PM / clk: Add support for adding a specific clock from device-tree
[deliverable/linux.git] / drivers / char / ipmi / ipmi_msghandler.c
1 /*
2 * ipmi_msghandler.c
3 *
4 * Incoming and outgoing message routing for an IPMI interface.
5 *
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
9 *
10 * Copyright 2002 MontaVista Software Inc.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49
50 #define PFX "IPMI message handler: "
51
52 #define IPMI_DRIVER_VERSION "39.2"
53
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t intf,
60 struct ipmi_smi_msg *msg);
61
62 static int initialized;
63
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70
71 #define MAX_EVENTS_IN_QUEUE 25
72
73 /*
74 * Don't let a message sit in a queue forever, always time it with at lest
75 * the max message timer. This is in milliseconds.
76 */
77 #define MAX_MSG_TIMEOUT 60000
78
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME 1000
81
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
84
85 /*
86 * Request events from the queue every second (this is the number of
87 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
88 * future, IPMI will add a way to know immediately if an event is in
89 * the queue and this silliness can go away.
90 */
91 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
92
93 /*
94 * The main "user" data structure.
95 */
96 struct ipmi_user {
97 struct list_head link;
98
99 /* Set to false when the user is destroyed. */
100 bool valid;
101
102 struct kref refcount;
103
104 /* The upper layer that handles receive messages. */
105 struct ipmi_user_hndl *handler;
106 void *handler_data;
107
108 /* The interface this user is bound to. */
109 ipmi_smi_t intf;
110
111 /* Does this interface receive IPMI events? */
112 bool gets_events;
113 };
114
115 struct cmd_rcvr {
116 struct list_head link;
117
118 ipmi_user_t user;
119 unsigned char netfn;
120 unsigned char cmd;
121 unsigned int chans;
122
123 /*
124 * This is used to form a linked lised during mass deletion.
125 * Since this is in an RCU list, we cannot use the link above
126 * or change any data until the RCU period completes. So we
127 * use this next variable during mass deletion so we can have
128 * a list and don't have to wait and restart the search on
129 * every individual deletion of a command.
130 */
131 struct cmd_rcvr *next;
132 };
133
134 struct seq_table {
135 unsigned int inuse : 1;
136 unsigned int broadcast : 1;
137
138 unsigned long timeout;
139 unsigned long orig_timeout;
140 unsigned int retries_left;
141
142 /*
143 * To verify on an incoming send message response that this is
144 * the message that the response is for, we keep a sequence id
145 * and increment it every time we send a message.
146 */
147 long seqid;
148
149 /*
150 * This is held so we can properly respond to the message on a
151 * timeout, and it is used to hold the temporary data for
152 * retransmission, too.
153 */
154 struct ipmi_recv_msg *recv_msg;
155 };
156
157 /*
158 * Store the information in a msgid (long) to allow us to find a
159 * sequence table entry from the msgid.
160 */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164 do { \
165 seq = ((msgid >> 26) & 0x3f); \
166 seqid = (msgid & 0x3fffff); \
167 } while (0)
168
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170
171 struct ipmi_channel {
172 unsigned char medium;
173 unsigned char protocol;
174
175 /*
176 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
177 * but may be changed by the user.
178 */
179 unsigned char address;
180
181 /*
182 * My LUN. This should generally stay the SMS LUN, but just in
183 * case...
184 */
185 unsigned char lun;
186 };
187
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190 char *name;
191 struct ipmi_proc_entry *next;
192 };
193 #endif
194
195 struct bmc_device {
196 struct platform_device pdev;
197 struct ipmi_device_id id;
198 unsigned char guid[16];
199 int guid_set;
200 char name[16];
201 struct kref usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204
205 /*
206 * Various statistics for IPMI, these index stats[] in the ipmi_smi
207 * structure.
208 */
209 enum ipmi_stat_indexes {
210 /* Commands we got from the user that were invalid. */
211 IPMI_STAT_sent_invalid_commands = 0,
212
213 /* Commands we sent to the MC. */
214 IPMI_STAT_sent_local_commands,
215
216 /* Responses from the MC that were delivered to a user. */
217 IPMI_STAT_handled_local_responses,
218
219 /* Responses from the MC that were not delivered to a user. */
220 IPMI_STAT_unhandled_local_responses,
221
222 /* Commands we sent out to the IPMB bus. */
223 IPMI_STAT_sent_ipmb_commands,
224
225 /* Commands sent on the IPMB that had errors on the SEND CMD */
226 IPMI_STAT_sent_ipmb_command_errs,
227
228 /* Each retransmit increments this count. */
229 IPMI_STAT_retransmitted_ipmb_commands,
230
231 /*
232 * When a message times out (runs out of retransmits) this is
233 * incremented.
234 */
235 IPMI_STAT_timed_out_ipmb_commands,
236
237 /*
238 * This is like above, but for broadcasts. Broadcasts are
239 * *not* included in the above count (they are expected to
240 * time out).
241 */
242 IPMI_STAT_timed_out_ipmb_broadcasts,
243
244 /* Responses I have sent to the IPMB bus. */
245 IPMI_STAT_sent_ipmb_responses,
246
247 /* The response was delivered to the user. */
248 IPMI_STAT_handled_ipmb_responses,
249
250 /* The response had invalid data in it. */
251 IPMI_STAT_invalid_ipmb_responses,
252
253 /* The response didn't have anyone waiting for it. */
254 IPMI_STAT_unhandled_ipmb_responses,
255
256 /* Commands we sent out to the IPMB bus. */
257 IPMI_STAT_sent_lan_commands,
258
259 /* Commands sent on the IPMB that had errors on the SEND CMD */
260 IPMI_STAT_sent_lan_command_errs,
261
262 /* Each retransmit increments this count. */
263 IPMI_STAT_retransmitted_lan_commands,
264
265 /*
266 * When a message times out (runs out of retransmits) this is
267 * incremented.
268 */
269 IPMI_STAT_timed_out_lan_commands,
270
271 /* Responses I have sent to the IPMB bus. */
272 IPMI_STAT_sent_lan_responses,
273
274 /* The response was delivered to the user. */
275 IPMI_STAT_handled_lan_responses,
276
277 /* The response had invalid data in it. */
278 IPMI_STAT_invalid_lan_responses,
279
280 /* The response didn't have anyone waiting for it. */
281 IPMI_STAT_unhandled_lan_responses,
282
283 /* The command was delivered to the user. */
284 IPMI_STAT_handled_commands,
285
286 /* The command had invalid data in it. */
287 IPMI_STAT_invalid_commands,
288
289 /* The command didn't have anyone waiting for it. */
290 IPMI_STAT_unhandled_commands,
291
292 /* Invalid data in an event. */
293 IPMI_STAT_invalid_events,
294
295 /* Events that were received with the proper format. */
296 IPMI_STAT_events,
297
298 /* Retransmissions on IPMB that failed. */
299 IPMI_STAT_dropped_rexmit_ipmb_commands,
300
301 /* Retransmissions on LAN that failed. */
302 IPMI_STAT_dropped_rexmit_lan_commands,
303
304 /* This *must* remain last, add new values above this. */
305 IPMI_NUM_STATS
306 };
307
308
309 #define IPMI_IPMB_NUM_SEQ 64
310 #define IPMI_MAX_CHANNELS 16
311 struct ipmi_smi {
312 /* What interface number are we? */
313 int intf_num;
314
315 struct kref refcount;
316
317 /* Set when the interface is being unregistered. */
318 bool in_shutdown;
319
320 /* Used for a list of interfaces. */
321 struct list_head link;
322
323 /*
324 * The list of upper layers that are using me. seq_lock
325 * protects this.
326 */
327 struct list_head users;
328
329 /* Information to supply to users. */
330 unsigned char ipmi_version_major;
331 unsigned char ipmi_version_minor;
332
333 /* Used for wake ups at startup. */
334 wait_queue_head_t waitq;
335
336 struct bmc_device *bmc;
337 char *my_dev_name;
338
339 /*
340 * This is the lower-layer's sender routine. Note that you
341 * must either be holding the ipmi_interfaces_mutex or be in
342 * an umpreemptible region to use this. You must fetch the
343 * value into a local variable and make sure it is not NULL.
344 */
345 const struct ipmi_smi_handlers *handlers;
346 void *send_info;
347
348 #ifdef CONFIG_PROC_FS
349 /* A list of proc entries for this interface. */
350 struct mutex proc_entry_lock;
351 struct ipmi_proc_entry *proc_entries;
352 #endif
353
354 /* Driver-model device for the system interface. */
355 struct device *si_dev;
356
357 /*
358 * A table of sequence numbers for this interface. We use the
359 * sequence numbers for IPMB messages that go out of the
360 * interface to match them up with their responses. A routine
361 * is called periodically to time the items in this list.
362 */
363 spinlock_t seq_lock;
364 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365 int curr_seq;
366
367 /*
368 * Messages queued for delivery. If delivery fails (out of memory
369 * for instance), They will stay in here to be processed later in a
370 * periodic timer interrupt. The tasklet is for handling received
371 * messages directly from the handler.
372 */
373 spinlock_t waiting_rcv_msgs_lock;
374 struct list_head waiting_rcv_msgs;
375 atomic_t watchdog_pretimeouts_to_deliver;
376 struct tasklet_struct recv_tasklet;
377
378 spinlock_t xmit_msgs_lock;
379 struct list_head xmit_msgs;
380 struct ipmi_smi_msg *curr_msg;
381 struct list_head hp_xmit_msgs;
382
383 /*
384 * The list of command receivers that are registered for commands
385 * on this interface.
386 */
387 struct mutex cmd_rcvrs_mutex;
388 struct list_head cmd_rcvrs;
389
390 /*
391 * Events that were queues because no one was there to receive
392 * them.
393 */
394 spinlock_t events_lock; /* For dealing with event stuff. */
395 struct list_head waiting_events;
396 unsigned int waiting_events_count; /* How many events in queue? */
397 char delivering_events;
398 char event_msg_printed;
399 atomic_t event_waiters;
400 unsigned int ticks_to_req_ev;
401 int last_needs_timer;
402
403 /*
404 * The event receiver for my BMC, only really used at panic
405 * shutdown as a place to store this.
406 */
407 unsigned char event_receiver;
408 unsigned char event_receiver_lun;
409 unsigned char local_sel_device;
410 unsigned char local_event_generator;
411
412 /* For handling of maintenance mode. */
413 int maintenance_mode;
414 bool maintenance_mode_enable;
415 int auto_maintenance_timeout;
416 spinlock_t maintenance_mode_lock; /* Used in a timer... */
417
418 /*
419 * A cheap hack, if this is non-null and a message to an
420 * interface comes in with a NULL user, call this routine with
421 * it. Note that the message will still be freed by the
422 * caller. This only works on the system interface.
423 */
424 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425
426 /*
427 * When we are scanning the channels for an SMI, this will
428 * tell which channel we are scanning.
429 */
430 int curr_channel;
431
432 /* Channel information */
433 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434
435 /* Proc FS stuff. */
436 struct proc_dir_entry *proc_dir;
437 char proc_dir_name[10];
438
439 atomic_t stats[IPMI_NUM_STATS];
440
441 /*
442 * run_to_completion duplicate of smb_info, smi_info
443 * and ipmi_serial_info structures. Used to decrease numbers of
444 * parameters passed by "low" level IPMI code.
445 */
446 int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449
450 /**
451 * The driver model view of the IPMI messaging driver.
452 */
453 static struct platform_driver ipmidriver = {
454 .driver = {
455 .name = "ipmi",
456 .bus = &platform_bus_type
457 }
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463
464 /*
465 * List of watchers that want to know when smi's are added and deleted.
466 */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469
470 #define ipmi_inc_stat(intf, stat) \
471 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474
475 static const char * const addr_src_to_str[] = {
476 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
477 "device-tree", "default"
478 };
479
480 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
481 {
482 if (src > SI_DEFAULT)
483 src = 0; /* Invalid */
484 return addr_src_to_str[src];
485 }
486 EXPORT_SYMBOL(ipmi_addr_src_to_str);
487
488 static int is_lan_addr(struct ipmi_addr *addr)
489 {
490 return addr->addr_type == IPMI_LAN_ADDR_TYPE;
491 }
492
493 static int is_ipmb_addr(struct ipmi_addr *addr)
494 {
495 return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
496 }
497
498 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
499 {
500 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
501 }
502
503 static void free_recv_msg_list(struct list_head *q)
504 {
505 struct ipmi_recv_msg *msg, *msg2;
506
507 list_for_each_entry_safe(msg, msg2, q, link) {
508 list_del(&msg->link);
509 ipmi_free_recv_msg(msg);
510 }
511 }
512
513 static void free_smi_msg_list(struct list_head *q)
514 {
515 struct ipmi_smi_msg *msg, *msg2;
516
517 list_for_each_entry_safe(msg, msg2, q, link) {
518 list_del(&msg->link);
519 ipmi_free_smi_msg(msg);
520 }
521 }
522
523 static void clean_up_interface_data(ipmi_smi_t intf)
524 {
525 int i;
526 struct cmd_rcvr *rcvr, *rcvr2;
527 struct list_head list;
528
529 tasklet_kill(&intf->recv_tasklet);
530
531 free_smi_msg_list(&intf->waiting_rcv_msgs);
532 free_recv_msg_list(&intf->waiting_events);
533
534 /*
535 * Wholesale remove all the entries from the list in the
536 * interface and wait for RCU to know that none are in use.
537 */
538 mutex_lock(&intf->cmd_rcvrs_mutex);
539 INIT_LIST_HEAD(&list);
540 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
541 mutex_unlock(&intf->cmd_rcvrs_mutex);
542
543 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
544 kfree(rcvr);
545
546 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
547 if ((intf->seq_table[i].inuse)
548 && (intf->seq_table[i].recv_msg))
549 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
550 }
551 }
552
553 static void intf_free(struct kref *ref)
554 {
555 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
556
557 clean_up_interface_data(intf);
558 kfree(intf);
559 }
560
561 struct watcher_entry {
562 int intf_num;
563 ipmi_smi_t intf;
564 struct list_head link;
565 };
566
567 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
568 {
569 ipmi_smi_t intf;
570 LIST_HEAD(to_deliver);
571 struct watcher_entry *e, *e2;
572
573 mutex_lock(&smi_watchers_mutex);
574
575 mutex_lock(&ipmi_interfaces_mutex);
576
577 /* Build a list of things to deliver. */
578 list_for_each_entry(intf, &ipmi_interfaces, link) {
579 if (intf->intf_num == -1)
580 continue;
581 e = kmalloc(sizeof(*e), GFP_KERNEL);
582 if (!e)
583 goto out_err;
584 kref_get(&intf->refcount);
585 e->intf = intf;
586 e->intf_num = intf->intf_num;
587 list_add_tail(&e->link, &to_deliver);
588 }
589
590 /* We will succeed, so add it to the list. */
591 list_add(&watcher->link, &smi_watchers);
592
593 mutex_unlock(&ipmi_interfaces_mutex);
594
595 list_for_each_entry_safe(e, e2, &to_deliver, link) {
596 list_del(&e->link);
597 watcher->new_smi(e->intf_num, e->intf->si_dev);
598 kref_put(&e->intf->refcount, intf_free);
599 kfree(e);
600 }
601
602 mutex_unlock(&smi_watchers_mutex);
603
604 return 0;
605
606 out_err:
607 mutex_unlock(&ipmi_interfaces_mutex);
608 mutex_unlock(&smi_watchers_mutex);
609 list_for_each_entry_safe(e, e2, &to_deliver, link) {
610 list_del(&e->link);
611 kref_put(&e->intf->refcount, intf_free);
612 kfree(e);
613 }
614 return -ENOMEM;
615 }
616 EXPORT_SYMBOL(ipmi_smi_watcher_register);
617
618 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
619 {
620 mutex_lock(&smi_watchers_mutex);
621 list_del(&(watcher->link));
622 mutex_unlock(&smi_watchers_mutex);
623 return 0;
624 }
625 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
626
627 /*
628 * Must be called with smi_watchers_mutex held.
