243 timeout = timer_start + tmout_pat;
3244 while (status != 0xff && (status & ATA_BUSY) &&
3245 time_before(jiffies, timeout)) {
3246 msleep(50);
3247 status = ata_busy_wait(ap, ATA_BUSY, 3);
3248 }
3249
3250 if (status != 0xff && (status & ATA_BUSY))
3251 ata_port_printk(ap, KERN_WARNING,
3252 "port is slow to respond, please be patient "
3253 "(Status 0x%x)\n", status);
3254
3255 timeout = timer_start + tmout;
3256 while (status != 0xff && (status & ATA_BUSY) &&
3257 time_before(jiffies, timeout)) {
3258 msleep(50);
3259 status = ata_chk_status(ap);
3260 }
3261
3262 if (status == 0xff)
3263 return -ENODEV;
3264
3265 if (status & ATA_BUSY) {
3266 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3267 "(%lu secs, Status 0x%x)\n",
3268 tmout / HZ, status);
3269 return -EBUSY;
3270 }
3271
3272 return 0;
3273 }
3274
3275 /**
3276 * ata_wait_after_reset - wait before checking status after reset
3277 * @ap: port containing status register to be polled
3278 * @deadline: deadline jiffies for the operation
3279 *
3280 * After reset, we need to pause a while before reading status.
3281 * Also, certain combination of controller and device report 0xff
3282 * for some duration (e.g. until SATA PHY is up and running)
3283 * which is interpreted as empty port in ATA world. This
3284 * function also waits for such devices to get out of 0xff
3285 * status.
3286 *
3287 * LOCKING:
3288 * Kernel thread context (may sleep).
3289 */
3290 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3291 {
3292 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3293
3294 if (time_before(until, deadline))
3295 deadline = until;
3296
3297 /* Spec mandates ">= 2ms" before checking status. We wait
3298 * 150ms, because that was the magic delay used for ATAPI
3299 * devices in Hale Landis's ATADRVR, for the period of time
3300 * between when the ATA command register is written, and then
3301 * status is checked. Because waiting for "a while" before
3302 * checking status is fine, post SRST, we perform this magic
3303 * delay here as well.
3304 *
3305 * Old drivers/ide uses the 2mS rule and then waits for ready.
3306 */
3307 msleep(150);
3308
3309 /* Wait for 0xff to clear. Some SATA devices take a long time
3310 * to clear 0xff after reset. For example, HHD424020F7SV00
3311 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3312 * than that.
3313 *
3314 * Note that some PATA controllers (pata_ali) explode if
3315 * status register is read more than once when there's no
3316 * device attached.
3317 */
3318 if (ap->flags & ATA_FLAG_SATA) {
3319 while (1) {
3320 u8 status = ata_chk_status(ap);
3321
3322 if (status != 0xff || time_after(jiffies, deadline))
3323 return;
3324
3325 msleep(50);
3326 }
3327 }
3328 }
3329
3330 /**
3331 * ata_wait_ready - sleep until BSY clears, or timeout
3332 * @ap: port containing status register to be polled
3333 * @deadline: deadline jiffies for the operation
3334 *
3335 * Sleep until ATA Status register bit BSY clears, or timeout
3336 * occurs.
3337 *
3338 * LOCKING:
3339 * Kernel thread context (may sleep).
3340 *
3341 * RETURNS:
3342 * 0 on success, -errno otherwise.
3343 */
3344 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3345 {
3346 unsigned long start = jiffies;
3347 int warned = 0;
3348
3349 while (1) {
3350 u8 status = ata_chk_status(ap);
3351 unsigned long now = jiffies;
3352
3353 if (!(status & ATA_BUSY))
3354 return 0;
3355 if (!ata_link_online(&ap->link) && status == 0xff)
3356 return -ENODEV;
3357 if (time_after(now, deadline))
3358 return -EBUSY;
3359
3360 if (!warned && time_after(now, start + 5 * HZ) &&
3361 (deadline - now > 3 * HZ)) {
3362 ata_port_printk(ap, KERN_WARNING,
3363 "port is slow to respond, please be patient "
3364 "(Status 0x%x)\n", status);
3365 warned = 1;
3366 }
3367
3368 msleep(50);
3369 }
3370 }
3371
3372 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3373 unsigned long deadline)
3374 {
3375 struct ata_ioports *ioaddr = &ap->ioaddr;
3376 unsigned int dev0 = devmask & (1 << 0);
3377 unsigned int dev1 = devmask & (1 << 1);
3378 int rc, ret = 0;
3379
3380 /* if device 0 was found in ata_devchk, wait for its
3381 * BSY bit to clear
3382 */
3383 if (dev0) {
3384 rc = ata_wait_ready(ap, deadline);
3385 if (rc) {
3386 if (rc != -ENODEV)
3387 return rc;
3388 ret = rc;
3389 }
3390 }
3391
3392 /* if device 1 was found in ata_devchk, wait for register
3393 * access briefly, then wait for BSY to clear.
3394 */
3395 if (dev1) {
3396 int i;
3397
3398 ap->ops->dev_select(ap, 1);
3399
3400 /* Wait for register access. Some ATAPI devices fail
3401 * to set nsect/lbal after reset, so don't waste too
3402 * much time on it. We're gonna wait for !BSY anyway.
3403 */
3404 for (i = 0; i < 2; i++) {
3405 u8 nsect, lbal;
3406
3407 nsect = ioread8(ioaddr->nsect_addr);
3408 lbal = ioread8(ioaddr->lbal_addr);
3409 if ((nsect == 1) && (lbal == 1))
3410 break;
3411 msleep(50); /* give drive a breather */
3412 }
3413
3414 rc = ata_wait_ready(ap, deadline);
3415 if (rc) {
3416 if (rc != -ENODEV)
3417 return rc;
3418 ret = rc;
3419 }
3420 }
3421
3422 /* is all this really necessary? */
3423 ap->ops->dev_select(ap, 0);
3424 if (dev1)
3425 ap->ops->dev_select(ap, 1);
3426 if (dev0)
3427 ap->ops->dev_select(ap, 0);
3428
3429 return ret;
3430 }
3431
3432 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3433 unsigned long deadline)
3434 {
3435 struct ata_ioports *ioaddr = &ap->ioaddr;
3436
3437 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3438
3439 /* software reset. causes dev0 to be selected */
3440 iowrite8(ap->ctl, ioaddr->ctl_addr);
3441 udelay(20); /* FIXME: flush */
3442 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3443 udelay(20); /* FIXME: flush */
3444 iowrite8(ap->ctl, ioaddr->ctl_addr);
3445
3446 /* wait a while before checking status */
3447 ata_wait_after_reset(ap, deadline);
3448
3449 /* Before we perform post reset processing we want to see if
3450 * the bus shows 0xFF because the odd clown forgets the D7
3451 * pulldown resistor.
3452 */
3453 if (ata_chk_status(ap) == 0xFF)
3454 return -ENODEV;
3455
3456 return ata_bus_post_reset(ap, devmask, deadline);
3457 }
3458
3459 /**
3460 * ata_bus_reset - reset host port and associated ATA channel
3461 * @ap: port to reset
3462 *
3463 * This is typically the first time we actually start issuing
3464 * commands to the ATA channel. We wait for BSY to clear, then
3465 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3466 * result. Determine what devices, if any, are on the channel
3467 * by looking at the device 0/1 error register. Look at the signature
3468 * stored in each device's taskfile registers, to determine if
3469 * the device is ATA or ATAPI.
3470 *
3471 * LOCKING:
3472 * PCI/etc. bus probe sem.
3473 * Obtains host lock.
3474 *
3475 * SIDE EFFECTS:
3476 * Sets ATA_FLAG_DISABLED if bus reset fails.
3477 */
3478
3479 void ata_bus_reset(struct ata_port *ap)
3480 {
3481 struct ata_device *device = ap->link.device;
3482 struct ata_ioports *ioaddr = &ap->ioaddr;
3483 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3484 u8 err;
3485 unsigned int dev0, dev1 = 0, devmask = 0;
3486 int rc;
3487
3488 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3489
3490 /* determine if device 0/1 are present */
3491 if (ap->flags & ATA_FLAG_SATA_RESET)
3492 dev0 = 1;
3493 else {
3494 dev0 = ata_devchk(ap, 0);
3495 if (slave_possible)
3496 dev1 = ata_devchk(ap, 1);
3497 }
3498
3499 if (dev0)
3500 devmask |= (1 << 0);
3501 if (dev1)
3502 devmask |= (1 << 1);
3503
3504 /* select device 0 again */
3505 ap->ops->dev_select(ap, 0);
3506
3507 /* issue bus reset */
3508 if (ap->flags & ATA_FLAG_SRST) {
3509 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3510 if (rc && rc != -ENODEV)
3511 goto err_out;
3512 }
3513
3514 /*
3515 * determine by signature whether we have ATA or ATAPI devices
3516 */
3517 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3518 if ((slave_possible) && (err != 0x81))
3519 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3520
3521 /* is double-select really necessary? */
3522 if (device[1].class != ATA_DEV_NONE)
3523 ap->ops->dev_select(ap, 1);
3524 if (device[0].class != ATA_DEV_NONE)
3525 ap->ops->dev_select(ap, 0);
3526
3527 /* if no devices were detected, disable this port */
3528 if ((device[0].class == ATA_DEV_NONE) &&
3529 (device[1].class == ATA_DEV_NONE))
3530 goto err_out;
3531
3532 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3533 /* set up device control for ATA_FLAG_SATA_RESET */
3534 iowrite8(ap->ctl, ioaddr->ctl_addr);
3535 }
3536
3537 DPRINTK("EXIT\n");
3538 return;
3539
3540 err_out:
3541 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3542 ata_port_disable(ap);
3543
3544 DPRINTK("EXIT\n");
3545 }
3546
3547 /**
3548 * sata_link_debounce - debounce SATA phy status
3549 * @link: ATA link to debounce SATA phy status for
3550 * @params: timing parameters { interval, duratinon, timeout } in msec
3551 * @deadline: deadline jiffies for the operation
3552 *
3553 * Make sure SStatus of @link reaches stable state, determined by
3554 * holding the same value where DET is not 1 for @duration polled
3555 * every @interval, before @timeout. Timeout constraints the
3556 * beginning of the stable state. Because DET gets stuck at 1 on
3557 * some controllers after hot unplugging, this functions waits
3558 * until timeout then returns 0 if DET is stable at 1.
3559 *
3560 * @timeout is further limited by @deadline. The sooner of the
3561 * two is used.
3562 *
3563 * LOCKING:
3564 * Kernel thread context (may sleep)
3565 *
3566 * RETURNS:
3567 * 0 on success, -errno on failure.
3568 */
3569 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3570 unsigned long deadline)
3571 {
3572 unsigned long interval_msec = params[0];
3573 unsigned long duration = msecs_to_jiffies(params[1]);
3574 unsigned long last_jiffies, t;
3575 u32 last, cur;
3576 int rc;
3577
3578 t = jiffies + msecs_to_jiffies(params[2]);
3579 if (time_before(t, deadline))
3580 deadline = t;
3581
3582 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3583 return rc;
3584 cur &= 0xf;
3585
3586 last = cur;
3587 last_jiffies = jiffies;
3588
3589 while (1) {
3590 msleep(interval_msec);
3591 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3592 return rc;
3593 cur &= 0xf;
3594
3595 /* DET stable? */
3596 if (cur == last) {
3597 if (cur == 1 && time_before(jiffies, deadline))
3598 continue;
3599 if (time_after(jiffies, last_jiffies + duration))
3600 return 0;
3601 continue;
3602 }
3603
3604 /* unstable, start over */
3605 last = cur;
3606 last_jiffies = jiffies;
3607
3608 /* Check deadline. If debouncing failed, return
3609 * -EPIPE to tell upper layer to lower link speed.
3610 */
3611 if (time_after(jiffies, deadline))
3612 return -EPIPE;
3613 }
3614 }
3615
3616 /**
3617 * sata_link_resume - resume SATA link
3618 * @link: ATA link to resume SATA
3619 * @params: timing parameters { interval, duratinon, timeout } in msec
3620 * @deadline: deadline jiffies for the operation
3621 *
3622 * Resume SATA phy @link and debounce it.
3623 *
3624 * LOCKING:
3625 * Kernel thread context (may sleep)
3626 *
3627 * RETURNS:
3628 * 0 on success, -errno on failure.
3629 */
3630 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3631 unsigned long deadline)
3632 {
3633 u32 scontrol;
3634 int rc;
3635
3636 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3637 return rc;
3638
3639 scontrol = (scontrol & 0x0f0) | 0x300;
3640
3641 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3642 return rc;
3643
3644 /* Some PHYs react badly if SStatus is pounded immediately
3645 * after resuming. Delay 200ms before debouncing.
3646 */
3647 msleep(200);
3648
3649 return sata_link_debounce(link, params, deadline);
3650 }
3651
3652 /**
3653 * ata_std_prereset - prepare for reset
3654 * @link: ATA link to be reset
3655 * @deadline: deadline jiffies for the operation
3656 *
3657 * @link is about to be reset. Initialize it. Failure from
3658 * prereset makes libata abort whole reset sequence and give up
3659 * that port, so prereset should be best-effort. It does its
3660 * best to prepare for reset sequence but if things go wrong, it
3661 * should just whine, not fail.
3662 *
3663 * LOCKING:
3664 * Kernel thread context (may sleep)
3665 *
3666 * RETURNS:
3667 * 0 on success, -errno otherwise.
3668 */
3669 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3670 {
3671 struct ata_port *ap = link->ap;
3672 struct ata_eh_context *ehc = &link->eh_context;
3673 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3674 int rc;
3675
3676 /* handle link resume */
3677 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3678 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3679 ehc->i.action |= ATA_EH_HARDRESET;
3680
3681 /* Some PMPs don't work with only SRST, force hardreset if PMP
3682 * is supported.
3683 */
3684 if (ap->flags & ATA_FLAG_PMP)
3685 ehc->i.action |= ATA_EH_HARDRESET;
3686
3687 /* if we're about to do hardreset, nothing more to do */
3688 if (ehc->i.action & ATA_EH_HARDRESET)
3689 return 0;
3690
3691 /* if SATA, resume link */
3692 if (ap->flags & ATA_FLAG_SATA) {
3693 rc = sata_link_resume(link, timing, deadline);
3694 /* whine about phy resume failure but proceed */
3695 if (rc && rc != -EOPNOTSUPP)
3696 ata_link_printk(link, KERN_WARNING, "failed to resume "
3697 "link for reset (errno=%d)\n", rc);
3698 }
3699
3700 /* Wait for !BSY if the controller can wait for the first D2H
3701 * Reg FIS and we don't know that no device is attached.
3702 */
3703 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3704 rc = ata_wait_ready(ap, deadline);
3705 if (rc && rc != -ENODEV) {
3706 ata_link_printk(link, KERN_WARNING, "device not ready "
3707 "(errno=%d), forcing hardreset\n", rc);
3708 ehc->i.action |= ATA_EH_HARDRESET;
3709 }
3710 }
3711
3712 return 0;
3713 }
3714
3715 /**
3716 * ata_std_softreset - reset host port via ATA SRST
3717 * @link: ATA link to reset
3718 * @classes: resulting classes of attached devices
3719 * @deadline: deadline jiffies for the operation
3720 *
3721 * Reset host port using ATA SRST.
3722 *
3723 * LOCKING:
3724 * Kernel thread context (may sleep)
3725 *
3726 * RETURNS:
3727 * 0 on success, -errno otherwise.
3728 */
3729 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3730 unsigned long deadline)
3731 {
3732 struct ata_port *ap = link->ap;
3733 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3734 unsigned int devmask = 0;
3735 int rc;
3736 u8 err;
3737
3738 DPRINTK("ENTER\n");
3739
3740 if (ata_link_offline(link)) {
3741 classes[0] = ATA_DEV_NONE;
3742 goto out;
3743 }
3744
3745 /* determine if device 0/1 are present */
3746 if (ata_devchk(ap, 0))
3747 devmask |= (1 << 0);
3748 if (slave_possible && ata_devchk(ap, 1))
3749 devmask |= (1 << 1);
3750
3751 /* select device 0 again */
3752 ap->ops->dev_select(ap, 0);
3753
3754 /* issue bus reset */
3755 DPRINTK("about to softreset, devmask=%x\n", devmask);
3756 rc = ata_bus_softreset(ap, devmask, deadline);
3757 /* if link is occupied, -ENODEV too is an error */
3758 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3759 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3760 return rc;
3761 }
3762
3763 /* determine by signature whether we have ATA or ATAPI devices */
3764 classes[0] = ata_dev_try_classify(&link->device[0],
3765 devmask & (1 << 0), &err);
3766 if (slave_possible && err != 0x81)
3767 classes[1] = ata_dev_try_classify(&link->device[1],
3768 devmask & (1 << 1), &err);
3769
3770 out:
3771 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3772 return 0;
3773 }
3774
3775 /**
3776 * sata_link_hardreset - reset link via SATA phy reset
3777 * @link: link to reset
3778 * @timing: timing parameters { interval, duratinon, timeout } in msec
3779 * @deadline: deadline jiffies for the operation
3780 *
3781 * SATA phy-reset @link using DET bits of SControl register.
