Merge tag 'mac80211-for-davem-2016-02-23' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *ring)
998 {
999 if (!intel_ring_initialized(ring))
1000 return;
1001
1002 trace_i915_gem_request_notify(ring);
1003
1004 wake_up_all(&ring->irq_queue);
1005 }
1006
1007 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008 struct intel_rps_ei *ei)
1009 {
1010 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013 }
1014
1015 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016 const struct intel_rps_ei *old,
1017 const struct intel_rps_ei *now,
1018 int threshold)
1019 {
1020 u64 time, c0;
1021 unsigned int mul = 100;
1022
1023 if (old->cz_clock == 0)
1024 return false;
1025
1026 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027 mul <<= 8;
1028
1029 time = now->cz_clock - old->cz_clock;
1030 time *= threshold * dev_priv->czclk_freq;
1031
1032 /* Workload can be split between render + media, e.g. SwapBuffers
1033 * being blitted in X after being rendered in mesa. To account for
1034 * this we need to combine both engines into our activity counter.
1035 */
1036 c0 = now->render_c0 - old->render_c0;
1037 c0 += now->media_c0 - old->media_c0;
1038 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040 return c0 >= time;
1041 }
1042
1043 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044 {
1045 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047 }
1048
1049 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050 {
1051 struct intel_rps_ei now;
1052 u32 events = 0;
1053
1054 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055 return 0;
1056
1057 vlv_c0_read(dev_priv, &now);
1058 if (now.cz_clock == 0)
1059 return 0;
1060
1061 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062 if (!vlv_c0_above(dev_priv,
1063 &dev_priv->rps.down_ei, &now,
1064 dev_priv->rps.down_threshold))
1065 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066 dev_priv->rps.down_ei = now;
1067 }
1068
1069 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070 if (vlv_c0_above(dev_priv,
1071 &dev_priv->rps.up_ei, &now,
1072 dev_priv->rps.up_threshold))
1073 events |= GEN6_PM_RP_UP_THRESHOLD;
1074 dev_priv->rps.up_ei = now;
1075 }
1076
1077 return events;
1078 }
1079
1080 static bool any_waiters(struct drm_i915_private *dev_priv)
1081 {
1082 struct intel_engine_cs *ring;
1083 int i;
1084
1085 for_each_ring(ring, dev_priv, i)
1086 if (ring->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->ring[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->ring[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->ring[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->ring[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->ring[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(ring);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 intel_lrc_irq_handler(ring);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv->dev)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->ring[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 u32 pipe_stats[I915_MAX_PIPES] = { };
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654 for_each_pipe(dev_priv, pipe) {
1655 i915_reg_t reg;
1656 u32 mask, iir_bit = 0;
1657
1658 /*
1659 * PIPESTAT bits get signalled even when the interrupt is
1660 * disabled with the mask bits, and some of the status bits do
1661 * not generate interrupts at all (like the underrun bit). Hence
1662 * we need to be careful that we only handle what we want to
1663 * handle.
1664 */
1665
1666 /* fifo underruns are filterered in the underrun handler. */
1667 mask = PIPE_FIFO_UNDERRUN_STATUS;
1668
1669 switch (pipe) {
1670 case PIPE_A:
1671 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1672 break;
1673 case PIPE_B:
1674 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1675 break;
1676 case PIPE_C:
1677 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1678 break;
1679 }
1680 if (iir & iir_bit)
1681 mask |= dev_priv->pipestat_irq_mask[pipe];
1682
1683 if (!mask)
1684 continue;
1685
1686 reg = PIPESTAT(pipe);
1687 mask |= PIPESTAT_INT_ENABLE_MASK;
1688 pipe_stats[pipe] = I915_READ(reg) & mask;
1689
1690 /*
1691 * Clear the PIPE*STAT regs before the IIR
1692 */
1693 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1694 PIPESTAT_INT_STATUS_MASK))
1695 I915_WRITE(reg, pipe_stats[pipe]);
1696 }
1697 spin_unlock(&dev_priv->irq_lock);
1698
1699 for_each_pipe(dev_priv, pipe) {
1700 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1701 intel_pipe_handle_vblank(dev, pipe))
1702 intel_check_page_flip(dev, pipe);
1703
1704 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1705 intel_prepare_page_flip(dev, pipe);
1706 intel_finish_page_flip(dev, pipe);
1707 }
1708
1709 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1710 i9xx_pipe_crc_irq_handler(dev, pipe);
1711
1712 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1713 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1714 }
1715
1716 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1717 gmbus_irq_handler(dev);
1718 }
1719
1720 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1721 {
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1724 u32 pin_mask = 0, long_mask = 0;
1725
1726 if (!hotplug_status)
1727 return;
1728
1729 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1730 /*
1731 * Make sure hotplug status is cleared before we clear IIR, or else we
1732 * may miss hotplug events.
1733 */
1734 POSTING_READ(PORT_HOTPLUG_STAT);
1735
1736 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1737 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1738
1739 if (hotplug_trigger) {
1740 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1741 hotplug_trigger, hpd_status_g4x,
1742 i9xx_port_hotplug_long_detect);
1743
1744 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1745 }
1746
1747 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1748 dp_aux_irq_handler(dev);
1749 } else {
1750 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1751
1752 if (hotplug_trigger) {
1753 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1754 hotplug_trigger, hpd_status_i915,
1755 i9xx_port_hotplug_long_detect);
1756 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1757 }
1758 }
1759 }
1760
1761 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1762 {
1763 struct drm_device *dev = arg;
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 u32 iir, gt_iir, pm_iir;
1766 irqreturn_t ret = IRQ_NONE;
1767
1768 if (!intel_irqs_enabled(dev_priv))
1769 return IRQ_NONE;
1770
1771 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1772 disable_rpm_wakeref_asserts(dev_priv);
1773
1774 while (true) {
1775 /* Find, clear, then process each source of interrupt */
1776
1777 gt_iir = I915_READ(GTIIR);
1778 if (gt_iir)
1779 I915_WRITE(GTIIR, gt_iir);
1780
1781 pm_iir = I915_READ(GEN6_PMIIR);
1782 if (pm_iir)
1783 I915_WRITE(GEN6_PMIIR, pm_iir);
1784
1785 iir = I915_READ(VLV_IIR);
1786 if (iir) {
1787 /* Consume port before clearing IIR or we'll miss events */
1788 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1789 i9xx_hpd_irq_handler(dev);
1790 I915_WRITE(VLV_IIR, iir);
1791 }
1792
1793 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1794 goto out;
1795
1796 ret = IRQ_HANDLED;
1797
1798 if (gt_iir)
1799 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1800 if (pm_iir)
1801 gen6_rps_irq_handler(dev_priv, pm_iir);
1802 /* Call regardless, as some status bits might not be
1803 * signalled in iir */
1804 valleyview_pipestat_irq_handler(dev, iir);
1805 }
1806
1807 out:
1808 enable_rpm_wakeref_asserts(dev_priv);
1809
1810 return ret;
1811 }
1812
1813 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1814 {
1815 struct drm_device *dev = arg;
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 u32 master_ctl, iir;
1818 irqreturn_t ret = IRQ_NONE;
1819
1820 if (!intel_irqs_enabled(dev_priv))
1821 return IRQ_NONE;
1822
1823 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1824 disable_rpm_wakeref_asserts(dev_priv);
1825
1826 for (;;) {
1827 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1828 iir = I915_READ(VLV_IIR);
1829
1830 if (master_ctl == 0 && iir == 0)
1831 break;
1832
1833 ret = IRQ_HANDLED;
1834
1835 I915_WRITE(GEN8_MASTER_IRQ, 0);
1836
1837 /* Find, clear, then process each source of interrupt */
1838
1839 if (iir) {
1840 /* Consume port before clearing IIR or we'll miss events */
1841 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1842 i9xx_hpd_irq_handler(dev);
1843 I915_WRITE(VLV_IIR, iir);
1844 }
1845
1846 gen8_gt_irq_handler(dev_priv, master_ctl);
1847
1848 /* Call regardless, as some status bits might not be
1849 * signalled in iir */
1850 valleyview_pipestat_irq_handler(dev, iir);
1851
1852 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1853 POSTING_READ(GEN8_MASTER_IRQ);
1854 }
1855
1856 enable_rpm_wakeref_asserts(dev_priv);
1857
1858 return ret;
1859 }
1860
1861 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1862 const u32 hpd[HPD_NUM_PINS])
1863 {
1864 struct drm_i915_private *dev_priv = to_i915(dev);
1865 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1866
1867 /*
1868 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1869 * unless we touch the hotplug register, even if hotplug_trigger is
1870 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1871 * errors.