629 */
630 static void
631 call_smi_watchers(int i, struct device *dev)
632 {
633 struct ipmi_smi_watcher *w;
634
635 list_for_each_entry(w, &smi_watchers, link) {
636 if (try_module_get(w->owner)) {
637 w->new_smi(i, dev);
638 module_put(w->owner);
639 }
640 }
641 }
642
643 static int
644 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
645 {
646 if (addr1->addr_type != addr2->addr_type)
647 return 0;
648
649 if (addr1->channel != addr2->channel)
650 return 0;
651
652 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
653 struct ipmi_system_interface_addr *smi_addr1
654 = (struct ipmi_system_interface_addr *) addr1;
655 struct ipmi_system_interface_addr *smi_addr2
656 = (struct ipmi_system_interface_addr *) addr2;
657 return (smi_addr1->lun == smi_addr2->lun);
658 }
659
660 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
661 struct ipmi_ipmb_addr *ipmb_addr1
662 = (struct ipmi_ipmb_addr *) addr1;
663 struct ipmi_ipmb_addr *ipmb_addr2
664 = (struct ipmi_ipmb_addr *) addr2;
665
666 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
667 && (ipmb_addr1->lun == ipmb_addr2->lun));
668 }
669
670 if (is_lan_addr(addr1)) {
671 struct ipmi_lan_addr *lan_addr1
672 = (struct ipmi_lan_addr *) addr1;
673 struct ipmi_lan_addr *lan_addr2
674 = (struct ipmi_lan_addr *) addr2;
675
676 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
677 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
678 && (lan_addr1->session_handle
679 == lan_addr2->session_handle)
680 && (lan_addr1->lun == lan_addr2->lun));
681 }
682
683 return 1;
684 }
685
686 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
687 {
688 if (len < sizeof(struct ipmi_system_interface_addr))
689 return -EINVAL;
690
691 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
692 if (addr->channel != IPMI_BMC_CHANNEL)
693 return -EINVAL;
694 return 0;
695 }
696
697 if ((addr->channel == IPMI_BMC_CHANNEL)
698 || (addr->channel >= IPMI_MAX_CHANNELS)
699 || (addr->channel < 0))
700 return -EINVAL;
701
702 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
703 if (len < sizeof(struct ipmi_ipmb_addr))
704 return -EINVAL;
705 return 0;
706 }
707
708 if (is_lan_addr(addr)) {
709 if (len < sizeof(struct ipmi_lan_addr))
710 return -EINVAL;
711 return 0;
712 }
713
714 return -EINVAL;
715 }
716 EXPORT_SYMBOL(ipmi_validate_addr);
717
718 unsigned int ipmi_addr_length(int addr_type)
719 {
720 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
721 return sizeof(struct ipmi_system_interface_addr);
722
723 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
724 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
725 return sizeof(struct ipmi_ipmb_addr);
726
727 if (addr_type == IPMI_LAN_ADDR_TYPE)
728 return sizeof(struct ipmi_lan_addr);
729
730 return 0;
731 }
732 EXPORT_SYMBOL(ipmi_addr_length);
733
734 static void deliver_response(struct ipmi_recv_msg *msg)
735 {
736 if (!msg->user) {
737 ipmi_smi_t intf = msg->user_msg_data;
738
739 /* Special handling for NULL users. */
740 if (intf->null_user_handler) {
741 intf->null_user_handler(intf, msg);
742 ipmi_inc_stat(intf, handled_local_responses);
743 } else {
744 /* No handler, so give up. */
745 ipmi_inc_stat(intf, unhandled_local_responses);
746 }
747 ipmi_free_recv_msg(msg);
748 } else if (!oops_in_progress) {
749 /*
750 * If we are running in the panic context, calling the
751 * receive handler doesn't much meaning and has a deadlock
752 * risk. At this moment, simply skip it in that case.
753 */
754
755 ipmi_user_t user = msg->user;
756 user->handler->ipmi_recv_hndl(msg, user->handler_data);
757 }
758 }
759
760 static void
761 deliver_err_response(struct ipmi_recv_msg *msg, int err)
762 {
763 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
764 msg->msg_data[0] = err;
765 msg->msg.netfn |= 1; /* Convert to a response. */
766 msg->msg.data_len = 1;
767 msg->msg.data = msg->msg_data;
768 deliver_response(msg);
769 }
770
771 /*
772 * Find the next sequence number not being used and add the given
773 * message with the given timeout to the sequence table. This must be
774 * called with the interface's seq_lock held.
775 */
776 static int intf_next_seq(ipmi_smi_t intf,
777 struct ipmi_recv_msg *recv_msg,
778 unsigned long timeout,
779 int retries,
780 int broadcast,
781 unsigned char *seq,
782 long *seqid)
783 {
784 int rv = 0;
785 unsigned int i;
786
787 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
788 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
789 if (!intf->seq_table[i].inuse)
790 break;
791 }
792
793 if (!intf->seq_table[i].inuse) {
794 intf->seq_table[i].recv_msg = recv_msg;
795
796 /*
797 * Start with the maximum timeout, when the send response
798 * comes in we will start the real timer.
799 */
800 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
801 intf->seq_table[i].orig_timeout = timeout;
802 intf->seq_table[i].retries_left = retries;
803 intf->seq_table[i].broadcast = broadcast;
804 intf->seq_table[i].inuse = 1;
805 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
806 *seq = i;
807 *seqid = intf->seq_table[i].seqid;
808 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
809 need_waiter(intf);
810 } else {
811 rv = -EAGAIN;
812 }
813
814 return rv;
815 }
816
817 /*
818 * Return the receive message for the given sequence number and
819 * release the sequence number so it can be reused. Some other data
820 * is passed in to be sure the message matches up correctly (to help
821 * guard against message coming in after their timeout and the
822 * sequence number being reused).
823 */
824 static int intf_find_seq(ipmi_smi_t intf,
825 unsigned char seq,
826 short channel,
827 unsigned char cmd,
828 unsigned char netfn,
829 struct ipmi_addr *addr,
830 struct ipmi_recv_msg **recv_msg)
831 {
832 int rv = -ENODEV;
833 unsigned long flags;
834
835 if (seq >= IPMI_IPMB_NUM_SEQ)
836 return -EINVAL;
837
838 spin_lock_irqsave(&(intf->seq_lock), flags);
839 if (intf->seq_table[seq].inuse) {
840 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
841
842 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
843 && (msg->msg.netfn == netfn)
844 && (ipmi_addr_equal(addr, &(msg->addr)))) {
845 *recv_msg = msg;
846 intf->seq_table[seq].inuse = 0;
847 rv = 0;
848 }
849 }
850 spin_unlock_irqrestore(&(intf->seq_lock), flags);
851
852 return rv;
853 }
854
855
856 /* Start the timer for a specific sequence table entry. */
857 static int intf_start_seq_timer(ipmi_smi_t intf,
858 long msgid)
859 {
860 int rv = -ENODEV;
861 unsigned long flags;
862 unsigned char seq;
863 unsigned long seqid;
864
865
866 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
867
868 spin_lock_irqsave(&(intf->seq_lock), flags);
869 /*
870 * We do this verification because the user can be deleted
871 * while a message is outstanding.
872 */
873 if ((intf->seq_table[seq].inuse)
874 && (intf->seq_table[seq].seqid == seqid)) {
875 struct seq_table *ent = &(intf->seq_table[seq]);
876 ent->timeout = ent->orig_timeout;
877 rv = 0;
878 }
879 spin_unlock_irqrestore(&(intf->seq_lock), flags);
880
881 return rv;
882 }
883
884 /* Got an error for the send message for a specific sequence number. */
885 static int intf_err_seq(ipmi_smi_t intf,
886 long msgid,
887 unsigned int err)
888 {
889 int rv = -ENODEV;
890 unsigned long flags;
891 unsigned char seq;
892 unsigned long seqid;
893 struct ipmi_recv_msg *msg = NULL;
894
895
896 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
897
898 spin_lock_irqsave(&(intf->seq_lock), flags);
899 /*
900 * We do this verification because the user can be deleted
901 * while a message is outstanding.
902 */
903 if ((intf->seq_table[seq].inuse)
904 && (intf->seq_table[seq].seqid == seqid)) {
905 struct seq_table *ent = &(intf->seq_table[seq]);
906
907 ent->inuse = 0;
908 msg = ent->recv_msg;
909 rv = 0;
910 }
911 spin_unlock_irqrestore(&(intf->seq_lock), flags);
912
913 if (msg)
914 deliver_err_response(msg, err);
915
916 return rv;
917 }
918
919
920 int ipmi_create_user(unsigned int if_num,
921 struct ipmi_user_hndl *handler,
922 void *handler_data,
923 ipmi_user_t *user)
924 {
925 unsigned long flags;
926 ipmi_user_t new_user;
927 int rv = 0;
928 ipmi_smi_t intf;
929
930 /*
931 * There is no module usecount here, because it's not
932 * required. Since this can only be used by and called from
933 * other modules, they will implicitly use this module, and
934 * thus this can't be removed unless the other modules are
935 * removed.
936 */
937
938 if (handler == NULL)
939 return -EINVAL;
940
941 /*
942 * Make sure the driver is actually initialized, this handles
943 * problems with initialization order.
944 */
945 if (!initialized) {
946 rv = ipmi_init_msghandler();
947 if (rv)
948 return rv;
949
950 /*
951 * The init code doesn't return an error if it was turned
952 * off, but it won't initialize. Check that.
953 */
954 if (!initialized)
955 return -ENODEV;
956 }
957
958 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
959 if (!new_user)
960 return -ENOMEM;
961
962 mutex_lock(&ipmi_interfaces_mutex);
963 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
964 if (intf->intf_num == if_num)
965 goto found;
966 }
967 /* Not found, return an error */
968 rv = -EINVAL;
969 goto out_kfree;
970
971 found:
972 /* Note that each existing user holds a refcount to the interface. */
973 kref_get(&intf->refcount);
974
975 kref_init(&new_user->refcount);
976 new_user->handler = handler;
977 new_user->handler_data = handler_data;
978 new_user->intf = intf;
979 new_user->gets_events = false;
980
981 if (!try_module_get(intf->handlers->owner)) {
982 rv = -ENODEV;
983 goto out_kref;
984 }
985
986 if (intf->handlers->inc_usecount) {
987 rv = intf->handlers->inc_usecount(intf->send_info);
988 if (rv) {
989 module_put(intf->handlers->owner);
990 goto out_kref;
991 }
992 }
993
994 /*
995 * Hold the lock so intf->handlers is guaranteed to be good
996 * until now
997 */
998 mutex_unlock(&ipmi_interfaces_mutex);
999
1000 new_user->valid = true;
1001 spin_lock_irqsave(&intf->seq_lock, flags);
1002 list_add_rcu(&new_user->link, &intf->users);
1003 spin_unlock_irqrestore(&intf->seq_lock, flags);
1004 if (handler->ipmi_watchdog_pretimeout) {
1005 /* User wants pretimeouts, so make sure to watch for them. */
1006 if (atomic_inc_return(&intf->event_waiters) == 1)
1007 need_waiter(intf);
1008 }
1009 *user = new_user;
1010 return 0;
1011
1012 out_kref:
1013 kref_put(&intf->refcount, intf_free);
1014 out_kfree:
1015 mutex_unlock(&ipmi_interfaces_mutex);
1016 kfree(new_user);
1017 return rv;
1018 }
1019 EXPORT_SYMBOL(ipmi_create_user);
1020
1021 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1022 {
1023 int rv = 0;
1024 ipmi_smi_t intf;
1025 const struct ipmi_smi_handlers *handlers;
1026
1027 mutex_lock(&ipmi_interfaces_mutex);
1028 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1029 if (intf->intf_num == if_num)
1030 goto found;
1031 }
1032 /* Not found, return an error */
1033 rv = -EINVAL;
1034 mutex_unlock(&ipmi_interfaces_mutex);
1035 return rv;
1036
1037 found:
1038 handlers = intf->handlers;
1039 rv = -ENOSYS;
1040 if (handlers->get_smi_info)
1041 rv = handlers->get_smi_info(intf->send_info, data);
1042 mutex_unlock(&ipmi_interfaces_mutex);
1043
1044 return rv;
1045 }
1046 EXPORT_SYMBOL(ipmi_get_smi_info);
1047
1048 static void free_user(struct kref *ref)
1049 {
1050 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1051 kfree(user);
1052 }
1053
1054 int ipmi_destroy_user(ipmi_user_t user)
1055 {
1056 ipmi_smi_t intf = user->intf;
1057 int i;
1058 unsigned long flags;
1059 struct cmd_rcvr *rcvr;
1060 struct cmd_rcvr *rcvrs = NULL;
1061
1062 user->valid = false;
1063
1064 if (user->handler->ipmi_watchdog_pretimeout)
1065 atomic_dec(&intf->event_waiters);
1066
1067 if (user->gets_events)
1068 atomic_dec(&intf->event_waiters);
1069
1070 /* Remove the user from the interface's sequence table. */
1071 spin_lock_irqsave(&intf->seq_lock, flags);
1072 list_del_rcu(&user->link);
1073
1074 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1075 if (intf->seq_table[i].inuse
1076 && (intf->seq_table[i].recv_msg->user == user)) {
1077 intf->seq_table[i].inuse = 0;
1078 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1079 }
1080 }
1081 spin_unlock_irqrestore(&intf->seq_lock, flags);
1082
1083 /*
1084 * Remove the user from the command receiver's table. First
1085 * we build a list of everything (not using the standard link,
1086 * since other things may be using it till we do
1087 * synchronize_rcu()) then free everything in that list.
1088 */
1089 mutex_lock(&intf->cmd_rcvrs_mutex);
1090 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1091 if (rcvr->user == user) {
1092 list_del_rcu(&rcvr->link);
1093 rcvr->next = rcvrs;
1094 rcvrs = rcvr;
1095 }
1096 }
1097 mutex_unlock(&intf->cmd_rcvrs_mutex);
1098 synchronize_rcu();
1099 while (rcvrs) {
1100 rcvr = rcvrs;
1101 rcvrs = rcvr->next;
1102 kfree(rcvr);
1103 }
1104
1105 mutex_lock(&ipmi_interfaces_mutex);
1106 if (intf->handlers) {
1107 module_put(intf->handlers->owner);
1108 if (intf->handlers->dec_usecount)
1109 intf->handlers->dec_usecount(intf->send_info);
1110 }
1111 mutex_unlock(&ipmi_interfaces_mutex);
1112
1113 kref_put(&intf->refcount, intf_free);
1114
1115 kref_put(&user->refcount, free_user);
1116
1117 return 0;
1118 }
1119 EXPORT_SYMBOL(ipmi_destroy_user);
1120
1121 void ipmi_get_version(ipmi_user_t user,
1122 unsigned char *major,
1123 unsigned char *minor)
1124 {
1125 *major = user->intf->ipmi_version_major;
1126 *minor = user->intf->ipmi_version_minor;
1127 }
1128 EXPORT_SYMBOL(ipmi_get_version);
1129
1130 int ipmi_set_my_address(ipmi_user_t user,
1131 unsigned int channel,
1132 unsigned char address)
1133 {
1134 if (channel >= IPMI_MAX_CHANNELS)
1135 return -EINVAL;
1136 user->intf->channels[channel].address = address;
1137 return 0;
1138 }
1139 EXPORT_SYMBOL(ipmi_set_my_address);
1140
1141 int ipmi_get_my_address(ipmi_user_t user,
1142 unsigned int channel,
1143 unsigned char *address)
1144 {
1145 if (channel >= IPMI_MAX_CHANNELS)
1146 return -EINVAL;
1147 *address = user->intf->channels[channel].address;
1148 return 0;
1149 }
1150 EXPORT_SYMBOL(ipmi_get_my_address);
1151
1152 int ipmi_set_my_LUN(ipmi_user_t user,
1153 unsigned int channel,
1154 unsigned char LUN)
1155 {
1156 if (channel >= IPMI_MAX_CHANNELS)
1157 return -EINVAL;
1158 user->intf->channels[channel].lun = LUN & 0x3;
1159 return 0;
1160 }
1161 EXPORT_SYMBOL(ipmi_set_my_LUN);
1162
1163 int ipmi_get_my_LUN(ipmi_user_t user,
1164 unsigned int channel,
1165 unsigned char *address)
1166 {
1167 if (channel >= IPMI_MAX_CHANNELS)
1168 return -EINVAL;
1169 *address = user->intf->channels[channel].lun;
1170 return 0;
1171 }
1172 EXPORT_SYMBOL(ipmi_get_my_LUN);
1173
1174 int ipmi_get_maintenance_mode(ipmi_user_t user)
1175 {
1176 int mode;
1177 unsigned long flags;
1178
1179 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1180 mode = user->intf->maintenance_mode;
1181 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1182
1183 return mode;
1184 }
1185 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1186
1187 static void maintenance_mode_update(ipmi_smi_t intf)
1188 {
1189 if (intf->handlers->set_maintenance_mode)
1190 intf->handlers->set_maintenance_mode(
1191 intf->send_info, intf->maintenance_mode_enable);
1192 }
1193
1194 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1195 {
1196 int rv = 0;
1197 unsigned long flags;
1198 ipmi_smi_t intf = user->intf;
1199
1200 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1201 if (intf->maintenance_mode != mode) {
1202 switch (mode) {
1203 case IPMI_MAINTENANCE_MODE_AUTO:
1204 intf->maintenance_mode_enable
1205 = (intf->auto_maintenance_timeout > 0);
1206 break;
1207
1208 case IPMI_MAINTENANCE_MODE_OFF:
1209 intf->maintenance_mode_enable = false;
1210 break;
1211
1212 case IPMI_MAINTENANCE_MODE_ON:
1213 intf->maintenance_mode_enable = true;
1214 break;
1215
1216 default:
1217 rv = -EINVAL;
1218 goto out_unlock;
1219 }
1220 intf->maintenance_mode = mode;
1221
1222 maintenance_mode_update(intf);
1223 }
1224 out_unlock:
1225 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1226
1227 return rv;
1228 }
1229 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1230
1231 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1232 {
1233 unsigned long flags;
1234 ipmi_smi_t intf = user->intf;
1235 struct ipmi_recv_msg *msg, *msg2;
1236 struct list_head msgs;
1237
1238 INIT_LIST_HEAD(&msgs);
1239
1240 spin_lock_irqsave(&intf->events_lock, flags);
1241 if (user->gets_events == val)
1242 goto out;
1243
1244 user->gets_events = val;
1245
1246 if (val) {
1247 if (atomic_inc_return(&intf->event_waiters) == 1)
1248 need_waiter(intf);
1249 } else {
1250 atomic_dec(&intf->event_waiters);
1251 }
1252
1253 if (intf->delivering_events)
1254 /*
1255 * Another thread is delivering events for this, so
1256 * let it handle any new events.
