drm/i915: Fix scanout position for real
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41 [HPD_CRT] = SDE_CRT_HOTPLUG,
42 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86 POSTING_READ(GEN8_##type##_IMR(which)); \
87 I915_WRITE(GEN8_##type##_IER(which), 0); \
88 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89 POSTING_READ(GEN8_##type##_IIR(which)); \
90 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91 POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95 I915_WRITE(type##IMR, 0xffffffff); \
96 POSTING_READ(type##IMR); \
97 I915_WRITE(type##IER, 0); \
98 I915_WRITE(type##IIR, 0xffffffff); \
99 POSTING_READ(type##IIR); \
100 I915_WRITE(type##IIR, 0xffffffff); \
101 POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106 */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108 u32 val = I915_READ(reg); \
109 if (val) { \
110 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111 (reg), val); \
112 I915_WRITE((reg), 0xffffffff); \
113 POSTING_READ(reg); \
114 I915_WRITE((reg), 0xffffffff); \
115 POSTING_READ(reg); \
116 } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120 GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123 POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127 GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128 I915_WRITE(type##IMR, (imr_val)); \
129 I915_WRITE(type##IER, (ier_val)); \
130 POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137 assert_spin_locked(&dev_priv->irq_lock);
138
139 if (WARN_ON(dev_priv->pm.irqs_disabled))
140 return;
141
142 if ((dev_priv->irq_mask & mask) != 0) {
143 dev_priv->irq_mask &= ~mask;
144 I915_WRITE(DEIMR, dev_priv->irq_mask);
145 POSTING_READ(DEIMR);
146 }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152 assert_spin_locked(&dev_priv->irq_lock);
153
154 if (WARN_ON(dev_priv->pm.irqs_disabled))
155 return;
156
157 if ((dev_priv->irq_mask & mask) != mask) {
158 dev_priv->irq_mask |= mask;
159 I915_WRITE(DEIMR, dev_priv->irq_mask);
160 POSTING_READ(DEIMR);
161 }
162 }
163
164 /**
165 * ilk_update_gt_irq - update GTIMR
166 * @dev_priv: driver private
167 * @interrupt_mask: mask of interrupt bits to update
168 * @enabled_irq_mask: mask of interrupt bits to enable
169 */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171 uint32_t interrupt_mask,
172 uint32_t enabled_irq_mask)
173 {
174 assert_spin_locked(&dev_priv->irq_lock);
175
176 if (WARN_ON(dev_priv->pm.irqs_disabled))
177 return;
178
179 dev_priv->gt_irq_mask &= ~interrupt_mask;
180 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182 POSTING_READ(GTIMR);
183 }
184
185 void ilk_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187 ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void ilk_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192 ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196 * snb_update_pm_irq - update GEN6_PMIMR
197 * @dev_priv: driver private
198 * @interrupt_mask: mask of interrupt bits to update
199 * @enabled_irq_mask: mask of interrupt bits to enable
200 */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202 uint32_t interrupt_mask,
203 uint32_t enabled_irq_mask)
204 {
205 uint32_t new_val;
206
207 assert_spin_locked(&dev_priv->irq_lock);
208
209 if (WARN_ON(dev_priv->pm.irqs_disabled))
210 return;
211
212 new_val = dev_priv->pm_irq_mask;
213 new_val &= ~interrupt_mask;
214 new_val |= (~enabled_irq_mask & interrupt_mask);
215
216 if (new_val != dev_priv->pm_irq_mask) {
217 dev_priv->pm_irq_mask = new_val;
218 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219 POSTING_READ(GEN6_PMIMR);
220 }
221 }
222
223 void snb_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225 snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void snb_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230 snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235 struct drm_i915_private *dev_priv = dev->dev_private;
236 struct intel_crtc *crtc;
237 enum pipe pipe;
238
239 assert_spin_locked(&dev_priv->irq_lock);
240
241 for_each_pipe(pipe) {