1872 */
1873 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1874 if (!hotplug_trigger) {
1875 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1876 PORTD_HOTPLUG_STATUS_MASK |
1877 PORTC_HOTPLUG_STATUS_MASK |
1878 PORTB_HOTPLUG_STATUS_MASK;
1879 dig_hotplug_reg &= ~mask;
1880 }
1881
1882 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1883 if (!hotplug_trigger)
1884 return;
1885
1886 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1887 dig_hotplug_reg, hpd,
1888 pch_port_hotplug_long_detect);
1889
1890 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1891 }
1892
1893 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1894 {
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 int pipe;
1897 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1898
1899 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1900
1901 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1902 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1903 SDE_AUDIO_POWER_SHIFT);
1904 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1905 port_name(port));
1906 }
1907
1908 if (pch_iir & SDE_AUX_MASK)
1909 dp_aux_irq_handler(dev);
1910
1911 if (pch_iir & SDE_GMBUS)
1912 gmbus_irq_handler(dev);
1913
1914 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1915 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1916
1917 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1918 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1919
1920 if (pch_iir & SDE_POISON)
1921 DRM_ERROR("PCH poison interrupt\n");
1922
1923 if (pch_iir & SDE_FDI_MASK)
1924 for_each_pipe(dev_priv, pipe)
1925 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1926 pipe_name(pipe),
1927 I915_READ(FDI_RX_IIR(pipe)));
1928
1929 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1930 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1931
1932 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1933 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1934
1935 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1936 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1937
1938 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1939 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1940 }
1941
1942 static void ivb_err_int_handler(struct drm_device *dev)
1943 {
1944 struct drm_i915_private *dev_priv = dev->dev_private;
1945 u32 err_int = I915_READ(GEN7_ERR_INT);
1946 enum pipe pipe;
1947
1948 if (err_int & ERR_INT_POISON)
1949 DRM_ERROR("Poison interrupt\n");
1950
1951 for_each_pipe(dev_priv, pipe) {
1952 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1953 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1954
1955 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1956 if (IS_IVYBRIDGE(dev))
1957 ivb_pipe_crc_irq_handler(dev, pipe);
1958 else
1959 hsw_pipe_crc_irq_handler(dev, pipe);
1960 }
1961 }
1962
1963 I915_WRITE(GEN7_ERR_INT, err_int);
1964 }
1965
1966 static void cpt_serr_int_handler(struct drm_device *dev)
1967 {
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 u32 serr_int = I915_READ(SERR_INT);
1970
1971 if (serr_int & SERR_INT_POISON)
1972 DRM_ERROR("PCH poison interrupt\n");
1973
1974 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1975 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1976
1977 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1978 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1979
1980 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1981 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1982
1983 I915_WRITE(SERR_INT, serr_int);
1984 }
1985
1986 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1987 {
1988 struct drm_i915_private *dev_priv = dev->dev_private;
1989 int pipe;
1990 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1991
1992 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1993
1994 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1995 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1996 SDE_AUDIO_POWER_SHIFT_CPT);
1997 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1998 port_name(port));
1999 }
2000
2001 if (pch_iir & SDE_AUX_MASK_CPT)
2002 dp_aux_irq_handler(dev);
2003
2004 if (pch_iir & SDE_GMBUS_CPT)
2005 gmbus_irq_handler(dev);
2006
2007 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2008 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2009
2010 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2011 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2012
2013 if (pch_iir & SDE_FDI_MASK_CPT)
2014 for_each_pipe(dev_priv, pipe)
2015 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2016 pipe_name(pipe),
2017 I915_READ(FDI_RX_IIR(pipe)));
2018
2019 if (pch_iir & SDE_ERROR_CPT)
2020 cpt_serr_int_handler(dev);
2021 }
2022
2023 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2027 ~SDE_PORTE_HOTPLUG_SPT;
2028 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2029 u32 pin_mask = 0, long_mask = 0;
2030
2031 if (hotplug_trigger) {
2032 u32 dig_hotplug_reg;
2033
2034 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2035 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2036
2037 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2038 dig_hotplug_reg, hpd_spt,
2039 spt_port_hotplug_long_detect);
2040 }
2041
2042 if (hotplug2_trigger) {
2043 u32 dig_hotplug_reg;
2044
2045 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2046 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2047
2048 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2049 dig_hotplug_reg, hpd_spt,
2050 spt_port_hotplug2_long_detect);
2051 }
2052
2053 if (pin_mask)
2054 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2055
2056 if (pch_iir & SDE_GMBUS_CPT)
2057 gmbus_irq_handler(dev);
2058 }
2059
2060 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2061 const u32 hpd[HPD_NUM_PINS])
2062 {
2063 struct drm_i915_private *dev_priv = to_i915(dev);
2064 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2065
2066 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2067 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2068
2069 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2070 dig_hotplug_reg, hpd,
2071 ilk_port_hotplug_long_detect);
2072
2073 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2074 }
2075
2076 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2077 {
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079 enum pipe pipe;
2080 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2081
2082 if (hotplug_trigger)
2083 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2084
2085 if (de_iir & DE_AUX_CHANNEL_A)
2086 dp_aux_irq_handler(dev);
2087
2088 if (de_iir & DE_GSE)
2089 intel_opregion_asle_intr(dev);
2090
2091 if (de_iir & DE_POISON)
2092 DRM_ERROR("Poison interrupt\n");
2093
2094 for_each_pipe(dev_priv, pipe) {
2095 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2096 intel_pipe_handle_vblank(dev, pipe))
2097 intel_check_page_flip(dev, pipe);
2098
2099 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2100 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2101
2102 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2103 i9xx_pipe_crc_irq_handler(dev, pipe);
2104
2105 /* plane/pipes map 1:1 on ilk+ */
2106 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2107 intel_prepare_page_flip(dev, pipe);
2108 intel_finish_page_flip_plane(dev, pipe);
2109 }
2110 }
2111
2112 /* check event from PCH */
2113 if (de_iir & DE_PCH_EVENT) {
2114 u32 pch_iir = I915_READ(SDEIIR);
2115
2116 if (HAS_PCH_CPT(dev))
2117 cpt_irq_handler(dev, pch_iir);
2118 else
2119 ibx_irq_handler(dev, pch_iir);
2120
2121 /* should clear PCH hotplug event before clear CPU irq */
2122 I915_WRITE(SDEIIR, pch_iir);
2123 }
2124
2125 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2126 ironlake_rps_change_irq_handler(dev);
2127 }
2128
2129 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2130 {
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 enum pipe pipe;
2133 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2134
2135 if (hotplug_trigger)
2136 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2137
2138 if (de_iir & DE_ERR_INT_IVB)
2139 ivb_err_int_handler(dev);
2140
2141 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2142 dp_aux_irq_handler(dev);
2143
2144 if (de_iir & DE_GSE_IVB)
2145 intel_opregion_asle_intr(dev);
2146
2147 for_each_pipe(dev_priv, pipe) {
2148 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2149 intel_pipe_handle_vblank(dev, pipe))
2150 intel_check_page_flip(dev, pipe);
2151
2152 /* plane/pipes map 1:1 on ilk+ */
2153 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2154 intel_prepare_page_flip(dev, pipe);
2155 intel_finish_page_flip_plane(dev, pipe);
2156 }
2157 }
2158
2159 /* check event from PCH */
2160 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2161 u32 pch_iir = I915_READ(SDEIIR);
2162
2163 cpt_irq_handler(dev, pch_iir);
2164
2165 /* clear PCH hotplug event before clear CPU irq */
2166 I915_WRITE(SDEIIR, pch_iir);
2167 }
2168 }
2169
2170 /*
2171 * To handle irqs with the minimum potential races with fresh interrupts, we:
2172 * 1 - Disable Master Interrupt Control.
2173 * 2 - Find the source(s) of the interrupt.
2174 * 3 - Clear the Interrupt Identity bits (IIR).
2175 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2176 * 5 - Re-enable Master Interrupt Control.
2177 */
2178 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2179 {
2180 struct drm_device *dev = arg;
2181 struct drm_i915_private *dev_priv = dev->dev_private;
2182 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2183 irqreturn_t ret = IRQ_NONE;
2184
2185 if (!intel_irqs_enabled(dev_priv))
2186 return IRQ_NONE;
2187
2188 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2189 disable_rpm_wakeref_asserts(dev_priv);
2190
2191 /* We get interrupts on unclaimed registers, so check for this before we
2192 * do any I915_{READ,WRITE}. */
2193 intel_uncore_check_errors(dev);
2194
2195 /* disable master interrupt before clearing iir */
2196 de_ier = I915_READ(DEIER);
2197 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2198 POSTING_READ(DEIER);
2199
2200 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2201 * interrupts will will be stored on its back queue, and then we'll be
2202 * able to process them after we restore SDEIER (as soon as we restore
2203 * it, we'll get an interrupt if SDEIIR still has something to process
2204 * due to its back queue). */
2205 if (!HAS_PCH_NOP(dev)) {
2206 sde_ier = I915_READ(SDEIER);
2207 I915_WRITE(SDEIER, 0);
2208 POSTING_READ(SDEIER);
2209 }
2210
2211 /* Find, clear, then process each source of interrupt */
2212
2213 gt_iir = I915_READ(GTIIR);
2214 if (gt_iir) {
2215 I915_WRITE(GTIIR, gt_iir);
2216 ret = IRQ_HANDLED;
2217 if (INTEL_INFO(dev)->gen >= 6)
2218 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2219 else
2220 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2221 }
2222
2223 de_iir = I915_READ(DEIIR);
2224 if (de_iir) {
2225 I915_WRITE(DEIIR, de_iir);
2226 ret = IRQ_HANDLED;
2227 if (INTEL_INFO(dev)->gen >= 7)
2228 ivb_display_irq_handler(dev, de_iir);
2229 else
2230 ilk_display_irq_handler(dev, de_iir);
2231 }
2232
2233 if (INTEL_INFO(dev)->gen >= 6) {
2234 u32 pm_iir = I915_READ(GEN6_PMIIR);
2235 if (pm_iir) {
2236 I915_WRITE(GEN6_PMIIR, pm_iir);
2237 ret = IRQ_HANDLED;
2238 gen6_rps_irq_handler(dev_priv, pm_iir);
2239 }
2240 }
2241
2242 I915_WRITE(DEIER, de_ier);
2243 POSTING_READ(DEIER);
2244 if (!HAS_PCH_NOP(dev)) {
2245 I915_WRITE(SDEIER, sde_ier);
2246 POSTING_READ(SDEIER);
2247 }
2248
2249 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2250 enable_rpm_wakeref_asserts(dev_priv);
2251
2252 return ret;
2253 }
2254
2255 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2256 const u32 hpd[HPD_NUM_PINS])
2257 {
2258 struct drm_i915_private *dev_priv = to_i915(dev);
2259 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2260
2261 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2262 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2263
2264 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2265 dig_hotplug_reg, hpd,
2266 bxt_port_hotplug_long_detect);
2267
2268 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2269 }
2270
2271 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2272 {
2273 struct drm_device *dev = arg;
2274 struct drm_i915_private *dev_priv = dev->dev_private;
2275 u32 master_ctl;
2276 irqreturn_t ret = IRQ_NONE;
2277 uint32_t tmp = 0;
2278 enum pipe pipe;
2279 u32 aux_mask = GEN8_AUX_CHANNEL_A;
2280
2281 if (!intel_irqs_enabled(dev_priv))
2282 return IRQ_NONE;
2283
2284 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2285 disable_rpm_wakeref_asserts(dev_priv);
2286
2287 if (INTEL_INFO(dev_priv)->gen >= 9)
2288 aux_mask |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2289 GEN9_AUX_CHANNEL_D;
2290
2291 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2292 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2293 if (!master_ctl)
2294 goto out;
2295
2296 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2297
2298 /* Find, clear, then process each source of interrupt */
2299
2300 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2301
2302 if (master_ctl & GEN8_DE_MISC_IRQ) {
2303 tmp = I915_READ(GEN8_DE_MISC_IIR);
2304 if (tmp) {
2305 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2306 ret = IRQ_HANDLED;
2307 if (tmp & GEN8_DE_MISC_GSE)
2308 intel_opregion_asle_intr(dev);
2309 else
2310 DRM_ERROR("Unexpected DE Misc interrupt\n");
2311 }
2312 else
2313 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2314 }
2315
2316 if (master_ctl & GEN8_DE_PORT_IRQ) {
2317 tmp = I915_READ(GEN8_DE_PORT_IIR);
2318 if (tmp) {
2319 bool found = false;
2320 u32 hotplug_trigger = 0;
2321
2322 if (IS_BROXTON(dev_priv))
2323 hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2324 else if (IS_BROADWELL(dev_priv))
2325 hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2326
2327 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2328 ret = IRQ_HANDLED;
2329
2330 if (tmp & aux_mask) {
2331 dp_aux_irq_handler(dev);
2332 found = true;
2333 }
2334
2335 if (hotplug_trigger) {
2336 if (IS_BROXTON(dev))
2337 bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2338 else
2339 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2340 found = true;
2341 }
2342
2343 if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2344 gmbus_irq_handler(dev);
2345 found = true;
2346 }
2347
2348 if (!found)
2349 DRM_ERROR("Unexpected DE Port interrupt\n");
2350 }
2351 else
2352 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2353 }
2354
2355 for_each_pipe(dev_priv, pipe) {
2356 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2357
2358 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2359 continue;
2360
2361 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2362 if (pipe_iir) {
2363 ret = IRQ_HANDLED;
2364 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2365
2366 if (pipe_iir & GEN8_PIPE_VBLANK &&
2367 intel_pipe_handle_vblank(dev, pipe))
2368 intel_check_page_flip(dev, pipe);
2369
2370 if (INTEL_INFO(dev_priv)->gen >= 9)
2371 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2372 else
2373 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2374
2375 if (flip_done) {
2376 intel_prepare_page_flip(dev, pipe);
2377 intel_finish_page_flip_plane(dev, pipe);
2378 }
2379
2380 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2381 hsw_pipe_crc_irq_handler(dev, pipe);
2382
2383 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2384 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2385 pipe);
2386
2387
2388 if (INTEL_INFO(dev_priv)->gen >= 9)
2389 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2390 else
2391 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2392
2393 if (fault_errors)
2394 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2395 pipe_name(pipe),
2396 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2397 } else
2398 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2399 }
2400
2401 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2402 master_ctl & GEN8_DE_PCH_IRQ) {
2403 /*
2404 * FIXME(BDW): Assume for now that the new interrupt handling
2405 * scheme also closed the SDE interrupt handling race we've seen
2406 * on older pch-split platforms. But this needs testing.