3782 *
3783 * LOCKING:
3784 * Kernel thread context (may sleep)
3785 *
3786 * RETURNS:
3787 * 0 on success, -errno otherwise.
3788 */
3789 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3790 unsigned long deadline)
3791 {
3792 u32 scontrol;
3793 int rc;
3794
3795 DPRINTK("ENTER\n");
3796
3797 if (sata_set_spd_needed(link)) {
3798 /* SATA spec says nothing about how to reconfigure
3799 * spd. To be on the safe side, turn off phy during
3800 * reconfiguration. This works for at least ICH7 AHCI
3801 * and Sil3124.
3802 */
3803 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3804 goto out;
3805
3806 scontrol = (scontrol & 0x0f0) | 0x304;
3807
3808 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3809 goto out;
3810
3811 sata_set_spd(link);
3812 }
3813
3814 /* issue phy wake/reset */
3815 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3816 goto out;
3817
3818 scontrol = (scontrol & 0x0f0) | 0x301;
3819
3820 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3821 goto out;
3822
3823 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3824 * 10.4.2 says at least 1 ms.
3825 */
3826 msleep(1);
3827
3828 /* bring link back */
3829 rc = sata_link_resume(link, timing, deadline);
3830 out:
3831 DPRINTK("EXIT, rc=%d\n", rc);
3832 return rc;
3833 }
3834
3835 /**
3836 * sata_std_hardreset - reset host port via SATA phy reset
3837 * @link: link to reset
3838 * @class: resulting class of attached device
3839 * @deadline: deadline jiffies for the operation
3840 *
3841 * SATA phy-reset host port using DET bits of SControl register,
3842 * wait for !BSY and classify the attached device.
3843 *
3844 * LOCKING:
3845 * Kernel thread context (may sleep)
3846 *
3847 * RETURNS:
3848 * 0 on success, -errno otherwise.
3849 */
3850 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3851 unsigned long deadline)
3852 {
3853 struct ata_port *ap = link->ap;
3854 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3855 int rc;
3856
3857 DPRINTK("ENTER\n");
3858
3859 /* do hardreset */
3860 rc = sata_link_hardreset(link, timing, deadline);
3861 if (rc) {
3862 ata_link_printk(link, KERN_ERR,
3863 "COMRESET failed (errno=%d)\n", rc);
3864 return rc;
3865 }
3866
3867 /* TODO: phy layer with polling, timeouts, etc. */
3868 if (ata_link_offline(link)) {
3869 *class = ATA_DEV_NONE;
3870 DPRINTK("EXIT, link offline\n");
3871 return 0;
3872 }
3873
3874 /* wait a while before checking status */
3875 ata_wait_after_reset(ap, deadline);
3876
3877 /* If PMP is supported, we have to do follow-up SRST. Note
3878 * that some PMPs don't send D2H Reg FIS after hardreset at
3879 * all if the first port is empty. Wait for it just for a
3880 * second and request follow-up SRST.
3881 */
3882 if (ap->flags & ATA_FLAG_PMP) {
3883 ata_wait_ready(ap, jiffies + HZ);
3884 return -EAGAIN;
3885 }
3886
3887 rc = ata_wait_ready(ap, deadline);
3888 /* link occupied, -ENODEV too is an error */
3889 if (rc) {
3890 ata_link_printk(link, KERN_ERR,
3891 "COMRESET failed (errno=%d)\n", rc);
3892 return rc;
3893 }
3894
3895 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3896
3897 *class = ata_dev_try_classify(link->device, 1, NULL);
3898
3899 DPRINTK("EXIT, class=%u\n", *class);
3900 return 0;
3901 }
3902
3903 /**
3904 * ata_std_postreset - standard postreset callback
3905 * @link: the target ata_link
3906 * @classes: classes of attached devices
3907 *
3908 * This function is invoked after a successful reset. Note that
3909 * the device might have been reset more than once using
3910 * different reset methods before postreset is invoked.
3911 *
3912 * LOCKING:
3913 * Kernel thread context (may sleep)
3914 */
3915 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3916 {
3917 struct ata_port *ap = link->ap;
3918 u32 serror;
3919
3920 DPRINTK("ENTER\n");
3921
3922 /* print link status */
3923 sata_print_link_status(link);
3924
3925 /* clear SError */
3926 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
3927 sata_scr_write(link, SCR_ERROR, serror);
3928 link->eh_info.serror = 0;
3929
3930 /* is double-select really necessary? */
3931 if (classes[0] != ATA_DEV_NONE)
3932 ap->ops->dev_select(ap, 1);
3933 if (classes[1] != ATA_DEV_NONE)
3934 ap->ops->dev_select(ap, 0);
3935
3936 /* bail out if no device is present */
3937 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3938 DPRINTK("EXIT, no device\n");
3939 return;
3940 }
3941
3942 /* set up device control */
3943 if (ap->ioaddr.ctl_addr)
3944 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3945
3946 DPRINTK("EXIT\n");
3947 }
3948
3949 /**
3950 * ata_dev_same_device - Determine whether new ID matches configured device
3951 * @dev: device to compare against
3952 * @new_class: class of the new device
3953 * @new_id: IDENTIFY page of the new device
3954 *
3955 * Compare @new_class and @new_id against @dev and determine
3956 * whether @dev is the device indicated by @new_class and
3957 * @new_id.
3958 *
3959 * LOCKING:
3960 * None.
3961 *
3962 * RETURNS:
3963 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3964 */
3965 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3966 const u16 *new_id)
3967 {
3968 const u16 *old_id = dev->id;
3969 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3970 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3971
3972 if (dev->class != new_class) {
3973 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3974 dev->class, new_class);
3975 return 0;
3976 }
3977
3978 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3979 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3980 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3981 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3982
3983 if (strcmp(model[0], model[1])) {
3984 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3985 "'%s' != '%s'\n", model[0], model[1]);
3986 return 0;
3987 }
3988
3989 if (strcmp(serial[0], serial[1])) {
3990 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3991 "'%s' != '%s'\n", serial[0], serial[1]);
3992 return 0;
3993 }
3994
3995 return 1;
3996 }
3997
3998 /**
3999 * ata_dev_reread_id - Re-read IDENTIFY data
4000 * @dev: target ATA device
4001 * @readid_flags: read ID flags
4002 *
4003 * Re-read IDENTIFY page and make sure @dev is still attached to
4004 * the port.
4005 *
4006 * LOCKING:
4007 * Kernel thread context (may sleep)
4008 *
4009 * RETURNS:
4010 * 0 on success, negative errno otherwise
4011 */
4012 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4013 {
4014 unsigned int class = dev->class;
4015 u16 *id = (void *)dev->link->ap->sector_buf;
4016 int rc;
4017
4018 /* read ID data */
4019 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4020 if (rc)
4021 return rc;
4022
4023 /* is the device still there? */
4024 if (!ata_dev_same_device(dev, class, id))
4025 return -ENODEV;
4026
4027 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4028 return 0;
4029 }
4030
4031 /**
4032 * ata_dev_revalidate - Revalidate ATA device
4033 * @dev: device to revalidate
4034 * @new_class: new class code
4035 * @readid_flags: read ID flags
4036 *
4037 * Re-read IDENTIFY page, make sure @dev is still attached to the
4038 * port and reconfigure it according to the new IDENTIFY page.
4039 *
4040 * LOCKING:
4041 * Kernel thread context (may sleep)
4042 *
4043 * RETURNS:
4044 * 0 on success, negative errno otherwise
4045 */
4046 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4047 unsigned int readid_flags)
4048 {
4049 u64 n_sectors = dev->n_sectors;
4050 int rc;
4051
4052 if (!ata_dev_enabled(dev))
4053 return -ENODEV;
4054
4055 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4056 if (ata_class_enabled(new_class) &&
4057 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4058 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4059 dev->class, new_class);
4060 rc = -ENODEV;
4061 goto fail;
4062 }
4063
4064 /* re-read ID */
4065 rc = ata_dev_reread_id(dev, readid_flags);
4066 if (rc)
4067 goto fail;
4068
4069 /* configure device according to the new ID */
4070 rc = ata_dev_configure(dev);
4071 if (rc)
4072 goto fail;
4073
4074 /* verify n_sectors hasn't changed */
4075 if (dev->class == ATA_DEV_ATA && n_sectors &&
4076 dev->n_sectors != n_sectors) {
4077 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4078 "%llu != %llu\n",
4079 (unsigned long long)n_sectors,
4080 (unsigned long long)dev->n_sectors);
4081
4082 /* restore original n_sectors */
4083 dev->n_sectors = n_sectors;
4084
4085 rc = -ENODEV;
4086 goto fail;
4087 }
4088
4089 return 0;
4090
4091 fail:
4092 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4093 return rc;
4094 }
4095
4096 struct ata_blacklist_entry {
4097 const char *model_num;
4098 const char *model_rev;
4099 unsigned long horkage;
4100 };
4101
4102 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4103 /* Devices with DMA related problems under Linux */
4104 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4105 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4106 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4107 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4108 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4109 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4110 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4111 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4112 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4113 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4114 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4115 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4116 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4117 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4118 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4119 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4120 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4121 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4122 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4123 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4124 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4125 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4126 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4127 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4128 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4129 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4130 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4131 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4132 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4133 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4134 /* Odd clown on sil3726/4726 PMPs */
4135 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4136 ATA_HORKAGE_SKIP_PM },
4137
4138 /* Weird ATAPI devices */
4139 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4140
4141 /* Devices we expect to fail diagnostics */
4142
4143 /* Devices where NCQ should be avoided */
4144 /* NCQ is slow */
4145 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4146 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4147 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4148 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4149 /* NCQ is broken */
4150 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4151 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4152 { "HITACHI HDS7250SASUN500G*", NULL, ATA_HORKAGE_NONCQ },
4153 { "HITACHI HDS7225SBSUN250G*", NULL, ATA_HORKAGE_NONCQ },
4154 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4155 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4156
4157 /* Blacklist entries taken from Silicon Image 3124/3132
4158 Windows driver .inf file - also several Linux problem reports */
4159 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4160 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4161 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4162
4163 /* devices which puke on READ_NATIVE_MAX */
4164 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4165 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4166 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4167 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4168
4169 /* Devices which report 1 sector over size HPA */
4170 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4171 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4172
4173 /* Devices which get the IVB wrong */
4174 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4175 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4176 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4177 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4178 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4179
4180 /* End Marker */
4181 { }
4182 };
4183
4184 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4185 {
4186 const char *p;
4187 int len;
4188
4189 /*
4190 * check for trailing wildcard: *\0
4191 */
4192 p = strchr(patt, wildchar);
4193 if (p && ((*(p + 1)) == 0))
4194 len = p - patt;
4195 else {
4196 len = strlen(name);
4197 if (!len) {
4198 if (!*patt)
4199 return 0;
4200 return -1;
4201 }
4202 }
4203
4204 return strncmp(patt, name, len);
4205 }
4206
4207 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4208 {
4209 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4210 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4211 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4212
4213 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4214 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4215
4216 while (ad->model_num) {
4217 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4218 if (ad->model_rev == NULL)
4219 return ad->horkage;
4220 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4221 return ad->horkage;
4222 }
4223 ad++;
4224 }
4225 return 0;
4226 }
4227
4228 static int ata_dma_blacklisted(const struct ata_device *dev)
4229 {
4230 /* We don't support polling DMA.
4231 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4232 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4233 */
4234 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4235 (dev->flags & ATA_DFLAG_CDB_INTR))
4236 return 1;
4237 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4238 }
4239
4240 /**
4241 * ata_is_40wire - check drive side detection
4242 * @dev: device
4243 *
4244 * Perform drive side detection decoding, allowing for device vendors
4245 * who can't follow the documentation.
4246 */
4247
4248 static int ata_is_40wire(struct ata_device *dev)
4249 {
4250 if (dev->horkage & ATA_HORKAGE_IVB)
4251 return ata_drive_40wire_relaxed(dev->id);
4252 return ata_drive_40wire(dev->id);
4253 }
4254
4255 /**
4256 * ata_dev_xfermask - Compute supported xfermask of the given device
4257 * @dev: Device to compute xfermask for
4258 *
4259 * Compute supported xfermask of @dev and store it in
4260 * dev->*_mask. This function is responsible for applying all
4261 * known limits including host controller limits, device
4262 * blacklist, etc...
4263 *
4264 * LOCKING:
4265 * None.
4266 */
4267 static void ata_dev_xfermask(struct ata_device *dev)
4268 {
4269 struct ata_link *link = dev->link;
4270 struct ata_port *ap = link->ap;
4271 struct ata_host *host = ap->host;
4272 unsigned long xfer_mask;
4273
4274 /* controller modes available */
4275 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4276 ap->mwdma_mask, ap->udma_mask);
4277
4278 /* drive modes available */
4279 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4280 dev->mwdma_mask, dev->udma_mask);
4281 xfer_mask &= ata_id_xfermask(dev->id);
4282
4283 /*
4284 * CFA Advanced TrueIDE timings are not allowed on a shared
4285 * cable
4286 */
4287 if (ata_dev_pair(dev)) {
4288 /* No PIO5 or PIO6 */
4289 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4290 /* No MWDMA3 or MWDMA 4 */
4291 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4292 }
4293
4294 if (ata_dma_blacklisted(dev)) {
4295 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4296 ata_dev_printk(dev, KERN_WARNING,
4297 "device is on DMA blacklist, disabling DMA\n");
4298 }
4299
4300 if ((host->flags & ATA_HOST_SIMPLEX) &&
4301 host->simplex_claimed && host->simplex_claimed != ap) {
4302 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4303 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4304 "other device, disabling DMA\n");
4305 }
4306
4307 if (ap->flags & ATA_FLAG_NO_IORDY)
4308 xfer_mask &= ata_pio_mask_no_iordy(dev);
4309
4310 if (ap->ops->mode_filter)
4311 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4312
4313 /* Apply cable rule here. Don't apply it early because when
4314 * we handle hot plug the cable type can itself change.
4315 * Check this last so that we know if the transfer rate was
4316 * solely limited by the cable.
4317 * Unknown or 80 wire cables reported host side are checked
4318 * drive side as well. Cases where we know a 40wire cable
4319 * is used safely for 80 are not checked here.
4320 */
4321 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4322 /* UDMA/44 or higher would be available */
4323 if ((ap->cbl == ATA_CBL_PATA40) ||
4324 (ata_is_40wire(dev) &&
4325 (ap->cbl == ATA_CBL_PATA_UNK ||
4326 ap->cbl == ATA_CBL_PATA80))) {
4327 ata_dev_printk(dev, KERN_WARNING,
4328 "limited to UDMA/33 due to 40-wire cable\n");
4329 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4330 }
4331
4332 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4333 &dev->mwdma_mask, &dev->udma_mask);
4334 }
4335
4336 /**
4337 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4338 * @dev: Device to which command will be sent
4339 *
4340 * Issue SET FEATURES - XFER MODE command to device @dev
4341 * on port @ap.
4342 *
4343 * LOCKING:
4344 * PCI/etc. bus probe sem.
4345 *
4346 * RETURNS:
4347 * 0 on success, AC_ERR_* mask otherwise.
4348 */
4349
4350 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4351 {
4352 struct ata_taskfile tf;
4353 unsigned int err_mask;
4354
4355 /* set up set-features taskfile */
4356 DPRINTK("set features - xfer mode\n");
4357
4358 /* Some controllers and ATAPI devices show flaky interrupt
4359 * behavior after setting xfer mode. Use polling instead.
4360 */
4361 ata_tf_init(dev, &tf);
4362 tf.command = ATA_CMD_SET_FEATURES;
4363 tf.feature = SETFEATURES_XFER;
4364 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4365 tf.protocol = ATA_PROT_NODATA;
4366 tf.nsect = dev->xfer_mode;
4367
4368 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4369
4370 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4371 return err_mask;
4372 }
4373 /**
4374 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4375 * @dev: Device to which command will be sent
4376 * @enable: Whether to enable or disable the feature
4377 * @feature: The sector count represents the feature to set
4378 *
4379 * Issue SET FEATURES - SATA FEATURES command to device @dev
4380 * on port @ap with sector count
4381 *
4382 * LOCKING:
4383 * PCI/etc. bus probe sem.
4384 *
4385 * RETURNS:
4386 * 0 on success, AC_ERR_* mask otherwise.
