drivers/edac: mod MC to use workq instead of kthread
[deliverable/linux.git] / drivers / edac / edac_core.h
1 /*
2 * Defines, structures, APIs for edac_core module
3 *
4 * (C) 2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written by Thayne Harbaugh
9 * Based on work by Dan Hollis <goemon at anime dot net> and others.
10 * http://www.anime.net/~goemon/linux-ecc/
11 *
12 * NMI handling support added by
13 * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
14 *
15 * Refactored for multi-source files:
16 * Doug Thompson <norsk5@xmission.com>
17 *
18 */
19
20 #ifndef _EDAC_CORE_H_
21 #define _EDAC_CORE_H_
22
23 #include <linux/kernel.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/spinlock.h>
27 #include <linux/smp.h>
28 #include <linux/pci.h>
29 #include <linux/time.h>
30 #include <linux/nmi.h>
31 #include <linux/rcupdate.h>
32 #include <linux/completion.h>
33 #include <linux/kobject.h>
34 #include <linux/platform_device.h>
35 #include <linux/sysdev.h>
36 #include <linux/workqueue.h>
37 #include <linux/version.h>
38
39 #define EDAC_MC_LABEL_LEN 31
40 #define EDAC_DEVICE_NAME_LEN 31
41 #define EDAC_ATTRIB_VALUE_LEN 15
42 #define MC_PROC_NAME_MAX_LEN 7
43
44 #if PAGE_SHIFT < 20
45 #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
46 #else /* PAGE_SHIFT > 20 */
47 #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
48 #endif
49
50 #define edac_printk(level, prefix, fmt, arg...) \
51 printk(level "EDAC " prefix ": " fmt, ##arg)
52
53 #define edac_mc_printk(mci, level, fmt, arg...) \
54 printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
55
56 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
57 printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
58
59 /* edac_device printk */
60 #define edac_device_printk(ctl, level, fmt, arg...) \
61 printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg)
62
63 /* prefixes for edac_printk() and edac_mc_printk() */
64 #define EDAC_MC "MC"
65 #define EDAC_PCI "PCI"
66 #define EDAC_DEBUG "DEBUG"
67
68 #ifdef CONFIG_EDAC_DEBUG
69 extern int edac_debug_level;
70
71 #define edac_debug_printk(level, fmt, arg...) \
72 do { \
73 if (level <= edac_debug_level) \
74 edac_printk(KERN_EMERG, EDAC_DEBUG, fmt, ##arg); \
75 } while(0)
76
77 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
78 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
79 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
80 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
81 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
82
83 #else /* !CONFIG_EDAC_DEBUG */
84
85 #define debugf0( ... )
86 #define debugf1( ... )
87 #define debugf2( ... )
88 #define debugf3( ... )
89 #define debugf4( ... )
90
91 #endif /* !CONFIG_EDAC_DEBUG */
92
93 #define BIT(x) (1 << (x))
94
95 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
96 PCI_DEVICE_ID_ ## vend ## _ ## dev
97
98 #define dev_name(dev) (dev)->dev_name
99
100 /* memory devices */
101 enum dev_type {
102 DEV_UNKNOWN = 0,
103 DEV_X1,
104 DEV_X2,
105 DEV_X4,
106 DEV_X8,
107 DEV_X16,
108 DEV_X32, /* Do these parts exist? */
109 DEV_X64 /* Do these parts exist? */
110 };
111
112 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
113 #define DEV_FLAG_X1 BIT(DEV_X1)
114 #define DEV_FLAG_X2 BIT(DEV_X2)
115 #define DEV_FLAG_X4 BIT(DEV_X4)
116 #define DEV_FLAG_X8 BIT(DEV_X8)
117 #define DEV_FLAG_X16 BIT(DEV_X16)
118 #define DEV_FLAG_X32 BIT(DEV_X32)
119 #define DEV_FLAG_X64 BIT(DEV_X64)
120
121 /* memory types */
122 enum mem_type {
123 MEM_EMPTY = 0, /* Empty csrow */
124 MEM_RESERVED, /* Reserved csrow type */
125 MEM_UNKNOWN, /* Unknown csrow type */
126 MEM_FPM, /* Fast page mode */
127 MEM_EDO, /* Extended data out */
128 MEM_BEDO, /* Burst Extended data out */
129 MEM_SDR, /* Single data rate SDRAM */
130 MEM_RDR, /* Registered single data rate SDRAM */
131 MEM_DDR, /* Double data rate SDRAM */
132 MEM_RDDR, /* Registered Double data rate SDRAM */
133 MEM_RMBS, /* Rambus DRAM */
134 MEM_DDR2, /* DDR2 RAM */
135 MEM_FB_DDR2, /* fully buffered DDR2 */
136 MEM_RDDR2, /* Registered DDR2 RAM */
137 };
138
139 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
140 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
141 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
142 #define MEM_FLAG_FPM BIT(MEM_FPM)
143 #define MEM_FLAG_EDO BIT(MEM_EDO)
144 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
