drm/i915: Skip PIPESTAT reads from irq handler on VLV/CHV when power well is down
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *ring)
998 {
999 if (!intel_ring_initialized(ring))
1000 return;
1001
1002 trace_i915_gem_request_notify(ring);
1003
1004 wake_up_all(&ring->irq_queue);
1005 }
1006
1007 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008 struct intel_rps_ei *ei)
1009 {
1010 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013 }
1014
1015 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016 const struct intel_rps_ei *old,
1017 const struct intel_rps_ei *now,
1018 int threshold)
1019 {
1020 u64 time, c0;
1021 unsigned int mul = 100;
1022
1023 if (old->cz_clock == 0)
1024 return false;
1025
1026 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027 mul <<= 8;
1028
1029 time = now->cz_clock - old->cz_clock;
1030 time *= threshold * dev_priv->czclk_freq;
1031
1032 /* Workload can be split between render + media, e.g. SwapBuffers
1033 * being blitted in X after being rendered in mesa. To account for
1034 * this we need to combine both engines into our activity counter.
1035 */
1036 c0 = now->render_c0 - old->render_c0;
1037 c0 += now->media_c0 - old->media_c0;
1038 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040 return c0 >= time;
1041 }
1042
1043 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044 {
1045 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047 }
1048
1049 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050 {
1051 struct intel_rps_ei now;
1052 u32 events = 0;
1053
1054 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055 return 0;
1056
1057 vlv_c0_read(dev_priv, &now);
1058 if (now.cz_clock == 0)
1059 return 0;
1060
1061 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062 if (!vlv_c0_above(dev_priv,
1063 &dev_priv->rps.down_ei, &now,
1064 dev_priv->rps.down_threshold))
1065 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066 dev_priv->rps.down_ei = now;
1067 }
1068
1069 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070 if (vlv_c0_above(dev_priv,
1071 &dev_priv->rps.up_ei, &now,
1072 dev_priv->rps.up_threshold))
1073 events |= GEN6_PM_RP_UP_THRESHOLD;
1074 dev_priv->rps.up_ei = now;
1075 }
1076
1077 return events;
1078 }
1079
1080 static bool any_waiters(struct drm_i915_private *dev_priv)
1081 {
1082 struct intel_engine_cs *ring;
1083 int i;
1084
1085 for_each_ring(ring, dev_priv, i)
1086 if (ring->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->ring[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->ring[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->ring[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->ring[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->ring[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(ring);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 intel_lrc_irq_handler(ring);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv->dev)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->ring[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 u32 pipe_stats[I915_MAX_PIPES] = { };
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654
1655 if (!dev_priv->display_irqs_enabled) {
1656 spin_unlock(&dev_priv->irq_lock);
1657 return;
1658 }
1659
1660 for_each_pipe(dev_priv, pipe) {
1661 i915_reg_t reg;
1662 u32 mask, iir_bit = 0;
1663
1664 /*
1665 * PIPESTAT bits get signalled even when the interrupt is
1666 * disabled with the mask bits, and some of the status bits do
1667 * not generate interrupts at all (like the underrun bit). Hence
1668 * we need to be careful that we only handle what we want to
1669 * handle.
1670 */
1671
1672 /* fifo underruns are filterered in the underrun handler. */
1673 mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675 switch (pipe) {
1676 case PIPE_A:
1677 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678 break;
1679 case PIPE_B:
1680 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681 break;
1682 case PIPE_C:
1683 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684 break;
1685 }
1686 if (iir & iir_bit)
1687 mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689 if (!mask)
1690 continue;
1691
1692 reg = PIPESTAT(pipe);
1693 mask |= PIPESTAT_INT_ENABLE_MASK;
1694 pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696 /*
1697 * Clear the PIPE*STAT regs before the IIR
1698 */
1699 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700 PIPESTAT_INT_STATUS_MASK))
1701 I915_WRITE(reg, pipe_stats[pipe]);
1702 }
1703 spin_unlock(&dev_priv->irq_lock);
1704
1705 for_each_pipe(dev_priv, pipe) {
1706 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707 intel_pipe_handle_vblank(dev, pipe))
1708 intel_check_page_flip(dev, pipe);
1709
1710 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711 intel_prepare_page_flip(dev, pipe);
1712 intel_finish_page_flip(dev, pipe);
1713 }
1714
1715 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716 i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720 }
1721
1722 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723 gmbus_irq_handler(dev);
1724 }
1725
1726 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1727 {
1728 struct drm_i915_private *dev_priv = dev->dev_private;
1729 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730 u32 pin_mask = 0, long_mask = 0;
1731
1732 if (!hotplug_status)
1733 return;
1734
1735 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736 /*
1737 * Make sure hotplug status is cleared before we clear IIR, or else we
1738 * may miss hotplug events.
1739 */
1740 POSTING_READ(PORT_HOTPLUG_STAT);
1741
1742 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1743 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745 if (hotplug_trigger) {
1746 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747 hotplug_trigger, hpd_status_g4x,
1748 i9xx_port_hotplug_long_detect);
1749
1750 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751 }
1752
1753 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754 dp_aux_irq_handler(dev);
1755 } else {
1756 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758 if (hotplug_trigger) {
1759 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760 hotplug_trigger, hpd_status_i915,
1761 i9xx_port_hotplug_long_detect);
1762 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763 }
1764 }
1765 }
1766
1767 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768 {
1769 struct drm_device *dev = arg;
1770 struct drm_i915_private *dev_priv = dev->dev_private;
1771 u32 iir, gt_iir, pm_iir;
1772 irqreturn_t ret = IRQ_NONE;
1773
1774 if (!intel_irqs_enabled(dev_priv))
1775 return IRQ_NONE;
1776
1777 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778 disable_rpm_wakeref_asserts(dev_priv);
1779
1780 while (true) {
1781 /* Find, clear, then process each source of interrupt */
1782
1783 gt_iir = I915_READ(GTIIR);
1784 if (gt_iir)
1785 I915_WRITE(GTIIR, gt_iir);
1786
1787 pm_iir = I915_READ(GEN6_PMIIR);
1788 if (pm_iir)
1789 I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791 iir = I915_READ(VLV_IIR);
1792 if (iir) {
1793 /* Consume port before clearing IIR or we'll miss events */
1794 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795 i9xx_hpd_irq_handler(dev);
1796 I915_WRITE(VLV_IIR, iir);
1797 }
1798
1799 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800 goto out;
1801
1802 ret = IRQ_HANDLED;
1803
1804 if (gt_iir)
1805 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806 if (pm_iir)
1807 gen6_rps_irq_handler(dev_priv, pm_iir);
1808 /* Call regardless, as some status bits might not be
1809 * signalled in iir */
1810 valleyview_pipestat_irq_handler(dev, iir);
1811 }
1812
1813 out:
1814 enable_rpm_wakeref_asserts(dev_priv);
1815
1816 return ret;
1817 }
1818
1819 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820 {
1821 struct drm_device *dev = arg;
1822 struct drm_i915_private *dev_priv = dev->dev_private;
1823 u32 master_ctl, iir;
1824 irqreturn_t ret = IRQ_NONE;
1825
1826 if (!intel_irqs_enabled(dev_priv))
1827 return IRQ_NONE;
1828
1829 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830 disable_rpm_wakeref_asserts(dev_priv);
1831
1832 for (;;) {
1833 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834 iir = I915_READ(VLV_IIR);
1835
1836 if (master_ctl == 0 && iir == 0)
1837 break;
1838
1839 ret = IRQ_HANDLED;
1840
1841 I915_WRITE(GEN8_MASTER_IRQ, 0);
1842
1843 /* Find, clear, then process each source of interrupt */
1844
1845 if (iir) {
1846 /* Consume port before clearing IIR or we'll miss events */
1847 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848 i9xx_hpd_irq_handler(dev);
1849 I915_WRITE(VLV_IIR, iir);
1850 }
1851
1852 gen8_gt_irq_handler(dev_priv, master_ctl);
1853
1854 /* Call regardless, as some status bits might not be
1855 * signalled in iir */
1856 valleyview_pipestat_irq_handler(dev, iir);
1857
1858 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859 POSTING_READ(GEN8_MASTER_IRQ);
1860 }
1861
1862 enable_rpm_wakeref_asserts(dev_priv);
1863
1864 return ret;
1865 }
1866
1867 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1868 const u32 hpd[HPD_NUM_PINS])
1869 {
1870 struct drm_i915_private *dev_priv = to_i915(dev);
1871 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873 /*
1874 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875 * unless we touch the hotplug register, even if hotplug_trigger is
1876 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877 * errors.