1257 */
1258 goto out;
1259
1260 /* Deliver any queued events. */
1261 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1262 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1263 list_move_tail(&msg->link, &msgs);
1264 intf->waiting_events_count = 0;
1265 if (intf->event_msg_printed) {
1266 printk(KERN_WARNING PFX "Event queue no longer"
1267 " full\n");
1268 intf->event_msg_printed = 0;
1269 }
1270
1271 intf->delivering_events = 1;
1272 spin_unlock_irqrestore(&intf->events_lock, flags);
1273
1274 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1275 msg->user = user;
1276 kref_get(&user->refcount);
1277 deliver_response(msg);
1278 }
1279
1280 spin_lock_irqsave(&intf->events_lock, flags);
1281 intf->delivering_events = 0;
1282 }
1283
1284 out:
1285 spin_unlock_irqrestore(&intf->events_lock, flags);
1286
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(ipmi_set_gets_events);
1290
1291 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1292 unsigned char netfn,
1293 unsigned char cmd,
1294 unsigned char chan)
1295 {
1296 struct cmd_rcvr *rcvr;
1297
1298 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1299 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1300 && (rcvr->chans & (1 << chan)))
1301 return rcvr;
1302 }
1303 return NULL;
1304 }
1305
1306 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1307 unsigned char netfn,
1308 unsigned char cmd,
1309 unsigned int chans)
1310 {
1311 struct cmd_rcvr *rcvr;
1312
1313 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1314 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1315 && (rcvr->chans & chans))
1316 return 0;
1317 }
1318 return 1;
1319 }
1320
1321 int ipmi_register_for_cmd(ipmi_user_t user,
1322 unsigned char netfn,
1323 unsigned char cmd,
1324 unsigned int chans)
1325 {
1326 ipmi_smi_t intf = user->intf;
1327 struct cmd_rcvr *rcvr;
1328 int rv = 0;
1329
1330
1331 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1332 if (!rcvr)
1333 return -ENOMEM;
1334 rcvr->cmd = cmd;
1335 rcvr->netfn = netfn;
1336 rcvr->chans = chans;
1337 rcvr->user = user;
1338
1339 mutex_lock(&intf->cmd_rcvrs_mutex);
1340 /* Make sure the command/netfn is not already registered. */
1341 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1342 rv = -EBUSY;
1343 goto out_unlock;
1344 }
1345
1346 if (atomic_inc_return(&intf->event_waiters) == 1)
1347 need_waiter(intf);
1348
1349 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1350
1351 out_unlock:
1352 mutex_unlock(&intf->cmd_rcvrs_mutex);
1353 if (rv)
1354 kfree(rcvr);
1355
1356 return rv;
1357 }
1358 EXPORT_SYMBOL(ipmi_register_for_cmd);
1359
1360 int ipmi_unregister_for_cmd(ipmi_user_t user,
1361 unsigned char netfn,
1362 unsigned char cmd,
1363 unsigned int chans)
1364 {
1365 ipmi_smi_t intf = user->intf;
1366 struct cmd_rcvr *rcvr;
1367 struct cmd_rcvr *rcvrs = NULL;
1368 int i, rv = -ENOENT;
1369
1370 mutex_lock(&intf->cmd_rcvrs_mutex);
1371 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1372 if (((1 << i) & chans) == 0)
1373 continue;
1374 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1375 if (rcvr == NULL)
1376 continue;
1377 if (rcvr->user == user) {
1378 rv = 0;
1379 rcvr->chans &= ~chans;
1380 if (rcvr->chans == 0) {
1381 list_del_rcu(&rcvr->link);
1382 rcvr->next = rcvrs;
1383 rcvrs = rcvr;
1384 }
1385 }
1386 }
1387 mutex_unlock(&intf->cmd_rcvrs_mutex);
1388 synchronize_rcu();
1389 while (rcvrs) {
1390 atomic_dec(&intf->event_waiters);
1391 rcvr = rcvrs;
1392 rcvrs = rcvr->next;
1393 kfree(rcvr);
1394 }
1395 return rv;
1396 }
1397 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1398
1399 static unsigned char
1400 ipmb_checksum(unsigned char *data, int size)
1401 {
1402 unsigned char csum = 0;
1403
1404 for (; size > 0; size--, data++)
1405 csum += *data;
1406
1407 return -csum;
1408 }
1409
1410 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1411 struct kernel_ipmi_msg *msg,
1412 struct ipmi_ipmb_addr *ipmb_addr,
1413 long msgid,
1414 unsigned char ipmb_seq,
1415 int broadcast,
1416 unsigned char source_address,
1417 unsigned char source_lun)
1418 {
1419 int i = broadcast;
1420
1421 /* Format the IPMB header data. */
1422 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1423 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1424 smi_msg->data[2] = ipmb_addr->channel;
1425 if (broadcast)
1426 smi_msg->data[3] = 0;
1427 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1428 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1429 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1430 smi_msg->data[i+6] = source_address;
1431 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1432 smi_msg->data[i+8] = msg->cmd;
1433
1434 /* Now tack on the data to the message. */
1435 if (msg->data_len > 0)
1436 memcpy(&(smi_msg->data[i+9]), msg->data,
1437 msg->data_len);
1438 smi_msg->data_size = msg->data_len + 9;
1439
1440 /* Now calculate the checksum and tack it on. */
1441 smi_msg->data[i+smi_msg->data_size]
1442 = ipmb_checksum(&(smi_msg->data[i+6]),
1443 smi_msg->data_size-6);
1444
1445 /*
1446 * Add on the checksum size and the offset from the
1447 * broadcast.
1448 */
1449 smi_msg->data_size += 1 + i;
1450
1451 smi_msg->msgid = msgid;
1452 }
1453
1454 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1455 struct kernel_ipmi_msg *msg,
1456 struct ipmi_lan_addr *lan_addr,
1457 long msgid,
1458 unsigned char ipmb_seq,
1459 unsigned char source_lun)
1460 {
1461 /* Format the IPMB header data. */
1462 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1463 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1464 smi_msg->data[2] = lan_addr->channel;
1465 smi_msg->data[3] = lan_addr->session_handle;
1466 smi_msg->data[4] = lan_addr->remote_SWID;
1467 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1468 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1469 smi_msg->data[7] = lan_addr->local_SWID;
1470 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1471 smi_msg->data[9] = msg->cmd;
1472
1473 /* Now tack on the data to the message. */
1474 if (msg->data_len > 0)
1475 memcpy(&(smi_msg->data[10]), msg->data,
1476 msg->data_len);
1477 smi_msg->data_size = msg->data_len + 10;
1478
1479 /* Now calculate the checksum and tack it on. */
1480 smi_msg->data[smi_msg->data_size]
1481 = ipmb_checksum(&(smi_msg->data[7]),
1482 smi_msg->data_size-7);
1483
1484 /*
1485 * Add on the checksum size and the offset from the
1486 * broadcast.
1487 */
1488 smi_msg->data_size += 1;
1489
1490 smi_msg->msgid = msgid;
1491 }
1492
1493 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1494 struct ipmi_smi_msg *smi_msg,
1495 int priority)
1496 {
1497 if (intf->curr_msg) {
1498 if (priority > 0)
1499 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1500 else
1501 list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1502 smi_msg = NULL;
1503 } else {
1504 intf->curr_msg = smi_msg;
1505 }
1506
1507 return smi_msg;
1508 }
1509
1510
1511 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1512 struct ipmi_smi_msg *smi_msg, int priority)
1513 {
1514 int run_to_completion = intf->run_to_completion;
1515
1516 if (run_to_completion) {
1517 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1518 } else {
1519 unsigned long flags;
1520
1521 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1522 smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1523 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1524 }
1525
1526 if (smi_msg)
1527 handlers->sender(intf->send_info, smi_msg);
1528 }
1529
1530 /*
1531 * Separate from ipmi_request so that the user does not have to be
1532 * supplied in certain circumstances (mainly at panic time). If
1533 * messages are supplied, they will be freed, even if an error
1534 * occurs.
1535 */
1536 static int i_ipmi_request(ipmi_user_t user,
1537 ipmi_smi_t intf,
1538 struct ipmi_addr *addr,
1539 long msgid,
1540 struct kernel_ipmi_msg *msg,
1541 void *user_msg_data,
1542 void *supplied_smi,
1543 struct ipmi_recv_msg *supplied_recv,
1544 int priority,
1545 unsigned char source_address,
1546 unsigned char source_lun,
1547 int retries,
1548 unsigned int retry_time_ms)
1549 {
1550 int rv = 0;
1551 struct ipmi_smi_msg *smi_msg;
1552 struct ipmi_recv_msg *recv_msg;
1553 unsigned long flags;
1554
1555
1556 if (supplied_recv)
1557 recv_msg = supplied_recv;
1558 else {
1559 recv_msg = ipmi_alloc_recv_msg();
1560 if (recv_msg == NULL)
1561 return -ENOMEM;
1562 }
1563 recv_msg->user_msg_data = user_msg_data;
1564
1565 if (supplied_smi)
1566 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1567 else {
1568 smi_msg = ipmi_alloc_smi_msg();
1569 if (smi_msg == NULL) {
1570 ipmi_free_recv_msg(recv_msg);
1571 return -ENOMEM;
1572 }
1573 }
1574
1575 rcu_read_lock();
1576 if (intf->in_shutdown) {
1577 rv = -ENODEV;
1578 goto out_err;
1579 }
1580
1581 recv_msg->user = user;
1582 if (user)
1583 kref_get(&user->refcount);
1584 recv_msg->msgid = msgid;
1585 /*
1586 * Store the message to send in the receive message so timeout
1587 * responses can get the proper response data.
1588 */
1589 recv_msg->msg = *msg;
1590
1591 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1592 struct ipmi_system_interface_addr *smi_addr;
1593
1594 if (msg->netfn & 1) {
1595 /* Responses are not allowed to the SMI. */
1596 rv = -EINVAL;
1597 goto out_err;
1598 }
1599
1600 smi_addr = (struct ipmi_system_interface_addr *) addr;
1601 if (smi_addr->lun > 3) {
1602 ipmi_inc_stat(intf, sent_invalid_commands);
1603 rv = -EINVAL;
1604 goto out_err;
1605 }
1606
1607 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1608
1609 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1610 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1611 || (msg->cmd == IPMI_GET_MSG_CMD)
1612 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1613 /*
1614 * We don't let the user do these, since we manage
1615 * the sequence numbers.
1616 */
1617 ipmi_inc_stat(intf, sent_invalid_commands);
1618 rv = -EINVAL;
1619 goto out_err;
1620 }
1621
1622 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1623 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1624 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1625 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1626 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1627 intf->auto_maintenance_timeout
1628 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1629 if (!intf->maintenance_mode
1630 && !intf->maintenance_mode_enable) {
1631 intf->maintenance_mode_enable = true;
1632 maintenance_mode_update(intf);
1633 }
1634 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1635 flags);
1636 }
1637
1638 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1639 ipmi_inc_stat(intf, sent_invalid_commands);
1640 rv = -EMSGSIZE;
1641 goto out_err;
1642 }
1643
1644 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1645 smi_msg->data[1] = msg->cmd;
1646 smi_msg->msgid = msgid;
1647 smi_msg->user_data = recv_msg;
1648 if (msg->data_len > 0)
1649 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1650 smi_msg->data_size = msg->data_len + 2;
1651 ipmi_inc_stat(intf, sent_local_commands);
1652 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1653 struct ipmi_ipmb_addr *ipmb_addr;
1654 unsigned char ipmb_seq;
1655 long seqid;
1656 int broadcast = 0;
1657
1658 if (addr->channel >= IPMI_MAX_CHANNELS) {
1659 ipmi_inc_stat(intf, sent_invalid_commands);
1660 rv = -EINVAL;
1661 goto out_err;
1662 }
1663
1664 if (intf->channels[addr->channel].medium
1665 != IPMI_CHANNEL_MEDIUM_IPMB) {
1666 ipmi_inc_stat(intf, sent_invalid_commands);
1667 rv = -EINVAL;
1668 goto out_err;
1669 }
1670
1671 if (retries < 0) {
1672 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1673 retries = 0; /* Don't retry broadcasts. */
1674 else
1675 retries = 4;
1676 }
1677 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1678 /*
1679 * Broadcasts add a zero at the beginning of the
1680 * message, but otherwise is the same as an IPMB
1681 * address.
1682 */
1683 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1684 broadcast = 1;
1685 }
1686
1687
1688 /* Default to 1 second retries. */
1689 if (retry_time_ms == 0)
1690 retry_time_ms = 1000;
1691
1692 /*
1693 * 9 for the header and 1 for the checksum, plus
1694 * possibly one for the broadcast.
1695 */
1696 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1697 ipmi_inc_stat(intf, sent_invalid_commands);
1698 rv = -EMSGSIZE;
1699 goto out_err;
1700 }
1701
1702 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1703 if (ipmb_addr->lun > 3) {
1704 ipmi_inc_stat(intf, sent_invalid_commands);
1705 rv = -EINVAL;
1706 goto out_err;
1707 }
1708
1709 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1710
1711 if (recv_msg->msg.netfn & 0x1) {
1712 /*
1713 * It's a response, so use the user's sequence
1714 * from msgid.
1715 */
1716 ipmi_inc_stat(intf, sent_ipmb_responses);
1717 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1718 msgid, broadcast,
1719 source_address, source_lun);
1720
1721 /*
1722 * Save the receive message so we can use it
1723 * to deliver the response.
1724 */
1725 smi_msg->user_data = recv_msg;
1726 } else {
1727 /* It's a command, so get a sequence for it. */
1728
1729 spin_lock_irqsave(&(intf->seq_lock), flags);
1730
1731 /*
1732 * Create a sequence number with a 1 second
1733 * timeout and 4 retries.
1734 */
1735 rv = intf_next_seq(intf,
1736 recv_msg,
1737 retry_time_ms,
1738 retries,
1739 broadcast,
1740 &ipmb_seq,
1741 &seqid);
1742 if (rv) {
1743 /*
1744 * We have used up all the sequence numbers,
1745 * probably, so abort.
1746 */
1747 spin_unlock_irqrestore(&(intf->seq_lock),
1748 flags);
1749 goto out_err;
1750 }
1751
1752 ipmi_inc_stat(intf, sent_ipmb_commands);
1753
1754 /*
1755 * Store the sequence number in the message,
1756 * so that when the send message response
1757 * comes back we can start the timer.
1758 */
1759 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1760 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1761 ipmb_seq, broadcast,
1762 source_address, source_lun);
1763
1764 /*
1765 * Copy the message into the recv message data, so we
1766 * can retransmit it later if necessary.
1767 */
1768 memcpy(recv_msg->msg_data, smi_msg->data,
1769 smi_msg->data_size);
1770 recv_msg->msg.data = recv_msg->msg_data;
1771 recv_msg->msg.data_len = smi_msg->data_size;
1772
1773 /*
1774 * We don't unlock until here, because we need
1775 * to copy the completed message into the
1776 * recv_msg before we release the lock.
1777 * Otherwise, race conditions may bite us. I
1778 * know that's pretty paranoid, but I prefer
1779 * to be correct.
1780 */
1781 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1782 }
1783 } else if (is_lan_addr(addr)) {
1784 struct ipmi_lan_addr *lan_addr;
1785 unsigned char ipmb_seq;
1786 long seqid;
1787
1788 if (addr->channel >= IPMI_MAX_CHANNELS) {
1789 ipmi_inc_stat(intf, sent_invalid_commands);
1790 rv = -EINVAL;
1791 goto out_err;
1792 }
1793
1794 if ((intf->channels[addr->channel].medium
1795 != IPMI_CHANNEL_MEDIUM_8023LAN)
1796 && (intf->channels[addr->channel].medium
1797 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1798 ipmi_inc_stat(intf, sent_invalid_commands);
1799 rv = -EINVAL;
1800 goto out_err;
1801 }
1802
1803 retries = 4;
1804
1805 /* Default to 1 second retries. */
1806 if (retry_time_ms == 0)
1807 retry_time_ms = 1000;
1808
1809 /* 11 for the header and 1 for the checksum. */
1810 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1811 ipmi_inc_stat(intf, sent_invalid_commands);
1812 rv = -EMSGSIZE;
1813 goto out_err;
1814 }
1815
1816 lan_addr = (struct ipmi_lan_addr *) addr;
1817 if (lan_addr->lun > 3) {
1818 ipmi_inc_stat(intf, sent_invalid_commands);
1819 rv = -EINVAL;
1820 goto out_err;
1821 }
1822
1823 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1824
1825 if (recv_msg->msg.netfn & 0x1) {
1826 /*
1827 * It's a response, so use the user's sequence
1828 * from msgid.
1829 */
1830 ipmi_inc_stat(intf, sent_lan_responses);
1831 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1832 msgid, source_lun);
1833
1834 /*
1835 * Save the receive message so we can use it
1836 * to deliver the response.
1837 */
1838 smi_msg->user_data = recv_msg;
1839 } else {
1840 /* It's a command, so get a sequence for it. */
1841
1842 spin_lock_irqsave(&(intf->seq_lock), flags);
1843
1844 /*
1845 * Create a sequence number with a 1 second
1846 * timeout and 4 retries.