145 #define MEM_FLAG_SDR BIT(MEM_SDR)
146 #define MEM_FLAG_RDR BIT(MEM_RDR)
147 #define MEM_FLAG_DDR BIT(MEM_DDR)
148 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
149 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
150 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
151 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
152 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
153
154 /* chipset Error Detection and Correction capabilities and mode */
155 enum edac_type {
156 EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
157 EDAC_NONE, /* Doesnt support ECC */
158 EDAC_RESERVED, /* Reserved ECC type */
159 EDAC_PARITY, /* Detects parity errors */
160 EDAC_EC, /* Error Checking - no correction */
161 EDAC_SECDED, /* Single bit error correction, Double detection */
162 EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
163 EDAC_S4ECD4ED, /* Chipkill x4 devices */
164 EDAC_S8ECD8ED, /* Chipkill x8 devices */
165 EDAC_S16ECD16ED, /* Chipkill x16 devices */
166 };
167
168 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
169 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
170 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
171 #define EDAC_FLAG_EC BIT(EDAC_EC)
172 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
173 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
174 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
175 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
176 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
177
178 /* scrubbing capabilities */
179 enum scrub_type {
180 SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
181 SCRUB_NONE, /* No scrubber */
182 SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
183 SCRUB_SW_SRC, /* Software scrub only errors */
184 SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
185 SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
186 SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
187 SCRUB_HW_SRC, /* Hardware scrub only errors */
188 SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
189 SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
190 };
191
192 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
193 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
194 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
195 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
196 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
197 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
198 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
199 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
200
201 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
202
203 extern char * edac_align_ptr(void *ptr, unsigned size);
204
205 /*
206 * There are several things to be aware of that aren't at all obvious:
207 *
208 *
209 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
210 *
211 * These are some of the many terms that are thrown about that don't always
212 * mean what people think they mean (Inconceivable!). In the interest of
213 * creating a common ground for discussion, terms and their definitions
214 * will be established.
215 *
216 * Memory devices: The individual chip on a memory stick. These devices
217 * commonly output 4 and 8 bits each. Grouping several
218 * of these in parallel provides 64 bits which is common
219 * for a memory stick.
220 *
221 * Memory Stick: A printed circuit board that agregates multiple
222 * memory devices in parallel. This is the atomic
223 * memory component that is purchaseable by Joe consumer
224 * and loaded into a memory socket.
225 *
226 * Socket: A physical connector on the motherboard that accepts
227 * a single memory stick.
228 *
229 * Channel: Set of memory devices on a memory stick that must be
230 * grouped in parallel with one or more additional
231 * channels from other memory sticks. This parallel
232 * grouping of the output from multiple channels are
233 * necessary for the smallest granularity of memory access.
234 * Some memory controllers are capable of single channel -
235 * which means that memory sticks can be loaded
236 * individually. Other memory controllers are only
237 * capable of dual channel - which means that memory
238 * sticks must be loaded as pairs (see "socket set").
239 *
240 * Chip-select row: All of the memory devices that are selected together.
241 * for a single, minimum grain of memory access.