2407 */
2408 u32 pch_iir = I915_READ(SDEIIR);
2409 if (pch_iir) {
2410 I915_WRITE(SDEIIR, pch_iir);
2411 ret = IRQ_HANDLED;
2412
2413 if (HAS_PCH_SPT(dev_priv))
2414 spt_irq_handler(dev, pch_iir);
2415 else
2416 cpt_irq_handler(dev, pch_iir);
2417 } else {
2418 /*
2419 * Like on previous PCH there seems to be something
2420 * fishy going on with forwarding PCH interrupts.
2421 */
2422 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2423 }
2424 }
2425
2426 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2427 POSTING_READ_FW(GEN8_MASTER_IRQ);
2428
2429 out:
2430 enable_rpm_wakeref_asserts(dev_priv);
2431
2432 return ret;
2433 }
2434
2435 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2436 bool reset_completed)
2437 {
2438 struct intel_engine_cs *ring;
2439 int i;
2440
2441 /*
2442 * Notify all waiters for GPU completion events that reset state has
2443 * been changed, and that they need to restart their wait after
2444 * checking for potential errors (and bail out to drop locks if there is
2445 * a gpu reset pending so that i915_error_work_func can acquire them).
2446 */
2447
2448 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2449 for_each_ring(ring, dev_priv, i)
2450 wake_up_all(&ring->irq_queue);
2451
2452 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2453 wake_up_all(&dev_priv->pending_flip_queue);
2454
2455 /*
2456 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2457 * reset state is cleared.
2458 */
2459 if (reset_completed)
2460 wake_up_all(&dev_priv->gpu_error.reset_queue);
2461 }
2462
2463 /**
2464 * i915_reset_and_wakeup - do process context error handling work
2465 * @dev: drm device
2466 *
2467 * Fire an error uevent so userspace can see that a hang or error
2468 * was detected.
2469 */
2470 static void i915_reset_and_wakeup(struct drm_device *dev)
2471 {
2472 struct drm_i915_private *dev_priv = to_i915(dev);
2473 struct i915_gpu_error *error = &dev_priv->gpu_error;
2474 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2475 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2476 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2477 int ret;
2478
2479 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2480
2481 /*
2482 * Note that there's only one work item which does gpu resets, so we
2483 * need not worry about concurrent gpu resets potentially incrementing
2484 * error->reset_counter twice. We only need to take care of another
2485 * racing irq/hangcheck declaring the gpu dead for a second time. A
2486 * quick check for that is good enough: schedule_work ensures the
2487 * correct ordering between hang detection and this work item, and since
2488 * the reset in-progress bit is only ever set by code outside of this
2489 * work we don't need to worry about any other races.
2490 */
2491 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2492 DRM_DEBUG_DRIVER("resetting chip\n");
2493 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2494 reset_event);
2495
2496 /*
2497 * In most cases it's guaranteed that we get here with an RPM
2498 * reference held, for example because there is a pending GPU
2499 * request that won't finish until the reset is done. This
2500 * isn't the case at least when we get here by doing a
2501 * simulated reset via debugs, so get an RPM reference.
2502 */
2503 intel_runtime_pm_get(dev_priv);
2504
2505 intel_prepare_reset(dev);
2506
2507 /*
2508 * All state reset _must_ be completed before we update the
2509 * reset counter, for otherwise waiters might miss the reset
2510 * pending state and not properly drop locks, resulting in
2511 * deadlocks with the reset work.
2512 */
2513 ret = i915_reset(dev);
2514
2515 intel_finish_reset(dev);
2516
2517 intel_runtime_pm_put(dev_priv);
2518
2519 if (ret == 0) {
2520 /*
2521 * After all the gem state is reset, increment the reset
2522 * counter and wake up everyone waiting for the reset to
2523 * complete.
2524 *
2525 * Since unlock operations are a one-sided barrier only,
2526 * we need to insert a barrier here to order any seqno
2527 * updates before
2528 * the counter increment.
2529 */
2530 smp_mb__before_atomic();
2531 atomic_inc(&dev_priv->gpu_error.reset_counter);
2532
2533 kobject_uevent_env(&dev->primary->kdev->kobj,
2534 KOBJ_CHANGE, reset_done_event);
2535 } else {
2536 atomic_or(I915_WEDGED, &error->reset_counter);
2537 }
2538
2539 /*
2540 * Note: The wake_up also serves as a memory barrier so that
2541 * waiters see the update value of the reset counter atomic_t.
2542 */
2543 i915_error_wake_up(dev_priv, true);
2544 }
2545 }
2546
2547 static void i915_report_and_clear_eir(struct drm_device *dev)
2548 {
2549 struct drm_i915_private *dev_priv = dev->dev_private;
2550 uint32_t instdone[I915_NUM_INSTDONE_REG];
2551 u32 eir = I915_READ(EIR);
2552 int pipe, i;
2553
2554 if (!eir)
2555 return;
2556
2557 pr_err("render error detected, EIR: 0x%08x\n", eir);
2558
2559 i915_get_extra_instdone(dev, instdone);
2560
2561 if (IS_G4X(dev)) {
2562 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2563 u32 ipeir = I915_READ(IPEIR_I965);
2564
2565 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2566 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2567 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2568 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2569 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2570 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2571 I915_WRITE(IPEIR_I965, ipeir);
2572 POSTING_READ(IPEIR_I965);
2573 }
2574 if (eir & GM45_ERROR_PAGE_TABLE) {
2575 u32 pgtbl_err = I915_READ(PGTBL_ER);
2576 pr_err("page table error\n");
2577 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2578 I915_WRITE(PGTBL_ER, pgtbl_err);
2579 POSTING_READ(PGTBL_ER);
2580 }
2581 }
2582
2583 if (!IS_GEN2(dev)) {
2584 if (eir & I915_ERROR_PAGE_TABLE) {
2585 u32 pgtbl_err = I915_READ(PGTBL_ER);
2586 pr_err("page table error\n");
2587 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2588 I915_WRITE(PGTBL_ER, pgtbl_err);
2589 POSTING_READ(PGTBL_ER);
2590 }
2591 }
2592
2593 if (eir & I915_ERROR_MEMORY_REFRESH) {
2594 pr_err("memory refresh error:\n");
2595 for_each_pipe(dev_priv, pipe)
2596 pr_err("pipe %c stat: 0x%08x\n",
2597 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2598 /* pipestat has already been acked */
2599 }
2600 if (eir & I915_ERROR_INSTRUCTION) {
2601 pr_err("instruction error\n");
2602 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2603 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2604 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2605 if (INTEL_INFO(dev)->gen < 4) {
2606 u32 ipeir = I915_READ(IPEIR);
2607
2608 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2609 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2610 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2611 I915_WRITE(IPEIR, ipeir);
2612 POSTING_READ(IPEIR);
2613 } else {
2614 u32 ipeir = I915_READ(IPEIR_I965);
2615
2616 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2617 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2618 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2619 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2620 I915_WRITE(IPEIR_I965, ipeir);
2621 POSTING_READ(IPEIR_I965);
2622 }
2623 }
2624
2625 I915_WRITE(EIR, eir);
2626 POSTING_READ(EIR);
2627 eir = I915_READ(EIR);
2628 if (eir) {
2629 /*
2630 * some errors might have become stuck,
2631 * mask them.
2632 */
2633 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2634 I915_WRITE(EMR, I915_READ(EMR) | eir);
2635 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2636 }
2637 }
2638
2639 /**
2640 * i915_handle_error - handle a gpu error
2641 * @dev: drm device
2642 *
2643 * Do some basic checking of register state at error time and
2644 * dump it to the syslog. Also call i915_capture_error_state() to make
2645 * sure we get a record and make it available in debugfs. Fire a uevent
2646 * so userspace knows something bad happened (should trigger collection
2647 * of a ring dump etc.).
2648 */
2649 void i915_handle_error(struct drm_device *dev, bool wedged,
2650 const char *fmt, ...)
2651 {
2652 struct drm_i915_private *dev_priv = dev->dev_private;
2653 va_list args;
2654 char error_msg[80];
2655
2656 va_start(args, fmt);
2657 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2658 va_end(args);
2659
2660 i915_capture_error_state(dev, wedged, error_msg);
2661 i915_report_and_clear_eir(dev);
2662
2663 if (wedged) {
2664 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2665 &dev_priv->gpu_error.reset_counter);
2666
2667 /*
2668 * Wakeup waiting processes so that the reset function
2669 * i915_reset_and_wakeup doesn't deadlock trying to grab
2670 * various locks. By bumping the reset counter first, the woken
2671 * processes will see a reset in progress and back off,
2672 * releasing their locks and then wait for the reset completion.
2673 * We must do this for _all_ gpu waiters that might hold locks
2674 * that the reset work needs to acquire.
2675 *
2676 * Note: The wake_up serves as the required memory barrier to
2677 * ensure that the waiters see the updated value of the reset
2678 * counter atomic_t.
2679 */
2680 i915_error_wake_up(dev_priv, false);
2681 }
2682
2683 i915_reset_and_wakeup(dev);
2684 }
2685
2686 /* Called from drm generic code, passed 'crtc' which
2687 * we use as a pipe index
2688 */
2689 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2690 {
2691 struct drm_i915_private *dev_priv = dev->dev_private;
2692 unsigned long irqflags;
2693
2694 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2695 if (INTEL_INFO(dev)->gen >= 4)
2696 i915_enable_pipestat(dev_priv, pipe,
2697 PIPE_START_VBLANK_INTERRUPT_STATUS);
2698 else
2699 i915_enable_pipestat(dev_priv, pipe,
2700 PIPE_VBLANK_INTERRUPT_STATUS);
2701 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2702
2703 return 0;
2704 }
2705
2706 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2707 {
2708 struct drm_i915_private *dev_priv = dev->dev_private;
2709 unsigned long irqflags;
2710 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2711 DE_PIPE_VBLANK(pipe);
2712
2713 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2714 ilk_enable_display_irq(dev_priv, bit);
2715 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717 return 0;
2718 }
2719
2720 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2721 {
2722 struct drm_i915_private *dev_priv = dev->dev_private;
2723 unsigned long irqflags;
2724
2725 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2726 i915_enable_pipestat(dev_priv, pipe,
2727 PIPE_START_VBLANK_INTERRUPT_STATUS);
2728 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2729
2730 return 0;
2731 }
2732
2733 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2734 {
2735 struct drm_i915_private *dev_priv = dev->dev_private;
2736 unsigned long irqflags;
2737
2738 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2739 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2740 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2741
2742 return 0;
2743 }
2744
2745 /* Called from drm generic code, passed 'crtc' which
2746 * we use as a pipe index
2747 */
2748 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2749 {
2750 struct drm_i915_private *dev_priv = dev->dev_private;
2751 unsigned long irqflags;
2752
2753 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2754 i915_disable_pipestat(dev_priv, pipe,
2755 PIPE_VBLANK_INTERRUPT_STATUS |
2756 PIPE_START_VBLANK_INTERRUPT_STATUS);
2757 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2758 }
2759
2760 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2761 {
2762 struct drm_i915_private *dev_priv = dev->dev_private;
2763 unsigned long irqflags;
2764 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2765 DE_PIPE_VBLANK(pipe);
2766
2767 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768 ilk_disable_display_irq(dev_priv, bit);
2769 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2770 }
2771
2772 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2773 {
2774 struct drm_i915_private *dev_priv = dev->dev_private;
2775 unsigned long irqflags;
2776
2777 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2778 i915_disable_pipestat(dev_priv, pipe,
2779 PIPE_START_VBLANK_INTERRUPT_STATUS);
2780 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2781 }
2782
2783 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2784 {
2785 struct drm_i915_private *dev_priv = dev->dev_private;
2786 unsigned long irqflags;
2787
2788 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2789 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2790 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2791 }
2792
2793 static bool
2794 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2795 {
2796 return (list_empty(&ring->request_list) ||
2797 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2798 }
2799
2800 static bool
2801 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2802 {
2803 if (INTEL_INFO(dev)->gen >= 8) {
2804 return (ipehr >> 23) == 0x1c;
2805 } else {
2806 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2807 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2808 MI_SEMAPHORE_REGISTER);
2809 }
2810 }
2811
2812 static struct intel_engine_cs *
2813 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2814 {
2815 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2816 struct intel_engine_cs *signaller;
2817 int i;
2818
2819 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2820 for_each_ring(signaller, dev_priv, i) {
2821 if (ring == signaller)
2822 continue;
2823
2824 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2825 return signaller;
2826 }
2827 } else {
2828 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2829
2830 for_each_ring(signaller, dev_priv, i) {
2831 if(ring == signaller)
2832 continue;
2833
2834 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2835 return signaller;
2836 }
2837 }
2838
2839 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2840 ring->id, ipehr, offset);
2841
2842 return NULL;
2843 }
2844
2845 static struct intel_engine_cs *
2846 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2847 {
2848 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2849 u32 cmd, ipehr, head;
2850 u64 offset = 0;
2851 int i, backwards;
2852
2853 /*
2854 * This function does not support execlist mode - any attempt to
2855 * proceed further into this function will result in a kernel panic
2856 * when dereferencing ring->buffer, which is not set up in execlist
2857 * mode.
