Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shaggy...
[deliverable/linux.git] / drivers / crypto / padlock-aes.c
1 /*
2 * Cryptographic API.
3 *
4 * Support for VIA PadLock hardware crypto engine.
5 *
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
7 *
8 * Key expansion routine taken from crypto/aes.c
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * ---------------------------------------------------------------------------
16 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17 * All rights reserved.
18 *
19 * LICENSE TERMS
20 *
21 * The free distribution and use of this software in both source and binary
22 * form is allowed (with or without changes) provided that:
23 *
24 * 1. distributions of this source code include the above copyright
25 * notice, this list of conditions and the following disclaimer;
26 *
27 * 2. distributions in binary form include the above copyright
28 * notice, this list of conditions and the following disclaimer
29 * in the documentation and/or other associated materials;
30 *
31 * 3. the copyright holder's name is not used to endorse products
32 * built using this software without specific written permission.
33 *
34 * ALTERNATIVELY, provided that this notice is retained in full, this product
35 * may be distributed under the terms of the GNU General Public License (GPL),
36 * in which case the provisions of the GPL apply INSTEAD OF those given above.
37 *
38 * DISCLAIMER
39 *
40 * This software is provided 'as is' with no explicit or implied warranties
41 * in respect of its properties, including, but not limited to, correctness
42 * and/or fitness for purpose.
43 * ---------------------------------------------------------------------------
44 */
45
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/crypto.h>
51 #include <linux/interrupt.h>
52 #include <linux/kernel.h>
53 #include <asm/byteorder.h>
54 #include "padlock.h"
55
56 #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
57 #define AES_MAX_KEY_SIZE 32 /* ditto */
58 #define AES_BLOCK_SIZE 16 /* ditto */
59 #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
60 #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
61
62 /* Whenever making any changes to the following
63 * structure *make sure* you keep E, d_data
64 * and cword aligned on 16 Bytes boundaries!!! */
65 struct aes_ctx {
66 struct {
67 struct cword encrypt;
68 struct cword decrypt;
69 } cword;
70 u32 *D;
71 int key_length;
72 u32 E[AES_EXTENDED_KEY_SIZE]
73 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
74 u32 d_data[AES_EXTENDED_KEY_SIZE]
75 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
76 };
77
78 /* ====== Key management routines ====== */
79
80 static inline uint32_t
81 generic_rotr32 (const uint32_t x, const unsigned bits)
82 {
83 const unsigned n = bits % 32;
84 return (x >> n) | (x << (32 - n));
85 }
86
87 static inline uint32_t
88 generic_rotl32 (const uint32_t x, const unsigned bits)
89 {
90 const unsigned n = bits % 32;
91 return (x << n) | (x >> (32 - n));
92 }
93
94 #define rotl generic_rotl32
95 #define rotr generic_rotr32
96
97 /*
98 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
99 */
100 static inline uint8_t
101 byte(const uint32_t x, const unsigned n)
102 {
103 return x >> (n << 3);
104 }
105
106 #define E_KEY ctx->E
107 #define D_KEY ctx->D
108
109 static uint8_t pow_tab[256];
110 static uint8_t log_tab[256];
111 static uint8_t sbx_tab[256];
112 static uint8_t isb_tab[256];
113 static uint32_t rco_tab[10];
114 static uint32_t ft_tab[4][256];
115 static uint32_t it_tab[4][256];
116
117 static uint32_t fl_tab[4][256];
118 static uint32_t il_tab[4][256];
119
120 static inline uint8_t
121 f_mult (uint8_t a, uint8_t b)
122 {
123 uint8_t aa = log_tab[a], cc = aa + log_tab[b];
124
125 return pow_tab[cc + (cc < aa ? 1 : 0)];
126 }
127
128 #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
129
130 #define f_rn(bo, bi, n, k) \
131 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
132 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
133 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
134 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
135
136 #define i_rn(bo, bi, n, k) \
137 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
138 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
139 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
140 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
141
142 #define ls_box(x) \
143 ( fl_tab[0][byte(x, 0)] ^ \
144 fl_tab[1][byte(x, 1)] ^ \
145 fl_tab[2][byte(x, 2)] ^ \
146 fl_tab[3][byte(x, 3)] )
147
148 #define f_rl(bo, bi, n, k) \
149 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
150 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
151 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
152 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
153
154 #define i_rl(bo, bi, n, k) \
155 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