242 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244 if (crtc->cpu_fifo_underrun_disabled)
245 return false;
246 }
247
248 return true;
249 }
250
251 static bool cpt_can_enable_serr_int(struct drm_device *dev)
252 {
253 struct drm_i915_private *dev_priv = dev->dev_private;
254 enum pipe pipe;
255 struct intel_crtc *crtc;
256
257 assert_spin_locked(&dev_priv->irq_lock);
258
259 for_each_pipe(pipe) {
260 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
261
262 if (crtc->pch_fifo_underrun_disabled)
263 return false;
264 }
265
266 return true;
267 }
268
269 static void i9xx_clear_fifo_underrun(struct drm_device *dev, enum pipe pipe)
270 {
271 struct drm_i915_private *dev_priv = dev->dev_private;
272 u32 reg = PIPESTAT(pipe);
273 u32 pipestat = I915_READ(reg) & 0x7fff0000;
274
275 assert_spin_locked(&dev_priv->irq_lock);
276
277 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
278 POSTING_READ(reg);
279 }
280
281 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
282 enum pipe pipe, bool enable)
283 {
284 struct drm_i915_private *dev_priv = dev->dev_private;
285 uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
286 DE_PIPEB_FIFO_UNDERRUN;
287
288 if (enable)
289 ironlake_enable_display_irq(dev_priv, bit);
290 else
291 ironlake_disable_display_irq(dev_priv, bit);
292 }
293
294 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
295 enum pipe pipe, bool enable)
296 {
297 struct drm_i915_private *dev_priv = dev->dev_private;
298 if (enable) {
299 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
300
301 if (!ivb_can_enable_err_int(dev))
302 return;
303
304 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
305 } else {
306 bool was_enabled = !(I915_READ(DEIMR) & DE_ERR_INT_IVB);
307
308 /* Change the state _after_ we've read out the current one. */
309 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
310
311 if (!was_enabled &&
312 (I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe))) {
313 DRM_DEBUG_KMS("uncleared fifo underrun on pipe %c\n",
314 pipe_name(pipe));
315 }
316 }
317 }
318
319 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
320 enum pipe pipe, bool enable)
321 {
322 struct drm_i915_private *dev_priv = dev->dev_private;
323
324 assert_spin_locked(&dev_priv->irq_lock);
325
326 if (enable)
327 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
328 else
329 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
330 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
331 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
332 }
333
334 /**
335 * ibx_display_interrupt_update - update SDEIMR
336 * @dev_priv: driver private
337 * @interrupt_mask: mask of interrupt bits to update
338 * @enabled_irq_mask: mask of interrupt bits to enable
339 */
340 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
341 uint32_t interrupt_mask,
342 uint32_t enabled_irq_mask)
343 {
344 uint32_t sdeimr = I915_READ(SDEIMR);
345 sdeimr &= ~interrupt_mask;
346 sdeimr |= (~enabled_irq_mask & interrupt_mask);
347
348 assert_spin_locked(&dev_priv->irq_lock);
349
350 if (WARN_ON(dev_priv->pm.irqs_disabled))
351 return;
352
353 I915_WRITE(SDEIMR, sdeimr);
354 POSTING_READ(SDEIMR);
355 }
356 #define ibx_enable_display_interrupt(dev_priv, bits) \
357 ibx_display_interrupt_update((dev_priv), (bits), (bits))
358 #define ibx_disable_display_interrupt(dev_priv, bits) \
359 ibx_display_interrupt_update((dev_priv), (bits), 0)
360
361 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
362 enum transcoder pch_transcoder,
363 bool enable)
364 {
365 struct drm_i915_private *dev_priv = dev->dev_private;
366 uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
367 SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
368
369 if (enable)
370 ibx_enable_display_interrupt(dev_priv, bit);
371 else
372 ibx_disable_display_interrupt(dev_priv, bit);
373 }
374
375 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
376 enum transcoder pch_transcoder,
377 bool enable)
378 {
379 struct drm_i915_private *dev_priv = dev->dev_private;
380
381 if (enable) {
382 I915_WRITE(SERR_INT,
383 SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