242 * This selects all of the parallel memory devices across
243 * all of the parallel channels. Common chip-select rows
244 * for single channel are 64 bits, for dual channel 128
245 * bits.
246 *
247 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
248 * Motherboards commonly drive two chip-select pins to
249 * a memory stick. A single-ranked stick, will occupy
250 * only one of those rows. The other will be unused.
251 *
252 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
253 * access different sets of memory devices. The two
254 * rows cannot be accessed concurrently.
255 *
256 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
257 * A double-sided stick has two chip-select rows which
258 * access different sets of memory devices. The two
259 * rows cannot be accessed concurrently. "Double-sided"
260 * is irrespective of the memory devices being mounted
261 * on both sides of the memory stick.
262 *
263 * Socket set: All of the memory sticks that are required for for
264 * a single memory access or all of the memory sticks
265 * spanned by a chip-select row. A single socket set
266 * has two chip-select rows and if double-sided sticks
267 * are used these will occupy those chip-select rows.
268 *
269 * Bank: This term is avoided because it is unclear when
270 * needing to distinguish between chip-select rows and
271 * socket sets.
272 *
273 * Controller pages:
274 *
275 * Physical pages:
276 *
277 * Virtual pages:
278 *
279 *
280 * STRUCTURE ORGANIZATION AND CHOICES
281 *
282 *
283 *
284 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
285 */
286
287 struct channel_info {
288 int chan_idx; /* channel index */
289 u32 ce_count; /* Correctable Errors for this CHANNEL */
290 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
291 struct csrow_info *csrow; /* the parent */
292 };
293
294 struct csrow_info {
295 unsigned long first_page; /* first page number in dimm */
296 unsigned long last_page; /* last page number in dimm */
297 unsigned long page_mask; /* used for interleaving -
298 * 0UL for non intlv
299 */
300 u32 nr_pages; /* number of pages in csrow */
301 u32 grain; /* granularity of reported error in bytes */
302 int csrow_idx; /* the chip-select row */
303 enum dev_type dtype; /* memory device type */
304 u32 ue_count; /* Uncorrectable Errors for this csrow */
305 u32 ce_count; /* Correctable Errors for this csrow */
306 enum mem_type mtype; /* memory csrow type */
307 enum edac_type edac_mode; /* EDAC mode for this csrow */
308 struct mem_ctl_info *mci; /* the parent */
309
310 struct kobject kobj; /* sysfs kobject for this csrow */
311 struct completion kobj_complete;
312
313 /* FIXME the number of CHANNELs might need to become dynamic */
314 u32 nr_channels;
315 struct channel_info *channels;
316 };
317
318 struct mem_ctl_info {
319 struct list_head link; /* for global list of mem_ctl_info structs */
320 unsigned long mtype_cap; /* memory types supported by mc */
321 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
322 unsigned long edac_cap; /* configuration capabilities - this is
323 * closely related to edac_ctl_cap. The
324 * difference is that the controller may be
325 * capable of s4ecd4ed which would be listed
326 * in edac_ctl_cap, but if channels aren't
327 * capable of s4ecd4ed then the edac_cap would
328 * not have that capability.
329 */
330 unsigned long scrub_cap; /* chipset scrub capabilities */
331 enum scrub_type scrub_mode; /* current scrub mode */
332
333 /* Translates sdram memory scrub rate given in bytes/sec to the
334 internal representation and configures whatever else needs
335 to be configured.
336 */
337 int (*set_sdram_scrub_rate) (struct mem_ctl_info *mci, u32 *bw);
338
339 /* Get the current sdram memory scrub rate from the internal
340 representation and converts it to the closest matching
341 bandwith in bytes/sec.
342 */
343 int (*get_sdram_scrub_rate) (struct mem_ctl_info *mci, u32 *bw);
344
345 /* pointer to edac checking routine */
346 void (*edac_check) (struct mem_ctl_info * mci);
347
348 /*
349 * Remaps memory pages: controller pages to physical pages.
350 * For most MC's, this will be NULL.