156 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
157 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
158 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
159
160 static void
161 gen_tabs (void)
162 {
163 uint32_t i, t;
164 uint8_t p, q;
165
166 /* log and power tables for GF(2**8) finite field with
167 0x011b as modular polynomial - the simplest prmitive
168 root is 0x03, used here to generate the tables */
169
170 for (i = 0, p = 1; i < 256; ++i) {
171 pow_tab[i] = (uint8_t) p;
172 log_tab[p] = (uint8_t) i;
173
174 p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
175 }
176
177 log_tab[1] = 0;
178
179 for (i = 0, p = 1; i < 10; ++i) {
180 rco_tab[i] = p;
181
182 p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
183 }
184
185 for (i = 0; i < 256; ++i) {
186 p = (i ? pow_tab[255 - log_tab[i]] : 0);
187 q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
188 p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
189 sbx_tab[i] = p;
190 isb_tab[p] = (uint8_t) i;
191 }
192
193 for (i = 0; i < 256; ++i) {
194 p = sbx_tab[i];
195
196 t = p;
197 fl_tab[0][i] = t;
198 fl_tab[1][i] = rotl (t, 8);
199 fl_tab[2][i] = rotl (t, 16);
200 fl_tab[3][i] = rotl (t, 24);
201
202 t = ((uint32_t) ff_mult (2, p)) |
203 ((uint32_t) p << 8) |
204 ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
205
206 ft_tab[0][i] = t;
207 ft_tab[1][i] = rotl (t, 8);
208 ft_tab[2][i] = rotl (t, 16);
209 ft_tab[3][i] = rotl (t, 24);
210
211 p = isb_tab[i];
212
213 t = p;
214 il_tab[0][i] = t;
215 il_tab[1][i] = rotl (t, 8);
216 il_tab[2][i] = rotl (t, 16);
217 il_tab[3][i] = rotl (t, 24);
218
219 t = ((uint32_t) ff_mult (14, p)) |
220 ((uint32_t) ff_mult (9, p) << 8) |
221 ((uint32_t) ff_mult (13, p) << 16) |
222 ((uint32_t) ff_mult (11, p) << 24);
223
224 it_tab[0][i] = t;
225 it_tab[1][i] = rotl (t, 8);
226 it_tab[2][i] = rotl (t, 16);
227 it_tab[3][i] = rotl (t, 24);
228 }
229 }
230
231 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
232
233 #define imix_col(y,x) \
234 u = star_x(x); \
235 v = star_x(u); \
236 w = star_x(v); \
237 t = w ^ (x); \
238 (y) = u ^ v ^ w; \
239 (y) ^= rotr(u ^ t, 8) ^ \
240 rotr(v ^ t, 16) ^ \
241 rotr(t,24)
242
243 /* initialise the key schedule from the user supplied key */
244
245 #define loop4(i) \
246 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
247 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
248 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
249 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
250 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
251 }
252
253 #define loop6(i) \
254 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
255 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
256 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
257 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
258 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
259 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
260 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
261 }
262
263 #define loop8(i) \
264 { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
265 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
266 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
267 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
268 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
269 t = E_KEY[8 * i + 4] ^ ls_box(t); \
270 E_KEY[8 * i + 12] = t; \
271 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
272 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
273 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
274 }
275
276 /* Tells whether the ACE is capable to generate
277 the extended key for a given key_len. */
278 static inline int
279 aes_hw_extkey_available(uint8_t key_len)
280 {
281 /* TODO: We should check the actual CPU model/stepping
282 as it's possible that the capability will be
283 added in the next CPU revisions. */
284 if (key_len == 16)
285 return 1;
286 return 0;
287 }
288
289 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
290 {
291 unsigned long addr = (unsigned long)crypto_tfm_ctx(tfm);
292 unsigned long align = PADLOCK_ALIGNMENT;
293
294 if (align <= crypto_tfm_ctx_alignment())
295 align = 1;
296 return (struct aes_ctx *)ALIGN(addr, align);
297 }
298
299 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
300 unsigned int key_len, u32 *flags)
301 {
302 struct aes_ctx *ctx = aes_ctx(tfm);
303 const __le32 *key = (const __le32 *)in_key;
304 uint32_t i, t, u, v, w;
305 uint32_t P[AES_EXTENDED_KEY_SIZE];
306 uint32_t rounds;
307
308 if (key_len != 16 && key_len != 24 && key_len != 32) {
309 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
310 return -EINVAL;
311 }
312
313 ctx->key_length = key_len;
314
315 /*
316 * If the hardware is capable of generating the extended key
317 * itself we must supply the plain key for both encryption
318 * and decryption.