2858 *
2859 * The correct way of doing it would be to derive the currently
2860 * executing ring buffer from the current context, which is derived
2861 * from the currently running request. Unfortunately, to get the
2862 * current request we would have to grab the struct_mutex before doing
2863 * anything else, which would be ill-advised since some other thread
2864 * might have grabbed it already and managed to hang itself, causing
2865 * the hang checker to deadlock.
2866 *
2867 * Therefore, this function does not support execlist mode in its
2868 * current form. Just return NULL and move on.
2869 */
2870 if (ring->buffer == NULL)
2871 return NULL;
2872
2873 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2874 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2875 return NULL;
2876
2877 /*
2878 * HEAD is likely pointing to the dword after the actual command,
2879 * so scan backwards until we find the MBOX. But limit it to just 3
2880 * or 4 dwords depending on the semaphore wait command size.
2881 * Note that we don't care about ACTHD here since that might
2882 * point at at batch, and semaphores are always emitted into the
2883 * ringbuffer itself.
2884 */
2885 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2886 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2887
2888 for (i = backwards; i; --i) {
2889 /*
2890 * Be paranoid and presume the hw has gone off into the wild -
2891 * our ring is smaller than what the hardware (and hence
2892 * HEAD_ADDR) allows. Also handles wrap-around.
2893 */
2894 head &= ring->buffer->size - 1;
2895
2896 /* This here seems to blow up */
2897 cmd = ioread32(ring->buffer->virtual_start + head);
2898 if (cmd == ipehr)
2899 break;
2900
2901 head -= 4;
2902 }
2903
2904 if (!i)
2905 return NULL;
2906
2907 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2908 if (INTEL_INFO(ring->dev)->gen >= 8) {
2909 offset = ioread32(ring->buffer->virtual_start + head + 12);
2910 offset <<= 32;
2911 offset = ioread32(ring->buffer->virtual_start + head + 8);
2912 }
2913 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2914 }
2915
2916 static int semaphore_passed(struct intel_engine_cs *ring)
2917 {
2918 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2919 struct intel_engine_cs *signaller;
2920 u32 seqno;
2921
2922 ring->hangcheck.deadlock++;
2923
2924 signaller = semaphore_waits_for(ring, &seqno);
2925 if (signaller == NULL)
2926 return -1;
2927
2928 /* Prevent pathological recursion due to driver bugs */
2929 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2930 return -1;
2931
2932 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2933 return 1;
2934
2935 /* cursory check for an unkickable deadlock */
2936 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2937 semaphore_passed(signaller) < 0)
2938 return -1;
2939
2940 return 0;
2941 }
2942
2943 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2944 {
2945 struct intel_engine_cs *ring;
2946 int i;
2947
2948 for_each_ring(ring, dev_priv, i)
2949 ring->hangcheck.deadlock = 0;
2950 }
2951
2952 static enum intel_ring_hangcheck_action
2953 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2954 {
2955 struct drm_device *dev = ring->dev;
2956 struct drm_i915_private *dev_priv = dev->dev_private;
2957 u32 tmp;
2958
2959 if (acthd != ring->hangcheck.acthd) {
2960 if (acthd > ring->hangcheck.max_acthd) {
2961 ring->hangcheck.max_acthd = acthd;
2962 return HANGCHECK_ACTIVE;
2963 }
2964
2965 return HANGCHECK_ACTIVE_LOOP;
2966 }
2967
2968 if (IS_GEN2(dev))
2969 return HANGCHECK_HUNG;
2970
2971 /* Is the chip hanging on a WAIT_FOR_EVENT?
2972 * If so we can simply poke the RB_WAIT bit
2973 * and break the hang. This should work on
2974 * all but the second generation chipsets.
2975 */
2976 tmp = I915_READ_CTL(ring);
2977 if (tmp & RING_WAIT) {
2978 i915_handle_error(dev, false,
2979 "Kicking stuck wait on %s",
2980 ring->name);
2981 I915_WRITE_CTL(ring, tmp);
2982 return HANGCHECK_KICK;
2983 }
2984
2985 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2986 switch (semaphore_passed(ring)) {
2987 default:
2988 return HANGCHECK_HUNG;
2989 case 1:
2990 i915_handle_error(dev, false,
2991 "Kicking stuck semaphore on %s",
2992 ring->name);
2993 I915_WRITE_CTL(ring, tmp);
2994 return HANGCHECK_KICK;
2995 case 0:
2996 return HANGCHECK_WAIT;
2997 }
2998 }
2999
3000 return HANGCHECK_HUNG;
3001 }
3002
3003 /*
3004 * This is called when the chip hasn't reported back with completed
3005 * batchbuffers in a long time. We keep track per ring seqno progress and
3006 * if there are no progress, hangcheck score for that ring is increased.
3007 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3008 * we kick the ring. If we see no progress on three subsequent calls
3009 * we assume chip is wedged and try to fix it by resetting the chip.
3010 */
3011 static void i915_hangcheck_elapsed(struct work_struct *work)
3012 {
3013 struct drm_i915_private *dev_priv =
3014 container_of(work, typeof(*dev_priv),
3015 gpu_error.hangcheck_work.work);
3016 struct drm_device *dev = dev_priv->dev;
3017 struct intel_engine_cs *ring;
3018 int i;
3019 int busy_count = 0, rings_hung = 0;
3020 bool stuck[I915_NUM_RINGS] = { 0 };
3021 #define BUSY 1
3022 #define KICK 5
3023 #define HUNG 20
3024
3025 if (!i915.enable_hangcheck)
3026 return;
3027
3028 /*
3029 * The hangcheck work is synced during runtime suspend, we don't
3030 * require a wakeref. TODO: instead of disabling the asserts make
3031 * sure that we hold a reference when this work is running.
3032 */
3033 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3034
3035 for_each_ring(ring, dev_priv, i) {
3036 u64 acthd;
3037 u32 seqno;
3038 bool busy = true;
3039
3040 semaphore_clear_deadlocks(dev_priv);
3041
3042 seqno = ring->get_seqno(ring, false);
3043 acthd = intel_ring_get_active_head(ring);
3044
3045 if (ring->hangcheck.seqno == seqno) {
3046 if (ring_idle(ring, seqno)) {
3047 ring->hangcheck.action = HANGCHECK_IDLE;
3048
3049 if (waitqueue_active(&ring->irq_queue)) {
3050 /* Issue a wake-up to catch stuck h/w. */
3051 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3052 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3053 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3054 ring->name);
3055 else
3056 DRM_INFO("Fake missed irq on %s\n",
3057 ring->name);
3058 wake_up_all(&ring->irq_queue);
3059 }
3060 /* Safeguard against driver failure */
3061 ring->hangcheck.score += BUSY;
3062 } else
3063 busy = false;
3064 } else {
3065 /* We always increment the hangcheck score
3066 * if the ring is busy and still processing
3067 * the same request, so that no single request
3068 * can run indefinitely (such as a chain of
3069 * batches). The only time we do not increment
3070 * the hangcheck score on this ring, if this
3071 * ring is in a legitimate wait for another
3072 * ring. In that case the waiting ring is a
3073 * victim and we want to be sure we catch the
3074 * right culprit. Then every time we do kick
3075 * the ring, add a small increment to the
3076 * score so that we can catch a batch that is
3077 * being repeatedly kicked and so responsible
3078 * for stalling the machine.
3079 */
3080 ring->hangcheck.action = ring_stuck(ring,
3081 acthd);
3082
3083 switch (ring->hangcheck.action) {
3084 case HANGCHECK_IDLE:
3085 case HANGCHECK_WAIT:
3086 case HANGCHECK_ACTIVE:
3087 break;
3088 case HANGCHECK_ACTIVE_LOOP:
3089 ring->hangcheck.score += BUSY;
3090 break;
3091 case HANGCHECK_KICK:
3092 ring->hangcheck.score += KICK;
3093 break;
3094 case HANGCHECK_HUNG:
3095 ring->hangcheck.score += HUNG;
3096 stuck[i] = true;
3097 break;
3098 }
3099 }
3100 } else {
3101 ring->hangcheck.action = HANGCHECK_ACTIVE;
3102
3103 /* Gradually reduce the count so that we catch DoS
3104 * attempts across multiple batches.
3105 */
3106 if (ring->hangcheck.score > 0)
3107 ring->hangcheck.score--;
3108
3109 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3110 }
3111
3112 ring->hangcheck.seqno = seqno;
3113 ring->hangcheck.acthd = acthd;
3114 busy_count += busy;
3115 }
3116
3117 for_each_ring(ring, dev_priv, i) {
3118 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3119 DRM_INFO("%s on %s\n",
3120 stuck[i] ? "stuck" : "no progress",
3121 ring->name);
3122 rings_hung++;
3123 }
3124 }
3125
3126 if (rings_hung) {
3127 i915_handle_error(dev, true, "Ring hung");
3128 goto out;
3129 }
3130
3131 if (busy_count)
3132 /* Reset timer case chip hangs without another request
3133 * being added */
3134 i915_queue_hangcheck(dev);
3135
3136 out:
3137 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3138 }
3139
3140 void i915_queue_hangcheck(struct drm_device *dev)
3141 {
3142 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3143
3144 if (!i915.enable_hangcheck)
3145 return;
3146
3147 /* Don't continually defer the hangcheck so that it is always run at
3148 * least once after work has been scheduled on any ring. Otherwise,
3149 * we will ignore a hung ring if a second ring is kept busy.