1878 */
1879 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880 if (!hotplug_trigger) {
1881 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882 PORTD_HOTPLUG_STATUS_MASK |
1883 PORTC_HOTPLUG_STATUS_MASK |
1884 PORTB_HOTPLUG_STATUS_MASK;
1885 dig_hotplug_reg &= ~mask;
1886 }
1887
1888 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889 if (!hotplug_trigger)
1890 return;
1891
1892 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893 dig_hotplug_reg, hpd,
1894 pch_port_hotplug_long_detect);
1895
1896 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897 }
1898
1899 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900 {
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 int pipe;
1903 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909 SDE_AUDIO_POWER_SHIFT);
1910 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911 port_name(port));
1912 }
1913
1914 if (pch_iir & SDE_AUX_MASK)
1915 dp_aux_irq_handler(dev);
1916
1917 if (pch_iir & SDE_GMBUS)
1918 gmbus_irq_handler(dev);
1919
1920 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926 if (pch_iir & SDE_POISON)
1927 DRM_ERROR("PCH poison interrupt\n");
1928
1929 if (pch_iir & SDE_FDI_MASK)
1930 for_each_pipe(dev_priv, pipe)
1931 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1932 pipe_name(pipe),
1933 I915_READ(FDI_RX_IIR(pipe)));
1934
1935 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940
1941 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946 }
1947
1948 static void ivb_err_int_handler(struct drm_device *dev)
1949 {
1950 struct drm_i915_private *dev_priv = dev->dev_private;
1951 u32 err_int = I915_READ(GEN7_ERR_INT);
1952 enum pipe pipe;
1953
1954 if (err_int & ERR_INT_POISON)
1955 DRM_ERROR("Poison interrupt\n");
1956
1957 for_each_pipe(dev_priv, pipe) {
1958 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962 if (IS_IVYBRIDGE(dev))
1963 ivb_pipe_crc_irq_handler(dev, pipe);
1964 else
1965 hsw_pipe_crc_irq_handler(dev, pipe);
1966 }
1967 }
1968
1969 I915_WRITE(GEN7_ERR_INT, err_int);
1970 }
1971
1972 static void cpt_serr_int_handler(struct drm_device *dev)
1973 {
1974 struct drm_i915_private *dev_priv = dev->dev_private;
1975 u32 serr_int = I915_READ(SERR_INT);
1976
1977 if (serr_int & SERR_INT_POISON)
1978 DRM_ERROR("PCH poison interrupt\n");
1979
1980 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988
1989 I915_WRITE(SERR_INT, serr_int);
1990 }
1991
1992 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993 {
1994 struct drm_i915_private *dev_priv = dev->dev_private;
1995 int pipe;
1996 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002 SDE_AUDIO_POWER_SHIFT_CPT);
2003 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004 port_name(port));
2005 }
2006
2007 if (pch_iir & SDE_AUX_MASK_CPT)
2008 dp_aux_irq_handler(dev);
2009
2010 if (pch_iir & SDE_GMBUS_CPT)
2011 gmbus_irq_handler(dev);
2012
2013 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019 if (pch_iir & SDE_FDI_MASK_CPT)
2020 for_each_pipe(dev_priv, pipe)
2021 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2022 pipe_name(pipe),
2023 I915_READ(FDI_RX_IIR(pipe)));
2024
2025 if (pch_iir & SDE_ERROR_CPT)
2026 cpt_serr_int_handler(dev);
2027 }
2028
2029 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030 {
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033 ~SDE_PORTE_HOTPLUG_SPT;
2034 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035 u32 pin_mask = 0, long_mask = 0;
2036
2037 if (hotplug_trigger) {
2038 u32 dig_hotplug_reg;
2039
2040 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044 dig_hotplug_reg, hpd_spt,
2045 spt_port_hotplug_long_detect);
2046 }
2047
2048 if (hotplug2_trigger) {
2049 u32 dig_hotplug_reg;
2050
2051 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053
2054 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055 dig_hotplug_reg, hpd_spt,
2056 spt_port_hotplug2_long_detect);
2057 }
2058
2059 if (pin_mask)
2060 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062 if (pch_iir & SDE_GMBUS_CPT)
2063 gmbus_irq_handler(dev);
2064 }
2065
2066 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2067 const u32 hpd[HPD_NUM_PINS])
2068 {
2069 struct drm_i915_private *dev_priv = to_i915(dev);
2070 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071
2072 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074
2075 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076 dig_hotplug_reg, hpd,
2077 ilk_port_hotplug_long_detect);
2078
2079 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080 }
2081
2082 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2083 {
2084 struct drm_i915_private *dev_priv = dev->dev_private;
2085 enum pipe pipe;
2086 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087
2088 if (hotplug_trigger)
2089 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091 if (de_iir & DE_AUX_CHANNEL_A)
2092 dp_aux_irq_handler(dev);
2093
2094 if (de_iir & DE_GSE)
2095 intel_opregion_asle_intr(dev);
2096
2097 if (de_iir & DE_POISON)
2098 DRM_ERROR("Poison interrupt\n");
2099
2100 for_each_pipe(dev_priv, pipe) {
2101 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102 intel_pipe_handle_vblank(dev, pipe))
2103 intel_check_page_flip(dev, pipe);
2104
2105 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109 i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111 /* plane/pipes map 1:1 on ilk+ */
2112 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113 intel_prepare_page_flip(dev, pipe);
2114 intel_finish_page_flip_plane(dev, pipe);
2115 }
2116 }
2117
2118 /* check event from PCH */
2119 if (de_iir & DE_PCH_EVENT) {
2120 u32 pch_iir = I915_READ(SDEIIR);
2121
2122 if (HAS_PCH_CPT(dev))
2123 cpt_irq_handler(dev, pch_iir);
2124 else
2125 ibx_irq_handler(dev, pch_iir);
2126
2127 /* should clear PCH hotplug event before clear CPU irq */
2128 I915_WRITE(SDEIIR, pch_iir);
2129 }
2130
2131 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132 ironlake_rps_change_irq_handler(dev);
2133 }
2134
2135 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2136 {
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 enum pipe pipe;
2139 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141 if (hotplug_trigger)
2142 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143
2144 if (de_iir & DE_ERR_INT_IVB)
2145 ivb_err_int_handler(dev);
2146
2147 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148 dp_aux_irq_handler(dev);
2149
2150 if (de_iir & DE_GSE_IVB)
2151 intel_opregion_asle_intr(dev);
2152
2153 for_each_pipe(dev_priv, pipe) {
2154 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155 intel_pipe_handle_vblank(dev, pipe))
2156 intel_check_page_flip(dev, pipe);
2157
2158 /* plane/pipes map 1:1 on ilk+ */
2159 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160 intel_prepare_page_flip(dev, pipe);
2161 intel_finish_page_flip_plane(dev, pipe);
2162 }
2163 }
2164
2165 /* check event from PCH */
2166 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167 u32 pch_iir = I915_READ(SDEIIR);
2168
2169 cpt_irq_handler(dev, pch_iir);
2170
2171 /* clear PCH hotplug event before clear CPU irq */
2172 I915_WRITE(SDEIIR, pch_iir);
2173 }
2174 }
2175
2176 /*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185 {
2186 struct drm_device *dev = arg;
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189 irqreturn_t ret = IRQ_NONE;
2190
2191 if (!intel_irqs_enabled(dev_priv))
2192 return IRQ_NONE;
2193
2194 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195 disable_rpm_wakeref_asserts(dev_priv);
2196
2197 /* disable master interrupt before clearing iir */
2198 de_ier = I915_READ(DEIER);
2199 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200 POSTING_READ(DEIER);
2201
2202 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2203 * interrupts will will be stored on its back queue, and then we'll be
2204 * able to process them after we restore SDEIER (as soon as we restore
2205 * it, we'll get an interrupt if SDEIIR still has something to process
2206 * due to its back queue). */
2207 if (!HAS_PCH_NOP(dev)) {
2208 sde_ier = I915_READ(SDEIER);
2209 I915_WRITE(SDEIER, 0);
2210 POSTING_READ(SDEIER);
2211 }
2212
2213 /* Find, clear, then process each source of interrupt */
2214
2215 gt_iir = I915_READ(GTIIR);
2216 if (gt_iir) {
2217 I915_WRITE(GTIIR, gt_iir);
2218 ret = IRQ_HANDLED;
2219 if (INTEL_INFO(dev)->gen >= 6)
2220 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221 else
2222 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2223 }
2224
2225 de_iir = I915_READ(DEIIR);
2226 if (de_iir) {
2227 I915_WRITE(DEIIR, de_iir);
2228 ret = IRQ_HANDLED;
2229 if (INTEL_INFO(dev)->gen >= 7)
2230 ivb_display_irq_handler(dev, de_iir);
2231 else
2232 ilk_display_irq_handler(dev, de_iir);
2233 }
2234
2235 if (INTEL_INFO(dev)->gen >= 6) {
2236 u32 pm_iir = I915_READ(GEN6_PMIIR);
2237 if (pm_iir) {
2238 I915_WRITE(GEN6_PMIIR, pm_iir);
2239 ret = IRQ_HANDLED;
2240 gen6_rps_irq_handler(dev_priv, pm_iir);
2241 }
2242 }
2243
2244 I915_WRITE(DEIER, de_ier);
2245 POSTING_READ(DEIER);
2246 if (!HAS_PCH_NOP(dev)) {
2247 I915_WRITE(SDEIER, sde_ier);
2248 POSTING_READ(SDEIER);
2249 }
2250
2251 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252 enable_rpm_wakeref_asserts(dev_priv);
2253
2254 return ret;
2255 }
2256
2257 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2258 const u32 hpd[HPD_NUM_PINS])
2259 {
2260 struct drm_i915_private *dev_priv = to_i915(dev);
2261 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267 dig_hotplug_reg, hpd,
2268 bxt_port_hotplug_long_detect);
2269
2270 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2271 }
2272
2273 static irqreturn_t
2274 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275 {
2276 struct drm_device *dev = dev_priv->dev;
2277 irqreturn_t ret = IRQ_NONE;
2278 u32 iir;
2279 enum pipe pipe;
2280
2281 if (master_ctl & GEN8_DE_MISC_IRQ) {
2282 iir = I915_READ(GEN8_DE_MISC_IIR);
2283 if (iir) {
2284 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285 ret = IRQ_HANDLED;
2286 if (iir & GEN8_DE_MISC_GSE)
2287 intel_opregion_asle_intr(dev);
2288 else
2289 DRM_ERROR("Unexpected DE Misc interrupt\n");
2290 }
2291 else
2292 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2293 }
2294
2295 if (master_ctl & GEN8_DE_PORT_IRQ) {
2296 iir = I915_READ(GEN8_DE_PORT_IIR);
2297 if (iir) {
2298 u32 tmp_mask;
2299 bool found = false;
2300
2301 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302 ret = IRQ_HANDLED;
2303
2304 tmp_mask = GEN8_AUX_CHANNEL_A;
2305 if (INTEL_INFO(dev_priv)->gen >= 9)
2306 tmp_mask |= GEN9_AUX_CHANNEL_B |
2307 GEN9_AUX_CHANNEL_C |
2308 GEN9_AUX_CHANNEL_D;
2309
2310 if (iir & tmp_mask) {
2311 dp_aux_irq_handler(dev);
2312 found = true;
2313 }
2314
2315 if (IS_BROXTON(dev_priv)) {
2316 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317 if (tmp_mask) {
2318 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2319 found = true;
2320 }
2321 } else if (IS_BROADWELL(dev_priv)) {
2322 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323 if (tmp_mask) {
2324 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2325 found = true;
2326 }
2327 }
2328
2329 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330 gmbus_irq_handler(dev);
2331 found = true;
2332 }
2333
2334 if (!found)
2335 DRM_ERROR("Unexpected DE Port interrupt\n");
2336 }
2337 else
2338 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339 }
2340
2341 for_each_pipe(dev_priv, pipe) {
2342 u32 flip_done, fault_errors;
2343
2344 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345 continue;
2346
2347 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348 if (!iir) {
2349 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350 continue;
2351 }
2352
2353 ret = IRQ_HANDLED;
2354 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355
2356 if (iir & GEN8_PIPE_VBLANK &&
2357 intel_pipe_handle_vblank(dev, pipe))
2358 intel_check_page_flip(dev, pipe);
2359
2360 flip_done = iir;
2361 if (INTEL_INFO(dev_priv)->gen >= 9)
2362 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363 else
2364 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366 if (flip_done) {
2367 intel_prepare_page_flip(dev, pipe);
2368 intel_finish_page_flip_plane(dev, pipe);
2369 }
2370
2371 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372 hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376
2377 fault_errors = iir;
2378 if (INTEL_INFO(dev_priv)->gen >= 9)
2379 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380 else
2381 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383 if (fault_errors)
2384 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385 pipe_name(pipe),
2386 fault_errors);
2387 }
2388
2389 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390 master_ctl & GEN8_DE_PCH_IRQ) {
2391 /*
2392 * FIXME(BDW): Assume for now that the new interrupt handling
2393 * scheme also closed the SDE interrupt handling race we've seen
2394 * on older pch-split platforms. But this needs testing.
2395 */
2396 iir = I915_READ(SDEIIR);
2397 if (iir) {
2398 I915_WRITE(SDEIIR, iir);
2399 ret = IRQ_HANDLED;
2400
2401 if (HAS_PCH_SPT(dev_priv))
2402 spt_irq_handler(dev, iir);
2403 else
2404 cpt_irq_handler(dev, iir);
2405 } else {
2406 /*
2407 * Like on previous PCH there seems to be something
2408 * fishy going on with forwarding PCH interrupts.
2409 */
2410 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411 }
2412 }
2413
2414 return ret;
2415 }
2416
2417 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418 {
2419 struct drm_device *dev = arg;
2420 struct drm_i915_private *dev_priv = dev->dev_private;
2421 u32 master_ctl;
2422 irqreturn_t ret;
2423
2424 if (!intel_irqs_enabled(dev_priv))
2425 return IRQ_NONE;
2426
2427 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429 if (!master_ctl)
2430 return IRQ_NONE;
2431
2432 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2433
2434 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435 disable_rpm_wakeref_asserts(dev_priv);
2436
2437 /* Find, clear, then process each source of interrupt */
2438 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442 POSTING_READ_FW(GEN8_MASTER_IRQ);
2443
2444 enable_rpm_wakeref_asserts(dev_priv);
2445
2446 return ret;
2447 }
2448
2449 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450 bool reset_completed)
2451 {
2452 struct intel_engine_cs *ring;
2453 int i;
2454
2455 /*
2456 * Notify all waiters for GPU completion events that reset state has
2457 * been changed, and that they need to restart their wait after
2458 * checking for potential errors (and bail out to drop locks if there is
2459 * a gpu reset pending so that i915_error_work_func can acquire them).
