Merge branch 'ast-updates' of ssh://people.freedesktop.org/~/linux into drm-next
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (WARN_ON(dev_priv->pm.irqs_disabled))
140 return;
141
142 if ((dev_priv->irq_mask & mask) != 0) {
143 dev_priv->irq_mask &= ~mask;
144 I915_WRITE(DEIMR, dev_priv->irq_mask);
145 POSTING_READ(DEIMR);
146 }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 assert_spin_locked(&dev_priv->irq_lock);
153
154 if (WARN_ON(dev_priv->pm.irqs_disabled))
155 return;
156
157 if ((dev_priv->irq_mask & mask) != mask) {
158 dev_priv->irq_mask |= mask;
159 I915_WRITE(DEIMR, dev_priv->irq_mask);
160 POSTING_READ(DEIMR);
161 }
162 }
163
164 /**
165 * ilk_update_gt_irq - update GTIMR
166 * @dev_priv: driver private
167 * @interrupt_mask: mask of interrupt bits to update
168 * @enabled_irq_mask: mask of interrupt bits to enable
169 */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 uint32_t interrupt_mask,
172 uint32_t enabled_irq_mask)
173 {
174 assert_spin_locked(&dev_priv->irq_lock);
175
176 if (WARN_ON(dev_priv->pm.irqs_disabled))
177 return;
178
179 dev_priv->gt_irq_mask &= ~interrupt_mask;
180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 POSTING_READ(GTIMR);
183 }
184
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196 * snb_update_pm_irq - update GEN6_PMIMR
197 * @dev_priv: driver private
198 * @interrupt_mask: mask of interrupt bits to update
199 * @enabled_irq_mask: mask of interrupt bits to enable
200 */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 uint32_t interrupt_mask,
203 uint32_t enabled_irq_mask)
204 {
205 uint32_t new_val;
206
207 assert_spin_locked(&dev_priv->irq_lock);
208
209 if (WARN_ON(dev_priv->pm.irqs_disabled))
210 return;
211
212 new_val = dev_priv->pm_irq_mask;
213 new_val &= ~interrupt_mask;
214 new_val |= (~enabled_irq_mask & interrupt_mask);
215
216 if (new_val != dev_priv->pm_irq_mask) {
217 dev_priv->pm_irq_mask = new_val;
218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 POSTING_READ(GEN6_PMIMR);
220 }
221 }
222
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct intel_crtc *crtc;
237 enum pipe pipe;
238
239 assert_spin_locked(&dev_priv->irq_lock);
240
241 for_each_pipe(pipe) {
242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244 if (crtc->cpu_fifo_underrun_disabled)
245 return false;
246 }
247
248 return true;
249 }
250
251 static bool cpt_can_enable_serr_int(struct drm_device *dev)
252 {
253 struct drm_i915_private *dev_priv = dev->dev_private;
254 enum pipe pipe;
255 struct intel_crtc *crtc;
256
257 assert_spin_locked(&dev_priv->irq_lock);
258
259 for_each_pipe(pipe) {
260 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
261
262 if (crtc->pch_fifo_underrun_disabled)
263 return false;
264 }
265
266 return true;
267 }
268
269 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 u32 reg = PIPESTAT(pipe);
273 u32 pipestat = I915_READ(reg) & 0x7fff0000;
274
275 assert_spin_locked(&dev_priv->irq_lock);
276
277 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
278 POSTING_READ(reg);
279 }
280
281 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
282 enum pipe pipe, bool enable)
283 {
284 struct drm_i915_private *dev_priv = dev->dev_private;
285 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
286 DE_PIPEB_FIFO_UNDERRUN;
287
288 if (enable)
289 ironlake_enable_display_irq(dev_priv, bit);
290 else
291 ironlake_disable_display_irq(dev_priv, bit);
292 }
293
294 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
295 enum pipe pipe, bool enable)
296 {
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 if (enable) {
299 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
300
301 if (!ivb_can_enable_err_int(dev))
302 return;
303
304 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
305 } else {
306 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
307
308 /* Change the state _after_ we've read out the current one. */
309 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
310
311 if (!was_enabled &&
312 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
313 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
314 pipe_name(pipe));
315 }
316 }
317 }
318
319 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum pipe pipe, bool enable)
321 {
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 assert_spin_locked(&dev_priv->irq_lock);
325
326 if (enable)
327 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
328 else
329 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
330 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
331 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
332 }
333
334 /**
335 * ibx_display_interrupt_update - update SDEIMR
336 * @dev_priv: driver private
337 * @interrupt_mask: mask of interrupt bits to update
338 * @enabled_irq_mask: mask of interrupt bits to enable
339 */
340 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
341 uint32_t interrupt_mask,
342 uint32_t enabled_irq_mask)
343 {
344 uint32_t sdeimr = I915_READ(SDEIMR);
345 sdeimr &= ~interrupt_mask;
346 sdeimr |= (~enabled_irq_mask & interrupt_mask);
347
348 assert_spin_locked(&dev_priv->irq_lock);
349
350 if (WARN_ON(dev_priv->pm.irqs_disabled))
351 return;
352
353 I915_WRITE(SDEIMR, sdeimr);
354 POSTING_READ(SDEIMR);
355 }
356 #define ibx_enable_display_interrupt(dev_priv, bits) \
357 ibx_display_interrupt_update((dev_priv), (bits), (bits))
358 #define ibx_disable_display_interrupt(dev_priv, bits) \
359 ibx_display_interrupt_update((dev_priv), (bits), 0)
360
361 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
362 enum transcoder pch_transcoder,
363 bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
367 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
368
369 if (enable)
370 ibx_enable_display_interrupt(dev_priv, bit);
371 else
372 ibx_disable_display_interrupt(dev_priv, bit);
373 }
374
375 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
376 enum transcoder pch_transcoder,
377 bool enable)
378 {
379 struct drm_i915_private *dev_priv = dev->dev_private;
380
381 if (enable) {
382 I915_WRITE(SERR_INT,
383 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
384
385 if (!cpt_can_enable_serr_int(dev))
386 return;
387
388 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
389 } else {
390 uint32_t tmp = I915_READ(SERR_INT);
391 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
392
393 /* Change the state _after_ we've read out the current one. */
394 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
395
396 if (!was_enabled &&
397 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
398 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
399 transcoder_name(pch_transcoder));
400 }
401 }
402 }
403
404 /**
405 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
406 * @dev: drm device
407 * @pipe: pipe
408 * @enable: true if we want to report FIFO underrun errors, false otherwise
409 *
410 * This function makes us disable or enable CPU fifo underruns for a specific
411 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
412 * reporting for one pipe may also disable all the other CPU error interruts for
413 * the other pipes, due to the fact that there's just one interrupt mask/enable
414 * bit for all the pipes.
415 *
416 * Returns the previous state of underrun reporting.
417 */
418 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
419 enum pipe pipe, bool enable)
420 {
421 struct drm_i915_private *dev_priv = dev->dev_private;
422 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
424 bool ret;
425
426 assert_spin_locked(&dev_priv->irq_lock);
427
428 ret = !intel_crtc->cpu_fifo_underrun_disabled;
429
430 if (enable == ret)
431 goto done;
432
433 intel_crtc->cpu_fifo_underrun_disabled = !enable;
434
435 if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
436 i9xx_clear_fifo_underrun(dev, pipe);
437 else if (IS_GEN5(dev) || IS_GEN6(dev))
438 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
439 else if (IS_GEN7(dev))
440 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
441 else if (IS_GEN8(dev))
442 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
443
444 done:
445 return ret;
446 }
447
448 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
449 enum pipe pipe, bool enable)
450 {
451 struct drm_i915_private *dev_priv = dev->dev_private;
452 unsigned long flags;
453 bool ret;
454
455 spin_lock_irqsave(&dev_priv->irq_lock, flags);
456 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
457 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
458
459 return ret;
460 }
461
462 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
463 enum pipe pipe)
464 {
465 struct drm_i915_private *dev_priv = dev->dev_private;
466 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
468
469 return !intel_crtc->cpu_fifo_underrun_disabled;
470 }
471
472 /**
473 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
474 * @dev: drm device
475 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
476 * @enable: true if we want to report FIFO underrun errors, false otherwise
477 *
478 * This function makes us disable or enable PCH fifo underruns for a specific
479 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
480 * underrun reporting for one transcoder may also disable all the other PCH
481 * error interruts for the other transcoders, due to the fact that there's just
482 * one interrupt mask/enable bit for all the transcoders.
483 *
484 * Returns the previous state of underrun reporting.
485 */
486 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
487 enum transcoder pch_transcoder,
488 bool enable)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 unsigned long flags;
494 bool ret;
495
496 /*
497 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
498 * has only one pch transcoder A that all pipes can use. To avoid racy
499 * pch transcoder -> pipe lookups from interrupt code simply store the
500 * underrun statistics in crtc A. Since we never expose this anywhere
501 * nor use it outside of the fifo underrun code here using the "wrong"
502 * crtc on LPT won't cause issues.
503 */
504
505 spin_lock_irqsave(&dev_priv->irq_lock, flags);
506
507 ret = !intel_crtc->pch_fifo_underrun_disabled;
508
509 if (enable == ret)
510 goto done;
511
512 intel_crtc->pch_fifo_underrun_disabled = !enable;
513
514 if (HAS_PCH_IBX(dev))
515 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
516 else
517 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
518
519 done:
520 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
521 return ret;
522 }
523
524
525 static void
526 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
527 u32 enable_mask, u32 status_mask)
528 {
529 u32 reg = PIPESTAT(pipe);
530 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
531
532 assert_spin_locked(&dev_priv->irq_lock);
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == enable_mask)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
544
545 /* Enable the interrupt, clear any pending status */
546 pipestat |= enable_mask | status_mask;
547 I915_WRITE(reg, pipestat);
548 POSTING_READ(reg);
549 }
550
551 static void
552 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
553 u32 enable_mask, u32 status_mask)
554 {
555 u32 reg = PIPESTAT(pipe);
556 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
557
558 assert_spin_locked(&dev_priv->irq_lock);
559
560 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
561 status_mask & ~PIPESTAT_INT_STATUS_MASK,
562 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
563 pipe_name(pipe), enable_mask, status_mask))
564 return;
565
566 if ((pipestat & enable_mask) == 0)
567 return;
568
569 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
570
571 pipestat &= ~enable_mask;
572 I915_WRITE(reg, pipestat);
573 POSTING_READ(reg);
574 }
575
576 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
577 {
578 u32 enable_mask = status_mask << 16;
579
580 /*
581 * On pipe A we don't support the PSR interrupt yet, on pipe B the
582 * same bit MBZ.
583 */
584 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
585 return 0;
586
587 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
588 SPRITE0_FLIP_DONE_INT_EN_VLV |
589 SPRITE1_FLIP_DONE_INT_EN_VLV);
590 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
591 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
592 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
593 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
594
595 return enable_mask;
596 }
597
598 void
599 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
600 u32 status_mask)
601 {
602 u32 enable_mask;
603
604 if (IS_VALLEYVIEW(dev_priv->dev))
605 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
606 status_mask);
607 else
608 enable_mask = status_mask << 16;
609 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
610 }
611
612 void
613 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
614 u32 status_mask)
615 {
616 u32 enable_mask;
617
618 if (IS_VALLEYVIEW(dev_priv->dev))
619 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
620 status_mask);
621 else
622 enable_mask = status_mask << 16;
623 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
624 }
625
626 /**
627 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
628 */
629 static void i915_enable_asle_pipestat(struct drm_device *dev)
630 {
631 struct drm_i915_private *dev_priv = dev->dev_private;
632 unsigned long irqflags;
633
634 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
635 return;
636
637 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
638
639 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
640 if (INTEL_INFO(dev)->gen >= 4)
641 i915_enable_pipestat(dev_priv, PIPE_A,
642 PIPE_LEGACY_BLC_EVENT_STATUS);
643
644 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
645 }
646
647 /**
648 * i915_pipe_enabled - check if a pipe is enabled
649 * @dev: DRM device
650 * @pipe: pipe to check
651 *
652 * Reading certain registers when the pipe is disabled can hang the chip.
653 * Use this routine to make sure the PLL is running and the pipe is active
654 * before reading such registers if unsure.
655 */
656 static int
657 i915_pipe_enabled(struct drm_device *dev, int pipe)
658 {
659 struct drm_i915_private *dev_priv = dev->dev_private;
660
661 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
662 /* Locking is horribly broken here, but whatever. */
663 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
665
666 return intel_crtc->active;
667 } else {
668 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
669 }
670 }
671
672 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
673 {
674 /* Gen2 doesn't have a hardware frame counter */
675 return 0;
676 }
677
678 /* Called from drm generic code, passed a 'crtc', which
679 * we use as a pipe index
680 */
681 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
682 {
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 unsigned long high_frame;
685 unsigned long low_frame;
686 u32 high1, high2, low, pixel, vbl_start;
687
688 if (!i915_pipe_enabled(dev, pipe)) {
689 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
690 "pipe %c\n", pipe_name(pipe));
691 return 0;
692 }
693
694 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
695 struct intel_crtc *intel_crtc =
696 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
697 const struct drm_display_mode *mode =
698 &intel_crtc->config.adjusted_mode;
699
700 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
701 } else {
702 enum transcoder cpu_transcoder = (enum transcoder) pipe;
703 u32 htotal;
704
705 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
706 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
707
708 vbl_start *= htotal;
709 }
710
711 high_frame = PIPEFRAME(pipe);
712 low_frame = PIPEFRAMEPIXEL(pipe);
713
714 /*
715 * High & low register fields aren't synchronized, so make sure
716 * we get a low value that's stable across two reads of the high
717 * register.
718 */
719 do {
720 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
721 low = I915_READ(low_frame);
722 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
723 } while (high1 != high2);
724
725 high1 >>= PIPE_FRAME_HIGH_SHIFT;
726 pixel = low & PIPE_PIXEL_MASK;
727 low >>= PIPE_FRAME_LOW_SHIFT;
728
729 /*
730 * The frame counter increments at beginning of active.
731 * Cook up a vblank counter by also checking the pixel
732 * counter against vblank start.