4387 */
4388 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4389 u8 feature)
4390 {
4391 struct ata_taskfile tf;
4392 unsigned int err_mask;
4393
4394 /* set up set-features taskfile */
4395 DPRINTK("set features - SATA features\n");
4396
4397 ata_tf_init(dev, &tf);
4398 tf.command = ATA_CMD_SET_FEATURES;
4399 tf.feature = enable;
4400 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4401 tf.protocol = ATA_PROT_NODATA;
4402 tf.nsect = feature;
4403
4404 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4405
4406 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4407 return err_mask;
4408 }
4409
4410 /**
4411 * ata_dev_init_params - Issue INIT DEV PARAMS command
4412 * @dev: Device to which command will be sent
4413 * @heads: Number of heads (taskfile parameter)
4414 * @sectors: Number of sectors (taskfile parameter)
4415 *
4416 * LOCKING:
4417 * Kernel thread context (may sleep)
4418 *
4419 * RETURNS:
4420 * 0 on success, AC_ERR_* mask otherwise.
4421 */
4422 static unsigned int ata_dev_init_params(struct ata_device *dev,
4423 u16 heads, u16 sectors)
4424 {
4425 struct ata_taskfile tf;
4426 unsigned int err_mask;
4427
4428 /* Number of sectors per track 1-255. Number of heads 1-16 */
4429 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4430 return AC_ERR_INVALID;
4431
4432 /* set up init dev params taskfile */
4433 DPRINTK("init dev params \n");
4434
4435 ata_tf_init(dev, &tf);
4436 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4437 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4438 tf.protocol = ATA_PROT_NODATA;
4439 tf.nsect = sectors;
4440 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4441
4442 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4443 /* A clean abort indicates an original or just out of spec drive
4444 and we should continue as we issue the setup based on the
4445 drive reported working geometry */
4446 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4447 err_mask = 0;
4448
4449 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4450 return err_mask;
4451 }
4452
4453 /**
4454 * ata_sg_clean - Unmap DMA memory associated with command
4455 * @qc: Command containing DMA memory to be released
4456 *
4457 * Unmap all mapped DMA memory associated with this command.
4458 *
4459 * LOCKING:
4460 * spin_lock_irqsave(host lock)
4461 */
4462 void ata_sg_clean(struct ata_queued_cmd *qc)
4463 {
4464 struct ata_port *ap = qc->ap;
4465 struct scatterlist *sg = qc->__sg;
4466 int dir = qc->dma_dir;
4467 void *pad_buf = NULL;
4468
4469 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4470 WARN_ON(sg == NULL);
4471
4472 if (qc->flags & ATA_QCFLAG_SINGLE)
4473 WARN_ON(qc->n_elem > 1);
4474
4475 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4476
4477 /* if we padded the buffer out to 32-bit bound, and data
4478 * xfer direction is from-device, we must copy from the
4479 * pad buffer back into the supplied buffer
4480 */
4481 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4482 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4483
4484 if (qc->flags & ATA_QCFLAG_SG) {
4485 if (qc->n_elem)
4486 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4487 /* restore last sg */
4488 sg_last(sg, qc->orig_n_elem)->length += qc->pad_len;
4489 if (pad_buf) {
4490 struct scatterlist *psg = &qc->pad_sgent;
4491 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4492 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4493 kunmap_atomic(addr, KM_IRQ0);
4494 }
4495 } else {
4496 if (qc->n_elem)
4497 dma_unmap_single(ap->dev,
4498 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4499 dir);
4500 /* restore sg */
4501 sg->length += qc->pad_len;
4502 if (pad_buf)
4503 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4504 pad_buf, qc->pad_len);
4505 }
4506
4507 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4508 qc->__sg = NULL;
4509 }
4510
4511 /**
4512 * ata_fill_sg - Fill PCI IDE PRD table
4513 * @qc: Metadata associated with taskfile to be transferred
4514 *
4515 * Fill PCI IDE PRD (scatter-gather) table with segments
4516 * associated with the current disk command.
4517 *
4518 * LOCKING:
4519 * spin_lock_irqsave(host lock)
4520 *
4521 */
4522 static void ata_fill_sg(struct ata_queued_cmd *qc)
4523 {
4524 struct ata_port *ap = qc->ap;
4525 struct scatterlist *sg;
4526 unsigned int idx;
4527
4528 WARN_ON(qc->__sg == NULL);
4529 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4530
4531 idx = 0;
4532 ata_for_each_sg(sg, qc) {
4533 u32 addr, offset;
4534 u32 sg_len, len;
4535
4536 /* determine if physical DMA addr spans 64K boundary.
4537 * Note h/w doesn't support 64-bit, so we unconditionally
4538 * truncate dma_addr_t to u32.
4539 */
4540 addr = (u32) sg_dma_address(sg);
4541 sg_len = sg_dma_len(sg);
4542
4543 while (sg_len) {
4544 offset = addr & 0xffff;
4545 len = sg_len;
4546 if ((offset + sg_len) > 0x10000)
4547 len = 0x10000 - offset;
4548
4549 ap->prd[idx].addr = cpu_to_le32(addr);
4550 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4551 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4552
4553 idx++;
4554 sg_len -= len;
4555 addr += len;
4556 }
4557 }
4558
4559 if (idx)
4560 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4561 }
4562
4563 /**
4564 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4565 * @qc: Metadata associated with taskfile to be transferred
4566 *
4567 * Fill PCI IDE PRD (scatter-gather) table with segments
4568 * associated with the current disk command. Perform the fill
4569 * so that we avoid writing any length 64K records for
4570 * controllers that don't follow the spec.
4571 *
4572 * LOCKING:
4573 * spin_lock_irqsave(host lock)
4574 *
4575 */
4576 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4577 {
4578 struct ata_port *ap = qc->ap;
4579 struct scatterlist *sg;
4580 unsigned int idx;
4581
4582 WARN_ON(qc->__sg == NULL);
4583 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4584
4585 idx = 0;
4586 ata_for_each_sg(sg, qc) {
4587 u32 addr, offset;
4588 u32 sg_len, len, blen;
4589
4590 /* determine if physical DMA addr spans 64K boundary.
4591 * Note h/w doesn't support 64-bit, so we unconditionally
4592 * truncate dma_addr_t to u32.
4593 */
4594 addr = (u32) sg_dma_address(sg);
4595 sg_len = sg_dma_len(sg);
4596
4597 while (sg_len) {
4598 offset = addr & 0xffff;
4599 len = sg_len;
4600 if ((offset + sg_len) > 0x10000)
4601 len = 0x10000 - offset;
4602
4603 blen = len & 0xffff;
4604 ap->prd[idx].addr = cpu_to_le32(addr);
4605 if (blen == 0) {
4606 /* Some PATA chipsets like the CS5530 can't
4607 cope with 0x0000 meaning 64K as the spec says */
4608 ap->prd[idx].flags_len = cpu_to_le32(0x8000);
4609 blen = 0x8000;
4610 ap->prd[++idx].addr = cpu_to_le32(addr + 0x8000);
4611 }
4612 ap->prd[idx].flags_len = cpu_to_le32(blen);
4613 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4614
4615 idx++;
4616 sg_len -= len;
4617 addr += len;
4618 }
4619 }
4620
4621 if (idx)
4622 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4623 }
4624
4625 /**
4626 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4627 * @qc: Metadata associated with taskfile to check
4628 *
4629 * Allow low-level driver to filter ATA PACKET commands, returning
4630 * a status indicating whether or not it is OK to use DMA for the
4631 * supplied PACKET command.
4632 *
4633 * LOCKING:
4634 * spin_lock_irqsave(host lock)
4635 *
4636 * RETURNS: 0 when ATAPI DMA can be used
4637 * nonzero otherwise
4638 */
4639 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4640 {
4641 struct ata_port *ap = qc->ap;
4642
4643 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4644 * few ATAPI devices choke on such DMA requests.
4645 */
4646 if (unlikely(qc->nbytes & 15))
4647 return 1;
4648
4649 if (ap->ops->check_atapi_dma)
4650 return ap->ops->check_atapi_dma(qc);
4651
4652 return 0;
4653 }
4654
4655 /**
4656 * atapi_qc_may_overflow - Check whether data transfer may overflow
4657 * @qc: ATA command in question
4658 *
4659 * ATAPI commands which transfer variable length data to host
4660 * might overflow due to application error or hardare bug. This
4661 * function checks whether overflow should be drained and ignored
4662 * for @qc.
4663 *
4664 * LOCKING:
4665 * None.
4666 *
4667 * RETURNS:
4668 * 1 if @qc may overflow; otherwise, 0.
4669 */
4670 static int atapi_qc_may_overflow(struct ata_queued_cmd *qc)
4671 {
4672 if (qc->tf.protocol != ATA_PROT_ATAPI &&
4673 qc->tf.protocol != ATA_PROT_ATAPI_DMA)
4674 return 0;
4675
4676 if (qc->tf.flags & ATA_TFLAG_WRITE)
4677 return 0;
4678
4679 switch (qc->cdb[0]) {
4680 case READ_10:
4681 case READ_12:
4682 case WRITE_10:
4683 case WRITE_12:
4684 case GPCMD_READ_CD:
4685 case GPCMD_READ_CD_MSF:
4686 return 0;
4687 }
4688
4689 return 1;
4690 }
4691
4692 /**
4693 * ata_std_qc_defer - Check whether a qc needs to be deferred
4694 * @qc: ATA command in question
4695 *
4696 * Non-NCQ commands cannot run with any other command, NCQ or
4697 * not. As upper layer only knows the queue depth, we are
4698 * responsible for maintaining exclusion. This function checks
4699 * whether a new command @qc can be issued.
4700 *
4701 * LOCKING:
4702 * spin_lock_irqsave(host lock)
4703 *
4704 * RETURNS:
4705 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4706 */
4707 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4708 {
4709 struct ata_link *link = qc->dev->link;
4710
4711 if (qc->tf.protocol == ATA_PROT_NCQ) {
4712 if (!ata_tag_valid(link->active_tag))
4713 return 0;
4714 } else {
4715 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4716 return 0;
4717 }
4718
4719 return ATA_DEFER_LINK;
4720 }
4721
4722 /**
4723 * ata_qc_prep - Prepare taskfile for submission
4724 * @qc: Metadata associated with taskfile to be prepared
4725 *
4726 * Prepare ATA taskfile for submission.
4727 *
4728 * LOCKING:
4729 * spin_lock_irqsave(host lock)
4730 */
4731 void ata_qc_prep(struct ata_queued_cmd *qc)
4732 {
4733 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4734 return;
4735
4736 ata_fill_sg(qc);
4737 }
4738
4739 /**
4740 * ata_dumb_qc_prep - Prepare taskfile for submission
4741 * @qc: Metadata associated with taskfile to be prepared
4742 *
4743 * Prepare ATA taskfile for submission.
4744 *
4745 * LOCKING:
4746 * spin_lock_irqsave(host lock)
4747 */
4748 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4749 {
4750 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4751 return;
4752
4753 ata_fill_sg_dumb(qc);
4754 }
4755
4756 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4757
4758 /**
4759 * ata_sg_init_one - Associate command with memory buffer
4760 * @qc: Command to be associated
4761 * @buf: Memory buffer
4762 * @buflen: Length of memory buffer, in bytes.
4763 *
4764 * Initialize the data-related elements of queued_cmd @qc
4765 * to point to a single memory buffer, @buf of byte length @buflen.
4766 *
4767 * LOCKING:
4768 * spin_lock_irqsave(host lock)
4769 */
4770
4771 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4772 {
4773 qc->flags |= ATA_QCFLAG_SINGLE;
4774
4775 qc->__sg = &qc->sgent;
4776 qc->n_elem = 1;
4777 qc->orig_n_elem = 1;
4778 qc->buf_virt = buf;
4779 qc->nbytes = buflen;
4780 qc->cursg = qc->__sg;
4781
4782 sg_init_one(&qc->sgent, buf, buflen);
4783 }
4784
4785 /**
4786 * ata_sg_init - Associate command with scatter-gather table.
4787 * @qc: Command to be associated
4788 * @sg: Scatter-gather table.
4789 * @n_elem: Number of elements in s/g table.
4790 *
4791 * Initialize the data-related elements of queued_cmd @qc
4792 * to point to a scatter-gather table @sg, containing @n_elem
4793 * elements.
4794 *
4795 * LOCKING:
4796 * spin_lock_irqsave(host lock)
4797 */
4798
4799 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4800 unsigned int n_elem)
4801 {
4802 qc->flags |= ATA_QCFLAG_SG;
4803 qc->__sg = sg;
4804 qc->n_elem = n_elem;
4805 qc->orig_n_elem = n_elem;
4806 qc->cursg = qc->__sg;
4807 }
4808
4809 /**
4810 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4811 * @qc: Command with memory buffer to be mapped.
4812 *
4813 * DMA-map the memory buffer associated with queued_cmd @qc.
4814 *
4815 * LOCKING:
4816 * spin_lock_irqsave(host lock)
4817 *
4818 * RETURNS:
4819 * Zero on success, negative on error.
4820 */
4821
4822 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4823 {
4824 struct ata_port *ap = qc->ap;
4825 int dir = qc->dma_dir;
4826 struct scatterlist *sg = qc->__sg;
4827 dma_addr_t dma_address;
4828 int trim_sg = 0;
4829
4830 /* we must lengthen transfers to end on a 32-bit boundary */
4831 qc->pad_len = sg->length & 3;
4832 if (qc->pad_len) {
4833 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4834 struct scatterlist *psg = &qc->pad_sgent;
4835
4836 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4837
4838 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4839
4840 if (qc->tf.flags & ATA_TFLAG_WRITE)
4841 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4842 qc->pad_len);
4843
4844 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4845 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4846 /* trim sg */
4847 sg->length -= qc->pad_len;
4848 if (sg->length == 0)
4849 trim_sg = 1;
4850
4851 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4852 sg->length, qc->pad_len);
4853 }
4854
4855 if (trim_sg) {
4856 qc->n_elem--;
4857 goto skip_map;
4858 }
4859
4860 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4861 sg->length, dir);
4862 if (dma_mapping_error(dma_address)) {
4863 /* restore sg */
4864 sg->length += qc->pad_len;
4865 return -1;
4866 }
4867
4868 sg_dma_address(sg) = dma_address;
4869 sg_dma_len(sg) = sg->length;
4870
4871 skip_map:
4872 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4873 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4874
4875 return 0;
4876 }
4877
4878 /**
4879 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4880 * @qc: Command with scatter-gather table to be mapped.
4881 *
4882 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4883 *
4884 * LOCKING:
4885 * spin_lock_irqsave(host lock)
4886 *
4887 * RETURNS:
4888 * Zero on success, negative on error.
4889 *
4890 */
4891
4892 static int ata_sg_setup(struct ata_queued_cmd *qc)
4893 {
4894 struct ata_port *ap = qc->ap;
4895 struct scatterlist *sg = qc->__sg;
4896 struct scatterlist *lsg = sg_last(qc->__sg, qc->n_elem);
4897 int n_elem, pre_n_elem, dir, trim_sg = 0;
4898
4899 VPRINTK("ENTER, ata%u\n", ap->print_id);
4900 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4901
4902 /* we must lengthen transfers to end on a 32-bit boundary */
4903 qc->pad_len = lsg->length & 3;
4904 if (qc->pad_len) {
4905 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4906 struct scatterlist *psg = &qc->pad_sgent;
4907 unsigned int offset;
4908
4909 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4910
4911 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4912
4913 /*
4914 * psg->page/offset are used to copy to-be-written
4915 * data in this function or read data in ata_sg_clean.
4916 */
4917 offset = lsg->offset + lsg->length - qc->pad_len;
4918 sg_init_table(psg, 1);
4919 sg_set_page(psg, nth_page(sg_page(lsg), offset >> PAGE_SHIFT),
4920 qc->pad_len, offset_in_page(offset));
4921
4922 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4923 void *addr = kmap_atomic(sg_page(psg), KM_IRQ0);
4924 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4925 kunmap_atomic(addr, KM_IRQ0);
4926 }
4927
4928 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4929 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4930 /* trim last sg */
4931 lsg->length -= qc->pad_len;
4932 if (lsg->length == 0)
4933 trim_sg = 1;
4934
4935 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4936 qc->n_elem - 1, lsg->length, qc->pad_len);
4937 }
4938
4939 pre_n_elem = qc->n_elem;
4940 if (trim_sg && pre_n_elem)
4941 pre_n_elem--;
4942
4943 if (!pre_n_elem) {
4944 n_elem = 0;
4945 goto skip_map;
4946 }
4947
4948 dir = qc->dma_dir;
4949 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4950 if (n_elem < 1) {
4951 /* restore last sg */
4952 lsg->length += qc->pad_len;
4953 return -1;
4954 }
4955
4956 DPRINTK("%d sg elements mapped\n", n_elem);
4957
4958 skip_map:
4959 qc->n_elem = n_elem;
4960
4961 return 0;
4962 }
4963
4964 /**
4965 * swap_buf_le16 - swap halves of 16-bit words in place
4966 * @buf: Buffer to swap
4967 * @buf_words: Number of 16-bit words in buffer.
