PM / clk: Add support for adding a specific clock from device-tree
[deliverable/linux.git] / drivers / gpu / drm / amd / powerplay / hwmgr / polaris10_hwmgr.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include <asm/div64.h>
27 #include "linux/delay.h"
28 #include "pp_acpi.h"
29 #include "hwmgr.h"
30 #include "polaris10_hwmgr.h"
31 #include "polaris10_powertune.h"
32 #include "polaris10_dyn_defaults.h"
33 #include "polaris10_smumgr.h"
34 #include "pp_debug.h"
35 #include "ppatomctrl.h"
36 #include "atombios.h"
37 #include "tonga_pptable.h"
38 #include "pppcielanes.h"
39 #include "amd_pcie_helpers.h"
40 #include "hardwaremanager.h"
41 #include "tonga_processpptables.h"
42 #include "cgs_common.h"
43 #include "smu74.h"
44 #include "smu_ucode_xfer_vi.h"
45 #include "smu74_discrete.h"
46 #include "smu/smu_7_1_3_d.h"
47 #include "smu/smu_7_1_3_sh_mask.h"
48 #include "gmc/gmc_8_1_d.h"
49 #include "gmc/gmc_8_1_sh_mask.h"
50 #include "oss/oss_3_0_d.h"
51 #include "gca/gfx_8_0_d.h"
52 #include "bif/bif_5_0_d.h"
53 #include "bif/bif_5_0_sh_mask.h"
54 #include "gmc/gmc_8_1_d.h"
55 #include "gmc/gmc_8_1_sh_mask.h"
56 #include "bif/bif_5_0_d.h"
57 #include "bif/bif_5_0_sh_mask.h"
58 #include "dce/dce_10_0_d.h"
59 #include "dce/dce_10_0_sh_mask.h"
60
61 #include "polaris10_thermal.h"
62 #include "polaris10_clockpowergating.h"
63
64 #define MC_CG_ARB_FREQ_F0 0x0a
65 #define MC_CG_ARB_FREQ_F1 0x0b
66 #define MC_CG_ARB_FREQ_F2 0x0c
67 #define MC_CG_ARB_FREQ_F3 0x0d
68
69 #define MC_CG_SEQ_DRAMCONF_S0 0x05
70 #define MC_CG_SEQ_DRAMCONF_S1 0x06
71 #define MC_CG_SEQ_YCLK_SUSPEND 0x04
72 #define MC_CG_SEQ_YCLK_RESUME 0x0a
73
74
75 #define SMC_RAM_END 0x40000
76
77 #define SMC_CG_IND_START 0xc0030000
78 #define SMC_CG_IND_END 0xc0040000
79
80 #define VOLTAGE_SCALE 4
81 #define VOLTAGE_VID_OFFSET_SCALE1 625
82 #define VOLTAGE_VID_OFFSET_SCALE2 100
83
84 #define VDDC_VDDCI_DELTA 200
85
86 #define MEM_FREQ_LOW_LATENCY 25000
87 #define MEM_FREQ_HIGH_LATENCY 80000
88
89 #define MEM_LATENCY_HIGH 45
90 #define MEM_LATENCY_LOW 35
91 #define MEM_LATENCY_ERR 0xFFFF
92
93 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
94 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
95 #define MC_SEQ_MISC0_GDDR5_VALUE 5
96
97
98 #define PCIE_BUS_CLK 10000
99 #define TCLK (PCIE_BUS_CLK / 10)
100
101
102 static const uint16_t polaris10_clock_stretcher_lookup_table[2][4] =
103 { {600, 1050, 3, 0}, {600, 1050, 6, 1} };
104
105 /* [FF, SS] type, [] 4 voltage ranges, and [Floor Freq, Boundary Freq, VID min , VID max] */
106 static const uint32_t polaris10_clock_stretcher_ddt_table[2][4][4] =
107 { { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
108 { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
109
110 /* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] (coming from PWR_CKS_CNTL.stretch_amount reg spec) */
111 static const uint8_t polaris10_clock_stretch_amount_conversion[2][6] =
112 { {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
113
114 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
115 enum DPM_EVENT_SRC {
116 DPM_EVENT_SRC_ANALOG = 0,
117 DPM_EVENT_SRC_EXTERNAL = 1,
118 DPM_EVENT_SRC_DIGITAL = 2,
119 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
120 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
121 };
122
123 static const unsigned long PhwPolaris10_Magic = (unsigned long)(PHM_VIslands_Magic);
124
125 struct polaris10_power_state *cast_phw_polaris10_power_state(
126 struct pp_hw_power_state *hw_ps)
127 {
128 PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
129 "Invalid Powerstate Type!",
130 return NULL);
131
132 return (struct polaris10_power_state *)hw_ps;
133 }
134
135 const struct polaris10_power_state *cast_const_phw_polaris10_power_state(
136 const struct pp_hw_power_state *hw_ps)
137 {
138 PP_ASSERT_WITH_CODE((PhwPolaris10_Magic == hw_ps->magic),
139 "Invalid Powerstate Type!",
140 return NULL);
141
142 return (const struct polaris10_power_state *)hw_ps;
143 }
144
145 static bool polaris10_is_dpm_running(struct pp_hwmgr *hwmgr)
146 {
147 return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
148 CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
149 ? true : false;
150 }
151
152 /**
153 * Find the MC microcode version and store it in the HwMgr struct
154 *
155 * @param hwmgr the address of the powerplay hardware manager.
156 * @return always 0
157 */
158 int phm_get_mc_microcode_version (struct pp_hwmgr *hwmgr)
159 {
160 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
161
162 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
163
164 return 0;
165 }
166
167 uint16_t phm_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
168 {
169 uint32_t speedCntl = 0;
170
171 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
172 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
173 ixPCIE_LC_SPEED_CNTL);
174 return((uint16_t)PHM_GET_FIELD(speedCntl,
175 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
176 }
177
178 int phm_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
179 {
180 uint32_t link_width;
181
182 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
183 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
184 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
185
186 PP_ASSERT_WITH_CODE((7 >= link_width),
187 "Invalid PCIe lane width!", return 0);
188
189 return decode_pcie_lane_width(link_width);
190 }
191
192 /**
193 * Enable voltage control
194 *
195 * @param pHwMgr the address of the powerplay hardware manager.
196 * @return always PP_Result_OK
197 */
198 int polaris10_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
199 {
200 PP_ASSERT_WITH_CODE(
201 (hwmgr->smumgr->smumgr_funcs->send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable) == 0),
202 "Failed to enable voltage DPM during DPM Start Function!",
203 return 1;
204 );
205
206 return 0;
207 }
208
209 /**
210 * Checks if we want to support voltage control
211 *
212 * @param hwmgr the address of the powerplay hardware manager.
213 */
214 static bool polaris10_voltage_control(const struct pp_hwmgr *hwmgr)
215 {
216 const struct polaris10_hwmgr *data =
217 (const struct polaris10_hwmgr *)(hwmgr->backend);
218
219 return (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control);
220 }
221
222 /**
223 * Enable voltage control
224 *
225 * @param hwmgr the address of the powerplay hardware manager.
226 * @return always 0
227 */
228 static int polaris10_enable_voltage_control(struct pp_hwmgr *hwmgr)
229 {
230 /* enable voltage control */
231 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
232 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
233
234 return 0;
235 }
236
237 /**
238 * Create Voltage Tables.
239 *
240 * @param hwmgr the address of the powerplay hardware manager.
241 * @return always 0
242 */
243 static int polaris10_construct_voltage_tables(struct pp_hwmgr *hwmgr)
244 {
245 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
246 struct phm_ppt_v1_information *table_info =
247 (struct phm_ppt_v1_information *)hwmgr->pptable;
248 int result;
249
250 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
251 result = atomctrl_get_voltage_table_v3(hwmgr,
252 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
253 &(data->mvdd_voltage_table));
254 PP_ASSERT_WITH_CODE((0 == result),
255 "Failed to retrieve MVDD table.",
256 return result);
257 } else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
258 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
259 table_info->vdd_dep_on_mclk);
260 PP_ASSERT_WITH_CODE((0 == result),
261 "Failed to retrieve SVI2 MVDD table from dependancy table.",
262 return result;);
263 }
264
265 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
266 result = atomctrl_get_voltage_table_v3(hwmgr,
267 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
268 &(data->vddci_voltage_table));
269 PP_ASSERT_WITH_CODE((0 == result),
270 "Failed to retrieve VDDCI table.",
271 return result);
272 } else if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
273 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
274 table_info->vdd_dep_on_mclk);
275 PP_ASSERT_WITH_CODE((0 == result),
276 "Failed to retrieve SVI2 VDDCI table from dependancy table.",
277 return result);
278 }
279
280 if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
281 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
282 table_info->vddc_lookup_table);
283 PP_ASSERT_WITH_CODE((0 == result),
284 "Failed to retrieve SVI2 VDDC table from lookup table.",
285 return result);
286 }
287
288 PP_ASSERT_WITH_CODE(
289 (data->vddc_voltage_table.count <= (SMU74_MAX_LEVELS_VDDC)),
290 "Too many voltage values for VDDC. Trimming to fit state table.",
291 phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDC,
292 &(data->vddc_voltage_table)));
293
294 PP_ASSERT_WITH_CODE(
295 (data->vddci_voltage_table.count <= (SMU74_MAX_LEVELS_VDDCI)),
296 "Too many voltage values for VDDCI. Trimming to fit state table.",
297 phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_VDDCI,
298 &(data->vddci_voltage_table)));
299
300 PP_ASSERT_WITH_CODE(
301 (data->mvdd_voltage_table.count <= (SMU74_MAX_LEVELS_MVDD)),
302 "Too many voltage values for MVDD. Trimming to fit state table.",
303 phm_trim_voltage_table_to_fit_state_table(SMU74_MAX_LEVELS_MVDD,
304 &(data->mvdd_voltage_table)));
305
306 return 0;
307 }
308
309 /**
310 * Programs static screed detection parameters
311 *
312 * @param hwmgr the address of the powerplay hardware manager.
313 * @return always 0
314 */
315 static int polaris10_program_static_screen_threshold_parameters(
316 struct pp_hwmgr *hwmgr)
317 {
318 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
319
320 /* Set static screen threshold unit */
321 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
322 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
323 data->static_screen_threshold_unit);
324 /* Set static screen threshold */
325 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
326 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
327 data->static_screen_threshold);
328
329 return 0;
330 }
331
332 /**
333 * Setup display gap for glitch free memory clock switching.
334 *
335 * @param hwmgr the address of the powerplay hardware manager.
336 * @return always 0
337 */
338 static int polaris10_enable_display_gap(struct pp_hwmgr *hwmgr)
339 {
340 uint32_t display_gap =
341 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
342 ixCG_DISPLAY_GAP_CNTL);
343
344 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
345 DISP_GAP, DISPLAY_GAP_IGNORE);
346
347 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
348 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
349
350 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
351 ixCG_DISPLAY_GAP_CNTL, display_gap);
352
353 return 0;
354 }
355
356 /**
357 * Programs activity state transition voting clients
358 *
359 * @param hwmgr the address of the powerplay hardware manager.
360 * @return always 0
361 */
362 static int polaris10_program_voting_clients(struct pp_hwmgr *hwmgr)
363 {
364 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
365
366 /* Clear reset for voting clients before enabling DPM */
367 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
368 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
369 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
370 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
371
372 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
373 ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0);
374 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
375 ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1);
376 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
377 ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2);
378 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
379 ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3);
380 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
381 ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4);
382 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
383 ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5);
384 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
385 ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6);
386 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
387 ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7);
388
389 return 0;
390 }
391
392 /**
393 * Get the location of various tables inside the FW image.
394 *
395 * @param hwmgr the address of the powerplay hardware manager.
396 * @return always 0
397 */
398 static int polaris10_process_firmware_header(struct pp_hwmgr *hwmgr)
399 {
400 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
401 struct polaris10_smumgr *smu_data = (struct polaris10_smumgr *)(hwmgr->smumgr->backend);
402 uint32_t tmp;
403 int result;
404 bool error = false;
405
406 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
407 SMU7_FIRMWARE_HEADER_LOCATION +
408 offsetof(SMU74_Firmware_Header, DpmTable),
409 &tmp, data->sram_end);
410
411 if (0 == result)
412 data->dpm_table_start = tmp;
413
414 error |= (0 != result);
415
416 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
417 SMU7_FIRMWARE_HEADER_LOCATION +
418 offsetof(SMU74_Firmware_Header, SoftRegisters),
419 &tmp, data->sram_end);
420
421 if (!result) {
422 data->soft_regs_start = tmp;
423 smu_data->soft_regs_start = tmp;
424 }
425
426 error |= (0 != result);
427
428 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
429 SMU7_FIRMWARE_HEADER_LOCATION +
430 offsetof(SMU74_Firmware_Header, mcRegisterTable),
431 &tmp, data->sram_end);
432
433 if (!result)
434 data->mc_reg_table_start = tmp;
435
436 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
437 SMU7_FIRMWARE_HEADER_LOCATION +
438 offsetof(SMU74_Firmware_Header, FanTable),
439 &tmp, data->sram_end);
440
441 if (!result)
442 data->fan_table_start = tmp;
443
444 error |= (0 != result);
445
446 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
447 SMU7_FIRMWARE_HEADER_LOCATION +
448 offsetof(SMU74_Firmware_Header, mcArbDramTimingTable),
449 &tmp, data->sram_end);
450
451 if (!result)
452 data->arb_table_start = tmp;
453
454 error |= (0 != result);
455
456 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
457 SMU7_FIRMWARE_HEADER_LOCATION +
458 offsetof(SMU74_Firmware_Header, Version),
459 &tmp, data->sram_end);
460
461 if (!result)
462 hwmgr->microcode_version_info.SMC = tmp;
463
464 error |= (0 != result);
465
466 return error ? -1 : 0;
467 }
468
469 /* Copy one arb setting to another and then switch the active set.
470 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
471 */
472 static int polaris10_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
473 uint32_t arb_src, uint32_t arb_dest)
474 {
475 uint32_t mc_arb_dram_timing;
476 uint32_t mc_arb_dram_timing2;
477 uint32_t burst_time;
478 uint32_t mc_cg_config;
479
480 switch (arb_src) {
481 case MC_CG_ARB_FREQ_F0:
482 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
483 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
484 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
485 break;
486 case MC_CG_ARB_FREQ_F1:
487 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
488 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
489 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
490 break;
491 default:
492 return -EINVAL;
493 }
494
495 switch (arb_dest) {
496 case MC_CG_ARB_FREQ_F0:
497 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
498 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
499 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
500 break;
501 case MC_CG_ARB_FREQ_F1:
502 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
503 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
504 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
505 break;
506 default:
507 return -EINVAL;
508 }
509
510 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
511 mc_cg_config |= 0x0000000F;
512 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
513 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
514
515 return 0;
516 }
517
518 /**
519 * Initial switch from ARB F0->F1
520 *
521 * @param hwmgr the address of the powerplay hardware manager.
522 * @return always 0
523 * This function is to be called from the SetPowerState table.
524 */
525 static int polaris10_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
526 {
527 return polaris10_copy_and_switch_arb_sets(hwmgr,
528 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
529 }
530
531 static int polaris10_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
532 {
533 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
534 struct phm_ppt_v1_information *table_info =
535 (struct phm_ppt_v1_information *)(hwmgr->pptable);
536 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
537 uint32_t i, max_entry;
538
539 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
540 data->use_pcie_power_saving_levels), "No pcie performance levels!",
541 return -EINVAL);
542
543 if (data->use_pcie_performance_levels &&
544 !data->use_pcie_power_saving_levels) {
545 data->pcie_gen_power_saving = data->pcie_gen_performance;
546 data->pcie_lane_power_saving = data->pcie_lane_performance;
547 } else if (!data->use_pcie_performance_levels &&
548 data->use_pcie_power_saving_levels) {
549 data->pcie_gen_performance = data->pcie_gen_power_saving;
550 data->pcie_lane_performance = data->pcie_lane_power_saving;
551 }
552
553 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
554 SMU74_MAX_LEVELS_LINK,
555 MAX_REGULAR_DPM_NUMBER);
556
557 if (pcie_table != NULL) {
558 /* max_entry is used to make sure we reserve one PCIE level
559 * for boot level (fix for A+A PSPP issue).
560 * If PCIE table from PPTable have ULV entry + 8 entries,
561 * then ignore the last entry.*/
562 max_entry = (SMU74_MAX_LEVELS_LINK < pcie_table->count) ?
563 SMU74_MAX_LEVELS_LINK : pcie_table->count;
564 for (i = 1; i < max_entry; i++) {
565 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
566 get_pcie_gen_support(data->pcie_gen_cap,
567 pcie_table->entries[i].gen_speed),
568 get_pcie_lane_support(data->pcie_lane_cap,
569 pcie_table->entries[i].lane_width));
570 }
571 data->dpm_table.pcie_speed_table.count = max_entry - 1;
572
573 /* Setup BIF_SCLK levels */
574 for (i = 0; i < max_entry; i++)
575 data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
576 } else {
577 /* Hardcode Pcie Table */
578 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
579 get_pcie_gen_support(data->pcie_gen_cap,
580 PP_Min_PCIEGen),
581 get_pcie_lane_support(data->pcie_lane_cap,
582 PP_Max_PCIELane));
583 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
584 get_pcie_gen_support(data->pcie_gen_cap,
585 PP_Min_PCIEGen),
586 get_pcie_lane_support(data->pcie_lane_cap,
587 PP_Max_PCIELane));
588 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
589 get_pcie_gen_support(data->pcie_gen_cap,
590 PP_Max_PCIEGen),
591 get_pcie_lane_support(data->pcie_lane_cap,
592 PP_Max_PCIELane));
593 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
594 get_pcie_gen_support(data->pcie_gen_cap,
595 PP_Max_PCIEGen),
596 get_pcie_lane_support(data->pcie_lane_cap,
597 PP_Max_PCIELane));
598 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
599 get_pcie_gen_support(data->pcie_gen_cap,
600 PP_Max_PCIEGen),
601 get_pcie_lane_support(data->pcie_lane_cap,
602 PP_Max_PCIELane));
603 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
604 get_pcie_gen_support(data->pcie_gen_cap,
605 PP_Max_PCIEGen),
606 get_pcie_lane_support(data->pcie_lane_cap,
607 PP_Max_PCIELane));
608
609 data->dpm_table.pcie_speed_table.count = 6;
610 }
611 /* Populate last level for boot PCIE level, but do not increment count. */
612 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
613 data->dpm_table.pcie_speed_table.count,
614 get_pcie_gen_support(data->pcie_gen_cap,
615 PP_Min_PCIEGen),
616 get_pcie_lane_support(data->pcie_lane_cap,
617 PP_Max_PCIELane));
618
619 return 0;
620 }
621
622 /*
623 * This function is to initalize all DPM state tables
624 * for SMU7 based on the dependency table.
625 * Dynamic state patching function will then trim these
626 * state tables to the allowed range based
627 * on the power policy or external client requests,
628 * such as UVD request, etc.
629 */
630 int polaris10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
631 {
632 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
633 struct phm_ppt_v1_information *table_info =
634 (struct phm_ppt_v1_information *)(hwmgr->pptable);
635 uint32_t i;
636
637 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
638 table_info->vdd_dep_on_sclk;
639 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
640 table_info->vdd_dep_on_mclk;
641
642 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
643 "SCLK dependency table is missing. This table is mandatory",
644 return -EINVAL);
645 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
646 "SCLK dependency table has to have is missing."
647 "This table is mandatory",
648 return -EINVAL);
649
650 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
651 "MCLK dependency table is missing. This table is mandatory",
652 return -EINVAL);
653 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
654 "MCLK dependency table has to have is missing."