733 */
734 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
735 }
736
737 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
738 {
739 struct drm_i915_private *dev_priv = dev->dev_private;
740 int reg = PIPE_FRMCOUNT_GM45(pipe);
741
742 if (!i915_pipe_enabled(dev, pipe)) {
743 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
744 "pipe %c\n", pipe_name(pipe));
745 return 0;
746 }
747
748 return I915_READ(reg);
749 }
750
751 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
752 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
753
754 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
755 {
756 struct drm_device *dev = crtc->base.dev;
757 struct drm_i915_private *dev_priv = dev->dev_private;
758 const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
759 enum pipe pipe = crtc->pipe;
760 int vtotal = mode->crtc_vtotal;
761 int position;
762
763 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
764 vtotal /= 2;
765
766 if (IS_GEN2(dev))
767 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
768 else
769 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
770
771 /*
772 * Scanline counter increments at leading edge of hsync, and
773 * it starts counting from vtotal-1 on the first active line.
774 * That means the scanline counter value is always one less
775 * than what we would expect. Ie. just after start of vblank,
776 * which also occurs at start of hsync (on the last active line),
777 * the scanline counter will read vblank_start-1.
778 */
779 return (position + 1) % vtotal;
780 }
781
782 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
783 unsigned int flags, int *vpos, int *hpos,
784 ktime_t *stime, ktime_t *etime)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
788 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
789 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
790 int position;
791 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
792 bool in_vbl = true;
793 int ret = 0;
794 unsigned long irqflags;
795
796 if (!intel_crtc->active) {
797 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
798 "pipe %c\n", pipe_name(pipe));
799 return 0;
800 }
801
802 htotal = mode->crtc_htotal;
803 hsync_start = mode->crtc_hsync_start;
804 vtotal = mode->crtc_vtotal;
805 vbl_start = mode->crtc_vblank_start;
806 vbl_end = mode->crtc_vblank_end;
807
808 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
809 vbl_start = DIV_ROUND_UP(vbl_start, 2);
810 vbl_end /= 2;
811 vtotal /= 2;
812 }
813
814 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
815
816 /*
817 * Lock uncore.lock, as we will do multiple timing critical raw
818 * register reads, potentially with preemption disabled, so the
819 * following code must not block on uncore.lock.
820 */
821 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
822
823 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
824
825 /* Get optional system timestamp before query. */
826 if (stime)
827 *stime = ktime_get();
828
829 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
830 /* No obvious pixelcount register. Only query vertical
831 * scanout position from Display scan line register.
832 */
833 position = __intel_get_crtc_scanline(intel_crtc);
834 } else {
835 /* Have access to pixelcount since start of frame.
836 * We can split this into vertical and horizontal
837 * scanout position.
838 */
839 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
840
841 /* convert to pixel counts */
842 vbl_start *= htotal;
843 vbl_end *= htotal;
844 vtotal *= htotal;
845
846 /*
847 * Start of vblank interrupt is triggered at start of hsync,
848 * just prior to the first active line of vblank. However we
849 * consider lines to start at the leading edge of horizontal
850 * active. So, should we get here before we've crossed into
851 * the horizontal active of the first line in vblank, we would
852 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
853 * always add htotal-hsync_start to the current pixel position.
854 */
855 position = (position + htotal - hsync_start) % vtotal;
856 }
857
858 /* Get optional system timestamp after query. */
859 if (etime)
860 *etime = ktime_get();
861
862 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
863
864 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
865
866 in_vbl = position >= vbl_start && position < vbl_end;
867
868 /*
869 * While in vblank, position will be negative
870 * counting up towards 0 at vbl_end. And outside
871 * vblank, position will be positive counting
872 * up since vbl_end.
873 */
874 if (position >= vbl_start)
875 position -= vbl_end;
876 else
877 position += vtotal - vbl_end;
878
879 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
880 *vpos = position;
881 *hpos = 0;
882 } else {
883 *vpos = position / htotal;
884 *hpos = position - (*vpos * htotal);
885 }
886
887 /* In vblank? */
888 if (in_vbl)
889 ret |= DRM_SCANOUTPOS_INVBL;
890
891 return ret;
892 }
893
894 int intel_get_crtc_scanline(struct intel_crtc *crtc)
895 {
896 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
897 unsigned long irqflags;
898 int position;
899
900 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
901 position = __intel_get_crtc_scanline(crtc);
902 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
903
904 return position;
905 }
906
907 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
908 int *max_error,
909 struct timeval *vblank_time,
910 unsigned flags)
911 {
912 struct drm_crtc *crtc;
913
914 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
915 DRM_ERROR("Invalid crtc %d\n", pipe);
916 return -EINVAL;
917 }
918
919 /* Get drm_crtc to timestamp: */
920 crtc = intel_get_crtc_for_pipe(dev, pipe);
921 if (crtc == NULL) {
922 DRM_ERROR("Invalid crtc %d\n", pipe);
923 return -EINVAL;
924 }
925
926 if (!crtc->enabled) {
927 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
928 return -EBUSY;
929 }
930
931 /* Helper routine in DRM core does all the work: */
932 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
933 vblank_time, flags,
934 crtc,
935 &to_intel_crtc(crtc)->config.adjusted_mode);
936 }
937
938 static bool intel_hpd_irq_event(struct drm_device *dev,
939 struct drm_connector *connector)
940 {
941 enum drm_connector_status old_status;
942
943 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
944 old_status = connector->status;
945
946 connector->status = connector->funcs->detect(connector, false);
947 if (old_status == connector->status)
948 return false;
949
950 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
951 connector->base.id,
952 drm_get_connector_name(connector),
953 drm_get_connector_status_name(old_status),
954 drm_get_connector_status_name(connector->status));
955
956 return true;
957 }
958
959 /*
960 * Handle hotplug events outside the interrupt handler proper.
961 */
962 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
963
964 static void i915_hotplug_work_func(struct work_struct *work)
965 {
966 struct drm_i915_private *dev_priv =
967 container_of(work, struct drm_i915_private, hotplug_work);
968 struct drm_device *dev = dev_priv->dev;
969 struct drm_mode_config *mode_config = &dev->mode_config;
970 struct intel_connector *intel_connector;
971 struct intel_encoder *intel_encoder;
972 struct drm_connector *connector;
973 unsigned long irqflags;
974 bool hpd_disabled = false;
975 bool changed = false;
976 u32 hpd_event_bits;
977
978 /* HPD irq before everything is fully set up. */
979 if (!dev_priv->enable_hotplug_processing)
980 return;
981
982 mutex_lock(&mode_config->mutex);
983 DRM_DEBUG_KMS("running encoder hotplug functions\n");
984
985 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
986
987 hpd_event_bits = dev_priv->hpd_event_bits;
988 dev_priv->hpd_event_bits = 0;
989 list_for_each_entry(connector, &mode_config->connector_list, head) {
990 intel_connector = to_intel_connector(connector);
991 intel_encoder = intel_connector->encoder;
992 if (intel_encoder->hpd_pin > HPD_NONE &&
993 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
994 connector->polled == DRM_CONNECTOR_POLL_HPD) {
995 DRM_INFO("HPD interrupt storm detected on connector %s: "
996 "switching from hotplug detection to polling\n",
997 drm_get_connector_name(connector));
998 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
999 connector->polled = DRM_CONNECTOR_POLL_CONNECT
1000 | DRM_CONNECTOR_POLL_DISCONNECT;
1001 hpd_disabled = true;
1002 }
1003 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1004 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1005 drm_get_connector_name(connector), intel_encoder->hpd_pin);
1006 }
1007 }
1008 /* if there were no outputs to poll, poll was disabled,
1009 * therefore make sure it's enabled when disabling HPD on
1010 * some connectors */
1011 if (hpd_disabled) {
1012 drm_kms_helper_poll_enable(dev);
1013 mod_timer(&dev_priv->hotplug_reenable_timer,
1014 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1015 }
1016
1017 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1018
1019 list_for_each_entry(connector, &mode_config->connector_list, head) {
1020 intel_connector = to_intel_connector(connector);
1021 intel_encoder = intel_connector->encoder;
1022 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1023 if (intel_encoder->hot_plug)
1024 intel_encoder->hot_plug(intel_encoder);
1025 if (intel_hpd_irq_event(dev, connector))
1026 changed = true;
1027 }
1028 }
1029 mutex_unlock(&mode_config->mutex);
1030
1031 if (changed)
1032 drm_kms_helper_hotplug_event(dev);
1033 }
1034
1035 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1036 {
1037 del_timer_sync(&dev_priv->hotplug_reenable_timer);
1038 }
1039
1040 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1041 {
1042 struct drm_i915_private *dev_priv = dev->dev_private;
1043 u32 busy_up, busy_down, max_avg, min_avg;
1044 u8 new_delay;
1045
1046 spin_lock(&mchdev_lock);
1047
1048 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1049
1050 new_delay = dev_priv->ips.cur_delay;
1051
1052 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1053 busy_up = I915_READ(RCPREVBSYTUPAVG);
1054 busy_down = I915_READ(RCPREVBSYTDNAVG);
1055 max_avg = I915_READ(RCBMAXAVG);
1056 min_avg = I915_READ(RCBMINAVG);
1057
1058 /* Handle RCS change request from hw */
1059 if (busy_up > max_avg) {
1060 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1061 new_delay = dev_priv->ips.cur_delay - 1;
1062 if (new_delay < dev_priv->ips.max_delay)
1063 new_delay = dev_priv->ips.max_delay;
1064 } else if (busy_down < min_avg) {
1065 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1066 new_delay = dev_priv->ips.cur_delay + 1;
1067 if (new_delay > dev_priv->ips.min_delay)
1068 new_delay = dev_priv->ips.min_delay;
1069 }
1070
1071 if (ironlake_set_drps(dev, new_delay))
1072 dev_priv->ips.cur_delay = new_delay;
1073
1074 spin_unlock(&mchdev_lock);
1075
1076 return;
1077 }
1078
1079 static void notify_ring(struct drm_device *dev,
1080 struct intel_ring_buffer *ring)
1081 {
1082 if (ring->obj == NULL)
1083 return;
1084
1085 trace_i915_gem_request_complete(ring);
1086
1087 wake_up_all(&ring->irq_queue);
1088 i915_queue_hangcheck(dev);
1089 }
1090
1091 static void gen6_pm_rps_work(struct work_struct *work)
1092 {
1093 struct drm_i915_private *dev_priv =
1094 container_of(work, struct drm_i915_private, rps.work);
1095 u32 pm_iir;
1096 int new_delay, adj;
1097
1098 spin_lock_irq(&dev_priv->irq_lock);
1099 pm_iir = dev_priv->rps.pm_iir;
1100 dev_priv->rps.pm_iir = 0;
1101 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1102 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104
1105 /* Make sure we didn't queue anything we're not going to process. */
1106 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1107
1108 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1109 return;
1110
1111 mutex_lock(&dev_priv->rps.hw_lock);
1112
1113 adj = dev_priv->rps.last_adj;
1114 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1115 if (adj > 0)
1116 adj *= 2;
1117 else
1118 adj = 1;
1119 new_delay = dev_priv->rps.cur_freq + adj;
1120
1121 /*
1122 * For better performance, jump directly
1123 * to RPe if we're below it.
1124 */
1125 if (new_delay < dev_priv->rps.efficient_freq)
1126 new_delay = dev_priv->rps.efficient_freq;
1127 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1128 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1129 new_delay = dev_priv->rps.efficient_freq;
1130 else
1131 new_delay = dev_priv->rps.min_freq_softlimit;
1132 adj = 0;
1133 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1134 if (adj < 0)
1135 adj *= 2;
1136 else
1137 adj = -1;
1138 new_delay = dev_priv->rps.cur_freq + adj;
1139 } else { /* unknown event */
1140 new_delay = dev_priv->rps.cur_freq;
1141 }
1142
1143 /* sysfs frequency interfaces may have snuck in while servicing the
1144 * interrupt
1145 */
1146 new_delay = clamp_t(int, new_delay,
1147 dev_priv->rps.min_freq_softlimit,
1148 dev_priv->rps.max_freq_softlimit);
1149
1150 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1151
1152 if (IS_VALLEYVIEW(dev_priv->dev))
1153 valleyview_set_rps(dev_priv->dev, new_delay);
1154 else
1155 gen6_set_rps(dev_priv->dev, new_delay);
1156
1157 mutex_unlock(&dev_priv->rps.hw_lock);
1158 }
1159
1160
1161 /**
1162 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1163 * occurred.
1164 * @work: workqueue struct
1165 *
1166 * Doesn't actually do anything except notify userspace. As a consequence of
1167 * this event, userspace should try to remap the bad rows since statistically
1168 * it is likely the same row is more likely to go bad again.
1169 */
1170 static void ivybridge_parity_work(struct work_struct *work)
1171 {
1172 struct drm_i915_private *dev_priv =
1173 container_of(work, struct drm_i915_private, l3_parity.error_work);
1174 u32 error_status, row, bank, subbank;
1175 char *parity_event[6];
1176 uint32_t misccpctl;
1177 unsigned long flags;
1178 uint8_t slice = 0;
1179
1180 /* We must turn off DOP level clock gating to access the L3 registers.
1181 * In order to prevent a get/put style interface, acquire struct mutex
1182 * any time we access those registers.