3150 */
3151
3152 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3153 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3154 }
3155
3156 static void ibx_irq_reset(struct drm_device *dev)
3157 {
3158 struct drm_i915_private *dev_priv = dev->dev_private;
3159
3160 if (HAS_PCH_NOP(dev))
3161 return;
3162
3163 GEN5_IRQ_RESET(SDE);
3164
3165 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3166 I915_WRITE(SERR_INT, 0xffffffff);
3167 }
3168
3169 /*
3170 * SDEIER is also touched by the interrupt handler to work around missed PCH
3171 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3172 * instead we unconditionally enable all PCH interrupt sources here, but then
3173 * only unmask them as needed with SDEIMR.
3174 *
3175 * This function needs to be called before interrupts are enabled.
3176 */
3177 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3178 {
3179 struct drm_i915_private *dev_priv = dev->dev_private;
3180
3181 if (HAS_PCH_NOP(dev))
3182 return;
3183
3184 WARN_ON(I915_READ(SDEIER) != 0);
3185 I915_WRITE(SDEIER, 0xffffffff);
3186 POSTING_READ(SDEIER);
3187 }
3188
3189 static void gen5_gt_irq_reset(struct drm_device *dev)
3190 {
3191 struct drm_i915_private *dev_priv = dev->dev_private;
3192
3193 GEN5_IRQ_RESET(GT);
3194 if (INTEL_INFO(dev)->gen >= 6)
3195 GEN5_IRQ_RESET(GEN6_PM);
3196 }
3197
3198 /* drm_dma.h hooks
3199 */
3200 static void ironlake_irq_reset(struct drm_device *dev)
3201 {
3202 struct drm_i915_private *dev_priv = dev->dev_private;
3203
3204 I915_WRITE(HWSTAM, 0xffffffff);
3205
3206 GEN5_IRQ_RESET(DE);
3207 if (IS_GEN7(dev))
3208 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3209
3210 gen5_gt_irq_reset(dev);
3211
3212 ibx_irq_reset(dev);
3213 }
3214
3215 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3216 {
3217 enum pipe pipe;
3218
3219 i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3220 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3221
3222 for_each_pipe(dev_priv, pipe)
3223 I915_WRITE(PIPESTAT(pipe), 0xffff);
3224
3225 GEN5_IRQ_RESET(VLV_);
3226 }
3227
3228 static void valleyview_irq_preinstall(struct drm_device *dev)
3229 {
3230 struct drm_i915_private *dev_priv = dev->dev_private;
3231
3232 /* VLV magic */
3233 I915_WRITE(VLV_IMR, 0);
3234 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3235 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3236 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3237
3238 gen5_gt_irq_reset(dev);
3239
3240 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3241
3242 vlv_display_irq_reset(dev_priv);
3243 }
3244
3245 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3246 {
3247 GEN8_IRQ_RESET_NDX(GT, 0);
3248 GEN8_IRQ_RESET_NDX(GT, 1);
3249 GEN8_IRQ_RESET_NDX(GT, 2);
3250 GEN8_IRQ_RESET_NDX(GT, 3);
3251 }
3252
3253 static void gen8_irq_reset(struct drm_device *dev)
3254 {
3255 struct drm_i915_private *dev_priv = dev->dev_private;
3256 int pipe;
3257
3258 I915_WRITE(GEN8_MASTER_IRQ, 0);
3259 POSTING_READ(GEN8_MASTER_IRQ);
3260
3261 gen8_gt_irq_reset(dev_priv);
3262
3263 for_each_pipe(dev_priv, pipe)
3264 if (intel_display_power_is_enabled(dev_priv,
3265 POWER_DOMAIN_PIPE(pipe)))
3266 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3267
3268 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3269 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3270 GEN5_IRQ_RESET(GEN8_PCU_);
3271
3272 if (HAS_PCH_SPLIT(dev))
3273 ibx_irq_reset(dev);
3274 }
3275
3276 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3277 unsigned int pipe_mask)
3278 {
3279 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3280
3281 spin_lock_irq(&dev_priv->irq_lock);
3282 if (pipe_mask & 1 << PIPE_A)
3283 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3284 dev_priv->de_irq_mask[PIPE_A],
3285 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3286 if (pipe_mask & 1 << PIPE_B)
3287 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3288 dev_priv->de_irq_mask[PIPE_B],
3289 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3290 if (pipe_mask & 1 << PIPE_C)
3291 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3292 dev_priv->de_irq_mask[PIPE_C],
3293 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3294 spin_unlock_irq(&dev_priv->irq_lock);
3295 }
3296
3297 static void cherryview_irq_preinstall(struct drm_device *dev)
3298 {
3299 struct drm_i915_private *dev_priv = dev->dev_private;
3300
3301 I915_WRITE(GEN8_MASTER_IRQ, 0);
3302 POSTING_READ(GEN8_MASTER_IRQ);
3303
3304 gen8_gt_irq_reset(dev_priv);
3305
3306 GEN5_IRQ_RESET(GEN8_PCU_);
3307
3308 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3309
3310 vlv_display_irq_reset(dev_priv);
3311 }
3312
3313 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3314 const u32 hpd[HPD_NUM_PINS])
3315 {
3316 struct drm_i915_private *dev_priv = to_i915(dev);
3317 struct intel_encoder *encoder;
3318 u32 enabled_irqs = 0;
3319
3320 for_each_intel_encoder(dev, encoder)
3321 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3322 enabled_irqs |= hpd[encoder->hpd_pin];
3323
3324 return enabled_irqs;
3325 }
3326
3327 static void ibx_hpd_irq_setup(struct drm_device *dev)
3328 {
3329 struct drm_i915_private *dev_priv = dev->dev_private;
3330 u32 hotplug_irqs, hotplug, enabled_irqs;
3331
3332 if (HAS_PCH_IBX(dev)) {
3333 hotplug_irqs = SDE_HOTPLUG_MASK;
3334 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3335 } else {
3336 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3337 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3338 }
3339
3340 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3341
3342 /*
3343 * Enable digital hotplug on the PCH, and configure the DP short pulse
3344 * duration to 2ms (which is the minimum in the Display Port spec).
3345 * The pulse duration bits are reserved on LPT+.
3346 */
3347 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3348 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3349 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3350 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3351 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3352 /*
3353 * When CPU and PCH are on the same package, port A
3354 * HPD must be enabled in both north and south.
3355 */
3356 if (HAS_PCH_LPT_LP(dev))
3357 hotplug |= PORTA_HOTPLUG_ENABLE;
3358 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3359 }
3360
3361 static void spt_hpd_irq_setup(struct drm_device *dev)
3362 {
3363 struct drm_i915_private *dev_priv = dev->dev_private;
3364 u32 hotplug_irqs, hotplug, enabled_irqs;
3365
3366 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3367 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3368
3369 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3370
3371 /* Enable digital hotplug on the PCH */
3372 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3373 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3374 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3375 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3376
3377 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3378 hotplug |= PORTE_HOTPLUG_ENABLE;
3379 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3380 }
3381
3382 static void ilk_hpd_irq_setup(struct drm_device *dev)
3383 {
3384 struct drm_i915_private *dev_priv = dev->dev_private;
3385 u32 hotplug_irqs, hotplug, enabled_irqs;
3386
3387 if (INTEL_INFO(dev)->gen >= 8) {
3388 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3389 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3390
3391 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3392 } else if (INTEL_INFO(dev)->gen >= 7) {
3393 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3394 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3395
3396 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3397 } else {
3398 hotplug_irqs = DE_DP_A_HOTPLUG;
3399 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3400
3401 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3402 }
3403
3404 /*
3405 * Enable digital hotplug on the CPU, and configure the DP short pulse
3406 * duration to 2ms (which is the minimum in the Display Port spec)
3407 * The pulse duration bits are reserved on HSW+.
3408 */
3409 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3410 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3411 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3412 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3413
3414 ibx_hpd_irq_setup(dev);
3415 }
3416
3417 static void bxt_hpd_irq_setup(struct drm_device *dev)
3418 {
3419 struct drm_i915_private *dev_priv = dev->dev_private;
3420 u32 hotplug_irqs, hotplug, enabled_irqs;
3421
3422 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3423 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3424
3425 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3426
3427 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3428 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3429 PORTA_HOTPLUG_ENABLE;
3430 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3431 }
3432
3433 static void ibx_irq_postinstall(struct drm_device *dev)
3434 {
3435 struct drm_i915_private *dev_priv = dev->dev_private;
3436 u32 mask;
3437
3438 if (HAS_PCH_NOP(dev))
3439 return;
3440
3441 if (HAS_PCH_IBX(dev))
3442 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3443 else
3444 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3445
3446 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3447 I915_WRITE(SDEIMR, ~mask);
3448 }
3449
3450 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3451 {
3452 struct drm_i915_private *dev_priv = dev->dev_private;
3453 u32 pm_irqs, gt_irqs;
3454
3455 pm_irqs = gt_irqs = 0;
3456
3457 dev_priv->gt_irq_mask = ~0;
3458 if (HAS_L3_DPF(dev)) {
3459 /* L3 parity interrupt is always unmasked. */
3460 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3461 gt_irqs |= GT_PARITY_ERROR(dev);
3462 }
3463
3464 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3465 if (IS_GEN5(dev)) {
3466 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3467 ILK_BSD_USER_INTERRUPT;
3468 } else {
3469 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3470 }
3471
3472 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3473
3474 if (INTEL_INFO(dev)->gen >= 6) {
3475 /*
3476 * RPS interrupts will get enabled/disabled on demand when RPS
3477 * itself is enabled/disabled.