1847 */
1848 rv = intf_next_seq(intf,
1849 recv_msg,
1850 retry_time_ms,
1851 retries,
1852 0,
1853 &ipmb_seq,
1854 &seqid);
1855 if (rv) {
1856 /*
1857 * We have used up all the sequence numbers,
1858 * probably, so abort.
1859 */
1860 spin_unlock_irqrestore(&(intf->seq_lock),
1861 flags);
1862 goto out_err;
1863 }
1864
1865 ipmi_inc_stat(intf, sent_lan_commands);
1866
1867 /*
1868 * Store the sequence number in the message,
1869 * so that when the send message response
1870 * comes back we can start the timer.
1871 */
1872 format_lan_msg(smi_msg, msg, lan_addr,
1873 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1874 ipmb_seq, source_lun);
1875
1876 /*
1877 * Copy the message into the recv message data, so we
1878 * can retransmit it later if necessary.
1879 */
1880 memcpy(recv_msg->msg_data, smi_msg->data,
1881 smi_msg->data_size);
1882 recv_msg->msg.data = recv_msg->msg_data;
1883 recv_msg->msg.data_len = smi_msg->data_size;
1884
1885 /*
1886 * We don't unlock until here, because we need
1887 * to copy the completed message into the
1888 * recv_msg before we release the lock.
1889 * Otherwise, race conditions may bite us. I
1890 * know that's pretty paranoid, but I prefer
1891 * to be correct.
1892 */
1893 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1894 }
1895 } else {
1896 /* Unknown address type. */
1897 ipmi_inc_stat(intf, sent_invalid_commands);
1898 rv = -EINVAL;
1899 goto out_err;
1900 }
1901
1902 #ifdef DEBUG_MSGING
1903 {
1904 int m;
1905 for (m = 0; m < smi_msg->data_size; m++)
1906 printk(" %2.2x", smi_msg->data[m]);
1907 printk("\n");
1908 }
1909 #endif
1910
1911 smi_send(intf, intf->handlers, smi_msg, priority);
1912 rcu_read_unlock();
1913
1914 return 0;
1915
1916 out_err:
1917 rcu_read_unlock();
1918 ipmi_free_smi_msg(smi_msg);
1919 ipmi_free_recv_msg(recv_msg);
1920 return rv;
1921 }
1922
1923 static int check_addr(ipmi_smi_t intf,
1924 struct ipmi_addr *addr,
1925 unsigned char *saddr,
1926 unsigned char *lun)
1927 {
1928 if (addr->channel >= IPMI_MAX_CHANNELS)
1929 return -EINVAL;
1930 *lun = intf->channels[addr->channel].lun;
1931 *saddr = intf->channels[addr->channel].address;
1932 return 0;
1933 }
1934
1935 int ipmi_request_settime(ipmi_user_t user,
1936 struct ipmi_addr *addr,
1937 long msgid,
1938 struct kernel_ipmi_msg *msg,
1939 void *user_msg_data,
1940 int priority,
1941 int retries,
1942 unsigned int retry_time_ms)
1943 {
1944 unsigned char saddr = 0, lun = 0;
1945 int rv;
1946
1947 if (!user)
1948 return -EINVAL;
1949 rv = check_addr(user->intf, addr, &saddr, &lun);
1950 if (rv)
1951 return rv;
1952 return i_ipmi_request(user,
1953 user->intf,
1954 addr,
1955 msgid,
1956 msg,
1957 user_msg_data,
1958 NULL, NULL,
1959 priority,
1960 saddr,
1961 lun,
1962 retries,
1963 retry_time_ms);
1964 }
1965 EXPORT_SYMBOL(ipmi_request_settime);
1966
1967 int ipmi_request_supply_msgs(ipmi_user_t user,
1968 struct ipmi_addr *addr,
1969 long msgid,
1970 struct kernel_ipmi_msg *msg,
1971 void *user_msg_data,
1972 void *supplied_smi,
1973 struct ipmi_recv_msg *supplied_recv,
1974 int priority)
1975 {
1976 unsigned char saddr = 0, lun = 0;
1977 int rv;
1978
1979 if (!user)
1980 return -EINVAL;
1981 rv = check_addr(user->intf, addr, &saddr, &lun);
1982 if (rv)
1983 return rv;
1984 return i_ipmi_request(user,
1985 user->intf,
1986 addr,
1987 msgid,
1988 msg,
1989 user_msg_data,
1990 supplied_smi,
1991 supplied_recv,
1992 priority,
1993 saddr,
1994 lun,
1995 -1, 0);
1996 }
1997 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1998
1999 #ifdef CONFIG_PROC_FS
2000 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2001 {
2002 ipmi_smi_t intf = m->private;
2003 int i;
2004
2005 seq_printf(m, "%x", intf->channels[0].address);
2006 for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2007 seq_printf(m, " %x", intf->channels[i].address);
2008 seq_putc(m, '\n');
2009
2010 return 0;
2011 }
2012
2013 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2014 {
2015 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2016 }
2017
2018 static const struct file_operations smi_ipmb_proc_ops = {
2019 .open = smi_ipmb_proc_open,
2020 .read = seq_read,
2021 .llseek = seq_lseek,
2022 .release = single_release,
2023 };
2024
2025 static int smi_version_proc_show(struct seq_file *m, void *v)
2026 {
2027 ipmi_smi_t intf = m->private;
2028
2029 seq_printf(m, "%u.%u\n",
2030 ipmi_version_major(&intf->bmc->id),
2031 ipmi_version_minor(&intf->bmc->id));
2032
2033 return 0;
2034 }
2035
2036 static int smi_version_proc_open(struct inode *inode, struct file *file)
2037 {
2038 return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2039 }
2040
2041 static const struct file_operations smi_version_proc_ops = {
2042 .open = smi_version_proc_open,
2043 .read = seq_read,
2044 .llseek = seq_lseek,
2045 .release = single_release,
2046 };
2047
2048 static int smi_stats_proc_show(struct seq_file *m, void *v)
2049 {
2050 ipmi_smi_t intf = m->private;
2051
2052 seq_printf(m, "sent_invalid_commands: %u\n",
2053 ipmi_get_stat(intf, sent_invalid_commands));
2054 seq_printf(m, "sent_local_commands: %u\n",
2055 ipmi_get_stat(intf, sent_local_commands));
2056 seq_printf(m, "handled_local_responses: %u\n",
2057 ipmi_get_stat(intf, handled_local_responses));
2058 seq_printf(m, "unhandled_local_responses: %u\n",
2059 ipmi_get_stat(intf, unhandled_local_responses));
2060 seq_printf(m, "sent_ipmb_commands: %u\n",
2061 ipmi_get_stat(intf, sent_ipmb_commands));
2062 seq_printf(m, "sent_ipmb_command_errs: %u\n",
2063 ipmi_get_stat(intf, sent_ipmb_command_errs));
2064 seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2065 ipmi_get_stat(intf, retransmitted_ipmb_commands));
2066 seq_printf(m, "timed_out_ipmb_commands: %u\n",
2067 ipmi_get_stat(intf, timed_out_ipmb_commands));
2068 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n",
2069 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2070 seq_printf(m, "sent_ipmb_responses: %u\n",
2071 ipmi_get_stat(intf, sent_ipmb_responses));
2072 seq_printf(m, "handled_ipmb_responses: %u\n",
2073 ipmi_get_stat(intf, handled_ipmb_responses));
2074 seq_printf(m, "invalid_ipmb_responses: %u\n",
2075 ipmi_get_stat(intf, invalid_ipmb_responses));
2076 seq_printf(m, "unhandled_ipmb_responses: %u\n",
2077 ipmi_get_stat(intf, unhandled_ipmb_responses));
2078 seq_printf(m, "sent_lan_commands: %u\n",
2079 ipmi_get_stat(intf, sent_lan_commands));
2080 seq_printf(m, "sent_lan_command_errs: %u\n",
2081 ipmi_get_stat(intf, sent_lan_command_errs));
2082 seq_printf(m, "retransmitted_lan_commands: %u\n",
2083 ipmi_get_stat(intf, retransmitted_lan_commands));
2084 seq_printf(m, "timed_out_lan_commands: %u\n",
2085 ipmi_get_stat(intf, timed_out_lan_commands));
2086 seq_printf(m, "sent_lan_responses: %u\n",
2087 ipmi_get_stat(intf, sent_lan_responses));
2088 seq_printf(m, "handled_lan_responses: %u\n",
2089 ipmi_get_stat(intf, handled_lan_responses));
2090 seq_printf(m, "invalid_lan_responses: %u\n",
2091 ipmi_get_stat(intf, invalid_lan_responses));
2092 seq_printf(m, "unhandled_lan_responses: %u\n",
2093 ipmi_get_stat(intf, unhandled_lan_responses));
2094 seq_printf(m, "handled_commands: %u\n",
2095 ipmi_get_stat(intf, handled_commands));
2096 seq_printf(m, "invalid_commands: %u\n",
2097 ipmi_get_stat(intf, invalid_commands));
2098 seq_printf(m, "unhandled_commands: %u\n",
2099 ipmi_get_stat(intf, unhandled_commands));
2100 seq_printf(m, "invalid_events: %u\n",
2101 ipmi_get_stat(intf, invalid_events));
2102 seq_printf(m, "events: %u\n",
2103 ipmi_get_stat(intf, events));
2104 seq_printf(m, "failed rexmit LAN msgs: %u\n",
2105 ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2106 seq_printf(m, "failed rexmit IPMB msgs: %u\n",
2107 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2108 return 0;
2109 }
2110
2111 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2112 {
2113 return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2114 }
2115
2116 static const struct file_operations smi_stats_proc_ops = {
2117 .open = smi_stats_proc_open,
2118 .read = seq_read,
2119 .llseek = seq_lseek,
2120 .release = single_release,
2121 };
2122 #endif /* CONFIG_PROC_FS */
2123
2124 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2125 const struct file_operations *proc_ops,
2126 void *data)
2127 {
2128 int rv = 0;
2129 #ifdef CONFIG_PROC_FS
2130 struct proc_dir_entry *file;
2131 struct ipmi_proc_entry *entry;
2132
2133 /* Create a list element. */
2134 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2135 if (!entry)
2136 return -ENOMEM;
2137 entry->name = kstrdup(name, GFP_KERNEL);
2138 if (!entry->name) {
2139 kfree(entry);
2140 return -ENOMEM;
2141 }
2142
2143 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2144 if (!file) {
2145 kfree(entry->name);
2146 kfree(entry);
2147 rv = -ENOMEM;
2148 } else {
2149 mutex_lock(&smi->proc_entry_lock);
2150 /* Stick it on the list. */
2151 entry->next = smi->proc_entries;
2152 smi->proc_entries = entry;
2153 mutex_unlock(&smi->proc_entry_lock);
2154 }
2155 #endif /* CONFIG_PROC_FS */
2156
2157 return rv;
2158 }
2159 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2160
2161 static int add_proc_entries(ipmi_smi_t smi, int num)
2162 {
2163 int rv = 0;
2164
2165 #ifdef CONFIG_PROC_FS
2166 sprintf(smi->proc_dir_name, "%d", num);
2167 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2168 if (!smi->proc_dir)
2169 rv = -ENOMEM;
2170
2171 if (rv == 0)
2172 rv = ipmi_smi_add_proc_entry(smi, "stats",
2173 &smi_stats_proc_ops,
2174 smi);
2175
2176 if (rv == 0)
2177 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2178 &smi_ipmb_proc_ops,
2179 smi);
2180
2181 if (rv == 0)
2182 rv = ipmi_smi_add_proc_entry(smi, "version",
2183 &smi_version_proc_ops,
2184 smi);
2185 #endif /* CONFIG_PROC_FS */
2186
2187 return rv;
2188 }
2189
2190 static void remove_proc_entries(ipmi_smi_t smi)
2191 {
2192 #ifdef CONFIG_PROC_FS
2193 struct ipmi_proc_entry *entry;
2194
2195 mutex_lock(&smi->proc_entry_lock);
2196 while (smi->proc_entries) {
2197 entry = smi->proc_entries;
2198 smi->proc_entries = entry->next;
2199
2200 remove_proc_entry(entry->name, smi->proc_dir);
2201 kfree(entry->name);
2202 kfree(entry);
2203 }
2204 mutex_unlock(&smi->proc_entry_lock);
2205 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2206 #endif /* CONFIG_PROC_FS */
2207 }
2208
2209 static int __find_bmc_guid(struct device *dev, void *data)
2210 {
2211 unsigned char *id = data;
2212 struct bmc_device *bmc = to_bmc_device(dev);
2213 return memcmp(bmc->guid, id, 16) == 0;
2214 }
2215
2216 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2217 unsigned char *guid)
2218 {
2219 struct device *dev;
2220
2221 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2222 if (dev)
2223 return to_bmc_device(dev);
2224 else
2225 return NULL;
2226 }
2227
2228 struct prod_dev_id {
2229 unsigned int product_id;
2230 unsigned char device_id;
2231 };
2232
2233 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2234 {
2235 struct prod_dev_id *id = data;
2236 struct bmc_device *bmc = to_bmc_device(dev);
2237
2238 return (bmc->id.product_id == id->product_id
2239 && bmc->id.device_id == id->device_id);
2240 }
2241
2242 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2243 struct device_driver *drv,
2244 unsigned int product_id, unsigned char device_id)
2245 {
2246 struct prod_dev_id id = {
2247 .product_id = product_id,
2248 .device_id = device_id,
2249 };
2250 struct device *dev;
2251
2252 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2253 if (dev)
2254 return to_bmc_device(dev);
2255 else
2256 return NULL;
2257 }
2258
2259 static ssize_t device_id_show(struct device *dev,
2260 struct device_attribute *attr,
2261 char *buf)
2262 {
2263 struct bmc_device *bmc = to_bmc_device(dev);
2264
2265 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2266 }
2267 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2268
2269 static ssize_t provides_device_sdrs_show(struct device *dev,
2270 struct device_attribute *attr,
2271 char *buf)
2272 {
2273 struct bmc_device *bmc = to_bmc_device(dev);
2274
2275 return snprintf(buf, 10, "%u\n",
2276 (bmc->id.device_revision & 0x80) >> 7);
2277 }
2278 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2279 NULL);
2280
2281 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2282 char *buf)
2283 {
2284 struct bmc_device *bmc = to_bmc_device(dev);
2285
2286 return snprintf(buf, 20, "%u\n",
2287 bmc->id.device_revision & 0x0F);
2288 }
2289 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2290
2291 static ssize_t firmware_revision_show(struct device *dev,
2292 struct device_attribute *attr,
2293 char *buf)
2294 {
2295 struct bmc_device *bmc = to_bmc_device(dev);
2296
2297 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2298 bmc->id.firmware_revision_2);
2299 }
2300 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2301
2302 static ssize_t ipmi_version_show(struct device *dev,
2303 struct device_attribute *attr,
2304 char *buf)
2305 {
2306 struct bmc_device *bmc = to_bmc_device(dev);
2307
2308 return snprintf(buf, 20, "%u.%u\n",
2309 ipmi_version_major(&bmc->id),
2310 ipmi_version_minor(&bmc->id));
2311 }
2312 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2313
2314 static ssize_t add_dev_support_show(struct device *dev,
2315 struct device_attribute *attr,
2316 char *buf)
2317 {
2318 struct bmc_device *bmc = to_bmc_device(dev);
2319
2320 return snprintf(buf, 10, "0x%02x\n",
2321 bmc->id.additional_device_support);
2322 }
2323 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2324 NULL);
2325
2326 static ssize_t manufacturer_id_show(struct device *dev,
2327 struct device_attribute *attr,
2328 char *buf)
2329 {
2330 struct bmc_device *bmc = to_bmc_device(dev);
2331
2332 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2333 }
2334 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2335
2336 static ssize_t product_id_show(struct device *dev,
2337 struct device_attribute *attr,
2338 char *buf)
2339 {
2340 struct bmc_device *bmc = to_bmc_device(dev);
2341
2342 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2343 }
2344 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2345
2346 static ssize_t aux_firmware_rev_show(struct device *dev,
2347 struct device_attribute *attr,
2348 char *buf)
2349 {
2350 struct bmc_device *bmc = to_bmc_device(dev);
2351
2352 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2353 bmc->id.aux_firmware_revision[3],
2354 bmc->id.aux_firmware_revision[2],
2355 bmc->id.aux_firmware_revision[1],
2356 bmc->id.aux_firmware_revision[0]);
2357 }
2358 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2359
2360 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2361 char *buf)
2362 {
2363 struct bmc_device *bmc = to_bmc_device(dev);
2364
2365 return snprintf(buf, 100, "%Lx%Lx\n",
2366 (long long) bmc->guid[0],
2367 (long long) bmc->guid[8]);
2368 }
2369 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2370
2371 static struct attribute *bmc_dev_attrs[] = {
2372 &dev_attr_device_id.attr,
2373 &dev_attr_provides_device_sdrs.attr,
2374 &dev_attr_revision.attr,
2375 &dev_attr_firmware_revision.attr,
2376 &dev_attr_ipmi_version.attr,
2377 &dev_attr_additional_device_support.attr,
2378 &dev_attr_manufacturer_id.attr,
2379 &dev_attr_product_id.attr,
2380 &dev_attr_aux_firmware_revision.attr,
2381 &dev_attr_guid.attr,
2382 NULL
2383 };
2384
2385 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2386 struct attribute *attr, int idx)
2387 {
2388 struct device *dev = kobj_to_dev(kobj);
2389 struct bmc_device *bmc = to_bmc_device(dev);
2390 umode_t mode = attr->mode;
2391
2392 if (attr == &dev_attr_aux_firmware_revision.attr)
2393 return bmc->id.aux_firmware_revision_set ? mode : 0;
2394 if (attr == &dev_attr_guid.attr)
2395 return bmc->guid_set ? mode : 0;
2396 return mode;
2397 }
2398
2399 static struct attribute_group bmc_dev_attr_group = {
2400 .attrs = bmc_dev_attrs,
2401 .is_visible = bmc_dev_attr_is_visible,
2402 };
2403
2404 static const struct attribute_group *bmc_dev_attr_groups[] = {
2405 &bmc_dev_attr_group,
2406 NULL
2407 };
2408
2409 static struct device_type bmc_device_type = {
2410 .groups = bmc_dev_attr_groups,
2411 };
2412
2413 static void
2414 release_bmc_device(struct device *dev)
2415 {
2416 kfree(to_bmc_device(dev));
2417 }
2418
2419 static void
2420 cleanup_bmc_device(struct kref *ref)
2421 {
2422 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2423
2424 platform_device_unregister(&bmc->pdev);
2425 }
2426
2427 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2428 {
2429 struct bmc_device *bmc = intf->bmc;
2430
2431 sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2432 if (intf->my_dev_name) {
2433 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2434 kfree(intf->my_dev_name);
2435 intf->my_dev_name = NULL;
2436 }
2437
2438 mutex_lock(&ipmidriver_mutex);
2439 kref_put(&bmc->usecount, cleanup_bmc_device);
2440 intf->bmc = NULL;
2441 mutex_unlock(&ipmidriver_mutex);
2442 }
2443
2444 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2445 {
2446 int rv;
2447 struct bmc_device *bmc = intf->bmc;
2448 struct bmc_device *old_bmc;
2449
2450 mutex_lock(&ipmidriver_mutex);
2451
2452 /*
2453 * Try to find if there is an bmc_device struct
2454 * representing the interfaced BMC already
2455 */
2456 if (bmc->guid_set)
2457 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2458 else
2459 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2460 bmc->id.product_id,
2461 bmc->id.device_id);
2462
2463 /*
2464 * If there is already an bmc_device, free the new one,
2465 * otherwise register the new BMC device
2466 */
2467 if (old_bmc) {
2468 kfree(bmc);
2469 intf->bmc = old_bmc;
2470 bmc = old_bmc;
2471
2472 kref_get(&bmc->usecount);
2473 mutex_unlock(&ipmidriver_mutex);
2474
2475 printk(KERN_INFO
2476 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2477 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2478 bmc->id.manufacturer_id,
2479 bmc->id.product_id,
2480 bmc->id.device_id);
2481 } else {
2482 unsigned char orig_dev_id = bmc->id.device_id;
2483 int warn_printed = 0;
2484
2485 snprintf(bmc->name, sizeof(bmc->name),
2486 "ipmi_bmc.%4.4x", bmc->id.product_id);
2487 bmc->pdev.name = bmc->name;
2488
2489 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2490 bmc->id.product_id,
2491 bmc->id.device_id)) {
2492 if (!warn_printed) {
2493 printk(KERN_WARNING PFX
2494 "This machine has two different BMCs"
2495 " with the same product id and device"
2496 " id. This is an error in the"
2497 " firmware, but incrementing the"
2498 " device id to work around the problem."