2460 */
2461
2462 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2463 for_each_ring(ring, dev_priv, i)
2464 wake_up_all(&ring->irq_queue);
2465
2466 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2467 wake_up_all(&dev_priv->pending_flip_queue);
2468
2469 /*
2470 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2471 * reset state is cleared.
2472 */
2473 if (reset_completed)
2474 wake_up_all(&dev_priv->gpu_error.reset_queue);
2475 }
2476
2477 /**
2478 * i915_reset_and_wakeup - do process context error handling work
2479 * @dev: drm device
2480 *
2481 * Fire an error uevent so userspace can see that a hang or error
2482 * was detected.
2483 */
2484 static void i915_reset_and_wakeup(struct drm_device *dev)
2485 {
2486 struct drm_i915_private *dev_priv = to_i915(dev);
2487 struct i915_gpu_error *error = &dev_priv->gpu_error;
2488 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2489 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2490 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2491 int ret;
2492
2493 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2494
2495 /*
2496 * Note that there's only one work item which does gpu resets, so we
2497 * need not worry about concurrent gpu resets potentially incrementing
2498 * error->reset_counter twice. We only need to take care of another
2499 * racing irq/hangcheck declaring the gpu dead for a second time. A
2500 * quick check for that is good enough: schedule_work ensures the
2501 * correct ordering between hang detection and this work item, and since
2502 * the reset in-progress bit is only ever set by code outside of this
2503 * work we don't need to worry about any other races.
2504 */
2505 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2506 DRM_DEBUG_DRIVER("resetting chip\n");
2507 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2508 reset_event);
2509
2510 /*
2511 * In most cases it's guaranteed that we get here with an RPM
2512 * reference held, for example because there is a pending GPU
2513 * request that won't finish until the reset is done. This
2514 * isn't the case at least when we get here by doing a
2515 * simulated reset via debugs, so get an RPM reference.
2516 */
2517 intel_runtime_pm_get(dev_priv);
2518
2519 intel_prepare_reset(dev);
2520
2521 /*
2522 * All state reset _must_ be completed before we update the
2523 * reset counter, for otherwise waiters might miss the reset
2524 * pending state and not properly drop locks, resulting in
2525 * deadlocks with the reset work.
2526 */
2527 ret = i915_reset(dev);
2528
2529 intel_finish_reset(dev);
2530
2531 intel_runtime_pm_put(dev_priv);
2532
2533 if (ret == 0) {
2534 /*
2535 * After all the gem state is reset, increment the reset
2536 * counter and wake up everyone waiting for the reset to
2537 * complete.
2538 *
2539 * Since unlock operations are a one-sided barrier only,
2540 * we need to insert a barrier here to order any seqno
2541 * updates before
2542 * the counter increment.
2543 */
2544 smp_mb__before_atomic();
2545 atomic_inc(&dev_priv->gpu_error.reset_counter);
2546
2547 kobject_uevent_env(&dev->primary->kdev->kobj,
2548 KOBJ_CHANGE, reset_done_event);
2549 } else {
2550 atomic_or(I915_WEDGED, &error->reset_counter);
2551 }
2552
2553 /*
2554 * Note: The wake_up also serves as a memory barrier so that
2555 * waiters see the update value of the reset counter atomic_t.
2556 */
2557 i915_error_wake_up(dev_priv, true);
2558 }
2559 }
2560
2561 static void i915_report_and_clear_eir(struct drm_device *dev)
2562 {
2563 struct drm_i915_private *dev_priv = dev->dev_private;
2564 uint32_t instdone[I915_NUM_INSTDONE_REG];
2565 u32 eir = I915_READ(EIR);
2566 int pipe, i;
2567
2568 if (!eir)
2569 return;
2570
2571 pr_err("render error detected, EIR: 0x%08x\n", eir);
2572
2573 i915_get_extra_instdone(dev, instdone);
2574
2575 if (IS_G4X(dev)) {
2576 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2577 u32 ipeir = I915_READ(IPEIR_I965);
2578
2579 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2580 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2581 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2582 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2583 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2584 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2585 I915_WRITE(IPEIR_I965, ipeir);
2586 POSTING_READ(IPEIR_I965);
2587 }
2588 if (eir & GM45_ERROR_PAGE_TABLE) {
2589 u32 pgtbl_err = I915_READ(PGTBL_ER);
2590 pr_err("page table error\n");
2591 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2592 I915_WRITE(PGTBL_ER, pgtbl_err);
2593 POSTING_READ(PGTBL_ER);
2594 }
2595 }
2596
2597 if (!IS_GEN2(dev)) {
2598 if (eir & I915_ERROR_PAGE_TABLE) {
2599 u32 pgtbl_err = I915_READ(PGTBL_ER);
2600 pr_err("page table error\n");
2601 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2602 I915_WRITE(PGTBL_ER, pgtbl_err);
2603 POSTING_READ(PGTBL_ER);
2604 }
2605 }
2606
2607 if (eir & I915_ERROR_MEMORY_REFRESH) {
2608 pr_err("memory refresh error:\n");
2609 for_each_pipe(dev_priv, pipe)
2610 pr_err("pipe %c stat: 0x%08x\n",
2611 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2612 /* pipestat has already been acked */
2613 }
2614 if (eir & I915_ERROR_INSTRUCTION) {
2615 pr_err("instruction error\n");
2616 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2617 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619 if (INTEL_INFO(dev)->gen < 4) {
2620 u32 ipeir = I915_READ(IPEIR);
2621
2622 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2623 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2624 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2625 I915_WRITE(IPEIR, ipeir);
2626 POSTING_READ(IPEIR);
2627 } else {
2628 u32 ipeir = I915_READ(IPEIR_I965);
2629
2630 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2631 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2632 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2633 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2634 I915_WRITE(IPEIR_I965, ipeir);
2635 POSTING_READ(IPEIR_I965);
2636 }
2637 }
2638
2639 I915_WRITE(EIR, eir);
2640 POSTING_READ(EIR);
2641 eir = I915_READ(EIR);
2642 if (eir) {
2643 /*
2644 * some errors might have become stuck,
2645 * mask them.
2646 */
2647 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2648 I915_WRITE(EMR, I915_READ(EMR) | eir);
2649 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2650 }
2651 }
2652
2653 /**
2654 * i915_handle_error - handle a gpu error
2655 * @dev: drm device
2656 *
2657 * Do some basic checking of register state at error time and
2658 * dump it to the syslog. Also call i915_capture_error_state() to make
2659 * sure we get a record and make it available in debugfs. Fire a uevent
2660 * so userspace knows something bad happened (should trigger collection
2661 * of a ring dump etc.).
2662 */
2663 void i915_handle_error(struct drm_device *dev, bool wedged,
2664 const char *fmt, ...)
2665 {
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667 va_list args;
2668 char error_msg[80];
2669
2670 va_start(args, fmt);
2671 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672 va_end(args);
2673
2674 i915_capture_error_state(dev, wedged, error_msg);
2675 i915_report_and_clear_eir(dev);
2676
2677 if (wedged) {
2678 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679 &dev_priv->gpu_error.reset_counter);
2680
2681 /*
2682 * Wakeup waiting processes so that the reset function
2683 * i915_reset_and_wakeup doesn't deadlock trying to grab
2684 * various locks. By bumping the reset counter first, the woken
2685 * processes will see a reset in progress and back off,
2686 * releasing their locks and then wait for the reset completion.
2687 * We must do this for _all_ gpu waiters that might hold locks
2688 * that the reset work needs to acquire.
2689 *
2690 * Note: The wake_up serves as the required memory barrier to
2691 * ensure that the waiters see the updated value of the reset
2692 * counter atomic_t.
2693 */
2694 i915_error_wake_up(dev_priv, false);
2695 }
2696
2697 i915_reset_and_wakeup(dev);
2698 }
2699
2700 /* Called from drm generic code, passed 'crtc' which
2701 * we use as a pipe index
2702 */
2703 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704 {
2705 struct drm_i915_private *dev_priv = dev->dev_private;
2706 unsigned long irqflags;
2707
2708 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709 if (INTEL_INFO(dev)->gen >= 4)
2710 i915_enable_pipestat(dev_priv, pipe,
2711 PIPE_START_VBLANK_INTERRUPT_STATUS);
2712 else
2713 i915_enable_pipestat(dev_priv, pipe,
2714 PIPE_VBLANK_INTERRUPT_STATUS);
2715 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717 return 0;
2718 }
2719
2720 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721 {
2722 struct drm_i915_private *dev_priv = dev->dev_private;
2723 unsigned long irqflags;
2724 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725 DE_PIPE_VBLANK(pipe);
2726
2727 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728 ilk_enable_display_irq(dev_priv, bit);
2729 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731 return 0;
2732 }
2733
2734 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735 {
2736 struct drm_i915_private *dev_priv = dev->dev_private;
2737 unsigned long irqflags;
2738
2739 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740 i915_enable_pipestat(dev_priv, pipe,
2741 PIPE_START_VBLANK_INTERRUPT_STATUS);
2742 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
2744 return 0;
2745 }
2746
2747 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2748 {
2749 struct drm_i915_private *dev_priv = dev->dev_private;
2750 unsigned long irqflags;
2751
2752 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
2756 return 0;
2757 }
2758
2759 /* Called from drm generic code, passed 'crtc' which
2760 * we use as a pipe index
2761 */
2762 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763 {
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 unsigned long irqflags;
2766
2767 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768 i915_disable_pipestat(dev_priv, pipe,
2769 PIPE_VBLANK_INTERRUPT_STATUS |
2770 PIPE_START_VBLANK_INTERRUPT_STATUS);
2771 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772 }
2773
2774 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775 {
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 unsigned long irqflags;
2778 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779 DE_PIPE_VBLANK(pipe);
2780
2781 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782 ilk_disable_display_irq(dev_priv, bit);
2783 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2784 }
2785
2786 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787 {
2788 struct drm_i915_private *dev_priv = dev->dev_private;
2789 unsigned long irqflags;
2790
2791 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792 i915_disable_pipestat(dev_priv, pipe,
2793 PIPE_START_VBLANK_INTERRUPT_STATUS);
2794 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795 }
2796
2797 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798 {
2799 struct drm_i915_private *dev_priv = dev->dev_private;
2800 unsigned long irqflags;
2801
2802 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805 }
2806
2807 static bool
2808 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2809 {
2810 return (list_empty(&ring->request_list) ||
2811 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2812 }
2813
2814 static bool
2815 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2816 {
2817 if (INTEL_INFO(dev)->gen >= 8) {
2818 return (ipehr >> 23) == 0x1c;
2819 } else {
2820 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822 MI_SEMAPHORE_REGISTER);
2823 }
2824 }
2825
2826 static struct intel_engine_cs *
2827 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2828 {
2829 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2830 struct intel_engine_cs *signaller;
2831 int i;
2832
2833 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2834 for_each_ring(signaller, dev_priv, i) {
2835 if (ring == signaller)
2836 continue;
2837
2838 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2839 return signaller;
2840 }
2841 } else {
2842 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2843
2844 for_each_ring(signaller, dev_priv, i) {
2845 if(ring == signaller)
2846 continue;
2847
2848 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2849 return signaller;
2850 }
2851 }
2852
2853 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2854 ring->id, ipehr, offset);
2855
2856 return NULL;
2857 }
2858
2859 static struct intel_engine_cs *
2860 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2861 {
2862 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2863 u32 cmd, ipehr, head;
2864 u64 offset = 0;
2865 int i, backwards;
2866
2867 /*
2868 * This function does not support execlist mode - any attempt to
2869 * proceed further into this function will result in a kernel panic
2870 * when dereferencing ring->buffer, which is not set up in execlist
2871 * mode.
