Merge branches 'pm-core', 'pm-clk', 'pm-domains' and 'pm-pci'
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / fiji_hwmgr.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27
28 #include "hwmgr.h"
29 #include "fiji_smumgr.h"
30 #include "atombios.h"
31 #include "hardwaremanager.h"
32 #include "ppatomctrl.h"
33 #include "atombios.h"
34 #include "cgs_common.h"
35 #include "fiji_dyn_defaults.h"
36 #include "fiji_powertune.h"
37 #include "smu73.h"
38 #include "smu/smu_7_1_3_d.h"
39 #include "smu/smu_7_1_3_sh_mask.h"
40 #include "gmc/gmc_8_1_d.h"
41 #include "gmc/gmc_8_1_sh_mask.h"
42 #include "bif/bif_5_0_d.h"
43 #include "bif/bif_5_0_sh_mask.h"
44 #include "dce/dce_10_0_d.h"
45 #include "dce/dce_10_0_sh_mask.h"
46 #include "pppcielanes.h"
47 #include "fiji_hwmgr.h"
48 #include "tonga_processpptables.h"
49 #include "tonga_pptable.h"
50 #include "pp_debug.h"
51 #include "pp_acpi.h"
52 #include "amd_pcie_helpers.h"
53 #include "cgs_linux.h"
54 #include "ppinterrupt.h"
55
56 #include "fiji_clockpowergating.h"
57 #include "fiji_thermal.h"
58
59 #define VOLTAGE_SCALE 4
60 #define SMC_RAM_END 0x40000
61 #define VDDC_VDDCI_DELTA 300
62
63 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
64 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
65 #define MC_SEQ_MISC0_GDDR5_VALUE 5
66
67 #define MC_CG_ARB_FREQ_F0 0x0a /* boot-up default */
68 #define MC_CG_ARB_FREQ_F1 0x0b
69 #define MC_CG_ARB_FREQ_F2 0x0c
70 #define MC_CG_ARB_FREQ_F3 0x0d
71
72 /* From smc_reg.h */
73 #define SMC_CG_IND_START 0xc0030000
74 #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND */
75
76 #define VOLTAGE_SCALE 4
77 #define VOLTAGE_VID_OFFSET_SCALE1 625
78 #define VOLTAGE_VID_OFFSET_SCALE2 100
79
80 #define VDDC_VDDCI_DELTA 300
81
82 #define ixSWRST_COMMAND_1 0x1400103
83 #define MC_SEQ_CNTL__CAC_EN_MASK 0x40000000
84
85 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
86 enum DPM_EVENT_SRC {
87 DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */
88 DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */
89 DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */
90 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */
91 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */
92 };
93
94
95 /* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
96 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
97 */
98 static const uint16_t fiji_clock_stretcher_lookup_table[2][4] =
99 { {600, 1050, 3, 0}, {600, 1050, 6, 1} };
100
101 /* [FF, SS] type, [] 4 voltage ranges, and
102 * [Floor Freq, Boundary Freq, VID min , VID max]
103 */
104 static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] =
105 { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
106 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
107
108 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
109 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
110 */
111 static const uint8_t fiji_clock_stretch_amount_conversion[2][6] =
112 { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
113
114 static const unsigned long PhwFiji_Magic = (unsigned long)(PHM_VIslands_Magic);
115
116 struct fiji_power_state *cast_phw_fiji_power_state(
117 struct pp_hw_power_state *hw_ps)
118 {
119 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
120 "Invalid Powerstate Type!",
121 return NULL;);
122
123 return (struct fiji_power_state *)hw_ps;
124 }
125
126 const struct fiji_power_state *cast_const_phw_fiji_power_state(
127 const struct pp_hw_power_state *hw_ps)
128 {
129 PP_ASSERT_WITH_CODE((PhwFiji_Magic == hw_ps->magic),
130 "Invalid Powerstate Type!",
131 return NULL;);
132
133 return (const struct fiji_power_state *)hw_ps;
134 }
135
136 static bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
137 {
138 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
139 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
140 ? true : false;
141 }
142
143 static void fiji_init_dpm_defaults(struct pp_hwmgr *hwmgr)
144 {
145 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
146 struct fiji_ulv_parm *ulv = &data->ulv;
147
148 ulv->cg_ulv_parameter = PPFIJI_CGULVPARAMETER_DFLT;
149 data->voting_rights_clients0 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT0;
150 data->voting_rights_clients1 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT1;
151 data->voting_rights_clients2 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT2;
152 data->voting_rights_clients3 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT3;
153 data->voting_rights_clients4 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT4;
154 data->voting_rights_clients5 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT5;
155 data->voting_rights_clients6 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT6;
156 data->voting_rights_clients7 = PPFIJI_VOTINGRIGHTSCLIENTS_DFLT7;
157
158 data->static_screen_threshold_unit =
159 PPFIJI_STATICSCREENTHRESHOLDUNIT_DFLT;
160 data->static_screen_threshold =
161 PPFIJI_STATICSCREENTHRESHOLD_DFLT;
162
163 /* Unset ABM cap as it moved to DAL.
164 * Add PHM_PlatformCaps_NonABMSupportInPPLib
165 * for re-direct ABM related request to DAL
166 */
167 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
168 PHM_PlatformCaps_ABM);
169 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
170 PHM_PlatformCaps_NonABMSupportInPPLib);
171
172 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
173 PHM_PlatformCaps_DynamicACTiming);
174
175 fiji_initialize_power_tune_defaults(hwmgr);
176
177 data->mclk_stutter_mode_threshold = 60000;
178 data->pcie_gen_performance.max = PP_PCIEGen1;
179 data->pcie_gen_performance.min = PP_PCIEGen3;
180 data->pcie_gen_power_saving.max = PP_PCIEGen1;
181 data->pcie_gen_power_saving.min = PP_PCIEGen3;
182 data->pcie_lane_performance.max = 0;
183 data->pcie_lane_performance.min = 16;
184 data->pcie_lane_power_saving.max = 0;
185 data->pcie_lane_power_saving.min = 16;
186
187 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
188 PHM_PlatformCaps_DynamicUVDState);
189 }
190
191 static int fiji_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
192 phm_ppt_v1_voltage_lookup_table *lookup_table,
193 uint16_t virtual_voltage_id, int32_t *sclk)
194 {
195 uint8_t entryId;
196 uint8_t voltageId;
197 struct phm_ppt_v1_information *table_info =
198 (struct phm_ppt_v1_information *)(hwmgr->pptable);
199
200 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
201
202 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
203 for (entryId = 0; entryId < table_info->vdd_dep_on_sclk->count; entryId++) {
204 voltageId = table_info->vdd_dep_on_sclk->entries[entryId].vddInd;
205 if (lookup_table->entries[voltageId].us_vdd == virtual_voltage_id)
206 break;
207 }
208
209 PP_ASSERT_WITH_CODE(entryId < table_info->vdd_dep_on_sclk->count,
210 "Can't find requested voltage id in vdd_dep_on_sclk table!",
211 return -EINVAL;
212 );
213
214 *sclk = table_info->vdd_dep_on_sclk->entries[entryId].clk;
215
216 return 0;
217 }
218
219 /**
220 * Get Leakage VDDC based on leakage ID.
221 *
222 * @param hwmgr the address of the powerplay hardware manager.
223 * @return always 0
224 */
225 static int fiji_get_evv_voltages(struct pp_hwmgr *hwmgr)
226 {
227 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
228 uint16_t vv_id;
229 uint16_t vddc = 0;
230 uint16_t evv_default = 1150;
231 uint16_t i, j;
232 uint32_t sclk = 0;
233 struct phm_ppt_v1_information *table_info =
234 (struct phm_ppt_v1_information *)hwmgr->pptable;
235 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
236 table_info->vdd_dep_on_sclk;
237 int result;
238
239 for (i = 0; i < FIJI_MAX_LEAKAGE_COUNT; i++) {
240 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
241 if (!fiji_get_sclk_for_voltage_evv(hwmgr,
242 table_info->vddc_lookup_table, vv_id, &sclk)) {
243 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
244 PHM_PlatformCaps_ClockStretcher)) {
245 for (j = 1; j < sclk_table->count; j++) {
246 if (sclk_table->entries[j].clk == sclk &&
247 sclk_table->entries[j].cks_enable == 0) {
248 sclk += 5000;
249 break;
250 }
251 }
252 }
253
254 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
255 PHM_PlatformCaps_EnableDriverEVV))
256 result = atomctrl_calculate_voltage_evv_on_sclk(hwmgr,
257 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc, i, true);
258 else
259 result = -EINVAL;
260
261 if (result)
262 result = atomctrl_get_voltage_evv_on_sclk(hwmgr,
263 VOLTAGE_TYPE_VDDC, sclk,vv_id, &vddc);
264
265 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
266 PP_ASSERT_WITH_CODE((vddc < 2000),
267 "Invalid VDDC value, greater than 2v!", result = -EINVAL;);
268
269 if (result)
270 /* 1.15V is the default safe value for Fiji */
271 vddc = evv_default;
272
273 /* the voltage should not be zero nor equal to leakage ID */
274 if (vddc != 0 && vddc != vv_id) {
275 data->vddc_leakage.actual_voltage
276 [data->vddc_leakage.count] = vddc;
277 data->vddc_leakage.leakage_id
278 [data->vddc_leakage.count] = vv_id;
279 data->vddc_leakage.count++;
280 }
281 }
282 }
283 return 0;
284 }
285
286 /**
287 * Change virtual leakage voltage to actual value.
288 *
289 * @param hwmgr the address of the powerplay hardware manager.
290 * @param pointer to changing voltage
291 * @param pointer to leakage table
292 */
293 static void fiji_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
294 uint16_t *voltage, struct fiji_leakage_voltage *leakage_table)
295 {
296 uint32_t index;
297
298 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
299 for (index = 0; index < leakage_table->count; index++) {
300 /* if this voltage matches a leakage voltage ID */
301 /* patch with actual leakage voltage */
302 if (leakage_table->leakage_id[index] == *voltage) {
303 *voltage = leakage_table->actual_voltage[index];
304 break;
305 }
306 }
307
308 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
309 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
310 }
311
312 /**
313 * Patch voltage lookup table by EVV leakages.
314 *
315 * @param hwmgr the address of the powerplay hardware manager.
316 * @param pointer to voltage lookup table
317 * @param pointer to leakage table
318 * @return always 0
319 */
320 static int fiji_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
321 phm_ppt_v1_voltage_lookup_table *lookup_table,
322 struct fiji_leakage_voltage *leakage_table)
323 {
324 uint32_t i;
325
326 for (i = 0; i < lookup_table->count; i++)
327 fiji_patch_with_vdd_leakage(hwmgr,
328 &lookup_table->entries[i].us_vdd, leakage_table);
329
330 return 0;
331 }
332
333 static int fiji_patch_clock_voltage_limits_with_vddc_leakage(
334 struct pp_hwmgr *hwmgr, struct fiji_leakage_voltage *leakage_table,
335 uint16_t *vddc)
336 {
337 struct phm_ppt_v1_information *table_info =
338 (struct phm_ppt_v1_information *)(hwmgr->pptable);
339 fiji_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
340 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
341 table_info->max_clock_voltage_on_dc.vddc;
342 return 0;
343 }
344
345 static int fiji_patch_voltage_dependency_tables_with_lookup_table(
346 struct pp_hwmgr *hwmgr)
347 {
348 uint8_t entryId;
349 uint8_t voltageId;
350 struct phm_ppt_v1_information *table_info =
351 (struct phm_ppt_v1_information *)(hwmgr->pptable);
352
353 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
354 table_info->vdd_dep_on_sclk;
355 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
356 table_info->vdd_dep_on_mclk;
357 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
358 table_info->mm_dep_table;
359
360 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
361 voltageId = sclk_table->entries[entryId].vddInd;
362 sclk_table->entries[entryId].vddc =
363 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
364 }
365
366 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
367 voltageId = mclk_table->entries[entryId].vddInd;
368 mclk_table->entries[entryId].vddc =
369 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
370 }
371
372 for (entryId = 0; entryId < mm_table->count; ++entryId) {
373 voltageId = mm_table->entries[entryId].vddcInd;
374 mm_table->entries[entryId].vddc =
375 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
376 }
377
378 return 0;
379
380 }
381
382 static int fiji_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
383 {
384 /* Need to determine if we need calculated voltage. */
385 return 0;
386 }
387
388 static int fiji_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
389 {
390 /* Need to determine if we need calculated voltage from mm table. */
391 return 0;
392 }
393
394 static int fiji_sort_lookup_table(struct pp_hwmgr *hwmgr,
395 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
396 {
397 uint32_t table_size, i, j;
398 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
399 table_size = lookup_table->count;
400
401 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
402 "Lookup table is empty", return -EINVAL);
403
404 /* Sorting voltages */
405 for (i = 0; i < table_size - 1; i++) {
406 for (j = i + 1; j > 0; j--) {
407 if (lookup_table->entries[j].us_vdd <
408 lookup_table->entries[j - 1].us_vdd) {
409 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
410 lookup_table->entries[j - 1] = lookup_table->entries[j];
411 lookup_table->entries[j] = tmp_voltage_lookup_record;
412 }
413 }
414 }
415
416 return 0;
417 }
418
419 static int fiji_complete_dependency_tables(struct pp_hwmgr *hwmgr)
420 {
421 int result = 0;
422 int tmp_result;
423 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
424 struct phm_ppt_v1_information *table_info =
425 (struct phm_ppt_v1_information *)(hwmgr->pptable);
426
427 tmp_result = fiji_patch_lookup_table_with_leakage(hwmgr,
428 table_info->vddc_lookup_table, &(data->vddc_leakage));
429 if (tmp_result)
430 result = tmp_result;
431
432 tmp_result = fiji_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
433 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
434 if (tmp_result)
435 result = tmp_result;
436
437 tmp_result = fiji_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
438 if (tmp_result)
439 result = tmp_result;
440
441 tmp_result = fiji_calc_voltage_dependency_tables(hwmgr);
442 if (tmp_result)
443 result = tmp_result;
444
445 tmp_result = fiji_calc_mm_voltage_dependency_table(hwmgr);
446 if (tmp_result)
447 result = tmp_result;
448
449 tmp_result = fiji_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
450 if(tmp_result)
451 result = tmp_result;
452
453 return result;
454 }
455
456 static int fiji_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
457 {
458 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
459 struct phm_ppt_v1_information *table_info =
460 (struct phm_ppt_v1_information *)(hwmgr->pptable);
461
462 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
463 table_info->vdd_dep_on_sclk;
464 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
465 table_info->vdd_dep_on_mclk;
466
467 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
468 "VDD dependency on SCLK table is missing. \
469 This table is mandatory", return -EINVAL);
470 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
471 "VDD dependency on SCLK table has to have is missing. \
472 This table is mandatory", return -EINVAL);
473
474 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
475 "VDD dependency on MCLK table is missing. \
476 This table is mandatory", return -EINVAL);
477 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
478 "VDD dependency on MCLK table has to have is missing. \
479 This table is mandatory", return -EINVAL);
480
481 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->entries[0].vddc;
482 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vdd_table->
483 entries[allowed_sclk_vdd_table->count - 1].vddc;
484
485 table_info->max_clock_voltage_on_ac.sclk =
486 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
487 table_info->max_clock_voltage_on_ac.mclk =
488 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
489 table_info->max_clock_voltage_on_ac.vddc =
490 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
491 table_info->max_clock_voltage_on_ac.vddci =
492 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
493
494 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
495 table_info->max_clock_voltage_on_ac.sclk;
496 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
497 table_info->max_clock_voltage_on_ac.mclk;
498 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
499 table_info->max_clock_voltage_on_ac.vddc;
500 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =
501 table_info->max_clock_voltage_on_ac.vddci;
502
503 return 0;
504 }
505
506 static uint16_t fiji_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
507 {
508 uint32_t speedCntl = 0;
509
510 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
511 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
512 ixPCIE_LC_SPEED_CNTL);
513 return((uint16_t)PHM_GET_FIELD(speedCntl,
514 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
515 }
516
517 static int fiji_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
518 {
519 uint32_t link_width;
520
521 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
522 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
523 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
524
525 PP_ASSERT_WITH_CODE((7 >= link_width),
526 "Invalid PCIe lane width!", return 0);
527
528 return decode_pcie_lane_width(link_width);
529 }
530
531 /** Patch the Boot State to match VBIOS boot clocks and voltage.
532 *
533 * @param hwmgr Pointer to the hardware manager.
534 * @param pPowerState The address of the PowerState instance being created.
535 *
536 */
537 static int fiji_patch_boot_state(struct pp_hwmgr *hwmgr,
538 struct pp_hw_power_state *hw_ps)
539 {
540 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
541 struct fiji_power_state *ps = (struct fiji_power_state *)hw_ps;
542 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
543 uint16_t size;
544 uint8_t frev, crev;
545 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
546
547 /* First retrieve the Boot clocks and VDDC from the firmware info table.
548 * We assume here that fw_info is unchanged if this call fails.
549 */
550 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
551 hwmgr->device, index,
552 &size, &frev, &crev);
553 if (!fw_info)
554 /* During a test, there is no firmware info table. */
555 return 0;
556
557 /* Patch the state. */
558 data->vbios_boot_state.sclk_bootup_value =
559 le32_to_cpu(fw_info->ulDefaultEngineClock);
560 data->vbios_boot_state.mclk_bootup_value =
561 le32_to_cpu(fw_info->ulDefaultMemoryClock);
562 data->vbios_boot_state.mvdd_bootup_value =
563 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
564 data->vbios_boot_state.vddc_bootup_value =
565 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
566 data->vbios_boot_state.vddci_bootup_value =
567 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
568 data->vbios_boot_state.pcie_gen_bootup_value =
569 fiji_get_current_pcie_speed(hwmgr);
570 data->vbios_boot_state.pcie_lane_bootup_value =
571 (uint16_t)fiji_get_current_pcie_lane_number(hwmgr);
572
573 /* set boot power state */
574 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
575 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
576 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
577 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
578
579 return 0;
580 }
581
582 static int fiji_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
583 {
584 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
585
586 if (data->soft_pp_table) {
587 kfree(data->soft_pp_table);
588 data->soft_pp_table = NULL;
589 }
590
591 return phm_hwmgr_backend_fini(hwmgr);
592 }
593
594 static int fiji_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
595 {
596 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
597 uint32_t i;
598 struct phm_ppt_v1_information *table_info =
599 (struct phm_ppt_v1_information *)(hwmgr->pptable);
600 bool stay_in_boot;
601 int result;
602
603 data->dll_default_on = false;
604 data->sram_end = SMC_RAM_END;
605
606 for (i = 0; i < SMU73_MAX_LEVELS_GRAPHICS; i++)
607 data->activity_target[i] = FIJI_AT_DFLT;
608
609 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
610
611 data->mclk_activity_target = PPFIJI_MCLK_TARGETACTIVITY_DFLT;
612 data->mclk_dpm0_activity_target = 0xa;
613
614 data->sclk_dpm_key_disabled = 0;
615 data->mclk_dpm_key_disabled = 0;
616 data->pcie_dpm_key_disabled = 0;
617
618 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
619 PHM_PlatformCaps_UnTabledHardwareInterface);
620 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
621 PHM_PlatformCaps_TablelessHardwareInterface);
622
623 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
624 PHM_PlatformCaps_SclkDeepSleep);
625
626 data->gpio_debug = 0;
627
628 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
629 PHM_PlatformCaps_DynamicPatchPowerState);
630
631 /* need to set voltage control types before EVV patching */
632 data->voltage_control = FIJI_VOLTAGE_CONTROL_NONE;
633 data->vddci_control = FIJI_VOLTAGE_CONTROL_NONE;
634 data->mvdd_control = FIJI_VOLTAGE_CONTROL_NONE;
635
636 data->force_pcie_gen = PP_PCIEGenInvalid;
637
638 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
639 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
640 data->voltage_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
641
642 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
643 PHM_PlatformCaps_EnableMVDDControl))
644 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
645 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
646 data->mvdd_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
647
648 if (data->mvdd_control == FIJI_VOLTAGE_CONTROL_NONE)
649 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
650 PHM_PlatformCaps_EnableMVDDControl);
651
652 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
653 PHM_PlatformCaps_ControlVDDCI)) {
654 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
655 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
656 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_GPIO;
657 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
658 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
659 data->vddci_control = FIJI_VOLTAGE_CONTROL_BY_SVID2;
660 }
661
662 if (data->vddci_control == FIJI_VOLTAGE_CONTROL_NONE)
663 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
664 PHM_PlatformCaps_ControlVDDCI);
665
666 if (table_info && table_info->cac_dtp_table->usClockStretchAmount)
667 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
668 PHM_PlatformCaps_ClockStretcher);
669
670 fiji_init_dpm_defaults(hwmgr);
671
672 /* Get leakage voltage based on leakage ID. */
673 fiji_get_evv_voltages(hwmgr);
674
675 /* Patch our voltage dependency table with actual leakage voltage
676 * We need to perform leakage translation before it's used by other functions
677 */
678 fiji_complete_dependency_tables(hwmgr);
679
680 /* Parse pptable data read from VBIOS */
681 fiji_set_private_data_based_on_pptable(hwmgr);
682
683 /* ULV Support */
684 data->ulv.ulv_supported = true; /* ULV feature is enabled by default */
685
686 /* Initalize Dynamic State Adjustment Rule Settings */
687 result = tonga_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
688
689 if (!result) {
690 data->uvd_enabled = false;
691 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
692 PHM_PlatformCaps_EnableSMU7ThermalManagement);
693 data->vddc_phase_shed_control = false;
694 }
695
696 stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
697 PHM_PlatformCaps_StayInBootState);
698
699 if (0 == result) {
700 struct cgs_system_info sys_info = {0};
701
702 data->is_tlu_enabled = 0;
703 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
704 FIJI_MAX_HARDWARE_POWERLEVELS;
705 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
706 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
707
708 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
709 PHM_PlatformCaps_FanSpeedInTableIsRPM);
710
711 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp &&
712 hwmgr->thermal_controller.