4968 *
4969 * Swap halves of 16-bit words if needed to convert from
4970 * little-endian byte order to native cpu byte order, or
4971 * vice-versa.
4972 *
4973 * LOCKING:
4974 * Inherited from caller.
4975 */
4976 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4977 {
4978 #ifdef __BIG_ENDIAN
4979 unsigned int i;
4980
4981 for (i = 0; i < buf_words; i++)
4982 buf[i] = le16_to_cpu(buf[i]);
4983 #endif /* __BIG_ENDIAN */
4984 }
4985
4986 /**
4987 * ata_data_xfer - Transfer data by PIO
4988 * @adev: device to target
4989 * @buf: data buffer
4990 * @buflen: buffer length
4991 * @write_data: read/write
4992 *
4993 * Transfer data from/to the device data register by PIO.
4994 *
4995 * LOCKING:
4996 * Inherited from caller.
4997 */
4998 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4999 unsigned int buflen, int write_data)
5000 {
5001 struct ata_port *ap = adev->link->ap;
5002 unsigned int words = buflen >> 1;
5003
5004 /* Transfer multiple of 2 bytes */
5005 if (write_data)
5006 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
5007 else
5008 ioread16_rep(ap->ioaddr.data_addr, buf, words);
5009
5010 /* Transfer trailing 1 byte, if any. */
5011 if (unlikely(buflen & 0x01)) {
5012 u16 align_buf[1] = { 0 };
5013 unsigned char *trailing_buf = buf + buflen - 1;
5014
5015 if (write_data) {
5016 memcpy(align_buf, trailing_buf, 1);
5017 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
5018 } else {
5019 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
5020 memcpy(trailing_buf, align_buf, 1);
5021 }
5022 }
5023 }
5024
5025 /**
5026 * ata_data_xfer_noirq - Transfer data by PIO
5027 * @adev: device to target
5028 * @buf: data buffer
5029 * @buflen: buffer length
5030 * @write_data: read/write
5031 *
5032 * Transfer data from/to the device data register by PIO. Do the
5033 * transfer with interrupts disabled.
5034 *
5035 * LOCKING:
5036 * Inherited from caller.
5037 */
5038 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
5039 unsigned int buflen, int write_data)
5040 {
5041 unsigned long flags;
5042 local_irq_save(flags);
5043 ata_data_xfer(adev, buf, buflen, write_data);
5044 local_irq_restore(flags);
5045 }
5046
5047
5048 /**
5049 * ata_pio_sector - Transfer a sector of data.
5050 * @qc: Command on going
5051 *
5052 * Transfer qc->sect_size bytes of data from/to the ATA device.
5053 *
5054 * LOCKING:
5055 * Inherited from caller.
5056 */
5057
5058 static void ata_pio_sector(struct ata_queued_cmd *qc)
5059 {
5060 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5061 struct ata_port *ap = qc->ap;
5062 struct page *page;
5063 unsigned int offset;
5064 unsigned char *buf;
5065
5066 if (qc->curbytes == qc->nbytes - qc->sect_size)
5067 ap->hsm_task_state = HSM_ST_LAST;
5068
5069 page = sg_page(qc->cursg);
5070 offset = qc->cursg->offset + qc->cursg_ofs;
5071
5072 /* get the current page and offset */
5073 page = nth_page(page, (offset >> PAGE_SHIFT));
5074 offset %= PAGE_SIZE;
5075
5076 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5077
5078 if (PageHighMem(page)) {
5079 unsigned long flags;
5080
5081 /* FIXME: use a bounce buffer */
5082 local_irq_save(flags);
5083 buf = kmap_atomic(page, KM_IRQ0);
5084
5085 /* do the actual data transfer */
5086 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5087
5088 kunmap_atomic(buf, KM_IRQ0);
5089 local_irq_restore(flags);
5090 } else {
5091 buf = page_address(page);
5092 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5093 }
5094
5095 qc->curbytes += qc->sect_size;
5096 qc->cursg_ofs += qc->sect_size;
5097
5098 if (qc->cursg_ofs == qc->cursg->length) {
5099 qc->cursg = sg_next(qc->cursg);
5100 qc->cursg_ofs = 0;
5101 }
5102 }
5103
5104 /**
5105 * ata_pio_sectors - Transfer one or many sectors.
5106 * @qc: Command on going
5107 *
5108 * Transfer one or many sectors of data from/to the
5109 * ATA device for the DRQ request.
5110 *
5111 * LOCKING:
5112 * Inherited from caller.
5113 */
5114
5115 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5116 {
5117 if (is_multi_taskfile(&qc->tf)) {
5118 /* READ/WRITE MULTIPLE */
5119 unsigned int nsect;
5120
5121 WARN_ON(qc->dev->multi_count == 0);
5122
5123 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5124 qc->dev->multi_count);
5125 while (nsect--)
5126 ata_pio_sector(qc);
5127 } else
5128 ata_pio_sector(qc);
5129
5130 ata_altstatus(qc->ap); /* flush */
5131 }
5132
5133 /**
5134 * atapi_send_cdb - Write CDB bytes to hardware
5135 * @ap: Port to which ATAPI device is attached.
5136 * @qc: Taskfile currently active
5137 *
5138 * When device has indicated its readiness to accept
5139 * a CDB, this function is called. Send the CDB.
5140 *
5141 * LOCKING:
5142 * caller.
5143 */
5144
5145 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5146 {
5147 /* send SCSI cdb */
5148 DPRINTK("send cdb\n");
5149 WARN_ON(qc->dev->cdb_len < 12);
5150
5151 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5152 ata_altstatus(ap); /* flush */
5153
5154 switch (qc->tf.protocol) {
5155 case ATA_PROT_ATAPI:
5156 ap->hsm_task_state = HSM_ST;
5157 break;
5158 case ATA_PROT_ATAPI_NODATA:
5159 ap->hsm_task_state = HSM_ST_LAST;
5160 break;
5161 case ATA_PROT_ATAPI_DMA:
5162 ap->hsm_task_state = HSM_ST_LAST;
5163 /* initiate bmdma */
5164 ap->ops->bmdma_start(qc);
5165 break;
5166 }
5167 }
5168
5169 /**
5170 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5171 * @qc: Command on going
5172 * @bytes: number of bytes
5173 *
5174 * Transfer Transfer data from/to the ATAPI device.
5175 *
5176 * LOCKING:
5177 * Inherited from caller.
5178 *
5179 */
5180 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5181 {
5182 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5183 struct ata_port *ap = qc->ap;
5184 struct ata_eh_info *ehi = &qc->dev->link->eh_info;
5185 struct scatterlist *sg;
5186 struct page *page;
5187 unsigned char *buf;
5188 unsigned int offset, count;
5189
5190 next_sg:
5191 sg = qc->cursg;
5192 if (unlikely(!sg)) {
5193 /*
5194 * The end of qc->sg is reached and the device expects
5195 * more data to transfer. In order not to overrun qc->sg
5196 * and fulfill length specified in the byte count register,
5197 * - for read case, discard trailing data from the device
5198 * - for write case, padding zero data to the device
5199 */
5200 u16 pad_buf[1] = { 0 };
5201 unsigned int i;
5202
5203 if (bytes > qc->curbytes - qc->nbytes + ATAPI_MAX_DRAIN) {
5204 ata_ehi_push_desc(ehi, "too much trailing data "
5205 "buf=%u cur=%u bytes=%u",
5206 qc->nbytes, qc->curbytes, bytes);
5207 return -1;
5208 }
5209
5210 /* overflow is exptected for misc ATAPI commands */
5211 if (bytes && !atapi_qc_may_overflow(qc))
5212 ata_dev_printk(qc->dev, KERN_WARNING, "ATAPI %u bytes "
5213 "trailing data (cdb=%02x nbytes=%u)\n",
5214 bytes, qc->cdb[0], qc->nbytes);
5215
5216 for (i = 0; i < (bytes + 1) / 2; i++)
5217 ap->ops->data_xfer(qc->dev, (unsigned char *)pad_buf, 2, do_write);
5218
5219 qc->curbytes += bytes;
5220
5221 return 0;
5222 }
5223
5224 page = sg_page(sg);
5225 offset = sg->offset + qc->cursg_ofs;
5226
5227 /* get the current page and offset */
5228 page = nth_page(page, (offset >> PAGE_SHIFT));
5229 offset %= PAGE_SIZE;
5230
5231 /* don't overrun current sg */
5232 count = min(sg->length - qc->cursg_ofs, bytes);
5233
5234 /* don't cross page boundaries */
5235 count = min(count, (unsigned int)PAGE_SIZE - offset);
5236
5237 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5238
5239 if (PageHighMem(page)) {
5240 unsigned long flags;
5241
5242 /* FIXME: use bounce buffer */
5243 local_irq_save(flags);
5244 buf = kmap_atomic(page, KM_IRQ0);
5245
5246 /* do the actual data transfer */
5247 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5248
5249 kunmap_atomic(buf, KM_IRQ0);
5250 local_irq_restore(flags);
5251 } else {
5252 buf = page_address(page);
5253 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
5254 }
5255
5256 bytes -= count;
5257 if ((count & 1) && bytes)
5258 bytes--;
5259 qc->curbytes += count;
5260 qc->cursg_ofs += count;
5261
5262 if (qc->cursg_ofs == sg->length) {
5263 qc->cursg = sg_next(qc->cursg);
5264 qc->cursg_ofs = 0;
5265 }
5266
5267 if (bytes)
5268 goto next_sg;
5269
5270 return 0;
5271 }
5272
5273 /**
5274 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5275 * @qc: Command on going
5276 *
5277 * Transfer Transfer data from/to the ATAPI device.
5278 *
5279 * LOCKING:
5280 * Inherited from caller.
5281 */
5282
5283 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5284 {
5285 struct ata_port *ap = qc->ap;
5286 struct ata_device *dev = qc->dev;
5287 unsigned int ireason, bc_lo, bc_hi, bytes;
5288 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5289
5290 /* Abuse qc->result_tf for temp storage of intermediate TF
5291 * here to save some kernel stack usage.
5292 * For normal completion, qc->result_tf is not relevant. For
5293 * error, qc->result_tf is later overwritten by ata_qc_complete().
5294 * So, the correctness of qc->result_tf is not affected.
5295 */
5296 ap->ops->tf_read(ap, &qc->result_tf);
5297 ireason = qc->result_tf.nsect;
5298 bc_lo = qc->result_tf.lbam;
5299 bc_hi = qc->result_tf.lbah;
5300 bytes = (bc_hi << 8) | bc_lo;
5301
5302 /* shall be cleared to zero, indicating xfer of data */
5303 if (ireason & (1 << 0))
5304 goto err_out;
5305
5306 /* make sure transfer direction matches expected */
5307 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5308 if (do_write != i_write)
5309 goto err_out;
5310
5311 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5312
5313 if (__atapi_pio_bytes(qc, bytes))
5314 goto err_out;
5315 ata_altstatus(ap); /* flush */
5316
5317 return;
5318
5319 err_out:
5320 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
5321 qc->err_mask |= AC_ERR_HSM;
5322 ap->hsm_task_state = HSM_ST_ERR;
5323 }
5324
5325 /**
5326 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5327 * @ap: the target ata_port
5328 * @qc: qc on going
5329 *
5330 * RETURNS:
5331 * 1 if ok in workqueue, 0 otherwise.
5332 */
5333
5334 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5335 {
5336 if (qc->tf.flags & ATA_TFLAG_POLLING)
5337 return 1;
5338
5339 if (ap->hsm_task_state == HSM_ST_FIRST) {
5340 if (qc->tf.protocol == ATA_PROT_PIO &&
5341 (qc->tf.flags & ATA_TFLAG_WRITE))
5342 return 1;
5343
5344 if (is_atapi_taskfile(&qc->tf) &&
5345 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5346 return 1;
5347 }
5348
5349 return 0;
5350 }
5351
5352 /**
5353 * ata_hsm_qc_complete - finish a qc running on standard HSM
5354 * @qc: Command to complete
5355 * @in_wq: 1 if called from workqueue, 0 otherwise
5356 *
5357 * Finish @qc which is running on standard HSM.
5358 *
5359 * LOCKING:
5360 * If @in_wq is zero, spin_lock_irqsave(host lock).
5361 * Otherwise, none on entry and grabs host lock.
5362 */
5363 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5364 {
5365 struct ata_port *ap = qc->ap;
5366 unsigned long flags;
5367
5368 if (ap->ops->error_handler) {
5369 if (in_wq) {
5370 spin_lock_irqsave(ap->lock, flags);
5371
5372 /* EH might have kicked in while host lock is
5373 * released.
5374 */
5375 qc = ata_qc_from_tag(ap, qc->tag);
5376 if (qc) {
5377 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5378 ap->ops->irq_on(ap);
5379 ata_qc_complete(qc);
5380 } else
5381 ata_port_freeze(ap);
5382 }
5383
5384 spin_unlock_irqrestore(ap->lock, flags);
5385 } else {
5386 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5387 ata_qc_complete(qc);
5388 else
5389 ata_port_freeze(ap);
5390 }
5391 } else {
5392 if (in_wq) {
5393 spin_lock_irqsave(ap->lock, flags);
5394 ap->ops->irq_on(ap);
5395 ata_qc_complete(qc);
5396 spin_unlock_irqrestore(ap->lock, flags);
5397 } else
5398 ata_qc_complete(qc);
5399 }
5400 }
5401
5402 /**
5403 * ata_hsm_move - move the HSM to the next state.
5404 * @ap: the target ata_port
5405 * @qc: qc on going
5406 * @status: current device status
5407 * @in_wq: 1 if called from workqueue, 0 otherwise
5408 *
5409 * RETURNS:
5410 * 1 when poll next status needed, 0 otherwise.
5411 */
5412 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5413 u8 status, int in_wq)
5414 {
5415 unsigned long flags = 0;
5416 int poll_next;
5417
5418 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5419
5420 /* Make sure ata_qc_issue_prot() does not throw things
5421 * like DMA polling into the workqueue. Notice that
5422 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5423 */
5424 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5425
5426 fsm_start:
5427 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5428 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5429
5430 switch (ap->hsm_task_state) {
5431 case HSM_ST_FIRST:
5432 /* Send first data block or PACKET CDB */
5433
5434 /* If polling, we will stay in the work queue after
5435 * sending the data. Otherwise, interrupt handler
5436 * takes over after sending the data.
5437 */
5438 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5439
5440 /* check device status */
5441 if (unlikely((status & ATA_DRQ) == 0)) {
5442 /* handle BSY=0, DRQ=0 as error */
5443 if (likely(status & (ATA_ERR | ATA_DF)))
5444 /* device stops HSM for abort/error */
5445 qc->err_mask |= AC_ERR_DEV;
5446 else
5447 /* HSM violation. Let EH handle this */
5448 qc->err_mask |= AC_ERR_HSM;
5449
5450 ap->hsm_task_state = HSM_ST_ERR;
5451 goto fsm_start;
5452 }
5453
5454 /* Device should not ask for data transfer (DRQ=1)
5455 * when it finds something wrong.
5456 * We ignore DRQ here and stop the HSM by
5457 * changing hsm_task_state to HSM_ST_ERR and
5458 * let the EH abort the command or reset the device.
5459 */
5460 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5461 /* Some ATAPI tape drives forget to clear the ERR bit
5462 * when doing the next command (mostly request sense).
5463 * We ignore ERR here to workaround and proceed sending
5464 * the CDB.
5465 */
5466 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5467 ata_port_printk(ap, KERN_WARNING,
5468 "DRQ=1 with device error, "
5469 "dev_stat 0x%X\n", status);
5470 qc->err_mask |= AC_ERR_HSM;
5471 ap->hsm_task_state = HSM_ST_ERR;
5472 goto fsm_start;
5473 }
5474 }
5475
5476 /* Send the CDB (atapi) or the first data block (ata pio out).
5477 * During the state transition, interrupt handler shouldn't
5478 * be invoked before the data transfer is complete and
5479 * hsm_task_state is changed. Hence, the following locking.
5480 */
5481 if (in_wq)
5482 spin_lock_irqsave(ap->lock, flags);
5483
5484 if (qc->tf.protocol == ATA_PROT_PIO) {
5485 /* PIO data out protocol.
5486 * send first data block.
5487 */
5488
5489 /* ata_pio_sectors() might change the state
5490 * to HSM_ST_LAST. so, the state is changed here
5491 * before ata_pio_sectors().
5492 */
5493 ap->hsm_task_state = HSM_ST;
5494 ata_pio_sectors(qc);
5495 } else
5496 /* send CDB */
5497 atapi_send_cdb(ap, qc);
5498
5499 if (in_wq)
5500 spin_unlock_irqrestore(ap->lock, flags);
5501
5502 /* if polling, ata_pio_task() handles the rest.
5503 * otherwise, interrupt handler takes over from here.
5504 */
5505 break;
5506
5507 case HSM_ST:
5508 /* complete command or read/write the data register */
5509 if (qc->tf.protocol == ATA_PROT_ATAPI) {
5510 /* ATAPI PIO protocol */
5511 if ((status & ATA_DRQ) == 0) {
5512 /* No more data to transfer or device error.