384
385 if (!cpt_can_enable_serr_int(dev))
386 return;
387
388 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
389 } else {
390 uint32_t tmp = I915_READ(SERR_INT);
391 bool was_enabled = !(I915_READ(SDEIMR) & SDE_ERROR_CPT);
392
393 /* Change the state _after_ we've read out the current one. */
394 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
395
396 if (!was_enabled &&
397 (tmp & SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder))) {
398 DRM_DEBUG_KMS("uncleared pch fifo underrun on pch transcoder %c\n",
399 transcoder_name(pch_transcoder));
400 }
401 }
402 }
403
404 /**
405 * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
406 * @dev: drm device
407 * @pipe: pipe
408 * @enable: true if we want to report FIFO underrun errors, false otherwise
409 *
410 * This function makes us disable or enable CPU fifo underruns for a specific
411 * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
412 * reporting for one pipe may also disable all the other CPU error interruts for
413 * the other pipes, due to the fact that there's just one interrupt mask/enable
414 * bit for all the pipes.
415 *
416 * Returns the previous state of underrun reporting.
417 */
418 bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
419 enum pipe pipe, bool enable)
420 {
421 struct drm_i915_private *dev_priv = dev->dev_private;
422 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
424 bool ret;
425
426 assert_spin_locked(&dev_priv->irq_lock);
427
428 ret = !intel_crtc->cpu_fifo_underrun_disabled;
429
430 if (enable == ret)
431 goto done;
432
433 intel_crtc->cpu_fifo_underrun_disabled = !enable;
434
435 if (enable && (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev)))
436 i9xx_clear_fifo_underrun(dev, pipe);
437 else if (IS_GEN5(dev) || IS_GEN6(dev))
438 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
439 else if (IS_GEN7(dev))
440 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable);
441 else if (IS_GEN8(dev))
442 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
443
444 done:
445 return ret;
446 }
447
448 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
449 enum pipe pipe, bool enable)
450 {
451 struct drm_i915_private *dev_priv = dev->dev_private;
452 unsigned long flags;
453 bool ret;
454
455 spin_lock_irqsave(&dev_priv->irq_lock, flags);
456 ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
457 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
458
459 return ret;
460 }
461
462 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
463 enum pipe pipe)
464 {
465 struct drm_i915_private *dev_priv = dev->dev_private;
466 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
468
469 return !intel_crtc->cpu_fifo_underrun_disabled;
470 }
471
472 /**
473 * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
474 * @dev: drm device
475 * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
476 * @enable: true if we want to report FIFO underrun errors, false otherwise
477 *
478 * This function makes us disable or enable PCH fifo underruns for a specific
479 * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
480 * underrun reporting for one transcoder may also disable all the other PCH
481 * error interruts for the other transcoders, due to the fact that there's just
482 * one interrupt mask/enable bit for all the transcoders.
483 *
484 * Returns the previous state of underrun reporting.
485 */
486 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
487 enum transcoder pch_transcoder,
488 bool enable)
489 {
490 struct drm_i915_private *dev_priv = dev->dev_private;
491 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493 unsigned long flags;
494 bool ret;
495
496 /*
497 * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
498 * has only one pch transcoder A that all pipes can use. To avoid racy
499 * pch transcoder -> pipe lookups from interrupt code simply store the
500 * underrun statistics in crtc A. Since we never expose this anywhere
501 * nor use it outside of the fifo underrun code here using the "wrong"
502 * crtc on LPT won't cause issues.