3478 */
3479 if (HAS_VEBOX(dev))
3480 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3481
3482 dev_priv->pm_irq_mask = 0xffffffff;
3483 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3484 }
3485 }
3486
3487 static int ironlake_irq_postinstall(struct drm_device *dev)
3488 {
3489 struct drm_i915_private *dev_priv = dev->dev_private;
3490 u32 display_mask, extra_mask;
3491
3492 if (INTEL_INFO(dev)->gen >= 7) {
3493 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3494 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3495 DE_PLANEB_FLIP_DONE_IVB |
3496 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3497 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3498 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3499 DE_DP_A_HOTPLUG_IVB);
3500 } else {
3501 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3502 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3503 DE_AUX_CHANNEL_A |
3504 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3505 DE_POISON);
3506 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3507 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3508 DE_DP_A_HOTPLUG);
3509 }
3510
3511 dev_priv->irq_mask = ~display_mask;
3512
3513 I915_WRITE(HWSTAM, 0xeffe);
3514
3515 ibx_irq_pre_postinstall(dev);
3516
3517 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3518
3519 gen5_gt_irq_postinstall(dev);
3520
3521 ibx_irq_postinstall(dev);
3522
3523 if (IS_IRONLAKE_M(dev)) {
3524 /* Enable PCU event interrupts
3525 *
3526 * spinlocking not required here for correctness since interrupt
3527 * setup is guaranteed to run in single-threaded context. But we
3528 * need it to make the assert_spin_locked happy. */
3529 spin_lock_irq(&dev_priv->irq_lock);
3530 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3531 spin_unlock_irq(&dev_priv->irq_lock);
3532 }
3533
3534 return 0;
3535 }
3536
3537 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3538 {
3539 u32 pipestat_mask;
3540 u32 iir_mask;
3541 enum pipe pipe;
3542
3543 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3544 PIPE_FIFO_UNDERRUN_STATUS;
3545
3546 for_each_pipe(dev_priv, pipe)
3547 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3548 POSTING_READ(PIPESTAT(PIPE_A));
3549
3550 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3551 PIPE_CRC_DONE_INTERRUPT_STATUS;
3552
3553 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3554 for_each_pipe(dev_priv, pipe)
3555 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3556
3557 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3558 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3559 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3560 if (IS_CHERRYVIEW(dev_priv))
3561 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3562 dev_priv->irq_mask &= ~iir_mask;
3563
3564 I915_WRITE(VLV_IIR, iir_mask);
3565 I915_WRITE(VLV_IIR, iir_mask);
3566 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3567 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3568 POSTING_READ(VLV_IMR);
3569 }
3570
3571 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3572 {
3573 u32 pipestat_mask;
3574 u32 iir_mask;
3575 enum pipe pipe;
3576
3577 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3578 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3579 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3580 if (IS_CHERRYVIEW(dev_priv))
3581 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3582
3583 dev_priv->irq_mask |= iir_mask;
3584 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3585 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3586 I915_WRITE(VLV_IIR, iir_mask);
3587 I915_WRITE(VLV_IIR, iir_mask);
3588 POSTING_READ(VLV_IIR);
3589
3590 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3591 PIPE_CRC_DONE_INTERRUPT_STATUS;
3592
3593 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3594 for_each_pipe(dev_priv, pipe)
3595 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3596
3597 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3598 PIPE_FIFO_UNDERRUN_STATUS;
3599
3600 for_each_pipe(dev_priv, pipe)
3601 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3602 POSTING_READ(PIPESTAT(PIPE_A));
3603 }
3604
3605 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3606 {
3607 assert_spin_locked(&dev_priv->irq_lock);
3608
3609 if (dev_priv->display_irqs_enabled)
3610 return;
3611
3612 dev_priv->display_irqs_enabled = true;
3613
3614 if (intel_irqs_enabled(dev_priv))
3615 valleyview_display_irqs_install(dev_priv);
3616 }
3617
3618 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3619 {
3620 assert_spin_locked(&dev_priv->irq_lock);
3621
3622 if (!dev_priv->display_irqs_enabled)
3623 return;
3624
3625 dev_priv->display_irqs_enabled = false;
3626
3627 if (intel_irqs_enabled(dev_priv))
3628 valleyview_display_irqs_uninstall(dev_priv);
3629 }
3630
3631 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3632 {
3633 dev_priv->irq_mask = ~0;
3634
3635 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3636 POSTING_READ(PORT_HOTPLUG_EN);
3637
3638 I915_WRITE(VLV_IIR, 0xffffffff);
3639 I915_WRITE(VLV_IIR, 0xffffffff);
3640 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3641 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3642 POSTING_READ(VLV_IMR);
3643
3644 /* Interrupt setup is already guaranteed to be single-threaded, this is
3645 * just to make the assert_spin_locked check happy. */
3646 spin_lock_irq(&dev_priv->irq_lock);
3647 if (dev_priv->display_irqs_enabled)
3648 valleyview_display_irqs_install(dev_priv);
3649 spin_unlock_irq(&dev_priv->irq_lock);
3650 }
3651
3652 static int valleyview_irq_postinstall(struct drm_device *dev)
3653 {
3654 struct drm_i915_private *dev_priv = dev->dev_private;
3655
3656 vlv_display_irq_postinstall(dev_priv);
3657
3658 gen5_gt_irq_postinstall(dev);
3659
3660 /* ack & enable invalid PTE error interrupts */
3661 #if 0 /* FIXME: add support to irq handler for checking these bits */
3662 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3663 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3664 #endif
3665
3666 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3667
3668 return 0;
3669 }
3670
3671 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3672 {
3673 /* These are interrupts we'll toggle with the ring mask register */
3674 uint32_t gt_interrupts[] = {
3675 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3676 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3677 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3678 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3679 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3680 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3681 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3682 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3683 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3684 0,
3685 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3686 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3687 };
3688
3689 dev_priv->pm_irq_mask = 0xffffffff;
3690 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3691 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3692 /*
3693 * RPS interrupts will get enabled/disabled on demand when RPS itself
3694 * is enabled/disabled.
3695 */
3696 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3697 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3698 }
3699
3700 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3701 {
3702 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3703 uint32_t de_pipe_enables;
3704 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3705 u32 de_port_enables;
3706 enum pipe pipe;
3707
3708 if (INTEL_INFO(dev_priv)->gen >= 9) {
3709 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3710 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3711 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3712 GEN9_AUX_CHANNEL_D;
3713 if (IS_BROXTON(dev_priv))
3714 de_port_masked |= BXT_DE_PORT_GMBUS;
3715 } else {
3716 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3717 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3718 }
3719
3720 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3721 GEN8_PIPE_FIFO_UNDERRUN;
3722
3723 de_port_enables = de_port_masked;
3724 if (IS_BROXTON(dev_priv))
3725 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3726 else if (IS_BROADWELL(dev_priv))
3727 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3728
3729 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3730 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3731 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3732
3733 for_each_pipe(dev_priv, pipe)
3734 if (intel_display_power_is_enabled(dev_priv,
3735 POWER_DOMAIN_PIPE(pipe)))
3736 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3737 dev_priv->de_irq_mask[pipe],
3738 de_pipe_enables);
3739
3740 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3741 }
3742
3743 static int gen8_irq_postinstall(struct drm_device *dev)
3744 {
3745 struct drm_i915_private *dev_priv = dev->dev_private;
3746
3747 if (HAS_PCH_SPLIT(dev))
3748 ibx_irq_pre_postinstall(dev);
3749
3750 gen8_gt_irq_postinstall(dev_priv);
3751 gen8_de_irq_postinstall(dev_priv);
3752
3753 if (HAS_PCH_SPLIT(dev))
3754 ibx_irq_postinstall(dev);
3755
3756 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3757 POSTING_READ(GEN8_MASTER_IRQ);
3758
3759 return 0;
3760 }
3761
3762 static int cherryview_irq_postinstall(struct drm_device *dev)
3763 {
3764 struct drm_i915_private *dev_priv = dev->dev_private;
3765
3766 vlv_display_irq_postinstall(dev_priv);
3767
3768 gen8_gt_irq_postinstall(dev_priv);
3769
3770 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3771 POSTING_READ(GEN8_MASTER_IRQ);
3772
3773 return 0;
3774 }
3775
3776 static void gen8_irq_uninstall(struct drm_device *dev)
3777 {
3778 struct drm_i915_private *dev_priv = dev->dev_private;
3779
3780 if (!dev_priv)
3781 return;
3782
3783 gen8_irq_reset(dev);
3784 }
3785
3786 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3787 {
3788 /* Interrupt setup is already guaranteed to be single-threaded, this is
3789 * just to make the assert_spin_locked check happy. */
3790 spin_lock_irq(&dev_priv->irq_lock);
3791 if (dev_priv->display_irqs_enabled)
3792 valleyview_display_irqs_uninstall(dev_priv);
3793 spin_unlock_irq(&dev_priv->irq_lock);
3794
3795 vlv_display_irq_reset(dev_priv);
3796
3797 dev_priv->irq_mask = ~0;
3798 }
3799
3800 static void valleyview_irq_uninstall(struct drm_device *dev)
3801 {
3802 struct drm_i915_private *dev_priv = dev->dev_private;
3803
3804 if (!dev_priv)
3805 return;
3806
3807 I915_WRITE(VLV_MASTER_IER, 0);
3808
3809 gen5_gt_irq_reset(dev);
3810
3811 I915_WRITE(HWSTAM, 0xffffffff);
3812
3813 vlv_display_irq_uninstall(dev_priv);
3814 }
3815
3816 static void cherryview_irq_uninstall(struct drm_device *dev)
3817 {
3818 struct drm_i915_private *dev_priv = dev->dev_private;
3819
3820 if (!dev_priv)
3821 return;
3822
3823 I915_WRITE(GEN8_MASTER_IRQ, 0);
3824 POSTING_READ(GEN8_MASTER_IRQ);
3825
3826 gen8_gt_irq_reset(dev_priv);
3827
3828 GEN5_IRQ_RESET(GEN8_PCU_);
3829
3830 vlv_display_irq_uninstall(dev_priv);
3831 }
3832
3833 static void ironlake_irq_uninstall(struct drm_device *dev)
3834 {
3835 struct drm_i915_private *dev_priv = dev->dev_private;
3836
3837 if (!dev_priv)
3838 return;
3839
3840 ironlake_irq_reset(dev);
3841 }
3842
3843 static void i8xx_irq_preinstall(struct drm_device * dev)
3844 {
3845 struct drm_i915_private *dev_priv = dev->dev_private;
3846 int pipe;
3847
3848 for_each_pipe(dev_priv, pipe)
3849 I915_WRITE(PIPESTAT(pipe), 0);
3850 I915_WRITE16(IMR, 0xffff);
3851 I915_WRITE16(IER, 0x0);
3852 POSTING_READ16(IER);
3853 }
3854
3855 static int i8xx_irq_postinstall(struct drm_device *dev)
3856 {
3857 struct drm_i915_private *dev_priv = dev->dev_private;
3858
3859 I915_WRITE16(EMR,
3860 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3861
3862 /* Unmask the interrupts that we always want on. */
3863 dev_priv->irq_mask =
3864 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3865 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3866 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3867 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3868 I915_WRITE16(IMR, dev_priv->irq_mask);
3869
3870 I915_WRITE16(IER,
3871 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3872 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3873 I915_USER_INTERRUPT);
3874 POSTING_READ16(IER);
3875
3876 /* Interrupt setup is already guaranteed to be single-threaded, this is
3877 * just to make the assert_spin_locked check happy. */
3878 spin_lock_irq(&dev_priv->irq_lock);
3879 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3880 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3881 spin_unlock_irq(&dev_priv->irq_lock);
3882
3883 return 0;
3884 }
3885
3886 /*
3887 * Returns true when a page flip has completed.
3888 */
3889 static bool i8xx_handle_vblank(struct drm_device *dev,
3890 int plane, int pipe, u32 iir)
3891 {
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3894
3895 if (!intel_pipe_handle_vblank(dev, pipe))
3896 return false;
3897
3898 if ((iir & flip_pending) == 0)
3899 goto check_page_flip;
3900
3901 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3902 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3903 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3904 * the flip is completed (no longer pending). Since this doesn't raise
3905 * an interrupt per se, we watch for the change at vblank.
3906 */
3907 if (I915_READ16(ISR) & flip_pending)
3908 goto check_page_flip;
3909
3910 intel_prepare_page_flip(dev, plane);
3911 intel_finish_page_flip(dev, pipe);
3912 return true;
3913
3914 check_page_flip:
3915 intel_check_page_flip(dev, pipe);
3916 return false;
3917 }
3918
3919 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3920 {
3921 struct drm_device *dev = arg;
3922 struct drm_i915_private *dev_priv = dev->dev_private;
3923 u16 iir, new_iir;
3924 u32 pipe_stats[2];
3925 int pipe;
3926 u16 flip_mask =
3927 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3928 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3929 irqreturn_t ret;
3930
3931 if (!intel_irqs_enabled(dev_priv))
3932 return IRQ_NONE;
3933
3934 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3935 disable_rpm_wakeref_asserts(dev_priv);
3936
3937 ret = IRQ_NONE;
3938 iir = I915_READ16(IIR);
3939 if (iir == 0)
3940 goto out;
3941
3942 while (iir & ~flip_mask) {
3943 /* Can't rely on pipestat interrupt bit in iir as it might
3944 * have been cleared after the pipestat interrupt was received.