655 "This table is mandatory",
656 return -EINVAL);
657
658 /* clear the state table to reset everything to default */
659 phm_reset_single_dpm_table(
660 &data->dpm_table.sclk_table, SMU74_MAX_LEVELS_GRAPHICS, MAX_REGULAR_DPM_NUMBER);
661 phm_reset_single_dpm_table(
662 &data->dpm_table.mclk_table, SMU74_MAX_LEVELS_MEMORY, MAX_REGULAR_DPM_NUMBER);
663
664
665 /* Initialize Sclk DPM table based on allow Sclk values */
666 data->dpm_table.sclk_table.count = 0;
667 for (i = 0; i < dep_sclk_table->count; i++) {
668 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
669 dep_sclk_table->entries[i].clk) {
670
671 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
672 dep_sclk_table->entries[i].clk;
673
674 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
675 (i == 0) ? true : false;
676 data->dpm_table.sclk_table.count++;
677 }
678 }
679
680 /* Initialize Mclk DPM table based on allow Mclk values */
681 data->dpm_table.mclk_table.count = 0;
682 for (i = 0; i < dep_mclk_table->count; i++) {
683 if (i == 0 || data->dpm_table.mclk_table.dpm_levels
684 [data->dpm_table.mclk_table.count - 1].value !=
685 dep_mclk_table->entries[i].clk) {
686 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
687 dep_mclk_table->entries[i].clk;
688 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
689 (i == 0) ? true : false;
690 data->dpm_table.mclk_table.count++;
691 }
692 }
693
694 /* setup PCIE gen speed levels */
695 polaris10_setup_default_pcie_table(hwmgr);
696
697 /* save a copy of the default DPM table */
698 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
699 sizeof(struct polaris10_dpm_table));
700
701 return 0;
702 }
703
704 uint8_t convert_to_vid(uint16_t vddc)
705 {
706 return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
707 }
708
709 /**
710 * Mvdd table preparation for SMC.
711 *
712 * @param *hwmgr The address of the hardware manager.
713 * @param *table The SMC DPM table structure to be populated.
714 * @return 0
715 */
716 static int polaris10_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
717 SMU74_Discrete_DpmTable *table)
718 {
719 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
720 uint32_t count, level;
721
722 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
723 count = data->mvdd_voltage_table.count;
724 if (count > SMU_MAX_SMIO_LEVELS)
725 count = SMU_MAX_SMIO_LEVELS;
726 for (level = 0; level < count; level++) {
727 table->SmioTable2.Pattern[level].Voltage =
728 PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
729 /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
730 table->SmioTable2.Pattern[level].Smio =
731 (uint8_t) level;
732 table->Smio[level] |=
733 data->mvdd_voltage_table.entries[level].smio_low;
734 }
735 table->SmioMask2 = data->vddci_voltage_table.mask_low;
736
737 table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
738 }
739
740 return 0;
741 }
742
743 static int polaris10_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
744 struct SMU74_Discrete_DpmTable *table)
745 {
746 uint32_t count, level;
747 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
748
749 count = data->vddci_voltage_table.count;
750
751 if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
752 if (count > SMU_MAX_SMIO_LEVELS)
753 count = SMU_MAX_SMIO_LEVELS;
754 for (level = 0; level < count; ++level) {
755 table->SmioTable1.Pattern[level].Voltage =
756 PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
757 table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
758
759 table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
760 }
761 }
762
763 table->SmioMask1 = data->vddci_voltage_table.mask_low;
764
765 return 0;
766 }
767
768 /**
769 * Preparation of vddc and vddgfx CAC tables for SMC.
770 *
771 * @param hwmgr the address of the hardware manager
772 * @param table the SMC DPM table structure to be populated
773 * @return always 0
774 */
775 static int polaris10_populate_cac_table(struct pp_hwmgr *hwmgr,
776 struct SMU74_Discrete_DpmTable *table)
777 {
778 uint32_t count;
779 uint8_t index;
780 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
781 struct phm_ppt_v1_information *table_info =
782 (struct phm_ppt_v1_information *)(hwmgr->pptable);
783 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
784 table_info->vddc_lookup_table;
785 /* tables is already swapped, so in order to use the value from it,
786 * we need to swap it back.
787 * We are populating vddc CAC data to BapmVddc table
788 * in split and merged mode
789 */
790 for (count = 0; count < lookup_table->count; count++) {
791 index = phm_get_voltage_index(lookup_table,
792 data->vddc_voltage_table.entries[count].value);
793 table->BapmVddcVidLoSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_low);
794 table->BapmVddcVidHiSidd[count] = convert_to_vid(lookup_table->entries[index].us_cac_mid);
795 table->BapmVddcVidHiSidd2[count] = convert_to_vid(lookup_table->entries[index].us_cac_high);
796 }
797
798 return 0;
799 }
800
801 /**
802 * Preparation of voltage tables for SMC.
803 *
804 * @param hwmgr the address of the hardware manager
805 * @param table the SMC DPM table structure to be populated
806 * @return always 0
807 */
808
809 int polaris10_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
810 struct SMU74_Discrete_DpmTable *table)
811 {
812 polaris10_populate_smc_vddci_table(hwmgr, table);
813 polaris10_populate_smc_mvdd_table(hwmgr, table);
814 polaris10_populate_cac_table(hwmgr, table);
815
816 return 0;
817 }
818
819 static int polaris10_populate_ulv_level(struct pp_hwmgr *hwmgr,
820 struct SMU74_Discrete_Ulv *state)
821 {
822 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
823 struct phm_ppt_v1_information *table_info =
824 (struct phm_ppt_v1_information *)(hwmgr->pptable);
825
826 state->CcPwrDynRm = 0;
827 state->CcPwrDynRm1 = 0;
828
829 state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
830 state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
831 VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
832
833 state->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1;
834
835 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
836 CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
837 CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
838
839 return 0;
840 }
841
842 static int polaris10_populate_ulv_state(struct pp_hwmgr *hwmgr,
843 struct SMU74_Discrete_DpmTable *table)
844 {
845 return polaris10_populate_ulv_level(hwmgr, &table->Ulv);
846 }
847
848 static int polaris10_populate_smc_link_level(struct pp_hwmgr *hwmgr,
849 struct SMU74_Discrete_DpmTable *table)
850 {
851 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
852 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
853 int i;
854
855 /* Index (dpm_table->pcie_speed_table.count)
856 * is reserved for PCIE boot level. */
857 for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
858 table->LinkLevel[i].PcieGenSpeed =
859 (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
860 table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
861 dpm_table->pcie_speed_table.dpm_levels[i].param1);
862 table->LinkLevel[i].EnabledForActivity = 1;
863 table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
864 table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
865 table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
866 }
867
868 data->smc_state_table.LinkLevelCount =
869 (uint8_t)dpm_table->pcie_speed_table.count;
870 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
871 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
872
873 return 0;
874 }
875
876 static uint32_t polaris10_get_xclk(struct pp_hwmgr *hwmgr)
877 {
878 uint32_t reference_clock, tmp;
879 struct cgs_display_info info = {0};
880 struct cgs_mode_info mode_info;
881
882 info.mode_info = &mode_info;
883
884 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK);
885
886 if (tmp)
887 return TCLK;
888
889 cgs_get_active_displays_info(hwmgr->device, &info);
890 reference_clock = mode_info.ref_clock;
891
892 tmp = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE);
893
894 if (0 != tmp)
895 return reference_clock / 4;
896
897 return reference_clock;
898 }
899
900 /**
901 * Calculates the SCLK dividers using the provided engine clock
902 *
903 * @param hwmgr the address of the hardware manager
904 * @param clock the engine clock to use to populate the structure
905 * @param sclk the SMC SCLK structure to be populated
906 */
907 static int polaris10_calculate_sclk_params(struct pp_hwmgr *hwmgr,
908 uint32_t clock, SMU_SclkSetting *sclk_setting)
909 {
910 const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
911 const SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
912 struct pp_atomctrl_clock_dividers_ai dividers;
913
914 uint32_t ref_clock;
915 uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
916 uint8_t i;
917 int result;
918 uint64_t temp;
919
920 sclk_setting->SclkFrequency = clock;
921 /* get the engine clock dividers for this clock value */
922 result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, &dividers);
923 if (result == 0) {
924 sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
925 sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
926 sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
927 sclk_setting->PllRange = dividers.ucSclkPllRange;
928 sclk_setting->Sclk_slew_rate = 0x400;
929 sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
930 sclk_setting->Pcc_down_slew_rate = 0xffff;
931 sclk_setting->SSc_En = dividers.ucSscEnable;
932 sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
933 sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
934 sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
935 return result;
936 }
937
938 ref_clock = polaris10_get_xclk(hwmgr);
939
940 for (i = 0; i < NUM_SCLK_RANGE; i++) {
941 if (clock > data->range_table[i].trans_lower_frequency
942 && clock <= data->range_table[i].trans_upper_frequency) {
943 sclk_setting->PllRange = i;
944 break;
945 }
946 }
947
948 sclk_setting->Fcw_int = (uint16_t)((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
949 temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
950 temp <<= 0x10;
951 do_div(temp, ref_clock);
952 sclk_setting->Fcw_frac = temp & 0xffff;
953
954 pcc_target_percent = 10; /* Hardcode 10% for now. */
955 pcc_target_freq = clock - (clock * pcc_target_percent / 100);
956 sclk_setting->Pcc_fcw_int = (uint16_t)((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
957
958 ss_target_percent = 2; /* Hardcode 2% for now. */
959 sclk_setting->SSc_En = 0;
960 if (ss_target_percent) {
961 sclk_setting->SSc_En = 1;
962 ss_target_freq = clock - (clock * ss_target_percent / 100);
963 sclk_setting->Fcw1_int = (uint16_t)((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / ref_clock);
964 temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
965 temp <<= 0x10;
966 do_div(temp, ref_clock);
967 sclk_setting->Fcw1_frac = temp & 0xffff;
968 }
969
970 return 0;
971 }
972
973 static int polaris10_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
974 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
975 uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
976 {
977 uint32_t i;
978 uint16_t vddci;
979 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
980
981 *voltage = *mvdd = 0;
982
983 /* clock - voltage dependency table is empty table */
984 if (dep_table->count == 0)
985 return -EINVAL;
986
987 for (i = 0; i < dep_table->count; i++) {
988 /* find first sclk bigger than request */
989 if (dep_table->entries[i].clk >= clock) {
990 *voltage |= (dep_table->entries[i].vddc *
991 VOLTAGE_SCALE) << VDDC_SHIFT;
992 if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
993 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
994 VOLTAGE_SCALE) << VDDCI_SHIFT;
995 else if (dep_table->entries[i].vddci)
996 *voltage |= (dep_table->entries[i].vddci *
997 VOLTAGE_SCALE) << VDDCI_SHIFT;
998 else {
999 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
1000 (dep_table->entries[i].vddc -
1001 (uint16_t)data->vddc_vddci_delta));
1002 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1003 }
1004
1005 if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1006 *mvdd = data->vbios_boot_state.mvdd_bootup_value *
1007 VOLTAGE_SCALE;
1008 else if (dep_table->entries[i].mvdd)
1009 *mvdd = (uint32_t) dep_table->entries[i].mvdd *
1010 VOLTAGE_SCALE;
1011
1012 *voltage |= 1 << PHASES_SHIFT;
1013 return 0;
1014 }
1015 }
1016
1017 /* sclk is bigger than max sclk in the dependence table */
1018 *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1019
1020 if (POLARIS10_VOLTAGE_CONTROL_NONE == data->vddci_control)
1021 *voltage |= (data->vbios_boot_state.vddci_bootup_value *
1022 VOLTAGE_SCALE) << VDDCI_SHIFT;
1023 else if (dep_table->entries[i-1].vddci) {
1024 vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
1025 (dep_table->entries[i].vddc -
1026 (uint16_t)data->vddc_vddci_delta));
1027 *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
1028 }
1029
1030 if (POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control)
1031 *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
1032 else if (dep_table->entries[i].mvdd)
1033 *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
1034
1035 return 0;
1036 }
1037
1038 static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] =
1039 { {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112},
1040 {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
1041 {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112},
1042 {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160},
1043 {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112},
1044 {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160},
1045 {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108},
1046 {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} };
1047
1048 static void polaris10_get_sclk_range_table(struct pp_hwmgr *hwmgr)
1049 {
1050 uint32_t i, ref_clk;
1051 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1052 SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
1053 struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
1054
1055 ref_clk = polaris10_get_xclk(hwmgr);
1056
1057 if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
1058 for (i = 0; i < NUM_SCLK_RANGE; i++) {
1059 table->SclkFcwRangeTable[i].vco_setting = range_table_from_vbios.entry[i].ucVco_setting;
1060 table->SclkFcwRangeTable[i].postdiv = range_table_from_vbios.entry[i].ucPostdiv;
1061 table->SclkFcwRangeTable[i].fcw_pcc = range_table_from_vbios.entry[i].usFcw_pcc;
1062
1063 table->SclkFcwRangeTable[i].fcw_trans_upper = range_table_from_vbios.entry[i].usFcw_trans_upper;
1064 table->SclkFcwRangeTable[i].fcw_trans_lower = range_table_from_vbios.entry[i].usRcw_trans_lower;
1065
1066 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
1067 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
1068 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
1069 }
1070 return;
1071 }
1072
1073 for (i = 0; i < NUM_SCLK_RANGE; i++) {
1074
1075 data->range_table[i].trans_lower_frequency = (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
1076 data->range_table[i].trans_upper_frequency = (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
1077
1078 table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
1079 table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
1080 table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
1081
1082 table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
1083 table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
1084
1085 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
1086 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
1087 CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
1088 }
1089 }
1090
1091 /**
1092 * Populates single SMC SCLK structure using the provided engine clock
1093 *
1094 * @param hwmgr the address of the hardware manager
1095 * @param clock the engine clock to use to populate the structure
1096 * @param sclk the SMC SCLK structure to be populated
1097 */
1098
1099 static int polaris10_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
1100 uint32_t clock, uint16_t sclk_al_threshold,
1101 struct SMU74_Discrete_GraphicsLevel *level)
1102 {
1103 int result, i, temp;
1104 /* PP_Clocks minClocks; */
1105 uint32_t mvdd;
1106 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1107 struct phm_ppt_v1_information *table_info =
1108 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1109 SMU_SclkSetting curr_sclk_setting = { 0 };
1110
1111 result = polaris10_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
1112
1113 /* populate graphics levels */
1114 result = polaris10_get_dependency_volt_by_clk(hwmgr,
1115 table_info->vdd_dep_on_sclk, clock,
1116 &level->MinVoltage, &mvdd);
1117
1118 PP_ASSERT_WITH_CODE((0 == result),
1119 "can not find VDDC voltage value for "
1120 "VDDC engine clock dependency table",
1121 return result);
1122 level->ActivityLevel = sclk_al_threshold;
1123
1124 level->CcPwrDynRm = 0;
1125 level->CcPwrDynRm1 = 0;
1126 level->EnabledForActivity = 0;
1127 level->EnabledForThrottle = 1;
1128 level->UpHyst = 10;
1129 level->DownHyst = 0;
1130 level->VoltageDownHyst = 0;
1131 level->PowerThrottle = 0;
1132
1133 /*
1134 * TODO: get minimum clocks from dal configaration
1135 * PECI_GetMinClockSettings(hwmgr->pPECI, &minClocks);
1136 */
1137 /* data->DisplayTiming.minClockInSR = minClocks.engineClockInSR; */
1138
1139 /* get level->DeepSleepDivId
1140 if (phm_cap_enabled(hwmgr->platformDescriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
1141 level->DeepSleepDivId = PhwFiji_GetSleepDividerIdFromClock(hwmgr, clock, minClocks.engineClockInSR);
1142 */
1143 PP_ASSERT_WITH_CODE((clock >= POLARIS10_MINIMUM_ENGINE_CLOCK), "Engine clock can't satisfy stutter requirement!", return 0);
1144 for (i = POLARIS10_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
1145 temp = clock >> i;
1146
1147 if (temp >= POLARIS10_MINIMUM_ENGINE_CLOCK || i == 0)
1148 break;
1149 }
1150
1151 level->DeepSleepDivId = i;
1152
1153 /* Default to slow, highest DPM level will be
1154 * set to PPSMC_DISPLAY_WATERMARK_LOW later.
1155 */
1156 if (data->update_up_hyst)
1157 level->UpHyst = (uint8_t)data->up_hyst;
1158 if (data->update_down_hyst)
1159 level->DownHyst = (uint8_t)data->down_hyst;
1160
1161 level->SclkSetting = curr_sclk_setting;
1162
1163 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
1164 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
1165 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
1166 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
1167 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
1168 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
1169 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
1170 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
1171 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
1172 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
1173 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
1174 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
1175 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
1176 CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
1177 return 0;
1178 }
1179
1180 /**
1181 * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
1182 *
1183 * @param hwmgr the address of the hardware manager
1184 */
1185 static int polaris10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
1186 {
1187 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1188 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
1189 struct phm_ppt_v1_information *table_info =
1190 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1191 struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
1192 uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
1193 int result = 0;
1194 uint32_t array = data->dpm_table_start +
1195 offsetof(SMU74_Discrete_DpmTable, GraphicsLevel);
1196 uint32_t array_size = sizeof(struct SMU74_Discrete_GraphicsLevel) *
1197 SMU74_MAX_LEVELS_GRAPHICS;
1198 struct SMU74_Discrete_GraphicsLevel *levels =
1199 data->smc_state_table.GraphicsLevel;
1200 uint32_t i, max_entry;
1201 uint8_t hightest_pcie_level_enabled = 0,
1202 lowest_pcie_level_enabled = 0,
1203 mid_pcie_level_enabled = 0,
1204 count = 0;
1205
1206 polaris10_get_sclk_range_table(hwmgr);
1207
1208 for (i = 0; i < dpm_table->sclk_table.count; i++) {
1209
1210 result = polaris10_populate_single_graphic_level(hwmgr,
1211 dpm_table->sclk_table.dpm_levels[i].value,
1212 (uint16_t)data->activity_target[i],
1213 &(data->smc_state_table.GraphicsLevel[i]));
1214 if (result)
1215 return result;
1216
1217 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
1218 if (i > 1)
1219 levels[i].DeepSleepDivId = 0;
1220 }
1221 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1222 PHM_PlatformCaps_SPLLShutdownSupport))
1223 data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
1224
1225 data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
1226 data->smc_state_table.GraphicsDpmLevelCount =
1227 (uint8_t)dpm_table->sclk_table.count;
1228 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1229 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1230
1231
1232 if (pcie_table != NULL) {
1233 PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
1234 "There must be 1 or more PCIE levels defined in PPTable.",
1235 return -EINVAL);
1236 max_entry = pcie_entry_cnt - 1;
1237 for (i = 0; i < dpm_table->sclk_table.count; i++)
1238 levels[i].pcieDpmLevel =
1239 (uint8_t) ((i < max_entry) ? i : max_entry);
1240 } else {
1241 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1242 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1243 (1 << (hightest_pcie_level_enabled + 1))) != 0))
1244 hightest_pcie_level_enabled++;
1245
1246 while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
1247 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1248 (1 << lowest_pcie_level_enabled)) == 0))
1249 lowest_pcie_level_enabled++;
1250
1251 while ((count < hightest_pcie_level_enabled) &&
1252 ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1253 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
1254 count++;
1255
1256 mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
1257 hightest_pcie_level_enabled ?
1258 (lowest_pcie_level_enabled + 1 + count) :
1259 hightest_pcie_level_enabled;
1260
1261 /* set pcieDpmLevel to hightest_pcie_level_enabled */
1262 for (i = 2; i < dpm_table->sclk_table.count; i++)
1263 levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
1264
1265 /* set pcieDpmLevel to lowest_pcie_level_enabled */
1266 levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
1267
1268 /* set pcieDpmLevel to mid_pcie_level_enabled */
1269 levels[1].pcieDpmLevel = mid_pcie_level_enabled;
1270 }
1271 /* level count will send to smc once at init smc table and never change */
1272 result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1273 (uint32_t)array_size, data->sram_end);
1274
1275 return result;
1276 }
1277
1278 static int polaris10_populate_single_memory_level(struct pp_hwmgr *hwmgr,
1279 uint32_t clock, struct SMU74_Discrete_MemoryLevel *mem_level)
1280 {
1281 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1282 struct phm_ppt_v1_information *table_info =
1283 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1284 int result = 0;
1285 struct cgs_display_info info = {0, 0, NULL};
1286
1287 cgs_get_active_displays_info(hwmgr->device, &info);
1288
1289 if (table_info->vdd_dep_on_mclk) {
1290 result = polaris10_get_dependency_volt_by_clk(hwmgr,
1291 table_info->vdd_dep_on_mclk, clock,
1292 &mem_level->MinVoltage, &mem_level->MinMvdd);
1293 PP_ASSERT_WITH_CODE((0 == result),
1294 "can not find MinVddc voltage value from memory "
1295 "VDDC voltage dependency table", return result);
1296 }
1297
1298 mem_level->MclkFrequency = clock;
1299 mem_level->StutterEnable = 0;
1300 mem_level->EnabledForThrottle = 1;
1301 mem_level->EnabledForActivity = 0;
1302 mem_level->UpHyst = 0;
1303 mem_level->DownHyst = 100;
1304 mem_level->VoltageDownHyst = 0;
1305 mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
1306 mem_level->StutterEnable = false;
1307
1308 mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1309
1310 data->display_timing.num_existing_displays = info.display_count;
1311
1312 if ((data->mclk_stutter_mode_threshold) &&
1313 (clock <= data->mclk_stutter_mode_threshold) &&
1314 (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
1315 STUTTER_ENABLE) & 0x1))
1316 mem_level->StutterEnable = true;
1317
1318 if (!result) {
1319 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
1320 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
1321 CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
1322 CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
1323 }
1324 return result;
1325 }
1326
1327 /**
1328 * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
1329 *
1330 * @param hwmgr the address of the hardware manager
1331 */
1332 static int polaris10_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1333 {
1334 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1335 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
1336 int result;
1337 /* populate MCLK dpm table to SMU7 */
1338 uint32_t array = data->dpm_table_start +
1339 offsetof(SMU74_Discrete_DpmTable, MemoryLevel);
1340 uint32_t array_size = sizeof(SMU74_Discrete_MemoryLevel) *
1341 SMU74_MAX_LEVELS_MEMORY;
1342 struct SMU74_Discrete_MemoryLevel *levels =
1343 data->smc_state_table.MemoryLevel;
1344 uint32_t i;
1345
1346 for (i = 0; i < dpm_table->mclk_table.count; i++) {
1347 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1348 "can not populate memory level as memory clock is zero",
1349 return -EINVAL);
1350 result = polaris10_populate_single_memory_level(hwmgr,
1351 dpm_table->mclk_table.dpm_levels[i].value,
1352 &levels[i]);
1353 if (i == dpm_table->mclk_table.count - 1) {
1354 levels[i].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1355 levels[i].EnabledForActivity = 1;
1356 }
1357 if (result)
1358 return result;
1359 }
1360
1361 /* in order to prevent MC activity from stutter mode to push DPM up.