2499 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2500 bmc->id.product_id, bmc->id.device_id);
2501 warn_printed = 1;
2502 }
2503 bmc->id.device_id++; /* Wraps at 255 */
2504 if (bmc->id.device_id == orig_dev_id) {
2505 printk(KERN_ERR PFX
2506 "Out of device ids!\n");
2507 break;
2508 }
2509 }
2510
2511 bmc->pdev.dev.driver = &ipmidriver.driver;
2512 bmc->pdev.id = bmc->id.device_id;
2513 bmc->pdev.dev.release = release_bmc_device;
2514 bmc->pdev.dev.type = &bmc_device_type;
2515 kref_init(&bmc->usecount);
2516
2517 rv = platform_device_register(&bmc->pdev);
2518 mutex_unlock(&ipmidriver_mutex);
2519 if (rv) {
2520 put_device(&bmc->pdev.dev);
2521 printk(KERN_ERR
2522 "ipmi_msghandler:"
2523 " Unable to register bmc device: %d\n",
2524 rv);
2525 /*
2526 * Don't go to out_err, you can only do that if
2527 * the device is registered already.
2528 */
2529 return rv;
2530 }
2531
2532 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2533 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2534 bmc->id.manufacturer_id,
2535 bmc->id.product_id,
2536 bmc->id.device_id);
2537 }
2538
2539 /*
2540 * create symlink from system interface device to bmc device
2541 * and back.
2542 */
2543 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2544 if (rv) {
2545 printk(KERN_ERR
2546 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2547 rv);
2548 goto out_err;
2549 }
2550
2551 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2552 if (!intf->my_dev_name) {
2553 rv = -ENOMEM;
2554 printk(KERN_ERR
2555 "ipmi_msghandler: allocate link from BMC: %d\n",
2556 rv);
2557 goto out_err;
2558 }
2559
2560 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2561 intf->my_dev_name);
2562 if (rv) {
2563 kfree(intf->my_dev_name);
2564 intf->my_dev_name = NULL;
2565 printk(KERN_ERR
2566 "ipmi_msghandler:"
2567 " Unable to create symlink to bmc: %d\n",
2568 rv);
2569 goto out_err;
2570 }
2571
2572 return 0;
2573
2574 out_err:
2575 ipmi_bmc_unregister(intf);
2576 return rv;
2577 }
2578
2579 static int
2580 send_guid_cmd(ipmi_smi_t intf, int chan)
2581 {
2582 struct kernel_ipmi_msg msg;
2583 struct ipmi_system_interface_addr si;
2584
2585 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2586 si.channel = IPMI_BMC_CHANNEL;
2587 si.lun = 0;
2588
2589 msg.netfn = IPMI_NETFN_APP_REQUEST;
2590 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2591 msg.data = NULL;
2592 msg.data_len = 0;
2593 return i_ipmi_request(NULL,
2594 intf,
2595 (struct ipmi_addr *) &si,
2596 0,
2597 &msg,
2598 intf,
2599 NULL,
2600 NULL,
2601 0,
2602 intf->channels[0].address,
2603 intf->channels[0].lun,
2604 -1, 0);
2605 }
2606
2607 static void
2608 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2609 {
2610 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2611 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2612 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2613 /* Not for me */
2614 return;
2615
2616 if (msg->msg.data[0] != 0) {
2617 /* Error from getting the GUID, the BMC doesn't have one. */
2618 intf->bmc->guid_set = 0;
2619 goto out;
2620 }
2621
2622 if (msg->msg.data_len < 17) {
2623 intf->bmc->guid_set = 0;
2624 printk(KERN_WARNING PFX
2625 "guid_handler: The GUID response from the BMC was too"
2626 " short, it was %d but should have been 17. Assuming"
2627 " GUID is not available.\n",
2628 msg->msg.data_len);
2629 goto out;
2630 }
2631
2632 memcpy(intf->bmc->guid, msg->msg.data, 16);
2633 intf->bmc->guid_set = 1;
2634 out:
2635 wake_up(&intf->waitq);
2636 }
2637
2638 static void
2639 get_guid(ipmi_smi_t intf)
2640 {
2641 int rv;
2642
2643 intf->bmc->guid_set = 0x2;
2644 intf->null_user_handler = guid_handler;
2645 rv = send_guid_cmd(intf, 0);
2646 if (rv)
2647 /* Send failed, no GUID available. */
2648 intf->bmc->guid_set = 0;
2649 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2650 intf->null_user_handler = NULL;
2651 }
2652
2653 static int
2654 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2655 {
2656 struct kernel_ipmi_msg msg;
2657 unsigned char data[1];
2658 struct ipmi_system_interface_addr si;
2659
2660 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2661 si.channel = IPMI_BMC_CHANNEL;
2662 si.lun = 0;
2663
2664 msg.netfn = IPMI_NETFN_APP_REQUEST;
2665 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2666 msg.data = data;
2667 msg.data_len = 1;
2668 data[0] = chan;
2669 return i_ipmi_request(NULL,
2670 intf,
2671 (struct ipmi_addr *) &si,
2672 0,
2673 &msg,
2674 intf,
2675 NULL,
2676 NULL,
2677 0,
2678 intf->channels[0].address,
2679 intf->channels[0].lun,
2680 -1, 0);
2681 }
2682
2683 static void
2684 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2685 {
2686 int rv = 0;
2687 int chan;
2688
2689 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2690 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2691 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2692 /* It's the one we want */
2693 if (msg->msg.data[0] != 0) {
2694 /* Got an error from the channel, just go on. */
2695
2696 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2697 /*
2698 * If the MC does not support this
2699 * command, that is legal. We just
2700 * assume it has one IPMB at channel
2701 * zero.
2702 */
2703 intf->channels[0].medium
2704 = IPMI_CHANNEL_MEDIUM_IPMB;
2705 intf->channels[0].protocol
2706 = IPMI_CHANNEL_PROTOCOL_IPMB;
2707
2708 intf->curr_channel = IPMI_MAX_CHANNELS;
2709 wake_up(&intf->waitq);
2710 goto out;
2711 }
2712 goto next_channel;
2713 }
2714 if (msg->msg.data_len < 4) {
2715 /* Message not big enough, just go on. */
2716 goto next_channel;
2717 }
2718 chan = intf->curr_channel;
2719 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2720 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2721
2722 next_channel:
2723 intf->curr_channel++;
2724 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2725 wake_up(&intf->waitq);
2726 else
2727 rv = send_channel_info_cmd(intf, intf->curr_channel);
2728
2729 if (rv) {
2730 /* Got an error somehow, just give up. */
2731 printk(KERN_WARNING PFX
2732 "Error sending channel information for channel"
2733 " %d: %d\n", intf->curr_channel, rv);
2734
2735 intf->curr_channel = IPMI_MAX_CHANNELS;
2736 wake_up(&intf->waitq);
2737 }
2738 }
2739 out:
2740 return;
2741 }
2742
2743 static void ipmi_poll(ipmi_smi_t intf)
2744 {
2745 if (intf->handlers->poll)
2746 intf->handlers->poll(intf->send_info);
2747 /* In case something came in */
2748 handle_new_recv_msgs(intf);
2749 }
2750
2751 void ipmi_poll_interface(ipmi_user_t user)
2752 {
2753 ipmi_poll(user->intf);
2754 }
2755 EXPORT_SYMBOL(ipmi_poll_interface);
2756
2757 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
2758 void *send_info,
2759 struct ipmi_device_id *device_id,
2760 struct device *si_dev,
2761 unsigned char slave_addr)
2762 {
2763 int i, j;
2764 int rv;
2765 ipmi_smi_t intf;
2766 ipmi_smi_t tintf;
2767 struct list_head *link;
2768
2769 /*
2770 * Make sure the driver is actually initialized, this handles
2771 * problems with initialization order.
2772 */
2773 if (!initialized) {
2774 rv = ipmi_init_msghandler();
2775 if (rv)
2776 return rv;
2777 /*
2778 * The init code doesn't return an error if it was turned
2779 * off, but it won't initialize. Check that.
2780 */
2781 if (!initialized)
2782 return -ENODEV;
2783 }
2784
2785 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2786 if (!intf)
2787 return -ENOMEM;
2788
2789 intf->ipmi_version_major = ipmi_version_major(device_id);
2790 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2791
2792 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2793 if (!intf->bmc) {
2794 kfree(intf);
2795 return -ENOMEM;
2796 }
2797 intf->intf_num = -1; /* Mark it invalid for now. */
2798 kref_init(&intf->refcount);
2799 intf->bmc->id = *device_id;
2800 intf->si_dev = si_dev;
2801 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2802 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2803 intf->channels[j].lun = 2;
2804 }
2805 if (slave_addr != 0)
2806 intf->channels[0].address = slave_addr;
2807 INIT_LIST_HEAD(&intf->users);
2808 intf->handlers = handlers;
2809 intf->send_info = send_info;
2810 spin_lock_init(&intf->seq_lock);
2811 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2812 intf->seq_table[j].inuse = 0;
2813 intf->seq_table[j].seqid = 0;
2814 }
2815 intf->curr_seq = 0;
2816 #ifdef CONFIG_PROC_FS
2817 mutex_init(&intf->proc_entry_lock);
2818 #endif
2819 spin_lock_init(&intf->waiting_rcv_msgs_lock);
2820 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2821 tasklet_init(&intf->recv_tasklet,
2822 smi_recv_tasklet,
2823 (unsigned long) intf);
2824 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2825 spin_lock_init(&intf->xmit_msgs_lock);
2826 INIT_LIST_HEAD(&intf->xmit_msgs);
2827 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2828 spin_lock_init(&intf->events_lock);
2829 atomic_set(&intf->event_waiters, 0);
2830 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2831 INIT_LIST_HEAD(&intf->waiting_events);
2832 intf->waiting_events_count = 0;
2833 mutex_init(&intf->cmd_rcvrs_mutex);
2834 spin_lock_init(&intf->maintenance_mode_lock);
2835 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2836 init_waitqueue_head(&intf->waitq);
2837 for (i = 0; i < IPMI_NUM_STATS; i++)
2838 atomic_set(&intf->stats[i], 0);
2839
2840 intf->proc_dir = NULL;
2841
2842 mutex_lock(&smi_watchers_mutex);
2843 mutex_lock(&ipmi_interfaces_mutex);
2844 /* Look for a hole in the numbers. */
2845 i = 0;
2846 link = &ipmi_interfaces;
2847 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2848 if (tintf->intf_num != i) {
2849 link = &tintf->link;
2850 break;
2851 }
2852 i++;
2853 }
2854 /* Add the new interface in numeric order. */
2855 if (i == 0)
2856 list_add_rcu(&intf->link, &ipmi_interfaces);
2857 else
2858 list_add_tail_rcu(&intf->link, link);
2859
2860 rv = handlers->start_processing(send_info, intf);
2861 if (rv)
2862 goto out;
2863
2864 get_guid(intf);
2865
2866 if ((intf->ipmi_version_major > 1)
2867 || ((intf->ipmi_version_major == 1)
2868 && (intf->ipmi_version_minor >= 5))) {
2869 /*
2870 * Start scanning the channels to see what is
2871 * available.
2872 */
2873 intf->null_user_handler = channel_handler;
2874 intf->curr_channel = 0;
2875 rv = send_channel_info_cmd(intf, 0);
2876 if (rv) {
2877 printk(KERN_WARNING PFX
2878 "Error sending channel information for channel"
2879 " 0, %d\n", rv);
2880 goto out;
2881 }
2882
2883 /* Wait for the channel info to be read. */
2884 wait_event(intf->waitq,
2885 intf->curr_channel >= IPMI_MAX_CHANNELS);
2886 intf->null_user_handler = NULL;
2887 } else {
2888 /* Assume a single IPMB channel at zero. */
2889 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2890 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2891 intf->curr_channel = IPMI_MAX_CHANNELS;
2892 }
2893
2894 if (rv == 0)
2895 rv = add_proc_entries(intf, i);
2896
2897 rv = ipmi_bmc_register(intf, i);
2898
2899 out:
2900 if (rv) {
2901 if (intf->proc_dir)
2902 remove_proc_entries(intf);
2903 intf->handlers = NULL;
2904 list_del_rcu(&intf->link);
2905 mutex_unlock(&ipmi_interfaces_mutex);
2906 mutex_unlock(&smi_watchers_mutex);
2907 synchronize_rcu();
2908 kref_put(&intf->refcount, intf_free);
2909 } else {
2910 /*
2911 * Keep memory order straight for RCU readers. Make
2912 * sure everything else is committed to memory before
2913 * setting intf_num to mark the interface valid.
2914 */
2915 smp_wmb();
2916 intf->intf_num = i;
2917 mutex_unlock(&ipmi_interfaces_mutex);
2918 /* After this point the interface is legal to use. */
2919 call_smi_watchers(i, intf->si_dev);
2920 mutex_unlock(&smi_watchers_mutex);
2921 }
2922
2923 return rv;
2924 }
2925 EXPORT_SYMBOL(ipmi_register_smi);
2926
2927 static void deliver_smi_err_response(ipmi_smi_t intf,
2928 struct ipmi_smi_msg *msg,
2929 unsigned char err)
2930 {
2931 msg->rsp[0] = msg->data[0] | 4;
2932 msg->rsp[1] = msg->data[1];
2933 msg->rsp[2] = err;
2934 msg->rsp_size = 3;
2935 /* It's an error, so it will never requeue, no need to check return. */
2936 handle_one_recv_msg(intf, msg);
2937 }
2938
2939 static void cleanup_smi_msgs(ipmi_smi_t intf)
2940 {
2941 int i;
2942 struct seq_table *ent;
2943 struct ipmi_smi_msg *msg;
2944 struct list_head *entry;
2945 struct list_head tmplist;
2946
2947 /* Clear out our transmit queues and hold the messages. */
2948 INIT_LIST_HEAD(&tmplist);
2949 list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2950 list_splice_tail(&intf->xmit_msgs, &tmplist);
2951
2952 /* Current message first, to preserve order */
2953 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2954 /* Wait for the message to clear out. */
2955 schedule_timeout(1);
2956 }
2957
2958 /* No need for locks, the interface is down. */
2959
2960 /*
2961 * Return errors for all pending messages in queue and in the
2962 * tables waiting for remote responses.