2872 *
2873 * The correct way of doing it would be to derive the currently
2874 * executing ring buffer from the current context, which is derived
2875 * from the currently running request. Unfortunately, to get the
2876 * current request we would have to grab the struct_mutex before doing
2877 * anything else, which would be ill-advised since some other thread
2878 * might have grabbed it already and managed to hang itself, causing
2879 * the hang checker to deadlock.
2880 *
2881 * Therefore, this function does not support execlist mode in its
2882 * current form. Just return NULL and move on.
2883 */
2884 if (ring->buffer == NULL)
2885 return NULL;
2886
2887 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2888 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2889 return NULL;
2890
2891 /*
2892 * HEAD is likely pointing to the dword after the actual command,
2893 * so scan backwards until we find the MBOX. But limit it to just 3
2894 * or 4 dwords depending on the semaphore wait command size.
2895 * Note that we don't care about ACTHD here since that might
2896 * point at at batch, and semaphores are always emitted into the
2897 * ringbuffer itself.
2898 */
2899 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2900 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2901
2902 for (i = backwards; i; --i) {
2903 /*
2904 * Be paranoid and presume the hw has gone off into the wild -
2905 * our ring is smaller than what the hardware (and hence
2906 * HEAD_ADDR) allows. Also handles wrap-around.
2907 */
2908 head &= ring->buffer->size - 1;
2909
2910 /* This here seems to blow up */
2911 cmd = ioread32(ring->buffer->virtual_start + head);
2912 if (cmd == ipehr)
2913 break;
2914
2915 head -= 4;
2916 }
2917
2918 if (!i)
2919 return NULL;
2920
2921 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2922 if (INTEL_INFO(ring->dev)->gen >= 8) {
2923 offset = ioread32(ring->buffer->virtual_start + head + 12);
2924 offset <<= 32;
2925 offset = ioread32(ring->buffer->virtual_start + head + 8);
2926 }
2927 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2928 }
2929
2930 static int semaphore_passed(struct intel_engine_cs *ring)
2931 {
2932 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2933 struct intel_engine_cs *signaller;
2934 u32 seqno;
2935
2936 ring->hangcheck.deadlock++;
2937
2938 signaller = semaphore_waits_for(ring, &seqno);
2939 if (signaller == NULL)
2940 return -1;
2941
2942 /* Prevent pathological recursion due to driver bugs */
2943 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2944 return -1;
2945
2946 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2947 return 1;
2948
2949 /* cursory check for an unkickable deadlock */
2950 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2951 semaphore_passed(signaller) < 0)
2952 return -1;
2953
2954 return 0;
2955 }
2956
2957 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2958 {
2959 struct intel_engine_cs *ring;
2960 int i;
2961
2962 for_each_ring(ring, dev_priv, i)
2963 ring->hangcheck.deadlock = 0;
2964 }
2965
2966 static bool subunits_stuck(struct intel_engine_cs *ring)
2967 {
2968 u32 instdone[I915_NUM_INSTDONE_REG];
2969 bool stuck;
2970 int i;
2971
2972 if (ring->id != RCS)
2973 return true;
2974
2975 i915_get_extra_instdone(ring->dev, instdone);
2976
2977 /* There might be unstable subunit states even when
2978 * actual head is not moving. Filter out the unstable ones by
2979 * accumulating the undone -> done transitions and only
2980 * consider those as progress.
2981 */
2982 stuck = true;
2983 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2984 const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2985
2986 if (tmp != ring->hangcheck.instdone[i])
2987 stuck = false;
2988
2989 ring->hangcheck.instdone[i] |= tmp;
2990 }
2991
2992 return stuck;
2993 }
2994
2995 static enum intel_ring_hangcheck_action
2996 head_stuck(struct intel_engine_cs *ring, u64 acthd)
2997 {
2998 if (acthd != ring->hangcheck.acthd) {
2999
3000 /* Clear subunit states on head movement */
3001 memset(ring->hangcheck.instdone, 0,
3002 sizeof(ring->hangcheck.instdone));
3003
3004 if (acthd > ring->hangcheck.max_acthd) {
3005 ring->hangcheck.max_acthd = acthd;
3006 return HANGCHECK_ACTIVE;
3007 }
3008
3009 return HANGCHECK_ACTIVE_LOOP;
3010 }
3011
3012 if (!subunits_stuck(ring))
3013 return HANGCHECK_ACTIVE;
3014
3015 return HANGCHECK_HUNG;
3016 }
3017
3018 static enum intel_ring_hangcheck_action
3019 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3020 {
3021 struct drm_device *dev = ring->dev;
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 enum intel_ring_hangcheck_action ha;
3024 u32 tmp;
3025
3026 ha = head_stuck(ring, acthd);
3027 if (ha != HANGCHECK_HUNG)
3028 return ha;
3029
3030 if (IS_GEN2(dev))
3031 return HANGCHECK_HUNG;
3032
3033 /* Is the chip hanging on a WAIT_FOR_EVENT?
3034 * If so we can simply poke the RB_WAIT bit
3035 * and break the hang. This should work on
3036 * all but the second generation chipsets.
3037 */
3038 tmp = I915_READ_CTL(ring);
3039 if (tmp & RING_WAIT) {
3040 i915_handle_error(dev, false,
3041 "Kicking stuck wait on %s",
3042 ring->name);
3043 I915_WRITE_CTL(ring, tmp);
3044 return HANGCHECK_KICK;
3045 }
3046
3047 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3048 switch (semaphore_passed(ring)) {
3049 default:
3050 return HANGCHECK_HUNG;
3051 case 1:
3052 i915_handle_error(dev, false,
3053 "Kicking stuck semaphore on %s",
3054 ring->name);
3055 I915_WRITE_CTL(ring, tmp);
3056 return HANGCHECK_KICK;
3057 case 0:
3058 return HANGCHECK_WAIT;
3059 }
3060 }
3061
3062 return HANGCHECK_HUNG;
3063 }
3064
3065 /*
3066 * This is called when the chip hasn't reported back with completed
3067 * batchbuffers in a long time. We keep track per ring seqno progress and
3068 * if there are no progress, hangcheck score for that ring is increased.
3069 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3070 * we kick the ring. If we see no progress on three subsequent calls
3071 * we assume chip is wedged and try to fix it by resetting the chip.
3072 */
3073 static void i915_hangcheck_elapsed(struct work_struct *work)
3074 {
3075 struct drm_i915_private *dev_priv =
3076 container_of(work, typeof(*dev_priv),
3077 gpu_error.hangcheck_work.work);
3078 struct drm_device *dev = dev_priv->dev;
3079 struct intel_engine_cs *ring;
3080 int i;
3081 int busy_count = 0, rings_hung = 0;
3082 bool stuck[I915_NUM_RINGS] = { 0 };
3083 #define BUSY 1
3084 #define KICK 5
3085 #define HUNG 20
3086
3087 if (!i915.enable_hangcheck)
3088 return;
3089
3090 /*
3091 * The hangcheck work is synced during runtime suspend, we don't
3092 * require a wakeref. TODO: instead of disabling the asserts make
3093 * sure that we hold a reference when this work is running.
3094 */
3095 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3096
3097 /* As enabling the GPU requires fairly extensive mmio access,
3098 * periodically arm the mmio checker to see if we are triggering
3099 * any invalid access.
3100 */
3101 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3102
3103 for_each_ring(ring, dev_priv, i) {
3104 u64 acthd;
3105 u32 seqno;
3106 bool busy = true;
3107
3108 semaphore_clear_deadlocks(dev_priv);
3109
3110 seqno = ring->get_seqno(ring, false);
3111 acthd = intel_ring_get_active_head(ring);
3112
3113 if (ring->hangcheck.seqno == seqno) {
3114 if (ring_idle(ring, seqno)) {
3115 ring->hangcheck.action = HANGCHECK_IDLE;
3116
3117 if (waitqueue_active(&ring->irq_queue)) {
3118 /* Issue a wake-up to catch stuck h/w. */
3119 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3120 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3121 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3122 ring->name);
3123 else
3124 DRM_INFO("Fake missed irq on %s\n",
3125 ring->name);
3126 wake_up_all(&ring->irq_queue);
3127 }
3128 /* Safeguard against driver failure */
3129 ring->hangcheck.score += BUSY;
3130 } else
3131 busy = false;
3132 } else {
3133 /* We always increment the hangcheck score
3134 * if the ring is busy and still processing
3135 * the same request, so that no single request
3136 * can run indefinitely (such as a chain of
3137 * batches). The only time we do not increment
3138 * the hangcheck score on this ring, if this
3139 * ring is in a legitimate wait for another
3140 * ring. In that case the waiting ring is a
3141 * victim and we want to be sure we catch the
3142 * right culprit. Then every time we do kick
3143 * the ring, add a small increment to the
3144 * score so that we can catch a batch that is
3145 * being repeatedly kicked and so responsible
3146 * for stalling the machine.
3147 */
3148 ring->hangcheck.action = ring_stuck(ring,
3149 acthd);
3150
3151 switch (ring->hangcheck.action) {
3152 case HANGCHECK_IDLE:
3153 case HANGCHECK_WAIT:
3154 case HANGCHECK_ACTIVE:
3155 break;
3156 case HANGCHECK_ACTIVE_LOOP:
3157 ring->hangcheck.score += BUSY;
3158 break;
3159 case HANGCHECK_KICK:
3160 ring->hangcheck.score += KICK;
3161 break;
3162 case HANGCHECK_HUNG:
3163 ring->hangcheck.score += HUNG;
3164 stuck[i] = true;
3165 break;
3166 }
3167 }
3168 } else {
3169 ring->hangcheck.action = HANGCHECK_ACTIVE;
3170
3171 /* Gradually reduce the count so that we catch DoS
3172 * attempts across multiple batches.
3173 */
3174 if (ring->hangcheck.score > 0)
3175 ring->hangcheck.score--;
3176
3177 /* Clear head and subunit states on seqno movement */
3178 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3179
3180 memset(ring->hangcheck.instdone, 0,
3181 sizeof(ring->hangcheck.instdone));
3182 }
3183
3184 ring->hangcheck.seqno = seqno;
3185 ring->hangcheck.acthd = acthd;
3186 busy_count += busy;
3187 }
3188
3189 for_each_ring(ring, dev_priv, i) {
3190 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3191 DRM_INFO("%s on %s\n",
3192 stuck[i] ? "stuck" : "no progress",
3193 ring->name);
3194 rings_hung++;
3195 }
3196 }
3197
3198 if (rings_hung) {
3199 i915_handle_error(dev, true, "Ring hung");
3200 goto out;
3201 }
3202
3203 if (busy_count)
3204 /* Reset timer case chip hangs without another request
3205 * being added */
3206 i915_queue_hangcheck(dev);
3207
3208 out:
3209 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3210 }
3211
3212 void i915_queue_hangcheck(struct drm_device *dev)
3213 {
3214 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3215
3216 if (!i915.enable_hangcheck)
3217 return;
3218
3219 /* Don't continually defer the hangcheck so that it is always run at
3220 * least once after work has been scheduled on any ring. Otherwise,
3221 * we will ignore a hung ring if a second ring is kept busy.