1362 * the UVD change complements this by putting the MCLK in
1363 * a higher state by default such that we are not effected by
1364 * up threshold or and MCLK DPM latency.
1365 */
1366 levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1367 CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1368
1369 data->smc_state_table.MemoryDpmLevelCount =
1370 (uint8_t)dpm_table->mclk_table.count;
1371 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1372 phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1373
1374 /* level count will send to smc once at init smc table and never change */
1375 result = polaris10_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1376 (uint32_t)array_size, data->sram_end);
1377
1378 return result;
1379 }
1380
1381 /**
1382 * Populates the SMC MVDD structure using the provided memory clock.
1383 *
1384 * @param hwmgr the address of the hardware manager
1385 * @param mclk the MCLK value to be used in the decision if MVDD should be high or low.
1386 * @param voltage the SMC VOLTAGE structure to be populated
1387 */
1388 int polaris10_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1389 uint32_t mclk, SMIO_Pattern *smio_pat)
1390 {
1391 const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1392 struct phm_ppt_v1_information *table_info =
1393 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1394 uint32_t i = 0;
1395
1396 if (POLARIS10_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1397 /* find mvdd value which clock is more than request */
1398 for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1399 if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1400 smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1401 break;
1402 }
1403 }
1404 PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1405 "MVDD Voltage is outside the supported range.",
1406 return -EINVAL);
1407 } else
1408 return -EINVAL;
1409
1410 return 0;
1411 }
1412
1413 static int polaris10_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1414 SMU74_Discrete_DpmTable *table)
1415 {
1416 int result = 0;
1417 uint32_t sclk_frequency;
1418 const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1419 struct phm_ppt_v1_information *table_info =
1420 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1421 SMIO_Pattern vol_level;
1422 uint32_t mvdd;
1423 uint16_t us_mvdd;
1424
1425 table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1426
1427 if (!data->sclk_dpm_key_disabled) {
1428 /* Get MinVoltage and Frequency from DPM0,
1429 * already converted to SMC_UL */
1430 sclk_frequency = data->dpm_table.sclk_table.dpm_levels[0].value;
1431 result = polaris10_get_dependency_volt_by_clk(hwmgr,
1432 table_info->vdd_dep_on_sclk,
1433 table->ACPILevel.SclkFrequency,
1434 &table->ACPILevel.MinVoltage, &mvdd);
1435 PP_ASSERT_WITH_CODE((0 == result),
1436 "Cannot find ACPI VDDC voltage value "
1437 "in Clock Dependency Table", );
1438 } else {
1439 sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
1440 table->ACPILevel.MinVoltage =
1441 data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1442 }
1443
1444 result = polaris10_calculate_sclk_params(hwmgr, sclk_frequency, &(table->ACPILevel.SclkSetting));
1445 PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result);
1446
1447 table->ACPILevel.DeepSleepDivId = 0;
1448 table->ACPILevel.CcPwrDynRm = 0;
1449 table->ACPILevel.CcPwrDynRm1 = 0;
1450
1451 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1452 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1453 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1454 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1455
1456 CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
1457 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
1458 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
1459 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
1460 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
1461 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
1462 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
1463 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
1464 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
1465 CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
1466
1467 if (!data->mclk_dpm_key_disabled) {
1468 /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1469 table->MemoryACPILevel.MclkFrequency =
1470 data->dpm_table.mclk_table.dpm_levels[0].value;
1471 result = polaris10_get_dependency_volt_by_clk(hwmgr,
1472 table_info->vdd_dep_on_mclk,
1473 table->MemoryACPILevel.MclkFrequency,
1474 &table->MemoryACPILevel.MinVoltage, &mvdd);
1475 PP_ASSERT_WITH_CODE((0 == result),
1476 "Cannot find ACPI VDDCI voltage value "
1477 "in Clock Dependency Table",
1478 );
1479 } else {
1480 table->MemoryACPILevel.MclkFrequency =
1481 data->vbios_boot_state.mclk_bootup_value;
1482 table->MemoryACPILevel.MinVoltage =
1483 data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1484 }
1485
1486 us_mvdd = 0;
1487 if ((POLARIS10_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1488 (data->mclk_dpm_key_disabled))
1489 us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1490 else {
1491 if (!polaris10_populate_mvdd_value(hwmgr,
1492 data->dpm_table.mclk_table.dpm_levels[0].value,
1493 &vol_level))
1494 us_mvdd = vol_level.Voltage;
1495 }
1496
1497 if (0 == polaris10_populate_mvdd_value(hwmgr, 0, &vol_level))
1498 table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
1499 else
1500 table->MemoryACPILevel.MinMvdd = 0;
1501
1502 table->MemoryACPILevel.StutterEnable = false;
1503
1504 table->MemoryACPILevel.EnabledForThrottle = 0;
1505 table->MemoryACPILevel.EnabledForActivity = 0;
1506 table->MemoryACPILevel.UpHyst = 0;
1507 table->MemoryACPILevel.DownHyst = 100;
1508 table->MemoryACPILevel.VoltageDownHyst = 0;
1509 table->MemoryACPILevel.ActivityLevel =
1510 PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
1511
1512 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1513 CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1514
1515 return result;
1516 }
1517
1518 static int polaris10_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1519 SMU74_Discrete_DpmTable *table)
1520 {
1521 int result = -EINVAL;
1522 uint8_t count;
1523 struct pp_atomctrl_clock_dividers_vi dividers;
1524 struct phm_ppt_v1_information *table_info =
1525 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1526 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1527 table_info->mm_dep_table;
1528 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1529
1530 table->VceLevelCount = (uint8_t)(mm_table->count);
1531 table->VceBootLevel = 0;
1532
1533 for (count = 0; count < table->VceLevelCount; count++) {
1534 table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1535 table->VceLevel[count].MinVoltage = 0;
1536 table->VceLevel[count].MinVoltage |=
1537 (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1538 table->VceLevel[count].MinVoltage |=
1539 ((mm_table->entries[count].vddc - data->vddc_vddci_delta) *
1540 VOLTAGE_SCALE) << VDDCI_SHIFT;
1541 table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1542
1543 /*retrieve divider value for VBIOS */
1544 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1545 table->VceLevel[count].Frequency, &dividers);
1546 PP_ASSERT_WITH_CODE((0 == result),
1547 "can not find divide id for VCE engine clock",
1548 return result);
1549
1550 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1551
1552 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1553 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1554 }
1555 return result;
1556 }
1557
1558 static int polaris10_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1559 SMU74_Discrete_DpmTable *table)
1560 {
1561 int result = -EINVAL;
1562 uint8_t count;
1563 struct pp_atomctrl_clock_dividers_vi dividers;
1564 struct phm_ppt_v1_information *table_info =
1565 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1566 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1567 table_info->mm_dep_table;
1568 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1569
1570 table->SamuBootLevel = 0;
1571 table->SamuLevelCount = (uint8_t)(mm_table->count);
1572
1573 for (count = 0; count < table->SamuLevelCount; count++) {
1574 /* not sure whether we need evclk or not */
1575 table->SamuLevel[count].MinVoltage = 0;
1576 table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
1577 table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1578 VOLTAGE_SCALE) << VDDC_SHIFT;
1579 table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1580 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1581 table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1582
1583 /* retrieve divider value for VBIOS */
1584 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1585 table->SamuLevel[count].Frequency, &dividers);
1586 PP_ASSERT_WITH_CODE((0 == result),
1587 "can not find divide id for samu clock", return result);
1588
1589 table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1590
1591 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1592 CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
1593 }
1594 return result;
1595 }
1596
1597 static int polaris10_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1598 int32_t eng_clock, int32_t mem_clock,
1599 SMU74_Discrete_MCArbDramTimingTableEntry *arb_regs)
1600 {
1601 uint32_t dram_timing;
1602 uint32_t dram_timing2;
1603 uint32_t burst_time;
1604 int result;
1605
1606 result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1607 eng_clock, mem_clock);
1608 PP_ASSERT_WITH_CODE(result == 0,
1609 "Error calling VBIOS to set DRAM_TIMING.", return result);
1610
1611 dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1612 dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1613 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1614
1615
1616 arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
1617 arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1618 arb_regs->McArbBurstTime = (uint8_t)burst_time;
1619
1620 return 0;
1621 }
1622
1623 static int polaris10_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1624 {
1625 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1626 struct SMU74_Discrete_MCArbDramTimingTable arb_regs;
1627 uint32_t i, j;
1628 int result = 0;
1629
1630 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1631 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1632 result = polaris10_populate_memory_timing_parameters(hwmgr,
1633 data->dpm_table.sclk_table.dpm_levels[i].value,
1634 data->dpm_table.mclk_table.dpm_levels[j].value,
1635 &arb_regs.entries[i][j]);
1636 if (result == 0)
1637 result = atomctrl_set_ac_timing_ai(hwmgr, data->dpm_table.mclk_table.dpm_levels[j].value, j);
1638 if (result != 0)
1639 return result;
1640 }
1641 }
1642
1643 result = polaris10_copy_bytes_to_smc(
1644 hwmgr->smumgr,
1645 data->arb_table_start,
1646 (uint8_t *)&arb_regs,
1647 sizeof(SMU74_Discrete_MCArbDramTimingTable),
1648 data->sram_end);
1649 return result;
1650 }
1651
1652 static int polaris10_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1653 struct SMU74_Discrete_DpmTable *table)
1654 {
1655 int result = -EINVAL;
1656 uint8_t count;
1657 struct pp_atomctrl_clock_dividers_vi dividers;
1658 struct phm_ppt_v1_information *table_info =
1659 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1660 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1661 table_info->mm_dep_table;
1662 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1663
1664 table->UvdLevelCount = (uint8_t)(mm_table->count);
1665 table->UvdBootLevel = 0;
1666
1667 for (count = 0; count < table->UvdLevelCount; count++) {
1668 table->UvdLevel[count].MinVoltage = 0;
1669 table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1670 table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1671 table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1672 VOLTAGE_SCALE) << VDDC_SHIFT;
1673 table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1674 data->vddc_vddci_delta) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1675 table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1676
1677 /* retrieve divider value for VBIOS */
1678 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1679 table->UvdLevel[count].VclkFrequency, &dividers);
1680 PP_ASSERT_WITH_CODE((0 == result),
1681 "can not find divide id for Vclk clock", return result);
1682
1683 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1684
1685 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1686 table->UvdLevel[count].DclkFrequency, &dividers);
1687 PP_ASSERT_WITH_CODE((0 == result),
1688 "can not find divide id for Dclk clock", return result);
1689
1690 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1691
1692 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1693 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1694 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1695
1696 }
1697 return result;
1698 }
1699
1700 static int polaris10_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1701 struct SMU74_Discrete_DpmTable *table)
1702 {
1703 int result = 0;
1704 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1705
1706 table->GraphicsBootLevel = 0;
1707 table->MemoryBootLevel = 0;
1708
1709 /* find boot level from dpm table */
1710 result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1711 data->vbios_boot_state.sclk_bootup_value,
1712 (uint32_t *)&(table->GraphicsBootLevel));
1713
1714 result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1715 data->vbios_boot_state.mclk_bootup_value,
1716 (uint32_t *)&(table->MemoryBootLevel));
1717
1718 table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
1719 VOLTAGE_SCALE;
1720 table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1721 VOLTAGE_SCALE;
1722 table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
1723 VOLTAGE_SCALE;
1724
1725 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1726 CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1727 CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1728
1729 return 0;
1730 }
1731
1732
1733 static int polaris10_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1734 {
1735 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1736 struct phm_ppt_v1_information *table_info =
1737 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1738 uint8_t count, level;
1739
1740 count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1741
1742 for (level = 0; level < count; level++) {
1743 if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1744 data->vbios_boot_state.sclk_bootup_value) {
1745 data->smc_state_table.GraphicsBootLevel = level;
1746 break;
1747 }
1748 }
1749
1750 count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1751 for (level = 0; level < count; level++) {
1752 if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1753 data->vbios_boot_state.mclk_bootup_value) {
1754 data->smc_state_table.MemoryBootLevel = level;
1755 break;
1756 }
1757 }
1758
1759 return 0;
1760 }
1761
1762 static int polaris10_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1763 {
1764 uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1765 volt_with_cks, value;
1766 uint16_t clock_freq_u16;
1767 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1768 uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1769 volt_offset = 0;
1770 struct phm_ppt_v1_information *table_info =
1771 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1772 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1773 table_info->vdd_dep_on_sclk;
1774
1775 stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1776
1777 /* Read SMU_Eefuse to read and calculate RO and determine
1778 * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1779 */
1780 efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1781 ixSMU_EFUSE_0 + (146 * 4));
1782 efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1783 ixSMU_EFUSE_0 + (148 * 4));
1784 efuse &= 0xFF000000;
1785 efuse = efuse >> 24;
1786 efuse2 &= 0xF;
1787
1788 if (efuse2 == 1)
1789 ro = (2300 - 1350) * efuse / 255 + 1350;
1790 else
1791 ro = (2500 - 1000) * efuse / 255 + 1000;
1792
1793 if (ro >= 1660)
1794 type = 0;
1795 else
1796 type = 1;
1797
1798 /* Populate Stretch amount */
1799 data->smc_state_table.ClockStretcherAmount = stretch_amount;
1800
1801 /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1802 for (i = 0; i < sclk_table->count; i++) {
1803 data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1804 sclk_table->entries[i].cks_enable << i;
1805 volt_without_cks = (uint32_t)((14041 *
1806 (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1807 (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1808 volt_with_cks = (uint32_t)((13946 *
1809 (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1810 (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1811 if (volt_without_cks >= volt_with_cks)
1812 volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1813 sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1814 data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1815 }
1816
1817 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1818 STRETCH_ENABLE, 0x0);
1819 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1820 masterReset, 0x1);
1821 /* PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE, staticEnable, 0x1); */
1822 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1823 masterReset, 0x0);
1824
1825 /* Populate CKS Lookup Table */
1826 if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1827 stretch_amount2 = 0;
1828 else if (stretch_amount == 3 || stretch_amount == 4)
1829 stretch_amount2 = 1;
1830 else {
1831 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1832 PHM_PlatformCaps_ClockStretcher);
1833 PP_ASSERT_WITH_CODE(false,
1834 "Stretch Amount in PPTable not supported\n",
1835 return -EINVAL);
1836 }
1837
1838 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1839 ixPWR_CKS_CNTL);
1840 value &= 0xFFC2FF87;
1841 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1842 polaris10_clock_stretcher_lookup_table[stretch_amount2][0];
1843 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1844 polaris10_clock_stretcher_lookup_table[stretch_amount2][1];
1845 clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(data->smc_state_table.
1846 GraphicsLevel[data->smc_state_table.GraphicsDpmLevelCount - 1].SclkSetting.SclkFrequency) / 100);
1847 if (polaris10_clock_stretcher_lookup_table[stretch_amount2][0] < clock_freq_u16
1848 && polaris10_clock_stretcher_lookup_table[stretch_amount2][1] > clock_freq_u16) {
1849 /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1850 value |= (polaris10_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1851 /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1852 value |= (polaris10_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1853 /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1854 value |= (polaris10_clock_stretch_amount_conversion
1855 [polaris10_clock_stretcher_lookup_table[stretch_amount2][3]]
1856 [stretch_amount]) << 3;
1857 }
1858 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq);
1859 CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq);
1860 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1861 polaris10_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1862 data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1863 (polaris10_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1864
1865 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1866 ixPWR_CKS_CNTL, value);
1867
1868 /* Populate DDT Lookup Table */
1869 for (i = 0; i < 4; i++) {
1870 /* Assign the minimum and maximum VID stored
1871 * in the last row of Clock Stretcher Voltage Table.
1872 */
1873 data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].minVID =
1874 (uint8_t) polaris10_clock_stretcher_ddt_table[type][i][2];
1875 data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].maxVID =
1876 (uint8_t) polaris10_clock_stretcher_ddt_table[type][i][3];
1877 /* Loop through each SCLK and check the frequency
1878 * to see if it lies within the frequency for clock stretcher.
1879 */
1880 for (j = 0; j < data->smc_state_table.GraphicsDpmLevelCount; j++) {
1881 cks_setting = 0;
1882 clock_freq = PP_SMC_TO_HOST_UL(
1883 data->smc_state_table.GraphicsLevel[j].SclkSetting.SclkFrequency);
1884 /* Check the allowed frequency against the sclk level[j].
1885 * Sclk's endianness has already been converted,
1886 * and it's in 10Khz unit,
1887 * as opposed to Data table, which is in Mhz unit.
1888 */
1889 if (clock_freq >= (polaris10_clock_stretcher_ddt_table[type][i][0]) * 100) {
1890 cks_setting |= 0x2;
1891 if (clock_freq < (polaris10_clock_stretcher_ddt_table[type][i][1]) * 100)
1892 cks_setting |= 0x1;
1893 }
1894 data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting
1895 |= cks_setting << (j * 2);
1896 }
1897 CONVERT_FROM_HOST_TO_SMC_US(
1898 data->smc_state_table.ClockStretcherDataTable.ClockStretcherDataTableEntry[i].setting);
1899 }
1900
1901 value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1902 value &= 0xFFFFFFFE;
1903 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1904
1905 return 0;
1906 }
1907
1908 /**
1909 * Populates the SMC VRConfig field in DPM table.
1910 *
1911 * @param hwmgr the address of the hardware manager
1912 * @param table the SMC DPM table structure to be populated
1913 * @return always 0
1914 */
1915 static int polaris10_populate_vr_config(struct pp_hwmgr *hwmgr,
1916 struct SMU74_Discrete_DpmTable *table)
1917 {
1918 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1919 uint16_t config;
1920
1921 config = VR_MERGED_WITH_VDDC;
1922 table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1923
1924 /* Set Vddc Voltage Controller */
1925 if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1926 config = VR_SVI2_PLANE_1;
1927 table->VRConfig |= config;
1928 } else {
1929 PP_ASSERT_WITH_CODE(false,
1930 "VDDC should be on SVI2 control in merged mode!",
1931 );
1932 }
1933 /* Set Vddci Voltage Controller */
1934 if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1935 config = VR_SVI2_PLANE_2; /* only in merged mode */
1936 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1937 } else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1938 config = VR_SMIO_PATTERN_1;
1939 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1940 } else {
1941 config = VR_STATIC_VOLTAGE;
1942 table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1943 }
1944 /* Set Mvdd Voltage Controller */
1945 if (POLARIS10_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1946 config = VR_SVI2_PLANE_2;
1947 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1948 } else if (POLARIS10_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1949 config = VR_SMIO_PATTERN_2;
1950 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1951 } else {
1952 config = VR_STATIC_VOLTAGE;
1953 table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1954 }
1955
1956 return 0;
1957 }
1958
1959 /**
1960 * Initializes the SMC table and uploads it
1961 *
1962 * @param hwmgr the address of the powerplay hardware manager.