5513 * Device error will be tagged in HSM_ST_LAST.
5514 */
5515 ap->hsm_task_state = HSM_ST_LAST;
5516 goto fsm_start;
5517 }
5518
5519 /* Device should not ask for data transfer (DRQ=1)
5520 * when it finds something wrong.
5521 * We ignore DRQ here and stop the HSM by
5522 * changing hsm_task_state to HSM_ST_ERR and
5523 * let the EH abort the command or reset the device.
5524 */
5525 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5526 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5527 "device error, dev_stat 0x%X\n",
5528 status);
5529 qc->err_mask |= AC_ERR_HSM;
5530 ap->hsm_task_state = HSM_ST_ERR;
5531 goto fsm_start;
5532 }
5533
5534 atapi_pio_bytes(qc);
5535
5536 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5537 /* bad ireason reported by device */
5538 goto fsm_start;
5539
5540 } else {
5541 /* ATA PIO protocol */
5542 if (unlikely((status & ATA_DRQ) == 0)) {
5543 /* handle BSY=0, DRQ=0 as error */
5544 if (likely(status & (ATA_ERR | ATA_DF)))
5545 /* device stops HSM for abort/error */
5546 qc->err_mask |= AC_ERR_DEV;
5547 else
5548 /* HSM violation. Let EH handle this.
5549 * Phantom devices also trigger this
5550 * condition. Mark hint.
5551 */
5552 qc->err_mask |= AC_ERR_HSM |
5553 AC_ERR_NODEV_HINT;
5554
5555 ap->hsm_task_state = HSM_ST_ERR;
5556 goto fsm_start;
5557 }
5558
5559 /* For PIO reads, some devices may ask for
5560 * data transfer (DRQ=1) alone with ERR=1.
5561 * We respect DRQ here and transfer one
5562 * block of junk data before changing the
5563 * hsm_task_state to HSM_ST_ERR.
5564 *
5565 * For PIO writes, ERR=1 DRQ=1 doesn't make
5566 * sense since the data block has been
5567 * transferred to the device.
5568 */
5569 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5570 /* data might be corrputed */
5571 qc->err_mask |= AC_ERR_DEV;
5572
5573 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5574 ata_pio_sectors(qc);
5575 status = ata_wait_idle(ap);
5576 }
5577
5578 if (status & (ATA_BUSY | ATA_DRQ))
5579 qc->err_mask |= AC_ERR_HSM;
5580
5581 /* ata_pio_sectors() might change the
5582 * state to HSM_ST_LAST. so, the state
5583 * is changed after ata_pio_sectors().
5584 */
5585 ap->hsm_task_state = HSM_ST_ERR;
5586 goto fsm_start;
5587 }
5588
5589 ata_pio_sectors(qc);
5590
5591 if (ap->hsm_task_state == HSM_ST_LAST &&
5592 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5593 /* all data read */
5594 status = ata_wait_idle(ap);
5595 goto fsm_start;
5596 }
5597 }
5598
5599 poll_next = 1;
5600 break;
5601
5602 case HSM_ST_LAST:
5603 if (unlikely(!ata_ok(status))) {
5604 qc->err_mask |= __ac_err_mask(status);
5605 ap->hsm_task_state = HSM_ST_ERR;
5606 goto fsm_start;
5607 }
5608
5609 /* no more data to transfer */
5610 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5611 ap->print_id, qc->dev->devno, status);
5612
5613 WARN_ON(qc->err_mask);
5614
5615 ap->hsm_task_state = HSM_ST_IDLE;
5616
5617 /* complete taskfile transaction */
5618 ata_hsm_qc_complete(qc, in_wq);
5619
5620 poll_next = 0;
5621 break;
5622
5623 case HSM_ST_ERR:
5624 /* make sure qc->err_mask is available to
5625 * know what's wrong and recover
5626 */
5627 WARN_ON(qc->err_mask == 0);
5628
5629 ap->hsm_task_state = HSM_ST_IDLE;
5630
5631 /* complete taskfile transaction */
5632 ata_hsm_qc_complete(qc, in_wq);
5633
5634 poll_next = 0;
5635 break;
5636 default:
5637 poll_next = 0;
5638 BUG();
5639 }
5640
5641 return poll_next;
5642 }
5643
5644 static void ata_pio_task(struct work_struct *work)
5645 {
5646 struct ata_port *ap =
5647 container_of(work, struct ata_port, port_task.work);
5648 struct ata_queued_cmd *qc = ap->port_task_data;
5649 u8 status;
5650 int poll_next;
5651
5652 fsm_start:
5653 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5654
5655 /*
5656 * This is purely heuristic. This is a fast path.
5657 * Sometimes when we enter, BSY will be cleared in
5658 * a chk-status or two. If not, the drive is probably seeking
5659 * or something. Snooze for a couple msecs, then
5660 * chk-status again. If still busy, queue delayed work.
5661 */
5662 status = ata_busy_wait(ap, ATA_BUSY, 5);
5663 if (status & ATA_BUSY) {
5664 msleep(2);
5665 status = ata_busy_wait(ap, ATA_BUSY, 10);
5666 if (status & ATA_BUSY) {
5667 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5668 return;
5669 }
5670 }
5671
5672 /* move the HSM */
5673 poll_next = ata_hsm_move(ap, qc, status, 1);
5674
5675 /* another command or interrupt handler
5676 * may be running at this point.
5677 */
5678 if (poll_next)
5679 goto fsm_start;
5680 }
5681
5682 /**
5683 * ata_qc_new - Request an available ATA command, for queueing
5684 * @ap: Port associated with device @dev
5685 * @dev: Device from whom we request an available command structure
5686 *
5687 * LOCKING:
5688 * None.
5689 */
5690
5691 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5692 {
5693 struct ata_queued_cmd *qc = NULL;
5694 unsigned int i;
5695
5696 /* no command while frozen */
5697 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5698 return NULL;
5699
5700 /* the last tag is reserved for internal command. */
5701 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5702 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5703 qc = __ata_qc_from_tag(ap, i);
5704 break;
5705 }
5706
5707 if (qc)
5708 qc->tag = i;
5709
5710 return qc;
5711 }
5712
5713 /**
5714 * ata_qc_new_init - Request an available ATA command, and initialize it
5715 * @dev: Device from whom we request an available command structure
5716 *
5717 * LOCKING:
5718 * None.
5719 */
5720
5721 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5722 {
5723 struct ata_port *ap = dev->link->ap;
5724 struct ata_queued_cmd *qc;
5725
5726 qc = ata_qc_new(ap);
5727 if (qc) {
5728 qc->scsicmd = NULL;
5729 qc->ap = ap;
5730 qc->dev = dev;
5731
5732 ata_qc_reinit(qc);
5733 }
5734
5735 return qc;
5736 }
5737
5738 /**
5739 * ata_qc_free - free unused ata_queued_cmd
5740 * @qc: Command to complete
5741 *
5742 * Designed to free unused ata_queued_cmd object
5743 * in case something prevents using it.
5744 *
5745 * LOCKING:
5746 * spin_lock_irqsave(host lock)
5747 */
5748 void ata_qc_free(struct ata_queued_cmd *qc)
5749 {
5750 struct ata_port *ap = qc->ap;
5751 unsigned int tag;
5752
5753 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5754
5755 qc->flags = 0;
5756 tag = qc->tag;
5757 if (likely(ata_tag_valid(tag))) {
5758 qc->tag = ATA_TAG_POISON;
5759 clear_bit(tag, &ap->qc_allocated);
5760 }
5761 }
5762
5763 void __ata_qc_complete(struct ata_queued_cmd *qc)
5764 {
5765 struct ata_port *ap = qc->ap;
5766 struct ata_link *link = qc->dev->link;
5767
5768 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5769 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5770
5771 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5772 ata_sg_clean(qc);
5773
5774 /* command should be marked inactive atomically with qc completion */
5775 if (qc->tf.protocol == ATA_PROT_NCQ) {
5776 link->sactive &= ~(1 << qc->tag);
5777 if (!link->sactive)
5778 ap->nr_active_links--;
5779 } else {
5780 link->active_tag = ATA_TAG_POISON;
5781 ap->nr_active_links--;
5782 }
5783
5784 /* clear exclusive status */
5785 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5786 ap->excl_link == link))
5787 ap->excl_link = NULL;
5788
5789 /* atapi: mark qc as inactive to prevent the interrupt handler
5790 * from completing the command twice later, before the error handler
5791 * is called. (when rc != 0 and atapi request sense is needed)
5792 */
5793 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5794 ap->qc_active &= ~(1 << qc->tag);
5795
5796 /* call completion callback */
5797 qc->complete_fn(qc);
5798 }
5799
5800 static void fill_result_tf(struct ata_queued_cmd *qc)
5801 {
5802 struct ata_port *ap = qc->ap;
5803
5804 qc->result_tf.flags = qc->tf.flags;
5805 ap->ops->tf_read(ap, &qc->result_tf);
5806 }
5807
5808 /**
5809 * ata_qc_complete - Complete an active ATA command
5810 * @qc: Command to complete
5811 * @err_mask: ATA Status register contents
5812 *
5813 * Indicate to the mid and upper layers that an ATA
5814 * command has completed, with either an ok or not-ok status.
5815 *
5816 * LOCKING:
5817 * spin_lock_irqsave(host lock)
5818 */
5819 void ata_qc_complete(struct ata_queued_cmd *qc)
5820 {
5821 struct ata_port *ap = qc->ap;
5822
5823 /* XXX: New EH and old EH use different mechanisms to
5824 * synchronize EH with regular execution path.
5825 *
5826 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5827 * Normal execution path is responsible for not accessing a
5828 * failed qc. libata core enforces the rule by returning NULL
5829 * from ata_qc_from_tag() for failed qcs.
5830 *
5831 * Old EH depends on ata_qc_complete() nullifying completion
5832 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5833 * not synchronize with interrupt handler. Only PIO task is
5834 * taken care of.
5835 */
5836 if (ap->ops->error_handler) {
5837 struct ata_device *dev = qc->dev;
5838 struct ata_eh_info *ehi = &dev->link->eh_info;
5839
5840 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5841
5842 if (unlikely(qc->err_mask))
5843 qc->flags |= ATA_QCFLAG_FAILED;
5844
5845 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5846 if (!ata_tag_internal(qc->tag)) {
5847 /* always fill result TF for failed qc */
5848 fill_result_tf(qc);
5849 ata_qc_schedule_eh(qc);
5850 return;
5851 }
5852 }
5853
5854 /* read result TF if requested */
5855 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5856 fill_result_tf(qc);
5857
5858 /* Some commands need post-processing after successful
5859 * completion.
5860 */
5861 switch (qc->tf.command) {
5862 case ATA_CMD_SET_FEATURES:
5863 if (qc->tf.feature != SETFEATURES_WC_ON &&
5864 qc->tf.feature != SETFEATURES_WC_OFF)
5865 break;
5866 /* fall through */
5867 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5868 case ATA_CMD_SET_MULTI: /* multi_count changed */
5869 /* revalidate device */
5870 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5871 ata_port_schedule_eh(ap);
5872 break;
5873
5874 case ATA_CMD_SLEEP:
5875 dev->flags |= ATA_DFLAG_SLEEPING;
5876 break;
5877 }
5878
5879 __ata_qc_complete(qc);
5880 } else {
5881 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5882 return;
5883
5884 /* read result TF if failed or requested */
5885 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5886 fill_result_tf(qc);
5887
5888 __ata_qc_complete(qc);
5889 }
5890 }
5891
5892 /**
5893 * ata_qc_complete_multiple - Complete multiple qcs successfully
5894 * @ap: port in question
5895 * @qc_active: new qc_active mask
5896 * @finish_qc: LLDD callback invoked before completing a qc
5897 *
5898 * Complete in-flight commands. This functions is meant to be
5899 * called from low-level driver's interrupt routine to complete
5900 * requests normally. ap->qc_active and @qc_active is compared
5901 * and commands are completed accordingly.
5902 *
5903 * LOCKING:
5904 * spin_lock_irqsave(host lock)
5905 *
5906 * RETURNS:
5907 * Number of completed commands on success, -errno otherwise.
5908 */
5909 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5910 void (*finish_qc)(struct ata_queued_cmd *))
5911 {
5912 int nr_done = 0;
5913 u32 done_mask;
5914 int i;
5915
5916 done_mask = ap->qc_active ^ qc_active;
5917
5918 if (unlikely(done_mask & qc_active)) {
5919 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5920 "(%08x->%08x)\n", ap->qc_active, qc_active);
5921 return -EINVAL;
5922 }
5923
5924 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5925 struct ata_queued_cmd *qc;
5926
5927 if (!(done_mask & (1 << i)))
5928 continue;
5929
5930 if ((qc = ata_qc_from_tag(ap, i))) {
5931 if (finish_qc)
5932 finish_qc(qc);
5933 ata_qc_complete(qc);
5934 nr_done++;
5935 }
5936 }
5937
5938 return nr_done;
5939 }
5940
5941 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5942 {
5943 struct ata_port *ap = qc->ap;
5944
5945 switch (qc->tf.protocol) {
5946 case ATA_PROT_NCQ:
5947 case ATA_PROT_DMA:
5948 case ATA_PROT_ATAPI_DMA:
5949 return 1;
5950
5951 case ATA_PROT_ATAPI:
5952 case ATA_PROT_PIO:
5953 if (ap->flags & ATA_FLAG_PIO_DMA)
5954 return 1;
5955
5956 /* fall through */
5957
5958 default:
5959 return 0;
5960 }
5961
5962 /* never reached */
5963 }
5964
5965 /**
5966 * ata_qc_issue - issue taskfile to device
5967 * @qc: command to issue to device
5968 *
5969 * Prepare an ATA command to submission to device.
5970 * This includes mapping the data into a DMA-able
5971 * area, filling in the S/G table, and finally
5972 * writing the taskfile to hardware, starting the command.
5973 *
5974 * LOCKING:
5975 * spin_lock_irqsave(host lock)
5976 */
5977 void ata_qc_issue(struct ata_queued_cmd *qc)
5978 {
5979 struct ata_port *ap = qc->ap;
5980 struct ata_link *link = qc->dev->link;
5981
5982 /* Make sure only one non-NCQ command is outstanding. The
5983 * check is skipped for old EH because it reuses active qc to
5984 * request ATAPI sense.
5985 */
5986 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5987
5988 if (qc->tf.protocol == ATA_PROT_NCQ) {
5989 WARN_ON(link->sactive & (1 << qc->tag));
5990
5991 if (!link->sactive)
5992 ap->nr_active_links++;
5993 link->sactive |= 1 << qc->tag;
5994 } else {
5995 WARN_ON(link->sactive);
5996
5997 ap->nr_active_links++;
5998 link->active_tag = qc->tag;
5999 }
6000
6001 qc->flags |= ATA_QCFLAG_ACTIVE;
6002 ap->qc_active |= 1 << qc->tag;
6003
6004 if (ata_should_dma_map(qc)) {
6005 if (qc->flags & ATA_QCFLAG_SG) {
6006 if (ata_sg_setup(qc))
6007 goto sg_err;
6008 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
6009 if (ata_sg_setup_one(qc))
6010 goto sg_err;
6011 }
6012 } else {
6013 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6014 }
6015
6016 /* if device is sleeping, schedule softreset and abort the link */
6017 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6018 link->eh_info.action |= ATA_EH_SOFTRESET;
6019 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6020 ata_link_abort(link);
6021 return;
6022 }
6023
6024 ap->ops->qc_prep(qc);
6025
6026 qc->err_mask |= ap->ops->qc_issue(qc);
6027 if (unlikely(qc->err_mask))
6028 goto err;
6029 return;
6030
6031 sg_err:
6032 qc->flags &= ~ATA_QCFLAG_DMAMAP;
6033 qc->err_mask |= AC_ERR_SYSTEM;
6034 err:
6035 ata_qc_complete(qc);
6036 }
6037
6038 /**
6039 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6040 * @qc: command to issue to device
6041 *
6042 * Using various libata functions and hooks, this function
6043 * starts an ATA command. ATA commands are grouped into
6044 * classes called "protocols", and issuing each type of protocol
6045 * is slightly different.
6046 *
6047 * May be used as the qc_issue() entry in ata_port_operations.
6048 *
6049 * LOCKING:
6050 * spin_lock_irqsave(host lock)
6051 *
6052 * RETURNS:
6053 * Zero on success, AC_ERR_* mask on failure
6054 */
6055
6056 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6057 {
6058 struct ata_port *ap = qc->ap;
6059
6060 /* Use polling pio if the LLD doesn't handle
6061 * interrupt driven pio and atapi CDB interrupt.