319 */
320 ctx->D = ctx->E;
321
322 E_KEY[0] = le32_to_cpu(key[0]);
323 E_KEY[1] = le32_to_cpu(key[1]);
324 E_KEY[2] = le32_to_cpu(key[2]);
325 E_KEY[3] = le32_to_cpu(key[3]);
326
327 /* Prepare control words. */
328 memset(&ctx->cword, 0, sizeof(ctx->cword));
329
330 ctx->cword.decrypt.encdec = 1;
331 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
332 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
333 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
334 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
335
336 /* Don't generate extended keys if the hardware can do it. */
337 if (aes_hw_extkey_available(key_len))
338 return 0;
339
340 ctx->D = ctx->d_data;
341 ctx->cword.encrypt.keygen = 1;
342 ctx->cword.decrypt.keygen = 1;
343
344 switch (key_len) {
345 case 16:
346 t = E_KEY[3];
347 for (i = 0; i < 10; ++i)
348 loop4 (i);
349 break;
350
351 case 24:
352 E_KEY[4] = le32_to_cpu(key[4]);
353 t = E_KEY[5] = le32_to_cpu(key[5]);
354 for (i = 0; i < 8; ++i)
355 loop6 (i);
356 break;
357
358 case 32:
359 E_KEY[4] = le32_to_cpu(key[4]);
360 E_KEY[5] = le32_to_cpu(key[5]);
361 E_KEY[6] = le32_to_cpu(key[6]);
362 t = E_KEY[7] = le32_to_cpu(key[7]);
363 for (i = 0; i < 7; ++i)
364 loop8 (i);
365 break;
366 }
367
368 D_KEY[0] = E_KEY[0];
369 D_KEY[1] = E_KEY[1];
370 D_KEY[2] = E_KEY[2];
371 D_KEY[3] = E_KEY[3];
372
373 for (i = 4; i < key_len + 24; ++i) {
374 imix_col (D_KEY[i], E_KEY[i]);
375 }
376
377 /* PadLock needs a different format of the decryption key. */
378 rounds = 10 + (key_len - 16) / 4;
379
380 for (i = 0; i < rounds; i++) {
381 P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
382 P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
383 P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
384 P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
385 }
386
387 P[0] = E_KEY[(rounds * 4) + 0];
388 P[1] = E_KEY[(rounds * 4) + 1];
389 P[2] = E_KEY[(rounds * 4) + 2];
390 P[3] = E_KEY[(rounds * 4) + 3];
391
392 memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
393
394 return 0;
395 }
396
397 /* ====== Encryption/decryption routines ====== */
398
399 /* These are the real call to PadLock. */
400 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
401 void *control_word, u32 count)
402 {
403 asm volatile ("pushfl; popfl"); /* enforce key reload. */
404 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
405 : "+S"(input), "+D"(output)
406 : "d"(control_word), "b"(key), "c"(count));
407 }
408
409 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
410 u8 *iv, void *control_word, u32 count)
411 {
412 /* Enforce key reload. */
413 asm volatile ("pushfl; popfl");
414 /* rep xcryptcbc */
415 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
416 : "+S" (input), "+D" (output), "+a" (iv)
417 : "d" (control_word), "b" (key), "c" (count));
418 return iv;
419 }