1963 * @return always 0
1964 */
1965 static int polaris10_init_smc_table(struct pp_hwmgr *hwmgr)
1966 {
1967 int result;
1968 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
1969 struct phm_ppt_v1_information *table_info =
1970 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1971 struct SMU74_Discrete_DpmTable *table = &(data->smc_state_table);
1972 const struct polaris10_ulv_parm *ulv = &(data->ulv);
1973 uint8_t i;
1974 struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1975 pp_atomctrl_clock_dividers_vi dividers;
1976
1977 result = polaris10_setup_default_dpm_tables(hwmgr);
1978 PP_ASSERT_WITH_CODE(0 == result,
1979 "Failed to setup default DPM tables!", return result);
1980
1981 if (POLARIS10_VOLTAGE_CONTROL_NONE != data->voltage_control)
1982 polaris10_populate_smc_voltage_tables(hwmgr, table);
1983
1984 table->SystemFlags = 0;
1985 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1986 PHM_PlatformCaps_AutomaticDCTransition))
1987 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1988
1989 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1990 PHM_PlatformCaps_StepVddc))
1991 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1992
1993 if (data->is_memory_gddr5)
1994 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1995
1996 if (ulv->ulv_supported && table_info->us_ulv_voltage_offset) {
1997 result = polaris10_populate_ulv_state(hwmgr, table);
1998 PP_ASSERT_WITH_CODE(0 == result,
1999 "Failed to initialize ULV state!", return result);
2000 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2001 ixCG_ULV_PARAMETER, PPPOLARIS10_CGULVPARAMETER_DFLT);
2002 }
2003
2004 result = polaris10_populate_smc_link_level(hwmgr, table);
2005 PP_ASSERT_WITH_CODE(0 == result,
2006 "Failed to initialize Link Level!", return result);
2007
2008 result = polaris10_populate_all_graphic_levels(hwmgr);
2009 PP_ASSERT_WITH_CODE(0 == result,
2010 "Failed to initialize Graphics Level!", return result);
2011
2012 result = polaris10_populate_all_memory_levels(hwmgr);
2013 PP_ASSERT_WITH_CODE(0 == result,
2014 "Failed to initialize Memory Level!", return result);
2015
2016 result = polaris10_populate_smc_acpi_level(hwmgr, table);
2017 PP_ASSERT_WITH_CODE(0 == result,
2018 "Failed to initialize ACPI Level!", return result);
2019
2020 result = polaris10_populate_smc_vce_level(hwmgr, table);
2021 PP_ASSERT_WITH_CODE(0 == result,
2022 "Failed to initialize VCE Level!", return result);
2023
2024 result = polaris10_populate_smc_samu_level(hwmgr, table);
2025 PP_ASSERT_WITH_CODE(0 == result,
2026 "Failed to initialize SAMU Level!", return result);
2027
2028 /* Since only the initial state is completely set up at this point
2029 * (the other states are just copies of the boot state) we only
2030 * need to populate the ARB settings for the initial state.
2031 */
2032 result = polaris10_program_memory_timing_parameters(hwmgr);
2033 PP_ASSERT_WITH_CODE(0 == result,
2034 "Failed to Write ARB settings for the initial state.", return result);
2035
2036 result = polaris10_populate_smc_uvd_level(hwmgr, table);
2037 PP_ASSERT_WITH_CODE(0 == result,
2038 "Failed to initialize UVD Level!", return result);
2039
2040 result = polaris10_populate_smc_boot_level(hwmgr, table);
2041 PP_ASSERT_WITH_CODE(0 == result,
2042 "Failed to initialize Boot Level!", return result);
2043
2044 result = polaris10_populate_smc_initailial_state(hwmgr);
2045 PP_ASSERT_WITH_CODE(0 == result,
2046 "Failed to initialize Boot State!", return result);
2047
2048 result = polaris10_populate_bapm_parameters_in_dpm_table(hwmgr);
2049 PP_ASSERT_WITH_CODE(0 == result,
2050 "Failed to populate BAPM Parameters!", return result);
2051
2052 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2053 PHM_PlatformCaps_ClockStretcher)) {
2054 result = polaris10_populate_clock_stretcher_data_table(hwmgr);
2055 PP_ASSERT_WITH_CODE(0 == result,
2056 "Failed to populate Clock Stretcher Data Table!",
2057 return result);
2058 }
2059 table->CurrSclkPllRange = 0xff;
2060 table->GraphicsVoltageChangeEnable = 1;
2061 table->GraphicsThermThrottleEnable = 1;
2062 table->GraphicsInterval = 1;
2063 table->VoltageInterval = 1;
2064 table->ThermalInterval = 1;
2065 table->TemperatureLimitHigh =
2066 table_info->cac_dtp_table->usTargetOperatingTemp *
2067 POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
2068 table->TemperatureLimitLow =
2069 (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2070 POLARIS10_Q88_FORMAT_CONVERSION_UNIT;
2071 table->MemoryVoltageChangeEnable = 1;
2072 table->MemoryInterval = 1;
2073 table->VoltageResponseTime = 0;
2074 table->PhaseResponseTime = 0;
2075 table->MemoryThermThrottleEnable = 1;
2076 table->PCIeBootLinkLevel = 0;
2077 table->PCIeGenInterval = 1;
2078 table->VRConfig = 0;
2079
2080 result = polaris10_populate_vr_config(hwmgr, table);
2081 PP_ASSERT_WITH_CODE(0 == result,
2082 "Failed to populate VRConfig setting!", return result);
2083
2084 table->ThermGpio = 17;
2085 table->SclkStepSize = 0x4000;
2086
2087 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2088 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2089 } else {
2090 table->VRHotGpio = POLARIS10_UNUSED_GPIO_PIN;
2091 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2092 PHM_PlatformCaps_RegulatorHot);
2093 }
2094
2095 if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2096 &gpio_pin)) {
2097 table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
2098 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2099 PHM_PlatformCaps_AutomaticDCTransition);
2100 } else {
2101 table->AcDcGpio = POLARIS10_UNUSED_GPIO_PIN;
2102 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2103 PHM_PlatformCaps_AutomaticDCTransition);
2104 }
2105
2106 /* Thermal Output GPIO */
2107 if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
2108 &gpio_pin)) {
2109 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2110 PHM_PlatformCaps_ThermalOutGPIO);
2111
2112 table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
2113
2114 /* For porlarity read GPIOPAD_A with assigned Gpio pin
2115 * since VBIOS will program this register to set 'inactive state',
2116 * driver can then determine 'active state' from this and
2117 * program SMU with correct polarity
2118 */
2119 table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A)
2120 & (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
2121 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2122
2123 /* if required, combine VRHot/PCC with thermal out GPIO */
2124 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot)
2125 && phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CombinePCCWithThermalSignal))
2126 table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2127 } else {
2128 table->ThermOutGpio = 17;
2129 table->ThermOutPolarity = 1;
2130 table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2131 }
2132
2133 /* Populate BIF_SCLK levels into SMC DPM table */
2134 for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++) {
2135 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, data->bif_sclk_table[i], &dividers);
2136 PP_ASSERT_WITH_CODE((result == 0), "Can not find DFS divide id for Sclk", return result);
2137
2138 if (i == 0)
2139 table->Ulv.BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
2140 else
2141 table->LinkLevel[i-1].BifSclkDfs = PP_HOST_TO_SMC_US((USHORT)(dividers.pll_post_divider));
2142 }
2143
2144 for (i = 0; i < SMU74_MAX_ENTRIES_SMIO; i++)
2145 table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2146
2147 CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2148 CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2149 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2150 CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2151 CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2152 CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
2153 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2154 CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2155 CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2156 CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2157
2158 /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2159 result = polaris10_copy_bytes_to_smc(hwmgr->smumgr,
2160 data->dpm_table_start +
2161 offsetof(SMU74_Discrete_DpmTable, SystemFlags),
2162 (uint8_t *)&(table->SystemFlags),
2163 sizeof(SMU74_Discrete_DpmTable) - 3 * sizeof(SMU74_PIDController),
2164 data->sram_end);
2165 PP_ASSERT_WITH_CODE(0 == result,
2166 "Failed to upload dpm data to SMC memory!", return result);
2167
2168 return 0;
2169 }
2170
2171 /**
2172 * Initialize the ARB DRAM timing table's index field.
2173 *
2174 * @param hwmgr the address of the powerplay hardware manager.
2175 * @return always 0
2176 */
2177 static int polaris10_init_arb_table_index(struct pp_hwmgr *hwmgr)
2178 {
2179 const struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2180 uint32_t tmp;
2181 int result;
2182
2183 /* This is a read-modify-write on the first byte of the ARB table.
2184 * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
2185 * is the field 'current'.
2186 * This solution is ugly, but we never write the whole table only
2187 * individual fields in it.
2188 * In reality this field should not be in that structure
2189 * but in a soft register.
2190 */
2191 result = polaris10_read_smc_sram_dword(hwmgr->smumgr,
2192 data->arb_table_start, &tmp, data->sram_end);
2193
2194 if (result)
2195 return result;
2196
2197 tmp &= 0x00FFFFFF;
2198 tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
2199
2200 return polaris10_write_smc_sram_dword(hwmgr->smumgr,
2201 data->arb_table_start, tmp, data->sram_end);
2202 }
2203
2204 static int polaris10_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
2205 {
2206 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2207 PHM_PlatformCaps_RegulatorHot))
2208 return smum_send_msg_to_smc(hwmgr->smumgr,
2209 PPSMC_MSG_EnableVRHotGPIOInterrupt);
2210
2211 return 0;
2212 }
2213
2214 static int polaris10_enable_sclk_control(struct pp_hwmgr *hwmgr)
2215 {
2216 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
2217 SCLK_PWRMGT_OFF, 0);
2218 return 0;
2219 }
2220
2221 static int polaris10_enable_ulv(struct pp_hwmgr *hwmgr)
2222 {
2223 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2224 struct polaris10_ulv_parm *ulv = &(data->ulv);
2225
2226 if (ulv->ulv_supported)
2227 return smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableULV);
2228
2229 return 0;
2230 }
2231
2232 static int polaris10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
2233 {
2234 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2235 PHM_PlatformCaps_SclkDeepSleep)) {
2236 if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON))
2237 PP_ASSERT_WITH_CODE(false,
2238 "Attempt to enable Master Deep Sleep switch failed!",
2239 return -1);
2240 } else {
2241 if (smum_send_msg_to_smc(hwmgr->smumgr,
2242 PPSMC_MSG_MASTER_DeepSleep_OFF)) {
2243 PP_ASSERT_WITH_CODE(false,
2244 "Attempt to disable Master Deep Sleep switch failed!",
2245 return -1);
2246 }
2247 }
2248
2249 return 0;
2250 }
2251
2252 static int polaris10_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
2253 {
2254 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2255
2256 /* enable SCLK dpm */
2257 if (!data->sclk_dpm_key_disabled)
2258 PP_ASSERT_WITH_CODE(
2259 (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)),
2260 "Failed to enable SCLK DPM during DPM Start Function!",
2261 return -1);
2262
2263 /* enable MCLK dpm */
2264 if (0 == data->mclk_dpm_key_disabled) {
2265
2266 PP_ASSERT_WITH_CODE(
2267 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2268 PPSMC_MSG_MCLKDPM_Enable)),
2269 "Failed to enable MCLK DPM during DPM Start Function!",
2270 return -1);
2271
2272
2273 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
2274
2275 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
2276 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
2277 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
2278 udelay(10);
2279 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
2280 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
2281 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
2282 }
2283
2284 return 0;
2285 }
2286
2287 static int polaris10_start_dpm(struct pp_hwmgr *hwmgr)
2288 {
2289 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2290
2291 /*enable general power management */
2292
2293 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
2294 GLOBAL_PWRMGT_EN, 1);
2295
2296 /* enable sclk deep sleep */
2297
2298 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
2299 DYNAMIC_PM_EN, 1);
2300
2301 /* prepare for PCIE DPM */
2302
2303 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2304 data->soft_regs_start + offsetof(SMU74_SoftRegisters,
2305 VoltageChangeTimeout), 0x1000);
2306 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
2307 SWRST_COMMAND_1, RESETLC, 0x0);
2308 /*
2309 PP_ASSERT_WITH_CODE(
2310 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2311 PPSMC_MSG_Voltage_Cntl_Enable)),
2312 "Failed to enable voltage DPM during DPM Start Function!",
2313 return -1);
2314 */
2315
2316 if (polaris10_enable_sclk_mclk_dpm(hwmgr)) {
2317 printk(KERN_ERR "Failed to enable Sclk DPM and Mclk DPM!");
2318 return -1;
2319 }
2320
2321 /* enable PCIE dpm */
2322 if (0 == data->pcie_dpm_key_disabled) {
2323 PP_ASSERT_WITH_CODE(
2324 (0 == smum_send_msg_to_smc(hwmgr->smumgr,
2325 PPSMC_MSG_PCIeDPM_Enable)),
2326 "Failed to enable pcie DPM during DPM Start Function!",
2327 return -1);
2328 }
2329
2330 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2331 PHM_PlatformCaps_Falcon_QuickTransition)) {
2332 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr->smumgr,
2333 PPSMC_MSG_EnableACDCGPIOInterrupt)),
2334 "Failed to enable AC DC GPIO Interrupt!",
2335 );
2336 }
2337
2338 return 0;
2339 }
2340
2341 static void polaris10_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
2342 {
2343 bool protection;
2344 enum DPM_EVENT_SRC src;
2345
2346 switch (sources) {
2347 default:
2348 printk(KERN_ERR "Unknown throttling event sources.");
2349 /* fall through */
2350 case 0:
2351 protection = false;
2352 /* src is unused */
2353 break;
2354 case (1 << PHM_AutoThrottleSource_Thermal):
2355 protection = true;
2356 src = DPM_EVENT_SRC_DIGITAL;
2357 break;
2358 case (1 << PHM_AutoThrottleSource_External):
2359 protection = true;
2360 src = DPM_EVENT_SRC_EXTERNAL;
2361 break;
2362 case (1 << PHM_AutoThrottleSource_External) |
2363 (1 << PHM_AutoThrottleSource_Thermal):
2364 protection = true;
2365 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
2366 break;
2367 }
2368 /* Order matters - don't enable thermal protection for the wrong source. */
2369 if (protection) {
2370 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
2371 DPM_EVENT_SRC, src);
2372 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
2373 THERMAL_PROTECTION_DIS,
2374 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2375 PHM_PlatformCaps_ThermalController));
2376 } else
2377 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
2378 THERMAL_PROTECTION_DIS, 1);
2379 }
2380
2381 static int polaris10_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
2382 PHM_AutoThrottleSource source)
2383 {
2384 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2385
2386 if (!(data->active_auto_throttle_sources & (1 << source))) {
2387 data->active_auto_throttle_sources |= 1 << source;
2388 polaris10_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
2389 }
2390 return 0;
2391 }
2392
2393 static int polaris10_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
2394 {
2395 return polaris10_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
2396 }
2397
2398 int polaris10_pcie_performance_request(struct pp_hwmgr *hwmgr)
2399 {
2400 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2401 data->pcie_performance_request = true;
2402
2403 return 0;
2404 }
2405
2406 int polaris10_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
2407 {
2408 int tmp_result, result = 0;
2409 tmp_result = (!polaris10_is_dpm_running(hwmgr)) ? 0 : -1;
2410 PP_ASSERT_WITH_CODE(result == 0,
2411 "DPM is already running right now, no need to enable DPM!",
2412 return 0);
2413
2414 if (polaris10_voltage_control(hwmgr)) {
2415 tmp_result = polaris10_enable_voltage_control(hwmgr);
2416 PP_ASSERT_WITH_CODE(tmp_result == 0,
2417 "Failed to enable voltage control!",
2418 result = tmp_result);
2419
2420 tmp_result = polaris10_construct_voltage_tables(hwmgr);
2421 PP_ASSERT_WITH_CODE((0 == tmp_result),
2422 "Failed to contruct voltage tables!",
2423 result = tmp_result);
2424 }
2425
2426 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2427 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
2428 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2429 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
2430
2431 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2432 PHM_PlatformCaps_ThermalController))
2433 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
2434 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
2435
2436 tmp_result = polaris10_program_static_screen_threshold_parameters(hwmgr);
2437 PP_ASSERT_WITH_CODE((0 == tmp_result),
2438 "Failed to program static screen threshold parameters!",
2439 result = tmp_result);
2440
2441 tmp_result = polaris10_enable_display_gap(hwmgr);
2442 PP_ASSERT_WITH_CODE((0 == tmp_result),
2443 "Failed to enable display gap!", result = tmp_result);
2444
2445 tmp_result = polaris10_program_voting_clients(hwmgr);
2446 PP_ASSERT_WITH_CODE((0 == tmp_result),
2447 "Failed to program voting clients!", result = tmp_result);
2448
2449 tmp_result = polaris10_process_firmware_header(hwmgr);
2450 PP_ASSERT_WITH_CODE((0 == tmp_result),
2451 "Failed to process firmware header!", result = tmp_result);
2452
2453 tmp_result = polaris10_initial_switch_from_arbf0_to_f1(hwmgr);
2454 PP_ASSERT_WITH_CODE((0 == tmp_result),
2455 "Failed to initialize switch from ArbF0 to F1!",
2456 result = tmp_result);
2457
2458 tmp_result = polaris10_init_smc_table(hwmgr);
2459 PP_ASSERT_WITH_CODE((0 == tmp_result),
2460 "Failed to initialize SMC table!", result = tmp_result);
2461
2462 tmp_result = polaris10_init_arb_table_index(hwmgr);
2463 PP_ASSERT_WITH_CODE((0 == tmp_result),
2464 "Failed to initialize ARB table index!", result = tmp_result);
2465
2466 tmp_result = polaris10_populate_pm_fuses(hwmgr);
2467 PP_ASSERT_WITH_CODE((0 == tmp_result),
2468 "Failed to populate PM fuses!", result = tmp_result);
2469
2470 tmp_result = polaris10_enable_vrhot_gpio_interrupt(hwmgr);
2471 PP_ASSERT_WITH_CODE((0 == tmp_result),
2472 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
2473
2474 tmp_result = polaris10_enable_sclk_control(hwmgr);
2475 PP_ASSERT_WITH_CODE((0 == tmp_result),
2476 "Failed to enable SCLK control!", result = tmp_result);
2477
2478 tmp_result = polaris10_enable_smc_voltage_controller(hwmgr);
2479 PP_ASSERT_WITH_CODE((0 == tmp_result),
2480 "Failed to enable voltage control!", result = tmp_result);
2481
2482 tmp_result = polaris10_enable_ulv(hwmgr);
2483 PP_ASSERT_WITH_CODE((0 == tmp_result),
2484 "Failed to enable ULV!", result = tmp_result);
2485
2486 tmp_result = polaris10_enable_deep_sleep_master_switch(hwmgr);
2487 PP_ASSERT_WITH_CODE((0 == tmp_result),
2488 "Failed to enable deep sleep master switch!", result = tmp_result);
2489
2490 tmp_result = polaris10_start_dpm(hwmgr);
2491 PP_ASSERT_WITH_CODE((0 == tmp_result),
2492 "Failed to start DPM!", result = tmp_result);
2493
2494 tmp_result = polaris10_enable_smc_cac(hwmgr);
2495 PP_ASSERT_WITH_CODE((0 == tmp_result),
2496 "Failed to enable SMC CAC!", result = tmp_result);
2497
2498 tmp_result = polaris10_enable_power_containment(hwmgr);
2499 PP_ASSERT_WITH_CODE((0 == tmp_result),
2500 "Failed to enable power containment!", result = tmp_result);
2501
2502 tmp_result = polaris10_power_control_set_level(hwmgr);
2503 PP_ASSERT_WITH_CODE((0 == tmp_result),
2504 "Failed to power control set level!", result = tmp_result);
2505
2506 tmp_result = polaris10_enable_thermal_auto_throttle(hwmgr);
2507 PP_ASSERT_WITH_CODE((0 == tmp_result),
2508 "Failed to enable thermal auto throttle!", result = tmp_result);
2509
2510 tmp_result = polaris10_pcie_performance_request(hwmgr);
2511 PP_ASSERT_WITH_CODE((0 == tmp_result),
2512 "pcie performance request failed!", result = tmp_result);
2513
2514 return result;
2515 }
2516
2517 int polaris10_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
2518 {
2519
2520 return 0;
2521 }
2522
2523 int polaris10_reset_asic_tasks(struct pp_hwmgr *hwmgr)
2524 {
2525
2526 return 0;
2527 }
2528
2529 int polaris10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2530 {
2531 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2532
2533 if (data->soft_pp_table) {
2534 kfree(data->soft_pp_table);
2535 data->soft_pp_table = NULL;
2536 }
2537
2538 return phm_hwmgr_backend_fini(hwmgr);
2539 }
2540
2541 int polaris10_set_features_platform_caps(struct pp_hwmgr *hwmgr)
2542 {
2543 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2544
2545 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2546 PHM_PlatformCaps_SclkDeepSleep);
2547
2548 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2549 PHM_PlatformCaps_DynamicPatchPowerState);
2550
2551 if (data->mvdd_control == POLARIS10_VOLTAGE_CONTROL_NONE)
2552 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2553 PHM_PlatformCaps_EnableMVDDControl);
2554
2555 if (data->vddci_control == POLARIS10_VOLTAGE_CONTROL_NONE)
2556 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2557 PHM_PlatformCaps_ControlVDDCI);
2558
2559 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2560 PHM_PlatformCaps_TablelessHardwareInterface);
2561
2562 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2563 PHM_PlatformCaps_EnableSMU7ThermalManagement);
2564
2565 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2566 PHM_PlatformCaps_DynamicPowerManagement);
2567
2568 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2569 PHM_PlatformCaps_UnTabledHardwareInterface);
2570
2571 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2572 PHM_PlatformCaps_TablelessHardwareInterface);
2573
2574 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2575 PHM_PlatformCaps_SMC);
2576
2577 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2578 PHM_PlatformCaps_NonABMSupportInPPLib);
2579
2580 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2581 PHM_PlatformCaps_DynamicUVDState);
2582
2583 /* power tune caps Assume disabled */
2584 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2585 PHM_PlatformCaps_SQRamping);
2586 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2587 PHM_PlatformCaps_DBRamping);
2588 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2589 PHM_PlatformCaps_TDRamping);
2590 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2591 PHM_PlatformCaps_TCPRamping);
2592
2593 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2594 PHM_PlatformCaps_PowerContainment);
2595 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2596 PHM_PlatformCaps_CAC);
2597
2598 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2599 PHM_PlatformCaps_RegulatorHot);
2600
2601 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2602 PHM_PlatformCaps_AutomaticDCTransition);
2603
2604 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2605 PHM_PlatformCaps_ODFuzzyFanControlSupport);
2606
2607 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2608 PHM_PlatformCaps_FanSpeedInTableIsRPM);
2609 if (hwmgr->chip_id == CHIP_POLARIS11)
2610 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2611 PHM_PlatformCaps_SPLLShutdownSupport);
2612 return 0;
2613 }
2614
2615 static void polaris10_init_dpm_defaults(struct pp_hwmgr *hwmgr)
2616 {
2617 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2618
2619 polaris10_initialize_power_tune_defaults(hwmgr);
2620
2621 data->pcie_gen_performance.max = PP_PCIEGen1;
2622 data->pcie_gen_performance.min = PP_PCIEGen3;
2623 data->pcie_gen_power_saving.max = PP_PCIEGen1;
2624 data->pcie_gen_power_saving.min = PP_PCIEGen3;
2625 data->pcie_lane_performance.max = 0;
2626 data->pcie_lane_performance.min = 16;
2627 data->pcie_lane_power_saving.max = 0;
2628 data->pcie_lane_power_saving.min = 16;
2629 }
2630
2631 /**
2632 * Get Leakage VDDC based on leakage ID.