3222 */
3223
3224 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3225 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3226 }
3227
3228 static void ibx_irq_reset(struct drm_device *dev)
3229 {
3230 struct drm_i915_private *dev_priv = dev->dev_private;
3231
3232 if (HAS_PCH_NOP(dev))
3233 return;
3234
3235 GEN5_IRQ_RESET(SDE);
3236
3237 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3238 I915_WRITE(SERR_INT, 0xffffffff);
3239 }
3240
3241 /*
3242 * SDEIER is also touched by the interrupt handler to work around missed PCH
3243 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3244 * instead we unconditionally enable all PCH interrupt sources here, but then
3245 * only unmask them as needed with SDEIMR.
3246 *
3247 * This function needs to be called before interrupts are enabled.
3248 */
3249 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3250 {
3251 struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253 if (HAS_PCH_NOP(dev))
3254 return;
3255
3256 WARN_ON(I915_READ(SDEIER) != 0);
3257 I915_WRITE(SDEIER, 0xffffffff);
3258 POSTING_READ(SDEIER);
3259 }
3260
3261 static void gen5_gt_irq_reset(struct drm_device *dev)
3262 {
3263 struct drm_i915_private *dev_priv = dev->dev_private;
3264
3265 GEN5_IRQ_RESET(GT);
3266 if (INTEL_INFO(dev)->gen >= 6)
3267 GEN5_IRQ_RESET(GEN6_PM);
3268 }
3269
3270 /* drm_dma.h hooks
3271 */
3272 static void ironlake_irq_reset(struct drm_device *dev)
3273 {
3274 struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276 I915_WRITE(HWSTAM, 0xffffffff);
3277
3278 GEN5_IRQ_RESET(DE);
3279 if (IS_GEN7(dev))
3280 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3281
3282 gen5_gt_irq_reset(dev);
3283
3284 ibx_irq_reset(dev);
3285 }
3286
3287 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3288 {
3289 enum pipe pipe;
3290
3291 i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3292 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3293
3294 for_each_pipe(dev_priv, pipe)
3295 I915_WRITE(PIPESTAT(pipe), 0xffff);
3296
3297 GEN5_IRQ_RESET(VLV_);
3298 }
3299
3300 static void valleyview_irq_preinstall(struct drm_device *dev)
3301 {
3302 struct drm_i915_private *dev_priv = dev->dev_private;
3303
3304 /* VLV magic */
3305 I915_WRITE(VLV_IMR, 0);
3306 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3307 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3308 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3309
3310 gen5_gt_irq_reset(dev);
3311
3312 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3313
3314 vlv_display_irq_reset(dev_priv);
3315 }
3316
3317 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3318 {
3319 GEN8_IRQ_RESET_NDX(GT, 0);
3320 GEN8_IRQ_RESET_NDX(GT, 1);
3321 GEN8_IRQ_RESET_NDX(GT, 2);
3322 GEN8_IRQ_RESET_NDX(GT, 3);
3323 }
3324
3325 static void gen8_irq_reset(struct drm_device *dev)
3326 {
3327 struct drm_i915_private *dev_priv = dev->dev_private;
3328 int pipe;
3329
3330 I915_WRITE(GEN8_MASTER_IRQ, 0);
3331 POSTING_READ(GEN8_MASTER_IRQ);
3332
3333 gen8_gt_irq_reset(dev_priv);
3334
3335 for_each_pipe(dev_priv, pipe)
3336 if (intel_display_power_is_enabled(dev_priv,
3337 POWER_DOMAIN_PIPE(pipe)))
3338 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3339
3340 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3341 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3342 GEN5_IRQ_RESET(GEN8_PCU_);
3343
3344 if (HAS_PCH_SPLIT(dev))
3345 ibx_irq_reset(dev);
3346 }
3347
3348 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3349 unsigned int pipe_mask)
3350 {
3351 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3352
3353 spin_lock_irq(&dev_priv->irq_lock);
3354 if (pipe_mask & 1 << PIPE_A)
3355 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3356 dev_priv->de_irq_mask[PIPE_A],
3357 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3358 if (pipe_mask & 1 << PIPE_B)
3359 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3360 dev_priv->de_irq_mask[PIPE_B],
3361 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3362 if (pipe_mask & 1 << PIPE_C)
3363 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3364 dev_priv->de_irq_mask[PIPE_C],
3365 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3366 spin_unlock_irq(&dev_priv->irq_lock);
3367 }
3368
3369 static void cherryview_irq_preinstall(struct drm_device *dev)
3370 {
3371 struct drm_i915_private *dev_priv = dev->dev_private;
3372
3373 I915_WRITE(GEN8_MASTER_IRQ, 0);
3374 POSTING_READ(GEN8_MASTER_IRQ);
3375
3376 gen8_gt_irq_reset(dev_priv);
3377
3378 GEN5_IRQ_RESET(GEN8_PCU_);
3379
3380 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3381
3382 vlv_display_irq_reset(dev_priv);
3383 }
3384
3385 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3386 const u32 hpd[HPD_NUM_PINS])
3387 {
3388 struct drm_i915_private *dev_priv = to_i915(dev);
3389 struct intel_encoder *encoder;
3390 u32 enabled_irqs = 0;
3391
3392 for_each_intel_encoder(dev, encoder)
3393 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3394 enabled_irqs |= hpd[encoder->hpd_pin];
3395
3396 return enabled_irqs;
3397 }
3398
3399 static void ibx_hpd_irq_setup(struct drm_device *dev)
3400 {
3401 struct drm_i915_private *dev_priv = dev->dev_private;
3402 u32 hotplug_irqs, hotplug, enabled_irqs;
3403
3404 if (HAS_PCH_IBX(dev)) {
3405 hotplug_irqs = SDE_HOTPLUG_MASK;
3406 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3407 } else {
3408 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3410 }
3411
3412 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414 /*
3415 * Enable digital hotplug on the PCH, and configure the DP short pulse
3416 * duration to 2ms (which is the minimum in the Display Port spec).
3417 * The pulse duration bits are reserved on LPT+.
3418 */
3419 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3420 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3421 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3422 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3423 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3424 /*
3425 * When CPU and PCH are on the same package, port A
3426 * HPD must be enabled in both north and south.
3427 */
3428 if (HAS_PCH_LPT_LP(dev))
3429 hotplug |= PORTA_HOTPLUG_ENABLE;
3430 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3431 }
3432
3433 static void spt_hpd_irq_setup(struct drm_device *dev)
3434 {
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 u32 hotplug_irqs, hotplug, enabled_irqs;
3437
3438 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3439 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3440
3441 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443 /* Enable digital hotplug on the PCH */
3444 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3445 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3446 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3447 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3448
3449 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3450 hotplug |= PORTE_HOTPLUG_ENABLE;
3451 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3452 }
3453
3454 static void ilk_hpd_irq_setup(struct drm_device *dev)
3455 {
3456 struct drm_i915_private *dev_priv = dev->dev_private;
3457 u32 hotplug_irqs, hotplug, enabled_irqs;
3458
3459 if (INTEL_INFO(dev)->gen >= 8) {
3460 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3461 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3462
3463 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3464 } else if (INTEL_INFO(dev)->gen >= 7) {
3465 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3466 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3467
3468 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3469 } else {
3470 hotplug_irqs = DE_DP_A_HOTPLUG;
3471 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3472
3473 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3474 }
3475
3476 /*
3477 * Enable digital hotplug on the CPU, and configure the DP short pulse
3478 * duration to 2ms (which is the minimum in the Display Port spec)
3479 * The pulse duration bits are reserved on HSW+.
3480 */
3481 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3482 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3483 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3484 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3485
3486 ibx_hpd_irq_setup(dev);
3487 }
3488
3489 static void bxt_hpd_irq_setup(struct drm_device *dev)
3490 {
3491 struct drm_i915_private *dev_priv = dev->dev_private;
3492 u32 hotplug_irqs, hotplug, enabled_irqs;
3493
3494 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3495 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3496
3497 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3498
3499 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3500 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3501 PORTA_HOTPLUG_ENABLE;
3502 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3503 }
3504
3505 static void ibx_irq_postinstall(struct drm_device *dev)
3506 {
3507 struct drm_i915_private *dev_priv = dev->dev_private;
3508 u32 mask;
3509
3510 if (HAS_PCH_NOP(dev))
3511 return;
3512
3513 if (HAS_PCH_IBX(dev))
3514 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3515 else
3516 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3517
3518 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3519 I915_WRITE(SDEIMR, ~mask);
3520 }
3521
3522 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3523 {
3524 struct drm_i915_private *dev_priv = dev->dev_private;
3525 u32 pm_irqs, gt_irqs;
3526
3527 pm_irqs = gt_irqs = 0;
3528
3529 dev_priv->gt_irq_mask = ~0;
3530 if (HAS_L3_DPF(dev)) {
3531 /* L3 parity interrupt is always unmasked. */
3532 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3533 gt_irqs |= GT_PARITY_ERROR(dev);
3534 }
3535
3536 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3537 if (IS_GEN5(dev)) {
3538 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3539 ILK_BSD_USER_INTERRUPT;
3540 } else {
3541 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3542 }
3543
3544 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3545
3546 if (INTEL_INFO(dev)->gen >= 6) {
3547 /*
3548 * RPS interrupts will get enabled/disabled on demand when RPS
3549 * itself is enabled/disabled.