351 */
352 /* FIXME - why not send the phys page to begin with? */
353 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
354 unsigned long page);
355 int mc_idx;
356 int nr_csrows;
357 struct csrow_info *csrows;
358 /*
359 * FIXME - what about controllers on other busses? - IDs must be
360 * unique. dev pointer should be sufficiently unique, but
361 * BUS:SLOT.FUNC numbers may not be unique.
362 */
363 struct device *dev;
364 const char *mod_name;
365 const char *mod_ver;
366 const char *ctl_name;
367 const char *dev_name;
368 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
369 void *pvt_info;
370 u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
371 u32 ce_noinfo_count; /* Correctable Errors w/o info */
372 u32 ue_count; /* Total Uncorrectable Errors for this MC */
373 u32 ce_count; /* Total Correctable Errors for this MC */
374 unsigned long start_time; /* mci load start time (in jiffies) */
375
376 /* this stuff is for safe removal of mc devices from global list while
377 * NMI handlers may be traversing list
378 */
379 struct rcu_head rcu;
380 struct completion complete;
381
382 /* edac sysfs device control */
383 struct kobject edac_mci_kobj;
384 struct completion kobj_complete;
385
386 /* work struct for this MC */
387 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20))
388 struct delayed_work work;
389 #else
390 struct work_struct work;
391 #endif
392 /* the internal state of this controller instance */
393 int op_state;
394 };
395
396 /*
397 * The following are the structures to provide for a generice
398 * or abstract 'edac_device'. This set of structures and the
399 * code that implements the APIs for the same, provide for
400 * registering EDAC type devices which are NOT standard memory.
401 *
402 * CPU caches (L1 and L2)
403 * DMA engines
404 * Core CPU swithces
405 * Fabric switch units
406 * PCIe interface controllers
407 * other EDAC/ECC type devices that can be monitored for
408 * errors, etc.
409 *
410 * It allows for a 2 level set of hiearchry. For example:
411 *
412 * cache could be composed of L1, L2 and L3 levels of cache.
413 * Each CPU core would have its own L1 cache, while sharing
414 * L2 and maybe L3 caches.
415 *
416 * View them arranged, via the sysfs presentation:
417 * /sys/devices/system/edac/..
418 *
419 * mc/ <existing memory device directory>
420 * cpu/cpu0/.. <L1 and L2 block directory>
421 * /L1-cache/ce_count
422 * /ue_count
423 * /L2-cache/ce_count
424 * /ue_count
425 * cpu/cpu1/.. <L1 and L2 block directory>
426 * /L1-cache/ce_count
427 * /ue_count
428 * /L2-cache/ce_count
429 * /ue_count
430 * ...
431 *
432 * the L1 and L2 directories would be "edac_device_block's"
433 */
434
435 struct edac_device_counter {
436 u32 ue_count;
437 u32 ce_count;
438 };
439
440 #define INC_COUNTER(cnt) (cnt++)
441
442 /*
443 * An array of these is passed to the alloc() function
444 * to specify attributes of the edac_block
445 */
446 struct edac_attrib_spec {
447 char name[EDAC_DEVICE_NAME_LEN + 1];
448
449 int type;
450 #define EDAC_ATTR_INT 0x01
451 #define EDAC_ATTR_CHAR 0x02
452 };
453
454
455 /* Attribute control structure
456 * In this structure is a pointer to the driver's edac_attrib_spec
457 * The life of this pointer is inclusive in the life of the driver's
458 * life cycle.