713 advanceFanControlParameters.ucFanControlMode) {
714 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
715 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
716 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
717 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
718 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
719 table_info->cac_dtp_table->usOperatingTempMinLimit;
720 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
721 table_info->cac_dtp_table->usOperatingTempMaxLimit;
722 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
723 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
724 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
725 table_info->cac_dtp_table->usOperatingTempStep;
726 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
727 table_info->cac_dtp_table->usTargetOperatingTemp;
728
729 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
730 PHM_PlatformCaps_ODFuzzyFanControlSupport);
731 }
732
733 sys_info.size = sizeof(struct cgs_system_info);
734 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
735 result = cgs_query_system_info(hwmgr->device, &sys_info);
736 if (result)
737 data->pcie_gen_cap = 0x30007;
738 else
739 data->pcie_gen_cap = (uint32_t)sys_info.value;
740 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
741 data->pcie_spc_cap = 20;
742 sys_info.size = sizeof(struct cgs_system_info);
743 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
744 result = cgs_query_system_info(hwmgr->device, &sys_info);
745 if (result)
746 data->pcie_lane_cap = 0x2f0000;
747 else
748 data->pcie_lane_cap = (uint32_t)sys_info.value;
749 } else {
750 /* Ignore return value in here, we are cleaning up a mess. */
751 fiji_hwmgr_backend_fini(hwmgr);
752 }
753
754 return 0;
755 }
756
757 /**
758 * Read clock related registers.
759 *
760 * @param hwmgr the address of the powerplay hardware manager.
761 * @return always 0
762 */
763 static int fiji_read_clock_registers(struct pp_hwmgr *hwmgr)
764 {
765 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
766
767 data->clock_registers.vCG_SPLL_FUNC_CNTL =
768 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
769 ixCG_SPLL_FUNC_CNTL);
770 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
771 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
772 ixCG_SPLL_FUNC_CNTL_2);
773 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
774 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
775 ixCG_SPLL_FUNC_CNTL_3);
776 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
777 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
778 ixCG_SPLL_FUNC_CNTL_4);
779 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
780 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
781 ixCG_SPLL_SPREAD_SPECTRUM);
782 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
783 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
784 ixCG_SPLL_SPREAD_SPECTRUM_2);
785
786 return 0;
787 }
788
789 /**
790 * Find out if memory is GDDR5.
791 *
792 * @param hwmgr the address of the powerplay hardware manager.
793 * @return always 0
794 */
795 static int fiji_get_memory_type(struct pp_hwmgr *hwmgr)
796 {
797 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
798 uint32_t temp;
799
800 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
801
802 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
803 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
804 MC_SEQ_MISC0_GDDR5_SHIFT));
805
806 return 0;
807 }
808
809 /**
810 * Enables Dynamic Power Management by SMC
811 *
812 * @param hwmgr the address of the powerplay hardware manager.
813 * @return always 0
814 */
815 static int fiji_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
816 {
817 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
818 GENERAL_PWRMGT, STATIC_PM_EN, 1);
819
820 return 0;
821 }
822
823 /**
824 * Initialize PowerGating States for different engines
825 *
826 * @param hwmgr the address of the powerplay hardware manager.
827 * @return always 0
828 */
829 static int fiji_init_power_gate_state(struct pp_hwmgr *hwmgr)
830 {
831 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
832
833 data->uvd_power_gated = false;
834 data->vce_power_gated = false;
835 data->samu_power_gated = false;
836 data->acp_power_gated = false;
837 data->pg_acp_init = true;
838
839 return 0;
840 }
841
842 static int fiji_init_sclk_threshold(struct pp_hwmgr *hwmgr)
843 {
844 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
845 data->low_sclk_interrupt_threshold = 0;
846
847 return 0;
848 }
849
850 static int fiji_setup_asic_task(struct pp_hwmgr *hwmgr)
851 {
852 int tmp_result, result = 0;
853
854 tmp_result = fiji_read_clock_registers(hwmgr);
855 PP_ASSERT_WITH_CODE((0 == tmp_result),
856 "Failed to read clock registers!", result = tmp_result);
857
858 tmp_result = fiji_get_memory_type(hwmgr);
859 PP_ASSERT_WITH_CODE((0 == tmp_result),
860 "Failed to get memory type!", result = tmp_result);
861
862 tmp_result = fiji_enable_acpi_power_management(hwmgr);
863 PP_ASSERT_WITH_CODE((0 == tmp_result),
864 "Failed to enable ACPI power management!", result = tmp_result);
865
866 tmp_result = fiji_init_power_gate_state(hwmgr);
867 PP_ASSERT_WITH_CODE((0 == tmp_result),
868 "Failed to init power gate state!", result = tmp_result);
869
870 tmp_result = tonga_get_mc_microcode_version(hwmgr);
871 PP_ASSERT_WITH_CODE((0 == tmp_result),
872 "Failed to get MC microcode version!", result = tmp_result);
873
874 tmp_result = fiji_init_sclk_threshold(hwmgr);
875 PP_ASSERT_WITH_CODE((0 == tmp_result),
876 "Failed to init sclk threshold!", result = tmp_result);
877
878 return result;
879 }
880
881 /**
882 * Checks if we want to support voltage control
883 *
884 * @param hwmgr the address of the powerplay hardware manager.
885 */
886 static bool fiji_voltage_control(const struct pp_hwmgr *hwmgr)
887 {
888 const struct fiji_hwmgr *data =
889 (const struct fiji_hwmgr *)(hwmgr->backend);
890
891 return (FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control);
892 }
893
894 /**
895 * Enable voltage control
896 *
897 * @param hwmgr the address of the powerplay hardware manager.
898 * @return always 0
899 */
900 static int fiji_enable_voltage_control(struct pp_hwmgr *hwmgr)
901 {
902 /* enable voltage control */
903 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
904 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
905
906 return 0;
907 }
908
909 /**
910 * Remove repeated voltage values and create table with unique values.
911 *
912 * @param hwmgr the address of the powerplay hardware manager.
913 * @param vol_table the pointer to changing voltage table
914 * @return 0 in success
915 */
916
917 static int fiji_trim_voltage_table(struct pp_hwmgr *hwmgr,
918 struct pp_atomctrl_voltage_table *vol_table)
919 {
920 uint32_t i, j;
921 uint16_t vvalue;
922 bool found = false;
923 struct pp_atomctrl_voltage_table *table;
924
925 PP_ASSERT_WITH_CODE((NULL != vol_table),
926 "Voltage Table empty.", return -EINVAL);
927 table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
928 GFP_KERNEL);
929
930 if (NULL == table)
931 return -ENOMEM;
932
933 table->mask_low = vol_table->mask_low;
934 table->phase_delay = vol_table->phase_delay;
935
936 for (i = 0; i < vol_table->count; i++) {
937 vvalue = vol_table->entries[i].value;
938 found = false;
939
940 for (j = 0; j < table->count; j++) {
941 if (vvalue == table->entries[j].value) {
942 found = true;
943 break;
944 }
945 }
946
947 if (!found) {
948 table->entries[table->count].value = vvalue;
949 table->entries[table->count].smio_low =
950 vol_table->entries[i].smio_low;
951 table->count++;
952 }
953 }
954
955 memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
956 kfree(table);
957
958 return 0;
959 }
960
961 static int fiji_get_svi2_mvdd_voltage_table(struct pp_hwmgr *hwmgr,
962 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
963 {
964 uint32_t i;
965 int result;
966 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
967 struct pp_atomctrl_voltage_table *vol_table = &(data->mvdd_voltage_table);
968
969 PP_ASSERT_WITH_CODE((0 != dep_table->count),
970 "Voltage Dependency Table empty.", return -EINVAL);
971
972 vol_table->mask_low = 0;
973 vol_table->phase_delay = 0;
974 vol_table->count = dep_table->count;
975
976 for (i = 0; i < dep_table->count; i++) {
977 vol_table->entries[i].value = dep_table->entries[i].mvdd;
978 vol_table->entries[i].smio_low = 0;
979 }
980
981 result = fiji_trim_voltage_table(hwmgr, vol_table);
982 PP_ASSERT_WITH_CODE((0 == result),
983 "Failed to trim MVDD table.", return result);
984
985 return 0;
986 }
987
988 static int fiji_get_svi2_vddci_voltage_table(struct pp_hwmgr *hwmgr,
989 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
990 {
991 uint32_t i;
992 int result;
993 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
994 struct pp_atomctrl_voltage_table *vol_table = &(data->vddci_voltage_table);
995
996 PP_ASSERT_WITH_CODE((0 != dep_table->count),
997 "Voltage Dependency Table empty.", return -EINVAL);
998
999 vol_table->mask_low = 0;
1000 vol_table->phase_delay = 0;
1001 vol_table->count = dep_table->count;
1002
1003 for (i = 0; i < dep_table->count; i++) {
1004 vol_table->entries[i].value = dep_table->entries[i].vddci;
1005 vol_table->entries[i].smio_low = 0;
1006 }
1007
1008 result = fiji_trim_voltage_table(hwmgr, vol_table);
1009 PP_ASSERT_WITH_CODE((0 == result),
1010 "Failed to trim VDDCI table.", return result);
1011
1012 return 0;
1013 }
1014
1015 static int fiji_get_svi2_vdd_voltage_table(struct pp_hwmgr *hwmgr,
1016 phm_ppt_v1_voltage_lookup_table *lookup_table)
1017 {
1018 int i = 0;
1019 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1020 struct pp_atomctrl_voltage_table *vol_table = &(data->vddc_voltage_table);
1021
1022 PP_ASSERT_WITH_CODE((0 != lookup_table->count),
1023 "Voltage Lookup Table empty.", return -EINVAL);
1024
1025 vol_table->mask_low = 0;
1026 vol_table->phase_delay = 0;
1027
1028 vol_table->count = lookup_table->count;
1029
1030 for (i = 0; i < vol_table->count; i++) {
1031 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
1032 vol_table->entries[i].smio_low = 0;
1033 }
1034
1035 return 0;
1036 }
1037
1038 /* ---- Voltage Tables ----
1039 * If the voltage table would be bigger than
1040 * what will fit into the state table on
1041 * the SMC keep only the higher entries.
1042 */
1043 static void fiji_trim_voltage_table_to_fit_state_table(struct pp_hwmgr *hwmgr,
1044 uint32_t max_vol_steps, struct pp_atomctrl_voltage_table *vol_table)
1045 {
1046 unsigned int i, diff;
1047
1048 if (vol_table->count <= max_vol_steps)
1049 return;
1050
1051 diff = vol_table->count - max_vol_steps;
1052
1053 for (i = 0; i < max_vol_steps; i++)
1054 vol_table->entries[i] = vol_table->entries[i + diff];
1055
1056 vol_table->count = max_vol_steps;
1057
1058 return;
1059 }
1060
1061 /**
1062 * Create Voltage Tables.
1063 *
1064 * @param hwmgr the address of the powerplay hardware manager.
1065 * @return always 0
1066 */
1067 static int fiji_construct_voltage_tables(struct pp_hwmgr *hwmgr)
1068 {
1069 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1070 struct phm_ppt_v1_information *table_info =
1071 (struct phm_ppt_v1_information *)hwmgr->pptable;
1072 int result;
1073
1074 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1075 result = atomctrl_get_voltage_table_v3(hwmgr,
1076 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
1077 &(data->mvdd_voltage_table));
1078 PP_ASSERT_WITH_CODE((0 == result),
1079 "Failed to retrieve MVDD table.",
1080 return result);
1081 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1082 result = fiji_get_svi2_mvdd_voltage_table(hwmgr,
1083 table_info->vdd_dep_on_mclk);
1084 PP_ASSERT_WITH_CODE((0 == result),
1085 "Failed to retrieve SVI2 MVDD table from dependancy table.",
1086 return result;);
1087 }
1088
1089 if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1090 result = atomctrl_get_voltage_table_v3(hwmgr,
1091 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
1092 &(data->vddci_voltage_table));
1093 PP_ASSERT_WITH_CODE((0 == result),
1094 "Failed to retrieve VDDCI table.",
1095 return result);
1096 } else if (FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1097 result = fiji_get_svi2_vddci_voltage_table(hwmgr,
1098 table_info->vdd_dep_on_mclk);
1099 PP_ASSERT_WITH_CODE((0 == result),
1100 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
1101 return result);
1102 }
1103
1104 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1105 result = fiji_get_svi2_vdd_voltage_table(hwmgr,
1106 table_info->vddc_lookup_table);
1107 PP_ASSERT_WITH_CODE((0 == result),
1108 "Failed to retrieve SVI2 VDDC table from lookup table.",
1109 return result);
1110 }
1111
1112 PP_ASSERT_WITH_CODE(
1113 (data->vddc_voltage_table.count <= (SMU73_MAX_LEVELS_VDDC)),
1114 "Too many voltage values for VDDC. Trimming to fit state table.",
1115 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1116 SMU73_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)));
1117
1118 PP_ASSERT_WITH_CODE(
1119 (data->vddci_voltage_table.count <= (SMU73_MAX_LEVELS_VDDCI)),
1120 "Too many voltage values for VDDCI. Trimming to fit state table.",
1121 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1122 SMU73_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)));
1123
1124 PP_ASSERT_WITH_CODE(
1125 (data->mvdd_voltage_table.count <= (SMU73_MAX_LEVELS_MVDD)),
1126 "Too many voltage values for MVDD. Trimming to fit state table.",
1127 fiji_trim_voltage_table_to_fit_state_table(hwmgr,
1128 SMU73_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)));
1129
1130 return 0;
1131 }
1132
1133 static int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
1134 {
1135 /* Program additional LP registers
1136 * that are no longer programmed by VBIOS
1137 */
1138 cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
1139 cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
1140 cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
1141 cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
1142 cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
1143 cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
1144 cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
1145 cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
1146 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
1147 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
1148 cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
1149 cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
1150 cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
1151 cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
1152
1153 return 0;
1154 }
1155
1156 /**
1157 * Programs static screed detection parameters
1158 *
1159 * @param hwmgr the address of the powerplay hardware manager.
1160 * @return always 0
1161 */
1162 static int fiji_program_static_screen_threshold_parameters(
1163 struct pp_hwmgr *hwmgr)
1164 {
1165 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1166
1167 /* Set static screen threshold unit */
1168 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1169 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
1170 data->static_screen_threshold_unit);
1171 /* Set static screen threshold */
1172 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1173 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
1174 data->static_screen_threshold);
1175
1176 return 0;
1177 }
1178
1179 /**
1180 * Setup display gap for glitch free memory clock switching.
1181 *
1182 * @param hwmgr the address of the powerplay hardware manager.
1183 * @return always 0
1184 */
1185 static int fiji_enable_display_gap(struct pp_hwmgr *hwmgr)
1186 {
1187 uint32_t displayGap =
1188 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1189 ixCG_DISPLAY_GAP_CNTL);
1190
1191 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1192 DISP_GAP, DISPLAY_GAP_IGNORE);
1193
1194 displayGap = PHM_SET_FIELD(displayGap, CG_DISPLAY_GAP_CNTL,
1195 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
1196
1197 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1198 ixCG_DISPLAY_GAP_CNTL, displayGap);
1199
1200 return 0;
1201 }
1202
1203 /**
1204 * Programs activity state transition voting clients
1205 *
1206 * @param hwmgr the address of the powerplay hardware manager.
1207 * @return always 0
1208 */
1209 static int fiji_program_voting_clients(struct pp_hwmgr *hwmgr)
1210 {
1211 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1212
1213 /* Clear reset for voting clients before enabling DPM */
1214 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1215 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
1216 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1217 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
1218
1219 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1220 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
1221 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1222 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
1223 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1224 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
1225 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1226 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
1227 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1228 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
1229 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1230 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
1231 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1232 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
1233 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1234 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
1235
1236 return 0;
1237 }
1238
1239 /**
1240 * Get the location of various tables inside the FW image.
1241 *
1242 * @param hwmgr the address of the powerplay hardware manager.
1243 * @return always 0
1244 */
1245 static int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
1246 {
1247 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1248 struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1249 uint32_t tmp;
1250 int result;
1251 bool error = false;
1252
1253 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1254 SMU7_FIRMWARE_HEADER_LOCATION +
1255 offsetof(SMU73_Firmware_Header, DpmTable),
1256 &tmp, data->sram_end);
1257
1258 if (0 == result)
1259 data->dpm_table_start = tmp;
1260
1261 error |= (0 != result);
1262
1263 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1264 SMU7_FIRMWARE_HEADER_LOCATION +
1265 offsetof(SMU73_Firmware_Header, SoftRegisters),
1266 &tmp, data->sram_end);
1267
1268 if (!result) {
1269 data->soft_regs_start = tmp;
1270 smu_data->soft_regs_start = tmp;
1271 }
1272
1273 error |= (0 != result);
1274
1275 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1276 SMU7_FIRMWARE_HEADER_LOCATION +
1277 offsetof(SMU73_Firmware_Header, mcRegisterTable),
1278 &tmp, data->sram_end);
1279
1280 if (!result)
1281 data->mc_reg_table_start = tmp;
1282
1283 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1284 SMU7_FIRMWARE_HEADER_LOCATION +
1285 offsetof(SMU73_Firmware_Header, FanTable),
1286 &tmp, data->sram_end);
1287
1288 if (!result)
1289 data->fan_table_start = tmp;
1290
1291 error |= (0 != result);
1292
1293 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1294 SMU7_FIRMWARE_HEADER_LOCATION +
1295 offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
1296 &tmp, data->sram_end);
1297
1298 if (!result)
1299 data->arb_table_start = tmp;
1300
1301 error |= (0 != result);
1302
1303 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
1304 SMU7_FIRMWARE_HEADER_LOCATION +
1305 offsetof(SMU73_Firmware_Header, Version),
1306 &tmp, data->sram_end);
1307
1308 if (!result)
1309 hwmgr->microcode_version_info.SMC = tmp;
1310
1311 error |= (0 != result);
1312
1313 return error ? -1 : 0;
1314 }
1315
1316 /* Copy one arb setting to another and then switch the active set.
1317 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
1318 */
1319 static int fiji_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
1320 uint32_t arb_src, uint32_t arb_dest)
1321 {
1322 uint32_t mc_arb_dram_timing;
1323 uint32_t mc_arb_dram_timing2;
1324 uint32_t burst_time;
1325 uint32_t mc_cg_config;
1326
1327 switch (arb_src) {
1328 case MC_CG_ARB_FREQ_F0:
1329 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1330 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1331 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1332 break;
1333 case MC_CG_ARB_FREQ_F1:
1334 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
1335 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
1336 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
1337 break;
1338 default:
1339 return -EINVAL;
1340 }
1341
1342 switch (arb_dest) {
1343 case MC_CG_ARB_FREQ_F0:
1344 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
1345 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
1346 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
1347 break;
1348 case MC_CG_ARB_FREQ_F1:
1349 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
1350 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
1351 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
1352 break;
1353 default:
1354 return -EINVAL;
1355 }
1356
1357 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
1358 mc_cg_config |= 0x0000000F;
1359 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
1360 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
1361
1362 return 0;
1363 }
1364
1365 /**
1366 * Initial switch from ARB F0->F1
1367 *
1368 * @param hwmgr the address of the powerplay hardware manager.
1369 * @return always 0
1370 * This function is to be called from the SetPowerState table.
1371 */
1372 static int fiji_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
1373 {
1374 return fiji_copy_and_switch_arb_sets(hwmgr,
1375 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
1376 }
1377
1378 static int fiji_reset_single_dpm_table(struct pp_hwmgr *hwmgr,
1379 struct fiji_single_dpm_table *dpm_table, uint32_t count)
1380 {
1381 int i;
1382 PP_ASSERT_WITH_CODE(count <= MAX_REGULAR_DPM_NUMBER,
1383 "Fatal error, can not set up single DPM table entries "
1384 "to exceed max number!",);
1385
1386 dpm_table->count = count;
1387 for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++)
1388 dpm_table->dpm_levels[i].enabled = false;
1389
1390 return 0;
1391 }
1392
1393 static void fiji_setup_pcie_table_entry(
1394 struct fiji_single_dpm_table *dpm_table,
1395 uint32_t index, uint32_t pcie_gen,
1396 uint32_t pcie_lanes)
1397 {
1398 dpm_table->dpm_levels[index].value = pcie_gen;
1399 dpm_table->dpm_levels[index].param1 = pcie_lanes;
1400 dpm_table->dpm_levels[index].enabled = 1;
1401 }
1402
1403 static int fiji_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
1404 {
1405 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1406 struct phm_ppt_v1_information *table_info =
1407 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1408 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1409 uint32_t i, max_entry;
1410
1411 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
1412 data->use_pcie_power_saving_levels), "No pcie performance levels!",
1413 return -EINVAL);
1414
1415 if (data->use_pcie_performance_levels &&
1416 !data->use_pcie_power_saving_levels) {
1417 data->pcie_gen_power_saving = data->pcie_gen_performance;
1418 data->pcie_lane_power_saving = data->pcie_lane_performance;
1419 } else if (!data->use_pcie_performance_levels &&
1420 data->use_pcie_power_saving_levels) {
1421 data->pcie_gen_performance = data->pcie_gen_power_saving;
1422 data->pcie_lane_performance = data->pcie_lane_power_saving;
1423 }
1424
1425 fiji_reset_single_dpm_table(hwmgr,
1426 &data->dpm_table.pcie_speed_table, SMU73_MAX_LEVELS_LINK);
1427
1428 if (pcie_table != NULL) {
1429 /* max_entry is used to make sure we reserve one PCIE level
1430 * for boot level (fix for A+A PSPP issue).
1431 * If PCIE table from PPTable have ULV entry + 8 entries,
1432 * then ignore the last entry.*/
1433 max_entry = (SMU73_MAX_LEVELS_LINK < pcie_table->count) ?