2633 *
2634 * @param hwmgr the address of the powerplay hardware manager.
2635 * @return always 0
2636 */
2637 static int polaris10_get_evv_voltages(struct pp_hwmgr *hwmgr)
2638 {
2639 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2640 uint16_t vv_id;
2641 uint16_t vddc = 0;
2642 uint16_t i, j;
2643 uint32_t sclk = 0;
2644 struct phm_ppt_v1_information *table_info =
2645 (struct phm_ppt_v1_information *)hwmgr->pptable;
2646 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2647 table_info->vdd_dep_on_sclk;
2648 int result;
2649
2650 for (i = 0; i < POLARIS10_MAX_LEAKAGE_COUNT; i++) {
2651 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2652 if (!phm_get_sclk_for_voltage_evv(hwmgr,
2653 table_info->vddc_lookup_table, vv_id, &sclk)) {
2654 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2655 PHM_PlatformCaps_ClockStretcher)) {
2656 for (j = 1; j < sclk_table->count; j++) {
2657 if (sclk_table->entries[j].clk == sclk &&
2658 sclk_table->entries[j].cks_enable == 0) {
2659 sclk += 5000;
2660 break;
2661 }
2662 }
2663 }
2664
2665
2666 PP_ASSERT_WITH_CODE(0 == atomctrl_get_voltage_evv_on_sclk_ai(hwmgr,
2667 VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc),
2668 "Error retrieving EVV voltage value!",
2669 continue);
2670
2671
2672 /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */
2673 PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0),
2674 "Invalid VDDC value", result = -EINVAL;);
2675
2676 /* the voltage should not be zero nor equal to leakage ID */
2677 if (vddc != 0 && vddc != vv_id) {
2678 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100);
2679 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
2680 data->vddc_leakage.count++;
2681 }
2682 }
2683 }
2684
2685 return 0;
2686 }
2687
2688 /**
2689 * Change virtual leakage voltage to actual value.
2690 *
2691 * @param hwmgr the address of the powerplay hardware manager.
2692 * @param pointer to changing voltage
2693 * @param pointer to leakage table
2694 */
2695 static void polaris10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2696 uint16_t *voltage, struct polaris10_leakage_voltage *leakage_table)
2697 {
2698 uint32_t index;
2699
2700 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2701 for (index = 0; index < leakage_table->count; index++) {
2702 /* if this voltage matches a leakage voltage ID */
2703 /* patch with actual leakage voltage */
2704 if (leakage_table->leakage_id[index] == *voltage) {
2705 *voltage = leakage_table->actual_voltage[index];
2706 break;
2707 }
2708 }
2709
2710 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2711 printk(KERN_ERR "Voltage value looks like a Leakage ID but it's not patched \n");
2712 }
2713
2714 /**
2715 * Patch voltage lookup table by EVV leakages.
2716 *
2717 * @param hwmgr the address of the powerplay hardware manager.
2718 * @param pointer to voltage lookup table
2719 * @param pointer to leakage table
2720 * @return always 0
2721 */
2722 static int polaris10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2723 phm_ppt_v1_voltage_lookup_table *lookup_table,
2724 struct polaris10_leakage_voltage *leakage_table)
2725 {
2726 uint32_t i;
2727
2728 for (i = 0; i < lookup_table->count; i++)
2729 polaris10_patch_with_vdd_leakage(hwmgr,
2730 &lookup_table->entries[i].us_vdd, leakage_table);
2731
2732 return 0;
2733 }
2734
2735 static int polaris10_patch_clock_voltage_limits_with_vddc_leakage(
2736 struct pp_hwmgr *hwmgr, struct polaris10_leakage_voltage *leakage_table,
2737 uint16_t *vddc)
2738 {
2739 struct phm_ppt_v1_information *table_info =
2740 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2741 polaris10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2742 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
2743 table_info->max_clock_voltage_on_dc.vddc;
2744 return 0;
2745 }
2746
2747 static int polaris10_patch_voltage_dependency_tables_with_lookup_table(
2748 struct pp_hwmgr *hwmgr)
2749 {
2750 uint8_t entryId;
2751 uint8_t voltageId;
2752 struct phm_ppt_v1_information *table_info =
2753 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2754
2755 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2756 table_info->vdd_dep_on_sclk;
2757 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
2758 table_info->vdd_dep_on_mclk;
2759 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2760 table_info->mm_dep_table;
2761
2762 for (entryId = 0; entryId < sclk_table->count; ++entryId) {
2763 voltageId = sclk_table->entries[entryId].vddInd;
2764 sclk_table->entries[entryId].vddc =
2765 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
2766 }
2767
2768 for (entryId = 0; entryId < mclk_table->count; ++entryId) {
2769 voltageId = mclk_table->entries[entryId].vddInd;
2770 mclk_table->entries[entryId].vddc =
2771 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
2772 }
2773
2774 for (entryId = 0; entryId < mm_table->count; ++entryId) {
2775 voltageId = mm_table->entries[entryId].vddcInd;
2776 mm_table->entries[entryId].vddc =
2777 table_info->vddc_lookup_table->entries[voltageId].us_vdd;
2778 }
2779
2780 return 0;
2781
2782 }
2783
2784 static int polaris10_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2785 {
2786 /* Need to determine if we need calculated voltage. */
2787 return 0;
2788 }
2789
2790 static int polaris10_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2791 {
2792 /* Need to determine if we need calculated voltage from mm table. */
2793 return 0;
2794 }
2795
2796 static int polaris10_sort_lookup_table(struct pp_hwmgr *hwmgr,
2797 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
2798 {
2799 uint32_t table_size, i, j;
2800 struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record;
2801 table_size = lookup_table->count;
2802
2803 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2804 "Lookup table is empty", return -EINVAL);
2805
2806 /* Sorting voltages */
2807 for (i = 0; i < table_size - 1; i++) {
2808 for (j = i + 1; j > 0; j--) {
2809 if (lookup_table->entries[j].us_vdd <
2810 lookup_table->entries[j - 1].us_vdd) {
2811 tmp_voltage_lookup_record = lookup_table->entries[j - 1];
2812 lookup_table->entries[j - 1] = lookup_table->entries[j];
2813 lookup_table->entries[j] = tmp_voltage_lookup_record;
2814 }
2815 }
2816 }
2817
2818 return 0;
2819 }
2820
2821 static int polaris10_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2822 {
2823 int result = 0;
2824 int tmp_result;
2825 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2826 struct phm_ppt_v1_information *table_info =
2827 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2828
2829 tmp_result = polaris10_patch_lookup_table_with_leakage(hwmgr,
2830 table_info->vddc_lookup_table, &(data->vddc_leakage));
2831 if (tmp_result)
2832 result = tmp_result;
2833
2834 tmp_result = polaris10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2835 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2836 if (tmp_result)
2837 result = tmp_result;
2838
2839 tmp_result = polaris10_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2840 if (tmp_result)
2841 result = tmp_result;
2842
2843 tmp_result = polaris10_calc_voltage_dependency_tables(hwmgr);
2844 if (tmp_result)
2845 result = tmp_result;
2846
2847 tmp_result = polaris10_calc_mm_voltage_dependency_table(hwmgr);
2848 if (tmp_result)
2849 result = tmp_result;
2850
2851 tmp_result = polaris10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2852 if (tmp_result)
2853 result = tmp_result;
2854
2855 return result;
2856 }
2857
2858 static int polaris10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr)
2859 {
2860 struct phm_ppt_v1_information *table_info =
2861 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2862
2863 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2864 table_info->vdd_dep_on_sclk;
2865 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2866 table_info->vdd_dep_on_mclk;
2867
2868 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2869 "VDD dependency on SCLK table is missing. \
2870 This table is mandatory", return -EINVAL);
2871 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2872 "VDD dependency on SCLK table has to have is missing. \
2873 This table is mandatory", return -EINVAL);
2874
2875 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2876 "VDD dependency on MCLK table is missing. \
2877 This table is mandatory", return -EINVAL);
2878 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2879 "VDD dependency on MCLK table has to have is missing. \
2880 This table is mandatory", return -EINVAL);
2881
2882 table_info->max_clock_voltage_on_ac.sclk =
2883 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2884 table_info->max_clock_voltage_on_ac.mclk =
2885 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2886 table_info->max_clock_voltage_on_ac.vddc =
2887 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2888 table_info->max_clock_voltage_on_ac.vddci =
2889 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2890
2891 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2892 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2893 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2894 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci =table_info->max_clock_voltage_on_ac.vddci;
2895
2896 return 0;
2897 }
2898
2899 int polaris10_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2900 {
2901 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
2902 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2903 uint32_t temp_reg;
2904 int result;
2905 struct phm_ppt_v1_information *table_info =
2906 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2907
2908 data->dll_default_on = false;
2909 data->sram_end = SMC_RAM_END;
2910 data->mclk_dpm0_activity_target = 0xa;
2911 data->disable_dpm_mask = 0xFF;
2912 data->static_screen_threshold = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
2913 data->static_screen_threshold_unit = PPPOLARIS10_STATICSCREENTHRESHOLD_DFLT;
2914 data->activity_target[0] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2915 data->activity_target[1] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2916 data->activity_target[2] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2917 data->activity_target[3] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2918 data->activity_target[4] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2919 data->activity_target[5] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2920 data->activity_target[6] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2921 data->activity_target[7] = PPPOLARIS10_TARGETACTIVITY_DFLT;
2922
2923 data->voting_rights_clients0 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT0;
2924 data->voting_rights_clients1 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT1;
2925 data->voting_rights_clients2 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT2;
2926 data->voting_rights_clients3 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT3;
2927 data->voting_rights_clients4 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT4;
2928 data->voting_rights_clients5 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT5;
2929 data->voting_rights_clients6 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT6;
2930 data->voting_rights_clients7 = PPPOLARIS10_VOTINGRIGHTSCLIENTS_DFLT7;
2931
2932 data->vddc_vddci_delta = VDDC_VDDCI_DELTA;
2933
2934 data->mclk_activity_target = PPPOLARIS10_MCLK_TARGETACTIVITY_DFLT;
2935
2936 /* need to set voltage control types before EVV patching */
2937 data->voltage_control = POLARIS10_VOLTAGE_CONTROL_NONE;
2938 data->vddci_control = POLARIS10_VOLTAGE_CONTROL_NONE;
2939 data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_NONE;
2940
2941 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
2942 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
2943 data->voltage_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2944
2945 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2946 PHM_PlatformCaps_EnableMVDDControl)) {
2947 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
2948 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
2949 data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
2950 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
2951 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
2952 data->mvdd_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2953 }
2954
2955 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2956 PHM_PlatformCaps_ControlVDDCI)) {
2957 if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
2958 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
2959 data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_GPIO;
2960 else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr,
2961 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
2962 data->vddci_control = POLARIS10_VOLTAGE_CONTROL_BY_SVID2;
2963 }
2964
2965 polaris10_set_features_platform_caps(hwmgr);
2966
2967 polaris10_init_dpm_defaults(hwmgr);
2968
2969 /* Get leakage voltage based on leakage ID. */
2970 result = polaris10_get_evv_voltages(hwmgr);
2971
2972 if (result) {
2973 printk("Get EVV Voltage Failed. Abort Driver loading!\n");
2974 return -1;
2975 }
2976
2977 polaris10_complete_dependency_tables(hwmgr);
2978 polaris10_set_private_data_based_on_pptable(hwmgr);
2979
2980 /* Initalize Dynamic State Adjustment Rule Settings */
2981 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2982
2983 if (0 == result) {
2984 struct cgs_system_info sys_info = {0};
2985
2986 data->is_tlu_enabled = 0;
2987
2988 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
2989 POLARIS10_MAX_HARDWARE_POWERLEVELS;
2990 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
2991 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
2992
2993
2994 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
2995 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
2996 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
2997 case 0:
2998 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
2999 break;
3000 case 1:
3001 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
3002 break;
3003 case 2:
3004 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
3005 break;
3006 case 3:
3007 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
3008 break;
3009 case 4:
3010 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
3011 break;
3012 default:
3013 PP_ASSERT_WITH_CODE(0,
3014 "Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!",
3015 );
3016 break;
3017 }
3018 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
3019 }
3020
3021 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
3022 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
3023 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
3024 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
3025
3026 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
3027 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
3028
3029 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
3030
3031 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
3032
3033 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
3034 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
3035
3036 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
3037
3038 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
3039 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp -50) : 0;
3040
3041 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
3042 table_info->cac_dtp_table->usOperatingTempStep = 1;
3043 table_info->cac_dtp_table->usOperatingTempHyst = 1;
3044
3045 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
3046 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
3047
3048 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
3049 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
3050
3051 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
3052 table_info->cac_dtp_table->usOperatingTempMinLimit;
3053
3054 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
3055 table_info->cac_dtp_table->usOperatingTempMaxLimit;
3056
3057 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
3058 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
3059
3060 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
3061 table_info->cac_dtp_table->usOperatingTempStep;
3062
3063 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
3064 table_info->cac_dtp_table->usTargetOperatingTemp;
3065 }
3066
3067 sys_info.size = sizeof(struct cgs_system_info);
3068 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO;
3069 result = cgs_query_system_info(hwmgr->device, &sys_info);
3070 if (result)
3071 data->pcie_gen_cap = 0x30007;
3072 else
3073 data->pcie_gen_cap = (uint32_t)sys_info.value;
3074 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
3075 data->pcie_spc_cap = 20;
3076 sys_info.size = sizeof(struct cgs_system_info);
3077 sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW;
3078 result = cgs_query_system_info(hwmgr->device, &sys_info);
3079 if (result)
3080 data->pcie_lane_cap = 0x2f0000;
3081 else
3082 data->pcie_lane_cap = (uint32_t)sys_info.value;
3083
3084 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
3085 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
3086 hwmgr->platform_descriptor.clockStep.engineClock = 500;
3087 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
3088 } else {
3089 /* Ignore return value in here, we are cleaning up a mess. */
3090 polaris10_hwmgr_backend_fini(hwmgr);
3091 }
3092
3093 return 0;
3094 }
3095
3096 static int polaris10_force_dpm_highest(struct pp_hwmgr *hwmgr)
3097 {
3098 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3099 uint32_t level, tmp;
3100
3101 if (!data->pcie_dpm_key_disabled) {
3102 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3103 level = 0;
3104 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3105 while (tmp >>= 1)
3106 level++;
3107
3108 if (level)
3109 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3110 PPSMC_MSG_PCIeDPM_ForceLevel, level);
3111 }
3112 }
3113
3114 if (!data->sclk_dpm_key_disabled) {
3115 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3116 level = 0;
3117 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3118 while (tmp >>= 1)
3119 level++;
3120
3121 if (level)
3122 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3123 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3124 (1 << level));
3125 }
3126 }
3127
3128 if (!data->mclk_dpm_key_disabled) {
3129 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3130 level = 0;
3131 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3132 while (tmp >>= 1)
3133 level++;
3134
3135 if (level)
3136 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3137 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3138 (1 << level));
3139 }
3140 }
3141
3142 return 0;
3143 }
3144
3145 static int polaris10_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3146 {
3147 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3148
3149 phm_apply_dal_min_voltage_request(hwmgr);
3150
3151 if (!data->sclk_dpm_key_disabled) {
3152 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3153 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3154 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3155 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3156 }
3157
3158 if (!data->mclk_dpm_key_disabled) {
3159 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
3160 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3161 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3162 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3163 }
3164
3165 return 0;
3166 }
3167
3168 static int polaris10_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3169 {
3170 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3171
3172 if (!polaris10_is_dpm_running(hwmgr))
3173 return -EINVAL;
3174
3175 if (!data->pcie_dpm_key_disabled) {
3176 smum_send_msg_to_smc(hwmgr->smumgr,
3177 PPSMC_MSG_PCIeDPM_UnForceLevel);
3178 }
3179
3180 return polaris10_upload_dpm_level_enable_mask(hwmgr);
3181 }
3182
3183 static int polaris10_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3184 {
3185 struct polaris10_hwmgr *data =
3186 (struct polaris10_hwmgr *)(hwmgr->backend);
3187 uint32_t level;
3188
3189 if (!data->sclk_dpm_key_disabled)
3190 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3191 level = phm_get_lowest_enabled_level(hwmgr,
3192 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3193 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3194 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3195 (1 << level));
3196
3197 }
3198
3199 if (!data->mclk_dpm_key_disabled) {
3200 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3201 level = phm_get_lowest_enabled_level(hwmgr,
3202 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3203 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3204 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3205 (1 << level));
3206 }
3207 }
3208
3209 if (!data->pcie_dpm_key_disabled) {
3210 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3211 level = phm_get_lowest_enabled_level(hwmgr,
3212 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3213 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
3214 PPSMC_MSG_PCIeDPM_ForceLevel,
3215 (level));
3216 }
3217 }
3218
3219 return 0;
3220
3221 }
3222 static int polaris10_force_dpm_level(struct pp_hwmgr *hwmgr,
3223 enum amd_dpm_forced_level level)
3224 {
3225 int ret = 0;
3226
3227 switch (level) {
3228 case AMD_DPM_FORCED_LEVEL_HIGH:
3229 ret = polaris10_force_dpm_highest(hwmgr);
3230 if (ret)
3231 return ret;
3232 break;
3233 case AMD_DPM_FORCED_LEVEL_LOW:
3234 ret = polaris10_force_dpm_lowest(hwmgr);
3235 if (ret)
3236 return ret;
3237 break;
3238 case AMD_DPM_FORCED_LEVEL_AUTO:
3239 ret = polaris10_unforce_dpm_levels(hwmgr);
3240 if (ret)
3241 return ret;
3242 break;
3243 default:
3244 break;
3245 }
3246
3247 hwmgr->dpm_level = level;
3248
3249 return ret;
3250 }
3251
3252 static int polaris10_get_power_state_size(struct pp_hwmgr *hwmgr)
3253 {
3254 return sizeof(struct polaris10_power_state);
3255 }
3256
3257
3258 static int polaris10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3259 struct pp_power_state *request_ps,
3260 const struct pp_power_state *current_ps)
3261 {
3262
3263 struct polaris10_power_state *polaris10_ps =
3264 cast_phw_polaris10_power_state(&request_ps->hardware);
3265 uint32_t sclk;
3266 uint32_t mclk;
3267 struct PP_Clocks minimum_clocks = {0};
3268 bool disable_mclk_switching;
3269 bool disable_mclk_switching_for_frame_lock;
3270 struct cgs_display_info info = {0};
3271 const struct phm_clock_and_voltage_limits *max_limits;
3272 uint32_t i;
3273 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3274 struct phm_ppt_v1_information *table_info =
3275 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3276 int32_t count;
3277 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3278
3279 data->battery_state = (PP_StateUILabel_Battery ==
3280 request_ps->classification.ui_label);
3281
3282 PP_ASSERT_WITH_CODE(polaris10_ps->performance_level_count == 2,
3283 "VI should always have 2 performance levels",
3284 );
3285
3286 max_limits = (PP_PowerSource_AC == hwmgr->power_source) ?