6062 */
6063 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6064 switch (qc->tf.protocol) {
6065 case ATA_PROT_PIO:
6066 case ATA_PROT_NODATA:
6067 case ATA_PROT_ATAPI:
6068 case ATA_PROT_ATAPI_NODATA:
6069 qc->tf.flags |= ATA_TFLAG_POLLING;
6070 break;
6071 case ATA_PROT_ATAPI_DMA:
6072 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6073 /* see ata_dma_blacklisted() */
6074 BUG();
6075 break;
6076 default:
6077 break;
6078 }
6079 }
6080
6081 /* select the device */
6082 ata_dev_select(ap, qc->dev->devno, 1, 0);
6083
6084 /* start the command */
6085 switch (qc->tf.protocol) {
6086 case ATA_PROT_NODATA:
6087 if (qc->tf.flags & ATA_TFLAG_POLLING)
6088 ata_qc_set_polling(qc);
6089
6090 ata_tf_to_host(ap, &qc->tf);
6091 ap->hsm_task_state = HSM_ST_LAST;
6092
6093 if (qc->tf.flags & ATA_TFLAG_POLLING)
6094 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6095
6096 break;
6097
6098 case ATA_PROT_DMA:
6099 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6100
6101 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6102 ap->ops->bmdma_setup(qc); /* set up bmdma */
6103 ap->ops->bmdma_start(qc); /* initiate bmdma */
6104 ap->hsm_task_state = HSM_ST_LAST;
6105 break;
6106
6107 case ATA_PROT_PIO:
6108 if (qc->tf.flags & ATA_TFLAG_POLLING)
6109 ata_qc_set_polling(qc);
6110
6111 ata_tf_to_host(ap, &qc->tf);
6112
6113 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6114 /* PIO data out protocol */
6115 ap->hsm_task_state = HSM_ST_FIRST;
6116 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6117
6118 /* always send first data block using
6119 * the ata_pio_task() codepath.
6120 */
6121 } else {
6122 /* PIO data in protocol */
6123 ap->hsm_task_state = HSM_ST;
6124
6125 if (qc->tf.flags & ATA_TFLAG_POLLING)
6126 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6127
6128 /* if polling, ata_pio_task() handles the rest.
6129 * otherwise, interrupt handler takes over from here.
6130 */
6131 }
6132
6133 break;
6134
6135 case ATA_PROT_ATAPI:
6136 case ATA_PROT_ATAPI_NODATA:
6137 if (qc->tf.flags & ATA_TFLAG_POLLING)
6138 ata_qc_set_polling(qc);
6139
6140 ata_tf_to_host(ap, &qc->tf);
6141
6142 ap->hsm_task_state = HSM_ST_FIRST;
6143
6144 /* send cdb by polling if no cdb interrupt */
6145 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6146 (qc->tf.flags & ATA_TFLAG_POLLING))
6147 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6148 break;
6149
6150 case ATA_PROT_ATAPI_DMA:
6151 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6152
6153 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6154 ap->ops->bmdma_setup(qc); /* set up bmdma */
6155 ap->hsm_task_state = HSM_ST_FIRST;
6156
6157 /* send cdb by polling if no cdb interrupt */
6158 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6159 ata_port_queue_task(ap, ata_pio_task, qc, 0);
6160 break;
6161
6162 default:
6163 WARN_ON(1);
6164 return AC_ERR_SYSTEM;
6165 }
6166
6167 return 0;
6168 }
6169
6170 /**
6171 * ata_host_intr - Handle host interrupt for given (port, task)
6172 * @ap: Port on which interrupt arrived (possibly...)
6173 * @qc: Taskfile currently active in engine
6174 *
6175 * Handle host interrupt for given queued command. Currently,
6176 * only DMA interrupts are handled. All other commands are
6177 * handled via polling with interrupts disabled (nIEN bit).
6178 *
6179 * LOCKING:
6180 * spin_lock_irqsave(host lock)
6181 *
6182 * RETURNS:
6183 * One if interrupt was handled, zero if not (shared irq).
6184 */
6185
6186 inline unsigned int ata_host_intr(struct ata_port *ap,
6187 struct ata_queued_cmd *qc)
6188 {
6189 struct ata_eh_info *ehi = &ap->link.eh_info;
6190 u8 status, host_stat = 0;
6191
6192 VPRINTK("ata%u: protocol %d task_state %d\n",
6193 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6194
6195 /* Check whether we are expecting interrupt in this state */
6196 switch (ap->hsm_task_state) {
6197 case HSM_ST_FIRST:
6198 /* Some pre-ATAPI-4 devices assert INTRQ
6199 * at this state when ready to receive CDB.
6200 */
6201
6202 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6203 * The flag was turned on only for atapi devices.
6204 * No need to check is_atapi_taskfile(&qc->tf) again.
6205 */
6206 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6207 goto idle_irq;
6208 break;
6209 case HSM_ST_LAST:
6210 if (qc->tf.protocol == ATA_PROT_DMA ||
6211 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
6212 /* check status of DMA engine */
6213 host_stat = ap->ops->bmdma_status(ap);
6214 VPRINTK("ata%u: host_stat 0x%X\n",
6215 ap->print_id, host_stat);
6216
6217 /* if it's not our irq... */
6218 if (!(host_stat & ATA_DMA_INTR))
6219 goto idle_irq;
6220
6221 /* before we do anything else, clear DMA-Start bit */
6222 ap->ops->bmdma_stop(qc);
6223
6224 if (unlikely(host_stat & ATA_DMA_ERR)) {
6225 /* error when transfering data to/from memory */
6226 qc->err_mask |= AC_ERR_HOST_BUS;
6227 ap->hsm_task_state = HSM_ST_ERR;
6228 }
6229 }
6230 break;
6231 case HSM_ST:
6232 break;
6233 default:
6234 goto idle_irq;
6235 }
6236
6237 /* check altstatus */
6238 status = ata_altstatus(ap);
6239 if (status & ATA_BUSY)
6240 goto idle_irq;
6241
6242 /* check main status, clearing INTRQ */
6243 status = ata_chk_status(ap);
6244 if (unlikely(status & ATA_BUSY))
6245 goto idle_irq;
6246
6247 /* ack bmdma irq events */
6248 ap->ops->irq_clear(ap);
6249
6250 ata_hsm_move(ap, qc, status, 0);
6251
6252 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6253 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
6254 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6255
6256 return 1; /* irq handled */
6257
6258 idle_irq:
6259 ap->stats.idle_irq++;
6260
6261 #ifdef ATA_IRQ_TRAP
6262 if ((ap->stats.idle_irq % 1000) == 0) {
6263 ata_chk_status(ap);
6264 ap->ops->irq_clear(ap);
6265 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6266 return 1;
6267 }
6268 #endif
6269 return 0; /* irq not handled */
6270 }
6271
6272 /**
6273 * ata_interrupt - Default ATA host interrupt handler
6274 * @irq: irq line (unused)
6275 * @dev_instance: pointer to our ata_host information structure
6276 *
6277 * Default interrupt handler for PCI IDE devices. Calls
6278 * ata_host_intr() for each port that is not disabled.
6279 *
6280 * LOCKING:
6281 * Obtains host lock during operation.
6282 *
6283 * RETURNS:
6284 * IRQ_NONE or IRQ_HANDLED.
6285 */
6286
6287 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6288 {
6289 struct ata_host *host = dev_instance;
6290 unsigned int i;
6291 unsigned int handled = 0;
6292 unsigned long flags;
6293
6294 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6295 spin_lock_irqsave(&host->lock, flags);
6296
6297 for (i = 0; i < host->n_ports; i++) {
6298 struct ata_port *ap;
6299
6300 ap = host->ports[i];
6301 if (ap &&
6302 !(ap->flags & ATA_FLAG_DISABLED)) {
6303 struct ata_queued_cmd *qc;
6304
6305 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6306 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6307 (qc->flags & ATA_QCFLAG_ACTIVE))
6308 handled |= ata_host_intr(ap, qc);
6309 }
6310 }
6311
6312 spin_unlock_irqrestore(&host->lock, flags);
6313
6314 return IRQ_RETVAL(handled);
6315 }
6316
6317 /**
6318 * sata_scr_valid - test whether SCRs are accessible
6319 * @link: ATA link to test SCR accessibility for
6320 *
6321 * Test whether SCRs are accessible for @link.
6322 *
6323 * LOCKING:
6324 * None.
6325 *
6326 * RETURNS:
6327 * 1 if SCRs are accessible, 0 otherwise.
6328 */
6329 int sata_scr_valid(struct ata_link *link)
6330 {
6331 struct ata_port *ap = link->ap;
6332
6333 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6334 }
6335
6336 /**
6337 * sata_scr_read - read SCR register of the specified port
6338 * @link: ATA link to read SCR for
6339 * @reg: SCR to read
6340 * @val: Place to store read value
6341 *
6342 * Read SCR register @reg of @link into *@val. This function is
6343 * guaranteed to succeed if @link is ap->link, the cable type of
6344 * the port is SATA and the port implements ->scr_read.
6345 *
6346 * LOCKING:
6347 * None if @link is ap->link. Kernel thread context otherwise.
6348 *
6349 * RETURNS:
6350 * 0 on success, negative errno on failure.
6351 */
6352 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6353 {
6354 if (ata_is_host_link(link)) {
6355 struct ata_port *ap = link->ap;
6356
6357 if (sata_scr_valid(link))
6358 return ap->ops->scr_read(ap, reg, val);
6359 return -EOPNOTSUPP;
6360 }
6361
6362 return sata_pmp_scr_read(link, reg, val);
6363 }
6364
6365 /**
6366 * sata_scr_write - write SCR register of the specified port
6367 * @link: ATA link to write SCR for
6368 * @reg: SCR to write
6369 * @val: value to write
6370 *
6371 * Write @val to SCR register @reg of @link. This function is
6372 * guaranteed to succeed if @link is ap->link, the cable type of
6373 * the port is SATA and the port implements ->scr_read.
6374 *
6375 * LOCKING:
6376 * None if @link is ap->link. Kernel thread context otherwise.
6377 *
6378 * RETURNS:
6379 * 0 on success, negative errno on failure.
6380 */
6381 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6382 {
6383 if (ata_is_host_link(link)) {
6384 struct ata_port *ap = link->ap;
6385
6386 if (sata_scr_valid(link))
6387 return ap->ops->scr_write(ap, reg, val);
6388 return -EOPNOTSUPP;
6389 }
6390
6391 return sata_pmp_scr_write(link, reg, val);
6392 }
6393
6394 /**
6395 * sata_scr_write_flush - write SCR register of the specified port and flush
6396 * @link: ATA link to write SCR for
6397 * @reg: SCR to write
6398 * @val: value to write
6399 *
6400 * This function is identical to sata_scr_write() except that this
6401 * function performs flush after writing to the register.
6402 *
6403 * LOCKING:
6404 * None if @link is ap->link. Kernel thread context otherwise.
6405 *
6406 * RETURNS:
6407 * 0 on success, negative errno on failure.
6408 */
6409 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6410 {
6411 if (ata_is_host_link(link)) {
6412 struct ata_port *ap = link->ap;
6413 int rc;
6414
6415 if (sata_scr_valid(link)) {
6416 rc = ap->ops->scr_write(ap, reg, val);
6417 if (rc == 0)
6418 rc = ap->ops->scr_read(ap, reg, &val);
6419 return rc;
6420 }
6421 return -EOPNOTSUPP;
6422 }
6423
6424 return sata_pmp_scr_write(link, reg, val);
6425 }
6426
6427 /**
6428 * ata_link_online - test whether the given link is online
6429 * @link: ATA link to test
6430 *
6431 * Test whether @link is online. Note that this function returns
6432 * 0 if online status of @link cannot be obtained, so
6433 * ata_link_online(link) != !ata_link_offline(link).
6434 *
6435 * LOCKING:
6436 * None.
6437 *
6438 * RETURNS:
6439 * 1 if the port online status is available and online.
6440 */
6441 int ata_link_online(struct ata_link *link)
6442 {
6443 u32 sstatus;
6444
6445 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6446 (sstatus & 0xf) == 0x3)
6447 return 1;
6448 return 0;
6449 }
6450
6451 /**
6452 * ata_link_offline - test whether the given link is offline
6453 * @link: ATA link to test
6454 *
6455 * Test whether @link is offline. Note that this function
6456 * returns 0 if offline status of @link cannot be obtained, so
6457 * ata_link_online(link) != !ata_link_offline(link).
6458 *
6459 * LOCKING:
6460 * None.
6461 *
6462 * RETURNS:
6463 * 1 if the port offline status is available and offline.
6464 */
6465 int ata_link_offline(struct ata_link *link)
6466 {
6467 u32 sstatus;
6468
6469 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6470 (sstatus & 0xf) != 0x3)
6471 return 1;
6472 return 0;
6473 }
6474
6475 int ata_flush_cache(struct ata_device *dev)
6476 {
6477 unsigned int err_mask;
6478 u8 cmd;
6479
6480 if (!ata_try_flush_cache(dev))
6481 return 0;
6482
6483 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6484 cmd = ATA_CMD_FLUSH_EXT;
6485 else
6486 cmd = ATA_CMD_FLUSH;
6487
6488 /* This is wrong. On a failed flush we get back the LBA of the lost
6489 sector and we should (assuming it wasn't aborted as unknown) issue
6490 a further flush command to continue the writeback until it
6491 does not error */
6492 err_mask = ata_do_simple_cmd(dev, cmd);
6493 if (err_mask) {
6494 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6495 return -EIO;
6496 }
6497
6498 return 0;
6499 }
6500
6501 #ifdef CONFIG_PM
6502 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6503 unsigned int action, unsigned int ehi_flags,
6504 int wait)
6505 {
6506 unsigned long flags;
6507 int i, rc;
6508
6509 for (i = 0; i < host->n_ports; i++) {
6510 struct ata_port *ap = host->ports[i];
6511 struct ata_link *link;
6512
6513 /* Previous resume operation might still be in
6514 * progress. Wait for PM_PENDING to clear.
6515 */
6516 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6517 ata_port_wait_eh(ap);
6518 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6519 }
6520
6521 /* request PM ops to EH */
6522 spin_lock_irqsave(ap->lock, flags);
6523
6524 ap->pm_mesg = mesg;
6525 if (wait) {
6526 rc = 0;
6527 ap->pm_result = &rc;
6528 }
6529
6530 ap->pflags |= ATA_PFLAG_PM_PENDING;
6531 __ata_port_for_each_link(link, ap) {
6532 link->eh_info.action |= action;
6533 link->eh_info.flags |= ehi_flags;
6534 }
6535
6536 ata_port_schedule_eh(ap);
6537
6538 spin_unlock_irqrestore(ap->lock, flags);
6539
6540 /* wait and check result */
6541 if (wait) {
6542 ata_port_wait_eh(ap);
6543 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6544 if (rc)
6545 return rc;
6546 }
6547 }
6548
6549 return 0;
6550 }
6551
6552 /**
6553 * ata_host_suspend - suspend host
6554 * @host: host to suspend
6555 * @mesg: PM message
6556 *
6557 * Suspend @host. Actual operation is performed by EH. This
6558 * function requests EH to perform PM operations and waits for EH
6559 * to finish.
6560 *
6561 * LOCKING:
6562 * Kernel thread context (may sleep).
6563 *
6564 * RETURNS:
6565 * 0 on success, -errno on failure.
6566 */
6567 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6568 {
6569 int rc;
6570
6571 /*
6572 * disable link pm on all ports before requesting
6573 * any pm activity
6574 */
6575 ata_lpm_enable(host);
6576
6577 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6578 if (rc == 0)
6579 host->dev->power.power_state = mesg;
6580 return rc;
6581 }
6582
6583 /**
6584 * ata_host_resume - resume host
6585 * @host: host to resume
6586 *
6587 * Resume @host. Actual operation is performed by EH. This
6588 * function requests EH to perform PM operations and returns.
6589 * Note that all resume operations are performed parallely.
6590 *
6591 * LOCKING:
6592 * Kernel thread context (may sleep).
6593 */
6594 void ata_host_resume(struct ata_host *host)
6595 {
6596 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6597 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6598 host->dev->power.power_state = PMSG_ON;
6599
6600 /* reenable link pm */
6601 ata_lpm_disable(host);
6602 }
6603 #endif
6604
6605 /**
6606 * ata_port_start - Set port up for dma.
6607 * @ap: Port to initialize
6608 *
6609 * Called just after data structures for each port are
6610 * initialized. Allocates space for PRD table.
6611 *
6612 * May be used as the port_start() entry in ata_port_operations.
6613 *
6614 * LOCKING:
6615 * Inherited from caller.
6616 */
6617 int ata_port_start(struct ata_port *ap)
6618 {
6619 struct device *dev = ap->dev;
6620 int rc;
6621
6622 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6623 GFP_KERNEL);
6624 if (!ap->prd)
6625 return -ENOMEM;
6626
6627 rc = ata_pad_alloc(ap, dev);
6628 if (rc)
6629 return rc;
6630
6631 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
6632 (unsigned long long)ap->prd_dma);
6633 return 0;
6634 }
6635
6636 /**
6637 * ata_dev_init - Initialize an ata_device structure
6638 * @dev: Device structure to initialize
6639 *
6640 * Initialize @dev in preparation for probing.