1434 SMU73_MAX_LEVELS_LINK : pcie_table->count;
1435 for (i = 1; i < max_entry; i++) {
1436 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
1437 get_pcie_gen_support(data->pcie_gen_cap,
1438 pcie_table->entries[i].gen_speed),
1439 get_pcie_lane_support(data->pcie_lane_cap,
1440 pcie_table->entries[i].lane_width));
1441 }
1442 data->dpm_table.pcie_speed_table.count = max_entry - 1;
1443 } else {
1444 /* Hardcode Pcie Table */
1445 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
1446 get_pcie_gen_support(data->pcie_gen_cap,
1447 PP_Min_PCIEGen),
1448 get_pcie_lane_support(data->pcie_lane_cap,
1449 PP_Max_PCIELane));
1450 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
1451 get_pcie_gen_support(data->pcie_gen_cap,
1452 PP_Min_PCIEGen),
1453 get_pcie_lane_support(data->pcie_lane_cap,
1454 PP_Max_PCIELane));
1455 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
1456 get_pcie_gen_support(data->pcie_gen_cap,
1457 PP_Max_PCIEGen),
1458 get_pcie_lane_support(data->pcie_lane_cap,
1459 PP_Max_PCIELane));
1460 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
1461 get_pcie_gen_support(data->pcie_gen_cap,
1462 PP_Max_PCIEGen),
1463 get_pcie_lane_support(data->pcie_lane_cap,
1464 PP_Max_PCIELane));
1465 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
1466 get_pcie_gen_support(data->pcie_gen_cap,
1467 PP_Max_PCIEGen),
1468 get_pcie_lane_support(data->pcie_lane_cap,
1469 PP_Max_PCIELane));
1470 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
1471 get_pcie_gen_support(data->pcie_gen_cap,
1472 PP_Max_PCIEGen),
1473 get_pcie_lane_support(data->pcie_lane_cap,
1474 PP_Max_PCIELane));
1475
1476 data->dpm_table.pcie_speed_table.count = 6;
1477 }
1478 /* Populate last level for boot PCIE level, but do not increment count. */
1479 fiji_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
1480 data->dpm_table.pcie_speed_table.count,
1481 get_pcie_gen_support(data->pcie_gen_cap,
1482 PP_Min_PCIEGen),
1483 get_pcie_lane_support(data->pcie_lane_cap,
1484 PP_Max_PCIELane));
1485
1486 return 0;
1487 }
1488
1489 /*
1490 * This function is to initalize all DPM state tables
1491 * for SMU7 based on the dependency table.
1492 * Dynamic state patching function will then trim these
1493 * state tables to the allowed range based
1494 * on the power policy or external client requests,
1495 * such as UVD request, etc.
1496 */
1497 static int fiji_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1498 {
1499 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1500 struct phm_ppt_v1_information *table_info =
1501 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1502 uint32_t i;
1503
1504 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
1505 table_info->vdd_dep_on_sclk;
1506 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
1507 table_info->vdd_dep_on_mclk;
1508
1509 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
1510 "SCLK dependency table is missing. This table is mandatory",
1511 return -EINVAL);
1512 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
1513 "SCLK dependency table has to have is missing. "
1514 "This table is mandatory",
1515 return -EINVAL);
1516
1517 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
1518 "MCLK dependency table is missing. This table is mandatory",
1519 return -EINVAL);
1520 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
1521 "MCLK dependency table has to have is missing. "
1522 "This table is mandatory",
1523 return -EINVAL);
1524
1525 /* clear the state table to reset everything to default */
1526 fiji_reset_single_dpm_table(hwmgr,
1527 &data->dpm_table.sclk_table, SMU73_MAX_LEVELS_GRAPHICS);
1528 fiji_reset_single_dpm_table(hwmgr,
1529 &data->dpm_table.mclk_table, SMU73_MAX_LEVELS_MEMORY);
1530
1531 /* Initialize Sclk DPM table based on allow Sclk values */
1532 data->dpm_table.sclk_table.count = 0;
1533 for (i = 0; i < dep_sclk_table->count; i++) {
1534 if (i == 0 || data->dpm_table.sclk_table.dpm_levels
1535 [data->dpm_table.sclk_table.count - 1].value !=
1536 dep_sclk_table->entries[i].clk) {
1537 data->dpm_table.sclk_table.dpm_levels
1538 [data->dpm_table.sclk_table.count].value =
1539 dep_sclk_table->entries[i].clk;
1540 data->dpm_table.sclk_table.dpm_levels
1541 [data->dpm_table.sclk_table.count].enabled =
1542 (i == 0) ? true : false;
1543 data->dpm_table.sclk_table.count++;
1544 }
1545 }
1546
1547 /* Initialize Mclk DPM table based on allow Mclk values */
1548 data->dpm_table.mclk_table.count = 0;
1549 for (i=0; i<dep_mclk_table->count; i++) {
1550 if ( i==0 || data->dpm_table.mclk_table.dpm_levels
1551 [data->dpm_table.mclk_table.count - 1].value !=
1552 dep_mclk_table->entries[i].clk) {
1553 data->dpm_table.mclk_table.dpm_levels
1554 [data->dpm_table.mclk_table.count].value =
1555 dep_mclk_table->entries[i].clk;
1556 data->dpm_table.mclk_table.dpm_levels
1557 [data->dpm_table.mclk_table.count].enabled =
1558 (i == 0) ? true : false;
1559 data->dpm_table.mclk_table.count++;
1560 }
1561 }
1562
1563 /* setup PCIE gen speed levels */
1564 fiji_setup_default_pcie_table(hwmgr);
1565
1566 /* save a copy of the default DPM table */
1567 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1568 sizeof(struct fiji_dpm_table));
1569
1570 return 0;
1571 }
1572
1573 /**
1574 * @brief PhwFiji_GetVoltageOrder
1575 * Returns index of requested voltage record in lookup(table)
1576 * @param lookup_table - lookup list to search in
1577 * @param voltage - voltage to look for
1578 * @return 0 on success
1579 */
1580 uint8_t fiji_get_voltage_index(
1581 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
1582 {
1583 uint8_t count = (uint8_t) (lookup_table->count);
1584 uint8_t i;
1585
1586 PP_ASSERT_WITH_CODE((NULL != lookup_table),
1587 "Lookup Table empty.", return 0);
1588 PP_ASSERT_WITH_CODE((0 != count),
1589 "Lookup Table empty.", return 0);
1590
1591 for (i = 0; i < lookup_table->count; i++) {
1592 /* find first voltage equal or bigger than requested */
1593 if (lookup_table->entries[i].us_vdd >= voltage)
1594 return i;
1595 }
1596 /* voltage is bigger than max voltage in the table */
1597 return i - 1;
1598 }
1599
1600 /**
1601 * Preparation of vddc and vddgfx CAC tables for SMC.
1602 *
1603 * @param hwmgr the address of the hardware manager
1604 * @param table the SMC DPM table structure to be populated
1605 * @return always 0
1606 */
1607 static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
1608 struct SMU73_Discrete_DpmTable *table)
1609 {
1610 uint32_t count;
1611 uint8_t index;
1612 int result = 0;
1613 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1614 struct phm_ppt_v1_information *table_info =
1615 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1616 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
1617 table_info->vddc_lookup_table;
1618 /* tables is already swapped, so in order to use the value from it,
1619 * we need to swap it back.
1620 * We are populating vddc CAC data to BapmVddc table
1621 * in split and merged mode
1622 */
1623 for( count = 0; count<lookup_table->count; count++) {
1624 index = fiji_get_voltage_index(lookup_table,
1625 data->vddc_voltage_table.entries[count].value);
1626 table->BapmVddcVidLoSidd[count] = (uint8_t) ((6200 -
1627 (lookup_table->entries[index].us_cac_low *
1628 VOLTAGE_SCALE)) / 25);
1629 table->BapmVddcVidHiSidd[count] = (uint8_t) ((6200 -
1630 (lookup_table->entries[index].us_cac_high *
1631 VOLTAGE_SCALE)) / 25);
1632 }
1633
1634 return result;
1635 }
1636
1637 /**
1638 * Preparation of voltage tables for SMC.
1639 *
1640 * @param hwmgr the address of the hardware manager
1641 * @param table the SMC DPM table structure to be populated
1642 * @return always 0
1643 */
1644
1645 int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
1646 struct SMU73_Discrete_DpmTable *table)
1647 {
1648 int result;
1649
1650 result = fiji_populate_cac_table(hwmgr, table);
1651 PP_ASSERT_WITH_CODE(0 == result,
1652 "can not populate CAC voltage tables to SMC",
1653 return -EINVAL);
1654
1655 return 0;
1656 }
1657
1658 static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
1659 struct SMU73_Discrete_Ulv *state)
1660 {
1661 int result = 0;
1662 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1663 struct phm_ppt_v1_information *table_info =
1664 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1665
1666 state->CcPwrDynRm = 0;
1667 state->CcPwrDynRm1 = 0;
1668
1669 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
1670 state->VddcOffsetVid = (uint8_t)( table_info->us_ulv_voltage_offset *
1671 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1 );
1672
1673 state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
1674
1675 if (!result) {
1676 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
1677 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
1678 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
1679 }
1680 return result;
1681 }
1682
1683 static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
1684 struct SMU73_Discrete_DpmTable *table)
1685 {
1686 return fiji_populate_ulv_level(hwmgr, &table->Ulv);
1687 }
1688
1689 static int32_t fiji_get_dpm_level_enable_mask_value(
1690 struct fiji_single_dpm_table* dpm_table)
1691 {
1692 int32_t i;
1693 int32_t mask = 0;
1694
1695 for (i = dpm_table->count; i > 0; i--) {
1696 mask = mask << 1;
1697 if (dpm_table->dpm_levels[i - 1].enabled)
1698 mask |= 0x1;
1699 else
1700 mask &= 0xFFFFFFFE;
1701 }
1702 return mask;
1703 }
1704
1705 static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
1706 struct SMU73_Discrete_DpmTable *table)
1707 {
1708 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1709 struct fiji_dpm_table *dpm_table = &data->dpm_table;
1710 int i;
1711
1712 /* Index (dpm_table->pcie_speed_table.count)
1713 * is reserved for PCIE boot level. */
1714 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1715 table->LinkLevel[i].PcieGenSpeed =
1716 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1717 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
1718 dpm_table->pcie_speed_table.dpm_levels[i].param1);
1719 table->LinkLevel[i].EnabledForActivity = 1;
1720 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
1721 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
1722 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
1723 }
1724
1725 data->smc_state_table.LinkLevelCount =
1726 (uint8_t)dpm_table->pcie_speed_table.count;
1727 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1728 fiji_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1729
1730 return 0;
1731 }
1732
1733 /**
1734 * Calculates the SCLK dividers using the provided engine clock
1735 *
1736 * @param hwmgr the address of the hardware manager
1737 * @param clock the engine clock to use to populate the structure
1738 * @param sclk the SMC SCLK structure to be populated
1739 */
1740 static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
1741 uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
1742 {
1743 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1744 struct pp_atomctrl_clock_dividers_vi dividers;
1745 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1746 uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1747 uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1748 uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1749 uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1750 uint32_t ref_clock;
1751 uint32_t ref_divider;
1752 uint32_t fbdiv;
1753 int result;
1754
1755 /* get the engine clock dividers for this clock value */
1756 result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock, &dividers);
1757
1758 PP_ASSERT_WITH_CODE(result == 0,
1759 "Error retrieving Engine Clock dividers from VBIOS.",
1760 return result);
1761
1762 /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
1763 ref_clock = atomctrl_get_reference_clock(hwmgr);
1764 ref_divider = 1 + dividers.uc_pll_ref_div;
1765
1766 /* low 14 bits is fraction and high 12 bits is divider */
1767 fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
1768
1769 /* SPLL_FUNC_CNTL setup */
1770 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1771 SPLL_REF_DIV, dividers.uc_pll_ref_div);
1772 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1773 SPLL_PDIV_A, dividers.uc_pll_post_div);
1774
1775 /* SPLL_FUNC_CNTL_3 setup*/
1776 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1777 SPLL_FB_DIV, fbdiv);
1778
1779 /* set to use fractional accumulation*/
1780 spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
1781 SPLL_DITHEN, 1);
1782
1783 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1784 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
1785 struct pp_atomctrl_internal_ss_info ssInfo;
1786
1787 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
1788 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
1789 vco_freq, &ssInfo)) {
1790 /*
1791 * ss_info.speed_spectrum_percentage -- in unit of 0.01%
1792 * ss_info.speed_spectrum_rate -- in unit of khz
1793 *
1794 * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
1795 */
1796 uint32_t clk_s = ref_clock * 5 /
1797 (ref_divider * ssInfo.speed_spectrum_rate);
1798 /* clkv = 2 * D * fbdiv / NS */
1799 uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
1800 fbdiv / (clk_s * 10000);
1801
1802 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1803 CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
1804 cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
1805 CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
1806 cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
1807 CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
1808 }
1809 }
1810
1811 sclk->SclkFrequency = clock;
1812 sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
1813 sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
1814 sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
1815 sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
1816 sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
1817
1818 return 0;
1819 }
1820
1821 static uint16_t fiji_find_closest_vddci(struct pp_hwmgr *hwmgr, uint16_t vddci)
1822 {
1823 uint32_t i;
1824 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1825 struct pp_atomctrl_voltage_table *vddci_table =
1826 &(data->vddci_voltage_table);
1827
1828 for (i = 0; i < vddci_table->count; i++) {
1829 if (vddci_table->entries[i].value >= vddci)
1830 return vddci_table->entries[i].value;
1831 }
1832
1833 PP_ASSERT_WITH_CODE(false,
1834 "VDDCI is larger than max VDDCI in VDDCI Voltage Table!",
1835 return vddci_table->entries[i-1].value);
1836 }
1837
1838 static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
1839 struct phm_ppt_v1_clock_voltage_dependency_table* dep_table,
1840 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
1841 {
1842 uint32_t i;
1843 uint16_t vddci;
1844 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1845
1846 *voltage = *mvdd = 0;
1847
1848 /* clock - voltage dependency table is empty table */
1849 if (dep_table->count == 0)
1850 return -EINVAL;
1851
1852 for (i = 0; i < dep_table->count; i++) {
1853 /* find first sclk bigger than request */
1854 if (dep_table->entries[i].clk >= clock) {
1855 *voltage |= (dep_table->entries[i].vddc *
1856 VOLTAGE_SCALE) << VDDC_SHIFT;
1857 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1858 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1859 VOLTAGE_SCALE) << VDDCI_SHIFT;
1860 else if (dep_table->entries[i].vddci)
1861 *voltage |= (dep_table->entries[i].vddci *
1862 VOLTAGE_SCALE) << VDDCI_SHIFT;
1863 else {
1864 vddci = fiji_find_closest_vddci(hwmgr,
1865 (dep_table->entries[i].vddc -
1866 (uint16_t)data->vddc_vddci_delta));
1867 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1868 }
1869
1870 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1871 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1872 VOLTAGE_SCALE;
1873 else if (dep_table->entries[i].mvdd)
1874 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1875 VOLTAGE_SCALE;
1876
1877 *voltage |= 1 << PHASES_SHIFT;
1878 return 0;
1879 }
1880 }
1881
1882 /* sclk is bigger than max sclk in the dependence table */
1883 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1884
1885 if (FIJI_VOLTAGE_CONTROL_NONE == data->vddci_control)
1886 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1887 VOLTAGE_SCALE) << VDDCI_SHIFT;
1888 else if (dep_table->entries[i-1].vddci) {
1889 vddci = fiji_find_closest_vddci(hwmgr,
1890 (dep_table->entries[i].vddc -
1891 (uint16_t)data->vddc_vddci_delta));
1892 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1893 }
1894
1895 if (FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1896 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1897 else if (dep_table->entries[i].mvdd)
1898 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1899
1900 return 0;
1901 }
1902
1903 static uint8_t fiji_get_sleep_divider_id_from_clock(uint32_t clock,
1904 uint32_t clock_insr)
1905 {
1906 uint8_t i;
1907 uint32_t temp;
1908 uint32_t min = max(clock_insr, (uint32_t)FIJI_MINIMUM_ENGINE_CLOCK);
1909
1910 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
1911 for (i = FIJI_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
1912 temp = clock >> i;
1913
1914 if (temp >= min || i == 0)
1915 break;
1916 }
1917 return i;
1918 }
1919 /**
1920 * Populates single SMC SCLK structure using the provided engine clock
1921 *
1922 * @param hwmgr the address of the hardware manager
1923 * @param clock the engine clock to use to populate the structure
1924 * @param sclk the SMC SCLK structure to be populated
1925 */
1926
1927 static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1928 uint32_t clock, uint16_t sclk_al_threshold,
1929 struct SMU73_Discrete_GraphicsLevel *level)
1930 {
1931 int result;
1932 /* PP_Clocks minClocks; */
1933 uint32_t threshold, mvdd;
1934 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1935 struct phm_ppt_v1_information *table_info =
1936 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1937
1938 result = fiji_calculate_sclk_params(hwmgr, clock, level);
1939
1940 /* populate graphics levels */
1941 result = fiji_get_dependency_volt_by_clk(hwmgr,
1942 table_info->vdd_dep_on_sclk, clock,
1943 &level->MinVoltage, &mvdd);
1944 PP_ASSERT_WITH_CODE((0 == result),
1945 "can not find VDDC voltage value for "
1946 "VDDC engine clock dependency table",
1947 return result);
1948
1949 level->SclkFrequency = clock;
1950 level->ActivityLevel = sclk_al_threshold;
1951 level->CcPwrDynRm = 0;
1952 level->CcPwrDynRm1 = 0;
1953 level->EnabledForActivity = 0;
1954 level->EnabledForThrottle = 1;
1955 level->UpHyst = 10;
1956 level->DownHyst = 0;
1957 level->VoltageDownHyst = 0;
1958 level->PowerThrottle = 0;
1959
1960 threshold = clock * data->fast_watermark_threshold / 100;
1961
1962
1963 data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
1964
1965 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
1966 level->DeepSleepDivId = fiji_get_sleep_divider_id_from_clock(clock,
1967 hwmgr->display_config.min_core_set_clock_in_sr);
1968
1969
1970 /* Default to slow, highest DPM level will be
1971 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
1972 */
1973 level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1974
1975 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1976 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
1977 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1978 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
1979 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
1980 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
1981 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
1982 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1983 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1984
1985 return 0;
1986 }
1987 /**
1988 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1989 *
1990 * @param hwmgr the address of the hardware manager
1991 */
1992 static int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1993 {
1994 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
1995 struct fiji_dpm_table *dpm_table = &data->dpm_table;
1996 struct phm_ppt_v1_information *table_info =
1997 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1998 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1999 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
2000 int result = 0;
2001 uint32_t array = data->dpm_table_start +
2002 offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
2003 uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
2004 SMU73_MAX_LEVELS_GRAPHICS;
2005 struct SMU73_Discrete_GraphicsLevel *levels =
2006 data->smc_state_table.GraphicsLevel;
2007 uint32_t i, max_entry;
2008 uint8_t hightest_pcie_level_enabled = 0,
2009 lowest_pcie_level_enabled = 0,
2010 mid_pcie_level_enabled = 0,
2011 count = 0;
2012
2013 for (i = 0; i < dpm_table->sclk_table.count; i++) {
2014 result = fiji_populate_single_graphic_level(hwmgr,
2015 dpm_table->sclk_table.dpm_levels[i].value,
2016 (uint16_t)data->activity_target[i],
2017 &levels[i]);
2018 if (result)
2019 return result;
2020
2021 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
2022 if (i > 1)
2023 levels[i].DeepSleepDivId = 0;
2024 }
2025
2026 /* Only enable level 0 for now.*/
2027 levels[0].EnabledForActivity = 1;
2028
2029 /* set highest level watermark to high */
2030 levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
2031 PPSMC_DISPLAY_WATERMARK_HIGH;
2032
2033 data->smc_state_table.GraphicsDpmLevelCount =
2034 (uint8_t)dpm_table->sclk_table.count;
2035 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
2036 fiji_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
2037
2038 if (pcie_table != NULL) {
2039 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
2040 "There must be 1 or more PCIE levels defined in PPTable.",
2041 return -EINVAL);
2042 max_entry = pcie_entry_cnt - 1;
2043 for (i = 0; i < dpm_table->sclk_table.count; i++)
2044 levels[i].pcieDpmLevel =
2045 (uint8_t) ((i < max_entry)? i : max_entry);
2046 } else {
2047 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2048 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2049 (1 << (hightest_pcie_level_enabled + 1))) != 0 ))
2050 hightest_pcie_level_enabled++;
2051
2052 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
2053 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2054 (1 << lowest_pcie_level_enabled)) == 0 ))
2055 lowest_pcie_level_enabled++;
2056
2057 while ((count < hightest_pcie_level_enabled) &&
2058 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
2059 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0 ))
2060 count++;
2061
2062 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1+ count) <
2063 hightest_pcie_level_enabled?