3287 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3288 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3289
3290 /* Cap clock DPM tables at DC MAX if it is in DC. */
3291 if (PP_PowerSource_DC == hwmgr->power_source) {
3292 for (i = 0; i < polaris10_ps->performance_level_count; i++) {
3293 if (polaris10_ps->performance_levels[i].memory_clock > max_limits->mclk)
3294 polaris10_ps->performance_levels[i].memory_clock = max_limits->mclk;
3295 if (polaris10_ps->performance_levels[i].engine_clock > max_limits->sclk)
3296 polaris10_ps->performance_levels[i].engine_clock = max_limits->sclk;
3297 }
3298 }
3299
3300 polaris10_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk;
3301 polaris10_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk;
3302
3303 cgs_get_active_displays_info(hwmgr->device, &info);
3304
3305 /*TO DO result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/
3306
3307 /* TO DO GetMinClockSettings(hwmgr->pPECI, &minimum_clocks); */
3308
3309 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3310 PHM_PlatformCaps_StablePState)) {
3311 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3312 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3313
3314 for (count = table_info->vdd_dep_on_sclk->count - 1;
3315 count >= 0; count--) {
3316 if (stable_pstate_sclk >=
3317 table_info->vdd_dep_on_sclk->entries[count].clk) {
3318 stable_pstate_sclk =
3319 table_info->vdd_dep_on_sclk->entries[count].clk;
3320 break;
3321 }
3322 }
3323
3324 if (count < 0)
3325 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3326
3327 stable_pstate_mclk = max_limits->mclk;
3328
3329 minimum_clocks.engineClock = stable_pstate_sclk;
3330 minimum_clocks.memoryClock = stable_pstate_mclk;
3331 }
3332
3333 if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk)
3334 minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk;
3335
3336 if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk)
3337 minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk;
3338
3339 polaris10_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold;
3340
3341 if (0 != hwmgr->gfx_arbiter.sclk_over_drive) {
3342 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <=
3343 hwmgr->platform_descriptor.overdriveLimit.engineClock),
3344 "Overdrive sclk exceeds limit",
3345 hwmgr->gfx_arbiter.sclk_over_drive =
3346 hwmgr->platform_descriptor.overdriveLimit.engineClock);
3347
3348 if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk)
3349 polaris10_ps->performance_levels[1].engine_clock =
3350 hwmgr->gfx_arbiter.sclk_over_drive;
3351 }
3352
3353 if (0 != hwmgr->gfx_arbiter.mclk_over_drive) {
3354 PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <=
3355 hwmgr->platform_descriptor.overdriveLimit.memoryClock),
3356 "Overdrive mclk exceeds limit",
3357 hwmgr->gfx_arbiter.mclk_over_drive =
3358 hwmgr->platform_descriptor.overdriveLimit.memoryClock);
3359
3360 if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk)
3361 polaris10_ps->performance_levels[1].memory_clock =
3362 hwmgr->gfx_arbiter.mclk_over_drive;
3363 }
3364
3365 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3366 hwmgr->platform_descriptor.platformCaps,
3367 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3368
3369 disable_mclk_switching = (1 < info.display_count) ||
3370 disable_mclk_switching_for_frame_lock;
3371
3372 sclk = polaris10_ps->performance_levels[0].engine_clock;
3373 mclk = polaris10_ps->performance_levels[0].memory_clock;
3374
3375 if (disable_mclk_switching)
3376 mclk = polaris10_ps->performance_levels
3377 [polaris10_ps->performance_level_count - 1].memory_clock;
3378
3379 if (sclk < minimum_clocks.engineClock)
3380 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3381 max_limits->sclk : minimum_clocks.engineClock;
3382
3383 if (mclk < minimum_clocks.memoryClock)
3384 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3385 max_limits->mclk : minimum_clocks.memoryClock;
3386
3387 polaris10_ps->performance_levels[0].engine_clock = sclk;
3388 polaris10_ps->performance_levels[0].memory_clock = mclk;
3389
3390 polaris10_ps->performance_levels[1].engine_clock =
3391 (polaris10_ps->performance_levels[1].engine_clock >=
3392 polaris10_ps->performance_levels[0].engine_clock) ?
3393 polaris10_ps->performance_levels[1].engine_clock :
3394 polaris10_ps->performance_levels[0].engine_clock;
3395
3396 if (disable_mclk_switching) {
3397 if (mclk < polaris10_ps->performance_levels[1].memory_clock)
3398 mclk = polaris10_ps->performance_levels[1].memory_clock;
3399
3400 polaris10_ps->performance_levels[0].memory_clock = mclk;
3401 polaris10_ps->performance_levels[1].memory_clock = mclk;
3402 } else {
3403 if (polaris10_ps->performance_levels[1].memory_clock <
3404 polaris10_ps->performance_levels[0].memory_clock)
3405 polaris10_ps->performance_levels[1].memory_clock =
3406 polaris10_ps->performance_levels[0].memory_clock;
3407 }
3408
3409 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3410 PHM_PlatformCaps_StablePState)) {
3411 for (i = 0; i < polaris10_ps->performance_level_count; i++) {
3412 polaris10_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3413 polaris10_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3414 polaris10_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3415 polaris10_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3416 }
3417 }
3418 return 0;
3419 }
3420
3421
3422 static int polaris10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3423 {
3424 struct pp_power_state *ps;
3425 struct polaris10_power_state *polaris10_ps;
3426
3427 if (hwmgr == NULL)
3428 return -EINVAL;
3429
3430 ps = hwmgr->request_ps;
3431
3432 if (ps == NULL)
3433 return -EINVAL;
3434
3435 polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
3436
3437 if (low)
3438 return polaris10_ps->performance_levels[0].memory_clock;
3439 else
3440 return polaris10_ps->performance_levels
3441 [polaris10_ps->performance_level_count-1].memory_clock;
3442 }
3443
3444 static int polaris10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3445 {
3446 struct pp_power_state *ps;
3447 struct polaris10_power_state *polaris10_ps;
3448
3449 if (hwmgr == NULL)
3450 return -EINVAL;
3451
3452 ps = hwmgr->request_ps;
3453
3454 if (ps == NULL)
3455 return -EINVAL;
3456
3457 polaris10_ps = cast_phw_polaris10_power_state(&ps->hardware);
3458
3459 if (low)
3460 return polaris10_ps->performance_levels[0].engine_clock;
3461 else
3462 return polaris10_ps->performance_levels
3463 [polaris10_ps->performance_level_count-1].engine_clock;
3464 }
3465
3466 static int polaris10_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3467 struct pp_hw_power_state *hw_ps)
3468 {
3469 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3470 struct polaris10_power_state *ps = (struct polaris10_power_state *)hw_ps;
3471 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3472 uint16_t size;
3473 uint8_t frev, crev;
3474 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3475
3476 /* First retrieve the Boot clocks and VDDC from the firmware info table.
3477 * We assume here that fw_info is unchanged if this call fails.
3478 */
3479 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table(
3480 hwmgr->device, index,
3481 &size, &frev, &crev);
3482 if (!fw_info)
3483 /* During a test, there is no firmware info table. */
3484 return 0;
3485
3486 /* Patch the state. */
3487 data->vbios_boot_state.sclk_bootup_value =
3488 le32_to_cpu(fw_info->ulDefaultEngineClock);
3489 data->vbios_boot_state.mclk_bootup_value =
3490 le32_to_cpu(fw_info->ulDefaultMemoryClock);
3491 data->vbios_boot_state.mvdd_bootup_value =
3492 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3493 data->vbios_boot_state.vddc_bootup_value =
3494 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3495 data->vbios_boot_state.vddci_bootup_value =
3496 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3497 data->vbios_boot_state.pcie_gen_bootup_value =
3498 phm_get_current_pcie_speed(hwmgr);
3499
3500 data->vbios_boot_state.pcie_lane_bootup_value =
3501 (uint16_t)phm_get_current_pcie_lane_number(hwmgr);
3502
3503 /* set boot power state */
3504 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3505 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3506 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3507 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3508
3509 return 0;
3510 }
3511
3512 static int polaris10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr,
3513 void *state, struct pp_power_state *power_state,
3514 void *pp_table, uint32_t classification_flag)
3515 {
3516 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3517 struct polaris10_power_state *polaris10_power_state =
3518 (struct polaris10_power_state *)(&(power_state->hardware));
3519 struct polaris10_performance_level *performance_level;
3520 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3521 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3522 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3523 ATOM_Tonga_SCLK_Dependency_Table *sclk_dep_table =
3524 (ATOM_Tonga_SCLK_Dependency_Table *)
3525 (((unsigned long)powerplay_table) +
3526 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3527 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3528 (ATOM_Tonga_MCLK_Dependency_Table *)
3529 (((unsigned long)powerplay_table) +
3530 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3531
3532 /* The following fields are not initialized here: id orderedList allStatesList */
3533 power_state->classification.ui_label =
3534 (le16_to_cpu(state_entry->usClassification) &
3535 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3536 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3537 power_state->classification.flags = classification_flag;
3538 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3539
3540 power_state->classification.temporary_state = false;
3541 power_state->classification.to_be_deleted = false;
3542
3543 power_state->validation.disallowOnDC =
3544 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3545 ATOM_Tonga_DISALLOW_ON_DC));
3546
3547 power_state->pcie.lanes = 0;
3548
3549 power_state->display.disableFrameModulation = false;
3550 power_state->display.limitRefreshrate = false;
3551 power_state->display.enableVariBright =
3552 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3553 ATOM_Tonga_ENABLE_VARIBRIGHT));
3554
3555 power_state->validation.supportedPowerLevels = 0;
3556 power_state->uvd_clocks.VCLK = 0;
3557 power_state->uvd_clocks.DCLK = 0;
3558 power_state->temperatures.min = 0;
3559 power_state->temperatures.max = 0;
3560
3561 performance_level = &(polaris10_power_state->performance_levels
3562 [polaris10_power_state->performance_level_count++]);
3563
3564 PP_ASSERT_WITH_CODE(
3565 (polaris10_power_state->performance_level_count < SMU74_MAX_LEVELS_GRAPHICS),
3566 "Performance levels exceeds SMC limit!",
3567 return -1);
3568
3569 PP_ASSERT_WITH_CODE(
3570 (polaris10_power_state->performance_level_count <=
3571 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3572 "Performance levels exceeds Driver limit!",
3573 return -1);
3574
3575 /* Performance levels are arranged from low to high. */
3576 performance_level->memory_clock = mclk_dep_table->entries
3577 [state_entry->ucMemoryClockIndexLow].ulMclk;
3578 performance_level->engine_clock = sclk_dep_table->entries
3579 [state_entry->ucEngineClockIndexLow].ulSclk;
3580 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3581 state_entry->ucPCIEGenLow);
3582 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3583 state_entry->ucPCIELaneHigh);
3584
3585 performance_level = &(polaris10_power_state->performance_levels
3586 [polaris10_power_state->performance_level_count++]);
3587 performance_level->memory_clock = mclk_dep_table->entries
3588 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3589 performance_level->engine_clock = sclk_dep_table->entries
3590 [state_entry->ucEngineClockIndexHigh].ulSclk;
3591 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3592 state_entry->ucPCIEGenHigh);
3593 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3594 state_entry->ucPCIELaneHigh);
3595
3596 return 0;
3597 }
3598
3599 static int polaris10_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3600 unsigned long entry_index, struct pp_power_state *state)
3601 {
3602 int result;
3603 struct polaris10_power_state *ps;
3604 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3605 struct phm_ppt_v1_information *table_info =
3606 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3607 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3608 table_info->vdd_dep_on_mclk;
3609
3610 state->hardware.magic = PHM_VIslands_Magic;
3611
3612 ps = (struct polaris10_power_state *)(&state->hardware);
3613
3614 result = tonga_get_powerplay_table_entry(hwmgr, entry_index, state,
3615 polaris10_get_pp_table_entry_callback_func);
3616
3617 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3618 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3619 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3620 */
3621 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3622 if (dep_mclk_table->entries[0].clk !=
3623 data->vbios_boot_state.mclk_bootup_value)
3624 printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table "
3625 "does not match VBIOS boot MCLK level");
3626 if (dep_mclk_table->entries[0].vddci !=
3627 data->vbios_boot_state.vddci_bootup_value)
3628 printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table "
3629 "does not match VBIOS boot VDDCI level");
3630 }
3631
3632 /* set DC compatible flag if this state supports DC */
3633 if (!state->validation.disallowOnDC)
3634 ps->dc_compatible = true;
3635
3636 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3637 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3638
3639 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3640 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3641
3642 if (!result) {
3643 uint32_t i;
3644
3645 switch (state->classification.ui_label) {
3646 case PP_StateUILabel_Performance:
3647 data->use_pcie_performance_levels = true;
3648
3649 for (i = 0; i < ps->performance_level_count; i++) {
3650 if (data->pcie_gen_performance.max <
3651 ps->performance_levels[i].pcie_gen)
3652 data->pcie_gen_performance.max =
3653 ps->performance_levels[i].pcie_gen;
3654
3655 if (data->pcie_gen_performance.min >
3656 ps->performance_levels[i].pcie_gen)
3657 data->pcie_gen_performance.min =
3658 ps->performance_levels[i].pcie_gen;
3659
3660 if (data->pcie_lane_performance.max <
3661 ps->performance_levels[i].pcie_lane)
3662 data->pcie_lane_performance.max =
3663 ps->performance_levels[i].pcie_lane;
3664
3665 if (data->pcie_lane_performance.min >
3666 ps->performance_levels[i].pcie_lane)
3667 data->pcie_lane_performance.min =
3668 ps->performance_levels[i].pcie_lane;
3669 }
3670 break;
3671 case PP_StateUILabel_Battery:
3672 data->use_pcie_power_saving_levels = true;
3673
3674 for (i = 0; i < ps->performance_level_count; i++) {
3675 if (data->pcie_gen_power_saving.max <
3676 ps->performance_levels[i].pcie_gen)
3677 data->pcie_gen_power_saving.max =
3678 ps->performance_levels[i].pcie_gen;
3679
3680 if (data->pcie_gen_power_saving.min >
3681 ps->performance_levels[i].pcie_gen)
3682 data->pcie_gen_power_saving.min =
3683 ps->performance_levels[i].pcie_gen;
3684
3685 if (data->pcie_lane_power_saving.max <
3686 ps->performance_levels[i].pcie_lane)
3687 data->pcie_lane_power_saving.max =
3688 ps->performance_levels[i].pcie_lane;
3689
3690 if (data->pcie_lane_power_saving.min >
3691 ps->performance_levels[i].pcie_lane)
3692 data->pcie_lane_power_saving.min =
3693 ps->performance_levels[i].pcie_lane;
3694 }
3695 break;
3696 default:
3697 break;
3698 }
3699 }
3700 return 0;
3701 }
3702
3703 static void
3704 polaris10_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m)
3705 {
3706 uint32_t sclk, mclk, activity_percent;
3707 uint32_t offset;
3708 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3709
3710 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
3711
3712 sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3713
3714 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
3715
3716 mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
3717 seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n",
3718 mclk / 100, sclk / 100);
3719
3720 offset = data->soft_regs_start + offsetof(SMU74_SoftRegisters, AverageGraphicsActivity);
3721 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
3722 activity_percent += 0x80;
3723 activity_percent >>= 8;
3724
3725 seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent);
3726
3727 seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en");
3728
3729 seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en");
3730 }
3731
3732 static int polaris10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
3733 {
3734 const struct phm_set_power_state_input *states =
3735 (const struct phm_set_power_state_input *)input;
3736 const struct polaris10_power_state *polaris10_ps =
3737 cast_const_phw_polaris10_power_state(states->pnew_state);
3738 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3739 struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
3740 uint32_t sclk = polaris10_ps->performance_levels
3741 [polaris10_ps->performance_level_count - 1].engine_clock;
3742 struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
3743 uint32_t mclk = polaris10_ps->performance_levels
3744 [polaris10_ps->performance_level_count - 1].memory_clock;
3745 struct PP_Clocks min_clocks = {0};
3746 uint32_t i;
3747 struct cgs_display_info info = {0};
3748
3749 data->need_update_smu7_dpm_table = 0;
3750
3751 for (i = 0; i < sclk_table->count; i++) {
3752 if (sclk == sclk_table->dpm_levels[i].value)
3753 break;
3754 }
3755
3756 if (i >= sclk_table->count)
3757 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
3758 else {
3759 /* TODO: Check SCLK in DAL's minimum clocks
3760 * in case DeepSleep divider update is required.