3945 * It doesn't set the bit in iir again, but it still produces
3946 * interrupts (for non-MSI).
3947 */
3948 spin_lock(&dev_priv->irq_lock);
3949 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3950 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3951
3952 for_each_pipe(dev_priv, pipe) {
3953 i915_reg_t reg = PIPESTAT(pipe);
3954 pipe_stats[pipe] = I915_READ(reg);
3955
3956 /*
3957 * Clear the PIPE*STAT regs before the IIR
3958 */
3959 if (pipe_stats[pipe] & 0x8000ffff)
3960 I915_WRITE(reg, pipe_stats[pipe]);
3961 }
3962 spin_unlock(&dev_priv->irq_lock);
3963
3964 I915_WRITE16(IIR, iir & ~flip_mask);
3965 new_iir = I915_READ16(IIR); /* Flush posted writes */
3966
3967 if (iir & I915_USER_INTERRUPT)
3968 notify_ring(&dev_priv->ring[RCS]);
3969
3970 for_each_pipe(dev_priv, pipe) {
3971 int plane = pipe;
3972 if (HAS_FBC(dev))
3973 plane = !plane;
3974
3975 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3976 i8xx_handle_vblank(dev, plane, pipe, iir))
3977 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3978
3979 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3980 i9xx_pipe_crc_irq_handler(dev, pipe);
3981
3982 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3983 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3984 pipe);
3985 }
3986
3987 iir = new_iir;
3988 }
3989 ret = IRQ_HANDLED;
3990
3991 out:
3992 enable_rpm_wakeref_asserts(dev_priv);
3993
3994 return ret;
3995 }
3996
3997 static void i8xx_irq_uninstall(struct drm_device * dev)
3998 {
3999 struct drm_i915_private *dev_priv = dev->dev_private;
4000 int pipe;
4001
4002 for_each_pipe(dev_priv, pipe) {
4003 /* Clear enable bits; then clear status bits */
4004 I915_WRITE(PIPESTAT(pipe), 0);
4005 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4006 }
4007 I915_WRITE16(IMR, 0xffff);
4008 I915_WRITE16(IER, 0x0);
4009 I915_WRITE16(IIR, I915_READ16(IIR));
4010 }
4011
4012 static void i915_irq_preinstall(struct drm_device * dev)
4013 {
4014 struct drm_i915_private *dev_priv = dev->dev_private;
4015 int pipe;
4016
4017 if (I915_HAS_HOTPLUG(dev)) {
4018 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4019 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4020 }
4021
4022 I915_WRITE16(HWSTAM, 0xeffe);
4023 for_each_pipe(dev_priv, pipe)
4024 I915_WRITE(PIPESTAT(pipe), 0);
4025 I915_WRITE(IMR, 0xffffffff);
4026 I915_WRITE(IER, 0x0);
4027 POSTING_READ(IER);
4028 }
4029
4030 static int i915_irq_postinstall(struct drm_device *dev)
4031 {
4032 struct drm_i915_private *dev_priv = dev->dev_private;
4033 u32 enable_mask;
4034
4035 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4036
4037 /* Unmask the interrupts that we always want on. */
4038 dev_priv->irq_mask =
4039 ~(I915_ASLE_INTERRUPT |
4040 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4041 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4042 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4043 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4044
4045 enable_mask =
4046 I915_ASLE_INTERRUPT |
4047 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4048 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4049 I915_USER_INTERRUPT;
4050
4051 if (I915_HAS_HOTPLUG(dev)) {
4052 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4053 POSTING_READ(PORT_HOTPLUG_EN);
4054
4055 /* Enable in IER... */
4056 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4057 /* and unmask in IMR */
4058 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4059 }
4060
4061 I915_WRITE(IMR, dev_priv->irq_mask);
4062 I915_WRITE(IER, enable_mask);
4063 POSTING_READ(IER);
4064
4065 i915_enable_asle_pipestat(dev);
4066
4067 /* Interrupt setup is already guaranteed to be single-threaded, this is
4068 * just to make the assert_spin_locked check happy. */
4069 spin_lock_irq(&dev_priv->irq_lock);
4070 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4071 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4072 spin_unlock_irq(&dev_priv->irq_lock);
4073
4074 return 0;
4075 }
4076
4077 /*
4078 * Returns true when a page flip has completed.
4079 */
4080 static bool i915_handle_vblank(struct drm_device *dev,
4081 int plane, int pipe, u32 iir)
4082 {
4083 struct drm_i915_private *dev_priv = dev->dev_private;
4084 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4085
4086 if (!intel_pipe_handle_vblank(dev, pipe))
4087 return false;
4088
4089 if ((iir & flip_pending) == 0)
4090 goto check_page_flip;
4091
4092 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4093 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4094 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4095 * the flip is completed (no longer pending). Since this doesn't raise
4096 * an interrupt per se, we watch for the change at vblank.
4097 */
4098 if (I915_READ(ISR) & flip_pending)
4099 goto check_page_flip;
4100
4101 intel_prepare_page_flip(dev, plane);
4102 intel_finish_page_flip(dev, pipe);
4103 return true;
4104
4105 check_page_flip:
4106 intel_check_page_flip(dev, pipe);
4107 return false;
4108 }
4109
4110 static irqreturn_t i915_irq_handler(int irq, void *arg)
4111 {
4112 struct drm_device *dev = arg;
4113 struct drm_i915_private *dev_priv = dev->dev_private;
4114 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4115 u32 flip_mask =
4116 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4117 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4118 int pipe, ret = IRQ_NONE;
4119
4120 if (!intel_irqs_enabled(dev_priv))
4121 return IRQ_NONE;
4122
4123 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4124 disable_rpm_wakeref_asserts(dev_priv);
4125
4126 iir = I915_READ(IIR);
4127 do {
4128 bool irq_received = (iir & ~flip_mask) != 0;
4129 bool blc_event = false;
4130
4131 /* Can't rely on pipestat interrupt bit in iir as it might
4132 * have been cleared after the pipestat interrupt was received.
4133 * It doesn't set the bit in iir again, but it still produces
4134 * interrupts (for non-MSI).
4135 */
4136 spin_lock(&dev_priv->irq_lock);
4137 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4138 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4139
4140 for_each_pipe(dev_priv, pipe) {
4141 i915_reg_t reg = PIPESTAT(pipe);
4142 pipe_stats[pipe] = I915_READ(reg);
4143
4144 /* Clear the PIPE*STAT regs before the IIR */
4145 if (pipe_stats[pipe] & 0x8000ffff) {
4146 I915_WRITE(reg, pipe_stats[pipe]);
4147 irq_received = true;
4148 }
4149 }
4150 spin_unlock(&dev_priv->irq_lock);
4151
4152 if (!irq_received)
4153 break;
4154
4155 /* Consume port. Then clear IIR or we'll miss events */
4156 if (I915_HAS_HOTPLUG(dev) &&
4157 iir & I915_DISPLAY_PORT_INTERRUPT)
4158 i9xx_hpd_irq_handler(dev);
4159
4160 I915_WRITE(IIR, iir & ~flip_mask);
4161 new_iir = I915_READ(IIR); /* Flush posted writes */
4162
4163 if (iir & I915_USER_INTERRUPT)
4164 notify_ring(&dev_priv->ring[RCS]);
4165
4166 for_each_pipe(dev_priv, pipe) {
4167 int plane = pipe;
4168 if (HAS_FBC(dev))
4169 plane = !plane;
4170
4171 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4172 i915_handle_vblank(dev, plane, pipe, iir))
4173 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4174
4175 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4176 blc_event = true;
4177
4178 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4179 i9xx_pipe_crc_irq_handler(dev, pipe);
4180
4181 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4182 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4183 pipe);
4184 }
4185
4186 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4187 intel_opregion_asle_intr(dev);
4188
4189 /* With MSI, interrupts are only generated when iir
4190 * transitions from zero to nonzero. If another bit got
4191 * set while we were handling the existing iir bits, then
4192 * we would never get another interrupt.
4193 *
4194 * This is fine on non-MSI as well, as if we hit this path
4195 * we avoid exiting the interrupt handler only to generate
4196 * another one.
4197 *
4198 * Note that for MSI this could cause a stray interrupt report
4199 * if an interrupt landed in the time between writing IIR and
4200 * the posting read. This should be rare enough to never
4201 * trigger the 99% of 100,000 interrupts test for disabling
4202 * stray interrupts.
4203 */
4204 ret = IRQ_HANDLED;
4205 iir = new_iir;
4206 } while (iir & ~flip_mask);
4207
4208 enable_rpm_wakeref_asserts(dev_priv);
4209
4210 return ret;
4211 }
4212
4213 static void i915_irq_uninstall(struct drm_device * dev)
4214 {
4215 struct drm_i915_private *dev_priv = dev->dev_private;
4216 int pipe;
4217
4218 if (I915_HAS_HOTPLUG(dev)) {
4219 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4220 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4221 }
4222
4223 I915_WRITE16(HWSTAM, 0xffff);
4224 for_each_pipe(dev_priv, pipe) {
4225 /* Clear enable bits; then clear status bits */
4226 I915_WRITE(PIPESTAT(pipe), 0);
4227 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4228 }
4229 I915_WRITE(IMR, 0xffffffff);
4230 I915_WRITE(IER, 0x0);
4231
4232 I915_WRITE(IIR, I915_READ(IIR));
4233 }
4234
4235 static void i965_irq_preinstall(struct drm_device * dev)
4236 {
4237 struct drm_i915_private *dev_priv = dev->dev_private;
4238 int pipe;
4239
4240 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4241 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4242
4243 I915_WRITE(HWSTAM, 0xeffe);
4244 for_each_pipe(dev_priv, pipe)
4245 I915_WRITE(PIPESTAT(pipe), 0);
4246 I915_WRITE(IMR, 0xffffffff);
4247 I915_WRITE(IER, 0x0);
4248 POSTING_READ(IER);
4249 }
4250
4251 static int i965_irq_postinstall(struct drm_device *dev)
4252 {
4253 struct drm_i915_private *dev_priv = dev->dev_private;
4254 u32 enable_mask;
4255 u32 error_mask;
4256
4257 /* Unmask the interrupts that we always want on. */
4258 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4259 I915_DISPLAY_PORT_INTERRUPT |
4260 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4261 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4262 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4263 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4264 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4265
4266 enable_mask = ~dev_priv->irq_mask;
4267 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4268 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4269 enable_mask |= I915_USER_INTERRUPT;
4270
4271 if (IS_G4X(dev))
4272 enable_mask |= I915_BSD_USER_INTERRUPT;
4273
4274 /* Interrupt setup is already guaranteed to be single-threaded, this is
4275 * just to make the assert_spin_locked check happy. */
4276 spin_lock_irq(&dev_priv->irq_lock);
4277 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4278 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4279 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4280 spin_unlock_irq(&dev_priv->irq_lock);
4281
4282 /*
4283 * Enable some error detection, note the instruction error mask
4284 * bit is reserved, so we leave it masked.