2064 (lowest_pcie_level_enabled + 1 + count) :
2065 hightest_pcie_level_enabled;
2066
2067 /* set pcieDpmLevel to hightest_pcie_level_enabled */
2068 for(i = 2; i < dpm_table->sclk_table.count; i++)
2069 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
2070
2071 /* set pcieDpmLevel to lowest_pcie_level_enabled */
2072 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
2073
2074 /* set pcieDpmLevel to mid_pcie_level_enabled */
2075 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
2076 }
2077 /* level count will send to smc once at init smc table and never change */
2078 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2079 (uint32_t)array_size, data->sram_end);
2080
2081 return result;
2082 }
2083
2084 /**
2085 * MCLK Frequency Ratio
2086 * SEQ_CG_RESP Bit[31:24] - 0x0
2087 * Bit[27:24] \96 DDR3 Frequency ratio
2088 * 0x0 <= 100MHz, 450 < 0x8 <= 500MHz
2089 * 100 < 0x1 <= 150MHz, 500 < 0x9 <= 550MHz
2090 * 150 < 0x2 <= 200MHz, 550 < 0xA <= 600MHz
2091 * 200 < 0x3 <= 250MHz, 600 < 0xB <= 650MHz
2092 * 250 < 0x4 <= 300MHz, 650 < 0xC <= 700MHz
2093 * 300 < 0x5 <= 350MHz, 700 < 0xD <= 750MHz
2094 * 350 < 0x6 <= 400MHz, 750 < 0xE <= 800MHz
2095 * 400 < 0x7 <= 450MHz, 800 < 0xF
2096 */
2097 static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
2098 {
2099 if (mem_clock <= 10000) return 0x0;
2100 if (mem_clock <= 15000) return 0x1;
2101 if (mem_clock <= 20000) return 0x2;
2102 if (mem_clock <= 25000) return 0x3;
2103 if (mem_clock <= 30000) return 0x4;
2104 if (mem_clock <= 35000) return 0x5;
2105 if (mem_clock <= 40000) return 0x6;
2106 if (mem_clock <= 45000) return 0x7;
2107 if (mem_clock <= 50000) return 0x8;
2108 if (mem_clock <= 55000) return 0x9;
2109 if (mem_clock <= 60000) return 0xa;
2110 if (mem_clock <= 65000) return 0xb;
2111 if (mem_clock <= 70000) return 0xc;
2112 if (mem_clock <= 75000) return 0xd;
2113 if (mem_clock <= 80000) return 0xe;
2114 /* mem_clock > 800MHz */
2115 return 0xf;
2116 }
2117
2118 /**
2119 * Populates the SMC MCLK structure using the provided memory clock
2120 *
2121 * @param hwmgr the address of the hardware manager
2122 * @param clock the memory clock to use to populate the structure
2123 * @param sclk the SMC SCLK structure to be populated
2124 */
2125 static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
2126 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
2127 {
2128 struct pp_atomctrl_memory_clock_param mem_param;
2129 int result;
2130
2131 result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
2132 PP_ASSERT_WITH_CODE((0 == result),
2133 "Failed to get Memory PLL Dividers.",);
2134
2135 /* Save the result data to outpupt memory level structure */
2136 mclk->MclkFrequency = clock;
2137 mclk->MclkDivider = (uint8_t)mem_param.mpll_post_divider;
2138 mclk->FreqRange = fiji_get_mclk_frequency_ratio(clock);
2139
2140 return result;
2141 }
2142
2143 static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
2144 uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
2145 {
2146 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2147 struct phm_ppt_v1_information *table_info =
2148 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2149 int result = 0;
2150
2151 if (table_info->vdd_dep_on_mclk) {
2152 result = fiji_get_dependency_volt_by_clk(hwmgr,
2153 table_info->vdd_dep_on_mclk, clock,
2154 &mem_level->MinVoltage, &mem_level->MinMvdd);
2155 PP_ASSERT_WITH_CODE((0 == result),
2156 "can not find MinVddc voltage value from memory "
2157 "VDDC voltage dependency table", return result);
2158 }
2159
2160 mem_level->EnabledForThrottle = 1;
2161 mem_level->EnabledForActivity = 0;
2162 mem_level->UpHyst = 0;
2163 mem_level->DownHyst = 100;
2164 mem_level->VoltageDownHyst = 0;
2165 mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
2166 mem_level->StutterEnable = false;
2167
2168 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2169
2170 /* enable stutter mode if all the follow condition applied
2171 * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
2172 * &(data->DisplayTiming.numExistingDisplays));
2173 */
2174 data->display_timing.num_existing_displays = 1;
2175
2176 if ((data->mclk_stutter_mode_threshold) &&
2177 (clock <= data->mclk_stutter_mode_threshold) &&
2178 (!data->is_uvd_enabled) &&
2179 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
2180 STUTTER_ENABLE) & 0x1))
2181 mem_level->StutterEnable = true;
2182
2183 result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
2184 if (!result) {
2185 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
2186 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
2187 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
2188 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
2189 }
2190 return result;
2191 }
2192
2193 /**
2194 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
2195 *
2196 * @param hwmgr the address of the hardware manager
2197 */
2198 static int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
2199 {
2200 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2201 struct fiji_dpm_table *dpm_table = &data->dpm_table;
2202 int result;
2203 /* populate MCLK dpm table to SMU7 */
2204 uint32_t array = data->dpm_table_start +
2205 offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
2206 uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
2207 SMU73_MAX_LEVELS_MEMORY;
2208 struct SMU73_Discrete_MemoryLevel *levels =
2209 data->smc_state_table.MemoryLevel;
2210 uint32_t i;
2211
2212 for (i = 0; i < dpm_table->mclk_table.count; i++) {
2213 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
2214 "can not populate memory level as memory clock is zero",
2215 return -EINVAL);
2216 result = fiji_populate_single_memory_level(hwmgr,
2217 dpm_table->mclk_table.dpm_levels[i].value,
2218 &levels[i]);
2219 if (result)
2220 return result;
2221 }
2222
2223 /* Only enable level 0 for now. */
2224 levels[0].EnabledForActivity = 1;
2225
2226 /* in order to prevent MC activity from stutter mode to push DPM up.
2227 * the UVD change complements this by putting the MCLK in
2228 * a higher state by default such that we are not effected by
2229 * up threshold or and MCLK DPM latency.
2230 */
2231 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
2232 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
2233
2234 data->smc_state_table.MemoryDpmLevelCount =
2235 (uint8_t)dpm_table->mclk_table.count;
2236 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
2237 fiji_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
2238 /* set highest level watermark to high */
2239 levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
2240 PPSMC_DISPLAY_WATERMARK_HIGH;
2241
2242 /* level count will send to smc once at init smc table and never change */
2243 result = fiji_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
2244 (uint32_t)array_size, data->sram_end);
2245
2246 return result;
2247 }
2248
2249 /**
2250 * Populates the SMC MVDD structure using the provided memory clock.
2251 *
2252 * @param hwmgr the address of the hardware manager
2253 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
2254 * @param voltage the SMC VOLTAGE structure to be populated
2255 */
2256 int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
2257 uint32_t mclk, SMIO_Pattern *smio_pat)
2258 {
2259 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2260 struct phm_ppt_v1_information *table_info =
2261 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2262 uint32_t i = 0;
2263
2264 if (FIJI_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
2265 /* find mvdd value which clock is more than request */
2266 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
2267 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
2268 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
2269 break;
2270 }
2271 }
2272 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
2273 "MVDD Voltage is outside the supported range.",
2274 return -EINVAL);
2275 } else
2276 return -EINVAL;
2277
2278 return 0;
2279 }
2280
2281 static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
2282 SMU73_Discrete_DpmTable *table)
2283 {
2284 int result = 0;
2285 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2286 struct phm_ppt_v1_information *table_info =
2287 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2288 struct pp_atomctrl_clock_dividers_vi dividers;
2289 SMIO_Pattern vol_level;
2290 uint32_t mvdd;
2291 uint16_t us_mvdd;
2292 uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
2293 uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
2294
2295 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
2296
2297 if (!data->sclk_dpm_key_disabled) {
2298 /* Get MinVoltage and Frequency from DPM0,
2299 * already converted to SMC_UL */
2300 table->ACPILevel.SclkFrequency =
2301 data->dpm_table.sclk_table.dpm_levels[0].value;
2302 result = fiji_get_dependency_volt_by_clk(hwmgr,
2303 table_info->vdd_dep_on_sclk,
2304 table->ACPILevel.SclkFrequency,
2305 &table->ACPILevel.MinVoltage, &mvdd);
2306 PP_ASSERT_WITH_CODE((0 == result),
2307 "Cannot find ACPI VDDC voltage value "
2308 "in Clock Dependency Table",);
2309 } else {
2310 table->ACPILevel.SclkFrequency =
2311 data->vbios_boot_state.sclk_bootup_value;
2312 table->ACPILevel.MinVoltage =
2313 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
2314 }
2315
2316 /* get the engine clock dividers for this clock value */
2317 result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
2318 table->ACPILevel.SclkFrequency, &dividers);
2319 PP_ASSERT_WITH_CODE(result == 0,
2320 "Error retrieving Engine Clock dividers from VBIOS.",
2321 return result);
2322
2323 table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
2324 table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
2325 table->ACPILevel.DeepSleepDivId = 0;
2326
2327 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2328 SPLL_PWRON, 0);
2329 spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
2330 SPLL_RESET, 1);
2331 spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
2332 SCLK_MUX_SEL, 4);
2333
2334 table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
2335 table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
2336 table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
2337 table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
2338 table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
2339 table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
2340 table->ACPILevel.CcPwrDynRm = 0;
2341 table->ACPILevel.CcPwrDynRm1 = 0;
2342
2343 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
2344 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
2345 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
2346 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
2347 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
2348 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
2349 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
2350 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
2351 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
2352 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
2353 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
2354
2355 if (!data->mclk_dpm_key_disabled) {
2356 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
2357 table->MemoryACPILevel.MclkFrequency =
2358 data->dpm_table.mclk_table.dpm_levels[0].value;
2359 result = fiji_get_dependency_volt_by_clk(hwmgr,
2360 table_info->vdd_dep_on_mclk,
2361 table->MemoryACPILevel.MclkFrequency,
2362 &table->MemoryACPILevel.MinVoltage, &mvdd);
2363 PP_ASSERT_WITH_CODE((0 == result),
2364 "Cannot find ACPI VDDCI voltage value "
2365 "in Clock Dependency Table",);
2366 } else {
2367 table->MemoryACPILevel.MclkFrequency =
2368 data->vbios_boot_state.mclk_bootup_value;
2369 table->MemoryACPILevel.MinVoltage =
2370 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
2371 }
2372
2373 us_mvdd = 0;
2374 if ((FIJI_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
2375 (data->mclk_dpm_key_disabled))
2376 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
2377 else {
2378 if (!fiji_populate_mvdd_value(hwmgr,
2379 data->dpm_table.mclk_table.dpm_levels[0].value,
2380 &vol_level))
2381 us_mvdd = vol_level.Voltage;
2382 }
2383
2384 table->MemoryACPILevel.MinMvdd =
2385 PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
2386
2387 table->MemoryACPILevel.EnabledForThrottle = 0;
2388 table->MemoryACPILevel.EnabledForActivity = 0;
2389 table->MemoryACPILevel.UpHyst = 0;
2390 table->MemoryACPILevel.DownHyst = 100;
2391 table->MemoryACPILevel.VoltageDownHyst = 0;
2392 table->MemoryACPILevel.ActivityLevel =
2393 PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
2394
2395 table->MemoryACPILevel.StutterEnable = false;
2396 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
2397 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
2398
2399 return result;
2400 }
2401
2402 static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
2403 SMU73_Discrete_DpmTable *table)
2404 {
2405 int result = -EINVAL;
2406 uint8_t count;
2407 struct pp_atomctrl_clock_dividers_vi dividers;
2408 struct phm_ppt_v1_information *table_info =
2409 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2410 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2411 table_info->mm_dep_table;
2412 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2413
2414 table->VceLevelCount = (uint8_t)(mm_table->count);
2415 table->VceBootLevel = 0;
2416
2417 for(count = 0; count < table->VceLevelCount; count++) {
2418 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
2419 table->VceLevel[count].MinVoltage = 0;
2420 table->VceLevel[count].MinVoltage |=
2421 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
2422 table->VceLevel[count].MinVoltage |=
2423 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
2424 VOLTAGE_SCALE) << VDDCI_SHIFT;
2425 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2426
2427 /*retrieve divider value for VBIOS */
2428 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2429 table->VceLevel[count].Frequency, &dividers);
2430 PP_ASSERT_WITH_CODE((0 == result),
2431 "can not find divide id for VCE engine clock",
2432 return result);
2433
2434 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2435
2436 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
2437 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
2438 }
2439 return result;
2440 }
2441
2442 static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
2443 SMU73_Discrete_DpmTable *table)
2444 {
2445 int result = -EINVAL;
2446 uint8_t count;
2447 struct pp_atomctrl_clock_dividers_vi dividers;
2448 struct phm_ppt_v1_information *table_info =
2449 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2450 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2451 table_info->mm_dep_table;
2452 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2453
2454 table->AcpLevelCount = (uint8_t)(mm_table->count);
2455 table->AcpBootLevel = 0;
2456
2457 for (count = 0; count < table->AcpLevelCount; count++) {
2458 table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
2459 table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2460 VOLTAGE_SCALE) << VDDC_SHIFT;
2461 table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2462 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2463 table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2464
2465 /* retrieve divider value for VBIOS */
2466 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2467 table->AcpLevel[count].Frequency, &dividers);
2468 PP_ASSERT_WITH_CODE((0 == result),
2469 "can not find divide id for engine clock", return result);
2470
2471 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2472
2473 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
2474 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
2475 }
2476 return result;
2477 }
2478
2479 static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
2480 SMU73_Discrete_DpmTable *table)
2481 {
2482 int result = -EINVAL;
2483 uint8_t count;
2484 struct pp_atomctrl_clock_dividers_vi dividers;
2485 struct phm_ppt_v1_information *table_info =
2486 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2487 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2488 table_info->mm_dep_table;
2489 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2490
2491 table->SamuBootLevel = 0;
2492 table->SamuLevelCount = (uint8_t)(mm_table->count);
2493
2494 for (count = 0; count < table->SamuLevelCount; count++) {
2495 /* not sure whether we need evclk or not */
2496 table->SamuLevel[count].MinVoltage = 0;
2497 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
2498 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2499 VOLTAGE_SCALE) << VDDC_SHIFT;
2500 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2501 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2502 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2503
2504 /* retrieve divider value for VBIOS */
2505 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2506 table->SamuLevel[count].Frequency, &dividers);
2507 PP_ASSERT_WITH_CODE((0 == result),
2508 "can not find divide id for samu clock", return result);
2509
2510 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
2511
2512 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
2513 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
2514 }
2515 return result;
2516 }
2517
2518 static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
2519 int32_t eng_clock, int32_t mem_clock,
2520 struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
2521 {
2522 uint32_t dram_timing;
2523 uint32_t dram_timing2;
2524 uint32_t burstTime;
2525 ULONG state, trrds, trrdl;
2526 int result;
2527
2528 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
2529 eng_clock, mem_clock);
2530 PP_ASSERT_WITH_CODE(result == 0,
2531 "Error calling VBIOS to set DRAM_TIMING.", return result);
2532
2533 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
2534 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
2535 burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
2536
2537 state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
2538 trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
2539 trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
2540
2541 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
2542 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
2543 arb_regs->McArbBurstTime = (uint8_t)burstTime;
2544 arb_regs->TRRDS = (uint8_t)trrds;
2545 arb_regs->TRRDL = (uint8_t)trrdl;
2546
2547 return 0;
2548 }
2549
2550 static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
2551 {
2552 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2553 struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
2554 uint32_t i, j;
2555 int result = 0;
2556
2557 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
2558 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
2559 result = fiji_populate_memory_timing_parameters(hwmgr,
2560 data->dpm_table.sclk_table.dpm_levels[i].value,
2561 data->dpm_table.mclk_table.dpm_levels[j].value,
2562 &arb_regs.entries[i][j]);
2563 if (result)
2564 break;
2565 }
2566 }
2567
2568 if (!result)
2569 result = fiji_copy_bytes_to_smc(
2570 hwmgr->smumgr,
2571 data->arb_table_start,
2572 (uint8_t *)&arb_regs,
2573 sizeof(SMU73_Discrete_MCArbDramTimingTable),
2574 data->sram_end);
2575 return result;
2576 }
2577
2578 static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
2579 struct SMU73_Discrete_DpmTable *table)
2580 {
2581 int result = -EINVAL;
2582 uint8_t count;
2583 struct pp_atomctrl_clock_dividers_vi dividers;
2584 struct phm_ppt_v1_information *table_info =
2585 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2586 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2587 table_info->mm_dep_table;
2588 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2589
2590 table->UvdLevelCount = (uint8_t)(mm_table->count);
2591 table->UvdBootLevel = 0;
2592
2593 for (count = 0; count < table->UvdLevelCount; count++) {
2594 table->UvdLevel[count].MinVoltage = 0;
2595 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
2596 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
2597 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
2598 VOLTAGE_SCALE) << VDDC_SHIFT;
2599 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
2600 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
2601 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
2602
2603 /* retrieve divider value for VBIOS */
2604 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2605 table->UvdLevel[count].VclkFrequency, &dividers);
2606 PP_ASSERT_WITH_CODE((0 == result),
2607 "can not find divide id for Vclk clock", return result);
2608
2609 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
2610
2611 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
2612 table->UvdLevel[count].DclkFrequency, &dividers);
2613 PP_ASSERT_WITH_CODE((0 == result),
2614 "can not find divide id for Dclk clock", return result);
2615
2616 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
2617
2618 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
2619 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
2620 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
2621
2622 }
2623 return result;
2624 }
2625
2626 static int fiji_find_boot_level(struct fiji_single_dpm_table *table,
2627 uint32_t value, uint32_t *boot_level)
2628 {
2629 int result = -EINVAL;
2630 uint32_t i;
2631
2632 for (i = 0; i < table->count; i++) {
2633 if (value == table->dpm_levels[i].value) {
2634 *boot_level = i;
2635 result = 0;
2636 }
2637 }
2638 return result;
2639 }
2640
2641 static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
2642 struct SMU73_Discrete_DpmTable *table)
2643 {
2644 int result = 0;
2645 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2646
2647 table->GraphicsBootLevel = 0;
2648 table->MemoryBootLevel = 0;
2649
2650 /* find boot level from dpm table */
2651 result = fiji_find_boot_level(&(data->dpm_table.sclk_table),
2652 data->vbios_boot_state.sclk_bootup_value,
2653 (uint32_t *)&(table->GraphicsBootLevel));
2654
2655 result = fiji_find_boot_level(&(data->dpm_table.mclk_table),
2656 data->vbios_boot_state.mclk_bootup_value,
2657 (uint32_t *)&(table->MemoryBootLevel));
2658
2659 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
2660 VOLTAGE_SCALE;
2661 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
2662 VOLTAGE_SCALE;
2663 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
2664 VOLTAGE_SCALE;
2665
2666 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
2667 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
2668 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
2669
2670 return 0;
2671 }
2672
2673 static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
2674 {
2675 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2676 struct phm_ppt_v1_information *table_info =
2677 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2678 uint8_t count, level;
2679
2680 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
2681 for (level = 0; level < count; level++) {
2682 if(table_info->vdd_dep_on_sclk->entries[level].clk >=
2683 data->vbios_boot_state.sclk_bootup_value) {
2684 data->smc_state_table.GraphicsBootLevel = level;
2685 break;
2686 }
2687 }
2688
2689 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
2690 for (level = 0; level < count; level++) {
2691 if(table_info->vdd_dep_on_mclk->entries[level].clk >=
2692 data->vbios_boot_state.mclk_bootup_value) {
2693 data->smc_state_table.MemoryBootLevel = level;
2694 break;
2695 }
2696 }
2697
2698 return 0;
2699 }
2700
2701 static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
2702 {
2703 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
2704 volt_with_cks, value;
2705 uint16_t clock_freq_u16;
2706 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2707 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
2708 volt_offset = 0;
2709 struct phm_ppt_v1_information *table_info =
2710 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2711 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2712 table_info->vdd_dep_on_sclk;
2713
2714 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
2715
2716 /* Read SMU_Eefuse to read and calculate RO and determine
2717 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
2718 */
2719 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2720 ixSMU_EFUSE_0 + (146 * 4));
2721 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2722 ixSMU_EFUSE_0 + (148 * 4));
2723 efuse &= 0xFF000000;
2724 efuse = efuse >> 24;
2725 efuse2 &= 0xF;
2726
2727 if (efuse2 == 1)
2728 ro = (2300 - 1350) * efuse / 255 + 1350;
2729 else
2730 ro = (2500 - 1000) * efuse / 255 + 1000;
2731
2732 if (ro >= 1660)
2733 type = 0;
2734 else
2735 type = 1;
2736
2737 /* Populate Stretch amount */
2738 data->smc_state_table.ClockStretcherAmount = stretch_amount;
2739
2740 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
2741 for (i = 0; i < sclk_table->count; i++) {
2742 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
2743 sclk_table->entries[i].cks_enable << i;
2744 volt_without_cks = (uint32_t)((14041 *
2745 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
2746 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
2747 volt_with_cks = (uint32_t)((13946 *
2748 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
2749 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
2750 if (volt_without_cks >= volt_with_cks)
2751 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
2752 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
2753 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
2754 }
2755
2756 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2757 STRETCH_ENABLE, 0x0);
2758 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2759 masterReset, 0x1);
2760 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2761 staticEnable, 0x1);
2762 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
2763 masterReset, 0x0);
2764
2765 /* Populate CKS Lookup Table */
2766 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
2767 stretch_amount2 = 0;
2768 else if (stretch_amount == 3 || stretch_amount == 4)
2769 stretch_amount2 = 1;
2770 else {
2771 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2772 PHM_PlatformCaps_ClockStretcher);
2773 PP_ASSERT_WITH_CODE(false,
2774 "Stretch Amount in PPTable not supported\n",
2775 return -EINVAL);
2776 }
2777
2778 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2779 ixPWR_CKS_CNTL);
2780 value &= 0xFFC2FF87;
2781 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
2782 fiji_clock_stretcher_lookup_table[stretch_amount2][0];
2783 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
2784 fiji_clock_stretcher_lookup_table[stretch_amount2][1];
2785 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
2786 GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].
2787 SclkFrequency) / 100);
2788 if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
2789 clock_freq_u16 &&
2790 fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
2791 clock_freq_u16) {
2792 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
2793 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
2794 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
2795 value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
2796 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
2797 value |= (fiji_clock_stretch_amount_conversion
2798 [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
2799 [stretch_amount]) << 3;
2800 }
2801 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2802 CKS_LOOKUPTableEntry[0].minFreq);
2803 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.