3550 */
3551 if (HAS_VEBOX(dev))
3552 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3553
3554 dev_priv->pm_irq_mask = 0xffffffff;
3555 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3556 }
3557 }
3558
3559 static int ironlake_irq_postinstall(struct drm_device *dev)
3560 {
3561 struct drm_i915_private *dev_priv = dev->dev_private;
3562 u32 display_mask, extra_mask;
3563
3564 if (INTEL_INFO(dev)->gen >= 7) {
3565 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3566 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3567 DE_PLANEB_FLIP_DONE_IVB |
3568 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3569 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3570 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3571 DE_DP_A_HOTPLUG_IVB);
3572 } else {
3573 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3574 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3575 DE_AUX_CHANNEL_A |
3576 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3577 DE_POISON);
3578 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3579 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3580 DE_DP_A_HOTPLUG);
3581 }
3582
3583 dev_priv->irq_mask = ~display_mask;
3584
3585 I915_WRITE(HWSTAM, 0xeffe);
3586
3587 ibx_irq_pre_postinstall(dev);
3588
3589 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3590
3591 gen5_gt_irq_postinstall(dev);
3592
3593 ibx_irq_postinstall(dev);
3594
3595 if (IS_IRONLAKE_M(dev)) {
3596 /* Enable PCU event interrupts
3597 *
3598 * spinlocking not required here for correctness since interrupt
3599 * setup is guaranteed to run in single-threaded context. But we
3600 * need it to make the assert_spin_locked happy. */
3601 spin_lock_irq(&dev_priv->irq_lock);
3602 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3603 spin_unlock_irq(&dev_priv->irq_lock);
3604 }
3605
3606 return 0;
3607 }
3608
3609 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3610 {
3611 u32 pipestat_mask;
3612 u32 iir_mask;
3613 enum pipe pipe;
3614
3615 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3616 PIPE_FIFO_UNDERRUN_STATUS;
3617
3618 for_each_pipe(dev_priv, pipe)
3619 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3620 POSTING_READ(PIPESTAT(PIPE_A));
3621
3622 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3623 PIPE_CRC_DONE_INTERRUPT_STATUS;
3624
3625 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3626 for_each_pipe(dev_priv, pipe)
3627 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3628
3629 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3630 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3631 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3632 if (IS_CHERRYVIEW(dev_priv))
3633 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3634 dev_priv->irq_mask &= ~iir_mask;
3635
3636 I915_WRITE(VLV_IIR, iir_mask);
3637 I915_WRITE(VLV_IIR, iir_mask);
3638 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3639 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3640 POSTING_READ(VLV_IMR);
3641 }
3642
3643 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3644 {
3645 u32 pipestat_mask;
3646 u32 iir_mask;
3647 enum pipe pipe;
3648
3649 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3650 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3651 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3652 if (IS_CHERRYVIEW(dev_priv))
3653 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3654
3655 dev_priv->irq_mask |= iir_mask;
3656 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3657 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3658 I915_WRITE(VLV_IIR, iir_mask);
3659 I915_WRITE(VLV_IIR, iir_mask);
3660 POSTING_READ(VLV_IIR);
3661
3662 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3663 PIPE_CRC_DONE_INTERRUPT_STATUS;
3664
3665 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3666 for_each_pipe(dev_priv, pipe)
3667 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3668
3669 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3670 PIPE_FIFO_UNDERRUN_STATUS;
3671
3672 for_each_pipe(dev_priv, pipe)
3673 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3674 POSTING_READ(PIPESTAT(PIPE_A));
3675 }
3676
3677 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3678 {
3679 assert_spin_locked(&dev_priv->irq_lock);
3680
3681 if (dev_priv->display_irqs_enabled)
3682 return;
3683
3684 dev_priv->display_irqs_enabled = true;
3685
3686 if (intel_irqs_enabled(dev_priv))
3687 valleyview_display_irqs_install(dev_priv);
3688 }
3689
3690 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3691 {
3692 assert_spin_locked(&dev_priv->irq_lock);
3693
3694 if (!dev_priv->display_irqs_enabled)
3695 return;
3696
3697 dev_priv->display_irqs_enabled = false;
3698
3699 if (intel_irqs_enabled(dev_priv))
3700 valleyview_display_irqs_uninstall(dev_priv);
3701 }
3702
3703 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3704 {
3705 dev_priv->irq_mask = ~0;
3706
3707 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3708 POSTING_READ(PORT_HOTPLUG_EN);
3709
3710 I915_WRITE(VLV_IIR, 0xffffffff);
3711 I915_WRITE(VLV_IIR, 0xffffffff);
3712 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3713 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3714 POSTING_READ(VLV_IMR);
3715
3716 /* Interrupt setup is already guaranteed to be single-threaded, this is
3717 * just to make the assert_spin_locked check happy. */
3718 spin_lock_irq(&dev_priv->irq_lock);
3719 if (dev_priv->display_irqs_enabled)
3720 valleyview_display_irqs_install(dev_priv);
3721 spin_unlock_irq(&dev_priv->irq_lock);
3722 }
3723
3724 static int valleyview_irq_postinstall(struct drm_device *dev)
3725 {
3726 struct drm_i915_private *dev_priv = dev->dev_private;
3727
3728 vlv_display_irq_postinstall(dev_priv);
3729
3730 gen5_gt_irq_postinstall(dev);
3731
3732 /* ack & enable invalid PTE error interrupts */
3733 #if 0 /* FIXME: add support to irq handler for checking these bits */
3734 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3735 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3736 #endif
3737
3738 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3739
3740 return 0;
3741 }
3742
3743 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3744 {
3745 /* These are interrupts we'll toggle with the ring mask register */
3746 uint32_t gt_interrupts[] = {
3747 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3748 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3749 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3750 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3751 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3752 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3753 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3754 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3755 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3756 0,
3757 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3758 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3759 };
3760
3761 dev_priv->pm_irq_mask = 0xffffffff;
3762 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3763 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3764 /*
3765 * RPS interrupts will get enabled/disabled on demand when RPS itself
3766 * is enabled/disabled.
3767 */
3768 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3769 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3770 }
3771
3772 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3773 {
3774 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3775 uint32_t de_pipe_enables;
3776 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3777 u32 de_port_enables;
3778 enum pipe pipe;
3779
3780 if (INTEL_INFO(dev_priv)->gen >= 9) {
3781 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3782 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3783 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3784 GEN9_AUX_CHANNEL_D;
3785 if (IS_BROXTON(dev_priv))
3786 de_port_masked |= BXT_DE_PORT_GMBUS;
3787 } else {
3788 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3789 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3790 }
3791
3792 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3793 GEN8_PIPE_FIFO_UNDERRUN;
3794
3795 de_port_enables = de_port_masked;
3796 if (IS_BROXTON(dev_priv))
3797 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3798 else if (IS_BROADWELL(dev_priv))
3799 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3800
3801 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3802 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3803 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3804
3805 for_each_pipe(dev_priv, pipe)
3806 if (intel_display_power_is_enabled(dev_priv,
3807 POWER_DOMAIN_PIPE(pipe)))
3808 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3809 dev_priv->de_irq_mask[pipe],
3810 de_pipe_enables);
3811
3812 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3813 }
3814
3815 static int gen8_irq_postinstall(struct drm_device *dev)
3816 {
3817 struct drm_i915_private *dev_priv = dev->dev_private;
3818
3819 if (HAS_PCH_SPLIT(dev))
3820 ibx_irq_pre_postinstall(dev);
3821
3822 gen8_gt_irq_postinstall(dev_priv);
3823 gen8_de_irq_postinstall(dev_priv);
3824
3825 if (HAS_PCH_SPLIT(dev))
3826 ibx_irq_postinstall(dev);
3827
3828 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3829 POSTING_READ(GEN8_MASTER_IRQ);
3830
3831 return 0;
3832 }
3833
3834 static int cherryview_irq_postinstall(struct drm_device *dev)
3835 {
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837
3838 vlv_display_irq_postinstall(dev_priv);
3839
3840 gen8_gt_irq_postinstall(dev_priv);
3841
3842 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3843 POSTING_READ(GEN8_MASTER_IRQ);
3844
3845 return 0;
3846 }
3847
3848 static void gen8_irq_uninstall(struct drm_device *dev)
3849 {
3850 struct drm_i915_private *dev_priv = dev->dev_private;
3851
3852 if (!dev_priv)
3853 return;
3854
3855 gen8_irq_reset(dev);
3856 }
3857
3858 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3859 {
3860 /* Interrupt setup is already guaranteed to be single-threaded, this is
3861 * just to make the assert_spin_locked check happy. */
3862 spin_lock_irq(&dev_priv->irq_lock);
3863 if (dev_priv->display_irqs_enabled)
3864 valleyview_display_irqs_uninstall(dev_priv);
3865 spin_unlock_irq(&dev_priv->irq_lock);
3866
3867 vlv_display_irq_reset(dev_priv);
3868
3869 dev_priv->irq_mask = ~0;
3870 }
3871
3872 static void valleyview_irq_uninstall(struct drm_device *dev)
3873 {
3874 struct drm_i915_private *dev_priv = dev->dev_private;
3875
3876 if (!dev_priv)
3877 return;
3878
3879 I915_WRITE(VLV_MASTER_IER, 0);
3880
3881 gen5_gt_irq_reset(dev);
3882
3883 I915_WRITE(HWSTAM, 0xffffffff);
3884
3885 vlv_display_irq_uninstall(dev_priv);
3886 }
3887
3888 static void cherryview_irq_uninstall(struct drm_device *dev)
3889 {
3890 struct drm_i915_private *dev_priv = dev->dev_private;
3891
3892 if (!dev_priv)
3893 return;
3894
3895 I915_WRITE(GEN8_MASTER_IRQ, 0);
3896 POSTING_READ(GEN8_MASTER_IRQ);
3897
3898 gen8_gt_irq_reset(dev_priv);
3899
3900 GEN5_IRQ_RESET(GEN8_PCU_);
3901
3902 vlv_display_irq_uninstall(dev_priv);
3903 }
3904
3905 static void ironlake_irq_uninstall(struct drm_device *dev)
3906 {
3907 struct drm_i915_private *dev_priv = dev->dev_private;
3908
3909 if (!dev_priv)
3910 return;
3911
3912 ironlake_irq_reset(dev);
3913 }
3914
3915 static void i8xx_irq_preinstall(struct drm_device * dev)
3916 {
3917 struct drm_i915_private *dev_priv = dev->dev_private;
3918 int pipe;
3919
3920 for_each_pipe(dev_priv, pipe)
3921 I915_WRITE(PIPESTAT(pipe), 0);
3922 I915_WRITE16(IMR, 0xffff);
3923 I915_WRITE16(IER, 0x0);
3924 POSTING_READ16(IER);
3925 }
3926
3927 static int i8xx_irq_postinstall(struct drm_device *dev)
3928 {
3929 struct drm_i915_private *dev_priv = dev->dev_private;
3930
3931 I915_WRITE16(EMR,
3932 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3933
3934 /* Unmask the interrupts that we always want on. */
3935 dev_priv->irq_mask =
3936 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3937 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3938 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3939 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3940 I915_WRITE16(IMR, dev_priv->irq_mask);
3941
3942 I915_WRITE16(IER,
3943 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3944 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3945 I915_USER_INTERRUPT);
3946 POSTING_READ16(IER);
3947
3948 /* Interrupt setup is already guaranteed to be single-threaded, this is
3949 * just to make the assert_spin_locked check happy. */
3950 spin_lock_irq(&dev_priv->irq_lock);
3951 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3952 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3953 spin_unlock_irq(&dev_priv->irq_lock);
3954
3955 return 0;
3956 }
3957
3958 /*
3959 * Returns true when a page flip has completed.
3960 */
3961 static bool i8xx_handle_vblank(struct drm_device *dev,
3962 int plane, int pipe, u32 iir)
3963 {
3964 struct drm_i915_private *dev_priv = dev->dev_private;
3965 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3966
3967 if (!intel_pipe_handle_vblank(dev, pipe))
3968 return false;
3969
3970 if ((iir & flip_pending) == 0)
3971 goto check_page_flip;
3972
3973 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3974 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3975 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3976 * the flip is completed (no longer pending). Since this doesn't raise
3977 * an interrupt per se, we watch for the change at vblank.
3978 */
3979 if (I915_READ16(ISR) & flip_pending)
3980 goto check_page_flip;
3981
3982 intel_prepare_page_flip(dev, plane);
3983 intel_finish_page_flip(dev, pipe);
3984 return true;
3985
3986 check_page_flip:
3987 intel_check_page_flip(dev, pipe);
3988 return false;
3989 }
3990
3991 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3992 {
3993 struct drm_device *dev = arg;
3994 struct drm_i915_private *dev_priv = dev->dev_private;
3995 u16 iir, new_iir;
3996 u32 pipe_stats[2];
3997 int pipe;
3998 u16 flip_mask =
3999 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4000 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4001 irqreturn_t ret;
4002
4003 if (!intel_irqs_enabled(dev_priv))
4004 return IRQ_NONE;
4005
4006 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4007 disable_rpm_wakeref_asserts(dev_priv);
4008
4009 ret = IRQ_NONE;
4010 iir = I915_READ16(IIR);
4011 if (iir == 0)
4012 goto out;
4013
4014 while (iir & ~flip_mask) {
4015 /* Can't rely on pipestat interrupt bit in iir as it might
4016 * have been cleared after the pipestat interrupt was received.