1183 */
1184 mutex_lock(&dev_priv->dev->struct_mutex);
1185
1186 /* If we've screwed up tracking, just let the interrupt fire again */
1187 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1188 goto out;
1189
1190 misccpctl = I915_READ(GEN7_MISCCPCTL);
1191 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1192 POSTING_READ(GEN7_MISCCPCTL);
1193
1194 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1195 u32 reg;
1196
1197 slice--;
1198 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1199 break;
1200
1201 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1202
1203 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1204
1205 error_status = I915_READ(reg);
1206 row = GEN7_PARITY_ERROR_ROW(error_status);
1207 bank = GEN7_PARITY_ERROR_BANK(error_status);
1208 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1209
1210 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1211 POSTING_READ(reg);
1212
1213 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1214 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1215 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1216 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1217 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1218 parity_event[5] = NULL;
1219
1220 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1221 KOBJ_CHANGE, parity_event);
1222
1223 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1224 slice, row, bank, subbank);
1225
1226 kfree(parity_event[4]);
1227 kfree(parity_event[3]);
1228 kfree(parity_event[2]);
1229 kfree(parity_event[1]);
1230 }
1231
1232 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1233
1234 out:
1235 WARN_ON(dev_priv->l3_parity.which_slice);
1236 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1237 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1238 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1239
1240 mutex_unlock(&dev_priv->dev->struct_mutex);
1241 }
1242
1243 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1244 {
1245 struct drm_i915_private *dev_priv = dev->dev_private;
1246
1247 if (!HAS_L3_DPF(dev))
1248 return;
1249
1250 spin_lock(&dev_priv->irq_lock);
1251 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1252 spin_unlock(&dev_priv->irq_lock);
1253
1254 iir &= GT_PARITY_ERROR(dev);
1255 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1256 dev_priv->l3_parity.which_slice |= 1 << 1;
1257
1258 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1259 dev_priv->l3_parity.which_slice |= 1 << 0;
1260
1261 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1262 }
1263
1264 static void ilk_gt_irq_handler(struct drm_device *dev,
1265 struct drm_i915_private *dev_priv,
1266 u32 gt_iir)
1267 {
1268 if (gt_iir &
1269 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1270 notify_ring(dev, &dev_priv->ring[RCS]);
1271 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1272 notify_ring(dev, &dev_priv->ring[VCS]);
1273 }
1274
1275 static void snb_gt_irq_handler(struct drm_device *dev,
1276 struct drm_i915_private *dev_priv,
1277 u32 gt_iir)
1278 {
1279
1280 if (gt_iir &
1281 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1282 notify_ring(dev, &dev_priv->ring[RCS]);
1283 if (gt_iir & GT_BSD_USER_INTERRUPT)
1284 notify_ring(dev, &dev_priv->ring[VCS]);
1285 if (gt_iir & GT_BLT_USER_INTERRUPT)
1286 notify_ring(dev, &dev_priv->ring[BCS]);
1287
1288 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1289 GT_BSD_CS_ERROR_INTERRUPT |
1290 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1291 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1292 gt_iir);
1293 }
1294
1295 if (gt_iir & GT_PARITY_ERROR(dev))
1296 ivybridge_parity_error_irq_handler(dev, gt_iir);
1297 }
1298
1299 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 master_ctl)
1302 {
1303 u32 rcs, bcs, vcs;
1304 uint32_t tmp = 0;
1305 irqreturn_t ret = IRQ_NONE;
1306
1307 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1308 tmp = I915_READ(GEN8_GT_IIR(0));
1309 if (tmp) {
1310 ret = IRQ_HANDLED;
1311 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1312 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1313 if (rcs & GT_RENDER_USER_INTERRUPT)
1314 notify_ring(dev, &dev_priv->ring[RCS]);
1315 if (bcs & GT_RENDER_USER_INTERRUPT)
1316 notify_ring(dev, &dev_priv->ring[BCS]);
1317 I915_WRITE(GEN8_GT_IIR(0), tmp);
1318 } else
1319 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1320 }
1321
1322 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1323 tmp = I915_READ(GEN8_GT_IIR(1));
1324 if (tmp) {
1325 ret = IRQ_HANDLED;
1326 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1327 if (vcs & GT_RENDER_USER_INTERRUPT)
1328 notify_ring(dev, &dev_priv->ring[VCS]);
1329 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1330 if (vcs & GT_RENDER_USER_INTERRUPT)
1331 notify_ring(dev, &dev_priv->ring[VCS2]);
1332 I915_WRITE(GEN8_GT_IIR(1), tmp);
1333 } else
1334 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1335 }
1336
1337 if (master_ctl & GEN8_GT_VECS_IRQ) {
1338 tmp = I915_READ(GEN8_GT_IIR(3));
1339 if (tmp) {
1340 ret = IRQ_HANDLED;
1341 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1342 if (vcs & GT_RENDER_USER_INTERRUPT)
1343 notify_ring(dev, &dev_priv->ring[VECS]);
1344 I915_WRITE(GEN8_GT_IIR(3), tmp);
1345 } else
1346 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1347 }
1348
1349 return ret;
1350 }
1351
1352 #define HPD_STORM_DETECT_PERIOD 1000
1353 #define HPD_STORM_THRESHOLD 5
1354
1355 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1356 u32 hotplug_trigger,
1357 const u32 *hpd)
1358 {
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 int i;
1361 bool storm_detected = false;
1362
1363 if (!hotplug_trigger)
1364 return;
1365
1366 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1367 hotplug_trigger);
1368
1369 spin_lock(&dev_priv->irq_lock);
1370 for (i = 1; i < HPD_NUM_PINS; i++) {
1371
1372 if (hpd[i] & hotplug_trigger &&
1373 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1374 /*
1375 * On GMCH platforms the interrupt mask bits only
1376 * prevent irq generation, not the setting of the
1377 * hotplug bits itself. So only WARN about unexpected
1378 * interrupts on saner platforms.
1379 */
1380 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1381 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1382 hotplug_trigger, i, hpd[i]);
1383
1384 continue;
1385 }
1386
1387 if (!(hpd[i] & hotplug_trigger) ||
1388 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1389 continue;
1390
1391 dev_priv->hpd_event_bits |= (1 << i);
1392 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1393 dev_priv->hpd_stats[i].hpd_last_jiffies
1394 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1395 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1396 dev_priv->hpd_stats[i].hpd_cnt = 0;
1397 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1398 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1399 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1400 dev_priv->hpd_event_bits &= ~(1 << i);
1401 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1402 storm_detected = true;
1403 } else {
1404 dev_priv->hpd_stats[i].hpd_cnt++;
1405 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1406 dev_priv->hpd_stats[i].hpd_cnt);
1407 }
1408 }
1409
1410 if (storm_detected)
1411 dev_priv->display.hpd_irq_setup(dev);
1412 spin_unlock(&dev_priv->irq_lock);
1413
1414 /*
1415 * Our hotplug handler can grab modeset locks (by calling down into the
1416 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1417 * queue for otherwise the flush_work in the pageflip code will
1418 * deadlock.
1419 */
1420 schedule_work(&dev_priv->hotplug_work);
1421 }
1422
1423 static void gmbus_irq_handler(struct drm_device *dev)
1424 {
1425 struct drm_i915_private *dev_priv = dev->dev_private;
1426
1427 wake_up_all(&dev_priv->gmbus_wait_queue);
1428 }
1429
1430 static void dp_aux_irq_handler(struct drm_device *dev)
1431 {
1432 struct drm_i915_private *dev_priv = dev->dev_private;
1433
1434 wake_up_all(&dev_priv->gmbus_wait_queue);
1435 }
1436
1437 #if defined(CONFIG_DEBUG_FS)
1438 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1439 uint32_t crc0, uint32_t crc1,
1440 uint32_t crc2, uint32_t crc3,
1441 uint32_t crc4)
1442 {
1443 struct drm_i915_private *dev_priv = dev->dev_private;
1444 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1445 struct intel_pipe_crc_entry *entry;
1446 int head, tail;
1447
1448 spin_lock(&pipe_crc->lock);
1449
1450 if (!pipe_crc->entries) {
1451 spin_unlock(&pipe_crc->lock);
1452 DRM_ERROR("spurious interrupt\n");
1453 return;
1454 }
1455
1456 head = pipe_crc->head;
1457 tail = pipe_crc->tail;
1458
1459 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1460 spin_unlock(&pipe_crc->lock);
1461 DRM_ERROR("CRC buffer overflowing\n");
1462 return;
1463 }
1464
1465 entry = &pipe_crc->entries[head];
1466
1467 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1468 entry->crc[0] = crc0;
1469 entry->crc[1] = crc1;
1470 entry->crc[2] = crc2;
1471 entry->crc[3] = crc3;
1472 entry->crc[4] = crc4;
1473
1474 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1475 pipe_crc->head = head;
1476
1477 spin_unlock(&pipe_crc->lock);
1478
1479 wake_up_interruptible(&pipe_crc->wq);
1480 }
1481 #else
1482 static inline void
1483 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1484 uint32_t crc0, uint32_t crc1,
1485 uint32_t crc2, uint32_t crc3,
1486 uint32_t crc4) {}
1487 #endif
1488
1489
1490 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1491 {
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494 display_pipe_crc_irq_handler(dev, pipe,
1495 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1496 0, 0, 0, 0);
1497 }
1498
1499 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1500 {
1501 struct drm_i915_private *dev_priv = dev->dev_private;
1502
1503 display_pipe_crc_irq_handler(dev, pipe,
1504 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1505 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1506 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1507 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1508 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1509 }
1510
1511 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1512 {
1513 struct drm_i915_private *dev_priv = dev->dev_private;
1514 uint32_t res1, res2;
1515
1516 if (INTEL_INFO(dev)->gen >= 3)
1517 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1518 else
1519 res1 = 0;
1520
1521 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1522 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1523 else
1524 res2 = 0;
1525
1526 display_pipe_crc_irq_handler(dev, pipe,
1527 I915_READ(PIPE_CRC_RES_RED(pipe)),
1528 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1529 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1530 res1, res2);
1531 }
1532
1533 /* The RPS events need forcewake, so we add them to a work queue and mask their
1534 * IMR bits until the work is done. Other interrupts can be processed without
1535 * the work queue. */
1536 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1537 {
1538 if (pm_iir & dev_priv->pm_rps_events) {
1539 spin_lock(&dev_priv->irq_lock);
1540 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1541 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1542 spin_unlock(&dev_priv->irq_lock);
1543
1544 queue_work(dev_priv->wq, &dev_priv->rps.work);
1545 }
1546
1547 if (HAS_VEBOX(dev_priv->dev)) {
1548 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1549 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1550
1551 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1552 i915_handle_error(dev_priv->dev, false,
1553 "VEBOX CS error interrupt 0x%08x",
1554 pm_iir);
1555 }
1556 }
1557 }
1558
1559 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1560 {
1561 struct intel_crtc *crtc;
1562
1563 if (!drm_handle_vblank(dev, pipe))
1564 return false;
1565
1566 crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
1567 wake_up(&crtc->vbl_wait);
1568
1569 return true;
1570 }
1571
1572 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1573 {
1574 struct drm_i915_private *dev_priv = dev->dev_private;
1575 u32 pipe_stats[I915_MAX_PIPES] = { };
1576 int pipe;
1577
1578 spin_lock(&dev_priv->irq_lock);
1579 for_each_pipe(pipe) {
1580 int reg;
1581 u32 mask, iir_bit = 0;
1582
1583 /*
1584 * PIPESTAT bits get signalled even when the interrupt is
1585 * disabled with the mask bits, and some of the status bits do
1586 * not generate interrupts at all (like the underrun bit). Hence
1587 * we need to be careful that we only handle what we want to
1588 * handle.
1589 */
1590 mask = 0;
1591 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1592 mask |= PIPE_FIFO_UNDERRUN_STATUS;
1593
1594 switch (pipe) {
1595 case PIPE_A:
1596 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1597 break;
1598 case PIPE_B:
1599 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1600 break;
1601 }
1602 if (iir & iir_bit)
1603 mask |= dev_priv->pipestat_irq_mask[pipe];
1604
1605 if (!mask)
1606 continue;
1607
1608 reg = PIPESTAT(pipe);
1609 mask |= PIPESTAT_INT_ENABLE_MASK;
1610 pipe_stats[pipe] = I915_READ(reg) & mask;
1611
1612 /*
1613 * Clear the PIPE*STAT regs before the IIR
1614 */
1615 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1616 PIPESTAT_INT_STATUS_MASK))
1617 I915_WRITE(reg, pipe_stats[pipe]);
1618 }
1619 spin_unlock(&dev_priv->irq_lock);
1620
1621 for_each_pipe(pipe) {
1622 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1623 intel_pipe_handle_vblank(dev, pipe);
1624
1625 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1626 intel_prepare_page_flip(dev, pipe);
1627 intel_finish_page_flip(dev, pipe);
1628 }
1629
1630 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1631 i9xx_pipe_crc_irq_handler(dev, pipe);
1632
1633 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1634 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1635 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1636 }
1637
1638 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1639 gmbus_irq_handler(dev);
1640 }
1641
1642 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1643 {
1644 struct drm_i915_private *dev_priv = dev->dev_private;
1645 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1646
1647 if (IS_G4X(dev)) {
1648 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1649
1650 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1651 } else {
1652 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1653
1654 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1655 }
1656
1657 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1658 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1659 dp_aux_irq_handler(dev);
1660
1661 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1662 /*
1663 * Make sure hotplug status is cleared before we clear IIR, or else we
1664 * may miss hotplug events.