3761 */
3762 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
3763 (min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
3764 data->display_timing.min_clock_in_sr >= POLARIS10_MINIMUM_ENGINE_CLOCK))
3765 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
3766 }
3767
3768 for (i = 0; i < mclk_table->count; i++) {
3769 if (mclk == mclk_table->dpm_levels[i].value)
3770 break;
3771 }
3772
3773 if (i >= mclk_table->count)
3774 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
3775
3776 cgs_get_active_displays_info(hwmgr->device, &info);
3777
3778 if (data->display_timing.num_existing_displays != info.display_count)
3779 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
3780
3781 return 0;
3782 }
3783
3784 static uint16_t polaris10_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
3785 const struct polaris10_power_state *polaris10_ps)
3786 {
3787 uint32_t i;
3788 uint32_t sclk, max_sclk = 0;
3789 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3790 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
3791
3792 for (i = 0; i < polaris10_ps->performance_level_count; i++) {
3793 sclk = polaris10_ps->performance_levels[i].engine_clock;
3794 if (max_sclk < sclk)
3795 max_sclk = sclk;
3796 }
3797
3798 for (i = 0; i < dpm_table->sclk_table.count; i++) {
3799 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
3800 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
3801 dpm_table->pcie_speed_table.dpm_levels
3802 [dpm_table->pcie_speed_table.count - 1].value :
3803 dpm_table->pcie_speed_table.dpm_levels[i].value);
3804 }
3805
3806 return 0;
3807 }
3808
3809 static int polaris10_request_link_speed_change_before_state_change(
3810 struct pp_hwmgr *hwmgr, const void *input)
3811 {
3812 const struct phm_set_power_state_input *states =
3813 (const struct phm_set_power_state_input *)input;
3814 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3815 const struct polaris10_power_state *polaris10_nps =
3816 cast_const_phw_polaris10_power_state(states->pnew_state);
3817 const struct polaris10_power_state *polaris10_cps =
3818 cast_const_phw_polaris10_power_state(states->pcurrent_state);
3819
3820 uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_nps);
3821 uint16_t current_link_speed;
3822
3823 if (data->force_pcie_gen == PP_PCIEGenInvalid)
3824 current_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_cps);
3825 else
3826 current_link_speed = data->force_pcie_gen;
3827
3828 data->force_pcie_gen = PP_PCIEGenInvalid;
3829 data->pspp_notify_required = false;
3830
3831 if (target_link_speed > current_link_speed) {
3832 switch (target_link_speed) {
3833 case PP_PCIEGen3:
3834 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false))
3835 break;
3836 data->force_pcie_gen = PP_PCIEGen2;
3837 if (current_link_speed == PP_PCIEGen2)
3838 break;
3839 case PP_PCIEGen2:
3840 if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false))
3841 break;
3842 default:
3843 data->force_pcie_gen = phm_get_current_pcie_speed(hwmgr);
3844 break;
3845 }
3846 } else {
3847 if (target_link_speed < current_link_speed)
3848 data->pspp_notify_required = true;
3849 }
3850
3851 return 0;
3852 }
3853
3854 static int polaris10_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
3855 {
3856 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3857
3858 if (0 == data->need_update_smu7_dpm_table)
3859 return 0;
3860
3861 if ((0 == data->sclk_dpm_key_disabled) &&
3862 (data->need_update_smu7_dpm_table &
3863 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
3864 PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
3865 "Trying to freeze SCLK DPM when DPM is disabled",
3866 );
3867 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3868 PPSMC_MSG_SCLKDPM_FreezeLevel),
3869 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
3870 return -1);
3871 }
3872
3873 if ((0 == data->mclk_dpm_key_disabled) &&
3874 (data->need_update_smu7_dpm_table &
3875 DPMTABLE_OD_UPDATE_MCLK)) {
3876 PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
3877 "Trying to freeze MCLK DPM when DPM is disabled",
3878 );
3879 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
3880 PPSMC_MSG_MCLKDPM_FreezeLevel),
3881 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
3882 return -1);
3883 }
3884
3885 return 0;
3886 }
3887
3888 static int polaris10_populate_and_upload_sclk_mclk_dpm_levels(
3889 struct pp_hwmgr *hwmgr, const void *input)
3890 {
3891 int result = 0;
3892 const struct phm_set_power_state_input *states =
3893 (const struct phm_set_power_state_input *)input;
3894 const struct polaris10_power_state *polaris10_ps =
3895 cast_const_phw_polaris10_power_state(states->pnew_state);
3896 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
3897 uint32_t sclk = polaris10_ps->performance_levels
3898 [polaris10_ps->performance_level_count - 1].engine_clock;
3899 uint32_t mclk = polaris10_ps->performance_levels
3900 [polaris10_ps->performance_level_count - 1].memory_clock;
3901 struct polaris10_dpm_table *dpm_table = &data->dpm_table;
3902
3903 struct polaris10_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3904 uint32_t dpm_count, clock_percent;
3905 uint32_t i;
3906
3907 if (0 == data->need_update_smu7_dpm_table)
3908 return 0;
3909
3910 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
3911 dpm_table->sclk_table.dpm_levels
3912 [dpm_table->sclk_table.count - 1].value = sclk;
3913
3914 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
3915 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
3916 /* Need to do calculation based on the golden DPM table
3917 * as the Heatmap GPU Clock axis is also based on the default values
3918 */
3919 PP_ASSERT_WITH_CODE(
3920 (golden_dpm_table->sclk_table.dpm_levels
3921 [golden_dpm_table->sclk_table.count - 1].value != 0),
3922 "Divide by 0!",
3923 return -1);
3924 dpm_count = dpm_table->sclk_table.count < 2 ? 0 : dpm_table->sclk_table.count - 2;
3925
3926 for (i = dpm_count; i > 1; i--) {
3927 if (sclk > golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value) {
3928 clock_percent =
3929 ((sclk
3930 - golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value
3931 ) * 100)
3932 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
3933
3934 dpm_table->sclk_table.dpm_levels[i].value =
3935 golden_dpm_table->sclk_table.dpm_levels[i].value +
3936 (golden_dpm_table->sclk_table.dpm_levels[i].value *
3937 clock_percent)/100;
3938
3939 } else if (golden_dpm_table->sclk_table.dpm_levels[dpm_table->sclk_table.count-1].value > sclk) {
3940 clock_percent =
3941 ((golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value
3942 - sclk) * 100)
3943 / golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count-1].value;
3944
3945 dpm_table->sclk_table.dpm_levels[i].value =
3946 golden_dpm_table->sclk_table.dpm_levels[i].value -
3947 (golden_dpm_table->sclk_table.dpm_levels[i].value *
3948 clock_percent) / 100;
3949 } else
3950 dpm_table->sclk_table.dpm_levels[i].value =
3951 golden_dpm_table->sclk_table.dpm_levels[i].value;
3952 }
3953 }
3954 }
3955
3956 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
3957 dpm_table->mclk_table.dpm_levels
3958 [dpm_table->mclk_table.count - 1].value = mclk;
3959
3960 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) ||
3961 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) {
3962
3963 PP_ASSERT_WITH_CODE(
3964 (golden_dpm_table->mclk_table.dpm_levels
3965 [golden_dpm_table->mclk_table.count-1].value != 0),
3966 "Divide by 0!",
3967 return -1);
3968 dpm_count = dpm_table->mclk_table.count < 2 ? 0 : dpm_table->mclk_table.count - 2;
3969 for (i = dpm_count; i > 1; i--) {
3970 if (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value < mclk) {
3971 clock_percent = ((mclk -
3972 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value) * 100)
3973 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
3974
3975 dpm_table->mclk_table.dpm_levels[i].value =
3976 golden_dpm_table->mclk_table.dpm_levels[i].value +
3977 (golden_dpm_table->mclk_table.dpm_levels[i].value *
3978 clock_percent) / 100;
3979
3980 } else if (golden_dpm_table->mclk_table.dpm_levels[dpm_table->mclk_table.count-1].value > mclk) {
3981 clock_percent = (
3982 (golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value - mclk)
3983 * 100)
3984 / golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count-1].value;
3985
3986 dpm_table->mclk_table.dpm_levels[i].value =
3987 golden_dpm_table->mclk_table.dpm_levels[i].value -
3988 (golden_dpm_table->mclk_table.dpm_levels[i].value *
3989 clock_percent) / 100;
3990 } else
3991 dpm_table->mclk_table.dpm_levels[i].value =
3992 golden_dpm_table->mclk_table.dpm_levels[i].value;
3993 }
3994 }
3995 }
3996
3997 if (data->need_update_smu7_dpm_table &
3998 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) {
3999 result = polaris10_populate_all_graphic_levels(hwmgr);
4000 PP_ASSERT_WITH_CODE((0 == result),
4001 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4002 return result);
4003 }
4004
4005 if (data->need_update_smu7_dpm_table &
4006 (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) {
4007 /*populate MCLK dpm table to SMU7 */
4008 result = polaris10_populate_all_memory_levels(hwmgr);
4009 PP_ASSERT_WITH_CODE((0 == result),
4010 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4011 return result);
4012 }
4013
4014 return result;
4015 }
4016
4017 static int polaris10_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4018 struct polaris10_single_dpm_table *dpm_table,
4019 uint32_t low_limit, uint32_t high_limit)
4020 {
4021 uint32_t i;
4022
4023 for (i = 0; i < dpm_table->count; i++) {
4024 if ((dpm_table->dpm_levels[i].value < low_limit)
4025 || (dpm_table->dpm_levels[i].value > high_limit))
4026 dpm_table->dpm_levels[i].enabled = false;
4027 else
4028 dpm_table->dpm_levels[i].enabled = true;
4029 }
4030
4031 return 0;
4032 }
4033
4034 static int polaris10_trim_dpm_states(struct pp_hwmgr *hwmgr,
4035 const struct polaris10_power_state *polaris10_ps)
4036 {
4037 int result = 0;
4038 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4039 uint32_t high_limit_count;
4040
4041 PP_ASSERT_WITH_CODE((polaris10_ps->performance_level_count >= 1),
4042 "power state did not have any performance level",
4043 return -1);
4044
4045 high_limit_count = (1 == polaris10_ps->performance_level_count) ? 0 : 1;
4046
4047 polaris10_trim_single_dpm_states(hwmgr,
4048 &(data->dpm_table.sclk_table),
4049 polaris10_ps->performance_levels[0].engine_clock,
4050 polaris10_ps->performance_levels[high_limit_count].engine_clock);
4051
4052 polaris10_trim_single_dpm_states(hwmgr,
4053 &(data->dpm_table.mclk_table),
4054 polaris10_ps->performance_levels[0].memory_clock,
4055 polaris10_ps->performance_levels[high_limit_count].memory_clock);
4056
4057 return result;
4058 }
4059
4060 static int polaris10_generate_dpm_level_enable_mask(
4061 struct pp_hwmgr *hwmgr, const void *input)
4062 {
4063 int result;
4064 const struct phm_set_power_state_input *states =
4065 (const struct phm_set_power_state_input *)input;
4066 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4067 const struct polaris10_power_state *polaris10_ps =
4068 cast_const_phw_polaris10_power_state(states->pnew_state);
4069
4070 result = polaris10_trim_dpm_states(hwmgr, polaris10_ps);
4071 if (result)
4072 return result;
4073
4074 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4075 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4076 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4077 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4078 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4079 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4080
4081 return 0;
4082 }
4083
4084 int polaris10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable)
4085 {
4086 return smum_send_msg_to_smc(hwmgr->smumgr, enable ?
4087 PPSMC_MSG_UVDDPM_Enable :
4088 PPSMC_MSG_UVDDPM_Disable);
4089 }
4090
4091 int polaris10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable)
4092 {
4093 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4094 PPSMC_MSG_VCEDPM_Enable :
4095 PPSMC_MSG_VCEDPM_Disable);
4096 }
4097
4098 int polaris10_enable_disable_samu_dpm(struct pp_hwmgr *hwmgr, bool enable)
4099 {
4100 return smum_send_msg_to_smc(hwmgr->smumgr, enable?
4101 PPSMC_MSG_SAMUDPM_Enable :
4102 PPSMC_MSG_SAMUDPM_Disable);
4103 }
4104
4105 int polaris10_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4106 {
4107 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4108 uint32_t mm_boot_level_offset, mm_boot_level_value;
4109 struct phm_ppt_v1_information *table_info =
4110 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4111
4112 if (!bgate) {
4113 data->smc_state_table.UvdBootLevel = 0;
4114 if (table_info->mm_dep_table->count > 0)
4115 data->smc_state_table.UvdBootLevel =
4116 (uint8_t) (table_info->mm_dep_table->count - 1);
4117 mm_boot_level_offset = data->dpm_table_start +
4118 offsetof(SMU74_Discrete_DpmTable, UvdBootLevel);
4119 mm_boot_level_offset /= 4;
4120 mm_boot_level_offset *= 4;
4121 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4122 CGS_IND_REG__SMC, mm_boot_level_offset);
4123 mm_boot_level_value &= 0x00FFFFFF;
4124 mm_boot_level_value |= data->smc_state_table.UvdBootLevel << 24;
4125 cgs_write_ind_register(hwmgr->device,
4126 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4127
4128 if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4129 PHM_PlatformCaps_UVDDPM) ||
4130 phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4131 PHM_PlatformCaps_StablePState))
4132 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4133 PPSMC_MSG_UVDDPM_SetEnabledMask,
4134 (uint32_t)(1 << data->smc_state_table.UvdBootLevel));
4135 }
4136
4137 return polaris10_enable_disable_uvd_dpm(hwmgr, !bgate);
4138 }
4139
4140 static int polaris10_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input)
4141 {
4142 const struct phm_set_power_state_input *states =
4143 (const struct phm_set_power_state_input *)input;
4144 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4145 const struct polaris10_power_state *polaris10_nps =
4146 cast_const_phw_polaris10_power_state(states->pnew_state);
4147 const struct polaris10_power_state *polaris10_cps =
4148 cast_const_phw_polaris10_power_state(states->pcurrent_state);
4149
4150 uint32_t mm_boot_level_offset, mm_boot_level_value;
4151 struct phm_ppt_v1_information *table_info =
4152 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4153
4154 if (polaris10_nps->vce_clks.evclk > 0 &&
4155 (polaris10_cps == NULL || polaris10_cps->vce_clks.evclk == 0)) {
4156
4157 data->smc_state_table.VceBootLevel =
4158 (uint8_t) (table_info->mm_dep_table->count - 1);
4159
4160 mm_boot_level_offset = data->dpm_table_start +
4161 offsetof(SMU74_Discrete_DpmTable, VceBootLevel);
4162 mm_boot_level_offset /= 4;
4163 mm_boot_level_offset *= 4;
4164 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4165 CGS_IND_REG__SMC, mm_boot_level_offset);
4166 mm_boot_level_value &= 0xFF00FFFF;
4167 mm_boot_level_value |= data->smc_state_table.VceBootLevel << 16;
4168 cgs_write_ind_register(hwmgr->device,
4169 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4170
4171 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) {
4172 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4173 PPSMC_MSG_VCEDPM_SetEnabledMask,
4174 (uint32_t)1 << data->smc_state_table.VceBootLevel);
4175
4176 polaris10_enable_disable_vce_dpm(hwmgr, true);
4177 } else if (polaris10_nps->vce_clks.evclk == 0 &&
4178 polaris10_cps != NULL &&
4179 polaris10_cps->vce_clks.evclk > 0)
4180 polaris10_enable_disable_vce_dpm(hwmgr, false);
4181 }
4182
4183 return 0;
4184 }
4185
4186 int polaris10_update_samu_dpm(struct pp_hwmgr *hwmgr, bool bgate)
4187 {
4188 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4189 uint32_t mm_boot_level_offset, mm_boot_level_value;
4190 struct phm_ppt_v1_information *table_info =
4191 (struct phm_ppt_v1_information *)(hwmgr->pptable);
4192
4193 if (!bgate) {
4194 data->smc_state_table.SamuBootLevel =
4195 (uint8_t) (table_info->mm_dep_table->count - 1);
4196 mm_boot_level_offset = data->dpm_table_start +
4197 offsetof(SMU74_Discrete_DpmTable, SamuBootLevel);
4198 mm_boot_level_offset /= 4;
4199 mm_boot_level_offset *= 4;
4200 mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
4201 CGS_IND_REG__SMC, mm_boot_level_offset);
4202 mm_boot_level_value &= 0xFFFFFF00;
4203 mm_boot_level_value |= data->smc_state_table.SamuBootLevel << 0;
4204 cgs_write_ind_register(hwmgr->device,
4205 CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
4206
4207 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4208 PHM_PlatformCaps_StablePState))
4209 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4210 PPSMC_MSG_SAMUDPM_SetEnabledMask,
4211 (uint32_t)(1 << data->smc_state_table.SamuBootLevel));
4212 }
4213
4214 return polaris10_enable_disable_samu_dpm(hwmgr, !bgate);
4215 }
4216
4217 static int polaris10_update_sclk_threshold(struct pp_hwmgr *hwmgr)
4218 {
4219 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4220
4221 int result = 0;
4222 uint32_t low_sclk_interrupt_threshold = 0;
4223
4224 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4225 PHM_PlatformCaps_SclkThrottleLowNotification)
4226 && (hwmgr->gfx_arbiter.sclk_threshold !=
4227 data->low_sclk_interrupt_threshold)) {
4228 data->low_sclk_interrupt_threshold =
4229 hwmgr->gfx_arbiter.sclk_threshold;
4230 low_sclk_interrupt_threshold =
4231 data->low_sclk_interrupt_threshold;
4232
4233 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
4234
4235 result = polaris10_copy_bytes_to_smc(
4236 hwmgr->smumgr,
4237 data->dpm_table_start +
4238 offsetof(SMU74_Discrete_DpmTable,
4239 LowSclkInterruptThreshold),
4240 (uint8_t *)&low_sclk_interrupt_threshold,
4241 sizeof(uint32_t),
4242 data->sram_end);
4243 }
4244
4245 return result;
4246 }
4247
4248 static int polaris10_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
4249 {
4250 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4251
4252 if (data->need_update_smu7_dpm_table &
4253 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
4254 return polaris10_program_memory_timing_parameters(hwmgr);
4255
4256 return 0;
4257 }
4258
4259 static int polaris10_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4260 {
4261 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4262
4263 if (0 == data->need_update_smu7_dpm_table)
4264 return 0;
4265
4266 if ((0 == data->sclk_dpm_key_disabled) &&
4267 (data->need_update_smu7_dpm_table &
4268 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) {
4269
4270 PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
4271 "Trying to Unfreeze SCLK DPM when DPM is disabled",
4272 );
4273 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4274 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4275 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4276 return -1);
4277 }
4278
4279 if ((0 == data->mclk_dpm_key_disabled) &&
4280 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4281
4282 PP_ASSERT_WITH_CODE(true == polaris10_is_dpm_running(hwmgr),
4283 "Trying to Unfreeze MCLK DPM when DPM is disabled",
4284 );
4285 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr->smumgr,
4286 PPSMC_MSG_SCLKDPM_UnfreezeLevel),
4287 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4288 return -1);
4289 }
4290
4291 data->need_update_smu7_dpm_table = 0;
4292
4293 return 0;
4294 }
4295
4296 static int polaris10_notify_link_speed_change_after_state_change(
4297 struct pp_hwmgr *hwmgr, const void *input)
4298 {
4299 const struct phm_set_power_state_input *states =
4300 (const struct phm_set_power_state_input *)input;
4301 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4302 const struct polaris10_power_state *polaris10_ps =
4303 cast_const_phw_polaris10_power_state(states->pnew_state);
4304 uint16_t target_link_speed = polaris10_get_maximum_link_speed(hwmgr, polaris10_ps);
4305 uint8_t request;
4306
4307 if (data->pspp_notify_required) {
4308 if (target_link_speed == PP_PCIEGen3)
4309 request = PCIE_PERF_REQ_GEN3;
4310 else if (target_link_speed == PP_PCIEGen2)
4311 request = PCIE_PERF_REQ_GEN2;
4312 else
4313 request = PCIE_PERF_REQ_GEN1;
4314
4315 if (request == PCIE_PERF_REQ_GEN1 &&
4316 phm_get_current_pcie_speed(hwmgr) > 0)
4317 return 0;
4318
4319 if (acpi_pcie_perf_request(hwmgr->device, request, false)) {
4320 if (PP_PCIEGen2 == target_link_speed)
4321 printk("PSPP request to switch to Gen2 from Gen3 Failed!");
4322 else
4323 printk("PSPP request to switch to Gen1 from Gen2 Failed!");
4324 }
4325 }
4326
4327 return 0;
4328 }
4329
4330 static int polaris10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4331 {
4332 int tmp_result, result = 0;
4333 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4334
4335 tmp_result = polaris10_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4336 PP_ASSERT_WITH_CODE((0 == tmp_result),
4337 "Failed to find DPM states clocks in DPM table!",
4338 result = tmp_result);
4339
4340 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4341 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4342 tmp_result =
4343 polaris10_request_link_speed_change_before_state_change(hwmgr, input);
4344 PP_ASSERT_WITH_CODE((0 == tmp_result),
4345 "Failed to request link speed change before state change!",
4346 result = tmp_result);
4347 }
4348
4349 tmp_result = polaris10_freeze_sclk_mclk_dpm(hwmgr);
4350 PP_ASSERT_WITH_CODE((0 == tmp_result),
4351 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4352
4353 tmp_result = polaris10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4354 PP_ASSERT_WITH_CODE((0 == tmp_result),
4355 "Failed to populate and upload SCLK MCLK DPM levels!",
4356 result = tmp_result);
4357
4358 tmp_result = polaris10_generate_dpm_level_enable_mask(hwmgr, input);
4359 PP_ASSERT_WITH_CODE((0 == tmp_result),
4360 "Failed to generate DPM level enabled mask!",
4361 result = tmp_result);
4362
4363 tmp_result = polaris10_update_vce_dpm(hwmgr, input);
4364 PP_ASSERT_WITH_CODE((0 == tmp_result),
4365 "Failed to update VCE DPM!",
4366 result = tmp_result);
4367
4368 tmp_result = polaris10_update_sclk_threshold(hwmgr);
4369 PP_ASSERT_WITH_CODE((0 == tmp_result),
4370 "Failed to update SCLK threshold!",
4371 result = tmp_result);
4372
4373 tmp_result = polaris10_program_mem_timing_parameters(hwmgr);
4374 PP_ASSERT_WITH_CODE((0 == tmp_result),
4375 "Failed to program memory timing parameters!",
4376 result = tmp_result);
4377
4378 tmp_result = polaris10_unfreeze_sclk_mclk_dpm(hwmgr);
4379 PP_ASSERT_WITH_CODE((0 == tmp_result),
4380 "Failed to unfreeze SCLK MCLK DPM!",
4381 result = tmp_result);
4382
4383 tmp_result = polaris10_upload_dpm_level_enable_mask(hwmgr);
4384 PP_ASSERT_WITH_CODE((0 == tmp_result),
4385 "Failed to upload DPM level enabled mask!",
4386 result = tmp_result);
4387
4388 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4389 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4390 tmp_result =
4391 polaris10_notify_link_speed_change_after_state_change(hwmgr, input);
4392 PP_ASSERT_WITH_CODE((0 == tmp_result),
4393 "Failed to notify link speed change after state change!",
4394 result = tmp_result);
4395 }
4396 data->apply_optimized_settings = false;
4397 return result;
4398 }
4399
4400 static int polaris10_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4401 {
4402 hwmgr->thermal_controller.