2963 */
2964 while (!list_empty(&tmplist)) {
2965 entry = tmplist.next;
2966 list_del(entry);
2967 msg = list_entry(entry, struct ipmi_smi_msg, link);
2968 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2969 }
2970
2971 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2972 ent = &(intf->seq_table[i]);
2973 if (!ent->inuse)
2974 continue;
2975 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2976 }
2977 }
2978
2979 int ipmi_unregister_smi(ipmi_smi_t intf)
2980 {
2981 struct ipmi_smi_watcher *w;
2982 int intf_num = intf->intf_num;
2983 ipmi_user_t user;
2984
2985 ipmi_bmc_unregister(intf);
2986
2987 mutex_lock(&smi_watchers_mutex);
2988 mutex_lock(&ipmi_interfaces_mutex);
2989 intf->intf_num = -1;
2990 intf->in_shutdown = true;
2991 list_del_rcu(&intf->link);
2992 mutex_unlock(&ipmi_interfaces_mutex);
2993 synchronize_rcu();
2994
2995 cleanup_smi_msgs(intf);
2996
2997 /* Clean up the effects of users on the lower-level software. */
2998 mutex_lock(&ipmi_interfaces_mutex);
2999 rcu_read_lock();
3000 list_for_each_entry_rcu(user, &intf->users, link) {
3001 module_put(intf->handlers->owner);
3002 if (intf->handlers->dec_usecount)
3003 intf->handlers->dec_usecount(intf->send_info);
3004 }
3005 rcu_read_unlock();
3006 intf->handlers = NULL;
3007 mutex_unlock(&ipmi_interfaces_mutex);
3008
3009 remove_proc_entries(intf);
3010
3011 /*
3012 * Call all the watcher interfaces to tell them that
3013 * an interface is gone.
3014 */
3015 list_for_each_entry(w, &smi_watchers, link)
3016 w->smi_gone(intf_num);
3017 mutex_unlock(&smi_watchers_mutex);
3018
3019 kref_put(&intf->refcount, intf_free);
3020 return 0;
3021 }
3022 EXPORT_SYMBOL(ipmi_unregister_smi);
3023
3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
3025 struct ipmi_smi_msg *msg)
3026 {
3027 struct ipmi_ipmb_addr ipmb_addr;
3028 struct ipmi_recv_msg *recv_msg;
3029
3030 /*
3031 * This is 11, not 10, because the response must contain a
3032 * completion code.
3033 */
3034 if (msg->rsp_size < 11) {
3035 /* Message not big enough, just ignore it. */
3036 ipmi_inc_stat(intf, invalid_ipmb_responses);
3037 return 0;
3038 }
3039
3040 if (msg->rsp[2] != 0) {
3041 /* An error getting the response, just ignore it. */
3042 return 0;
3043 }
3044
3045 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3046 ipmb_addr.slave_addr = msg->rsp[6];
3047 ipmb_addr.channel = msg->rsp[3] & 0x0f;
3048 ipmb_addr.lun = msg->rsp[7] & 3;
3049
3050 /*
3051 * It's a response from a remote entity. Look up the sequence
3052 * number and handle the response.
3053 */
3054 if (intf_find_seq(intf,
3055 msg->rsp[7] >> 2,
3056 msg->rsp[3] & 0x0f,
3057 msg->rsp[8],
3058 (msg->rsp[4] >> 2) & (~1),
3059 (struct ipmi_addr *) &(ipmb_addr),
3060 &recv_msg)) {
3061 /*
3062 * We were unable to find the sequence number,
3063 * so just nuke the message.
3064 */
3065 ipmi_inc_stat(intf, unhandled_ipmb_responses);
3066 return 0;
3067 }
3068
3069 memcpy(recv_msg->msg_data,
3070 &(msg->rsp[9]),
3071 msg->rsp_size - 9);
3072 /*
3073 * The other fields matched, so no need to set them, except
3074 * for netfn, which needs to be the response that was
3075 * returned, not the request value.
3076 */
3077 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3078 recv_msg->msg.data = recv_msg->msg_data;
3079 recv_msg->msg.data_len = msg->rsp_size - 10;
3080 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3081 ipmi_inc_stat(intf, handled_ipmb_responses);
3082 deliver_response(recv_msg);
3083
3084 return 0;
3085 }
3086
3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
3088 struct ipmi_smi_msg *msg)
3089 {
3090 struct cmd_rcvr *rcvr;
3091 int rv = 0;
3092 unsigned char netfn;
3093 unsigned char cmd;
3094 unsigned char chan;
3095 ipmi_user_t user = NULL;
3096 struct ipmi_ipmb_addr *ipmb_addr;
3097 struct ipmi_recv_msg *recv_msg;
3098
3099 if (msg->rsp_size < 10) {
3100 /* Message not big enough, just ignore it. */
3101 ipmi_inc_stat(intf, invalid_commands);
3102 return 0;
3103 }
3104
3105 if (msg->rsp[2] != 0) {
3106 /* An error getting the response, just ignore it. */
3107 return 0;
3108 }
3109
3110 netfn = msg->rsp[4] >> 2;
3111 cmd = msg->rsp[8];
3112 chan = msg->rsp[3] & 0xf;
3113
3114 rcu_read_lock();
3115 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3116 if (rcvr) {
3117 user = rcvr->user;
3118 kref_get(&user->refcount);
3119 } else
3120 user = NULL;
3121 rcu_read_unlock();
3122
3123 if (user == NULL) {
3124 /* We didn't find a user, deliver an error response. */
3125 ipmi_inc_stat(intf, unhandled_commands);
3126
3127 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3128 msg->data[1] = IPMI_SEND_MSG_CMD;
3129 msg->data[2] = msg->rsp[3];
3130 msg->data[3] = msg->rsp[6];
3131 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3132 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3133 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3134 /* rqseq/lun */
3135 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3136 msg->data[8] = msg->rsp[8]; /* cmd */
3137 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3138 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3139 msg->data_size = 11;
3140
3141 #ifdef DEBUG_MSGING
3142 {
3143 int m;
3144 printk("Invalid command:");
3145 for (m = 0; m < msg->data_size; m++)
3146 printk(" %2.2x", msg->data[m]);
3147 printk("\n");
3148 }
3149 #endif
3150 rcu_read_lock();
3151 if (!intf->in_shutdown) {
3152 smi_send(intf, intf->handlers, msg, 0);
3153 /*
3154 * We used the message, so return the value
3155 * that causes it to not be freed or
3156 * queued.
3157 */
3158 rv = -1;
3159 }
3160 rcu_read_unlock();
3161 } else {
3162 /* Deliver the message to the user. */
3163 ipmi_inc_stat(intf, handled_commands);
3164
3165 recv_msg = ipmi_alloc_recv_msg();
3166 if (!recv_msg) {
3167 /*
3168 * We couldn't allocate memory for the
3169 * message, so requeue it for handling
3170 * later.
3171 */
3172 rv = 1;
3173 kref_put(&user->refcount, free_user);
3174 } else {
3175 /* Extract the source address from the data. */
3176 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3177 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3178 ipmb_addr->slave_addr = msg->rsp[6];
3179 ipmb_addr->lun = msg->rsp[7] & 3;
3180 ipmb_addr->channel = msg->rsp[3] & 0xf;
3181
3182 /*
3183 * Extract the rest of the message information
3184 * from the IPMB header.
3185 */
3186 recv_msg->user = user;
3187 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3188 recv_msg->msgid = msg->rsp[7] >> 2;
3189 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3190 recv_msg->msg.cmd = msg->rsp[8];
3191 recv_msg->msg.data = recv_msg->msg_data;
3192
3193 /*
3194 * We chop off 10, not 9 bytes because the checksum
3195 * at the end also needs to be removed.
3196 */
3197 recv_msg->msg.data_len = msg->rsp_size - 10;
3198 memcpy(recv_msg->msg_data,
3199 &(msg->rsp[9]),
3200 msg->rsp_size - 10);
3201 deliver_response(recv_msg);
3202 }
3203 }
3204
3205 return rv;
3206 }
3207
3208 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3209 struct ipmi_smi_msg *msg)
3210 {
3211 struct ipmi_lan_addr lan_addr;
3212 struct ipmi_recv_msg *recv_msg;
3213
3214
3215 /*
3216 * This is 13, not 12, because the response must contain a
3217 * completion code.
3218 */
3219 if (msg->rsp_size < 13) {
3220 /* Message not big enough, just ignore it. */
3221 ipmi_inc_stat(intf, invalid_lan_responses);
3222 return 0;
3223 }
3224
3225 if (msg->rsp[2] != 0) {
3226 /* An error getting the response, just ignore it. */
3227 return 0;
3228 }
3229
3230 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3231 lan_addr.session_handle = msg->rsp[4];
3232 lan_addr.remote_SWID = msg->rsp[8];
3233 lan_addr.local_SWID = msg->rsp[5];
3234 lan_addr.channel = msg->rsp[3] & 0x0f;
3235 lan_addr.privilege = msg->rsp[3] >> 4;
3236 lan_addr.lun = msg->rsp[9] & 3;
3237
3238 /*
3239 * It's a response from a remote entity. Look up the sequence
3240 * number and handle the response.
3241 */
3242 if (intf_find_seq(intf,
3243 msg->rsp[9] >> 2,
3244 msg->rsp[3] & 0x0f,
3245 msg->rsp[10],
3246 (msg->rsp[6] >> 2) & (~1),
3247 (struct ipmi_addr *) &(lan_addr),
3248 &recv_msg)) {
3249 /*
3250 * We were unable to find the sequence number,
3251 * so just nuke the message.
3252 */
3253 ipmi_inc_stat(intf, unhandled_lan_responses);
3254 return 0;
3255 }
3256
3257 memcpy(recv_msg->msg_data,
3258 &(msg->rsp[11]),
3259 msg->rsp_size - 11);
3260 /*
3261 * The other fields matched, so no need to set them, except
3262 * for netfn, which needs to be the response that was
3263 * returned, not the request value.
3264 */
3265 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3266 recv_msg->msg.data = recv_msg->msg_data;
3267 recv_msg->msg.data_len = msg->rsp_size - 12;
3268 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3269 ipmi_inc_stat(intf, handled_lan_responses);
3270 deliver_response(recv_msg);
3271
3272 return 0;
3273 }
3274
3275 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3276 struct ipmi_smi_msg *msg)
3277 {
3278 struct cmd_rcvr *rcvr;
3279 int rv = 0;
3280 unsigned char netfn;
3281 unsigned char cmd;
3282 unsigned char chan;
3283 ipmi_user_t user = NULL;
3284 struct ipmi_lan_addr *lan_addr;
3285 struct ipmi_recv_msg *recv_msg;
3286
3287 if (msg->rsp_size < 12) {
3288 /* Message not big enough, just ignore it. */
3289 ipmi_inc_stat(intf, invalid_commands);
3290 return 0;
3291 }
3292
3293 if (msg->rsp[2] != 0) {
3294 /* An error getting the response, just ignore it. */
3295 return 0;
3296 }
3297
3298 netfn = msg->rsp[6] >> 2;
3299 cmd = msg->rsp[10];
3300 chan = msg->rsp[3] & 0xf;
3301
3302 rcu_read_lock();
3303 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3304 if (rcvr) {
3305 user = rcvr->user;
3306 kref_get(&user->refcount);
3307 } else
3308 user = NULL;
3309 rcu_read_unlock();
3310
3311 if (user == NULL) {
3312 /* We didn't find a user, just give up. */
3313 ipmi_inc_stat(intf, unhandled_commands);
3314
3315 /*
3316 * Don't do anything with these messages, just allow
3317 * them to be freed.
3318 */
3319 rv = 0;
3320 } else {
3321 /* Deliver the message to the user. */
3322 ipmi_inc_stat(intf, handled_commands);
3323
3324 recv_msg = ipmi_alloc_recv_msg();
3325 if (!recv_msg) {
3326 /*
3327 * We couldn't allocate memory for the
3328 * message, so requeue it for handling later.
3329 */
3330 rv = 1;
3331 kref_put(&user->refcount, free_user);
3332 } else {
3333 /* Extract the source address from the data. */
3334 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3335 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3336 lan_addr->session_handle = msg->rsp[4];
3337 lan_addr->remote_SWID = msg->rsp[8];
3338 lan_addr->local_SWID = msg->rsp[5];
3339 lan_addr->lun = msg->rsp[9] & 3;
3340 lan_addr->channel = msg->rsp[3] & 0xf;
3341 lan_addr->privilege = msg->rsp[3] >> 4;
3342
3343 /*
3344 * Extract the rest of the message information
3345 * from the IPMB header.
3346 */
3347 recv_msg->user = user;
3348 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3349 recv_msg->msgid = msg->rsp[9] >> 2;
3350 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3351 recv_msg->msg.cmd = msg->rsp[10];
3352 recv_msg->msg.data = recv_msg->msg_data;
3353
3354 /*
3355 * We chop off 12, not 11 bytes because the checksum
3356 * at the end also needs to be removed.
3357 */
3358 recv_msg->msg.data_len = msg->rsp_size - 12;
3359 memcpy(recv_msg->msg_data,
3360 &(msg->rsp[11]),
3361 msg->rsp_size - 12);
3362 deliver_response(recv_msg);
3363 }
3364 }
3365
3366 return rv;
3367 }
3368
3369 /*
3370 * This routine will handle "Get Message" command responses with
3371 * channels that use an OEM Medium. The message format belongs to
3372 * the OEM. See IPMI 2.0 specification, Chapter 6 and
3373 * Chapter 22, sections 22.6 and 22.24 for more details.
3374 */
3375 static int handle_oem_get_msg_cmd(ipmi_smi_t intf,
3376 struct ipmi_smi_msg *msg)
3377 {
3378 struct cmd_rcvr *rcvr;
3379 int rv = 0;
3380 unsigned char netfn;
3381 unsigned char cmd;
3382 unsigned char chan;
3383 ipmi_user_t user = NULL;
3384 struct ipmi_system_interface_addr *smi_addr;
3385 struct ipmi_recv_msg *recv_msg;
3386
3387 /*
3388 * We expect the OEM SW to perform error checking
3389 * so we just do some basic sanity checks
3390 */
3391 if (msg->rsp_size < 4) {
3392 /* Message not big enough, just ignore it. */
3393 ipmi_inc_stat(intf, invalid_commands);
3394 return 0;
3395 }
3396
3397 if (msg->rsp[2] != 0) {
3398 /* An error getting the response, just ignore it. */
3399 return 0;
3400 }
3401
3402 /*
3403 * This is an OEM Message so the OEM needs to know how
3404 * handle the message. We do no interpretation.
3405 */
3406 netfn = msg->rsp[0] >> 2;
3407 cmd = msg->rsp[1];
3408 chan = msg->rsp[3] & 0xf;
3409
3410 rcu_read_lock();
3411 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3412 if (rcvr) {
3413 user = rcvr->user;
3414 kref_get(&user->refcount);
3415 } else
3416 user = NULL;
3417 rcu_read_unlock();
3418
3419 if (user == NULL) {
3420 /* We didn't find a user, just give up. */
3421 ipmi_inc_stat(intf, unhandled_commands);
3422
3423 /*
3424 * Don't do anything with these messages, just allow
3425 * them to be freed.
3426 */
3427
3428 rv = 0;
3429 } else {
3430 /* Deliver the message to the user. */
3431 ipmi_inc_stat(intf, handled_commands);
3432
3433 recv_msg = ipmi_alloc_recv_msg();
3434 if (!recv_msg) {
3435 /*
3436 * We couldn't allocate memory for the
3437 * message, so requeue it for handling
3438 * later.
3439 */
3440 rv = 1;
3441 kref_put(&user->refcount, free_user);
3442 } else {
3443 /*
3444 * OEM Messages are expected to be delivered via
3445 * the system interface to SMS software. We might
3446 * need to visit this again depending on OEM
3447 * requirements
3448 */
3449 smi_addr = ((struct ipmi_system_interface_addr *)
3450 &(recv_msg->addr));
3451 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3452 smi_addr->channel = IPMI_BMC_CHANNEL;
3453 smi_addr->lun = msg->rsp[0] & 3;
3454
3455 recv_msg->user = user;
3456 recv_msg->user_msg_data = NULL;
3457 recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3458 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3459 recv_msg->msg.cmd = msg->rsp[1];
3460 recv_msg->msg.data = recv_msg->msg_data;
3461
3462 /*
3463 * The message starts at byte 4 which follows the
3464 * the Channel Byte in the "GET MESSAGE" command
3465 */
3466 recv_msg->msg.data_len = msg->rsp_size - 4;
3467 memcpy(recv_msg->msg_data,
3468 &(msg->rsp[4]),
3469 msg->rsp_size - 4);
3470 deliver_response(recv_msg);
3471 }
3472 }
3473
3474 return rv;
3475 }
3476
3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3478 struct ipmi_smi_msg *msg)
3479 {
3480 struct ipmi_system_interface_addr *smi_addr;
3481
3482 recv_msg->msgid = 0;
3483 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3484 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3485 smi_addr->channel = IPMI_BMC_CHANNEL;
3486 smi_addr->lun = msg->rsp[0] & 3;
3487 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3488 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3489 recv_msg->msg.cmd = msg->rsp[1];
3490 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3491 recv_msg->msg.data = recv_msg->msg_data;
3492 recv_msg->msg.data_len = msg->rsp_size - 3;
3493 }
3494
3495 static int handle_read_event_rsp(ipmi_smi_t intf,
3496 struct ipmi_smi_msg *msg)
3497 {
3498 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3499 struct list_head msgs;
3500 ipmi_user_t user;
3501 int rv = 0;
3502 int deliver_count = 0;
3503 unsigned long flags;
3504
3505 if (msg->rsp_size < 19) {
3506 /* Message is too small to be an IPMB event. */
3507 ipmi_inc_stat(intf, invalid_events);
3508 return 0;
3509 }
3510
3511 if (msg->rsp[2] != 0) {
3512 /* An error getting the event, just ignore it. */
3513 return 0;
3514 }
3515
3516 INIT_LIST_HEAD(&msgs);
3517
3518 spin_lock_irqsave(&intf->events_lock, flags);
3519
3520 ipmi_inc_stat(intf, events);
3521
3522 /*
3523 * Allocate and fill in one message for every user that is
3524 * getting events.