1665 */
1666 POSTING_READ(PORT_HOTPLUG_STAT);
1667 }
1668
1669 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1670 {
1671 struct drm_device *dev = (struct drm_device *) arg;
1672 struct drm_i915_private *dev_priv = dev->dev_private;
1673 u32 iir, gt_iir, pm_iir;
1674 irqreturn_t ret = IRQ_NONE;
1675
1676 while (true) {
1677 iir = I915_READ(VLV_IIR);
1678 gt_iir = I915_READ(GTIIR);
1679 pm_iir = I915_READ(GEN6_PMIIR);
1680
1681 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1682 goto out;
1683
1684 ret = IRQ_HANDLED;
1685
1686 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1687
1688 valleyview_pipestat_irq_handler(dev, iir);
1689
1690 /* Consume port. Then clear IIR or we'll miss events */
1691 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1692 i9xx_hpd_irq_handler(dev);
1693
1694 if (pm_iir)
1695 gen6_rps_irq_handler(dev_priv, pm_iir);
1696
1697 I915_WRITE(GTIIR, gt_iir);
1698 I915_WRITE(GEN6_PMIIR, pm_iir);
1699 I915_WRITE(VLV_IIR, iir);
1700 }
1701
1702 out:
1703 return ret;
1704 }
1705
1706 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1707 {
1708 struct drm_i915_private *dev_priv = dev->dev_private;
1709 int pipe;
1710 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1711
1712 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1713
1714 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1715 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1716 SDE_AUDIO_POWER_SHIFT);
1717 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1718 port_name(port));
1719 }
1720
1721 if (pch_iir & SDE_AUX_MASK)
1722 dp_aux_irq_handler(dev);
1723
1724 if (pch_iir & SDE_GMBUS)
1725 gmbus_irq_handler(dev);
1726
1727 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1728 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1729
1730 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1731 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1732
1733 if (pch_iir & SDE_POISON)
1734 DRM_ERROR("PCH poison interrupt\n");
1735
1736 if (pch_iir & SDE_FDI_MASK)
1737 for_each_pipe(pipe)
1738 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1739 pipe_name(pipe),
1740 I915_READ(FDI_RX_IIR(pipe)));
1741
1742 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1743 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1744
1745 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1746 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1747
1748 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1749 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1750 false))
1751 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1752
1753 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1754 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1755 false))
1756 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1757 }
1758
1759 static void ivb_err_int_handler(struct drm_device *dev)
1760 {
1761 struct drm_i915_private *dev_priv = dev->dev_private;
1762 u32 err_int = I915_READ(GEN7_ERR_INT);
1763 enum pipe pipe;
1764
1765 if (err_int & ERR_INT_POISON)
1766 DRM_ERROR("Poison interrupt\n");
1767
1768 for_each_pipe(pipe) {
1769 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1770 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1771 false))
1772 DRM_ERROR("Pipe %c FIFO underrun\n",
1773 pipe_name(pipe));
1774 }
1775
1776 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1777 if (IS_IVYBRIDGE(dev))
1778 ivb_pipe_crc_irq_handler(dev, pipe);
1779 else
1780 hsw_pipe_crc_irq_handler(dev, pipe);
1781 }
1782 }
1783
1784 I915_WRITE(GEN7_ERR_INT, err_int);
1785 }
1786
1787 static void cpt_serr_int_handler(struct drm_device *dev)
1788 {
1789 struct drm_i915_private *dev_priv = dev->dev_private;
1790 u32 serr_int = I915_READ(SERR_INT);
1791
1792 if (serr_int & SERR_INT_POISON)
1793 DRM_ERROR("PCH poison interrupt\n");
1794
1795 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1796 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1797 false))
1798 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1799
1800 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1801 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1802 false))
1803 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1804
1805 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1806 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1807 false))
1808 DRM_ERROR("PCH transcoder C FIFO underrun\n");
1809
1810 I915_WRITE(SERR_INT, serr_int);
1811 }
1812
1813 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1814 {
1815 struct drm_i915_private *dev_priv = dev->dev_private;
1816 int pipe;
1817 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1818
1819 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1820
1821 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1822 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1823 SDE_AUDIO_POWER_SHIFT_CPT);
1824 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1825 port_name(port));
1826 }
1827
1828 if (pch_iir & SDE_AUX_MASK_CPT)
1829 dp_aux_irq_handler(dev);
1830
1831 if (pch_iir & SDE_GMBUS_CPT)
1832 gmbus_irq_handler(dev);
1833
1834 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1835 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1836
1837 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1838 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1839
1840 if (pch_iir & SDE_FDI_MASK_CPT)
1841 for_each_pipe(pipe)
1842 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1843 pipe_name(pipe),
1844 I915_READ(FDI_RX_IIR(pipe)));
1845
1846 if (pch_iir & SDE_ERROR_CPT)
1847 cpt_serr_int_handler(dev);
1848 }
1849
1850 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1851 {
1852 struct drm_i915_private *dev_priv = dev->dev_private;
1853 enum pipe pipe;
1854
1855 if (de_iir & DE_AUX_CHANNEL_A)
1856 dp_aux_irq_handler(dev);
1857
1858 if (de_iir & DE_GSE)
1859 intel_opregion_asle_intr(dev);
1860
1861 if (de_iir & DE_POISON)
1862 DRM_ERROR("Poison interrupt\n");
1863
1864 for_each_pipe(pipe) {
1865 if (de_iir & DE_PIPE_VBLANK(pipe))
1866 intel_pipe_handle_vblank(dev, pipe);
1867
1868 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1869 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1870 DRM_ERROR("Pipe %c FIFO underrun\n",
1871 pipe_name(pipe));
1872
1873 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1874 i9xx_pipe_crc_irq_handler(dev, pipe);
1875
1876 /* plane/pipes map 1:1 on ilk+ */
1877 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1878 intel_prepare_page_flip(dev, pipe);
1879 intel_finish_page_flip_plane(dev, pipe);
1880 }
1881 }
1882
1883 /* check event from PCH */
1884 if (de_iir & DE_PCH_EVENT) {
1885 u32 pch_iir = I915_READ(SDEIIR);
1886
1887 if (HAS_PCH_CPT(dev))
1888 cpt_irq_handler(dev, pch_iir);
1889 else
1890 ibx_irq_handler(dev, pch_iir);
1891
1892 /* should clear PCH hotplug event before clear CPU irq */
1893 I915_WRITE(SDEIIR, pch_iir);
1894 }
1895
1896 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1897 ironlake_rps_change_irq_handler(dev);
1898 }
1899
1900 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1901 {
1902 struct drm_i915_private *dev_priv = dev->dev_private;
1903 enum pipe pipe;
1904
1905 if (de_iir & DE_ERR_INT_IVB)
1906 ivb_err_int_handler(dev);
1907
1908 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1909 dp_aux_irq_handler(dev);
1910
1911 if (de_iir & DE_GSE_IVB)
1912 intel_opregion_asle_intr(dev);
1913
1914 for_each_pipe(pipe) {
1915 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1916 intel_pipe_handle_vblank(dev, pipe);
1917
1918 /* plane/pipes map 1:1 on ilk+ */
1919 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1920 intel_prepare_page_flip(dev, pipe);
1921 intel_finish_page_flip_plane(dev, pipe);
1922 }
1923 }
1924
1925 /* check event from PCH */
1926 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1927 u32 pch_iir = I915_READ(SDEIIR);
1928
1929 cpt_irq_handler(dev, pch_iir);
1930
1931 /* clear PCH hotplug event before clear CPU irq */
1932 I915_WRITE(SDEIIR, pch_iir);
1933 }
1934 }
1935
1936 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1937 {
1938 struct drm_device *dev = (struct drm_device *) arg;
1939 struct drm_i915_private *dev_priv = dev->dev_private;
1940 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1941 irqreturn_t ret = IRQ_NONE;
1942
1943 /* We get interrupts on unclaimed registers, so check for this before we
1944 * do any I915_{READ,WRITE}. */
1945 intel_uncore_check_errors(dev);
1946
1947 /* disable master interrupt before clearing iir */
1948 de_ier = I915_READ(DEIER);
1949 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1950 POSTING_READ(DEIER);
1951
1952 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1953 * interrupts will will be stored on its back queue, and then we'll be
1954 * able to process them after we restore SDEIER (as soon as we restore
1955 * it, we'll get an interrupt if SDEIIR still has something to process
1956 * due to its back queue). */
1957 if (!HAS_PCH_NOP(dev)) {
1958 sde_ier = I915_READ(SDEIER);
1959 I915_WRITE(SDEIER, 0);
1960 POSTING_READ(SDEIER);
1961 }
1962
1963 gt_iir = I915_READ(GTIIR);
1964 if (gt_iir) {
1965 if (INTEL_INFO(dev)->gen >= 6)
1966 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1967 else
1968 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1969 I915_WRITE(GTIIR, gt_iir);
1970 ret = IRQ_HANDLED;
1971 }
1972
1973 de_iir = I915_READ(DEIIR);
1974 if (de_iir) {
1975 if (INTEL_INFO(dev)->gen >= 7)
1976 ivb_display_irq_handler(dev, de_iir);
1977 else
1978 ilk_display_irq_handler(dev, de_iir);
1979 I915_WRITE(DEIIR, de_iir);
1980 ret = IRQ_HANDLED;
1981 }
1982
1983 if (INTEL_INFO(dev)->gen >= 6) {
1984 u32 pm_iir = I915_READ(GEN6_PMIIR);
1985 if (pm_iir) {
1986 gen6_rps_irq_handler(dev_priv, pm_iir);
1987 I915_WRITE(GEN6_PMIIR, pm_iir);
1988 ret = IRQ_HANDLED;
1989 }
1990 }
1991
1992 I915_WRITE(DEIER, de_ier);
1993 POSTING_READ(DEIER);
1994 if (!HAS_PCH_NOP(dev)) {
1995 I915_WRITE(SDEIER, sde_ier);
1996 POSTING_READ(SDEIER);
1997 }
1998
1999 return ret;
2000 }
2001
2002 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2003 {
2004 struct drm_device *dev = arg;
2005 struct drm_i915_private *dev_priv = dev->dev_private;
2006 u32 master_ctl;
2007 irqreturn_t ret = IRQ_NONE;
2008 uint32_t tmp = 0;
2009 enum pipe pipe;
2010
2011 master_ctl = I915_READ(GEN8_MASTER_IRQ);
2012 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2013 if (!master_ctl)
2014 return IRQ_NONE;
2015
2016 I915_WRITE(GEN8_MASTER_IRQ, 0);
2017 POSTING_READ(GEN8_MASTER_IRQ);
2018
2019 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2020
2021 if (master_ctl & GEN8_DE_MISC_IRQ) {
2022 tmp = I915_READ(GEN8_DE_MISC_IIR);
2023 if (tmp & GEN8_DE_MISC_GSE)
2024 intel_opregion_asle_intr(dev);
2025 else if (tmp)
2026 DRM_ERROR("Unexpected DE Misc interrupt\n");
2027 else
2028 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2029
2030 if (tmp) {
2031 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2032 ret = IRQ_HANDLED;
2033 }
2034 }
2035
2036 if (master_ctl & GEN8_DE_PORT_IRQ) {
2037 tmp = I915_READ(GEN8_DE_PORT_IIR);
2038 if (tmp & GEN8_AUX_CHANNEL_A)
2039 dp_aux_irq_handler(dev);
2040 else if (tmp)
2041 DRM_ERROR("Unexpected DE Port interrupt\n");
2042 else
2043 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2044
2045 if (tmp) {
2046 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2047 ret = IRQ_HANDLED;
2048 }
2049 }
2050
2051 for_each_pipe(pipe) {
2052 uint32_t pipe_iir;
2053
2054 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2055 continue;
2056
2057 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2058 if (pipe_iir & GEN8_PIPE_VBLANK)
2059 intel_pipe_handle_vblank(dev, pipe);
2060
2061 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2062 intel_prepare_page_flip(dev, pipe);
2063 intel_finish_page_flip_plane(dev, pipe);
2064 }
2065
2066 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2067 hsw_pipe_crc_irq_handler(dev, pipe);
2068
2069 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2070 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2071 false))
2072 DRM_ERROR("Pipe %c FIFO underrun\n",
2073 pipe_name(pipe));
2074 }
2075
2076 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2077 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2078 pipe_name(pipe),
2079 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2080 }
2081
2082 if (pipe_iir) {
2083 ret = IRQ_HANDLED;
2084 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2085 } else
2086 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2087 }
2088
2089 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2090 /*
2091 * FIXME(BDW): Assume for now that the new interrupt handling
2092 * scheme also closed the SDE interrupt handling race we've seen
2093 * on older pch-split platforms. But this needs testing.
2094 */
2095 u32 pch_iir = I915_READ(SDEIIR);
2096
2097 cpt_irq_handler(dev, pch_iir);
2098
2099 if (pch_iir) {
2100 I915_WRITE(SDEIIR, pch_iir);
2101 ret = IRQ_HANDLED;
2102 }
2103 }
2104
2105 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2106 POSTING_READ(GEN8_MASTER_IRQ);
2107
2108 return ret;
2109 }
2110
2111 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2112 bool reset_completed)
2113 {
2114 struct intel_ring_buffer *ring;
2115 int i;
2116
2117 /*
2118 * Notify all waiters for GPU completion events that reset state has
2119 * been changed, and that they need to restart their wait after
2120 * checking for potential errors (and bail out to drop locks if there is
2121 * a gpu reset pending so that i915_error_work_func can acquire them).
2122 */
2123
2124 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2125 for_each_ring(ring, dev_priv, i)
2126 wake_up_all(&ring->irq_queue);
2127
2128 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2129 wake_up_all(&dev_priv->pending_flip_queue);
2130
2131 /*
2132 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2133 * reset state is cleared.
2134 */
2135 if (reset_completed)
2136 wake_up_all(&dev_priv->gpu_error.reset_queue);
2137 }
2138
2139 /**
2140 * i915_error_work_func - do process context error handling work
2141 * @work: work struct
2142 *
2143 * Fire an error uevent so userspace can see that a hang or error
2144 * was detected.
2145 */
2146 static void i915_error_work_func(struct work_struct *work)
2147 {
2148 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2149 work);
2150 struct drm_i915_private *dev_priv =
2151 container_of(error, struct drm_i915_private, gpu_error);
2152 struct drm_device *dev = dev_priv->dev;
2153 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2154 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2155 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2156 int ret;
2157
2158 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2159
2160 /*
2161 * Note that there's only one work item which does gpu resets, so we
2162 * need not worry about concurrent gpu resets potentially incrementing
2163 * error->reset_counter twice. We only need to take care of another
2164 * racing irq/hangcheck declaring the gpu dead for a second time. A
2165 * quick check for that is good enough: schedule_work ensures the
2166 * correct ordering between hang detection and this work item, and since
2167 * the reset in-progress bit is only ever set by code outside of this
2168 * work we don't need to worry about any other races.
2169 */
2170 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2171 DRM_DEBUG_DRIVER("resetting chip\n");
2172 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2173 reset_event);
2174
2175 /*
2176 * In most cases it's guaranteed that we get here with an RPM
2177 * reference held, for example because there is a pending GPU
2178 * request that won't finish until the reset is done. This
2179 * isn't the case at least when we get here by doing a
2180 * simulated reset via debugs, so get an RPM reference.
2181 */
2182 intel_runtime_pm_get(dev_priv);
2183 /*
2184 * All state reset _must_ be completed before we update the
2185 * reset counter, for otherwise waiters might miss the reset
2186 * pending state and not properly drop locks, resulting in
2187 * deadlocks with the reset work.
2188 */
2189 ret = i915_reset(dev);
2190
2191 intel_display_handle_reset(dev);
2192
2193 intel_runtime_pm_put(dev_priv);
2194
2195 if (ret == 0) {
2196 /*
2197 * After all the gem state is reset, increment the reset
2198 * counter and wake up everyone waiting for the reset to
2199 * complete.
2200 *
2201 * Since unlock operations are a one-sided barrier only,
2202 * we need to insert a barrier here to order any seqno
2203 * updates before
2204 * the counter increment.
2205 */
2206 smp_mb__before_atomic_inc();
2207 atomic_inc(&dev_priv->gpu_error.reset_counter);
2208
2209 kobject_uevent_env(&dev->primary->kdev->kobj,
2210 KOBJ_CHANGE, reset_done_event);
2211 } else {
2212 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2213 }
2214
2215 /*
2216 * Note: The wake_up also serves as a memory barrier so that
2217 * waiters see the update value of the reset counter atomic_t.