4017 * It doesn't set the bit in iir again, but it still produces
4018 * interrupts (for non-MSI).
4019 */
4020 spin_lock(&dev_priv->irq_lock);
4021 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4022 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4023
4024 for_each_pipe(dev_priv, pipe) {
4025 i915_reg_t reg = PIPESTAT(pipe);
4026 pipe_stats[pipe] = I915_READ(reg);
4027
4028 /*
4029 * Clear the PIPE*STAT regs before the IIR
4030 */
4031 if (pipe_stats[pipe] & 0x8000ffff)
4032 I915_WRITE(reg, pipe_stats[pipe]);
4033 }
4034 spin_unlock(&dev_priv->irq_lock);
4035
4036 I915_WRITE16(IIR, iir & ~flip_mask);
4037 new_iir = I915_READ16(IIR); /* Flush posted writes */
4038
4039 if (iir & I915_USER_INTERRUPT)
4040 notify_ring(&dev_priv->ring[RCS]);
4041
4042 for_each_pipe(dev_priv, pipe) {
4043 int plane = pipe;
4044 if (HAS_FBC(dev))
4045 plane = !plane;
4046
4047 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4048 i8xx_handle_vblank(dev, plane, pipe, iir))
4049 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4050
4051 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4052 i9xx_pipe_crc_irq_handler(dev, pipe);
4053
4054 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4055 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4056 pipe);
4057 }
4058
4059 iir = new_iir;
4060 }
4061 ret = IRQ_HANDLED;
4062
4063 out:
4064 enable_rpm_wakeref_asserts(dev_priv);
4065
4066 return ret;
4067 }
4068
4069 static void i8xx_irq_uninstall(struct drm_device * dev)
4070 {
4071 struct drm_i915_private *dev_priv = dev->dev_private;
4072 int pipe;
4073
4074 for_each_pipe(dev_priv, pipe) {
4075 /* Clear enable bits; then clear status bits */
4076 I915_WRITE(PIPESTAT(pipe), 0);
4077 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4078 }
4079 I915_WRITE16(IMR, 0xffff);
4080 I915_WRITE16(IER, 0x0);
4081 I915_WRITE16(IIR, I915_READ16(IIR));
4082 }
4083
4084 static void i915_irq_preinstall(struct drm_device * dev)
4085 {
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 int pipe;
4088
4089 if (I915_HAS_HOTPLUG(dev)) {
4090 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4091 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4092 }
4093
4094 I915_WRITE16(HWSTAM, 0xeffe);
4095 for_each_pipe(dev_priv, pipe)
4096 I915_WRITE(PIPESTAT(pipe), 0);
4097 I915_WRITE(IMR, 0xffffffff);
4098 I915_WRITE(IER, 0x0);
4099 POSTING_READ(IER);
4100 }
4101
4102 static int i915_irq_postinstall(struct drm_device *dev)
4103 {
4104 struct drm_i915_private *dev_priv = dev->dev_private;
4105 u32 enable_mask;
4106
4107 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4108
4109 /* Unmask the interrupts that we always want on. */
4110 dev_priv->irq_mask =
4111 ~(I915_ASLE_INTERRUPT |
4112 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4113 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4114 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4115 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4116
4117 enable_mask =
4118 I915_ASLE_INTERRUPT |
4119 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121 I915_USER_INTERRUPT;
4122
4123 if (I915_HAS_HOTPLUG(dev)) {
4124 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4125 POSTING_READ(PORT_HOTPLUG_EN);
4126
4127 /* Enable in IER... */
4128 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4129 /* and unmask in IMR */
4130 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4131 }
4132
4133 I915_WRITE(IMR, dev_priv->irq_mask);
4134 I915_WRITE(IER, enable_mask);
4135 POSTING_READ(IER);
4136
4137 i915_enable_asle_pipestat(dev);
4138
4139 /* Interrupt setup is already guaranteed to be single-threaded, this is
4140 * just to make the assert_spin_locked check happy. */
4141 spin_lock_irq(&dev_priv->irq_lock);
4142 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4143 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4144 spin_unlock_irq(&dev_priv->irq_lock);
4145
4146 return 0;
4147 }
4148
4149 /*
4150 * Returns true when a page flip has completed.
4151 */
4152 static bool i915_handle_vblank(struct drm_device *dev,
4153 int plane, int pipe, u32 iir)
4154 {
4155 struct drm_i915_private *dev_priv = dev->dev_private;
4156 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4157
4158 if (!intel_pipe_handle_vblank(dev, pipe))
4159 return false;
4160
4161 if ((iir & flip_pending) == 0)
4162 goto check_page_flip;
4163
4164 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4165 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4166 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4167 * the flip is completed (no longer pending). Since this doesn't raise
4168 * an interrupt per se, we watch for the change at vblank.
4169 */
4170 if (I915_READ(ISR) & flip_pending)
4171 goto check_page_flip;
4172
4173 intel_prepare_page_flip(dev, plane);
4174 intel_finish_page_flip(dev, pipe);
4175 return true;
4176
4177 check_page_flip:
4178 intel_check_page_flip(dev, pipe);
4179 return false;
4180 }
4181
4182 static irqreturn_t i915_irq_handler(int irq, void *arg)
4183 {
4184 struct drm_device *dev = arg;
4185 struct drm_i915_private *dev_priv = dev->dev_private;
4186 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4187 u32 flip_mask =
4188 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4189 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4190 int pipe, ret = IRQ_NONE;
4191
4192 if (!intel_irqs_enabled(dev_priv))
4193 return IRQ_NONE;
4194
4195 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4196 disable_rpm_wakeref_asserts(dev_priv);
4197
4198 iir = I915_READ(IIR);
4199 do {
4200 bool irq_received = (iir & ~flip_mask) != 0;
4201 bool blc_event = false;
4202
4203 /* Can't rely on pipestat interrupt bit in iir as it might
4204 * have been cleared after the pipestat interrupt was received.
4205 * It doesn't set the bit in iir again, but it still produces
4206 * interrupts (for non-MSI).
4207 */
4208 spin_lock(&dev_priv->irq_lock);
4209 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4210 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4211
4212 for_each_pipe(dev_priv, pipe) {
4213 i915_reg_t reg = PIPESTAT(pipe);
4214 pipe_stats[pipe] = I915_READ(reg);
4215
4216 /* Clear the PIPE*STAT regs before the IIR */
4217 if (pipe_stats[pipe] & 0x8000ffff) {
4218 I915_WRITE(reg, pipe_stats[pipe]);
4219 irq_received = true;
4220 }
4221 }
4222 spin_unlock(&dev_priv->irq_lock);
4223
4224 if (!irq_received)
4225 break;
4226
4227 /* Consume port. Then clear IIR or we'll miss events */
4228 if (I915_HAS_HOTPLUG(dev) &&
4229 iir & I915_DISPLAY_PORT_INTERRUPT)
4230 i9xx_hpd_irq_handler(dev);
4231
4232 I915_WRITE(IIR, iir & ~flip_mask);
4233 new_iir = I915_READ(IIR); /* Flush posted writes */
4234
4235 if (iir & I915_USER_INTERRUPT)
4236 notify_ring(&dev_priv->ring[RCS]);
4237
4238 for_each_pipe(dev_priv, pipe) {
4239 int plane = pipe;
4240 if (HAS_FBC(dev))
4241 plane = !plane;
4242
4243 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4244 i915_handle_vblank(dev, plane, pipe, iir))
4245 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4246
4247 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4248 blc_event = true;
4249
4250 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4251 i9xx_pipe_crc_irq_handler(dev, pipe);
4252
4253 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4254 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4255 pipe);
4256 }
4257
4258 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4259 intel_opregion_asle_intr(dev);
4260
4261 /* With MSI, interrupts are only generated when iir
4262 * transitions from zero to nonzero. If another bit got
4263 * set while we were handling the existing iir bits, then
4264 * we would never get another interrupt.
4265 *
4266 * This is fine on non-MSI as well, as if we hit this path
4267 * we avoid exiting the interrupt handler only to generate
4268 * another one.
4269 *
4270 * Note that for MSI this could cause a stray interrupt report
4271 * if an interrupt landed in the time between writing IIR and
4272 * the posting read. This should be rare enough to never
4273 * trigger the 99% of 100,000 interrupts test for disabling
4274 * stray interrupts.
4275 */
4276 ret = IRQ_HANDLED;
4277 iir = new_iir;
4278 } while (iir & ~flip_mask);
4279
4280 enable_rpm_wakeref_asserts(dev_priv);
4281
4282 return ret;
4283 }
4284
4285 static void i915_irq_uninstall(struct drm_device * dev)
4286 {
4287 struct drm_i915_private *dev_priv = dev->dev_private;
4288 int pipe;
4289
4290 if (I915_HAS_HOTPLUG(dev)) {
4291 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4292 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4293 }
4294
4295 I915_WRITE16(HWSTAM, 0xffff);
4296 for_each_pipe(dev_priv, pipe) {
4297 /* Clear enable bits; then clear status bits */
4298 I915_WRITE(PIPESTAT(pipe), 0);
4299 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4300 }
4301 I915_WRITE(IMR, 0xffffffff);
4302 I915_WRITE(IER, 0x0);
4303
4304 I915_WRITE(IIR, I915_READ(IIR));
4305 }
4306
4307 static void i965_irq_preinstall(struct drm_device * dev)
4308 {
4309 struct drm_i915_private *dev_priv = dev->dev_private;
4310 int pipe;
4311
4312 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4313 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4314
4315 I915_WRITE(HWSTAM, 0xeffe);
4316 for_each_pipe(dev_priv, pipe)
4317 I915_WRITE(PIPESTAT(pipe), 0);
4318 I915_WRITE(IMR, 0xffffffff);
4319 I915_WRITE(IER, 0x0);
4320 POSTING_READ(IER);
4321 }
4322
4323 static int i965_irq_postinstall(struct drm_device *dev)
4324 {
4325 struct drm_i915_private *dev_priv = dev->dev_private;
4326 u32 enable_mask;
4327 u32 error_mask;
4328
4329 /* Unmask the interrupts that we always want on. */
4330 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4331 I915_DISPLAY_PORT_INTERRUPT |
4332 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4333 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4334 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4335 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4336 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4337
4338 enable_mask = ~dev_priv->irq_mask;
4339 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4340 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4341 enable_mask |= I915_USER_INTERRUPT;
4342
4343 if (IS_G4X(dev))
4344 enable_mask |= I915_BSD_USER_INTERRUPT;
4345
4346 /* Interrupt setup is already guaranteed to be single-threaded, this is
4347 * just to make the assert_spin_locked check happy. */
4348 spin_lock_irq(&dev_priv->irq_lock);
4349 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4350 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4351 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4352 spin_unlock_irq(&dev_priv->irq_lock);
4353
4354 /*
4355 * Enable some error detection, note the instruction error mask
4356 * bit is reserved, so we leave it masked.