2804 CKS_LOOKUPTableEntry[0].maxFreq);
2805 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
2806 fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
2807 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
2808 (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
2809
2810 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2811 ixPWR_CKS_CNTL, value);
2812
2813 /* Populate DDT Lookup Table */
2814 for (i = 0; i < 4; i++) {
2815 /* Assign the minimum and maximum VID stored
2816 * in the last row of Clock Stretcher Voltage Table.
2817 */
2818 data->smc_state_table.ClockStretcherDataTable.
2819 ClockStretcherDataTableEntry[i].minVID =
2820 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
2821 data->smc_state_table.ClockStretcherDataTable.
2822 ClockStretcherDataTableEntry[i].maxVID =
2823 (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
2824 /* Loop through each SCLK and check the frequency
2825 * to see if it lies within the frequency for clock stretcher.
2826 */
2827 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
2828 cks_setting = 0;
2829 clock_freq = PP_SMC_TO_HOST_UL(
2830 data->smc_state_table.GraphicsLevel[j].SclkFrequency);
2831 /* Check the allowed frequency against the sclk level[j].
2832 * Sclk's endianness has already been converted,
2833 * and it's in 10Khz unit,
2834 * as opposed to Data table, which is in Mhz unit.
2835 */
2836 if (clock_freq >=
2837 (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
2838 cks_setting |= 0x2;
2839 if (clock_freq <
2840 (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
2841 cks_setting |= 0x1;
2842 }
2843 data->smc_state_table.ClockStretcherDataTable.
2844 ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
2845 }
2846 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.
2847 ClockStretcherDataTable.
2848 ClockStretcherDataTableEntry[i].setting);
2849 }
2850
2851 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
2852 value &= 0xFFFFFFFE;
2853 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
2854
2855 return 0;
2856 }
2857
2858 /**
2859 * Populates the SMC VRConfig field in DPM table.
2860 *
2861 * @param hwmgr the address of the hardware manager
2862 * @param table the SMC DPM table structure to be populated
2863 * @return always 0
2864 */
2865 static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
2866 struct SMU73_Discrete_DpmTable *table)
2867 {
2868 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2869 uint16_t config;
2870
2871 config = VR_MERGED_WITH_VDDC;
2872 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
2873
2874 /* Set Vddc Voltage Controller */
2875 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
2876 config = VR_SVI2_PLANE_1;
2877 table->VRConfig |= config;
2878 } else {
2879 PP_ASSERT_WITH_CODE(false,
2880 "VDDC should be on SVI2 control in merged mode!",);
2881 }
2882 /* Set Vddci Voltage Controller */
2883 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
2884 config = VR_SVI2_PLANE_2; /* only in merged mode */
2885 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2886 } else if (FIJI_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
2887 config = VR_SMIO_PATTERN_1;
2888 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2889 } else {
2890 config = VR_STATIC_VOLTAGE;
2891 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
2892 }
2893 /* Set Mvdd Voltage Controller */
2894 if(FIJI_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
2895 config = VR_SVI2_PLANE_2;
2896 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2897 } else if(FIJI_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
2898 config = VR_SMIO_PATTERN_2;
2899 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2900 } else {
2901 config = VR_STATIC_VOLTAGE;
2902 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
2903 }
2904
2905 return 0;
2906 }
2907
2908 /**
2909 * Initializes the SMC table and uploads it
2910 *
2911 * @param hwmgr the address of the powerplay hardware manager.
2912 * @param pInput the pointer to input data (PowerState)
2913 * @return always 0
2914 */
2915 static int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
2916 {
2917 int result;
2918 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
2919 struct phm_ppt_v1_information *table_info =
2920 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2921 struct SMU73_Discrete_DpmTable *table = &(data->smc_state_table);
2922 const struct fiji_ulv_parm *ulv = &(data->ulv);
2923 uint8_t i;
2924 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
2925
2926 result = fiji_setup_default_dpm_tables(hwmgr);
2927 PP_ASSERT_WITH_CODE(0 == result,
2928 "Failed to setup default DPM tables!", return result);
2929
2930 if(FIJI_VOLTAGE_CONTROL_NONE != data->voltage_control)
2931 fiji_populate_smc_voltage_tables(hwmgr, table);
2932
2933 table->SystemFlags = 0;
2934
2935 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2936 PHM_PlatformCaps_AutomaticDCTransition))
2937 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2938
2939 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2940 PHM_PlatformCaps_StepVddc))
2941 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2942
2943 if (data->is_memory_gddr5)
2944 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2945
2946 if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
2947 result = fiji_populate_ulv_state(hwmgr, table);
2948 PP_ASSERT_WITH_CODE(0 == result,
2949 "Failed to initialize ULV state!", return result);
2950 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2951 ixCG_ULV_PARAMETER, ulv->cg_ulv_parameter);
2952 }
2953
2954 result = fiji_populate_smc_link_level(hwmgr, table);
2955 PP_ASSERT_WITH_CODE(0 == result,
2956 "Failed to initialize Link Level!", return result);
2957
2958 result = fiji_populate_all_graphic_levels(hwmgr);
2959 PP_ASSERT_WITH_CODE(0 == result,
2960 "Failed to initialize Graphics Level!", return result);
2961
2962 result = fiji_populate_all_memory_levels(hwmgr);
2963 PP_ASSERT_WITH_CODE(0 == result,
2964 "Failed to initialize Memory Level!", return result);
2965
2966 result = fiji_populate_smc_acpi_level(hwmgr, table);
2967 PP_ASSERT_WITH_CODE(0 == result,
2968 "Failed to initialize ACPI Level!", return result);
2969
2970 result = fiji_populate_smc_vce_level(hwmgr, table);
2971 PP_ASSERT_WITH_CODE(0 == result,
2972 "Failed to initialize VCE Level!", return result);
2973
2974 result = fiji_populate_smc_acp_level(hwmgr, table);
2975 PP_ASSERT_WITH_CODE(0 == result,
2976 "Failed to initialize ACP Level!", return result);
2977
2978 result = fiji_populate_smc_samu_level(hwmgr, table);
2979 PP_ASSERT_WITH_CODE(0 == result,
2980 "Failed to initialize SAMU Level!", return result);
2981
2982 /* Since only the initial state is completely set up at this point
2983 * (the other states are just copies of the boot state) we only
2984 * need to populate the ARB settings for the initial state.
2985 */
2986 result = fiji_program_memory_timing_parameters(hwmgr);
2987 PP_ASSERT_WITH_CODE(0 == result,
2988 "Failed to Write ARB settings for the initial state.", return result);
2989
2990 result = fiji_populate_smc_uvd_level(hwmgr, table);
2991 PP_ASSERT_WITH_CODE(0 == result,
2992 "Failed to initialize UVD Level!", return result);
2993
2994 result = fiji_populate_smc_boot_level(hwmgr, table);
2995 PP_ASSERT_WITH_CODE(0 == result,
2996 "Failed to initialize Boot Level!", return result);
2997
2998 result = fiji_populate_smc_initailial_state(hwmgr);
2999 PP_ASSERT_WITH_CODE(0 == result,
3000 "Failed to initialize Boot State!", return result);
3001
3002 result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
3003 PP_ASSERT_WITH_CODE(0 == result,
3004 "Failed to populate BAPM Parameters!", return result);
3005
3006 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3007 PHM_PlatformCaps_ClockStretcher)) {
3008 result = fiji_populate_clock_stretcher_data_table(hwmgr);
3009 PP_ASSERT_WITH_CODE(0 == result,
3010 "Failed to populate Clock Stretcher Data Table!",
3011 return result);
3012 }
3013
3014 table->GraphicsVoltageChangeEnable = 1;
3015 table->GraphicsThermThrottleEnable = 1;
3016 table->GraphicsInterval = 1;
3017 table->VoltageInterval = 1;
3018 table->ThermalInterval = 1;
3019 table->TemperatureLimitHigh =
3020 table_info->cac_dtp_table->usTargetOperatingTemp *
3021 FIJI_Q88_FORMAT_CONVERSION_UNIT;
3022 table->TemperatureLimitLow =
3023 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
3024 FIJI_Q88_FORMAT_CONVERSION_UNIT;
3025 table->MemoryVoltageChangeEnable = 1;
3026 table->MemoryInterval = 1;
3027 table->VoltageResponseTime = 0;
3028 table->PhaseResponseTime = 0;
3029 table->MemoryThermThrottleEnable = 1;
3030 table->PCIeBootLinkLevel = 0; /* 0:Gen1 1:Gen2 2:Gen3*/
3031 table->PCIeGenInterval = 1;
3032 table->VRConfig = 0;
3033
3034 result = fiji_populate_vr_config(hwmgr, table);
3035 PP_ASSERT_WITH_CODE(0 == result,
3036 "Failed to populate VRConfig setting!", return result);
3037
3038 table->ThermGpio = 17;
3039 table->SclkStepSize = 0x4000;
3040
3041 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
3042 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
3043 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3044 PHM_PlatformCaps_RegulatorHot);
3045 } else {
3046 table->VRHotGpio = FIJI_UNUSED_GPIO_PIN;
3047 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3048 PHM_PlatformCaps_RegulatorHot);
3049 }
3050
3051 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
3052 &gpio_pin)) {
3053 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
3054 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3055 PHM_PlatformCaps_AutomaticDCTransition);
3056 } else {
3057 table->AcDcGpio = FIJI_UNUSED_GPIO_PIN;
3058 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3059 PHM_PlatformCaps_AutomaticDCTransition);
3060 }
3061
3062 /* Thermal Output GPIO */
3063 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
3064 &gpio_pin)) {
3065 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
3066 PHM_PlatformCaps_ThermalOutGPIO);
3067
3068 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
3069
3070 /* For porlarity read GPIOPAD_A with assigned Gpio pin
3071 * since VBIOS will program this register to set 'inactive state',
3072 * driver can then determine 'active state' from this and
3073 * program SMU with correct polarity
3074 */
3075 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
3076 (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
3077 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
3078
3079 /* if required, combine VRHot/PCC with thermal out GPIO */
3080 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3081 PHM_PlatformCaps_RegulatorHot) &&
3082 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3083 PHM_PlatformCaps_CombinePCCWithThermalSignal))
3084 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
3085 } else {
3086 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
3087 PHM_PlatformCaps_ThermalOutGPIO);
3088 table->ThermOutGpio = 17;
3089 table->ThermOutPolarity = 1;
3090 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
3091 }
3092
3093 for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
3094 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
3095
3096 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
3097 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
3098 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
3099 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
3100 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
3101 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
3102 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
3103 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
3104 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
3105
3106 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
3107 result = fiji_copy_bytes_to_smc(hwmgr->smumgr,
3108 data->dpm_table_start +
3109 offsetof(SMU73_Discrete_DpmTable, SystemFlags),
3110 (uint8_t *)&(table->SystemFlags),
3111 sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
3112 data->sram_end);
3113 PP_ASSERT_WITH_CODE(0 == result,
3114 "Failed to upload dpm data to SMC memory!", return result);
3115
3116 return 0;
3117 }
3118
3119 /**
3120 * Initialize the ARB DRAM timing table's index field.
3121 *
3122 * @param hwmgr the address of the powerplay hardware manager.
3123 * @return always 0
3124 */
3125 static int fiji_init_arb_table_index(struct pp_hwmgr *hwmgr)
3126 {
3127 const struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3128 uint32_t tmp;
3129 int result;
3130
3131 /* This is a read-modify-write on the first byte of the ARB table.
3132 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
3133 * is the field 'current'.
3134 * This solution is ugly, but we never write the whole table only
3135 * individual fields in it.
3136 * In reality this field should not be in that structure
3137 * but in a soft register.
3138 */
3139 result = fiji_read_smc_sram_dword(hwmgr->smumgr,
3140 data->arb_table_start, &tmp, data->sram_end);
3141
3142 if (result)
3143 return result;
3144
3145 tmp &= 0x00FFFFFF;
3146 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
3147
3148 return fiji_write_smc_sram_dword(hwmgr->smumgr,
3149 data->arb_table_start, tmp, data->sram_end);
3150 }
3151
3152 static int fiji_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
3153 {
3154 if(phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3155 PHM_PlatformCaps_RegulatorHot))
3156 return smum_send_msg_to_smc(hwmgr->smumgr,
3157 PPSMC_MSG_EnableVRHotGPIOInterrupt);
3158
3159 return 0;
3160 }
3161
3162 static int fiji_enable_sclk_control(struct pp_hwmgr *hwmgr)
3163 {
3164 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3165 SCLK_PWRMGT_OFF, 0);
3166 return 0;
3167 }
3168
3169 static int fiji_enable_ulv(struct pp_hwmgr *hwmgr)
3170 {
3171 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3172 struct fiji_ulv_parm *ulv = &(data->ulv);
3173
3174 if (ulv->ulv_supported)
3175 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
3176
3177 return 0;
3178 }
3179
3180 static int fiji_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
3181 {
3182 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3183 PHM_PlatformCaps_SclkDeepSleep)) {
3184 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
3185 PP_ASSERT_WITH_CODE(false,
3186 "Attempt to enable Master Deep Sleep switch failed!",
3187 return -1);
3188 } else {
3189 if (smum_send_msg_to_smc(hwmgr->smumgr,
3190 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
3191 PP_ASSERT_WITH_CODE(false,
3192 "Attempt to disable Master Deep Sleep switch failed!",
3193 return -1);
3194 }
3195 }
3196
3197 return 0;
3198 }
3199
3200 static int fiji_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3201 {
3202 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3203 uint32_t val, val0, val2;
3204 uint32_t i, cpl_cntl, cpl_threshold, mc_threshold;
3205
3206 /* enable SCLK dpm */
3207 if(!data->sclk_dpm_key_disabled)
3208 PP_ASSERT_WITH_CODE(
3209 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
3210 "Failed to enable SCLK DPM during DPM Start Function!",
3211 return -1);
3212
3213 /* enable MCLK dpm */
3214 if(0 == data->mclk_dpm_key_disabled) {
3215 cpl_threshold = 0;
3216 mc_threshold = 0;
3217
3218 /* Read per MCD tile (0 - 7) */
3219 for (i = 0; i < 8; i++) {
3220 PHM_WRITE_FIELD(hwmgr->device, MC_CONFIG_MCD, MC_RD_ENABLE, i);
3221 val = cgs_read_register(hwmgr->device, mmMC_SEQ_RESERVE_0_S) & 0xf0000000;
3222 if (0xf0000000 != val) {
3223 /* count number of MCQ that has channel(s) enabled */
3224 cpl_threshold++;
3225 /* only harvest 3 or full 4 supported */
3226 mc_threshold = val ? 3 : 4;
3227 }
3228 }
3229 PP_ASSERT_WITH_CODE(0 != cpl_threshold,
3230 "Number of MCQ is zero!", return -EINVAL;);
3231
3232 mc_threshold = ((mc_threshold & LCAC_MC0_CNTL__MC0_THRESHOLD_MASK) <<
3233 LCAC_MC0_CNTL__MC0_THRESHOLD__SHIFT) |
3234 LCAC_MC0_CNTL__MC0_ENABLE_MASK;
3235 cpl_cntl = ((cpl_threshold & LCAC_CPL_CNTL__CPL_THRESHOLD_MASK) <<
3236 LCAC_CPL_CNTL__CPL_THRESHOLD__SHIFT) |
3237 LCAC_CPL_CNTL__CPL_ENABLE_MASK;
3238 cpl_cntl = (cpl_cntl | (8 << LCAC_CPL_CNTL__CPL_BLOCK_ID__SHIFT));
3239 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3240 ixLCAC_MC0_CNTL, mc_threshold);
3241 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3242 ixLCAC_MC1_CNTL, mc_threshold);
3243 if (8 == cpl_threshold) {
3244 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3245 ixLCAC_MC2_CNTL, mc_threshold);
3246 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3247 ixLCAC_MC3_CNTL, mc_threshold);
3248 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3249 ixLCAC_MC4_CNTL, mc_threshold);
3250 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3251 ixLCAC_MC5_CNTL, mc_threshold);
3252 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3253 ixLCAC_MC6_CNTL, mc_threshold);
3254 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3255 ixLCAC_MC7_CNTL, mc_threshold);
3256 }
3257 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3258 ixLCAC_CPL_CNTL, cpl_cntl);
3259
3260 udelay(5);
3261
3262 mc_threshold = mc_threshold |
3263 (1 << LCAC_MC0_CNTL__MC0_SIGNAL_ID__SHIFT);
3264 cpl_cntl = cpl_cntl | (1 << LCAC_CPL_CNTL__CPL_SIGNAL_ID__SHIFT);
3265 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3266 ixLCAC_MC0_CNTL, mc_threshold);
3267 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3268 ixLCAC_MC1_CNTL, mc_threshold);
3269 if (8 == cpl_threshold) {
3270 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3271 ixLCAC_MC2_CNTL, mc_threshold);
3272 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3273 ixLCAC_MC3_CNTL, mc_threshold);
3274 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3275 ixLCAC_MC4_CNTL, mc_threshold);
3276 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3277 ixLCAC_MC5_CNTL, mc_threshold);
3278 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3279 ixLCAC_MC6_CNTL, mc_threshold);
3280 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3281 ixLCAC_MC7_CNTL, mc_threshold);
3282 }
3283 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3284 ixLCAC_CPL_CNTL, cpl_cntl);
3285
3286 /* Program CAC_EN per MCD (0-7) Tile */
3287 val0 = val = cgs_read_register(hwmgr->device, mmMC_CONFIG_MCD);
3288 val &= ~(MC_CONFIG_MCD__MCD0_WR_ENABLE_MASK |
3289 MC_CONFIG_MCD__MCD1_WR_ENABLE_MASK |
3290 MC_CONFIG_MCD__MCD2_WR_ENABLE_MASK |
3291 MC_CONFIG_MCD__MCD3_WR_ENABLE_MASK |
3292 MC_CONFIG_MCD__MCD4_WR_ENABLE_MASK |
3293 MC_CONFIG_MCD__MCD5_WR_ENABLE_MASK |
3294 MC_CONFIG_MCD__MCD6_WR_ENABLE_MASK |
3295 MC_CONFIG_MCD__MCD7_WR_ENABLE_MASK |
3296 MC_CONFIG_MCD__MC_RD_ENABLE_MASK);
3297
3298 for (i = 0; i < 8; i++) {
3299 /* Enable MCD i Tile read & write */
3300 val2 = (val | (i << MC_CONFIG_MCD__MC_RD_ENABLE__SHIFT) |
3301 (1 << i));
3302 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val2);
3303 /* Enbale CAC_ON MCD i Tile */
3304 val2 = cgs_read_register(hwmgr->device, mmMC_SEQ_CNTL);
3305 val2 |= MC_SEQ_CNTL__CAC_EN_MASK;
3306 cgs_write_register(hwmgr->device, mmMC_SEQ_CNTL, val2);
3307 }
3308 /* Set MC_CONFIG_MCD back to its default setting val0 */
3309 cgs_write_register(hwmgr->device, mmMC_CONFIG_MCD, val0);
3310
3311 PP_ASSERT_WITH_CODE(
3312 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3313 PPSMC_MSG_MCLKDPM_Enable)),
3314 "Failed to enable MCLK DPM during DPM Start Function!",
3315 return -1);
3316 }
3317 return 0;
3318 }
3319
3320 static int fiji_start_dpm(struct pp_hwmgr *hwmgr)
3321 {
3322 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3323
3324 /*enable general power management */
3325 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3326 GLOBAL_PWRMGT_EN, 1);
3327 /* enable sclk deep sleep */
3328 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
3329 DYNAMIC_PM_EN, 1);
3330 /* prepare for PCIE DPM */
3331 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3332 data->soft_regs_start + offsetof(SMU73_SoftRegisters,
3333 VoltageChangeTimeout), 0x1000);
3334 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
3335 SWRST_COMMAND_1, RESETLC, 0x0);
3336
3337 PP_ASSERT_WITH_CODE(
3338 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3339 PPSMC_MSG_Voltage_Cntl_Enable)),
3340 "Failed to enable voltage DPM during DPM Start Function!",
3341 return -1);
3342
3343 if (fiji_enable_sclk_mclk_dpm(hwmgr)) {
3344 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
3345 return -1;
3346 }
3347
3348 /* enable PCIE dpm */
3349 if(!data->pcie_dpm_key_disabled) {
3350 PP_ASSERT_WITH_CODE(
3351 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
3352 PPSMC_MSG_PCIeDPM_Enable)),
3353 "Failed to enable pcie DPM during DPM Start Function!",
3354 return -1);
3355 }
3356
3357 return 0;
3358 }
3359
3360 static void fiji_set_dpm_event_sources(struct pp_hwmgr *hwmgr,
3361 uint32_t sources)
3362 {
3363 bool protection;
3364 enum DPM_EVENT_SRC src;
3365
3366 switch (sources) {
3367 default:
3368 printk(KERN_ERR "Unknown throttling event sources.");
3369 /* fall through */
3370 case 0:
3371 protection = false;
3372 /* src is unused */
3373 break;
3374 case (1 << PHM_AutoThrottleSource_Thermal):
3375 protection = true;
3376 src = DPM_EVENT_SRC_DIGITAL;
3377 break;
3378 case (1 << PHM_AutoThrottleSource_External):
3379 protection = true;
3380 src = DPM_EVENT_SRC_EXTERNAL;
3381 break;
3382 case (1 << PHM_AutoThrottleSource_External) |
3383 (1 << PHM_AutoThrottleSource_Thermal):
3384 protection = true;
3385 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
3386 break;
3387 }
3388 /* Order matters - don't enable thermal protection for the wrong source. */
3389 if (protection) {
3390 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
3391 DPM_EVENT_SRC, src);
3392 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3393 THERMAL_PROTECTION_DIS,
3394 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3395 PHM_PlatformCaps_ThermalController));
3396 } else
3397 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
3398 THERMAL_PROTECTION_DIS, 1);