2218 */
2219 i915_error_wake_up(dev_priv, true);
2220 }
2221 }
2222
2223 static void i915_report_and_clear_eir(struct drm_device *dev)
2224 {
2225 struct drm_i915_private *dev_priv = dev->dev_private;
2226 uint32_t instdone[I915_NUM_INSTDONE_REG];
2227 u32 eir = I915_READ(EIR);
2228 int pipe, i;
2229
2230 if (!eir)
2231 return;
2232
2233 pr_err("render error detected, EIR: 0x%08x\n", eir);
2234
2235 i915_get_extra_instdone(dev, instdone);
2236
2237 if (IS_G4X(dev)) {
2238 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2239 u32 ipeir = I915_READ(IPEIR_I965);
2240
2241 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2242 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2243 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2244 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2245 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2246 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2247 I915_WRITE(IPEIR_I965, ipeir);
2248 POSTING_READ(IPEIR_I965);
2249 }
2250 if (eir & GM45_ERROR_PAGE_TABLE) {
2251 u32 pgtbl_err = I915_READ(PGTBL_ER);
2252 pr_err("page table error\n");
2253 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2254 I915_WRITE(PGTBL_ER, pgtbl_err);
2255 POSTING_READ(PGTBL_ER);
2256 }
2257 }
2258
2259 if (!IS_GEN2(dev)) {
2260 if (eir & I915_ERROR_PAGE_TABLE) {
2261 u32 pgtbl_err = I915_READ(PGTBL_ER);
2262 pr_err("page table error\n");
2263 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2264 I915_WRITE(PGTBL_ER, pgtbl_err);
2265 POSTING_READ(PGTBL_ER);
2266 }
2267 }
2268
2269 if (eir & I915_ERROR_MEMORY_REFRESH) {
2270 pr_err("memory refresh error:\n");
2271 for_each_pipe(pipe)
2272 pr_err("pipe %c stat: 0x%08x\n",
2273 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2274 /* pipestat has already been acked */
2275 }
2276 if (eir & I915_ERROR_INSTRUCTION) {
2277 pr_err("instruction error\n");
2278 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2279 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2280 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2281 if (INTEL_INFO(dev)->gen < 4) {
2282 u32 ipeir = I915_READ(IPEIR);
2283
2284 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2285 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2286 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2287 I915_WRITE(IPEIR, ipeir);
2288 POSTING_READ(IPEIR);
2289 } else {
2290 u32 ipeir = I915_READ(IPEIR_I965);
2291
2292 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2293 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2294 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2295 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2296 I915_WRITE(IPEIR_I965, ipeir);
2297 POSTING_READ(IPEIR_I965);
2298 }
2299 }
2300
2301 I915_WRITE(EIR, eir);
2302 POSTING_READ(EIR);
2303 eir = I915_READ(EIR);
2304 if (eir) {
2305 /*
2306 * some errors might have become stuck,
2307 * mask them.
2308 */
2309 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2310 I915_WRITE(EMR, I915_READ(EMR) | eir);
2311 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2312 }
2313 }
2314
2315 /**
2316 * i915_handle_error - handle an error interrupt
2317 * @dev: drm device
2318 *
2319 * Do some basic checking of regsiter state at error interrupt time and
2320 * dump it to the syslog. Also call i915_capture_error_state() to make
2321 * sure we get a record and make it available in debugfs. Fire a uevent
2322 * so userspace knows something bad happened (should trigger collection
2323 * of a ring dump etc.).
2324 */
2325 void i915_handle_error(struct drm_device *dev, bool wedged,
2326 const char *fmt, ...)
2327 {
2328 struct drm_i915_private *dev_priv = dev->dev_private;
2329 va_list args;
2330 char error_msg[80];
2331
2332 va_start(args, fmt);
2333 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2334 va_end(args);
2335
2336 i915_capture_error_state(dev, wedged, error_msg);
2337 i915_report_and_clear_eir(dev);
2338
2339 if (wedged) {
2340 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2341 &dev_priv->gpu_error.reset_counter);
2342
2343 /*
2344 * Wakeup waiting processes so that the reset work function
2345 * i915_error_work_func doesn't deadlock trying to grab various
2346 * locks. By bumping the reset counter first, the woken
2347 * processes will see a reset in progress and back off,
2348 * releasing their locks and then wait for the reset completion.
2349 * We must do this for _all_ gpu waiters that might hold locks
2350 * that the reset work needs to acquire.
2351 *
2352 * Note: The wake_up serves as the required memory barrier to
2353 * ensure that the waiters see the updated value of the reset
2354 * counter atomic_t.
2355 */
2356 i915_error_wake_up(dev_priv, false);
2357 }
2358
2359 /*
2360 * Our reset work can grab modeset locks (since it needs to reset the
2361 * state of outstanding pagelips). Hence it must not be run on our own
2362 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2363 * code will deadlock.
2364 */
2365 schedule_work(&dev_priv->gpu_error.work);
2366 }
2367
2368 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2369 {
2370 struct drm_i915_private *dev_priv = dev->dev_private;
2371 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2372 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2373 struct drm_i915_gem_object *obj;
2374 struct intel_unpin_work *work;
2375 unsigned long flags;
2376 bool stall_detected;
2377
2378 /* Ignore early vblank irqs */
2379 if (intel_crtc == NULL)
2380 return;
2381
2382 spin_lock_irqsave(&dev->event_lock, flags);
2383 work = intel_crtc->unpin_work;
2384
2385 if (work == NULL ||
2386 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2387 !work->enable_stall_check) {
2388 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2389 spin_unlock_irqrestore(&dev->event_lock, flags);
2390 return;
2391 }
2392
2393 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2394 obj = work->pending_flip_obj;
2395 if (INTEL_INFO(dev)->gen >= 4) {
2396 int dspsurf = DSPSURF(intel_crtc->plane);
2397 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2398 i915_gem_obj_ggtt_offset(obj);
2399 } else {
2400 int dspaddr = DSPADDR(intel_crtc->plane);
2401 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2402 crtc->y * crtc->primary->fb->pitches[0] +
2403 crtc->x * crtc->primary->fb->bits_per_pixel/8);
2404 }
2405
2406 spin_unlock_irqrestore(&dev->event_lock, flags);
2407
2408 if (stall_detected) {
2409 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2410 intel_prepare_page_flip(dev, intel_crtc->plane);
2411 }
2412 }
2413
2414 /* Called from drm generic code, passed 'crtc' which
2415 * we use as a pipe index
2416 */
2417 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2418 {
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420 unsigned long irqflags;
2421
2422 if (!i915_pipe_enabled(dev, pipe))
2423 return -EINVAL;
2424
2425 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2426 if (INTEL_INFO(dev)->gen >= 4)
2427 i915_enable_pipestat(dev_priv, pipe,
2428 PIPE_START_VBLANK_INTERRUPT_STATUS);
2429 else
2430 i915_enable_pipestat(dev_priv, pipe,
2431 PIPE_VBLANK_INTERRUPT_STATUS);
2432
2433 /* maintain vblank delivery even in deep C-states */
2434 if (INTEL_INFO(dev)->gen == 3)
2435 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2436 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2437
2438 return 0;
2439 }
2440
2441 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2442 {
2443 struct drm_i915_private *dev_priv = dev->dev_private;
2444 unsigned long irqflags;
2445 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2446 DE_PIPE_VBLANK(pipe);
2447
2448 if (!i915_pipe_enabled(dev, pipe))
2449 return -EINVAL;
2450
2451 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2452 ironlake_enable_display_irq(dev_priv, bit);
2453 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2454
2455 return 0;
2456 }
2457
2458 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2459 {
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461 unsigned long irqflags;
2462
2463 if (!i915_pipe_enabled(dev, pipe))
2464 return -EINVAL;
2465
2466 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2467 i915_enable_pipestat(dev_priv, pipe,
2468 PIPE_START_VBLANK_INTERRUPT_STATUS);
2469 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2470
2471 return 0;
2472 }
2473
2474 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2475 {
2476 struct drm_i915_private *dev_priv = dev->dev_private;
2477 unsigned long irqflags;
2478
2479 if (!i915_pipe_enabled(dev, pipe))
2480 return -EINVAL;
2481
2482 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2483 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2484 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2485 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2486 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2487 return 0;
2488 }
2489
2490 /* Called from drm generic code, passed 'crtc' which
2491 * we use as a pipe index
2492 */
2493 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2494 {
2495 struct drm_i915_private *dev_priv = dev->dev_private;
2496 unsigned long irqflags;
2497
2498 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2499 if (INTEL_INFO(dev)->gen == 3)
2500 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2501
2502 i915_disable_pipestat(dev_priv, pipe,
2503 PIPE_VBLANK_INTERRUPT_STATUS |
2504 PIPE_START_VBLANK_INTERRUPT_STATUS);
2505 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2506 }
2507
2508 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2509 {
2510 struct drm_i915_private *dev_priv = dev->dev_private;
2511 unsigned long irqflags;
2512 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2513 DE_PIPE_VBLANK(pipe);
2514
2515 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2516 ironlake_disable_display_irq(dev_priv, bit);
2517 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2518 }
2519
2520 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2521 {
2522 struct drm_i915_private *dev_priv = dev->dev_private;
2523 unsigned long irqflags;
2524
2525 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2526 i915_disable_pipestat(dev_priv, pipe,
2527 PIPE_START_VBLANK_INTERRUPT_STATUS);
2528 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2529 }
2530
2531 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2532 {
2533 struct drm_i915_private *dev_priv = dev->dev_private;
2534 unsigned long irqflags;
2535
2536 if (!i915_pipe_enabled(dev, pipe))
2537 return;
2538
2539 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2540 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2541 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2542 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2543 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2544 }
2545
2546 static u32
2547 ring_last_seqno(struct intel_ring_buffer *ring)
2548 {
2549 return list_entry(ring->request_list.prev,
2550 struct drm_i915_gem_request, list)->seqno;
2551 }
2552
2553 static bool
2554 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2555 {
2556 return (list_empty(&ring->request_list) ||
2557 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2558 }
2559
2560 static bool
2561 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2562 {
2563 if (INTEL_INFO(dev)->gen >= 8) {
2564 /*
2565 * FIXME: gen8 semaphore support - currently we don't emit
2566 * semaphores on bdw anyway, but this needs to be addressed when
2567 * we merge that code.
2568 */
2569 return false;
2570 } else {
2571 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2572 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2573 MI_SEMAPHORE_REGISTER);
2574 }
2575 }
2576
2577 static struct intel_ring_buffer *
2578 semaphore_wait_to_signaller_ring(struct intel_ring_buffer *ring, u32 ipehr)
2579 {
2580 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2581 struct intel_ring_buffer *signaller;
2582 int i;
2583
2584 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2585 /*
2586 * FIXME: gen8 semaphore support - currently we don't emit
2587 * semaphores on bdw anyway, but this needs to be addressed when
2588 * we merge that code.
2589 */
2590 return NULL;
2591 } else {
2592 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2593
2594 for_each_ring(signaller, dev_priv, i) {
2595 if(ring == signaller)
2596 continue;
2597
2598 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2599 return signaller;
2600 }
2601 }
2602
2603 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2604 ring->id, ipehr);
2605
2606 return NULL;
2607 }
2608
2609 static struct intel_ring_buffer *
2610 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2611 {
2612 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2613 u32 cmd, ipehr, head;
2614 int i;
2615
2616 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2617 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2618 return NULL;
2619
2620 /*
2621 * HEAD is likely pointing to the dword after the actual command,
2622 * so scan backwards until we find the MBOX. But limit it to just 3
2623 * dwords. Note that we don't care about ACTHD here since that might
2624 * point at at batch, and semaphores are always emitted into the
2625 * ringbuffer itself.
2626 */
2627 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2628
2629 for (i = 4; i; --i) {
2630 /*
2631 * Be paranoid and presume the hw has gone off into the wild -
2632 * our ring is smaller than what the hardware (and hence
2633 * HEAD_ADDR) allows. Also handles wrap-around.
2634 */
2635 head &= ring->size - 1;
2636
2637 /* This here seems to blow up */
2638 cmd = ioread32(ring->virtual_start + head);
2639 if (cmd == ipehr)
2640 break;
2641
2642 head -= 4;
2643 }
2644
2645 if (!i)
2646 return NULL;
2647
2648 *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2649 return semaphore_wait_to_signaller_ring(ring, ipehr);
2650 }
2651
2652 static int semaphore_passed(struct intel_ring_buffer *ring)
2653 {
2654 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2655 struct intel_ring_buffer *signaller;
2656 u32 seqno, ctl;
2657
2658 ring->hangcheck.deadlock = true;
2659
2660 signaller = semaphore_waits_for(ring, &seqno);
2661 if (signaller == NULL || signaller->hangcheck.deadlock)
2662 return -1;
2663
2664 /* cursory check for an unkickable deadlock */
2665 ctl = I915_READ_CTL(signaller);
2666 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2667 return -1;
2668
2669 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2670 }
2671
2672 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2673 {
2674 struct intel_ring_buffer *ring;
2675 int i;
2676
2677 for_each_ring(ring, dev_priv, i)
2678 ring->hangcheck.deadlock = false;
2679 }
2680
2681 static enum intel_ring_hangcheck_action
2682 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2683 {
2684 struct drm_device *dev = ring->dev;
2685 struct drm_i915_private *dev_priv = dev->dev_private;
2686 u32 tmp;
2687
2688 if (ring->hangcheck.acthd != acthd)
2689 return HANGCHECK_ACTIVE;
2690
2691 if (IS_GEN2(dev))
2692 return HANGCHECK_HUNG;
2693
2694 /* Is the chip hanging on a WAIT_FOR_EVENT?
2695 * If so we can simply poke the RB_WAIT bit
2696 * and break the hang. This should work on
2697 * all but the second generation chipsets.
2698 */
2699 tmp = I915_READ_CTL(ring);
2700 if (tmp & RING_WAIT) {
2701 i915_handle_error(dev, false,
2702 "Kicking stuck wait on %s",
2703 ring->name);
2704 I915_WRITE_CTL(ring, tmp);
2705 return HANGCHECK_KICK;
2706 }
2707
2708 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2709 switch (semaphore_passed(ring)) {
2710 default:
2711 return HANGCHECK_HUNG;
2712 case 1:
2713 i915_handle_error(dev, false,
2714 "Kicking stuck semaphore on %s",
2715 ring->name);
2716 I915_WRITE_CTL(ring, tmp);
2717 return HANGCHECK_KICK;
2718 case 0:
2719 return HANGCHECK_WAIT;
2720 }
2721 }
2722
2723 return HANGCHECK_HUNG;
2724 }
2725
2726 /**
2727 * This is called when the chip hasn't reported back with completed
2728 * batchbuffers in a long time. We keep track per ring seqno progress and
2729 * if there are no progress, hangcheck score for that ring is increased.