459 */
460 struct edac_attrib {
461 struct edac_device_block *block; /* Up Pointer */
462
463 struct edac_attrib_spec *spec; /* ptr to module spec entry */
464
465 union { /* actual value */
466 int edac_attrib_int_value;
467 char edac_attrib_char_value[EDAC_ATTRIB_VALUE_LEN + 1];
468 } edac_attrib_value;
469 };
470
471 /* device block control structure */
472 struct edac_device_block {
473 struct edac_device_instance *instance; /* Up Pointer */
474 char name[EDAC_DEVICE_NAME_LEN + 1];
475
476 struct edac_device_counter counters; /* basic UE and CE counters */
477
478 int nr_attribs; /* how many attributes */
479 struct edac_attrib *attribs; /* this block's attributes */
480
481 /* edac sysfs device control */
482 struct kobject kobj;
483 struct completion kobj_complete;
484 };
485
486 /* device instance control structure */
487 struct edac_device_instance {
488 struct edac_device_ctl_info *ctl; /* Up pointer */
489 char name[EDAC_DEVICE_NAME_LEN + 4];
490
491 struct edac_device_counter counters; /* instance counters */
492
493 u32 nr_blocks; /* how many blocks */
494 struct edac_device_block *blocks; /* block array */
495
496 /* edac sysfs device control */
497 struct kobject kobj;
498 struct completion kobj_complete;
499 };
500
501
502 /*
503 * Abstract edac_device control info structure
504 *
505 */
506 struct edac_device_ctl_info {
507 /* for global list of edac_device_ctl_info structs */
508 struct list_head link;
509
510 int dev_idx;
511
512 /* Per instance controls for this edac_device */
513 int log_ue; /* boolean for logging UEs */
514 int log_ce; /* boolean for logging CEs */
515 int panic_on_ue; /* boolean for panic'ing on an UE */
516 unsigned poll_msec; /* number of milliseconds to poll interval */
517 unsigned long delay; /* number of jiffies for poll_msec */
518
519 struct sysdev_class *edac_class; /* pointer to class */
520
521 /* the internal state of this controller instance */
522 int op_state;
523 #define OP_ALLOC 0x100
524 #define OP_RUNNING_POLL 0x201
525 #define OP_RUNNING_INTERRUPT 0x202
526 #define OP_RUNNING_POLL_INTR 0x203
527 #define OP_OFFLINE 0x300
528
529 /* work struct for this instance */
530 #if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20))
531 struct delayed_work work;
532 #else
533 struct work_struct work;
534 #endif
535
536 /* pointer to edac polling checking routine:
537 * If NOT NULL: points to polling check routine
538 * If NULL: Then assumes INTERRUPT operation, where
539 * MC driver will receive events
540 */
541 void (*edac_check) (struct edac_device_ctl_info * edac_dev);
542
543 struct device *dev; /* pointer to device structure */
544
545 const char *mod_name; /* module name */
546 const char *ctl_name; /* edac controller name */
547 const char *dev_name; /* pci/platform/etc... name */
548
549 void *pvt_info; /* pointer to 'private driver' info */
550
551 unsigned long start_time;/* edac_device load start time (jiffies)*/
552
553 /* these are for safe removal of mc devices from global list while
554 * NMI handlers may be traversing list
555 */
556 struct rcu_head rcu;
557 struct completion complete;
558
559 /* sysfs top name under 'edac' directory
560 * and instance name:
561 * cpu/cpu0/...
562 * cpu/cpu1/...
563 * cpu/cpu2/...
564 * ...
565 */
566 char name[EDAC_DEVICE_NAME_LEN + 1];
567
568 /* Number of instances supported on this control structure
569 * and the array of those instances
570 */
571 u32 nr_instances;
572 struct edac_device_instance *instances;
573
574 /* Event counters for the this whole EDAC Device */
575 struct edac_device_counter counters;
576
577 /* edac sysfs device control for the 'name'
578 * device this structure controls
579 */
580 struct kobject kobj;
581 struct completion kobj_complete;
582 };
583
584 /* To get from the instance's wq to the beginning of the ctl structure */
585 #define to_edac_mem_ctl_work(w) \
586 container_of(w, struct mem_ctl_info, work)
587
588 #define to_edac_device_ctl_work(w) \
589 container_of(w,struct edac_device_ctl_info,work)
590
591 /* Function to calc the number of delay jiffies from poll_msec */
592 static inline void edac_device_calc_delay(
593 struct edac_device_ctl_info *edac_dev)
594 {
595 /* convert from msec to jiffies */
596 edac_dev->delay = edac_dev->poll_msec * HZ / 1000;
597 }
598
599 #define edac_calc_delay(dev) dev->delay = dev->poll_msec * HZ / 1000;
600
601 /*
602 * The alloc() and free() functions for the 'edac_device' control info
603 * structure. A MC driver will allocate one of these for each edac_device
604 * it is going to control/register with the EDAC CORE.