4403 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4404
4405 if (phm_is_hw_access_blocked(hwmgr))
4406 return 0;
4407
4408 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4409 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm);
4410 }
4411
4412 int polaris10_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display)
4413 {
4414 PPSMC_Msg msg = has_display ? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay;
4415
4416 return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1;
4417 }
4418
4419 int polaris10_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4420 {
4421 uint32_t num_active_displays = 0;
4422 struct cgs_display_info info = {0};
4423 info.mode_info = NULL;
4424
4425 cgs_get_active_displays_info(hwmgr->device, &info);
4426
4427 num_active_displays = info.display_count;
4428
4429 if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */
4430 polaris10_notify_smc_display_change(hwmgr, false);
4431 else
4432 polaris10_notify_smc_display_change(hwmgr, true);
4433
4434 return 0;
4435 }
4436
4437 /**
4438 * Programs the display gap
4439 *
4440 * @param hwmgr the address of the powerplay hardware manager.
4441 * @return always OK
4442 */
4443 int polaris10_program_display_gap(struct pp_hwmgr *hwmgr)
4444 {
4445 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4446 uint32_t num_active_displays = 0;
4447 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4448 uint32_t display_gap2;
4449 uint32_t pre_vbi_time_in_us;
4450 uint32_t frame_time_in_us;
4451 uint32_t ref_clock;
4452 uint32_t refresh_rate = 0;
4453 struct cgs_display_info info = {0};
4454 struct cgs_mode_info mode_info;
4455
4456 info.mode_info = &mode_info;
4457
4458 cgs_get_active_displays_info(hwmgr->device, &info);
4459 num_active_displays = info.display_count;
4460
4461 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4462 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4463
4464 ref_clock = mode_info.ref_clock;
4465 refresh_rate = mode_info.refresh_rate;
4466
4467 if (0 == refresh_rate)
4468 refresh_rate = 60;
4469
4470 frame_time_in_us = 1000000 / refresh_rate;
4471
4472 pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us;
4473 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4474
4475 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4476
4477 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, PreVBlankGap), 0x64);
4478
4479 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, data->soft_regs_start + offsetof(SMU74_SoftRegisters, VBlankTimeout), (frame_time_in_us - pre_vbi_time_in_us));
4480
4481 polaris10_notify_smc_display_change(hwmgr, num_active_displays != 0);
4482
4483 return 0;
4484 }
4485
4486
4487 int polaris10_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4488 {
4489 return polaris10_program_display_gap(hwmgr);
4490 }
4491
4492 /**
4493 * Set maximum target operating fan output RPM
4494 *
4495 * @param hwmgr: the address of the powerplay hardware manager.
4496 * @param usMaxFanRpm: max operating fan RPM value.
4497 * @return The response that came from the SMC.
4498 */
4499 static int polaris10_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4500 {
4501 hwmgr->thermal_controller.
4502 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4503
4504 if (phm_is_hw_access_blocked(hwmgr))
4505 return 0;
4506
4507 return smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4508 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm);
4509 }
4510
4511 int polaris10_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr,
4512 const void *thermal_interrupt_info)
4513 {
4514 return 0;
4515 }
4516
4517 bool polaris10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4518 {
4519 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4520 bool is_update_required = false;
4521 struct cgs_display_info info = {0, 0, NULL};
4522
4523 cgs_get_active_displays_info(hwmgr->device, &info);
4524
4525 if (data->display_timing.num_existing_displays != info.display_count)
4526 is_update_required = true;
4527 /* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL
4528 if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4529 cgs_get_min_clock_settings(hwmgr->device, &min_clocks);
4530 if (min_clocks.engineClockInSR != data->display_timing.minClockInSR &&
4531 (min_clocks.engineClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK ||
4532 data->display_timing.minClockInSR >= POLARIS10_MINIMUM_ENGINE_CLOCK))
4533 is_update_required = true;
4534 */
4535 return is_update_required;
4536 }
4537
4538 static inline bool polaris10_are_power_levels_equal(const struct polaris10_performance_level *pl1,
4539 const struct polaris10_performance_level *pl2)
4540 {
4541 return ((pl1->memory_clock == pl2->memory_clock) &&
4542 (pl1->engine_clock == pl2->engine_clock) &&
4543 (pl1->pcie_gen == pl2->pcie_gen) &&
4544 (pl1->pcie_lane == pl2->pcie_lane));
4545 }
4546
4547 int polaris10_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal)
4548 {
4549 const struct polaris10_power_state *psa = cast_const_phw_polaris10_power_state(pstate1);
4550 const struct polaris10_power_state *psb = cast_const_phw_polaris10_power_state(pstate2);
4551 int i;
4552
4553 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4554 return -EINVAL;
4555
4556 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4557 if (psa->performance_level_count != psb->performance_level_count) {
4558 *equal = false;
4559 return 0;
4560 }
4561
4562 for (i = 0; i < psa->performance_level_count; i++) {
4563 if (!polaris10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4564 /* If we have found even one performance level pair that is different the states are different. */
4565 *equal = false;
4566 return 0;
4567 }
4568 }
4569
4570 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4571 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4572 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4573 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4574
4575 return 0;
4576 }
4577
4578 int polaris10_upload_mc_firmware(struct pp_hwmgr *hwmgr)
4579 {
4580 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4581
4582 uint32_t vbios_version;
4583
4584 /* Read MC indirect register offset 0x9F bits [3:0] to see if VBIOS has already loaded a full version of MC ucode or not.*/
4585
4586 phm_get_mc_microcode_version(hwmgr);
4587 vbios_version = hwmgr->microcode_version_info.MC & 0xf;
4588 /* Full version of MC ucode has already been loaded. */
4589 if (vbios_version == 0) {
4590 data->need_long_memory_training = false;
4591 return 0;
4592 }
4593
4594 data->need_long_memory_training = true;
4595
4596 /*
4597 * PPMCME_FirmwareDescriptorEntry *pfd = NULL;
4598 pfd = &tonga_mcmeFirmware;
4599 if (0 == PHM_READ_FIELD(hwmgr->device, MC_SEQ_SUP_CNTL, RUN))
4600 polaris10_load_mc_microcode(hwmgr, pfd->dpmThreshold,
4601 pfd->cfgArray, pfd->cfgSize, pfd->ioDebugArray,
4602 pfd->ioDebugSize, pfd->ucodeArray, pfd->ucodeSize);
4603 */
4604 return 0;
4605 }
4606
4607 /**
4608 * Read clock related registers.
4609 *
4610 * @param hwmgr the address of the powerplay hardware manager.
4611 * @return always 0
4612 */
4613 static int polaris10_read_clock_registers(struct pp_hwmgr *hwmgr)
4614 {
4615 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4616
4617 data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device,
4618 CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL)
4619 & CG_SPLL_FUNC_CNTL__SPLL_BYPASS_EN_MASK;
4620
4621 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device,
4622 CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2)
4623 & CG_SPLL_FUNC_CNTL_2__SCLK_MUX_SEL_MASK;
4624
4625 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device,
4626 CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4)
4627 & CG_SPLL_FUNC_CNTL_4__SPLL_SPARE_MASK;
4628
4629 return 0;
4630 }
4631
4632 /**
4633 * Find out if memory is GDDR5.
4634 *
4635 * @param hwmgr the address of the powerplay hardware manager.
4636 * @return always 0
4637 */
4638 static int polaris10_get_memory_type(struct pp_hwmgr *hwmgr)
4639 {
4640 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4641 uint32_t temp;
4642
4643 temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0);
4644
4645 data->is_memory_gddr5 = (MC_SEQ_MISC0_GDDR5_VALUE ==
4646 ((temp & MC_SEQ_MISC0_GDDR5_MASK) >>
4647 MC_SEQ_MISC0_GDDR5_SHIFT));
4648
4649 return 0;
4650 }
4651
4652 /**
4653 * Enables Dynamic Power Management by SMC
4654 *
4655 * @param hwmgr the address of the powerplay hardware manager.
4656 * @return always 0
4657 */
4658 static int polaris10_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4659 {
4660 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4661 GENERAL_PWRMGT, STATIC_PM_EN, 1);
4662
4663 return 0;
4664 }
4665
4666 /**
4667 * Initialize PowerGating States for different engines
4668 *
4669 * @param hwmgr the address of the powerplay hardware manager.
4670 * @return always 0
4671 */
4672 static int polaris10_init_power_gate_state(struct pp_hwmgr *hwmgr)
4673 {
4674 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4675
4676 data->uvd_power_gated = false;
4677 data->vce_power_gated = false;
4678 data->samu_power_gated = false;
4679
4680 return 0;
4681 }
4682
4683 static int polaris10_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4684 {
4685 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4686 data->low_sclk_interrupt_threshold = 0;
4687
4688 return 0;
4689 }
4690
4691 int polaris10_setup_asic_task(struct pp_hwmgr *hwmgr)
4692 {
4693 int tmp_result, result = 0;
4694
4695 polaris10_upload_mc_firmware(hwmgr);
4696
4697 tmp_result = polaris10_read_clock_registers(hwmgr);
4698 PP_ASSERT_WITH_CODE((0 == tmp_result),
4699 "Failed to read clock registers!", result = tmp_result);
4700
4701 tmp_result = polaris10_get_memory_type(hwmgr);
4702 PP_ASSERT_WITH_CODE((0 == tmp_result),
4703 "Failed to get memory type!", result = tmp_result);
4704
4705 tmp_result = polaris10_enable_acpi_power_management(hwmgr);
4706 PP_ASSERT_WITH_CODE((0 == tmp_result),
4707 "Failed to enable ACPI power management!", result = tmp_result);
4708
4709 tmp_result = polaris10_init_power_gate_state(hwmgr);
4710 PP_ASSERT_WITH_CODE((0 == tmp_result),
4711 "Failed to init power gate state!", result = tmp_result);
4712
4713 tmp_result = phm_get_mc_microcode_version(hwmgr);
4714 PP_ASSERT_WITH_CODE((0 == tmp_result),
4715 "Failed to get MC microcode version!", result = tmp_result);
4716
4717 tmp_result = polaris10_init_sclk_threshold(hwmgr);
4718 PP_ASSERT_WITH_CODE((0 == tmp_result),
4719 "Failed to init sclk threshold!", result = tmp_result);
4720
4721 return result;
4722 }
4723
4724 static int polaris10_get_pp_table(struct pp_hwmgr *hwmgr, char **table)
4725 {
4726 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4727
4728 if (!data->soft_pp_table) {
4729 data->soft_pp_table = kmemdup(hwmgr->soft_pp_table,
4730 hwmgr->soft_pp_table_size,
4731 GFP_KERNEL);
4732 if (!data->soft_pp_table)
4733 return -ENOMEM;
4734 }
4735
4736 *table = (char *)&data->soft_pp_table;
4737
4738 return hwmgr->soft_pp_table_size;
4739 }
4740
4741 static int polaris10_set_pp_table(struct pp_hwmgr *hwmgr, const char *buf, size_t size)
4742 {
4743 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4744
4745 if (!data->soft_pp_table) {
4746 data->soft_pp_table = kzalloc(hwmgr->soft_pp_table_size, GFP_KERNEL);
4747 if (!data->soft_pp_table)
4748 return -ENOMEM;
4749 }
4750
4751 memcpy(data->soft_pp_table, buf, size);
4752
4753 hwmgr->soft_pp_table = data->soft_pp_table;
4754
4755 /* TODO: re-init powerplay to implement modified pptable */
4756
4757 return 0;
4758 }
4759
4760 static int polaris10_force_clock_level(struct pp_hwmgr *hwmgr,
4761 enum pp_clock_type type, uint32_t mask)
4762 {
4763 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4764
4765 if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
4766 return -EINVAL;
4767
4768 switch (type) {
4769 case PP_SCLK:
4770 if (!data->sclk_dpm_key_disabled)
4771 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4772 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4773 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask);
4774 break;
4775 case PP_MCLK:
4776 if (!data->mclk_dpm_key_disabled)
4777 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4778 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4779 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask);
4780 break;
4781 case PP_PCIE:
4782 {
4783 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4784 uint32_t level = 0;
4785
4786 while (tmp >>= 1)
4787 level++;
4788
4789 if (!data->pcie_dpm_key_disabled)
4790 smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
4791 PPSMC_MSG_PCIeDPM_ForceLevel,
4792 level);
4793 break;
4794 }
4795 default:
4796 break;
4797 }
4798
4799 return 0;
4800 }
4801
4802 static uint16_t polaris10_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
4803 {
4804 uint32_t speedCntl = 0;
4805
4806 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
4807 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
4808 ixPCIE_LC_SPEED_CNTL);
4809 return((uint16_t)PHM_GET_FIELD(speedCntl,
4810 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
4811 }
4812
4813 static int polaris10_print_clock_levels(struct pp_hwmgr *hwmgr,
4814 enum pp_clock_type type, char *buf)
4815 {
4816 struct polaris10_hwmgr *data = (struct polaris10_hwmgr *)(hwmgr->backend);
4817 struct polaris10_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4818 struct polaris10_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4819 struct polaris10_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4820 int i, now, size = 0;
4821 uint32_t clock, pcie_speed;
4822
4823 switch (type) {
4824 case PP_SCLK:
4825 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency);
4826 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4827
4828 for (i = 0; i < sclk_table->count; i++) {
4829 if (clock > sclk_table->dpm_levels[i].value)
4830 continue;
4831 break;
4832 }
4833 now = i;
4834
4835 for (i = 0; i < sclk_table->count; i++)
4836 size += sprintf(buf + size, "%d: %uMhz %s\n",
4837 i, sclk_table->dpm_levels[i].value / 100,
4838 (i == now) ? "*" : "");
4839 break;
4840 case PP_MCLK:
4841 smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency);
4842 clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0);
4843
4844 for (i = 0; i < mclk_table->count; i++) {
4845 if (clock > mclk_table->dpm_levels[i].value)
4846 continue;
4847 break;
4848 }
4849 now = i;
4850
4851 for (i = 0; i < mclk_table->count; i++)
4852 size += sprintf(buf + size, "%d: %uMhz %s\n",
4853 i, mclk_table->dpm_levels[i].value / 100,
4854 (i == now) ? "*" : "");
4855 break;
4856 case PP_PCIE:
4857 pcie_speed = polaris10_get_current_pcie_speed(hwmgr);
4858 for (i = 0; i < pcie_table->count; i++) {
4859 if (pcie_speed != pcie_table->dpm_levels[i].value)
4860 continue;
4861 break;
4862 }
4863 now = i;
4864
4865 for (i = 0; i < pcie_table->count; i++)
4866 size += sprintf(buf + size, "%d: %s %s\n", i,
4867 (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" :
4868 (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" :
4869 (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "",
4870 (i == now) ? "*" : "");
4871 break;
4872 default:
4873 break;
4874 }
4875 return size;
4876 }
4877
4878 static int polaris10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
4879 {
4880 if (mode) {
4881 /* stop auto-manage */
4882 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4883 PHM_PlatformCaps_MicrocodeFanControl))
4884 polaris10_fan_ctrl_stop_smc_fan_control(hwmgr);
4885 polaris10_fan_ctrl_set_static_mode(hwmgr, mode);
4886 } else
4887 /* restart auto-manage */
4888 polaris10_fan_ctrl_reset_fan_speed_to_default(hwmgr);
4889
4890 return 0;
4891 }
4892
4893 static int polaris10_get_fan_control_mode(struct pp_hwmgr *hwmgr)
4894 {
4895 if (hwmgr->fan_ctrl_is_in_default_mode)
4896 return hwmgr->fan_ctrl_default_mode;
4897 else
4898 return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4899 CG_FDO_CTRL2, FDO_PWM_MODE);
4900 }
4901
4902 static const struct pp_hwmgr_func polaris10_hwmgr_funcs = {
4903 .backend_init = &polaris10_hwmgr_backend_init,
4904 .backend_fini = &polaris10_hwmgr_backend_fini,
4905 .asic_setup = &polaris10_setup_asic_task,
4906 .dynamic_state_management_enable = &polaris10_enable_dpm_tasks,
4907 .apply_state_adjust_rules = polaris10_apply_state_adjust_rules,
4908 .force_dpm_level = &polaris10_force_dpm_level,
4909 .power_state_set = polaris10_set_power_state_tasks,
4910 .get_power_state_size = polaris10_get_power_state_size,
4911 .get_mclk = polaris10_dpm_get_mclk,
4912 .get_sclk = polaris10_dpm_get_sclk,
4913 .patch_boot_state = polaris10_dpm_patch_boot_state,
4914 .get_pp_table_entry = polaris10_get_pp_table_entry,
4915 .get_num_of_pp_table_entries = tonga_get_number_of_powerplay_table_entries,
4916 .print_current_perforce_level = polaris10_print_current_perforce_level,
4917 .powerdown_uvd = polaris10_phm_powerdown_uvd,
4918 .powergate_uvd = polaris10_phm_powergate_uvd,
4919 .powergate_vce = polaris10_phm_powergate_vce,
4920 .disable_clock_power_gating = polaris10_phm_disable_clock_power_gating,
4921 .update_clock_gatings = polaris10_phm_update_clock_gatings,
4922 .notify_smc_display_config_after_ps_adjustment = polaris10_notify_smc_display_config_after_ps_adjustment,
4923 .display_config_changed = polaris10_display_configuration_changed_task,
4924 .set_max_fan_pwm_output = polaris10_set_max_fan_pwm_output,
4925 .set_max_fan_rpm_output = polaris10_set_max_fan_rpm_output,
4926 .get_temperature = polaris10_thermal_get_temperature,
4927 .stop_thermal_controller = polaris10_thermal_stop_thermal_controller,
4928 .get_fan_speed_info = polaris10_fan_ctrl_get_fan_speed_info,
4929 .get_fan_speed_percent = polaris10_fan_ctrl_get_fan_speed_percent,
4930 .set_fan_speed_percent = polaris10_fan_ctrl_set_fan_speed_percent,
4931 .reset_fan_speed_to_default = polaris10_fan_ctrl_reset_fan_speed_to_default,
4932 .get_fan_speed_rpm = polaris10_fan_ctrl_get_fan_speed_rpm,
4933 .set_fan_speed_rpm = polaris10_fan_ctrl_set_fan_speed_rpm,
4934 .uninitialize_thermal_controller = polaris10_thermal_ctrl_uninitialize_thermal_controller,
4935 .register_internal_thermal_interrupt = polaris10_register_internal_thermal_interrupt,
4936 .check_smc_update_required_for_display_configuration = polaris10_check_smc_update_required_for_display_configuration,
4937 .check_states_equal = polaris10_check_states_equal,
4938 .set_fan_control_mode = polaris10_set_fan_control_mode,
4939 .get_fan_control_mode = polaris10_get_fan_control_mode,
4940 .get_pp_table = polaris10_get_pp_table,
4941 .set_pp_table = polaris10_set_pp_table,
4942 .force_clock_level = polaris10_force_clock_level,
4943 .print_clock_levels = polaris10_print_clock_levels,
4944 .enable_per_cu_power_gating = polaris10_phm_enable_per_cu_power_gating,
4945 };
4946
4947 int polaris10_hwmgr_init(struct pp_hwmgr *hwmgr)
4948 {
4949 struct polaris10_hwmgr *data;
4950
4951 data = kzalloc (sizeof(struct polaris10_hwmgr), GFP_KERNEL);
4952 if (data == NULL)
4953 return -ENOMEM;
4954
4955 hwmgr->backend = data;
4956 hwmgr->hwmgr_func = &polaris10_hwmgr_funcs;
4957 hwmgr->pptable_func = &tonga_pptable_funcs;
4958 pp_polaris10_thermal_initialize(hwmgr);
4959
4960 return 0;
4961 }
This page took 0.165125 seconds and 5 git commands to generate.