2730 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2731 * we kick the ring. If we see no progress on three subsequent calls
2732 * we assume chip is wedged and try to fix it by resetting the chip.
2733 */
2734 static void i915_hangcheck_elapsed(unsigned long data)
2735 {
2736 struct drm_device *dev = (struct drm_device *)data;
2737 struct drm_i915_private *dev_priv = dev->dev_private;
2738 struct intel_ring_buffer *ring;
2739 int i;
2740 int busy_count = 0, rings_hung = 0;
2741 bool stuck[I915_NUM_RINGS] = { 0 };
2742 #define BUSY 1
2743 #define KICK 5
2744 #define HUNG 20
2745
2746 if (!i915.enable_hangcheck)
2747 return;
2748
2749 for_each_ring(ring, dev_priv, i) {
2750 u64 acthd;
2751 u32 seqno;
2752 bool busy = true;
2753
2754 semaphore_clear_deadlocks(dev_priv);
2755
2756 seqno = ring->get_seqno(ring, false);
2757 acthd = intel_ring_get_active_head(ring);
2758
2759 if (ring->hangcheck.seqno == seqno) {
2760 if (ring_idle(ring, seqno)) {
2761 ring->hangcheck.action = HANGCHECK_IDLE;
2762
2763 if (waitqueue_active(&ring->irq_queue)) {
2764 /* Issue a wake-up to catch stuck h/w. */
2765 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2766 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2767 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2768 ring->name);
2769 else
2770 DRM_INFO("Fake missed irq on %s\n",
2771 ring->name);
2772 wake_up_all(&ring->irq_queue);
2773 }
2774 /* Safeguard against driver failure */
2775 ring->hangcheck.score += BUSY;
2776 } else
2777 busy = false;
2778 } else {
2779 /* We always increment the hangcheck score
2780 * if the ring is busy and still processing
2781 * the same request, so that no single request
2782 * can run indefinitely (such as a chain of
2783 * batches). The only time we do not increment
2784 * the hangcheck score on this ring, if this
2785 * ring is in a legitimate wait for another
2786 * ring. In that case the waiting ring is a
2787 * victim and we want to be sure we catch the
2788 * right culprit. Then every time we do kick
2789 * the ring, add a small increment to the
2790 * score so that we can catch a batch that is
2791 * being repeatedly kicked and so responsible
2792 * for stalling the machine.
2793 */
2794 ring->hangcheck.action = ring_stuck(ring,
2795 acthd);
2796
2797 switch (ring->hangcheck.action) {
2798 case HANGCHECK_IDLE:
2799 case HANGCHECK_WAIT:
2800 break;
2801 case HANGCHECK_ACTIVE:
2802 ring->hangcheck.score += BUSY;
2803 break;
2804 case HANGCHECK_KICK:
2805 ring->hangcheck.score += KICK;
2806 break;
2807 case HANGCHECK_HUNG:
2808 ring->hangcheck.score += HUNG;
2809 stuck[i] = true;
2810 break;
2811 }
2812 }
2813 } else {
2814 ring->hangcheck.action = HANGCHECK_ACTIVE;
2815
2816 /* Gradually reduce the count so that we catch DoS
2817 * attempts across multiple batches.
2818 */
2819 if (ring->hangcheck.score > 0)
2820 ring->hangcheck.score--;
2821 }
2822
2823 ring->hangcheck.seqno = seqno;
2824 ring->hangcheck.acthd = acthd;
2825 busy_count += busy;
2826 }
2827
2828 for_each_ring(ring, dev_priv, i) {
2829 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2830 DRM_INFO("%s on %s\n",
2831 stuck[i] ? "stuck" : "no progress",
2832 ring->name);
2833 rings_hung++;
2834 }
2835 }
2836
2837 if (rings_hung)
2838 return i915_handle_error(dev, true, "Ring hung");
2839
2840 if (busy_count)
2841 /* Reset timer case chip hangs without another request
2842 * being added */
2843 i915_queue_hangcheck(dev);
2844 }
2845
2846 void i915_queue_hangcheck(struct drm_device *dev)
2847 {
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849 if (!i915.enable_hangcheck)
2850 return;
2851
2852 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2853 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2854 }
2855
2856 static void ibx_irq_reset(struct drm_device *dev)
2857 {
2858 struct drm_i915_private *dev_priv = dev->dev_private;
2859
2860 if (HAS_PCH_NOP(dev))
2861 return;
2862
2863 GEN5_IRQ_RESET(SDE);
2864
2865 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2866 I915_WRITE(SERR_INT, 0xffffffff);
2867 }
2868
2869 /*
2870 * SDEIER is also touched by the interrupt handler to work around missed PCH
2871 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2872 * instead we unconditionally enable all PCH interrupt sources here, but then
2873 * only unmask them as needed with SDEIMR.
2874 *
2875 * This function needs to be called before interrupts are enabled.
2876 */
2877 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2878 {
2879 struct drm_i915_private *dev_priv = dev->dev_private;
2880
2881 if (HAS_PCH_NOP(dev))
2882 return;
2883
2884 WARN_ON(I915_READ(SDEIER) != 0);
2885 I915_WRITE(SDEIER, 0xffffffff);
2886 POSTING_READ(SDEIER);
2887 }
2888
2889 static void gen5_gt_irq_reset(struct drm_device *dev)
2890 {
2891 struct drm_i915_private *dev_priv = dev->dev_private;
2892
2893 GEN5_IRQ_RESET(GT);
2894 if (INTEL_INFO(dev)->gen >= 6)
2895 GEN5_IRQ_RESET(GEN6_PM);
2896 }
2897
2898 /* drm_dma.h hooks
2899 */
2900 static void ironlake_irq_reset(struct drm_device *dev)
2901 {
2902 struct drm_i915_private *dev_priv = dev->dev_private;
2903
2904 I915_WRITE(HWSTAM, 0xffffffff);
2905
2906 GEN5_IRQ_RESET(DE);
2907 if (IS_GEN7(dev))
2908 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2909
2910 gen5_gt_irq_reset(dev);
2911
2912 ibx_irq_reset(dev);
2913 }
2914
2915 static void ironlake_irq_preinstall(struct drm_device *dev)
2916 {
2917 ironlake_irq_reset(dev);
2918 }
2919
2920 static void valleyview_irq_preinstall(struct drm_device *dev)
2921 {
2922 struct drm_i915_private *dev_priv = dev->dev_private;
2923 int pipe;
2924
2925 /* VLV magic */
2926 I915_WRITE(VLV_IMR, 0);
2927 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2928 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2929 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2930
2931 /* and GT */
2932 I915_WRITE(GTIIR, I915_READ(GTIIR));
2933 I915_WRITE(GTIIR, I915_READ(GTIIR));
2934
2935 gen5_gt_irq_reset(dev);
2936
2937 I915_WRITE(DPINVGTT, 0xff);
2938
2939 I915_WRITE(PORT_HOTPLUG_EN, 0);
2940 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2941 for_each_pipe(pipe)
2942 I915_WRITE(PIPESTAT(pipe), 0xffff);
2943 I915_WRITE(VLV_IIR, 0xffffffff);
2944 I915_WRITE(VLV_IMR, 0xffffffff);
2945 I915_WRITE(VLV_IER, 0x0);
2946 POSTING_READ(VLV_IER);
2947 }
2948
2949 static void gen8_irq_reset(struct drm_device *dev)
2950 {
2951 struct drm_i915_private *dev_priv = dev->dev_private;
2952 int pipe;
2953
2954 I915_WRITE(GEN8_MASTER_IRQ, 0);
2955 POSTING_READ(GEN8_MASTER_IRQ);
2956
2957 GEN8_IRQ_RESET_NDX(GT, 0);
2958 GEN8_IRQ_RESET_NDX(GT, 1);
2959 GEN8_IRQ_RESET_NDX(GT, 2);
2960 GEN8_IRQ_RESET_NDX(GT, 3);
2961
2962 for_each_pipe(pipe)
2963 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2964
2965 GEN5_IRQ_RESET(GEN8_DE_PORT_);
2966 GEN5_IRQ_RESET(GEN8_DE_MISC_);
2967 GEN5_IRQ_RESET(GEN8_PCU_);
2968
2969 ibx_irq_reset(dev);
2970 }
2971
2972 static void gen8_irq_preinstall(struct drm_device *dev)
2973 {
2974 gen8_irq_reset(dev);
2975 }
2976
2977 static void ibx_hpd_irq_setup(struct drm_device *dev)
2978 {
2979 struct drm_i915_private *dev_priv = dev->dev_private;
2980 struct drm_mode_config *mode_config = &dev->mode_config;
2981 struct intel_encoder *intel_encoder;
2982 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2983
2984 if (HAS_PCH_IBX(dev)) {
2985 hotplug_irqs = SDE_HOTPLUG_MASK;
2986 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2987 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2988 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2989 } else {
2990 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2991 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2992 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2993 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2994 }
2995
2996 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2997
2998 /*
2999 * Enable digital hotplug on the PCH, and configure the DP short pulse
3000 * duration to 2ms (which is the minimum in the Display Port spec)
3001 *
3002 * This register is the same on all known PCH chips.
3003 */
3004 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3005 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3006 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3007 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3008 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3009 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3010 }
3011
3012 static void ibx_irq_postinstall(struct drm_device *dev)
3013 {
3014 struct drm_i915_private *dev_priv = dev->dev_private;
3015 u32 mask;
3016
3017 if (HAS_PCH_NOP(dev))
3018 return;
3019
3020 if (HAS_PCH_IBX(dev))
3021 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3022 else
3023 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3024
3025 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3026 I915_WRITE(SDEIMR, ~mask);
3027 }
3028
3029 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3030 {
3031 struct drm_i915_private *dev_priv = dev->dev_private;
3032 u32 pm_irqs, gt_irqs;
3033
3034 pm_irqs = gt_irqs = 0;
3035
3036 dev_priv->gt_irq_mask = ~0;
3037 if (HAS_L3_DPF(dev)) {
3038 /* L3 parity interrupt is always unmasked. */
3039 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3040 gt_irqs |= GT_PARITY_ERROR(dev);
3041 }
3042
3043 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3044 if (IS_GEN5(dev)) {
3045 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3046 ILK_BSD_USER_INTERRUPT;
3047 } else {
3048 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3049 }
3050
3051 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3052
3053 if (INTEL_INFO(dev)->gen >= 6) {
3054 pm_irqs |= dev_priv->pm_rps_events;
3055
3056 if (HAS_VEBOX(dev))
3057 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3058
3059 dev_priv->pm_irq_mask = 0xffffffff;
3060 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3061 }
3062 }
3063
3064 static int ironlake_irq_postinstall(struct drm_device *dev)
3065 {
3066 unsigned long irqflags;
3067 struct drm_i915_private *dev_priv = dev->dev_private;
3068 u32 display_mask, extra_mask;
3069
3070 if (INTEL_INFO(dev)->gen >= 7) {
3071 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3072 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3073 DE_PLANEB_FLIP_DONE_IVB |
3074 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3075 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3076 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3077 } else {
3078 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3079 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3080 DE_AUX_CHANNEL_A |
3081 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3082 DE_POISON);
3083 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3084 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3085 }
3086
3087 dev_priv->irq_mask = ~display_mask;
3088
3089 I915_WRITE(HWSTAM, 0xeffe);
3090
3091 ibx_irq_pre_postinstall(dev);
3092
3093 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3094
3095 gen5_gt_irq_postinstall(dev);
3096
3097 ibx_irq_postinstall(dev);
3098
3099 if (IS_IRONLAKE_M(dev)) {
3100 /* Enable PCU event interrupts
3101 *
3102 * spinlocking not required here for correctness since interrupt
3103 * setup is guaranteed to run in single-threaded context. But we
3104 * need it to make the assert_spin_locked happy. */
3105 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3106 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3107 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3108 }
3109
3110 return 0;
3111 }
3112
3113 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3114 {
3115 u32 pipestat_mask;
3116 u32 iir_mask;
3117
3118 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3119 PIPE_FIFO_UNDERRUN_STATUS;
3120
3121 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3122 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3123 POSTING_READ(PIPESTAT(PIPE_A));
3124
3125 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3126 PIPE_CRC_DONE_INTERRUPT_STATUS;
3127
3128 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3129 PIPE_GMBUS_INTERRUPT_STATUS);
3130 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3131
3132 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3133 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3134 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3135 dev_priv->irq_mask &= ~iir_mask;
3136
3137 I915_WRITE(VLV_IIR, iir_mask);
3138 I915_WRITE(VLV_IIR, iir_mask);
3139 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3140 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3141 POSTING_READ(VLV_IER);
3142 }
3143
3144 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3145 {
3146 u32 pipestat_mask;
3147 u32 iir_mask;
3148
3149 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3150 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3151 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3152
3153 dev_priv->irq_mask |= iir_mask;
3154 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3155 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3156 I915_WRITE(VLV_IIR, iir_mask);
3157 I915_WRITE(VLV_IIR, iir_mask);
3158 POSTING_READ(VLV_IIR);
3159
3160 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3161 PIPE_CRC_DONE_INTERRUPT_STATUS;
3162
3163 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3164 PIPE_GMBUS_INTERRUPT_STATUS);
3165 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3166
3167 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3168 PIPE_FIFO_UNDERRUN_STATUS;
3169 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3170 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3171 POSTING_READ(PIPESTAT(PIPE_A));
3172 }
3173
3174 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3175 {
3176 assert_spin_locked(&dev_priv->irq_lock);
3177
3178 if (dev_priv->display_irqs_enabled)
3179 return;
3180
3181 dev_priv->display_irqs_enabled = true;
3182
3183 if (dev_priv->dev->irq_enabled)
3184 valleyview_display_irqs_install(dev_priv);
3185 }
3186
3187 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3188 {
3189 assert_spin_locked(&dev_priv->irq_lock);
3190
3191 if (!dev_priv->display_irqs_enabled)
3192 return;
3193
3194 dev_priv->display_irqs_enabled = false;
3195
3196 if (dev_priv->dev->irq_enabled)
3197 valleyview_display_irqs_uninstall(dev_priv);
3198 }
3199
3200 static int valleyview_irq_postinstall(struct drm_device *dev)
3201 {
3202 struct drm_i915_private *dev_priv = dev->dev_private;
3203 unsigned long irqflags;
3204
3205 dev_priv->irq_mask = ~0;
3206
3207 I915_WRITE(PORT_HOTPLUG_EN, 0);
3208 POSTING_READ(PORT_HOTPLUG_EN);
3209
3210 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3211 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3212 I915_WRITE(VLV_IIR, 0xffffffff);
3213 POSTING_READ(VLV_IER);
3214
3215 /* Interrupt setup is already guaranteed to be single-threaded, this is
3216 * just to make the assert_spin_locked check happy. */
3217 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3218 if (dev_priv->display_irqs_enabled)