4285 */
4286 if (IS_G4X(dev)) {
4287 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4288 GM45_ERROR_MEM_PRIV |
4289 GM45_ERROR_CP_PRIV |
4290 I915_ERROR_MEMORY_REFRESH);
4291 } else {
4292 error_mask = ~(I915_ERROR_PAGE_TABLE |
4293 I915_ERROR_MEMORY_REFRESH);
4294 }
4295 I915_WRITE(EMR, error_mask);
4296
4297 I915_WRITE(IMR, dev_priv->irq_mask);
4298 I915_WRITE(IER, enable_mask);
4299 POSTING_READ(IER);
4300
4301 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4302 POSTING_READ(PORT_HOTPLUG_EN);
4303
4304 i915_enable_asle_pipestat(dev);
4305
4306 return 0;
4307 }
4308
4309 static void i915_hpd_irq_setup(struct drm_device *dev)
4310 {
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312 u32 hotplug_en;
4313
4314 assert_spin_locked(&dev_priv->irq_lock);
4315
4316 /* Note HDMI and DP share hotplug bits */
4317 /* enable bits are the same for all generations */
4318 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4319 /* Programming the CRT detection parameters tends
4320 to generate a spurious hotplug event about three
4321 seconds later. So just do it once.
4322 */
4323 if (IS_G4X(dev))
4324 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4325 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4326
4327 /* Ignore TV since it's buggy */
4328 i915_hotplug_interrupt_update_locked(dev_priv,
4329 HOTPLUG_INT_EN_MASK |
4330 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4331 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4332 hotplug_en);
4333 }
4334
4335 static irqreturn_t i965_irq_handler(int irq, void *arg)
4336 {
4337 struct drm_device *dev = arg;
4338 struct drm_i915_private *dev_priv = dev->dev_private;
4339 u32 iir, new_iir;
4340 u32 pipe_stats[I915_MAX_PIPES];
4341 int ret = IRQ_NONE, pipe;
4342 u32 flip_mask =
4343 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4344 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4345
4346 if (!intel_irqs_enabled(dev_priv))
4347 return IRQ_NONE;
4348
4349 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4350 disable_rpm_wakeref_asserts(dev_priv);
4351
4352 iir = I915_READ(IIR);
4353
4354 for (;;) {
4355 bool irq_received = (iir & ~flip_mask) != 0;
4356 bool blc_event = false;
4357
4358 /* Can't rely on pipestat interrupt bit in iir as it might
4359 * have been cleared after the pipestat interrupt was received.
4360 * It doesn't set the bit in iir again, but it still produces
4361 * interrupts (for non-MSI).
4362 */
4363 spin_lock(&dev_priv->irq_lock);
4364 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4365 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4366
4367 for_each_pipe(dev_priv, pipe) {
4368 i915_reg_t reg = PIPESTAT(pipe);
4369 pipe_stats[pipe] = I915_READ(reg);
4370
4371 /*
4372 * Clear the PIPE*STAT regs before the IIR
4373 */
4374 if (pipe_stats[pipe] & 0x8000ffff) {
4375 I915_WRITE(reg, pipe_stats[pipe]);
4376 irq_received = true;
4377 }
4378 }
4379 spin_unlock(&dev_priv->irq_lock);
4380
4381 if (!irq_received)
4382 break;
4383
4384 ret = IRQ_HANDLED;
4385
4386 /* Consume port. Then clear IIR or we'll miss events */
4387 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4388 i9xx_hpd_irq_handler(dev);
4389
4390 I915_WRITE(IIR, iir & ~flip_mask);
4391 new_iir = I915_READ(IIR); /* Flush posted writes */
4392
4393 if (iir & I915_USER_INTERRUPT)
4394 notify_ring(&dev_priv->ring[RCS]);
4395 if (iir & I915_BSD_USER_INTERRUPT)
4396 notify_ring(&dev_priv->ring[VCS]);
4397
4398 for_each_pipe(dev_priv, pipe) {
4399 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4400 i915_handle_vblank(dev, pipe, pipe, iir))
4401 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4402
4403 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4404 blc_event = true;
4405
4406 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4407 i9xx_pipe_crc_irq_handler(dev, pipe);
4408
4409 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4410 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4411 }
4412
4413 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4414 intel_opregion_asle_intr(dev);
4415
4416 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4417 gmbus_irq_handler(dev);
4418
4419 /* With MSI, interrupts are only generated when iir
4420 * transitions from zero to nonzero. If another bit got
4421 * set while we were handling the existing iir bits, then
4422 * we would never get another interrupt.
4423 *
4424 * This is fine on non-MSI as well, as if we hit this path
4425 * we avoid exiting the interrupt handler only to generate
4426 * another one.
4427 *
4428 * Note that for MSI this could cause a stray interrupt report
4429 * if an interrupt landed in the time between writing IIR and
4430 * the posting read. This should be rare enough to never
4431 * trigger the 99% of 100,000 interrupts test for disabling
4432 * stray interrupts.
4433 */
4434 iir = new_iir;
4435 }
4436
4437 enable_rpm_wakeref_asserts(dev_priv);
4438
4439 return ret;
4440 }
4441
4442 static void i965_irq_uninstall(struct drm_device * dev)
4443 {
4444 struct drm_i915_private *dev_priv = dev->dev_private;
4445 int pipe;
4446
4447 if (!dev_priv)
4448 return;
4449
4450 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4451 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4452
4453 I915_WRITE(HWSTAM, 0xffffffff);
4454 for_each_pipe(dev_priv, pipe)
4455 I915_WRITE(PIPESTAT(pipe), 0);
4456 I915_WRITE(IMR, 0xffffffff);
4457 I915_WRITE(IER, 0x0);
4458
4459 for_each_pipe(dev_priv, pipe)
4460 I915_WRITE(PIPESTAT(pipe),
4461 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4462 I915_WRITE(IIR, I915_READ(IIR));
4463 }
4464
4465 /**
4466 * intel_irq_init - initializes irq support
4467 * @dev_priv: i915 device instance
4468 *
4469 * This function initializes all the irq support including work items, timers
4470 * and all the vtables. It does not setup the interrupt itself though.
4471 */
4472 void intel_irq_init(struct drm_i915_private *dev_priv)
4473 {
4474 struct drm_device *dev = dev_priv->dev;
4475
4476 intel_hpd_init_work(dev_priv);
4477
4478 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4479 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4480
4481 /* Let's track the enabled rps events */
4482 if (IS_VALLEYVIEW(dev_priv))
4483 /* WaGsvRC0ResidencyMethod:vlv */
4484 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4485 else
4486 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4487
4488 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4489 i915_hangcheck_elapsed);
4490
4491 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4492
4493 if (IS_GEN2(dev_priv)) {
4494 dev->max_vblank_count = 0;
4495 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4496 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4497 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4498 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4499 } else {
4500 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4501 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4502 }
4503
4504 /*
4505 * Opt out of the vblank disable timer on everything except gen2.
4506 * Gen2 doesn't have a hardware frame counter and so depends on
4507 * vblank interrupts to produce sane vblank seuquence numbers.
4508 */
4509 if (!IS_GEN2(dev_priv))
4510 dev->vblank_disable_immediate = true;
4511
4512 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4513 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4514
4515 if (IS_CHERRYVIEW(dev_priv)) {
4516 dev->driver->irq_handler = cherryview_irq_handler;
4517 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4518 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4519 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4520 dev->driver->enable_vblank = valleyview_enable_vblank;
4521 dev->driver->disable_vblank = valleyview_disable_vblank;
4522 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4523 } else if (IS_VALLEYVIEW(dev_priv)) {
4524 dev->driver->irq_handler = valleyview_irq_handler;
4525 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4526 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4527 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4528 dev->driver->enable_vblank = valleyview_enable_vblank;
4529 dev->driver->disable_vblank = valleyview_disable_vblank;
4530 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4531 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4532 dev->driver->irq_handler = gen8_irq_handler;
4533 dev->driver->irq_preinstall = gen8_irq_reset;
4534 dev->driver->irq_postinstall = gen8_irq_postinstall;
4535 dev->driver->irq_uninstall = gen8_irq_uninstall;
4536 dev->driver->enable_vblank = gen8_enable_vblank;
4537 dev->driver->disable_vblank = gen8_disable_vblank;
4538 if (IS_BROXTON(dev))
4539 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4540 else if (HAS_PCH_SPT(dev))
4541 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4542 else
4543 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4544 } else if (HAS_PCH_SPLIT(dev)) {
4545 dev->driver->irq_handler = ironlake_irq_handler;
4546 dev->driver->irq_preinstall = ironlake_irq_reset;
4547 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4548 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4549 dev->driver->enable_vblank = ironlake_enable_vblank;
4550 dev->driver->disable_vblank = ironlake_disable_vblank;
4551 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4552 } else {
4553 if (INTEL_INFO(dev_priv)->gen == 2) {
4554 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4555 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4556 dev->driver->irq_handler = i8xx_irq_handler;
4557 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4558 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4559 dev->driver->irq_preinstall = i915_irq_preinstall;
4560 dev->driver->irq_postinstall = i915_irq_postinstall;
4561 dev->driver->irq_uninstall = i915_irq_uninstall;
4562 dev->driver->irq_handler = i915_irq_handler;
4563 } else {
4564 dev->driver->irq_preinstall = i965_irq_preinstall;
4565 dev->driver->irq_postinstall = i965_irq_postinstall;
4566 dev->driver->irq_uninstall = i965_irq_uninstall;
4567 dev->driver->irq_handler = i965_irq_handler;
4568 }
4569 if (I915_HAS_HOTPLUG(dev_priv))
4570 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4571 dev->driver->enable_vblank = i915_enable_vblank;
4572 dev->driver->disable_vblank = i915_disable_vblank;
4573 }
4574 }
4575
4576 /**
4577 * intel_irq_install - enables the hardware interrupt
4578 * @dev_priv: i915 device instance
4579 *
4580 * This function enables the hardware interrupt handling, but leaves the hotplug
4581 * handling still disabled. It is called after intel_irq_init().
4582 *
4583 * In the driver load and resume code we need working interrupts in a few places
4584 * but don't want to deal with the hassle of concurrent probe and hotplug
4585 * workers. Hence the split into this two-stage approach.
4586 */
4587 int intel_irq_install(struct drm_i915_private *dev_priv)
4588 {
4589 /*
4590 * We enable some interrupt sources in our postinstall hooks, so mark
4591 * interrupts as enabled _before_ actually enabling them to avoid
4592 * special cases in our ordering checks.
4593 */
4594 dev_priv->pm.irqs_enabled = true;
4595
4596 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4597 }
4598
4599 /**
4600 * intel_irq_uninstall - finilizes all irq handling
4601 * @dev_priv: i915 device instance
4602 *
4603 * This stops interrupt and hotplug handling and unregisters and frees all
4604 * resources acquired in the init functions.
4605 */
4606 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4607 {
4608 drm_irq_uninstall(dev_priv->dev);
4609 intel_hpd_cancel_work(dev_priv);
4610 dev_priv->pm.irqs_enabled = false;
4611 }
4612
4613 /**
4614 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4615 * @dev_priv: i915 device instance
4616 *
4617 * This function is used to disable interrupts at runtime, both in the runtime
4618 * pm and the system suspend/resume code.
4619 */
4620 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4621 {
4622 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4623 dev_priv->pm.irqs_enabled = false;
4624 synchronize_irq(dev_priv->dev->irq);
4625 }
4626
4627 /**
4628 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4629 * @dev_priv: i915 device instance
4630 *
4631 * This function is used to enable interrupts at runtime, both in the runtime
4632 * pm and the system suspend/resume code.
4633 */
4634 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4635 {
4636 dev_priv->pm.irqs_enabled = true;
4637 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4638 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4639 }
This page took 0.121141 seconds and 6 git commands to generate.