605 */
606 extern struct edac_device_ctl_info *edac_device_alloc_ctl_info(
607 unsigned sizeof_private,
608 char *edac_device_name,
609 unsigned nr_instances,
610 char *edac_block_name,
611 unsigned nr_blocks,
612 unsigned offset_value,
613 struct edac_attrib_spec *attrib_spec,
614 unsigned nr_attribs
615 );
616
617 /* The offset value can be:
618 * -1 indicating no offset value
619 * 0 for zero-based block numbers
620 * 1 for 1-based block number
621 * other for other-based block number
622 */
623 #define BLOCK_OFFSET_VALUE_OFF ((unsigned) -1)
624
625 extern void edac_device_free_ctl_info( struct edac_device_ctl_info *ctl_info);
626
627 #ifdef CONFIG_PCI
628
629 /* write all or some bits in a byte-register*/
630 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
631 u8 mask)
632 {
633 if (mask != 0xff) {
634 u8 buf;
635
636 pci_read_config_byte(pdev, offset, &buf);
637 value &= mask;
638 buf &= ~mask;
639 value |= buf;
640 }
641
642 pci_write_config_byte(pdev, offset, value);
643 }
644
645 /* write all or some bits in a word-register*/
646 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
647 u16 value, u16 mask)
648 {
649 if (mask != 0xffff) {
650 u16 buf;
651
652 pci_read_config_word(pdev, offset, &buf);
653 value &= mask;
654 buf &= ~mask;
655 value |= buf;
656 }
657
658 pci_write_config_word(pdev, offset, value);
659 }
660
661 /* write all or some bits in a dword-register*/
662 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
663 u32 value, u32 mask)
664 {
665 if (mask != 0xffff) {
666 u32 buf;
667
668 pci_read_config_dword(pdev, offset, &buf);
669 value &= mask;
670 buf &= ~mask;
671 value |= buf;
672 }
673
674 pci_write_config_dword(pdev, offset, value);
675 }
676
677 #endif /* CONFIG_PCI */
678
679 extern struct mem_ctl_info * edac_mc_find(int idx);
680 extern int edac_mc_add_mc(struct mem_ctl_info *mci,int mc_idx);
681 extern struct mem_ctl_info * edac_mc_del_mc(struct device *dev);
682 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
683 unsigned long page);
684
685 /*
686 * The no info errors are used when error overflows are reported.
687 * There are a limited number of error logging registers that can
688 * be exausted. When all registers are exhausted and an additional
689 * error occurs then an error overflow register records that an
690 * error occured and the type of error, but doesn't have any
691 * further information. The ce/ue versions make for cleaner
692 * reporting logic and function interface - reduces conditional
693 * statement clutter and extra function arguments.
694 */
695 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
696 unsigned long page_frame_number, unsigned long offset_in_page,
697 unsigned long syndrome, int row, int channel,
698 const char *msg);
699 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
700 const char *msg);
701 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
702 unsigned long page_frame_number, unsigned long offset_in_page,
703 int row, const char *msg);
704 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
705 const char *msg);
706 extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
707 unsigned int csrow,
708 unsigned int channel0,
709 unsigned int channel1,
710 char *msg);
711 extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
712 unsigned int csrow,
713 unsigned int channel,
714 char *msg);
715
716 /*
717 * edac_device APIs
718 */
719 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
720 unsigned nr_chans);
721 extern void edac_mc_free(struct mem_ctl_info *mci);
722 extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev, int edac_idx);
723 extern struct edac_device_ctl_info * edac_device_del_device(struct device *dev);
724 extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev,
725 int inst_nr, int block_nr, const char *msg);
726 extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev,
727 int inst_nr, int block_nr, const char *msg);
728
729
730 #endif /* _EDAC_CORE_H_ */
This page took 0.102616 seconds and 6 git commands to generate.