3525 */
3526 rcu_read_lock();
3527 list_for_each_entry_rcu(user, &intf->users, link) {
3528 if (!user->gets_events)
3529 continue;
3530
3531 recv_msg = ipmi_alloc_recv_msg();
3532 if (!recv_msg) {
3533 rcu_read_unlock();
3534 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3535 link) {
3536 list_del(&recv_msg->link);
3537 ipmi_free_recv_msg(recv_msg);
3538 }
3539 /*
3540 * We couldn't allocate memory for the
3541 * message, so requeue it for handling
3542 * later.
3543 */
3544 rv = 1;
3545 goto out;
3546 }
3547
3548 deliver_count++;
3549
3550 copy_event_into_recv_msg(recv_msg, msg);
3551 recv_msg->user = user;
3552 kref_get(&user->refcount);
3553 list_add_tail(&(recv_msg->link), &msgs);
3554 }
3555 rcu_read_unlock();
3556
3557 if (deliver_count) {
3558 /* Now deliver all the messages. */
3559 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3560 list_del(&recv_msg->link);
3561 deliver_response(recv_msg);
3562 }
3563 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3564 /*
3565 * No one to receive the message, put it in queue if there's
3566 * not already too many things in the queue.
3567 */
3568 recv_msg = ipmi_alloc_recv_msg();
3569 if (!recv_msg) {
3570 /*
3571 * We couldn't allocate memory for the
3572 * message, so requeue it for handling
3573 * later.
3574 */
3575 rv = 1;
3576 goto out;
3577 }
3578
3579 copy_event_into_recv_msg(recv_msg, msg);
3580 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3581 intf->waiting_events_count++;
3582 } else if (!intf->event_msg_printed) {
3583 /*
3584 * There's too many things in the queue, discard this
3585 * message.
3586 */
3587 printk(KERN_WARNING PFX "Event queue full, discarding"
3588 " incoming events\n");
3589 intf->event_msg_printed = 1;
3590 }
3591
3592 out:
3593 spin_unlock_irqrestore(&(intf->events_lock), flags);
3594
3595 return rv;
3596 }
3597
3598 static int handle_bmc_rsp(ipmi_smi_t intf,
3599 struct ipmi_smi_msg *msg)
3600 {
3601 struct ipmi_recv_msg *recv_msg;
3602 struct ipmi_user *user;
3603
3604 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3605 if (recv_msg == NULL) {
3606 printk(KERN_WARNING
3607 "IPMI message received with no owner. This\n"
3608 "could be because of a malformed message, or\n"
3609 "because of a hardware error. Contact your\n"
3610 "hardware vender for assistance\n");
3611 return 0;
3612 }
3613
3614 user = recv_msg->user;
3615 /* Make sure the user still exists. */
3616 if (user && !user->valid) {
3617 /* The user for the message went away, so give up. */
3618 ipmi_inc_stat(intf, unhandled_local_responses);
3619 ipmi_free_recv_msg(recv_msg);
3620 } else {
3621 struct ipmi_system_interface_addr *smi_addr;
3622
3623 ipmi_inc_stat(intf, handled_local_responses);
3624 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3625 recv_msg->msgid = msg->msgid;
3626 smi_addr = ((struct ipmi_system_interface_addr *)
3627 &(recv_msg->addr));
3628 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3629 smi_addr->channel = IPMI_BMC_CHANNEL;
3630 smi_addr->lun = msg->rsp[0] & 3;
3631 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3632 recv_msg->msg.cmd = msg->rsp[1];
3633 memcpy(recv_msg->msg_data,
3634 &(msg->rsp[2]),
3635 msg->rsp_size - 2);
3636 recv_msg->msg.data = recv_msg->msg_data;
3637 recv_msg->msg.data_len = msg->rsp_size - 2;
3638 deliver_response(recv_msg);
3639 }
3640
3641 return 0;
3642 }
3643
3644 /*
3645 * Handle a received message. Return 1 if the message should be requeued,
3646 * 0 if the message should be freed, or -1 if the message should not
3647 * be freed or requeued.
3648 */
3649 static int handle_one_recv_msg(ipmi_smi_t intf,
3650 struct ipmi_smi_msg *msg)
3651 {
3652 int requeue;
3653 int chan;
3654
3655 #ifdef DEBUG_MSGING
3656 int m;
3657 printk("Recv:");
3658 for (m = 0; m < msg->rsp_size; m++)
3659 printk(" %2.2x", msg->rsp[m]);
3660 printk("\n");
3661 #endif
3662 if (msg->rsp_size < 2) {
3663 /* Message is too small to be correct. */
3664 printk(KERN_WARNING PFX "BMC returned to small a message"
3665 " for netfn %x cmd %x, got %d bytes\n",
3666 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3667
3668 /* Generate an error response for the message. */
3669 msg->rsp[0] = msg->data[0] | (1 << 2);
3670 msg->rsp[1] = msg->data[1];
3671 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3672 msg->rsp_size = 3;
3673 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3674 || (msg->rsp[1] != msg->data[1])) {
3675 /*
3676 * The NetFN and Command in the response is not even
3677 * marginally correct.
3678 */
3679 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3680 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3681 (msg->data[0] >> 2) | 1, msg->data[1],
3682 msg->rsp[0] >> 2, msg->rsp[1]);
3683
3684 /* Generate an error response for the message. */
3685 msg->rsp[0] = msg->data[0] | (1 << 2);
3686 msg->rsp[1] = msg->data[1];
3687 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3688 msg->rsp_size = 3;
3689 }
3690
3691 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3692 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3693 && (msg->user_data != NULL)) {
3694 /*
3695 * It's a response to a response we sent. For this we
3696 * deliver a send message response to the user.
3697 */
3698 struct ipmi_recv_msg *recv_msg = msg->user_data;
3699
3700 requeue = 0;
3701 if (msg->rsp_size < 2)
3702 /* Message is too small to be correct. */
3703 goto out;
3704
3705 chan = msg->data[2] & 0x0f;
3706 if (chan >= IPMI_MAX_CHANNELS)
3707 /* Invalid channel number */
3708 goto out;
3709
3710 if (!recv_msg)
3711 goto out;
3712
3713 /* Make sure the user still exists. */
3714 if (!recv_msg->user || !recv_msg->user->valid)
3715 goto out;
3716
3717 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3718 recv_msg->msg.data = recv_msg->msg_data;
3719 recv_msg->msg.data_len = 1;
3720 recv_msg->msg_data[0] = msg->rsp[2];
3721 deliver_response(recv_msg);
3722 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3723 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3724 /* It's from the receive queue. */
3725 chan = msg->rsp[3] & 0xf;
3726 if (chan >= IPMI_MAX_CHANNELS) {
3727 /* Invalid channel number */
3728 requeue = 0;
3729 goto out;
3730 }
3731
3732 /*
3733 * We need to make sure the channels have been initialized.
3734 * The channel_handler routine will set the "curr_channel"
3735 * equal to or greater than IPMI_MAX_CHANNELS when all the
3736 * channels for this interface have been initialized.
3737 */
3738 if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3739 requeue = 0; /* Throw the message away */
3740 goto out;
3741 }
3742
3743 switch (intf->channels[chan].medium) {
3744 case IPMI_CHANNEL_MEDIUM_IPMB:
3745 if (msg->rsp[4] & 0x04) {
3746 /*
3747 * It's a response, so find the
3748 * requesting message and send it up.
3749 */
3750 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3751 } else {
3752 /*
3753 * It's a command to the SMS from some other
3754 * entity. Handle that.
3755 */
3756 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3757 }
3758 break;
3759
3760 case IPMI_CHANNEL_MEDIUM_8023LAN:
3761 case IPMI_CHANNEL_MEDIUM_ASYNC:
3762 if (msg->rsp[6] & 0x04) {
3763 /*
3764 * It's a response, so find the
3765 * requesting message and send it up.
3766 */
3767 requeue = handle_lan_get_msg_rsp(intf, msg);
3768 } else {
3769 /*
3770 * It's a command to the SMS from some other
3771 * entity. Handle that.
3772 */
3773 requeue = handle_lan_get_msg_cmd(intf, msg);
3774 }
3775 break;
3776
3777 default:
3778 /* Check for OEM Channels. Clients had better
3779 register for these commands. */
3780 if ((intf->channels[chan].medium
3781 >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3782 && (intf->channels[chan].medium
3783 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3784 requeue = handle_oem_get_msg_cmd(intf, msg);
3785 } else {
3786 /*
3787 * We don't handle the channel type, so just
3788 * free the message.
3789 */
3790 requeue = 0;
3791 }
3792 }
3793
3794 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3795 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3796 /* It's an asynchronous event. */
3797 requeue = handle_read_event_rsp(intf, msg);
3798 } else {
3799 /* It's a response from the local BMC. */
3800 requeue = handle_bmc_rsp(intf, msg);
3801 }
3802
3803 out:
3804 return requeue;
3805 }
3806
3807 /*
3808 * If there are messages in the queue or pretimeouts, handle them.
3809 */
3810 static void handle_new_recv_msgs(ipmi_smi_t intf)
3811 {
3812 struct ipmi_smi_msg *smi_msg;
3813 unsigned long flags = 0;
3814 int rv;
3815 int run_to_completion = intf->run_to_completion;
3816
3817 /* See if any waiting messages need to be processed. */
3818 if (!run_to_completion)
3819 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3820 while (!list_empty(&intf->waiting_rcv_msgs)) {
3821 smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3822 struct ipmi_smi_msg, link);
3823 if (!run_to_completion)
3824 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3825 flags);
3826 rv = handle_one_recv_msg(intf, smi_msg);
3827 if (!run_to_completion)
3828 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3829 if (rv > 0) {
3830 /*
3831 * To preserve message order, quit if we
3832 * can't handle a message.
3833 */
3834 break;
3835 } else {
3836 list_del(&smi_msg->link);
3837 if (rv == 0)
3838 /* Message handled */
3839 ipmi_free_smi_msg(smi_msg);
3840 /* If rv < 0, fatal error, del but don't free. */
3841 }
3842 }
3843 if (!run_to_completion)
3844 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3845
3846 /*
3847 * If the pretimout count is non-zero, decrement one from it and
3848 * deliver pretimeouts to all the users.
3849 */
3850 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3851 ipmi_user_t user;
3852
3853 rcu_read_lock();
3854 list_for_each_entry_rcu(user, &intf->users, link) {
3855 if (user->handler->ipmi_watchdog_pretimeout)
3856 user->handler->ipmi_watchdog_pretimeout(
3857 user->handler_data);
3858 }
3859 rcu_read_unlock();
3860 }
3861 }
3862
3863 static void smi_recv_tasklet(unsigned long val)
3864 {
3865 unsigned long flags = 0; /* keep us warning-free. */
3866 ipmi_smi_t intf = (ipmi_smi_t) val;
3867 int run_to_completion = intf->run_to_completion;
3868 struct ipmi_smi_msg *newmsg = NULL;
3869
3870 /*
3871 * Start the next message if available.
3872 *
3873 * Do this here, not in the actual receiver, because we may deadlock
3874 * because the lower layer is allowed to hold locks while calling
3875 * message delivery.
3876 */
3877 if (!run_to_completion)
3878 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3879 if (intf->curr_msg == NULL && !intf->in_shutdown) {
3880 struct list_head *entry = NULL;
3881
3882 /* Pick the high priority queue first. */
3883 if (!list_empty(&intf->hp_xmit_msgs))
3884 entry = intf->hp_xmit_msgs.next;
3885 else if (!list_empty(&intf->xmit_msgs))
3886 entry = intf->xmit_msgs.next;
3887
3888 if (entry) {
3889 list_del(entry);
3890 newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3891 intf->curr_msg = newmsg;
3892 }
3893 }
3894 if (!run_to_completion)
3895 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3896 if (newmsg)
3897 intf->handlers->sender(intf->send_info, newmsg);
3898
3899 handle_new_recv_msgs(intf);
3900 }
3901
3902 /* Handle a new message from the lower layer. */
3903 void ipmi_smi_msg_received(ipmi_smi_t intf,
3904 struct ipmi_smi_msg *msg)
3905 {
3906 unsigned long flags = 0; /* keep us warning-free. */
3907 int run_to_completion = intf->run_to_completion;
3908
3909 if ((msg->data_size >= 2)
3910 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3911 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3912 && (msg->user_data == NULL)) {
3913
3914 if (intf->in_shutdown)
3915 goto free_msg;
3916
3917 /*
3918 * This is the local response to a command send, start
3919 * the timer for these. The user_data will not be
3920 * NULL if this is a response send, and we will let
3921 * response sends just go through.
3922 */
3923
3924 /*
3925 * Check for errors, if we get certain errors (ones
3926 * that mean basically we can try again later), we
3927 * ignore them and start the timer. Otherwise we
3928 * report the error immediately.
3929 */
3930 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3931 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3932 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3933 && (msg->rsp[2] != IPMI_BUS_ERR)
3934 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3935 int chan = msg->rsp[3] & 0xf;
3936
3937 /* Got an error sending the message, handle it. */
3938 if (chan >= IPMI_MAX_CHANNELS)
3939 ; /* This shouldn't happen */
3940 else if ((intf->channels[chan].medium
3941 == IPMI_CHANNEL_MEDIUM_8023LAN)
3942 || (intf->channels[chan].medium
3943 == IPMI_CHANNEL_MEDIUM_ASYNC))
3944 ipmi_inc_stat(intf, sent_lan_command_errs);
3945 else
3946 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3947 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3948 } else
3949 /* The message was sent, start the timer. */
3950 intf_start_seq_timer(intf, msg->msgid);
3951
3952 free_msg:
3953 ipmi_free_smi_msg(msg);
3954 } else {
3955 /*
3956 * To preserve message order, we keep a queue and deliver from
3957 * a tasklet.
3958 */
3959 if (!run_to_completion)
3960 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3961 list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3962 if (!run_to_completion)
3963 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3964 flags);
3965 }
3966
3967 if (!run_to_completion)
3968 spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3969 /*
3970 * We can get an asynchronous event or receive message in addition
3971 * to commands we send.
3972 */
3973 if (msg == intf->curr_msg)
3974 intf->curr_msg = NULL;
3975 if (!run_to_completion)
3976 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3977
3978 if (run_to_completion)
3979 smi_recv_tasklet((unsigned long) intf);
3980 else
3981 tasklet_schedule(&intf->recv_tasklet);
3982 }
3983 EXPORT_SYMBOL(ipmi_smi_msg_received);
3984
3985 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3986 {
3987 if (intf->in_shutdown)
3988 return;
3989
3990 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3991 tasklet_schedule(&intf->recv_tasklet);
3992 }
3993 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3994
3995 static struct ipmi_smi_msg *
3996 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3997 unsigned char seq, long seqid)
3998 {
3999 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4000 if (!smi_msg)
4001 /*
4002 * If we can't allocate the message, then just return, we
4003 * get 4 retries, so this should be ok.
4004 */
4005 return NULL;
4006
4007 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4008 smi_msg->data_size = recv_msg->msg.data_len;
4009 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4010
4011 #ifdef DEBUG_MSGING
4012 {
4013 int m;
4014 printk("Resend: ");
4015 for (m = 0; m < smi_msg->data_size; m++)
4016 printk(" %2.2x", smi_msg->data[m]);
4017 printk("\n");
4018 }
4019 #endif
4020 return smi_msg;
4021 }
4022
4023 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4024 struct list_head *timeouts, long timeout_period,
4025 int slot, unsigned long *flags,
4026 unsigned int *waiting_msgs)
4027 {
4028 struct ipmi_recv_msg *msg;
4029 const struct ipmi_smi_handlers *handlers;
4030
4031 if (intf->in_shutdown)
4032 return;
4033
4034 if (!ent->inuse)
4035 return;
4036
4037 ent->timeout -= timeout_period;
4038 if (ent->timeout > 0) {
4039 (*waiting_msgs)++;
4040 return;
4041 }
4042
4043 if (ent->retries_left == 0) {
4044 /* The message has used all its retries. */
4045 ent->inuse = 0;
4046 msg = ent->recv_msg;
4047 list_add_tail(&msg->link, timeouts);
4048 if (ent->broadcast)
4049 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4050 else if (is_lan_addr(&ent->recv_msg->addr))
4051 ipmi_inc_stat(intf, timed_out_lan_commands);
4052 else
4053 ipmi_inc_stat(intf, timed_out_ipmb_commands);
4054 } else {
4055 struct ipmi_smi_msg *smi_msg;
4056 /* More retries, send again. */
4057
4058 (*waiting_msgs)++;
4059
4060 /*
4061 * Start with the max timer, set to normal timer after
4062 * the message is sent.