3219 valleyview_display_irqs_install(dev_priv);
3220 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3221
3222 I915_WRITE(VLV_IIR, 0xffffffff);
3223 I915_WRITE(VLV_IIR, 0xffffffff);
3224
3225 gen5_gt_irq_postinstall(dev);
3226
3227 /* ack & enable invalid PTE error interrupts */
3228 #if 0 /* FIXME: add support to irq handler for checking these bits */
3229 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3230 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3231 #endif
3232
3233 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3234
3235 return 0;
3236 }
3237
3238 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3239 {
3240 int i;
3241
3242 /* These are interrupts we'll toggle with the ring mask register */
3243 uint32_t gt_interrupts[] = {
3244 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3245 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3246 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3247 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3248 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3249 0,
3250 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3251 };
3252
3253 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3254 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3255 }
3256
3257 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3258 {
3259 struct drm_device *dev = dev_priv->dev;
3260 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3261 GEN8_PIPE_CDCLK_CRC_DONE |
3262 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3263 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3264 GEN8_PIPE_FIFO_UNDERRUN;
3265 int pipe;
3266 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3267 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3268 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3269
3270 for_each_pipe(pipe)
3271 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3272 de_pipe_enables);
3273
3274 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3275 }
3276
3277 static int gen8_irq_postinstall(struct drm_device *dev)
3278 {
3279 struct drm_i915_private *dev_priv = dev->dev_private;
3280
3281 ibx_irq_pre_postinstall(dev);
3282
3283 gen8_gt_irq_postinstall(dev_priv);
3284 gen8_de_irq_postinstall(dev_priv);
3285
3286 ibx_irq_postinstall(dev);
3287
3288 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3289 POSTING_READ(GEN8_MASTER_IRQ);
3290
3291 return 0;
3292 }
3293
3294 static void gen8_irq_uninstall(struct drm_device *dev)
3295 {
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297
3298 if (!dev_priv)
3299 return;
3300
3301 intel_hpd_irq_uninstall(dev_priv);
3302
3303 gen8_irq_reset(dev);
3304 }
3305
3306 static void valleyview_irq_uninstall(struct drm_device *dev)
3307 {
3308 struct drm_i915_private *dev_priv = dev->dev_private;
3309 unsigned long irqflags;
3310 int pipe;
3311
3312 if (!dev_priv)
3313 return;
3314
3315 I915_WRITE(VLV_MASTER_IER, 0);
3316
3317 intel_hpd_irq_uninstall(dev_priv);
3318
3319 for_each_pipe(pipe)
3320 I915_WRITE(PIPESTAT(pipe), 0xffff);
3321
3322 I915_WRITE(HWSTAM, 0xffffffff);
3323 I915_WRITE(PORT_HOTPLUG_EN, 0);
3324 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3325
3326 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3327 if (dev_priv->display_irqs_enabled)
3328 valleyview_display_irqs_uninstall(dev_priv);
3329 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3330
3331 dev_priv->irq_mask = 0;
3332
3333 I915_WRITE(VLV_IIR, 0xffffffff);
3334 I915_WRITE(VLV_IMR, 0xffffffff);
3335 I915_WRITE(VLV_IER, 0x0);
3336 POSTING_READ(VLV_IER);
3337 }
3338
3339 static void ironlake_irq_uninstall(struct drm_device *dev)
3340 {
3341 struct drm_i915_private *dev_priv = dev->dev_private;
3342
3343 if (!dev_priv)
3344 return;
3345
3346 intel_hpd_irq_uninstall(dev_priv);
3347
3348 ironlake_irq_reset(dev);
3349 }
3350
3351 static void i8xx_irq_preinstall(struct drm_device * dev)
3352 {
3353 struct drm_i915_private *dev_priv = dev->dev_private;
3354 int pipe;
3355
3356 for_each_pipe(pipe)
3357 I915_WRITE(PIPESTAT(pipe), 0);
3358 I915_WRITE16(IMR, 0xffff);
3359 I915_WRITE16(IER, 0x0);
3360 POSTING_READ16(IER);
3361 }
3362
3363 static int i8xx_irq_postinstall(struct drm_device *dev)
3364 {
3365 struct drm_i915_private *dev_priv = dev->dev_private;
3366 unsigned long irqflags;
3367
3368 I915_WRITE16(EMR,
3369 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3370
3371 /* Unmask the interrupts that we always want on. */
3372 dev_priv->irq_mask =
3373 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3374 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3375 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3376 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3377 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3378 I915_WRITE16(IMR, dev_priv->irq_mask);
3379
3380 I915_WRITE16(IER,
3381 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3382 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3383 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3384 I915_USER_INTERRUPT);
3385 POSTING_READ16(IER);
3386
3387 /* Interrupt setup is already guaranteed to be single-threaded, this is
3388 * just to make the assert_spin_locked check happy. */
3389 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3390 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3391 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3392 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3393
3394 return 0;
3395 }
3396
3397 /*
3398 * Returns true when a page flip has completed.
3399 */
3400 static bool i8xx_handle_vblank(struct drm_device *dev,
3401 int plane, int pipe, u32 iir)
3402 {
3403 struct drm_i915_private *dev_priv = dev->dev_private;
3404 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3405
3406 if (!intel_pipe_handle_vblank(dev, pipe))
3407 return false;
3408
3409 if ((iir & flip_pending) == 0)
3410 return false;
3411
3412 intel_prepare_page_flip(dev, plane);
3413
3414 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3415 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3416 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3417 * the flip is completed (no longer pending). Since this doesn't raise
3418 * an interrupt per se, we watch for the change at vblank.
3419 */
3420 if (I915_READ16(ISR) & flip_pending)
3421 return false;
3422
3423 intel_finish_page_flip(dev, pipe);
3424
3425 return true;
3426 }
3427
3428 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3429 {
3430 struct drm_device *dev = (struct drm_device *) arg;
3431 struct drm_i915_private *dev_priv = dev->dev_private;
3432 u16 iir, new_iir;
3433 u32 pipe_stats[2];
3434 unsigned long irqflags;
3435 int pipe;
3436 u16 flip_mask =
3437 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3438 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3439
3440 iir = I915_READ16(IIR);
3441 if (iir == 0)
3442 return IRQ_NONE;
3443
3444 while (iir & ~flip_mask) {
3445 /* Can't rely on pipestat interrupt bit in iir as it might
3446 * have been cleared after the pipestat interrupt was received.
3447 * It doesn't set the bit in iir again, but it still produces
3448 * interrupts (for non-MSI).
3449 */
3450 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3451 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3452 i915_handle_error(dev, false,
3453 "Command parser error, iir 0x%08x",
3454 iir);
3455
3456 for_each_pipe(pipe) {
3457 int reg = PIPESTAT(pipe);
3458 pipe_stats[pipe] = I915_READ(reg);
3459
3460 /*
3461 * Clear the PIPE*STAT regs before the IIR
3462 */
3463 if (pipe_stats[pipe] & 0x8000ffff)
3464 I915_WRITE(reg, pipe_stats[pipe]);
3465 }
3466 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3467
3468 I915_WRITE16(IIR, iir & ~flip_mask);
3469 new_iir = I915_READ16(IIR); /* Flush posted writes */
3470
3471 i915_update_dri1_breadcrumb(dev);
3472
3473 if (iir & I915_USER_INTERRUPT)
3474 notify_ring(dev, &dev_priv->ring[RCS]);
3475
3476 for_each_pipe(pipe) {
3477 int plane = pipe;
3478 if (HAS_FBC(dev))
3479 plane = !plane;
3480
3481 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3482 i8xx_handle_vblank(dev, plane, pipe, iir))
3483 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3484
3485 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3486 i9xx_pipe_crc_irq_handler(dev, pipe);
3487
3488 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3489 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3490 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3491 }
3492
3493 iir = new_iir;
3494 }
3495
3496 return IRQ_HANDLED;
3497 }
3498
3499 static void i8xx_irq_uninstall(struct drm_device * dev)
3500 {
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502 int pipe;
3503
3504 for_each_pipe(pipe) {
3505 /* Clear enable bits; then clear status bits */
3506 I915_WRITE(PIPESTAT(pipe), 0);
3507 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3508 }
3509 I915_WRITE16(IMR, 0xffff);
3510 I915_WRITE16(IER, 0x0);
3511 I915_WRITE16(IIR, I915_READ16(IIR));
3512 }
3513
3514 static void i915_irq_preinstall(struct drm_device * dev)
3515 {
3516 struct drm_i915_private *dev_priv = dev->dev_private;
3517 int pipe;
3518
3519 if (I915_HAS_HOTPLUG(dev)) {
3520 I915_WRITE(PORT_HOTPLUG_EN, 0);
3521 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3522 }
3523
3524 I915_WRITE16(HWSTAM, 0xeffe);
3525 for_each_pipe(pipe)
3526 I915_WRITE(PIPESTAT(pipe), 0);
3527 I915_WRITE(IMR, 0xffffffff);
3528 I915_WRITE(IER, 0x0);
3529 POSTING_READ(IER);
3530 }
3531
3532 static int i915_irq_postinstall(struct drm_device *dev)
3533 {
3534 struct drm_i915_private *dev_priv = dev->dev_private;
3535 u32 enable_mask;
3536 unsigned long irqflags;
3537
3538 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3539
3540 /* Unmask the interrupts that we always want on. */
3541 dev_priv->irq_mask =
3542 ~(I915_ASLE_INTERRUPT |
3543 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3544 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3545 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3546 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3547 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3548
3549 enable_mask =
3550 I915_ASLE_INTERRUPT |
3551 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3552 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3553 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3554 I915_USER_INTERRUPT;
3555
3556 if (I915_HAS_HOTPLUG(dev)) {
3557 I915_WRITE(PORT_HOTPLUG_EN, 0);
3558 POSTING_READ(PORT_HOTPLUG_EN);
3559
3560 /* Enable in IER... */
3561 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3562 /* and unmask in IMR */
3563 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3564 }
3565
3566 I915_WRITE(IMR, dev_priv->irq_mask);
3567 I915_WRITE(IER, enable_mask);
3568 POSTING_READ(IER);
3569
3570 i915_enable_asle_pipestat(dev);
3571
3572 /* Interrupt setup is already guaranteed to be single-threaded, this is
3573 * just to make the assert_spin_locked check happy. */
3574 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3575 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3576 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3577 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3578
3579 return 0;
3580 }
3581
3582 /*
3583 * Returns true when a page flip has completed.
3584 */
3585 static bool i915_handle_vblank(struct drm_device *dev,
3586 int plane, int pipe, u32 iir)
3587 {
3588 struct drm_i915_private *dev_priv = dev->dev_private;
3589 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3590
3591 if (!intel_pipe_handle_vblank(dev, pipe))
3592 return false;
3593
3594 if ((iir & flip_pending) == 0)
3595 return false;
3596
3597 intel_prepare_page_flip(dev, plane);
3598
3599 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3600 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3601 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3602 * the flip is completed (no longer pending). Since this doesn't raise
3603 * an interrupt per se, we watch for the change at vblank.
3604 */
3605 if (I915_READ(ISR) & flip_pending)
3606 return false;
3607
3608 intel_finish_page_flip(dev, pipe);
3609
3610 return true;
3611 }
3612
3613 static irqreturn_t i915_irq_handler(int irq, void *arg)
3614 {
3615 struct drm_device *dev = (struct drm_device *) arg;
3616 struct drm_i915_private *dev_priv = dev->dev_private;
3617 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3618 unsigned long irqflags;
3619 u32 flip_mask =
3620 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3621 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3622 int pipe, ret = IRQ_NONE;
3623
3624 iir = I915_READ(IIR);
3625 do {
3626 bool irq_received = (iir & ~flip_mask) != 0;
3627 bool blc_event = false;
3628
3629 /* Can't rely on pipestat interrupt bit in iir as it might
3630 * have been cleared after the pipestat interrupt was received.
3631 * It doesn't set the bit in iir again, but it still produces
3632 * interrupts (for non-MSI).
3633 */
3634 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3635 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3636 i915_handle_error(dev, false,
3637 "Command parser error, iir 0x%08x",
3638 iir);
3639
3640 for_each_pipe(pipe) {
3641 int reg = PIPESTAT(pipe);
3642 pipe_stats[pipe] = I915_READ(reg);
3643
3644 /* Clear the PIPE*STAT regs before the IIR */
3645 if (pipe_stats[pipe] & 0x8000ffff) {
3646 I915_WRITE(reg, pipe_stats[pipe]);
3647 irq_received = true;
3648 }
3649 }
3650 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3651
3652 if (!irq_received)
3653 break;
3654
3655 /* Consume port. Then clear IIR or we'll miss events */
3656 if (I915_HAS_HOTPLUG(dev) &&
3657 iir & I915_DISPLAY_PORT_INTERRUPT)
3658 i9xx_hpd_irq_handler(dev);
3659
3660 I915_WRITE(IIR, iir & ~flip_mask);
3661 new_iir = I915_READ(IIR); /* Flush posted writes */
3662
3663 if (iir & I915_USER_INTERRUPT)
3664 notify_ring(dev, &dev_priv->ring[RCS]);
3665
3666 for_each_pipe(pipe) {
3667 int plane = pipe;
3668 if (HAS_FBC(dev))
3669 plane = !plane;
3670
3671 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3672 i915_handle_vblank(dev, plane, pipe, iir))
3673 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3674
3675 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3676 blc_event = true;
3677
3678 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3679 i9xx_pipe_crc_irq_handler(dev, pipe);
3680
3681 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3682 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3683 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3684 }
3685
3686 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3687 intel_opregion_asle_intr(dev);
3688
3689 /* With MSI, interrupts are only generated when iir
3690 * transitions from zero to nonzero. If another bit got
3691 * set while we were handling the existing iir bits, then
3692 * we would never get another interrupt.
3693 *
3694 * This is fine on non-MSI as well, as if we hit this path
3695 * we avoid exiting the interrupt handler only to generate
3696 * another one.