3399 }
3400
3401 static int fiji_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
3402 PHM_AutoThrottleSource source)
3403 {
3404 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3405
3406 if (!(data->active_auto_throttle_sources & (1 << source))) {
3407 data->active_auto_throttle_sources |= 1 << source;
3408 fiji_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
3409 }
3410 return 0;
3411 }
3412
3413 static int fiji_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
3414 {
3415 return fiji_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
3416 }
3417
3418 static int fiji_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
3419 {
3420 int tmp_result, result = 0;
3421
3422 tmp_result = (!fiji_is_dpm_running(hwmgr))? 0 : -1;
3423 PP_ASSERT_WITH_CODE(result == 0,
3424 "DPM is already running right now, no need to enable DPM!",
3425 return 0);
3426
3427 if (fiji_voltage_control(hwmgr)) {
3428 tmp_result = fiji_enable_voltage_control(hwmgr);
3429 PP_ASSERT_WITH_CODE(tmp_result == 0,
3430 "Failed to enable voltage control!",
3431 result = tmp_result);
3432 }
3433
3434 if (fiji_voltage_control(hwmgr)) {
3435 tmp_result = fiji_construct_voltage_tables(hwmgr);
3436 PP_ASSERT_WITH_CODE((0 == tmp_result),
3437 "Failed to contruct voltage tables!",
3438 result = tmp_result);
3439 }
3440
3441 tmp_result = fiji_initialize_mc_reg_table(hwmgr);
3442 PP_ASSERT_WITH_CODE((0 == tmp_result),
3443 "Failed to initialize MC reg table!", result = tmp_result);
3444
3445 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3446 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
3447 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3448 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
3449
3450 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3451 PHM_PlatformCaps_ThermalController))
3452 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
3453 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
3454
3455 tmp_result = fiji_program_static_screen_threshold_parameters(hwmgr);
3456 PP_ASSERT_WITH_CODE((0 == tmp_result),
3457 "Failed to program static screen threshold parameters!",
3458 result = tmp_result);
3459
3460 tmp_result = fiji_enable_display_gap(hwmgr);
3461 PP_ASSERT_WITH_CODE((0 == tmp_result),
3462 "Failed to enable display gap!", result = tmp_result);
3463
3464 tmp_result = fiji_program_voting_clients(hwmgr);
3465 PP_ASSERT_WITH_CODE((0 == tmp_result),
3466 "Failed to program voting clients!", result = tmp_result);
3467
3468 tmp_result = fiji_process_firmware_header(hwmgr);
3469 PP_ASSERT_WITH_CODE((0 == tmp_result),
3470 "Failed to process firmware header!", result = tmp_result);
3471
3472 tmp_result = fiji_initial_switch_from_arbf0_to_f1(hwmgr);
3473 PP_ASSERT_WITH_CODE((0 == tmp_result),
3474 "Failed to initialize switch from ArbF0 to F1!",
3475 result = tmp_result);
3476
3477 tmp_result = fiji_init_smc_table(hwmgr);
3478 PP_ASSERT_WITH_CODE((0 == tmp_result),
3479 "Failed to initialize SMC table!", result = tmp_result);
3480
3481 tmp_result = fiji_init_arb_table_index(hwmgr);
3482 PP_ASSERT_WITH_CODE((0 == tmp_result),
3483 "Failed to initialize ARB table index!", result = tmp_result);
3484
3485 tmp_result = fiji_populate_pm_fuses(hwmgr);
3486 PP_ASSERT_WITH_CODE((0 == tmp_result),
3487 "Failed to populate PM fuses!", result = tmp_result);
3488
3489 tmp_result = fiji_enable_vrhot_gpio_interrupt(hwmgr);
3490 PP_ASSERT_WITH_CODE((0 == tmp_result),
3491 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
3492
3493 tmp_result = tonga_notify_smc_display_change(hwmgr, false);
3494 PP_ASSERT_WITH_CODE((0 == tmp_result),
3495 "Failed to notify no display!", result = tmp_result);
3496
3497 tmp_result = fiji_enable_sclk_control(hwmgr);
3498 PP_ASSERT_WITH_CODE((0 == tmp_result),
3499 "Failed to enable SCLK control!", result = tmp_result);
3500
3501 tmp_result = fiji_enable_ulv(hwmgr);
3502 PP_ASSERT_WITH_CODE((0 == tmp_result),
3503 "Failed to enable ULV!", result = tmp_result);
3504
3505 tmp_result = fiji_enable_deep_sleep_master_switch(hwmgr);
3506 PP_ASSERT_WITH_CODE((0 == tmp_result),
3507 "Failed to enable deep sleep master switch!", result = tmp_result);
3508
3509 tmp_result = fiji_start_dpm(hwmgr);
3510 PP_ASSERT_WITH_CODE((0 == tmp_result),
3511 "Failed to start DPM!", result = tmp_result);
3512
3513 tmp_result = fiji_enable_smc_cac(hwmgr);
3514 PP_ASSERT_WITH_CODE((0 == tmp_result),
3515 "Failed to enable SMC CAC!", result = tmp_result);
3516
3517 tmp_result = fiji_enable_power_containment(hwmgr);
3518 PP_ASSERT_WITH_CODE((0 == tmp_result),
3519 "Failed to enable power containment!", result = tmp_result);
3520
3521 tmp_result = fiji_power_control_set_level(hwmgr);
3522 PP_ASSERT_WITH_CODE((0 == tmp_result),
3523 "Failed to power control set level!", result = tmp_result);
3524
3525 tmp_result = fiji_enable_thermal_auto_throttle(hwmgr);
3526 PP_ASSERT_WITH_CODE((0 == tmp_result),
3527 "Failed to enable thermal auto throttle!", result = tmp_result);
3528
3529 return result;
3530 }
3531
3532 static int fiji_force_dpm_highest(struct pp_hwmgr *hwmgr)
3533 {
3534 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3535 uint32_t level, tmp;
3536
3537 if (!data->sclk_dpm_key_disabled) {
3538 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3539 level = 0;
3540 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3541 while (tmp >>= 1)
3542 level++;
3543 if (level)
3544 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3545 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3546 (1 << level));
3547 }
3548 }
3549
3550 if (!data->mclk_dpm_key_disabled) {
3551 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3552 level = 0;
3553 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3554 while (tmp >>= 1)
3555 level++;
3556 if (level)
3557 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3558 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3559 (1 << level));
3560 }
3561 }
3562
3563 if (!data->pcie_dpm_key_disabled) {
3564 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3565 level = 0;
3566 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3567 while (tmp >>= 1)
3568 level++;
3569 if (level)
3570 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3571 PPSMC_MSG_PCIeDPM_ForceLevel,
3572 (1 << level));
3573 }
3574 }
3575 return 0;
3576 }
3577
3578 static int fiji_upload_dpmlevel_enable_mask(struct pp_hwmgr *hwmgr)
3579 {
3580 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3581
3582 phm_apply_dal_min_voltage_request(hwmgr);
3583
3584 if (!data->sclk_dpm_key_disabled) {
3585 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3586 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3587 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3588 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3589 }
3590 return 0;
3591 }
3592
3593 static int fiji_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3594 {
3595 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3596
3597 if (!fiji_is_dpm_running(hwmgr))
3598 return -EINVAL;
3599
3600 if (!data->pcie_dpm_key_disabled) {
3601 smum_send_msg_to_smc(hwmgr->smumgr,
3602 PPSMC_MSG_PCIeDPM_UnForceLevel);
3603 }
3604
3605 return fiji_upload_dpmlevel_enable_mask(hwmgr);
3606 }
3607
3608 static uint32_t fiji_get_lowest_enabled_level(
3609 struct pp_hwmgr *hwmgr, uint32_t mask)
3610 {
3611 uint32_t level = 0;
3612
3613 while(0 == (mask & (1 << level)))
3614 level++;
3615
3616 return level;
3617 }
3618
3619 static int fiji_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3620 {
3621 struct fiji_hwmgr *data =
3622 (struct fiji_hwmgr *)(hwmgr->backend);
3623 uint32_t level;
3624
3625 if (!data->sclk_dpm_key_disabled)
3626 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3627 level = fiji_get_lowest_enabled_level(hwmgr,
3628 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3629 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3630 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3631 (1 << level));
3632
3633 }
3634
3635 if (!data->mclk_dpm_key_disabled) {
3636 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3637 level = fiji_get_lowest_enabled_level(hwmgr,
3638 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3639 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3640 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3641 (1 << level));
3642 }
3643 }
3644
3645 if (!data->pcie_dpm_key_disabled) {
3646 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3647 level = fiji_get_lowest_enabled_level(hwmgr,
3648 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3649 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3650 PPSMC_MSG_PCIeDPM_ForceLevel,
3651 (1 << level));
3652 }
3653 }
3654
3655 return 0;
3656
3657 }
3658 static int fiji_dpm_force_dpm_level(struct pp_hwmgr *hwmgr,
3659 enum amd_dpm_forced_level level)
3660 {
3661 int ret = 0;
3662
3663 switch (level) {
3664 case AMD_DPM_FORCED_LEVEL_HIGH:
3665 ret = fiji_force_dpm_highest(hwmgr);
3666 if (ret)
3667 return ret;
3668 break;
3669 case AMD_DPM_FORCED_LEVEL_LOW:
3670 ret = fiji_force_dpm_lowest(hwmgr);
3671 if (ret)
3672 return ret;
3673 break;
3674 case AMD_DPM_FORCED_LEVEL_AUTO:
3675 ret = fiji_unforce_dpm_levels(hwmgr);
3676 if (ret)
3677 return ret;
3678 break;
3679 default:
3680 break;
3681 }
3682
3683 hwmgr->dpm_level = level;
3684
3685 return ret;
3686 }
3687
3688 static int fiji_get_power_state_size(struct pp_hwmgr *hwmgr)
3689 {
3690 return sizeof(struct fiji_power_state);
3691 }
3692
3693 static int fiji_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3694 void *state, struct pp_power_state *power_state,
3695 void *pp_table, uint32_t classification_flag)
3696 {
3697 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3698 struct fiji_power_state *fiji_power_state =
3699 (struct fiji_power_state *)(&(power_state->hardware));
3700 struct fiji_performance_level *performance_level;
3701 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3702 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3703 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3704 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3705 (ATOM_Tonga_SCLK_Dependency_Table *)
3706 (((unsigned long)powerplay_table) +
3707 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3708 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3709 (ATOM_Tonga_MCLK_Dependency_Table *)
3710 (((unsigned long)powerplay_table) +
3711 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3712
3713 /* The following fields are not initialized here: id orderedList allStatesList */
3714 power_state->classification.ui_label =
3715 (le16_to_cpu(state_entry->usClassification) &
3716 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3717 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3718 power_state->classification.flags = classification_flag;
3719 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3720
3721 power_state->classification.temporary_state = false;
3722 power_state->classification.to_be_deleted = false;
3723
3724 power_state->validation.disallowOnDC =
3725 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3726 ATOM_Tonga_DISALLOW_ON_DC));
3727
3728 power_state->pcie.lanes = 0;
3729
3730 power_state->display.disableFrameModulation = false;
3731 power_state->display.limitRefreshrate = false;
3732 power_state->display.enableVariBright =
3733 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3734 ATOM_Tonga_ENABLE_VARIBRIGHT));
3735
3736 power_state->validation.supportedPowerLevels = 0;
3737 power_state->uvd_clocks.VCLK = 0;
3738 power_state->uvd_clocks.DCLK = 0;
3739 power_state->temperatures.min = 0;
3740 power_state->temperatures.max = 0;
3741
3742 performance_level = &(fiji_power_state->performance_levels
3743 [fiji_power_state->performance_level_count++]);
3744
3745 PP_ASSERT_WITH_CODE(
3746 (fiji_power_state->performance_level_count < SMU73_MAX_LEVELS_GRAPHICS),
3747 "Performance levels exceeds SMC limit!",
3748 return -1);
3749
3750 PP_ASSERT_WITH_CODE(
3751 (fiji_power_state->performance_level_count <=
3752 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3753 "Performance levels exceeds Driver limit!",
3754 return -1);
3755
3756 /* Performance levels are arranged from low to high. */
3757 performance_level->memory_clock = mclk_dep_table->entries
3758 [state_entry->ucMemoryClockIndexLow].ulMclk;
3759 performance_level->engine_clock = sclk_dep_table->entries
3760 [state_entry->ucEngineClockIndexLow].ulSclk;
3761 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3762 state_entry->ucPCIEGenLow);
3763 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3764 state_entry->ucPCIELaneHigh);
3765
3766 performance_level = &(fiji_power_state->performance_levels
3767 [fiji_power_state->performance_level_count++]);
3768 performance_level->memory_clock = mclk_dep_table->entries
3769 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3770 performance_level->engine_clock = sclk_dep_table->entries
3771 [state_entry->ucEngineClockIndexHigh].ulSclk;
3772 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3773 state_entry->ucPCIEGenHigh);
3774 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3775 state_entry->ucPCIELaneHigh);
3776
3777 return 0;
3778 }
3779
3780 static int fiji_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3781 unsigned long entry_index, struct pp_power_state *state)
3782 {
3783 int result;
3784 struct fiji_power_state *ps;
3785 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3786 struct phm_ppt_v1_information *table_info =
3787 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3788 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3789 table_info->vdd_dep_on_mclk;
3790
3791 state->hardware.magic = PHM_VIslands_Magic;
3792
3793 ps = (struct fiji_power_state *)(&state->hardware);
3794
3795 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3796 fiji_get_pp_table_entry_callback_func);
3797
3798 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3799 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3800 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3801 */
3802 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3803 if (dep_mclk_table->entries[0].clk !=
3804 data->vbios_boot_state.mclk_bootup_value)
3805 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
3806 "does not match VBIOS boot MCLK level");
3807 if (dep_mclk_table->entries[0].vddci !=
3808 data->vbios_boot_state.vddci_bootup_value)
3809 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
3810 "does not match VBIOS boot VDDCI level");
3811 }
3812
3813 /* set DC compatible flag if this state supports DC */
3814 if (!state->validation.disallowOnDC)
3815 ps->dc_compatible = true;
3816
3817 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3818 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3819
3820 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3821 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3822
3823 if (!result) {
3824 uint32_t i;
3825
3826 switch (state->classification.ui_label) {
3827 case PP_StateUILabel_Performance:
3828 data->use_pcie_performance_levels = true;
3829
3830 for (i = 0; i < ps->performance_level_count; i++) {
3831 if (data->pcie_gen_performance.max <
3832 ps->performance_levels[i].pcie_gen)
3833 data->pcie_gen_performance.max =
3834 ps->performance_levels[i].pcie_gen;
3835
3836 if (data->pcie_gen_performance.min >
3837 ps->performance_levels[i].pcie_gen)
3838 data->pcie_gen_performance.min =
3839 ps->performance_levels[i].pcie_gen;
3840
3841 if (data->pcie_lane_performance.max <
3842 ps->performance_levels[i].pcie_lane)
3843 data->pcie_lane_performance.max =
3844 ps->performance_levels[i].pcie_lane;
3845
3846 if (data->pcie_lane_performance.min >
3847 ps->performance_levels[i].pcie_lane)
3848 data->pcie_lane_performance.min =
3849 ps->performance_levels[i].pcie_lane;
3850 }
3851 break;
3852 case PP_StateUILabel_Battery:
3853 data->use_pcie_power_saving_levels = true;
3854
3855 for (i = 0; i < ps->performance_level_count; i++) {
3856 if (data->pcie_gen_power_saving.max <
3857 ps->performance_levels[i].pcie_gen)
3858 data->pcie_gen_power_saving.max =
3859 ps->performance_levels[i].pcie_gen;
3860
3861 if (data->pcie_gen_power_saving.min >
3862 ps->performance_levels[i].pcie_gen)
3863 data->pcie_gen_power_saving.min =
3864 ps->performance_levels[i].pcie_gen;
3865
3866 if (data->pcie_lane_power_saving.max <
3867 ps->performance_levels[i].pcie_lane)
3868 data->pcie_lane_power_saving.max =
3869 ps->performance_levels[i].pcie_lane;
3870
3871 if (data->pcie_lane_power_saving.min >
3872 ps->performance_levels[i].pcie_lane)
3873 data->pcie_lane_power_saving.min =
3874 ps->performance_levels[i].pcie_lane;
3875 }
3876 break;
3877 default:
3878 break;
3879 }
3880 }
3881 return 0;
3882 }
3883
3884 static int fiji_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3885 struct pp_power_state *request_ps,
3886 const struct pp_power_state *current_ps)
3887 {
3888 struct fiji_power_state *fiji_ps =
3889 cast_phw_fiji_power_state(&request_ps->hardware);
3890 uint32_t sclk;
3891 uint32_t mclk;
3892 struct PP_Clocks minimum_clocks = {0};
3893 bool disable_mclk_switching;
3894 bool disable_mclk_switching_for_frame_lock;
3895 struct cgs_display_info info = {0};
3896 const struct phm_clock_and_voltage_limits *max_limits;
3897 uint32_t i;
3898 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
3899 struct phm_ppt_v1_information *table_info =
3900 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3901 int32_t count;
3902 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3903
3904 data->battery_state = (PP_StateUILabel_Battery ==
3905 request_ps->classification.ui_label);
3906
3907 PP_ASSERT_WITH_CODE(fiji_ps->performance_level_count == 2,
3908 "VI should always have 2 performance levels",);
3909
3910 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
3911 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3912 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3913
3914 /* Cap clock DPM tables at DC MAX if it is in DC. */
3915 if (PP_PowerSource_DC == hwmgr->power_source) {
3916 for (i = 0; i < fiji_ps->performance_level_count; i++) {
3917 if (fiji_ps->performance_levels[i].memory_clock > max_limits->mclk)
3918 fiji_ps->performance_levels[i].memory_clock = max_limits->mclk;
3919 if (fiji_ps->performance_levels[i].engine_clock > max_limits->sclk)
3920 fiji_ps->performance_levels[i].engine_clock = max_limits->sclk;
3921 }
3922 }
3923
3924 fiji_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
3925 fiji_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3926
3927 fiji_ps->acp_clk = hwmgr->acp_arbiter.acpclk;
3928
3929 cgs_get_active_displays_info(hwmgr->device, &info);
3930
3931 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3932
3933 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
3934
3935 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3936 PHM_PlatformCaps_StablePState)) {
3937 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3938 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3939
3940 for (count = table_info->vdd_dep_on_sclk->count - 1;
3941 count >= 0; count--) {
3942 if (stable_pstate_sclk >=
3943 table_info->vdd_dep_on_sclk->entries[count].clk) {
3944 stable_pstate_sclk =
3945 table_info->vdd_dep_on_sclk->entries[count].clk;
3946 break;
3947 }
3948 }
3949
3950 if (count < 0)
3951 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3952
3953 stable_pstate_mclk = max_limits->mclk;
3954
3955 minimum_clocks.engineClock = stable_pstate_sclk;
3956 minimum_clocks.memoryClock = stable_pstate_mclk;
3957 }
3958
3959 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
3960 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
3961
3962 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
3963 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
3964
3965 fiji_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3966
3967 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
3968 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
3969 hwmgr->platform_descriptor.overdriveLimit.engineClock),
3970 "Overdrive sclk exceeds limit",
3971 hwmgr->gfx_arbiter.sclk_over_drive =
3972 hwmgr->platform_descriptor.overdriveLimit.engineClock);
3973
3974 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3975 fiji_ps->performance_levels[1].engine_clock =
3976 hwmgr->gfx_arbiter.sclk_over_drive;
3977 }
3978
3979 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
3980 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
3981 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
3982 "Overdrive mclk exceeds limit",
3983 hwmgr->gfx_arbiter.mclk_over_drive =
3984 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
3985
3986 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3987 fiji_ps->performance_levels[1].memory_clock =
3988 hwmgr->gfx_arbiter.mclk_over_drive;
3989 }
3990
3991 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3992 hwmgr->platform_descriptor.platformCaps,
3993 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3994
3995 disable_mclk_switching = (1 < info.display_count) ||
3996 disable_mclk_switching_for_frame_lock;
3997
3998 sclk = fiji_ps->performance_levels[0].engine_clock;
3999 mclk = fiji_ps->performance_levels[0].memory_clock;
4000
4001 if (disable_mclk_switching)
4002 mclk = fiji_ps->performance_levels
4003 [fiji_ps->performance_level_count - 1].memory_clock;
4004
4005 if (sclk < minimum_clocks.engineClock)
4006 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
4007 max_limits->sclk : minimum_clocks.engineClock;
4008
4009 if (mclk < minimum_clocks.memoryClock)
4010 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
4011 max_limits->mclk : minimum_clocks.memoryClock;
4012
4013 fiji_ps->performance_levels[0].engine_clock = sclk;
4014 fiji_ps->performance_levels[0].memory_clock = mclk;
4015
4016 fiji_ps->performance_levels[1].engine_clock =
4017 (fiji_ps->performance_levels[1].engine_clock >=
4018 fiji_ps->performance_levels[0].engine_clock) ?