4063 */
4064 ent->timeout = MAX_MSG_TIMEOUT;
4065 ent->retries_left--;
4066 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4067 ent->seqid);
4068 if (!smi_msg) {
4069 if (is_lan_addr(&ent->recv_msg->addr))
4070 ipmi_inc_stat(intf,
4071 dropped_rexmit_lan_commands);
4072 else
4073 ipmi_inc_stat(intf,
4074 dropped_rexmit_ipmb_commands);
4075 return;
4076 }
4077
4078 spin_unlock_irqrestore(&intf->seq_lock, *flags);
4079
4080 /*
4081 * Send the new message. We send with a zero
4082 * priority. It timed out, I doubt time is that
4083 * critical now, and high priority messages are really
4084 * only for messages to the local MC, which don't get
4085 * resent.
4086 */
4087 handlers = intf->handlers;
4088 if (handlers) {
4089 if (is_lan_addr(&ent->recv_msg->addr))
4090 ipmi_inc_stat(intf,
4091 retransmitted_lan_commands);
4092 else
4093 ipmi_inc_stat(intf,
4094 retransmitted_ipmb_commands);
4095
4096 smi_send(intf, handlers, smi_msg, 0);
4097 } else
4098 ipmi_free_smi_msg(smi_msg);
4099
4100 spin_lock_irqsave(&intf->seq_lock, *flags);
4101 }
4102 }
4103
4104 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4105 {
4106 struct list_head timeouts;
4107 struct ipmi_recv_msg *msg, *msg2;
4108 unsigned long flags;
4109 int i;
4110 unsigned int waiting_msgs = 0;
4111
4112 /*
4113 * Go through the seq table and find any messages that
4114 * have timed out, putting them in the timeouts
4115 * list.
4116 */
4117 INIT_LIST_HEAD(&timeouts);
4118 spin_lock_irqsave(&intf->seq_lock, flags);
4119 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4120 check_msg_timeout(intf, &(intf->seq_table[i]),
4121 &timeouts, timeout_period, i,
4122 &flags, &waiting_msgs);
4123 spin_unlock_irqrestore(&intf->seq_lock, flags);
4124
4125 list_for_each_entry_safe(msg, msg2, &timeouts, link)
4126 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4127
4128 /*
4129 * Maintenance mode handling. Check the timeout
4130 * optimistically before we claim the lock. It may
4131 * mean a timeout gets missed occasionally, but that
4132 * only means the timeout gets extended by one period
4133 * in that case. No big deal, and it avoids the lock
4134 * most of the time.
4135 */
4136 if (intf->auto_maintenance_timeout > 0) {
4137 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4138 if (intf->auto_maintenance_timeout > 0) {
4139 intf->auto_maintenance_timeout
4140 -= timeout_period;
4141 if (!intf->maintenance_mode
4142 && (intf->auto_maintenance_timeout <= 0)) {
4143 intf->maintenance_mode_enable = false;
4144 maintenance_mode_update(intf);
4145 }
4146 }
4147 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4148 flags);
4149 }
4150
4151 tasklet_schedule(&intf->recv_tasklet);
4152
4153 return waiting_msgs;
4154 }
4155
4156 static void ipmi_request_event(ipmi_smi_t intf)
4157 {
4158 /* No event requests when in maintenance mode. */
4159 if (intf->maintenance_mode_enable)
4160 return;
4161
4162 if (!intf->in_shutdown)
4163 intf->handlers->request_events(intf->send_info);
4164 }
4165
4166 static struct timer_list ipmi_timer;
4167
4168 static atomic_t stop_operation;
4169
4170 static void ipmi_timeout(unsigned long data)
4171 {
4172 ipmi_smi_t intf;
4173 int nt = 0;
4174
4175 if (atomic_read(&stop_operation))
4176 return;
4177
4178 rcu_read_lock();
4179 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4180 int lnt = 0;
4181
4182 if (atomic_read(&intf->event_waiters)) {
4183 intf->ticks_to_req_ev--;
4184 if (intf->ticks_to_req_ev == 0) {
4185 ipmi_request_event(intf);
4186 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4187 }
4188 lnt++;
4189 }
4190
4191 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4192
4193 lnt = !!lnt;
4194 if (lnt != intf->last_needs_timer &&
4195 intf->handlers->set_need_watch)
4196 intf->handlers->set_need_watch(intf->send_info, lnt);
4197 intf->last_needs_timer = lnt;
4198
4199 nt += lnt;
4200 }
4201 rcu_read_unlock();
4202
4203 if (nt)
4204 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4205 }
4206
4207 static void need_waiter(ipmi_smi_t intf)
4208 {
4209 /* Racy, but worst case we start the timer twice. */
4210 if (!timer_pending(&ipmi_timer))
4211 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4212 }
4213
4214 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4215 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4216
4217 static void free_smi_msg(struct ipmi_smi_msg *msg)
4218 {
4219 atomic_dec(&smi_msg_inuse_count);
4220 kfree(msg);
4221 }
4222
4223 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4224 {
4225 struct ipmi_smi_msg *rv;
4226 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4227 if (rv) {
4228 rv->done = free_smi_msg;
4229 rv->user_data = NULL;
4230 atomic_inc(&smi_msg_inuse_count);
4231 }
4232 return rv;
4233 }
4234 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4235
4236 static void free_recv_msg(struct ipmi_recv_msg *msg)
4237 {
4238 atomic_dec(&recv_msg_inuse_count);
4239 kfree(msg);
4240 }
4241
4242 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4243 {
4244 struct ipmi_recv_msg *rv;
4245
4246 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4247 if (rv) {
4248 rv->user = NULL;
4249 rv->done = free_recv_msg;
4250 atomic_inc(&recv_msg_inuse_count);
4251 }
4252 return rv;
4253 }
4254
4255 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4256 {
4257 if (msg->user)
4258 kref_put(&msg->user->refcount, free_user);
4259 msg->done(msg);
4260 }
4261 EXPORT_SYMBOL(ipmi_free_recv_msg);
4262
4263 #ifdef CONFIG_IPMI_PANIC_EVENT
4264
4265 static atomic_t panic_done_count = ATOMIC_INIT(0);
4266
4267 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4268 {
4269 atomic_dec(&panic_done_count);
4270 }
4271
4272 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4273 {
4274 atomic_dec(&panic_done_count);
4275 }
4276
4277 /*
4278 * Inside a panic, send a message and wait for a response.
4279 */
4280 static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
4281 struct ipmi_addr *addr,
4282 struct kernel_ipmi_msg *msg)
4283 {
4284 struct ipmi_smi_msg smi_msg;
4285 struct ipmi_recv_msg recv_msg;
4286 int rv;
4287
4288 smi_msg.done = dummy_smi_done_handler;
4289 recv_msg.done = dummy_recv_done_handler;
4290 atomic_add(2, &panic_done_count);
4291 rv = i_ipmi_request(NULL,
4292 intf,
4293 addr,
4294 0,
4295 msg,
4296 intf,
4297 &smi_msg,
4298 &recv_msg,
4299 0,
4300 intf->channels[0].address,
4301 intf->channels[0].lun,
4302 0, 1); /* Don't retry, and don't wait. */
4303 if (rv)
4304 atomic_sub(2, &panic_done_count);
4305 else if (intf->handlers->flush_messages)
4306 intf->handlers->flush_messages(intf->send_info);
4307
4308 while (atomic_read(&panic_done_count) != 0)
4309 ipmi_poll(intf);
4310 }
4311
4312 #ifdef CONFIG_IPMI_PANIC_STRING
4313 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4314 {
4315 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4316 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4317 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4318 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4319 /* A get event receiver command, save it. */
4320 intf->event_receiver = msg->msg.data[1];
4321 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4322 }
4323 }
4324
4325 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4326 {
4327 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4328 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4329 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4330 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4331 /*
4332 * A get device id command, save if we are an event
4333 * receiver or generator.
4334 */
4335 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4336 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4337 }
4338 }
4339 #endif
4340
4341 static void send_panic_events(char *str)
4342 {
4343 struct kernel_ipmi_msg msg;
4344 ipmi_smi_t intf;
4345 unsigned char data[16];
4346 struct ipmi_system_interface_addr *si;
4347 struct ipmi_addr addr;
4348
4349 si = (struct ipmi_system_interface_addr *) &addr;
4350 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4351 si->channel = IPMI_BMC_CHANNEL;
4352 si->lun = 0;
4353
4354 /* Fill in an event telling that we have failed. */
4355 msg.netfn = 0x04; /* Sensor or Event. */
4356 msg.cmd = 2; /* Platform event command. */
4357 msg.data = data;
4358 msg.data_len = 8;
4359 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4360 data[1] = 0x03; /* This is for IPMI 1.0. */
4361 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4362 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4363 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4364
4365 /*
4366 * Put a few breadcrumbs in. Hopefully later we can add more things
4367 * to make the panic events more useful.
4368 */
4369 if (str) {
4370 data[3] = str[0];
4371 data[6] = str[1];
4372 data[7] = str[2];
4373 }
4374
4375 /* For every registered interface, send the event. */
4376 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4377 if (!intf->handlers)
4378 /* Interface is not ready. */
4379 continue;
4380
4381 /* Send the event announcing the panic. */
4382 ipmi_panic_request_and_wait(intf, &addr, &msg);
4383 }
4384
4385 #ifdef CONFIG_IPMI_PANIC_STRING
4386 /*
4387 * On every interface, dump a bunch of OEM event holding the
4388 * string.
4389 */
4390 if (!str)
4391 return;
4392
4393 /* For every registered interface, send the event. */
4394 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4395 char *p = str;
4396 struct ipmi_ipmb_addr *ipmb;
4397 int j;
4398
4399 if (intf->intf_num == -1)
4400 /* Interface was not ready yet. */
4401 continue;
4402
4403 /*
4404 * intf_num is used as an marker to tell if the
4405 * interface is valid. Thus we need a read barrier to
4406 * make sure data fetched before checking intf_num
4407 * won't be used.
4408 */
4409 smp_rmb();
4410
4411 /*
4412 * First job here is to figure out where to send the
4413 * OEM events. There's no way in IPMI to send OEM
4414 * events using an event send command, so we have to
4415 * find the SEL to put them in and stick them in
4416 * there.
4417 */
4418
4419 /* Get capabilities from the get device id. */
4420 intf->local_sel_device = 0;
4421 intf->local_event_generator = 0;
4422 intf->event_receiver = 0;
4423
4424 /* Request the device info from the local MC. */
4425 msg.netfn = IPMI_NETFN_APP_REQUEST;
4426 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4427 msg.data = NULL;
4428 msg.data_len = 0;
4429 intf->null_user_handler = device_id_fetcher;
4430 ipmi_panic_request_and_wait(intf, &addr, &msg);
4431
4432 if (intf->local_event_generator) {
4433 /* Request the event receiver from the local MC. */
4434 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4435 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4436 msg.data = NULL;
4437 msg.data_len = 0;
4438 intf->null_user_handler = event_receiver_fetcher;
4439 ipmi_panic_request_and_wait(intf, &addr, &msg);
4440 }
4441 intf->null_user_handler = NULL;
4442
4443 /*
4444 * Validate the event receiver. The low bit must not
4445 * be 1 (it must be a valid IPMB address), it cannot
4446 * be zero, and it must not be my address.
4447 */
4448 if (((intf->event_receiver & 1) == 0)
4449 && (intf->event_receiver != 0)
4450 && (intf->event_receiver != intf->channels[0].address)) {
4451 /*
4452 * The event receiver is valid, send an IPMB
4453 * message.
4454 */
4455 ipmb = (struct ipmi_ipmb_addr *) &addr;
4456 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4457 ipmb->channel = 0; /* FIXME - is this right? */
4458 ipmb->lun = intf->event_receiver_lun;
4459 ipmb->slave_addr = intf->event_receiver;
4460 } else if (intf->local_sel_device) {
4461 /*
4462 * The event receiver was not valid (or was
4463 * me), but I am an SEL device, just dump it
4464 * in my SEL.
4465 */
4466 si = (struct ipmi_system_interface_addr *) &addr;
4467 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4468 si->channel = IPMI_BMC_CHANNEL;
4469 si->lun = 0;
4470 } else
4471 continue; /* No where to send the event. */
4472
4473 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4474 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4475 msg.data = data;
4476 msg.data_len = 16;
4477
4478 j = 0;
4479 while (*p) {
4480 int size = strlen(p);
4481
4482 if (size > 11)
4483 size = 11;
4484 data[0] = 0;
4485 data[1] = 0;
4486 data[2] = 0xf0; /* OEM event without timestamp. */
4487 data[3] = intf->channels[0].address;
4488 data[4] = j++; /* sequence # */
4489 /*
4490 * Always give 11 bytes, so strncpy will fill
4491 * it with zeroes for me.
4492 */
4493 strncpy(data+5, p, 11);
4494 p += size;
4495
4496 ipmi_panic_request_and_wait(intf, &addr, &msg);
4497 }
4498 }
4499 #endif /* CONFIG_IPMI_PANIC_STRING */
4500 }
4501 #endif /* CONFIG_IPMI_PANIC_EVENT */
4502
4503 static int has_panicked;
4504
4505 static int panic_event(struct notifier_block *this,
4506 unsigned long event,
4507 void *ptr)
4508 {
4509 ipmi_smi_t intf;
4510
4511 if (has_panicked)
4512 return NOTIFY_DONE;
4513 has_panicked = 1;
4514
4515 /* For every registered interface, set it to run to completion. */
4516 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4517 if (!intf->handlers)
4518 /* Interface is not ready. */
4519 continue;
4520
4521 /*
4522 * If we were interrupted while locking xmit_msgs_lock or
4523 * waiting_rcv_msgs_lock, the corresponding list may be
4524 * corrupted. In this case, drop items on the list for
4525 * the safety.
4526 */
4527 if (!spin_trylock(&intf->xmit_msgs_lock)) {
4528 INIT_LIST_HEAD(&intf->xmit_msgs);
4529 INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4530 } else
4531 spin_unlock(&intf->xmit_msgs_lock);
4532
4533 if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4534 INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
4535 else
4536 spin_unlock(&intf->waiting_rcv_msgs_lock);
4537
4538 intf->run_to_completion = 1;
4539 intf->handlers->set_run_to_completion(intf->send_info, 1);
4540 }
4541
4542 #ifdef CONFIG_IPMI_PANIC_EVENT
4543 send_panic_events(ptr);
4544 #endif
4545
4546 return NOTIFY_DONE;
4547 }
4548
4549 static struct notifier_block panic_block = {
4550 .notifier_call = panic_event,
4551 .next = NULL,
4552 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4553 };
4554
4555 static int ipmi_init_msghandler(void)
4556 {
4557 int rv;
4558
4559 if (initialized)
4560 return 0;
4561
4562 rv = driver_register(&ipmidriver.driver);
4563 if (rv) {
4564 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4565 return rv;
4566 }
4567
4568 printk(KERN_INFO "ipmi message handler version "
4569 IPMI_DRIVER_VERSION "\n");
4570
4571 #ifdef CONFIG_PROC_FS
4572 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4573 if (!proc_ipmi_root) {
4574 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4575 driver_unregister(&ipmidriver.driver);
4576 return -ENOMEM;
4577 }
4578
4579 #endif /* CONFIG_PROC_FS */
4580
4581 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4582 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4583
4584 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4585
4586 initialized = 1;
4587
4588 return 0;
4589 }
4590
4591 static int __init ipmi_init_msghandler_mod(void)
4592 {
4593 ipmi_init_msghandler();
4594 return 0;
4595 }
4596
4597 static void __exit cleanup_ipmi(void)
4598 {
4599 int count;
4600
4601 if (!initialized)
4602 return;
4603
4604 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4605
4606 /*
4607 * This can't be called if any interfaces exist, so no worry
4608 * about shutting down the interfaces.
4609 */
4610
4611 /*
4612 * Tell the timer to stop, then wait for it to stop. This
4613 * avoids problems with race conditions removing the timer
4614 * here.
4615 */
4616 atomic_inc(&stop_operation);
4617 del_timer_sync(&ipmi_timer);
4618
4619 #ifdef CONFIG_PROC_FS
4620 proc_remove(proc_ipmi_root);
4621 #endif /* CONFIG_PROC_FS */
4622
4623 driver_unregister(&ipmidriver.driver);
4624
4625 initialized = 0;
4626
4627 /* Check for buffer leaks. */
4628 count = atomic_read(&smi_msg_inuse_count);
4629 if (count != 0)
4630 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4631 count);
4632 count = atomic_read(&recv_msg_inuse_count);
4633 if (count != 0)
4634 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4635 count);
4636 }
4637 module_exit(cleanup_ipmi);
4638
4639 module_init(ipmi_init_msghandler_mod);
4640 MODULE_LICENSE("GPL");
4641 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4642 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4643 " interface.");
4644 MODULE_VERSION(IPMI_DRIVER_VERSION);
This page took 0.168947 seconds and 5 git commands to generate.