4357 */
4358 if (IS_G4X(dev)) {
4359 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4360 GM45_ERROR_MEM_PRIV |
4361 GM45_ERROR_CP_PRIV |
4362 I915_ERROR_MEMORY_REFRESH);
4363 } else {
4364 error_mask = ~(I915_ERROR_PAGE_TABLE |
4365 I915_ERROR_MEMORY_REFRESH);
4366 }
4367 I915_WRITE(EMR, error_mask);
4368
4369 I915_WRITE(IMR, dev_priv->irq_mask);
4370 I915_WRITE(IER, enable_mask);
4371 POSTING_READ(IER);
4372
4373 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4374 POSTING_READ(PORT_HOTPLUG_EN);
4375
4376 i915_enable_asle_pipestat(dev);
4377
4378 return 0;
4379 }
4380
4381 static void i915_hpd_irq_setup(struct drm_device *dev)
4382 {
4383 struct drm_i915_private *dev_priv = dev->dev_private;
4384 u32 hotplug_en;
4385
4386 assert_spin_locked(&dev_priv->irq_lock);
4387
4388 /* Note HDMI and DP share hotplug bits */
4389 /* enable bits are the same for all generations */
4390 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4391 /* Programming the CRT detection parameters tends
4392 to generate a spurious hotplug event about three
4393 seconds later. So just do it once.
4394 */
4395 if (IS_G4X(dev))
4396 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4397 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4398
4399 /* Ignore TV since it's buggy */
4400 i915_hotplug_interrupt_update_locked(dev_priv,
4401 HOTPLUG_INT_EN_MASK |
4402 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4403 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4404 hotplug_en);
4405 }
4406
4407 static irqreturn_t i965_irq_handler(int irq, void *arg)
4408 {
4409 struct drm_device *dev = arg;
4410 struct drm_i915_private *dev_priv = dev->dev_private;
4411 u32 iir, new_iir;
4412 u32 pipe_stats[I915_MAX_PIPES];
4413 int ret = IRQ_NONE, pipe;
4414 u32 flip_mask =
4415 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4416 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4417
4418 if (!intel_irqs_enabled(dev_priv))
4419 return IRQ_NONE;
4420
4421 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4422 disable_rpm_wakeref_asserts(dev_priv);
4423
4424 iir = I915_READ(IIR);
4425
4426 for (;;) {
4427 bool irq_received = (iir & ~flip_mask) != 0;
4428 bool blc_event = false;
4429
4430 /* Can't rely on pipestat interrupt bit in iir as it might
4431 * have been cleared after the pipestat interrupt was received.
4432 * It doesn't set the bit in iir again, but it still produces
4433 * interrupts (for non-MSI).
4434 */
4435 spin_lock(&dev_priv->irq_lock);
4436 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4437 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4438
4439 for_each_pipe(dev_priv, pipe) {
4440 i915_reg_t reg = PIPESTAT(pipe);
4441 pipe_stats[pipe] = I915_READ(reg);
4442
4443 /*
4444 * Clear the PIPE*STAT regs before the IIR
4445 */
4446 if (pipe_stats[pipe] & 0x8000ffff) {
4447 I915_WRITE(reg, pipe_stats[pipe]);
4448 irq_received = true;
4449 }
4450 }
4451 spin_unlock(&dev_priv->irq_lock);
4452
4453 if (!irq_received)
4454 break;
4455
4456 ret = IRQ_HANDLED;
4457
4458 /* Consume port. Then clear IIR or we'll miss events */
4459 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4460 i9xx_hpd_irq_handler(dev);
4461
4462 I915_WRITE(IIR, iir & ~flip_mask);
4463 new_iir = I915_READ(IIR); /* Flush posted writes */
4464
4465 if (iir & I915_USER_INTERRUPT)
4466 notify_ring(&dev_priv->ring[RCS]);
4467 if (iir & I915_BSD_USER_INTERRUPT)
4468 notify_ring(&dev_priv->ring[VCS]);
4469
4470 for_each_pipe(dev_priv, pipe) {
4471 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4472 i915_handle_vblank(dev, pipe, pipe, iir))
4473 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4474
4475 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4476 blc_event = true;
4477
4478 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4479 i9xx_pipe_crc_irq_handler(dev, pipe);
4480
4481 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4482 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4483 }
4484
4485 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4486 intel_opregion_asle_intr(dev);
4487
4488 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4489 gmbus_irq_handler(dev);
4490
4491 /* With MSI, interrupts are only generated when iir
4492 * transitions from zero to nonzero. If another bit got
4493 * set while we were handling the existing iir bits, then
4494 * we would never get another interrupt.
4495 *
4496 * This is fine on non-MSI as well, as if we hit this path
4497 * we avoid exiting the interrupt handler only to generate
4498 * another one.
4499 *
4500 * Note that for MSI this could cause a stray interrupt report
4501 * if an interrupt landed in the time between writing IIR and
4502 * the posting read. This should be rare enough to never
4503 * trigger the 99% of 100,000 interrupts test for disabling
4504 * stray interrupts.
4505 */
4506 iir = new_iir;
4507 }
4508
4509 enable_rpm_wakeref_asserts(dev_priv);
4510
4511 return ret;
4512 }
4513
4514 static void i965_irq_uninstall(struct drm_device * dev)
4515 {
4516 struct drm_i915_private *dev_priv = dev->dev_private;
4517 int pipe;
4518
4519 if (!dev_priv)
4520 return;
4521
4522 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4523 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4524
4525 I915_WRITE(HWSTAM, 0xffffffff);
4526 for_each_pipe(dev_priv, pipe)
4527 I915_WRITE(PIPESTAT(pipe), 0);
4528 I915_WRITE(IMR, 0xffffffff);
4529 I915_WRITE(IER, 0x0);
4530
4531 for_each_pipe(dev_priv, pipe)
4532 I915_WRITE(PIPESTAT(pipe),
4533 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4534 I915_WRITE(IIR, I915_READ(IIR));
4535 }
4536
4537 /**
4538 * intel_irq_init - initializes irq support
4539 * @dev_priv: i915 device instance
4540 *
4541 * This function initializes all the irq support including work items, timers
4542 * and all the vtables. It does not setup the interrupt itself though.
4543 */
4544 void intel_irq_init(struct drm_i915_private *dev_priv)
4545 {
4546 struct drm_device *dev = dev_priv->dev;
4547
4548 intel_hpd_init_work(dev_priv);
4549
4550 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4551 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4552
4553 /* Let's track the enabled rps events */
4554 if (IS_VALLEYVIEW(dev_priv))
4555 /* WaGsvRC0ResidencyMethod:vlv */
4556 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4557 else
4558 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4559
4560 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4561 i915_hangcheck_elapsed);
4562
4563 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4564
4565 if (IS_GEN2(dev_priv)) {
4566 dev->max_vblank_count = 0;
4567 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4568 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4569 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4570 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4571 } else {
4572 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4573 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4574 }
4575
4576 /*
4577 * Opt out of the vblank disable timer on everything except gen2.
4578 * Gen2 doesn't have a hardware frame counter and so depends on
4579 * vblank interrupts to produce sane vblank seuquence numbers.
4580 */
4581 if (!IS_GEN2(dev_priv))
4582 dev->vblank_disable_immediate = true;
4583
4584 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4585 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4586
4587 if (IS_CHERRYVIEW(dev_priv)) {
4588 dev->driver->irq_handler = cherryview_irq_handler;
4589 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4590 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4591 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4592 dev->driver->enable_vblank = valleyview_enable_vblank;
4593 dev->driver->disable_vblank = valleyview_disable_vblank;
4594 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4595 } else if (IS_VALLEYVIEW(dev_priv)) {
4596 dev->driver->irq_handler = valleyview_irq_handler;
4597 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4598 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4599 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4600 dev->driver->enable_vblank = valleyview_enable_vblank;
4601 dev->driver->disable_vblank = valleyview_disable_vblank;
4602 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4603 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4604 dev->driver->irq_handler = gen8_irq_handler;
4605 dev->driver->irq_preinstall = gen8_irq_reset;
4606 dev->driver->irq_postinstall = gen8_irq_postinstall;
4607 dev->driver->irq_uninstall = gen8_irq_uninstall;
4608 dev->driver->enable_vblank = gen8_enable_vblank;
4609 dev->driver->disable_vblank = gen8_disable_vblank;
4610 if (IS_BROXTON(dev))
4611 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4612 else if (HAS_PCH_SPT(dev))
4613 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4614 else
4615 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4616 } else if (HAS_PCH_SPLIT(dev)) {
4617 dev->driver->irq_handler = ironlake_irq_handler;
4618 dev->driver->irq_preinstall = ironlake_irq_reset;
4619 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4620 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4621 dev->driver->enable_vblank = ironlake_enable_vblank;
4622 dev->driver->disable_vblank = ironlake_disable_vblank;
4623 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4624 } else {
4625 if (INTEL_INFO(dev_priv)->gen == 2) {
4626 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4627 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4628 dev->driver->irq_handler = i8xx_irq_handler;
4629 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4630 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4631 dev->driver->irq_preinstall = i915_irq_preinstall;
4632 dev->driver->irq_postinstall = i915_irq_postinstall;
4633 dev->driver->irq_uninstall = i915_irq_uninstall;
4634 dev->driver->irq_handler = i915_irq_handler;
4635 } else {
4636 dev->driver->irq_preinstall = i965_irq_preinstall;
4637 dev->driver->irq_postinstall = i965_irq_postinstall;
4638 dev->driver->irq_uninstall = i965_irq_uninstall;
4639 dev->driver->irq_handler = i965_irq_handler;
4640 }
4641 if (I915_HAS_HOTPLUG(dev_priv))
4642 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4643 dev->driver->enable_vblank = i915_enable_vblank;
4644 dev->driver->disable_vblank = i915_disable_vblank;
4645 }
4646 }
4647
4648 /**
4649 * intel_irq_install - enables the hardware interrupt
4650 * @dev_priv: i915 device instance
4651 *
4652 * This function enables the hardware interrupt handling, but leaves the hotplug
4653 * handling still disabled. It is called after intel_irq_init().
4654 *
4655 * In the driver load and resume code we need working interrupts in a few places
4656 * but don't want to deal with the hassle of concurrent probe and hotplug
4657 * workers. Hence the split into this two-stage approach.
4658 */
4659 int intel_irq_install(struct drm_i915_private *dev_priv)
4660 {
4661 /*
4662 * We enable some interrupt sources in our postinstall hooks, so mark
4663 * interrupts as enabled _before_ actually enabling them to avoid
4664 * special cases in our ordering checks.
4665 */
4666 dev_priv->pm.irqs_enabled = true;
4667
4668 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4669 }
4670
4671 /**
4672 * intel_irq_uninstall - finilizes all irq handling
4673 * @dev_priv: i915 device instance
4674 *
4675 * This stops interrupt and hotplug handling and unregisters and frees all
4676 * resources acquired in the init functions.
4677 */
4678 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4679 {
4680 drm_irq_uninstall(dev_priv->dev);
4681 intel_hpd_cancel_work(dev_priv);
4682 dev_priv->pm.irqs_enabled = false;
4683 }
4684
4685 /**
4686 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4687 * @dev_priv: i915 device instance
4688 *
4689 * This function is used to disable interrupts at runtime, both in the runtime
4690 * pm and the system suspend/resume code.
4691 */
4692 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4693 {
4694 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4695 dev_priv->pm.irqs_enabled = false;
4696 synchronize_irq(dev_priv->dev->irq);
4697 }
4698
4699 /**
4700 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4701 * @dev_priv: i915 device instance
4702 *
4703 * This function is used to enable interrupts at runtime, both in the runtime
4704 * pm and the system suspend/resume code.
4705 */
4706 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4707 {
4708 dev_priv->pm.irqs_enabled = true;
4709 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4710 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4711 }
This page took 0.172447 seconds and 6 git commands to generate.