4019 fiji_ps->performance_levels[1].engine_clock :
4020 fiji_ps->performance_levels[0].engine_clock;
4021
4022 if (disable_mclk_switching) {
4023 if (mclk < fiji_ps->performance_levels[1].memory_clock)
4024 mclk = fiji_ps->performance_levels[1].memory_clock;
4025
4026 fiji_ps->performance_levels[0].memory_clock = mclk;
4027 fiji_ps->performance_levels[1].memory_clock = mclk;
4028 } else {
4029 if (fiji_ps->performance_levels[1].memory_clock <
4030 fiji_ps->performance_levels[0].memory_clock)
4031 fiji_ps->performance_levels[1].memory_clock =
4032 fiji_ps->performance_levels[0].memory_clock;
4033 }
4034
4035 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4036 PHM_PlatformCaps_StablePState)) {
4037 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4038 fiji_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
4039 fiji_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
4040 fiji_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
4041 fiji_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
4042 }
4043 }
4044
4045 return 0;
4046 }
4047
4048 static int fiji_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4049 {
4050 const struct phm_set_power_state_input *states =
4051 (const struct phm_set_power_state_input *)input;
4052 const struct fiji_power_state *fiji_ps =
4053 cast_const_phw_fiji_power_state(states->pnew_state);
4054 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4055 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4056 uint32_t sclk = fiji_ps->performance_levels
4057 [fiji_ps->performance_level_count - 1].engine_clock;
4058 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4059 uint32_t mclk = fiji_ps->performance_levels
4060 [fiji_ps->performance_level_count - 1].memory_clock;
4061 uint32_t i;
4062 struct cgs_display_info info = {0};
4063
4064 data->need_update_smu7_dpm_table = 0;
4065
4066 for (i = 0; i < sclk_table->count; i++) {
4067 if (sclk == sclk_table->dpm_levels[i].value)
4068 break;
4069 }
4070
4071 if (i >= sclk_table->count)
4072 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4073 else {
4074 if(data->display_timing.min_clock_in_sr !=
4075 hwmgr->display_config.min_core_set_clock_in_sr)
4076 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4077 }
4078
4079 for (i = 0; i < mclk_table->count; i++) {
4080 if (mclk == mclk_table->dpm_levels[i].value)
4081 break;
4082 }
4083
4084 if (i >= mclk_table->count)
4085 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4086
4087 cgs_get_active_displays_info(hwmgr->device, &info);
4088
4089 if (data->display_timing.num_existing_displays != info.display_count)
4090 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4091
4092 return 0;
4093 }
4094
4095 static uint16_t fiji_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4096 const struct fiji_power_state *fiji_ps)
4097 {
4098 uint32_t i;
4099 uint32_t sclk, max_sclk = 0;
4100 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4101 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4102
4103 for (i = 0; i < fiji_ps->performance_level_count; i++) {
4104 sclk = fiji_ps->performance_levels[i].engine_clock;
4105 if (max_sclk < sclk)
4106 max_sclk = sclk;
4107 }
4108
4109 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4110 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4111 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4112 dpm_table->pcie_speed_table.dpm_levels
4113 [dpm_table->pcie_speed_table.count - 1].value :
4114 dpm_table->pcie_speed_table.dpm_levels[i].value);
4115 }
4116
4117 return 0;
4118 }
4119
4120 static int fiji_request_link_speed_change_before_state_change(
4121 struct pp_hwmgr *hwmgr, const void *input)
4122 {
4123 const struct phm_set_power_state_input *states =
4124 (const struct phm_set_power_state_input *)input;
4125 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4126 const struct fiji_power_state *fiji_nps =
4127 cast_const_phw_fiji_power_state(states->pnew_state);
4128 const struct fiji_power_state *fiji_cps =
4129 cast_const_phw_fiji_power_state(states->pcurrent_state);
4130
4131 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_nps);
4132 uint16_t current_link_speed;
4133
4134 if (data->force_pcie_gen == PP_PCIEGenInvalid)
4135 current_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_cps);
4136 else
4137 current_link_speed = data->force_pcie_gen;
4138
4139 data->force_pcie_gen = PP_PCIEGenInvalid;
4140 data->pspp_notify_required = false;
4141 if (target_link_speed > current_link_speed) {
4142 switch(target_link_speed) {
4143 case PP_PCIEGen3:
4144 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
4145 break;
4146 data->force_pcie_gen = PP_PCIEGen2;
4147 if (current_link_speed == PP_PCIEGen2)
4148 break;
4149 case PP_PCIEGen2:
4150 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
4151 break;
4152 default:
4153 data->force_pcie_gen = fiji_get_current_pcie_speed(hwmgr);
4154 break;
4155 }
4156 } else {
4157 if (target_link_speed < current_link_speed)
4158 data->pspp_notify_required = true;
4159 }
4160
4161 return 0;
4162 }
4163
4164 static int fiji_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4165 {
4166 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4167
4168 if (0 == data->need_update_smu7_dpm_table)
4169 return 0;
4170
4171 if ((0 == data->sclk_dpm_key_disabled) &&
4172 (data->need_update_smu7_dpm_table &
4173 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4174 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4175 "Trying to freeze SCLK DPM when DPM is disabled",);
4176 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4177 PPSMC_MSG_SCLKDPM_FreezeLevel),
4178 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4179 return -1);
4180 }
4181
4182 if ((0 == data->mclk_dpm_key_disabled) &&
4183 (data->need_update_smu7_dpm_table &
4184 DPMTABLE_OD_UPDATE_MCLK)) {
4185 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4186 "Trying to freeze MCLK DPM when DPM is disabled",);
4187 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4188 PPSMC_MSG_MCLKDPM_FreezeLevel),
4189 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4190 return -1);
4191 }
4192
4193 return 0;
4194 }
4195
4196 static int fiji_populate_and_upload_sclk_mclk_dpm_levels(
4197 struct pp_hwmgr *hwmgr, const void *input)
4198 {
4199 int result = 0;
4200 const struct phm_set_power_state_input *states =
4201 (const struct phm_set_power_state_input *)input;
4202 const struct fiji_power_state *fiji_ps =
4203 cast_const_phw_fiji_power_state(states->pnew_state);
4204 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4205 uint32_t sclk = fiji_ps->performance_levels
4206 [fiji_ps->performance_level_count - 1].engine_clock;
4207 uint32_t mclk = fiji_ps->performance_levels
4208 [fiji_ps->performance_level_count - 1].memory_clock;
4209 struct fiji_dpm_table *dpm_table = &data->dpm_table;
4210
4211 struct fiji_dpm_table *golden_dpm_table = &data->golden_dpm_table;
4212 uint32_t dpm_count, clock_percent;
4213 uint32_t i;
4214
4215 if (0 == data->need_update_smu7_dpm_table)
4216 return 0;
4217
4218 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4219 dpm_table->sclk_table.dpm_levels
4220 [dpm_table->sclk_table.count - 1].value = sclk;
4221
4222 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4223 PHM_PlatformCaps_OD6PlusinACSupport) ||
4224 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4225 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4226 /* Need to do calculation based on the golden DPM table
4227 * as the Heatmap GPU Clock axis is also based on the default values
4228 */
4229 PP_ASSERT_WITH_CODE(
4230 (golden_dpm_table->sclk_table.dpm_levels
4231 [golden_dpm_table->sclk_table.count - 1].value != 0),
4232 "Divide by 0!",
4233 return -1);
4234 dpm_count = dpm_table->sclk_table.count < 2 ?
4235 0 : dpm_table->sclk_table.count - 2;
4236 for (i = dpm_count; i > 1; i--) {
4237 if (sclk > golden_dpm_table->sclk_table.dpm_levels
4238 [golden_dpm_table->sclk_table.count-1].value) {
4239 clock_percent =
4240 ((sclk - golden_dpm_table->sclk_table.dpm_levels
4241 [golden_dpm_table->sclk_table.count-1].value) * 100) /
4242 golden_dpm_table->sclk_table.dpm_levels
4243 [golden_dpm_table->sclk_table.count-1].value;
4244
4245 dpm_table->sclk_table.dpm_levels[i].value =
4246 golden_dpm_table->sclk_table.dpm_levels[i].value +
4247 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4248 clock_percent)/100;
4249
4250 } else if (golden_dpm_table->sclk_table.dpm_levels
4251 [dpm_table->sclk_table.count-1].value > sclk) {
4252 clock_percent =
4253 ((golden_dpm_table->sclk_table.dpm_levels
4254 [golden_dpm_table->sclk_table.count - 1].value - sclk) *
4255 100) /
4256 golden_dpm_table->sclk_table.dpm_levels
4257 [golden_dpm_table->sclk_table.count-1].value;
4258
4259 dpm_table->sclk_table.dpm_levels[i].value =
4260 golden_dpm_table->sclk_table.dpm_levels[i].value -
4261 (golden_dpm_table->sclk_table.dpm_levels[i].value *
4262 clock_percent) / 100;
4263 } else
4264 dpm_table->sclk_table.dpm_levels[i].value =
4265 golden_dpm_table->sclk_table.dpm_levels[i].value;
4266 }
4267 }
4268 }
4269
4270 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4271 dpm_table->mclk_table.dpm_levels
4272 [dpm_table->mclk_table.count - 1].value = mclk;
4273 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4274 PHM_PlatformCaps_OD6PlusinACSupport) ||
4275 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4276 PHM_PlatformCaps_OD6PlusinDCSupport)) {
4277
4278 PP_ASSERT_WITH_CODE(
4279 (golden_dpm_table->mclk_table.dpm_levels
4280 [golden_dpm_table->mclk_table.count-1].value != 0),
4281 "Divide by 0!",
4282 return -1);
4283 dpm_count = dpm_table->mclk_table.count < 2 ?
4284 0 : dpm_table->mclk_table.count - 2;
4285 for (i = dpm_count; i > 1; i--) {
4286 if (mclk > golden_dpm_table->mclk_table.dpm_levels
4287 [golden_dpm_table->mclk_table.count-1].value) {
4288 clock_percent = ((mclk -
4289 golden_dpm_table->mclk_table.dpm_levels
4290 [golden_dpm_table->mclk_table.count-1].value) * 100) /
4291 golden_dpm_table->mclk_table.dpm_levels
4292 [golden_dpm_table->mclk_table.count-1].value;
4293
4294 dpm_table->mclk_table.dpm_levels[i].value =
4295 golden_dpm_table->mclk_table.dpm_levels[i].value +
4296 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4297 clock_percent) / 100;
4298
4299 } else if (golden_dpm_table->mclk_table.dpm_levels
4300 [dpm_table->mclk_table.count-1].value > mclk) {
4301 clock_percent = ((golden_dpm_table->mclk_table.dpm_levels
4302 [golden_dpm_table->mclk_table.count-1].value - mclk) * 100) /
4303 golden_dpm_table->mclk_table.dpm_levels
4304 [golden_dpm_table->mclk_table.count-1].value;
4305
4306 dpm_table->mclk_table.dpm_levels[i].value =
4307 golden_dpm_table->mclk_table.dpm_levels[i].value -
4308 (golden_dpm_table->mclk_table.dpm_levels[i].value *
4309 clock_percent) / 100;
4310 } else
4311 dpm_table->mclk_table.dpm_levels[i].value =
4312 golden_dpm_table->mclk_table.dpm_levels[i].value;
4313 }
4314 }
4315 }
4316
4317 if (data->need_update_smu7_dpm_table &
4318 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
4319 result = fiji_populate_all_graphic_levels(hwmgr);
4320 PP_ASSERT_WITH_CODE((0 == result),
4321 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4322 return result);
4323 }
4324
4325 if (data->need_update_smu7_dpm_table &
4326 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4327 /*populate MCLK dpm table to SMU7 */
4328 result = fiji_populate_all_memory_levels(hwmgr);
4329 PP_ASSERT_WITH_CODE((0 == result),
4330 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4331 return result);
4332 }
4333
4334 return result;
4335 }
4336
4337 static int fiji_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4338 struct fiji_single_dpm_table * dpm_table,
4339 uint32_t low_limit, uint32_t high_limit)
4340 {
4341 uint32_t i;
4342
4343 for (i = 0; i < dpm_table->count; i++) {
4344 if ((dpm_table->dpm_levels[i].value < low_limit) ||
4345 (dpm_table->dpm_levels[i].value > high_limit))
4346 dpm_table->dpm_levels[i].enabled = false;
4347 else
4348 dpm_table->dpm_levels[i].enabled = true;
4349 }
4350 return 0;
4351 }
4352
4353 static int fiji_trim_dpm_states(struct pp_hwmgr *hwmgr,
4354 const struct fiji_power_state *fiji_ps)
4355 {
4356 int result = 0;
4357 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4358 uint32_t high_limit_count;
4359
4360 PP_ASSERT_WITH_CODE((fiji_ps->performance_level_count >= 1),
4361 "power state did not have any performance level",
4362 return -1);
4363
4364 high_limit_count = (1 == fiji_ps->performance_level_count) ? 0 : 1;
4365
4366 fiji_trim_single_dpm_states(hwmgr,
4367 &(data->dpm_table.sclk_table),
4368 fiji_ps->performance_levels[0].engine_clock,
4369 fiji_ps->performance_levels[high_limit_count].engine_clock);
4370
4371 fiji_trim_single_dpm_states(hwmgr,
4372 &(data->dpm_table.mclk_table),
4373 fiji_ps->performance_levels[0].memory_clock,
4374 fiji_ps->performance_levels[high_limit_count].memory_clock);
4375
4376 return result;
4377 }
4378
4379 static int fiji_generate_dpm_level_enable_mask(
4380 struct pp_hwmgr *hwmgr, const void *input)
4381 {
4382 int result;
4383 const struct phm_set_power_state_input *states =
4384 (const struct phm_set_power_state_input *)input;
4385 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4386 const struct fiji_power_state *fiji_ps =
4387 cast_const_phw_fiji_power_state(states->pnew_state);
4388
4389 result = fiji_trim_dpm_states(hwmgr, fiji_ps);
4390 if (result)
4391 return result;
4392
4393 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4394 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4395 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4396 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4397 data->last_mclk_dpm_enable_mask =
4398 data->dpm_level_enable_mask.mclk_dpm_enable_mask;
4399
4400 if (data->uvd_enabled) {
4401 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)
4402 data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE;
4403 }
4404
4405 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4406 fiji_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4407
4408 return 0;
4409 }
4410
4411 int fiji_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4412 {
4413 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4414 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Enable :
4415 (PPSMC_Msg)PPSMC_MSG_UVDDPM_Disable);
4416 }
4417
4418 int fiji_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4419 {
4420 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4421 PPSMC_MSG_VCEDPM_Enable :
4422 PPSMC_MSG_VCEDPM_Disable);
4423 }
4424
4425 int fiji_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4426 {
4427 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4428 PPSMC_MSG_SAMUDPM_Enable :
4429 PPSMC_MSG_SAMUDPM_Disable);
4430 }
4431
4432 int fiji_enable_disable_acp_dpm(struct pp_hwmgr *hwmgr, bool enable)
4433 {
4434 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4435 PPSMC_MSG_ACPDPM_Enable :
4436 PPSMC_MSG_ACPDPM_Disable);
4437 }
4438
4439 int fiji_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4440 {
4441 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4442 uint32_t mm_boot_level_offset, mm_boot_level_value;
4443 struct phm_ppt_v1_information *table_info =
4444 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4445
4446 if (!bgate) {
4447 data->smc_state_table.UvdBootLevel = 0;
4448 if (table_info->mm_dep_table->count > 0)
4449 data->smc_state_table.UvdBootLevel =
4450 (uint8_t) (table_info->mm_dep_table->count - 1);
4451 mm_boot_level_offset = data->dpm_table_start +
4452 offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
4453 mm_boot_level_offset /= 4;
4454 mm_boot_level_offset *= 4;
4455 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4456 CGS_IND_REG__SMC, mm_boot_level_offset);
4457 mm_boot_level_value &= 0x00FFFFFF;
4458 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4459 cgs_write_ind_register(hwmgr->device,
4460 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4461
4462 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4463 PHM_PlatformCaps_UVDDPM) ||
4464 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4465 PHM_PlatformCaps_StablePState))
4466 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4467 PPSMC_MSG_UVDDPM_SetEnabledMask,
4468 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4469 }
4470
4471 return fiji_enable_disable_uvd_dpm(hwmgr, !bgate);
4472 }
4473
4474 int fiji_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4475 {
4476 const struct phm_set_power_state_input *states =
4477 (const struct phm_set_power_state_input *)input;
4478 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4479 const struct fiji_power_state *fiji_nps =
4480 cast_const_phw_fiji_power_state(states->pnew_state);
4481 const struct fiji_power_state *fiji_cps =
4482 cast_const_phw_fiji_power_state(states->pcurrent_state);
4483
4484 uint32_t mm_boot_level_offset, mm_boot_level_value;
4485 struct phm_ppt_v1_information *table_info =
4486 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4487
4488 if (fiji_nps->vce_clks.evclk >0 &&
4489 (fiji_cps == NULL || fiji_cps->vce_clks.evclk == 0)) {
4490 data->smc_state_table.VceBootLevel =
4491 (uint8_t) (table_info->mm_dep_table->count - 1);
4492
4493 mm_boot_level_offset = data->dpm_table_start +
4494 offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
4495 mm_boot_level_offset /= 4;
4496 mm_boot_level_offset *= 4;
4497 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4498 CGS_IND_REG__SMC, mm_boot_level_offset);
4499 mm_boot_level_value &= 0xFF00FFFF;
4500 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4501 cgs_write_ind_register(hwmgr->device,
4502 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4503
4504 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4505 PHM_PlatformCaps_StablePState)) {
4506 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4507 PPSMC_MSG_VCEDPM_SetEnabledMask,
4508 (uint32_t)1 << data->smc_state_table.VceBootLevel);
4509
4510 fiji_enable_disable_vce_dpm(hwmgr, true);
4511 } else if (fiji_nps->vce_clks.evclk == 0 &&
4512 fiji_cps != NULL &&
4513 fiji_cps->vce_clks.evclk > 0)
4514 fiji_enable_disable_vce_dpm(hwmgr, false);
4515 }
4516
4517 return 0;
4518 }
4519
4520 int fiji_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4521 {
4522 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4523 uint32_t mm_boot_level_offset, mm_boot_level_value;
4524 struct phm_ppt_v1_information *table_info =
4525 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4526
4527 if (!bgate) {
4528 data->smc_state_table.SamuBootLevel =
4529 (uint8_t) (table_info->mm_dep_table->count - 1);
4530 mm_boot_level_offset = data->dpm_table_start +
4531 offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
4532 mm_boot_level_offset /= 4;
4533 mm_boot_level_offset *= 4;
4534 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4535 CGS_IND_REG__SMC, mm_boot_level_offset);
4536 mm_boot_level_value &= 0xFFFFFF00;
4537 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4538 cgs_write_ind_register(hwmgr->device,
4539 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4540
4541 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4542 PHM_PlatformCaps_StablePState))
4543 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4544 PPSMC_MSG_SAMUDPM_SetEnabledMask,
4545 (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4546 }
4547
4548 return fiji_enable_disable_samu_dpm(hwmgr, !bgate);
4549 }
4550
4551 int fiji_update_acp_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4552 {
4553 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4554 uint32_t mm_boot_level_offset, mm_boot_level_value;
4555 struct phm_ppt_v1_information *table_info =
4556 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4557
4558 if (!bgate) {
4559 data->smc_state_table.AcpBootLevel =
4560 (uint8_t) (table_info->mm_dep_table->count - 1);
4561 mm_boot_level_offset = data->dpm_table_start +
4562 offsetof(SMU73_Discrete_DpmTable, AcpBootLevel);
4563 mm_boot_level_offset /= 4;
4564 mm_boot_level_offset *= 4;
4565 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4566 CGS_IND_REG__SMC, mm_boot_level_offset);
4567 mm_boot_level_value &= 0xFFFF00FF;
4568 mm_boot_level_value |= data->smc_state_table.AcpBootLevel << 8;
4569 cgs_write_ind_register(hwmgr->device,
4570 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4571
4572 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4573 PHM_PlatformCaps_StablePState))
4574 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4575 PPSMC_MSG_ACPDPM_SetEnabledMask,
4576 (uint32_t)(1 << data->smc_state_table.AcpBootLevel));
4577 }
4578
4579 return fiji_enable_disable_acp_dpm(hwmgr, !bgate);
4580 }
4581
4582 static int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4583 {
4584 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4585
4586 int result = 0;
4587 uint32_t low_sclk_interrupt_threshold = 0;
4588
4589 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4590 PHM_PlatformCaps_SclkThrottleLowNotification)
4591 && (hwmgr->gfx_arbiter.sclk_threshold !=
4592 data->low_sclk_interrupt_threshold)) {
4593 data->low_sclk_interrupt_threshold =
4594 hwmgr->gfx_arbiter.sclk_threshold;
4595 low_sclk_interrupt_threshold =
4596 data->low_sclk_interrupt_threshold;
4597
4598 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4599
4600 result = fiji_copy_bytes_to_smc(
4601 hwmgr->smumgr,
4602 data->dpm_table_start +
4603 offsetof(SMU73_Discrete_DpmTable,
4604 LowSclkInterruptThreshold),
4605 (uint8_t *)&low_sclk_interrupt_threshold,
4606 sizeof(uint32_t),
4607 data->sram_end);
4608 }
4609
4610 return result;
4611 }
4612
4613 static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4614 {
4615 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4616
4617 if (data->need_update_smu7_dpm_table &
4618 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4619 return fiji_program_memory_timing_parameters(hwmgr);
4620
4621 return 0;
4622 }
4623
4624 static int fiji_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4625 {
4626 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4627
4628 if (0 == data->need_update_smu7_dpm_table)
4629 return 0;
4630
4631 if ((0 == data->sclk_dpm_key_disabled) &&
4632 (data->need_update_smu7_dpm_table &
4633 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4634
4635 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4636 "Trying to Unfreeze SCLK DPM when DPM is disabled",);
4637 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4638 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4639 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4640 return -1);
4641 }
4642
4643 if ((0 == data->mclk_dpm_key_disabled) &&
4644 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4645
4646 PP_ASSERT_WITH_CODE(true == fiji_is_dpm_running(hwmgr),
4647 "Trying to Unfreeze MCLK DPM when DPM is disabled",);
4648 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4649 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4650 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4651 return -1);
4652 }
4653
4654 data->need_update_smu7_dpm_table = 0;
4655
4656 return 0;
4657 }
4658
4659 /* Look up the voltaged based on DAL's requested level.
4660 * and then send the requested VDDC voltage to SMC
4661 */
4662 static void fiji_apply_dal_minimum_voltage_request(struct pp_hwmgr *hwmgr)
4663 {
4664 return;
4665 }
4666
4667 int fiji_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
4668 {
4669 int result;
4670 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4671
4672 /* Apply minimum voltage based on DAL's request level */
4673 fiji_apply_dal_minimum_voltage_request(hwmgr);
4674
4675 if (0 == data->sclk_dpm_key_disabled) {
4676 /* Checking if DPM is running. If we discover hang because of this,
4677 * we should skip this message.