6641 *
6642 * LOCKING:
6643 * Inherited from caller.
6644 */
6645 void ata_dev_init(struct ata_device *dev)
6646 {
6647 struct ata_link *link = dev->link;
6648 struct ata_port *ap = link->ap;
6649 unsigned long flags;
6650
6651 /* SATA spd limit is bound to the first device */
6652 link->sata_spd_limit = link->hw_sata_spd_limit;
6653 link->sata_spd = 0;
6654
6655 /* High bits of dev->flags are used to record warm plug
6656 * requests which occur asynchronously. Synchronize using
6657 * host lock.
6658 */
6659 spin_lock_irqsave(ap->lock, flags);
6660 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6661 dev->horkage = 0;
6662 spin_unlock_irqrestore(ap->lock, flags);
6663
6664 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6665 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6666 dev->pio_mask = UINT_MAX;
6667 dev->mwdma_mask = UINT_MAX;
6668 dev->udma_mask = UINT_MAX;
6669 }
6670
6671 /**
6672 * ata_link_init - Initialize an ata_link structure
6673 * @ap: ATA port link is attached to
6674 * @link: Link structure to initialize
6675 * @pmp: Port multiplier port number
6676 *
6677 * Initialize @link.
6678 *
6679 * LOCKING:
6680 * Kernel thread context (may sleep)
6681 */
6682 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6683 {
6684 int i;
6685
6686 /* clear everything except for devices */
6687 memset(link, 0, offsetof(struct ata_link, device[0]));
6688
6689 link->ap = ap;
6690 link->pmp = pmp;
6691 link->active_tag = ATA_TAG_POISON;
6692 link->hw_sata_spd_limit = UINT_MAX;
6693
6694 /* can't use iterator, ap isn't initialized yet */
6695 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6696 struct ata_device *dev = &link->device[i];
6697
6698 dev->link = link;
6699 dev->devno = dev - link->device;
6700 ata_dev_init(dev);
6701 }
6702 }
6703
6704 /**
6705 * sata_link_init_spd - Initialize link->sata_spd_limit
6706 * @link: Link to configure sata_spd_limit for
6707 *
6708 * Initialize @link->[hw_]sata_spd_limit to the currently
6709 * configured value.
6710 *
6711 * LOCKING:
6712 * Kernel thread context (may sleep).
6713 *
6714 * RETURNS:
6715 * 0 on success, -errno on failure.
6716 */
6717 int sata_link_init_spd(struct ata_link *link)
6718 {
6719 u32 scontrol, spd;
6720 int rc;
6721
6722 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6723 if (rc)
6724 return rc;
6725
6726 spd = (scontrol >> 4) & 0xf;
6727 if (spd)
6728 link->hw_sata_spd_limit &= (1 << spd) - 1;
6729
6730 link->sata_spd_limit = link->hw_sata_spd_limit;
6731
6732 return 0;
6733 }
6734
6735 /**
6736 * ata_port_alloc - allocate and initialize basic ATA port resources
6737 * @host: ATA host this allocated port belongs to
6738 *
6739 * Allocate and initialize basic ATA port resources.
6740 *
6741 * RETURNS:
6742 * Allocate ATA port on success, NULL on failure.
6743 *
6744 * LOCKING:
6745 * Inherited from calling layer (may sleep).
6746 */
6747 struct ata_port *ata_port_alloc(struct ata_host *host)
6748 {
6749 struct ata_port *ap;
6750
6751 DPRINTK("ENTER\n");
6752
6753 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6754 if (!ap)
6755 return NULL;
6756
6757 ap->pflags |= ATA_PFLAG_INITIALIZING;
6758 ap->lock = &host->lock;
6759 ap->flags = ATA_FLAG_DISABLED;
6760 ap->print_id = -1;
6761 ap->ctl = ATA_DEVCTL_OBS;
6762 ap->host = host;
6763 ap->dev = host->dev;
6764 ap->last_ctl = 0xFF;
6765
6766 #if defined(ATA_VERBOSE_DEBUG)
6767 /* turn on all debugging levels */
6768 ap->msg_enable = 0x00FF;
6769 #elif defined(ATA_DEBUG)
6770 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6771 #else
6772 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6773 #endif
6774
6775 INIT_DELAYED_WORK(&ap->port_task, NULL);
6776 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6777 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6778 INIT_LIST_HEAD(&ap->eh_done_q);
6779 init_waitqueue_head(&ap->eh_wait_q);
6780 init_timer_deferrable(&ap->fastdrain_timer);
6781 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6782 ap->fastdrain_timer.data = (unsigned long)ap;
6783
6784 ap->cbl = ATA_CBL_NONE;
6785
6786 ata_link_init(ap, &ap->link, 0);
6787
6788 #ifdef ATA_IRQ_TRAP
6789 ap->stats.unhandled_irq = 1;
6790 ap->stats.idle_irq = 1;
6791 #endif
6792 return ap;
6793 }
6794
6795 static void ata_host_release(struct device *gendev, void *res)
6796 {
6797 struct ata_host *host = dev_get_drvdata(gendev);
6798 int i;
6799
6800 for (i = 0; i < host->n_ports; i++) {
6801 struct ata_port *ap = host->ports[i];
6802
6803 if (!ap)
6804 continue;
6805
6806 if (ap->scsi_host)
6807 scsi_host_put(ap->scsi_host);
6808
6809 kfree(ap->pmp_link);
6810 kfree(ap);
6811 host->ports[i] = NULL;
6812 }
6813
6814 dev_set_drvdata(gendev, NULL);
6815 }
6816
6817 /**
6818 * ata_host_alloc - allocate and init basic ATA host resources
6819 * @dev: generic device this host is associated with
6820 * @max_ports: maximum number of ATA ports associated with this host
6821 *
6822 * Allocate and initialize basic ATA host resources. LLD calls
6823 * this function to allocate a host, initializes it fully and
6824 * attaches it using ata_host_register().
6825 *
6826 * @max_ports ports are allocated and host->n_ports is
6827 * initialized to @max_ports. The caller is allowed to decrease
6828 * host->n_ports before calling ata_host_register(). The unused
6829 * ports will be automatically freed on registration.
6830 *
6831 * RETURNS:
6832 * Allocate ATA host on success, NULL on failure.
6833 *
6834 * LOCKING:
6835 * Inherited from calling layer (may sleep).
6836 */
6837 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6838 {
6839 struct ata_host *host;
6840 size_t sz;
6841 int i;
6842
6843 DPRINTK("ENTER\n");
6844
6845 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6846 return NULL;
6847
6848 /* alloc a container for our list of ATA ports (buses) */
6849 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6850 /* alloc a container for our list of ATA ports (buses) */
6851 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6852 if (!host)
6853 goto err_out;
6854
6855 devres_add(dev, host);
6856 dev_set_drvdata(dev, host);
6857
6858 spin_lock_init(&host->lock);
6859 host->dev = dev;
6860 host->n_ports = max_ports;
6861
6862 /* allocate ports bound to this host */
6863 for (i = 0; i < max_ports; i++) {
6864 struct ata_port *ap;
6865
6866 ap = ata_port_alloc(host);
6867 if (!ap)
6868 goto err_out;
6869
6870 ap->port_no = i;
6871 host->ports[i] = ap;
6872 }
6873
6874 devres_remove_group(dev, NULL);
6875 return host;
6876
6877 err_out:
6878 devres_release_group(dev, NULL);
6879 return NULL;
6880 }
6881
6882 /**
6883 * ata_host_alloc_pinfo - alloc host and init with port_info array
6884 * @dev: generic device this host is associated with
6885 * @ppi: array of ATA port_info to initialize host with
6886 * @n_ports: number of ATA ports attached to this host
6887 *
6888 * Allocate ATA host and initialize with info from @ppi. If NULL
6889 * terminated, @ppi may contain fewer entries than @n_ports. The
6890 * last entry will be used for the remaining ports.
6891 *
6892 * RETURNS:
6893 * Allocate ATA host on success, NULL on failure.
6894 *
6895 * LOCKING:
6896 * Inherited from calling layer (may sleep).
6897 */
6898 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6899 const struct ata_port_info * const * ppi,
6900 int n_ports)
6901 {
6902 const struct ata_port_info *pi;
6903 struct ata_host *host;
6904 int i, j;
6905
6906 host = ata_host_alloc(dev, n_ports);
6907 if (!host)
6908 return NULL;
6909
6910 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6911 struct ata_port *ap = host->ports[i];
6912
6913 if (ppi[j])
6914 pi = ppi[j++];
6915
6916 ap->pio_mask = pi->pio_mask;
6917 ap->mwdma_mask = pi->mwdma_mask;
6918 ap->udma_mask = pi->udma_mask;
6919 ap->flags |= pi->flags;
6920 ap->link.flags |= pi->link_flags;
6921 ap->ops = pi->port_ops;
6922
6923 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6924 host->ops = pi->port_ops;
6925 if (!host->private_data && pi->private_data)
6926 host->private_data = pi->private_data;
6927 }
6928
6929 return host;
6930 }
6931
6932 static void ata_host_stop(struct device *gendev, void *res)
6933 {
6934 struct ata_host *host = dev_get_drvdata(gendev);
6935 int i;
6936
6937 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6938
6939 for (i = 0; i < host->n_ports; i++) {
6940 struct ata_port *ap = host->ports[i];
6941
6942 if (ap->ops->port_stop)
6943 ap->ops->port_stop(ap);
6944 }
6945
6946 if (host->ops->host_stop)
6947 host->ops->host_stop(host);
6948 }
6949
6950 /**
6951 * ata_host_start - start and freeze ports of an ATA host
6952 * @host: ATA host to start ports for
6953 *
6954 * Start and then freeze ports of @host. Started status is
6955 * recorded in host->flags, so this function can be called
6956 * multiple times. Ports are guaranteed to get started only
6957 * once. If host->ops isn't initialized yet, its set to the
6958 * first non-dummy port ops.
6959 *
6960 * LOCKING:
6961 * Inherited from calling layer (may sleep).
6962 *
6963 * RETURNS:
6964 * 0 if all ports are started successfully, -errno otherwise.
6965 */
6966 int ata_host_start(struct ata_host *host)
6967 {
6968 int have_stop = 0;
6969 void *start_dr = NULL;
6970 int i, rc;
6971
6972 if (host->flags & ATA_HOST_STARTED)
6973 return 0;
6974
6975 for (i = 0; i < host->n_ports; i++) {
6976 struct ata_port *ap = host->ports[i];
6977
6978 if (!host->ops && !ata_port_is_dummy(ap))
6979 host->ops = ap->ops;
6980
6981 if (ap->ops->port_stop)
6982 have_stop = 1;
6983 }
6984
6985 if (host->ops->host_stop)
6986 have_stop = 1;
6987
6988 if (have_stop) {
6989 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6990 if (!start_dr)
6991 return -ENOMEM;
6992 }
6993
6994 for (i = 0; i < host->n_ports; i++) {
6995 struct ata_port *ap = host->ports[i];
6996
6997 if (ap->ops->port_start) {
6998 rc = ap->ops->port_start(ap);
6999 if (rc) {
7000 if (rc != -ENODEV)
7001 dev_printk(KERN_ERR, host->dev, "failed to start port %d (errno=%d)\n", i, rc);
7002 goto err_out;
7003 }
7004 }
7005 ata_eh_freeze_port(ap);
7006 }
7007
7008 if (start_dr)
7009 devres_add(host->dev, start_dr);
7010 host->flags |= ATA_HOST_STARTED;
7011 return 0;
7012
7013 err_out:
7014 while (--i >= 0) {
7015 struct ata_port *ap = host->ports[i];
7016
7017 if (ap->ops->port_stop)
7018 ap->ops->port_stop(ap);
7019 }
7020 devres_free(start_dr);
7021 return rc;
7022 }
7023
7024 /**
7025 * ata_sas_host_init - Initialize a host struct
7026 * @host: host to initialize
7027 * @dev: device host is attached to
7028 * @flags: host flags
7029 * @ops: port_ops
7030 *
7031 * LOCKING:
7032 * PCI/etc. bus probe sem.
7033 *
7034 */
7035 /* KILLME - the only user left is ipr */
7036 void ata_host_init(struct ata_host *host, struct device *dev,
7037 unsigned long flags, const struct ata_port_operations *ops)
7038 {
7039 spin_lock_init(&host->lock);
7040 host->dev = dev;
7041 host->flags = flags;
7042 host->ops = ops;
7043 }
7044
7045 /**
7046 * ata_host_register - register initialized ATA host
7047 * @host: ATA host to register
7048 * @sht: template for SCSI host
7049 *
7050 * Register initialized ATA host. @host is allocated using
7051 * ata_host_alloc() and fully initialized by LLD. This function
7052 * starts ports, registers @host with ATA and SCSI layers and
7053 * probe registered devices.
7054 *
7055 * LOCKING:
7056 * Inherited from calling layer (may sleep).
7057 *
7058 * RETURNS:
7059 * 0 on success, -errno otherwise.
7060 */
7061 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7062 {
7063 int i, rc;
7064
7065 /* host must have been started */
7066 if (!(host->flags & ATA_HOST_STARTED)) {
7067 dev_printk(KERN_ERR, host->dev,
7068 "BUG: trying to register unstarted host\n");
7069 WARN_ON(1);
7070 return -EINVAL;
7071 }
7072
7073 /* Blow away unused ports. This happens when LLD can't
7074 * determine the exact number of ports to allocate at
7075 * allocation time.
7076 */
7077 for (i = host->n_ports; host->ports[i]; i++)
7078 kfree(host->ports[i]);
7079
7080 /* give ports names and add SCSI hosts */
7081 for (i = 0; i < host->n_ports; i++)
7082 host->ports[i]->print_id = ata_print_id++;
7083
7084 rc = ata_scsi_add_hosts(host, sht);
7085 if (rc)
7086 return rc;
7087
7088 /* associate with ACPI nodes */
7089 ata_acpi_associate(host);
7090
7091 /* set cable, sata_spd_limit and report */
7092 for (i = 0; i < host->n_ports; i++) {
7093 struct ata_port *ap = host->ports[i];
7094 unsigned long xfer_mask;
7095
7096 /* set SATA cable type if still unset */
7097 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7098 ap->cbl = ATA_CBL_SATA;
7099
7100 /* init sata_spd_limit to the current value */
7101 sata_link_init_spd(&ap->link);
7102
7103 /* print per-port info to dmesg */
7104 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7105 ap->udma_mask);
7106
7107 if (!ata_port_is_dummy(ap)) {
7108 ata_port_printk(ap, KERN_INFO,
7109 "%cATA max %s %s\n",
7110 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7111 ata_mode_string(xfer_mask),
7112 ap->link.eh_info.desc);
7113 ata_ehi_clear_desc(&ap->link.eh_info);
7114 } else
7115 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7116 }
7117
7118 /* perform each probe synchronously */
7119 DPRINTK("probe begin\n");
7120 for (i = 0; i < host->n_ports; i++) {
7121 struct ata_port *ap = host->ports[i];
7122 int rc;
7123
7124 /* probe */
7125 if (ap->ops->error_handler) {
7126 struct ata_eh_info *ehi = &ap->link.eh_info;
7127 unsigned long flags;
7128
7129 ata_port_probe(ap);
7130
7131 /* kick EH for boot probing */
7132 spin_lock_irqsave(ap->lock, flags);
7133
7134 ehi->probe_mask =
7135 (1 << ata_link_max_devices(&ap->link)) - 1;
7136 ehi->action |= ATA_EH_SOFTRESET;
7137 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7138
7139 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7140 ap->pflags |= ATA_PFLAG_LOADING;
7141 ata_port_schedule_eh(ap);
7142
7143 spin_unlock_irqrestore(ap->lock, flags);
7144
7145 /* wait for EH to finish */
7146 ata_port_wait_eh(ap);
7147 } else {
7148 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7149 rc = ata_bus_probe(ap);
7150 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7151
7152 if (rc) {
7153 /* FIXME: do something useful here?
7154 * Current libata behavior will
7155 * tear down everything when
7156 * the module is removed
7157 * or the h/w is unplugged.
7158 */
7159 }
7160 }
7161 }
7162
7163 /* probes are done, now scan each port's disk(s) */
7164 DPRINTK("host probe begin\n");
7165 for (i = 0; i < host->n_ports; i++) {
7166 struct ata_port *ap = host->ports[i];
7167
7168 ata_scsi_scan_host(ap, 1);
7169 ata_lpm_schedule(ap, ap->pm_policy);
7170 }
7171
7172 return 0;
7173 }
7174
7175 /**
7176 * ata_host_activate - start host, request IRQ and register it
7177 * @host: target ATA host
7178 * @irq: IRQ to request
7179 * @irq_handler: irq_handler used when requesting IRQ
7180 * @irq_flags: irq_flags used when requesting IRQ
7181 * @sht: scsi_host_template to use when registering the host
7182 *
7183 * After allocating an ATA host and initializing it, most libata
7184 * LLDs perform three steps to activate the host - start host,
7185 * request IRQ and register it. This helper takes necessasry
7186 * arguments and performs the three steps in one go.