3697 *
3698 * Note that for MSI this could cause a stray interrupt report
3699 * if an interrupt landed in the time between writing IIR and
3700 * the posting read. This should be rare enough to never
3701 * trigger the 99% of 100,000 interrupts test for disabling
3702 * stray interrupts.
3703 */
3704 ret = IRQ_HANDLED;
3705 iir = new_iir;
3706 } while (iir & ~flip_mask);
3707
3708 i915_update_dri1_breadcrumb(dev);
3709
3710 return ret;
3711 }
3712
3713 static void i915_irq_uninstall(struct drm_device * dev)
3714 {
3715 struct drm_i915_private *dev_priv = dev->dev_private;
3716 int pipe;
3717
3718 intel_hpd_irq_uninstall(dev_priv);
3719
3720 if (I915_HAS_HOTPLUG(dev)) {
3721 I915_WRITE(PORT_HOTPLUG_EN, 0);
3722 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3723 }
3724
3725 I915_WRITE16(HWSTAM, 0xffff);
3726 for_each_pipe(pipe) {
3727 /* Clear enable bits; then clear status bits */
3728 I915_WRITE(PIPESTAT(pipe), 0);
3729 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3730 }
3731 I915_WRITE(IMR, 0xffffffff);
3732 I915_WRITE(IER, 0x0);
3733
3734 I915_WRITE(IIR, I915_READ(IIR));
3735 }
3736
3737 static void i965_irq_preinstall(struct drm_device * dev)
3738 {
3739 struct drm_i915_private *dev_priv = dev->dev_private;
3740 int pipe;
3741
3742 I915_WRITE(PORT_HOTPLUG_EN, 0);
3743 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3744
3745 I915_WRITE(HWSTAM, 0xeffe);
3746 for_each_pipe(pipe)
3747 I915_WRITE(PIPESTAT(pipe), 0);
3748 I915_WRITE(IMR, 0xffffffff);
3749 I915_WRITE(IER, 0x0);
3750 POSTING_READ(IER);
3751 }
3752
3753 static int i965_irq_postinstall(struct drm_device *dev)
3754 {
3755 struct drm_i915_private *dev_priv = dev->dev_private;
3756 u32 enable_mask;
3757 u32 error_mask;
3758 unsigned long irqflags;
3759
3760 /* Unmask the interrupts that we always want on. */
3761 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3762 I915_DISPLAY_PORT_INTERRUPT |
3763 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3764 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3765 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3766 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3767 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3768
3769 enable_mask = ~dev_priv->irq_mask;
3770 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3771 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3772 enable_mask |= I915_USER_INTERRUPT;
3773
3774 if (IS_G4X(dev))
3775 enable_mask |= I915_BSD_USER_INTERRUPT;
3776
3777 /* Interrupt setup is already guaranteed to be single-threaded, this is
3778 * just to make the assert_spin_locked check happy. */
3779 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3780 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3781 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3782 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3783 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3784
3785 /*
3786 * Enable some error detection, note the instruction error mask
3787 * bit is reserved, so we leave it masked.
3788 */
3789 if (IS_G4X(dev)) {
3790 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3791 GM45_ERROR_MEM_PRIV |
3792 GM45_ERROR_CP_PRIV |
3793 I915_ERROR_MEMORY_REFRESH);
3794 } else {
3795 error_mask = ~(I915_ERROR_PAGE_TABLE |
3796 I915_ERROR_MEMORY_REFRESH);
3797 }
3798 I915_WRITE(EMR, error_mask);
3799
3800 I915_WRITE(IMR, dev_priv->irq_mask);
3801 I915_WRITE(IER, enable_mask);
3802 POSTING_READ(IER);
3803
3804 I915_WRITE(PORT_HOTPLUG_EN, 0);
3805 POSTING_READ(PORT_HOTPLUG_EN);
3806
3807 i915_enable_asle_pipestat(dev);
3808
3809 return 0;
3810 }
3811
3812 static void i915_hpd_irq_setup(struct drm_device *dev)
3813 {
3814 struct drm_i915_private *dev_priv = dev->dev_private;
3815 struct drm_mode_config *mode_config = &dev->mode_config;
3816 struct intel_encoder *intel_encoder;
3817 u32 hotplug_en;
3818
3819 assert_spin_locked(&dev_priv->irq_lock);
3820
3821 if (I915_HAS_HOTPLUG(dev)) {
3822 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3823 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3824 /* Note HDMI and DP share hotplug bits */
3825 /* enable bits are the same for all generations */
3826 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3827 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3828 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3829 /* Programming the CRT detection parameters tends
3830 to generate a spurious hotplug event about three
3831 seconds later. So just do it once.
3832 */
3833 if (IS_G4X(dev))
3834 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3835 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3836 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3837
3838 /* Ignore TV since it's buggy */
3839 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3840 }
3841 }
3842
3843 static irqreturn_t i965_irq_handler(int irq, void *arg)
3844 {
3845 struct drm_device *dev = (struct drm_device *) arg;
3846 struct drm_i915_private *dev_priv = dev->dev_private;
3847 u32 iir, new_iir;
3848 u32 pipe_stats[I915_MAX_PIPES];
3849 unsigned long irqflags;
3850 int ret = IRQ_NONE, pipe;
3851 u32 flip_mask =
3852 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3853 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3854
3855 iir = I915_READ(IIR);
3856
3857 for (;;) {
3858 bool irq_received = (iir & ~flip_mask) != 0;
3859 bool blc_event = false;
3860
3861 /* Can't rely on pipestat interrupt bit in iir as it might
3862 * have been cleared after the pipestat interrupt was received.
3863 * It doesn't set the bit in iir again, but it still produces
3864 * interrupts (for non-MSI).
3865 */
3866 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3867 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3868 i915_handle_error(dev, false,
3869 "Command parser error, iir 0x%08x",
3870 iir);
3871
3872 for_each_pipe(pipe) {
3873 int reg = PIPESTAT(pipe);
3874 pipe_stats[pipe] = I915_READ(reg);
3875
3876 /*
3877 * Clear the PIPE*STAT regs before the IIR
3878 */
3879 if (pipe_stats[pipe] & 0x8000ffff) {
3880 I915_WRITE(reg, pipe_stats[pipe]);
3881 irq_received = true;
3882 }
3883 }
3884 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3885
3886 if (!irq_received)
3887 break;
3888
3889 ret = IRQ_HANDLED;
3890
3891 /* Consume port. Then clear IIR or we'll miss events */
3892 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3893 i9xx_hpd_irq_handler(dev);
3894
3895 I915_WRITE(IIR, iir & ~flip_mask);
3896 new_iir = I915_READ(IIR); /* Flush posted writes */
3897
3898 if (iir & I915_USER_INTERRUPT)
3899 notify_ring(dev, &dev_priv->ring[RCS]);
3900 if (iir & I915_BSD_USER_INTERRUPT)
3901 notify_ring(dev, &dev_priv->ring[VCS]);
3902
3903 for_each_pipe(pipe) {
3904 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3905 i915_handle_vblank(dev, pipe, pipe, iir))
3906 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3907
3908 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3909 blc_event = true;
3910
3911 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3912 i9xx_pipe_crc_irq_handler(dev, pipe);
3913
3914 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3915 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3916 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3917 }
3918
3919 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3920 intel_opregion_asle_intr(dev);
3921
3922 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3923 gmbus_irq_handler(dev);
3924
3925 /* With MSI, interrupts are only generated when iir
3926 * transitions from zero to nonzero. If another bit got
3927 * set while we were handling the existing iir bits, then
3928 * we would never get another interrupt.
3929 *
3930 * This is fine on non-MSI as well, as if we hit this path
3931 * we avoid exiting the interrupt handler only to generate
3932 * another one.
3933 *
3934 * Note that for MSI this could cause a stray interrupt report
3935 * if an interrupt landed in the time between writing IIR and
3936 * the posting read. This should be rare enough to never
3937 * trigger the 99% of 100,000 interrupts test for disabling
3938 * stray interrupts.
3939 */
3940 iir = new_iir;
3941 }
3942
3943 i915_update_dri1_breadcrumb(dev);
3944
3945 return ret;
3946 }
3947
3948 static void i965_irq_uninstall(struct drm_device * dev)
3949 {
3950 struct drm_i915_private *dev_priv = dev->dev_private;
3951 int pipe;
3952
3953 if (!dev_priv)
3954 return;
3955
3956 intel_hpd_irq_uninstall(dev_priv);
3957
3958 I915_WRITE(PORT_HOTPLUG_EN, 0);
3959 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3960
3961 I915_WRITE(HWSTAM, 0xffffffff);
3962 for_each_pipe(pipe)
3963 I915_WRITE(PIPESTAT(pipe), 0);
3964 I915_WRITE(IMR, 0xffffffff);
3965 I915_WRITE(IER, 0x0);
3966
3967 for_each_pipe(pipe)
3968 I915_WRITE(PIPESTAT(pipe),
3969 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3970 I915_WRITE(IIR, I915_READ(IIR));
3971 }
3972
3973 static void intel_hpd_irq_reenable(unsigned long data)
3974 {
3975 struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3976 struct drm_device *dev = dev_priv->dev;
3977 struct drm_mode_config *mode_config = &dev->mode_config;
3978 unsigned long irqflags;
3979 int i;
3980
3981 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3982 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3983 struct drm_connector *connector;
3984
3985 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3986 continue;
3987
3988 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3989
3990 list_for_each_entry(connector, &mode_config->connector_list, head) {
3991 struct intel_connector *intel_connector = to_intel_connector(connector);
3992
3993 if (intel_connector->encoder->hpd_pin == i) {
3994 if (connector->polled != intel_connector->polled)
3995 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3996 drm_get_connector_name(connector));
3997 connector->polled = intel_connector->polled;
3998 if (!connector->polled)
3999 connector->polled = DRM_CONNECTOR_POLL_HPD;
4000 }
4001 }
4002 }
4003 if (dev_priv->display.hpd_irq_setup)
4004 dev_priv->display.hpd_irq_setup(dev);
4005 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4006 }
4007
4008 void intel_irq_init(struct drm_device *dev)
4009 {
4010 struct drm_i915_private *dev_priv = dev->dev_private;
4011
4012 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4013 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4014 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4015 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4016
4017 /* Let's track the enabled rps events */
4018 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4019
4020 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4021 i915_hangcheck_elapsed,
4022 (unsigned long) dev);
4023 setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
4024 (unsigned long) dev_priv);
4025
4026 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4027
4028 if (IS_GEN2(dev)) {
4029 dev->max_vblank_count = 0;
4030 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4031 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4032 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4033 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4034 } else {
4035 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4036 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4037 }
4038
4039 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4040 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4041 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4042 }
4043
4044 if (IS_VALLEYVIEW(dev)) {
4045 dev->driver->irq_handler = valleyview_irq_handler;
4046 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4047 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4048 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4049 dev->driver->enable_vblank = valleyview_enable_vblank;
4050 dev->driver->disable_vblank = valleyview_disable_vblank;
4051 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4052 } else if (IS_GEN8(dev)) {
4053 dev->driver->irq_handler = gen8_irq_handler;
4054 dev->driver->irq_preinstall = gen8_irq_preinstall;
4055 dev->driver->irq_postinstall = gen8_irq_postinstall;
4056 dev->driver->irq_uninstall = gen8_irq_uninstall;
4057 dev->driver->enable_vblank = gen8_enable_vblank;
4058 dev->driver->disable_vblank = gen8_disable_vblank;
4059 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4060 } else if (HAS_PCH_SPLIT(dev)) {
4061 dev->driver->irq_handler = ironlake_irq_handler;
4062 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4063 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4064 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4065 dev->driver->enable_vblank = ironlake_enable_vblank;
4066 dev->driver->disable_vblank = ironlake_disable_vblank;
4067 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4068 } else {
4069 if (INTEL_INFO(dev)->gen == 2) {
4070 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4071 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4072 dev->driver->irq_handler = i8xx_irq_handler;
4073 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4074 } else if (INTEL_INFO(dev)->gen == 3) {
4075 dev->driver->irq_preinstall = i915_irq_preinstall;
4076 dev->driver->irq_postinstall = i915_irq_postinstall;
4077 dev->driver->irq_uninstall = i915_irq_uninstall;
4078 dev->driver->irq_handler = i915_irq_handler;
4079 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4080 } else {
4081 dev->driver->irq_preinstall = i965_irq_preinstall;
4082 dev->driver->irq_postinstall = i965_irq_postinstall;
4083 dev->driver->irq_uninstall = i965_irq_uninstall;
4084 dev->driver->irq_handler = i965_irq_handler;
4085 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4086 }
4087 dev->driver->enable_vblank = i915_enable_vblank;
4088 dev->driver->disable_vblank = i915_disable_vblank;
4089 }
4090 }
4091
4092 void intel_hpd_init(struct drm_device *dev)
4093 {
4094 struct drm_i915_private *dev_priv = dev->dev_private;
4095 struct drm_mode_config *mode_config = &dev->mode_config;
4096 struct drm_connector *connector;
4097 unsigned long irqflags;
4098 int i;
4099
4100 for (i = 1; i < HPD_NUM_PINS; i++) {
4101 dev_priv->hpd_stats[i].hpd_cnt = 0;
4102 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4103 }
4104 list_for_each_entry(connector, &mode_config->connector_list, head) {
4105 struct intel_connector *intel_connector = to_intel_connector(connector);
4106 connector->polled = intel_connector->polled;
4107 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4108 connector->polled = DRM_CONNECTOR_POLL_HPD;
4109 }
4110
4111 /* Interrupt setup is already guaranteed to be single-threaded, this is
4112 * just to make the assert_spin_locked checks happy. */
4113 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4114 if (dev_priv->display.hpd_irq_setup)
4115 dev_priv->display.hpd_irq_setup(dev);
4116 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4117 }
4118
4119 /* Disable interrupts so we can allow runtime PM. */
4120 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4121 {
4122 struct drm_i915_private *dev_priv = dev->dev_private;
4123
4124 dev->driver->irq_uninstall(dev);
4125 dev_priv->pm.irqs_disabled = true;
4126 }
4127
4128 /* Restore interrupts so we can recover from runtime PM. */
4129 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4130 {
4131 struct drm_i915_private *dev_priv = dev->dev_private;
4132
4133 dev_priv->pm.irqs_disabled = false;
4134 dev->driver->irq_preinstall(dev);
4135 dev->driver->irq_postinstall(dev);
4136 }
This page took 0.527175 seconds and 6 git commands to generate.