420
421 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
422 {
423 struct aes_ctx *ctx = aes_ctx(tfm);
424 padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt, 1);
425 }
426
427 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
428 {
429 struct aes_ctx *ctx = aes_ctx(tfm);
430 padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt, 1);
431 }
432
433 static unsigned int aes_encrypt_ecb(const struct cipher_desc *desc, u8 *out,
434 const u8 *in, unsigned int nbytes)
435 {
436 struct aes_ctx *ctx = aes_ctx(desc->tfm);
437 padlock_xcrypt_ecb(in, out, ctx->E, &ctx->cword.encrypt,
438 nbytes / AES_BLOCK_SIZE);
439 return nbytes & ~(AES_BLOCK_SIZE - 1);
440 }
441
442 static unsigned int aes_decrypt_ecb(const struct cipher_desc *desc, u8 *out,
443 const u8 *in, unsigned int nbytes)
444 {
445 struct aes_ctx *ctx = aes_ctx(desc->tfm);
446 padlock_xcrypt_ecb(in, out, ctx->D, &ctx->cword.decrypt,
447 nbytes / AES_BLOCK_SIZE);
448 return nbytes & ~(AES_BLOCK_SIZE - 1);
449 }
450
451 static unsigned int aes_encrypt_cbc(const struct cipher_desc *desc, u8 *out,
452 const u8 *in, unsigned int nbytes)
453 {
454 struct aes_ctx *ctx = aes_ctx(desc->tfm);
455 u8 *iv;
456
457 iv = padlock_xcrypt_cbc(in, out, ctx->E, desc->info,
458 &ctx->cword.encrypt, nbytes / AES_BLOCK_SIZE);
459 memcpy(desc->info, iv, AES_BLOCK_SIZE);
460
461 return nbytes & ~(AES_BLOCK_SIZE - 1);
462 }
463
464 static unsigned int aes_decrypt_cbc(const struct cipher_desc *desc, u8 *out,
465 const u8 *in, unsigned int nbytes)
466 {
467 struct aes_ctx *ctx = aes_ctx(desc->tfm);
468 padlock_xcrypt_cbc(in, out, ctx->D, desc->info, &ctx->cword.decrypt,
469 nbytes / AES_BLOCK_SIZE);
470 return nbytes & ~(AES_BLOCK_SIZE - 1);
471 }
472
473 static struct crypto_alg aes_alg = {
474 .cra_name = "aes",
475 .cra_driver_name = "aes-padlock",
476 .cra_priority = 300,
477 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
478 .cra_blocksize = AES_BLOCK_SIZE,
479 .cra_ctxsize = sizeof(struct aes_ctx),
480 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
481 .cra_module = THIS_MODULE,
482 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
483 .cra_u = {
484 .cipher = {
485 .cia_min_keysize = AES_MIN_KEY_SIZE,
486 .cia_max_keysize = AES_MAX_KEY_SIZE,
487 .cia_setkey = aes_set_key,
488 .cia_encrypt = aes_encrypt,
489 .cia_decrypt = aes_decrypt,
490 .cia_encrypt_ecb = aes_encrypt_ecb,
491 .cia_decrypt_ecb = aes_decrypt_ecb,
492 .cia_encrypt_cbc = aes_encrypt_cbc,
493 .cia_decrypt_cbc = aes_decrypt_cbc,
494 }
495 }
496 };
497
498 int __init padlock_init_aes(void)
499 {
500 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
501
502 gen_tabs();
503 return crypto_register_alg(&aes_alg);
504 }
505
506 void __exit padlock_fini_aes(void)
507 {
508 crypto_unregister_alg(&aes_alg);
509 }
This page took 0.085073 seconds and 5 git commands to generate.