7187 *
7188 * An invalid IRQ skips the IRQ registration and expects the host to
7189 * have set polling mode on the port. In this case, @irq_handler
7190 * should be NULL.
7191 *
7192 * LOCKING:
7193 * Inherited from calling layer (may sleep).
7194 *
7195 * RETURNS:
7196 * 0 on success, -errno otherwise.
7197 */
7198 int ata_host_activate(struct ata_host *host, int irq,
7199 irq_handler_t irq_handler, unsigned long irq_flags,
7200 struct scsi_host_template *sht)
7201 {
7202 int i, rc;
7203
7204 rc = ata_host_start(host);
7205 if (rc)
7206 return rc;
7207
7208 /* Special case for polling mode */
7209 if (!irq) {
7210 WARN_ON(irq_handler);
7211 return ata_host_register(host, sht);
7212 }
7213
7214 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7215 dev_driver_string(host->dev), host);
7216 if (rc)
7217 return rc;
7218
7219 for (i = 0; i < host->n_ports; i++)
7220 ata_port_desc(host->ports[i], "irq %d", irq);
7221
7222 rc = ata_host_register(host, sht);
7223 /* if failed, just free the IRQ and leave ports alone */
7224 if (rc)
7225 devm_free_irq(host->dev, irq, host);
7226
7227 return rc;
7228 }
7229
7230 /**
7231 * ata_port_detach - Detach ATA port in prepration of device removal
7232 * @ap: ATA port to be detached
7233 *
7234 * Detach all ATA devices and the associated SCSI devices of @ap;
7235 * then, remove the associated SCSI host. @ap is guaranteed to
7236 * be quiescent on return from this function.
7237 *
7238 * LOCKING:
7239 * Kernel thread context (may sleep).
7240 */
7241 static void ata_port_detach(struct ata_port *ap)
7242 {
7243 unsigned long flags;
7244 struct ata_link *link;
7245 struct ata_device *dev;
7246
7247 if (!ap->ops->error_handler)
7248 goto skip_eh;
7249
7250 /* tell EH we're leaving & flush EH */
7251 spin_lock_irqsave(ap->lock, flags);
7252 ap->pflags |= ATA_PFLAG_UNLOADING;
7253 spin_unlock_irqrestore(ap->lock, flags);
7254
7255 ata_port_wait_eh(ap);
7256
7257 /* EH is now guaranteed to see UNLOADING - EH context belongs
7258 * to us. Disable all existing devices.
7259 */
7260 ata_port_for_each_link(link, ap) {
7261 ata_link_for_each_dev(dev, link)
7262 ata_dev_disable(dev);
7263 }
7264
7265 /* Final freeze & EH. All in-flight commands are aborted. EH
7266 * will be skipped and retrials will be terminated with bad
7267 * target.
7268 */
7269 spin_lock_irqsave(ap->lock, flags);
7270 ata_port_freeze(ap); /* won't be thawed */
7271 spin_unlock_irqrestore(ap->lock, flags);
7272
7273 ata_port_wait_eh(ap);
7274 cancel_rearming_delayed_work(&ap->hotplug_task);
7275
7276 skip_eh:
7277 /* remove the associated SCSI host */
7278 scsi_remove_host(ap->scsi_host);
7279 }
7280
7281 /**
7282 * ata_host_detach - Detach all ports of an ATA host
7283 * @host: Host to detach
7284 *
7285 * Detach all ports of @host.
7286 *
7287 * LOCKING:
7288 * Kernel thread context (may sleep).
7289 */
7290 void ata_host_detach(struct ata_host *host)
7291 {
7292 int i;
7293
7294 for (i = 0; i < host->n_ports; i++)
7295 ata_port_detach(host->ports[i]);
7296
7297 /* the host is dead now, dissociate ACPI */
7298 ata_acpi_dissociate(host);
7299 }
7300
7301 /**
7302 * ata_std_ports - initialize ioaddr with standard port offsets.
7303 * @ioaddr: IO address structure to be initialized
7304 *
7305 * Utility function which initializes data_addr, error_addr,
7306 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7307 * device_addr, status_addr, and command_addr to standard offsets
7308 * relative to cmd_addr.
7309 *
7310 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7311 */
7312
7313 void ata_std_ports(struct ata_ioports *ioaddr)
7314 {
7315 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7316 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7317 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7318 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7319 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7320 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7321 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7322 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7323 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7324 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7325 }
7326
7327
7328 #ifdef CONFIG_PCI
7329
7330 /**
7331 * ata_pci_remove_one - PCI layer callback for device removal
7332 * @pdev: PCI device that was removed
7333 *
7334 * PCI layer indicates to libata via this hook that hot-unplug or
7335 * module unload event has occurred. Detach all ports. Resource
7336 * release is handled via devres.
7337 *
7338 * LOCKING:
7339 * Inherited from PCI layer (may sleep).
7340 */
7341 void ata_pci_remove_one(struct pci_dev *pdev)
7342 {
7343 struct device *dev = &pdev->dev;
7344 struct ata_host *host = dev_get_drvdata(dev);
7345
7346 ata_host_detach(host);
7347 }
7348
7349 /* move to PCI subsystem */
7350 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7351 {
7352 unsigned long tmp = 0;
7353
7354 switch (bits->width) {
7355 case 1: {
7356 u8 tmp8 = 0;
7357 pci_read_config_byte(pdev, bits->reg, &tmp8);
7358 tmp = tmp8;
7359 break;
7360 }
7361 case 2: {
7362 u16 tmp16 = 0;
7363 pci_read_config_word(pdev, bits->reg, &tmp16);
7364 tmp = tmp16;
7365 break;
7366 }
7367 case 4: {
7368 u32 tmp32 = 0;
7369 pci_read_config_dword(pdev, bits->reg, &tmp32);
7370 tmp = tmp32;
7371 break;
7372 }
7373
7374 default:
7375 return -EINVAL;
7376 }
7377
7378 tmp &= bits->mask;
7379
7380 return (tmp == bits->val) ? 1 : 0;
7381 }
7382
7383 #ifdef CONFIG_PM
7384 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7385 {
7386 pci_save_state(pdev);
7387 pci_disable_device(pdev);
7388
7389 if (mesg.event == PM_EVENT_SUSPEND)
7390 pci_set_power_state(pdev, PCI_D3hot);
7391 }
7392
7393 int ata_pci_device_do_resume(struct pci_dev *pdev)
7394 {
7395 int rc;
7396
7397 pci_set_power_state(pdev, PCI_D0);
7398 pci_restore_state(pdev);
7399
7400 rc = pcim_enable_device(pdev);
7401 if (rc) {
7402 dev_printk(KERN_ERR, &pdev->dev,
7403 "failed to enable device after resume (%d)\n", rc);
7404 return rc;
7405 }
7406
7407 pci_set_master(pdev);
7408 return 0;
7409 }
7410
7411 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7412 {
7413 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7414 int rc = 0;
7415
7416 rc = ata_host_suspend(host, mesg);
7417 if (rc)
7418 return rc;
7419
7420 ata_pci_device_do_suspend(pdev, mesg);
7421
7422 return 0;
7423 }
7424
7425 int ata_pci_device_resume(struct pci_dev *pdev)
7426 {
7427 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7428 int rc;
7429
7430 rc = ata_pci_device_do_resume(pdev);
7431 if (rc == 0)
7432 ata_host_resume(host);
7433 return rc;
7434 }
7435 #endif /* CONFIG_PM */
7436
7437 #endif /* CONFIG_PCI */
7438
7439
7440 static int __init ata_init(void)
7441 {
7442 ata_probe_timeout *= HZ;
7443 ata_wq = create_workqueue("ata");
7444 if (!ata_wq)
7445 return -ENOMEM;
7446
7447 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7448 if (!ata_aux_wq) {
7449 destroy_workqueue(ata_wq);
7450 return -ENOMEM;
7451 }
7452
7453 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7454 return 0;
7455 }
7456
7457 static void __exit ata_exit(void)
7458 {
7459 destroy_workqueue(ata_wq);
7460 destroy_workqueue(ata_aux_wq);
7461 }
7462
7463 subsys_initcall(ata_init);
7464 module_exit(ata_exit);
7465
7466 static unsigned long ratelimit_time;
7467 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7468
7469 int ata_ratelimit(void)
7470 {
7471 int rc;
7472 unsigned long flags;
7473
7474 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7475
7476 if (time_after(jiffies, ratelimit_time)) {
7477 rc = 1;
7478 ratelimit_time = jiffies + (HZ/5);
7479 } else
7480 rc = 0;
7481
7482 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7483
7484 return rc;
7485 }
7486
7487 /**
7488 * ata_wait_register - wait until register value changes
7489 * @reg: IO-mapped register
7490 * @mask: Mask to apply to read register value
7491 * @val: Wait condition
7492 * @interval_msec: polling interval in milliseconds
7493 * @timeout_msec: timeout in milliseconds
7494 *
7495 * Waiting for some bits of register to change is a common
7496 * operation for ATA controllers. This function reads 32bit LE
7497 * IO-mapped register @reg and tests for the following condition.
7498 *
7499 * (*@reg & mask) != val
7500 *
7501 * If the condition is met, it returns; otherwise, the process is
7502 * repeated after @interval_msec until timeout.
7503 *
7504 * LOCKING:
7505 * Kernel thread context (may sleep)
7506 *
7507 * RETURNS:
7508 * The final register value.
7509 */
7510 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7511 unsigned long interval_msec,
7512 unsigned long timeout_msec)
7513 {
7514 unsigned long timeout;
7515 u32 tmp;
7516
7517 tmp = ioread32(reg);
7518
7519 /* Calculate timeout _after_ the first read to make sure
7520 * preceding writes reach the controller before starting to
7521 * eat away the timeout.
7522 */
7523 timeout = jiffies + (timeout_msec * HZ) / 1000;
7524
7525 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7526 msleep(interval_msec);
7527 tmp = ioread32(reg);
7528 }
7529
7530 return tmp;
7531 }
7532
7533 /*
7534 * Dummy port_ops
7535 */
7536 static void ata_dummy_noret(struct ata_port *ap) { }
7537 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7538 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7539
7540 static u8 ata_dummy_check_status(struct ata_port *ap)
7541 {
7542 return ATA_DRDY;
7543 }
7544
7545 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7546 {
7547 return AC_ERR_SYSTEM;
7548 }
7549
7550 const struct ata_port_operations ata_dummy_port_ops = {
7551 .check_status = ata_dummy_check_status,
7552 .check_altstatus = ata_dummy_check_status,
7553 .dev_select = ata_noop_dev_select,
7554 .qc_prep = ata_noop_qc_prep,
7555 .qc_issue = ata_dummy_qc_issue,
7556 .freeze = ata_dummy_noret,
7557 .thaw = ata_dummy_noret,
7558 .error_handler = ata_dummy_noret,
7559 .post_internal_cmd = ata_dummy_qc_noret,
7560 .irq_clear = ata_dummy_noret,
7561 .port_start = ata_dummy_ret0,
7562 .port_stop = ata_dummy_noret,
7563 };
7564
7565 const struct ata_port_info ata_dummy_port_info = {
7566 .port_ops = &ata_dummy_port_ops,
7567 };
7568
7569 /*
7570 * libata is essentially a library of internal helper functions for
7571 * low-level ATA host controller drivers. As such, the API/ABI is
7572 * likely to change as new drivers are added and updated.
7573 * Do not depend on ABI/API stability.
7574 */
7575 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7576 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7577 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7578 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7579 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7580 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7581 EXPORT_SYMBOL_GPL(ata_std_ports);
7582 EXPORT_SYMBOL_GPL(ata_host_init);
7583 EXPORT_SYMBOL_GPL(ata_host_alloc);
7584 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7585 EXPORT_SYMBOL_GPL(ata_host_start);
7586 EXPORT_SYMBOL_GPL(ata_host_register);
7587 EXPORT_SYMBOL_GPL(ata_host_activate);
7588 EXPORT_SYMBOL_GPL(ata_host_detach);
7589 EXPORT_SYMBOL_GPL(ata_sg_init);
7590 EXPORT_SYMBOL_GPL(ata_sg_init_one);
7591 EXPORT_SYMBOL_GPL(ata_hsm_move);
7592 EXPORT_SYMBOL_GPL(ata_qc_complete);
7593 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7594 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7595 EXPORT_SYMBOL_GPL(ata_tf_load);
7596 EXPORT_SYMBOL_GPL(ata_tf_read);
7597 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7598 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7599 EXPORT_SYMBOL_GPL(sata_print_link_status);
7600 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7601 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7602 EXPORT_SYMBOL_GPL(ata_check_status);
7603 EXPORT_SYMBOL_GPL(ata_altstatus);
7604 EXPORT_SYMBOL_GPL(ata_exec_command);
7605 EXPORT_SYMBOL_GPL(ata_port_start);
7606 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7607 EXPORT_SYMBOL_GPL(ata_interrupt);
7608 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7609 EXPORT_SYMBOL_GPL(ata_data_xfer);
7610 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7611 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7612 EXPORT_SYMBOL_GPL(ata_qc_prep);
7613 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7614 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7615 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7616 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7617 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7618 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7619 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7620 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7621 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7622 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7623 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7624 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7625 EXPORT_SYMBOL_GPL(ata_port_probe);
7626 EXPORT_SYMBOL_GPL(ata_dev_disable);
7627 EXPORT_SYMBOL_GPL(sata_set_spd);
7628 EXPORT_SYMBOL_GPL(sata_link_debounce);
7629 EXPORT_SYMBOL_GPL(sata_link_resume);
7630 EXPORT_SYMBOL_GPL(ata_bus_reset);
7631 EXPORT_SYMBOL_GPL(ata_std_prereset);
7632 EXPORT_SYMBOL_GPL(ata_std_softreset);
7633 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7634 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7635 EXPORT_SYMBOL_GPL(ata_std_postreset);
7636 EXPORT_SYMBOL_GPL(ata_dev_classify);
7637 EXPORT_SYMBOL_GPL(ata_dev_pair);
7638 EXPORT_SYMBOL_GPL(ata_port_disable);
7639 EXPORT_SYMBOL_GPL(ata_ratelimit);
7640 EXPORT_SYMBOL_GPL(ata_wait_register);
7641 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7642 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7643 EXPORT_SYMBOL_GPL(ata_wait_ready);
7644 EXPORT_SYMBOL_GPL(ata_port_queue_task);
7645 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7646 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7647 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7648 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7649 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7650 EXPORT_SYMBOL_GPL(ata_host_intr);
7651 EXPORT_SYMBOL_GPL(sata_scr_valid);
7652 EXPORT_SYMBOL_GPL(sata_scr_read);
7653 EXPORT_SYMBOL_GPL(sata_scr_write);
7654 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7655 EXPORT_SYMBOL_GPL(ata_link_online);
7656 EXPORT_SYMBOL_GPL(ata_link_offline);
7657 #ifdef CONFIG_PM
7658 EXPORT_SYMBOL_GPL(ata_host_suspend);
7659 EXPORT_SYMBOL_GPL(ata_host_resume);
7660 #endif /* CONFIG_PM */
7661 EXPORT_SYMBOL_GPL(ata_id_string);
7662 EXPORT_SYMBOL_GPL(ata_id_c_string);
7663 EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
7664 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7665
7666 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7667 EXPORT_SYMBOL_GPL(ata_timing_compute);
7668 EXPORT_SYMBOL_GPL(ata_timing_merge);
7669
7670 #ifdef CONFIG_PCI
7671 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7672 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7673 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7674 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7675 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7676 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7677 #ifdef CONFIG_PM
7678 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7679 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7680 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7681 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7682 #endif /* CONFIG_PM */
7683 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7684 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7685 #endif /* CONFIG_PCI */
7686
7687 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7688 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7689 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7690 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7691 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7692
7693 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7694 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7695 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7696 EXPORT_SYMBOL_GPL(ata_port_desc);
7697 #ifdef CONFIG_PCI
7698 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7699 #endif /* CONFIG_PCI */
7700 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7701 EXPORT_SYMBOL_GPL(ata_link_abort);
7702 EXPORT_SYMBOL_GPL(ata_port_abort);
7703 EXPORT_SYMBOL_GPL(ata_port_freeze);
7704 EXPORT_SYMBOL_GPL(sata_async_notification);
7705 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7706 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7707 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7708 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7709 EXPORT_SYMBOL_GPL(ata_do_eh);
7710 EXPORT_SYMBOL_GPL(ata_irq_on);
7711 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7712
7713 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7714 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7715 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7716 EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.187777 seconds and 6 git commands to generate.