4678 */
4679 if (!fiji_is_dpm_running(hwmgr))
4680 printk(KERN_ERR "[ powerplay ] "
4681 "Trying to set Enable Mask when DPM is disabled \n");
4682
4683 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
4684 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4685 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4686 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
4687 PP_ASSERT_WITH_CODE((0 == result),
4688 "Set Sclk Dpm enable Mask failed", return -1);
4689 }
4690 }
4691
4692 if (0 == data->mclk_dpm_key_disabled) {
4693 /* Checking if DPM is running. If we discover hang because of this,
4694 * we should skip this message.
4695 */
4696 if (!fiji_is_dpm_running(hwmgr))
4697 printk(KERN_ERR "[ powerplay ]"
4698 " Trying to set Enable Mask when DPM is disabled \n");
4699
4700 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
4701 result = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4702 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4703 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
4704 PP_ASSERT_WITH_CODE((0 == result),
4705 "Set Mclk Dpm enable Mask failed", return -1);
4706 }
4707 }
4708
4709 return 0;
4710 }
4711
4712 static int fiji_notify_link_speed_change_after_state_change(
4713 struct pp_hwmgr *hwmgr, const void *input)
4714 {
4715 const struct phm_set_power_state_input *states =
4716 (const struct phm_set_power_state_input *)input;
4717 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4718 const struct fiji_power_state *fiji_ps =
4719 cast_const_phw_fiji_power_state(states->pnew_state);
4720 uint16_t target_link_speed = fiji_get_maximum_link_speed(hwmgr, fiji_ps);
4721 uint8_t request;
4722
4723 if (data->pspp_notify_required) {
4724 if (target_link_speed == PP_PCIEGen3)
4725 request = PCIE_PERF_REQ_GEN3;
4726 else if (target_link_speed == PP_PCIEGen2)
4727 request = PCIE_PERF_REQ_GEN2;
4728 else
4729 request = PCIE_PERF_REQ_GEN1;
4730
4731 if(request == PCIE_PERF_REQ_GEN1 &&
4732 fiji_get_current_pcie_speed(hwmgr) > 0)
4733 return 0;
4734
4735 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4736 if (PP_PCIEGen2 == target_link_speed)
4737 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4738 else
4739 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4740 }
4741 }
4742
4743 return 0;
4744 }
4745
4746 static int fiji_set_power_state_tasks(struct pp_hwmgr *hwmgr,
4747 const void *input)
4748 {
4749 int tmp_result, result = 0;
4750
4751 tmp_result = fiji_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4752 PP_ASSERT_WITH_CODE((0 == tmp_result),
4753 "Failed to find DPM states clocks in DPM table!",
4754 result = tmp_result);
4755
4756 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4757 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4758 tmp_result =
4759 fiji_request_link_speed_change_before_state_change(hwmgr, input);
4760 PP_ASSERT_WITH_CODE((0 == tmp_result),
4761 "Failed to request link speed change before state change!",
4762 result = tmp_result);
4763 }
4764
4765 tmp_result = fiji_freeze_sclk_mclk_dpm(hwmgr);
4766 PP_ASSERT_WITH_CODE((0 == tmp_result),
4767 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4768
4769 tmp_result = fiji_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4770 PP_ASSERT_WITH_CODE((0 == tmp_result),
4771 "Failed to populate and upload SCLK MCLK DPM levels!",
4772 result = tmp_result);
4773
4774 tmp_result = fiji_generate_dpm_level_enable_mask(hwmgr, input);
4775 PP_ASSERT_WITH_CODE((0 == tmp_result),
4776 "Failed to generate DPM level enabled mask!",
4777 result = tmp_result);
4778
4779 tmp_result = fiji_update_vce_dpm(hwmgr, input);
4780 PP_ASSERT_WITH_CODE((0 == tmp_result),
4781 "Failed to update VCE DPM!",
4782 result = tmp_result);
4783
4784 tmp_result = fiji_update_sclk_threshold(hwmgr);
4785 PP_ASSERT_WITH_CODE((0 == tmp_result),
4786 "Failed to update SCLK threshold!",
4787 result = tmp_result);
4788
4789 tmp_result = fiji_program_mem_timing_parameters(hwmgr);
4790 PP_ASSERT_WITH_CODE((0 == tmp_result),
4791 "Failed to program memory timing parameters!",
4792 result = tmp_result);
4793
4794 tmp_result = fiji_unfreeze_sclk_mclk_dpm(hwmgr);
4795 PP_ASSERT_WITH_CODE((0 == tmp_result),
4796 "Failed to unfreeze SCLK MCLK DPM!",
4797 result = tmp_result);
4798
4799 tmp_result = fiji_upload_dpm_level_enable_mask(hwmgr);
4800 PP_ASSERT_WITH_CODE((0 == tmp_result),
4801 "Failed to upload DPM level enabled mask!",
4802 result = tmp_result);
4803
4804 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4805 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4806 tmp_result =
4807 fiji_notify_link_speed_change_after_state_change(hwmgr, input);
4808 PP_ASSERT_WITH_CODE((0 == tmp_result),
4809 "Failed to notify link speed change after state change!",
4810 result = tmp_result);
4811 }
4812
4813 return result;
4814 }
4815
4816 static int fiji_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
4817 {
4818 struct pp_power_state *ps;
4819 struct fiji_power_state *fiji_ps;
4820
4821 if (hwmgr == NULL)
4822 return -EINVAL;
4823
4824 ps = hwmgr->request_ps;
4825
4826 if (ps == NULL)
4827 return -EINVAL;
4828
4829 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4830
4831 if (low)
4832 return fiji_ps->performance_levels[0].engine_clock;
4833 else
4834 return fiji_ps->performance_levels
4835 [fiji_ps->performance_level_count-1].engine_clock;
4836 }
4837
4838 static int fiji_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
4839 {
4840 struct pp_power_state *ps;
4841 struct fiji_power_state *fiji_ps;
4842
4843 if (hwmgr == NULL)
4844 return -EINVAL;
4845
4846 ps = hwmgr->request_ps;
4847
4848 if (ps == NULL)
4849 return -EINVAL;
4850
4851 fiji_ps = cast_phw_fiji_power_state(&ps->hardware);
4852
4853 if (low)
4854 return fiji_ps->performance_levels[0].memory_clock;
4855 else
4856 return fiji_ps->performance_levels
4857 [fiji_ps->performance_level_count-1].memory_clock;
4858 }
4859
4860 static void fiji_print_current_perforce_level(
4861 struct pp_hwmgr *hwmgr, struct seq_file *m)
4862 {
4863 uint32_t sclk, mclk, activity_percent = 0;
4864 uint32_t offset;
4865 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4866
4867 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4868
4869 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4870
4871 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4872
4873 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4874 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
4875 mclk / 100, sclk / 100);
4876
4877 offset = data->soft_regs_start + offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
4878 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
4879 activity_percent += 0x80;
4880 activity_percent >>= 8;
4881
4882 seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
4883
4884 seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en");
4885
4886 seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en");
4887 }
4888
4889 static int fiji_program_display_gap(struct pp_hwmgr *hwmgr)
4890 {
4891 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
4892 uint32_t num_active_displays = 0;
4893 uint32_t display_gap = cgs_read_ind_register(hwmgr->device,
4894 CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4895 uint32_t display_gap2;
4896 uint32_t pre_vbi_time_in_us;
4897 uint32_t frame_time_in_us;
4898 uint32_t ref_clock;
4899 uint32_t refresh_rate = 0;
4900 struct cgs_display_info info = {0};
4901 struct cgs_mode_info mode_info;
4902
4903 info.mode_info = &mode_info;
4904
4905 cgs_get_active_displays_info(hwmgr->device, &info);
4906 num_active_displays = info.display_count;
4907
4908 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
4909 DISP_GAP, (num_active_displays > 0)?
4910 DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4911 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4912 ixCG_DISPLAY_GAP_CNTL, display_gap);
4913
4914 ref_clock = mode_info.ref_clock;
4915 refresh_rate = mode_info.refresh_rate;
4916
4917 if (refresh_rate == 0)
4918 refresh_rate = 60;
4919
4920 frame_time_in_us = 1000000 / refresh_rate;
4921
4922 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
4923 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4924
4925 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4926 ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4927
4928 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4929 data->soft_regs_start +
4930 offsetof(SMU73_SoftRegisters, PreVBlankGap), 0x64);
4931
4932 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4933 data->soft_regs_start +
4934 offsetof(SMU73_SoftRegisters, VBlankTimeout),
4935 (frame_time_in_us - pre_vbi_time_in_us));
4936
4937 if (num_active_displays == 1)
4938 tonga_notify_smc_display_change(hwmgr, true);
4939
4940 return 0;
4941 }
4942
4943 int fiji_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4944 {
4945 return fiji_program_display_gap(hwmgr);
4946 }
4947
4948 static int fiji_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr,
4949 uint16_t us_max_fan_pwm)
4950 {
4951 hwmgr->thermal_controller.
4952 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4953
4954 if (phm_is_hw_access_blocked(hwmgr))
4955 return 0;
4956
4957 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4958 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
4959 }
4960
4961 static int fiji_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr,
4962 uint16_t us_max_fan_rpm)
4963 {
4964 hwmgr->thermal_controller.
4965 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4966
4967 if (phm_is_hw_access_blocked(hwmgr))
4968 return 0;
4969
4970 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4971 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4972 }
4973
4974 int fiji_dpm_set_interrupt_state(void *private_data,
4975 unsigned src_id, unsigned type,
4976 int enabled)
4977 {
4978 uint32_t cg_thermal_int;
4979 struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr;
4980
4981 if (hwmgr == NULL)
4982 return -EINVAL;
4983
4984 switch (type) {
4985 case AMD_THERMAL_IRQ_LOW_TO_HIGH:
4986 if (enabled) {
4987 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
4988 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
4989 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
4990 cgs_write_ind_register(hwmgr->device,
4991 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
4992 } else {
4993 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
4994 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
4995 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK;
4996 cgs_write_ind_register(hwmgr->device,
4997 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
4998 }
4999 break;
5000
5001 case AMD_THERMAL_IRQ_HIGH_TO_LOW:
5002 if (enabled) {
5003 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5004 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5005 cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5006 cgs_write_ind_register(hwmgr->device,
5007 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5008 } else {
5009 cg_thermal_int = cgs_read_ind_register(hwmgr->device,
5010 CGS_IND_REG__SMC, ixCG_THERMAL_INT);
5011 cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK;
5012 cgs_write_ind_register(hwmgr->device,
5013 CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int);
5014 }
5015 break;
5016 default:
5017 break;
5018 }
5019 return 0;
5020 }
5021
5022 int fiji_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
5023 const void *thermal_interrupt_info)
5024 {
5025 int result;
5026 const struct pp_interrupt_registration_info *info =
5027 (const struct pp_interrupt_registration_info *)
5028 thermal_interrupt_info;
5029
5030 if (info == NULL)
5031 return -EINVAL;
5032
5033 result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST,
5034 fiji_dpm_set_interrupt_state,
5035 info->call_back, info->context);
5036
5037 if (result)
5038 return -EINVAL;
5039
5040 result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST,
5041 fiji_dpm_set_interrupt_state,
5042 info->call_back, info->context);
5043
5044 if (result)
5045 return -EINVAL;
5046
5047 return 0;
5048 }
5049
5050 static int fiji_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5051 {
5052 if (mode) {
5053 /* stop auto-manage */
5054 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5055 PHM_PlatformCaps_MicrocodeFanControl))
5056 fiji_fan_ctrl_stop_smc_fan_control(hwmgr);
5057 fiji_fan_ctrl_set_static_mode(hwmgr, mode);
5058 } else
5059 /* restart auto-manage */
5060 fiji_fan_ctrl_reset_fan_speed_to_default(hwmgr);
5061
5062 return 0;
5063 }
5064
5065 static int fiji_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5066 {
5067 if (hwmgr->fan_ctrl_is_in_default_mode)
5068 return hwmgr->fan_ctrl_default_mode;
5069 else
5070 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
5071 CG_FDO_CTRL2, FDO_PWM_MODE);
5072 }
5073
5074 static int fiji_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
5075 {
5076 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5077
5078 if (!data->soft_pp_table) {
5079 data->soft_pp_table = kmemdup(hwmgr->soft_pp_table,
5080 hwmgr->soft_pp_table_size,
5081 GFP_KERNEL);
5082 if (!data->soft_pp_table)
5083 return -ENOMEM;
5084 }
5085
5086 *table = (char *)&data->soft_pp_table;
5087
5088 return hwmgr->soft_pp_table_size;
5089 }
5090
5091 static int fiji_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
5092 {
5093 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5094
5095 if (!data->soft_pp_table) {
5096 data->soft_pp_table = kzalloc(hwmgr->soft_pp_table_size, GFP_KERNEL);
5097 if (!data->soft_pp_table)
5098 return -ENOMEM;
5099 }
5100
5101 memcpy(data->soft_pp_table, buf, size);
5102
5103 hwmgr->soft_pp_table = data->soft_pp_table;
5104
5105 /* TODO: re-init powerplay to implement modified pptable */
5106
5107 return 0;
5108 }
5109
5110 static int fiji_force_clock_level(struct pp_hwmgr *hwmgr,
5111 enum pp_clock_type type, uint32_t mask)
5112 {
5113 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5114
5115 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
5116 return -EINVAL;
5117
5118 switch (type) {
5119 case PP_SCLK:
5120 if (!data->sclk_dpm_key_disabled)
5121 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5122 PPSMC_MSG_SCLKDPM_SetEnabledMask,
5123 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
5124 break;
5125
5126 case PP_MCLK:
5127 if (!data->mclk_dpm_key_disabled)
5128 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5129 PPSMC_MSG_MCLKDPM_SetEnabledMask,
5130 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
5131 break;
5132
5133 case PP_PCIE:
5134 {
5135 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
5136 uint32_t level = 0;
5137
5138 while (tmp >>= 1)
5139 level++;
5140
5141 if (!data->pcie_dpm_key_disabled)
5142 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
5143 PPSMC_MSG_PCIeDPM_ForceLevel,
5144 level);
5145 break;
5146 }
5147 default:
5148 break;
5149 }
5150
5151 return 0;
5152 }
5153
5154 static int fiji_print_clock_levels(struct pp_hwmgr *hwmgr,
5155 enum pp_clock_type type, char *buf)
5156 {
5157 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5158 struct fiji_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5159 struct fiji_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5160 struct fiji_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
5161 int i, now, size = 0;
5162 uint32_t clock, pcie_speed;
5163
5164 switch (type) {
5165 case PP_SCLK:
5166 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
5167 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5168
5169 for (i = 0; i < sclk_table->count; i++) {
5170 if (clock > sclk_table->dpm_levels[i].value)
5171 continue;
5172 break;
5173 }
5174 now = i;
5175
5176 for (i = 0; i < sclk_table->count; i++)
5177 size += sprintf(buf + size, "%d: %uMhz %s\n",
5178 i, sclk_table->dpm_levels[i].value / 100,
5179 (i == now) ? "*" : "");
5180 break;
5181 case PP_MCLK:
5182 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
5183 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
5184
5185 for (i = 0; i < mclk_table->count; i++) {
5186 if (clock > mclk_table->dpm_levels[i].value)
5187 continue;
5188 break;
5189 }
5190 now = i;
5191
5192 for (i = 0; i < mclk_table->count; i++)
5193 size += sprintf(buf + size, "%d: %uMhz %s\n",
5194 i, mclk_table->dpm_levels[i].value / 100,
5195 (i == now) ? "*" : "");
5196 break;
5197 case PP_PCIE:
5198 pcie_speed = fiji_get_current_pcie_speed(hwmgr);
5199 for (i = 0; i < pcie_table->count; i++) {
5200 if (pcie_speed != pcie_table->dpm_levels[i].value)
5201 continue;
5202 break;
5203 }
5204 now = i;
5205
5206 for (i = 0; i < pcie_table->count; i++)
5207 size += sprintf(buf + size, "%d: %s %s\n", i,
5208 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x1" :
5209 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
5210 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
5211 (i == now) ? "*" : "");
5212 break;
5213 default:
5214 break;
5215 }
5216 return size;
5217 }
5218
5219 static inline bool fiji_are_power_levels_equal(const struct fiji_performance_level *pl1,
5220 const struct fiji_performance_level *pl2)
5221 {
5222 return ((pl1->memory_clock == pl2->memory_clock) &&
5223 (pl1->engine_clock == pl2->engine_clock) &&
5224 (pl1->pcie_gen == pl2->pcie_gen) &&
5225 (pl1->pcie_lane == pl2->pcie_lane));
5226 }
5227
5228 int fiji_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
5229 {
5230 const struct fiji_power_state *psa = cast_const_phw_fiji_power_state(pstate1);
5231 const struct fiji_power_state *psb = cast_const_phw_fiji_power_state(pstate2);
5232 int i;
5233
5234 if (equal == NULL || psa == NULL || psb == NULL)
5235 return -EINVAL;
5236
5237 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
5238 if (psa->performance_level_count != psb->performance_level_count) {
5239 *equal = false;
5240 return 0;
5241 }
5242
5243 for (i = 0; i < psa->performance_level_count; i++) {
5244 if (!fiji_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
5245 /* If we have found even one performance level pair that is different the states are different. */
5246 *equal = false;
5247 return 0;
5248 }
5249 }
5250
5251 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
5252 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
5253 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
5254 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
5255 *equal &= (psa->acp_clk == psb->acp_clk);
5256
5257 return 0;
5258 }
5259
5260 bool fiji_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
5261 {
5262 struct fiji_hwmgr *data = (struct fiji_hwmgr *)(hwmgr->backend);
5263 bool is_update_required = false;
5264 struct cgs_display_info info = {0,0,NULL};
5265
5266 cgs_get_active_displays_info(hwmgr->device, &info);
5267
5268 if (data->display_timing.num_existing_displays != info.display_count)
5269 is_update_required = true;
5270
5271 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
5272 if(hwmgr->display_config.min_core_set_clock_in_sr != data->display_timing.min_clock_in_sr)
5273 is_update_required = true;
5274 }
5275
5276 return is_update_required;
5277 }
5278
5279
5280 static const struct pp_hwmgr_func fiji_hwmgr_funcs = {
5281 .backend_init = &fiji_hwmgr_backend_init,
5282 .backend_fini = &fiji_hwmgr_backend_fini,
5283 .asic_setup = &fiji_setup_asic_task,
5284 .dynamic_state_management_enable = &fiji_enable_dpm_tasks,
5285 .force_dpm_level = &fiji_dpm_force_dpm_level,
5286 .get_num_of_pp_table_entries = &tonga_get_number_of_powerplay_table_entries,
5287 .get_power_state_size = &fiji_get_power_state_size,
5288 .get_pp_table_entry = &fiji_get_pp_table_entry,
5289 .patch_boot_state = &fiji_patch_boot_state,
5290 .apply_state_adjust_rules = &fiji_apply_state_adjust_rules,
5291 .power_state_set = &fiji_set_power_state_tasks,
5292 .get_sclk = &fiji_dpm_get_sclk,
5293 .get_mclk = &fiji_dpm_get_mclk,
5294 .print_current_perforce_level = &fiji_print_current_perforce_level,
5295 .powergate_uvd = &fiji_phm_powergate_uvd,
5296 .powergate_vce = &fiji_phm_powergate_vce,
5297 .disable_clock_power_gating = &fiji_phm_disable_clock_power_gating,
5298 .notify_smc_display_config_after_ps_adjustment =
5299 &tonga_notify_smc_display_config_after_ps_adjustment,
5300 .display_config_changed = &fiji_display_configuration_changed_task,
5301 .set_max_fan_pwm_output = fiji_set_max_fan_pwm_output,
5302 .set_max_fan_rpm_output = fiji_set_max_fan_rpm_output,
5303 .get_temperature = fiji_thermal_get_temperature,
5304 .stop_thermal_controller = fiji_thermal_stop_thermal_controller,
5305 .get_fan_speed_info = fiji_fan_ctrl_get_fan_speed_info,
5306 .get_fan_speed_percent = fiji_fan_ctrl_get_fan_speed_percent,
5307 .set_fan_speed_percent = fiji_fan_ctrl_set_fan_speed_percent,
5308 .reset_fan_speed_to_default = fiji_fan_ctrl_reset_fan_speed_to_default,
5309 .get_fan_speed_rpm = fiji_fan_ctrl_get_fan_speed_rpm,
5310 .set_fan_speed_rpm = fiji_fan_ctrl_set_fan_speed_rpm,
5311 .uninitialize_thermal_controller = fiji_thermal_ctrl_uninitialize_thermal_controller,
5312 .register_internal_thermal_interrupt = fiji_register_internal_thermal_interrupt,
5313 .set_fan_control_mode = fiji_set_fan_control_mode,
5314 .get_fan_control_mode = fiji_get_fan_control_mode,
5315 .check_states_equal = fiji_check_states_equal,
5316 .check_smc_update_required_for_display_configuration = fiji_check_smc_update_required_for_display_configuration,
5317 .get_pp_table = fiji_get_pp_table,
5318 .set_pp_table = fiji_set_pp_table,
5319 .force_clock_level = fiji_force_clock_level,
5320 .print_clock_levels = fiji_print_clock_levels,
5321 };
5322
5323 int fiji_hwmgr_init(struct pp_hwmgr *hwmgr)
5324 {
5325 struct fiji_hwmgr *data;
5326 int ret = 0;
5327
5328 data = kzalloc(sizeof(struct fiji_hwmgr), GFP_KERNEL);
5329 if (data == NULL)
5330 return -ENOMEM;
5331
5332 hwmgr->backend = data;
5333 hwmgr->hwmgr_func = &fiji_hwmgr_funcs;
5334 hwmgr->pptable_func = &tonga_pptable_funcs;
5335 pp_fiji_thermal_initialize(hwmgr);
5336 return ret;
5337 }
This page took 0.165235 seconds and 5 git commands to generate.