503 */
504
505 spin_lock_irqsave(&dev_priv->irq_lock, flags);
506
507 ret = !intel_crtc->pch_fifo_underrun_disabled;
508
509 if (enable == ret)
510 goto done;
511
512 intel_crtc->pch_fifo_underrun_disabled = !enable;
513
514 if (HAS_PCH_IBX(dev))
515 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
516 else
517 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
518
519 done:
520 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
521 return ret;
522 }
523
524
525 static void
526 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
527 u32 enable_mask, u32 status_mask)
528 {
529 u32 reg = PIPESTAT(pipe);
530 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
531
532 assert_spin_locked(&dev_priv->irq_lock);
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == enable_mask)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
544
545 /* Enable the interrupt, clear any pending status */
546 pipestat |= enable_mask | status_mask;
547 I915_WRITE(reg, pipestat);
548 POSTING_READ(reg);
549 }
550
551 static void
552 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
553 u32 enable_mask, u32 status_mask)
554 {
555 u32 reg = PIPESTAT(pipe);
556 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
557
558 assert_spin_locked(&dev_priv->irq_lock);
559
560 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
561 status_mask & ~PIPESTAT_INT_STATUS_MASK,
562 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
563 pipe_name(pipe), enable_mask, status_mask))
564 return;
565
566 if ((pipestat & enable_mask) == 0)
567 return;
568
569 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
570
571 pipestat &= ~enable_mask;
572 I915_WRITE(reg, pipestat);
573 POSTING_READ(reg);
574 }
575
576 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
577 {
578 u32 enable_mask = status_mask << 16;
579
580 /*
581 * On pipe A we don't support the PSR interrupt yet, on pipe B the
582 * same bit MBZ.
583 */
584 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
585 return 0;
586
587 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
588 SPRITE0_FLIP_DONE_INT_EN_VLV |
589 SPRITE1_FLIP_DONE_INT_EN_VLV);
590 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
591 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
592 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
593 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
594
595 return enable_mask;
596 }
597
598 void
599 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
600 u32 status_mask)
601 {
602 u32 enable_mask;
603
604 if (IS_VALLEYVIEW(dev_priv->dev))
605 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
606 status_mask);
607 else
608 enable_mask = status_mask << 16;
609 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
610 }
611
612 void
613 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
614 u32 status_mask)
615 {
616 u32 enable_mask;
617
618 if (IS_VALLEYVIEW(dev_priv->dev))
619 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
620 status_mask);
621 else
622 enable_mask = status_mask << 16;
623 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
624 }
625
626 /**
627 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
628 */
629 static void i915_enable_asle_pipestat(struct drm_device *dev)
630 {
631 struct drm_i915_private *dev_priv = dev->dev_private;
632 unsigned long irqflags;
633
634 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
635 return;
636
637 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
638
639 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
640 if (INTEL_INFO(dev)->gen >= 4)
641 i915_enable_pipestat(dev_priv, PIPE_A,
642 PIPE_LEGACY_BLC_EVENT_STATUS);
643
644 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
645 }
646
647 /**
648 * i915_pipe_enabled - check if a pipe is enabled
649 * @dev: DRM device
650 * @pipe: pipe to check
651 *
652 * Reading certain registers when the pipe is disabled can hang the chip.
653 * Use this routine to make sure the PLL is running and the pipe is active
654 * before reading such registers if unsure.
655 */
656 static int
657 i915_pipe_enabled(struct drm_device *dev, int pipe)
658 {
659 struct drm_i915_private *dev_priv = dev->dev_private;
660
661 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
662 /* Locking is horribly broken here, but whatever. */
663 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
664 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
665
666 return intel_crtc->active;
667 } else {
668 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
669 }
670 }
671
672 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
673 {
674 /* Gen2 doesn't have a hardware frame counter */
675 return 0;
676 }
677
678 /* Called from drm generic code, passed a 'crtc', which
679 * we use as a pipe index
680 */
681 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
682 {
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 unsigned long high_frame;
685 unsigned long low_frame;
686 u32 high1, high2, low, pixel, vbl_start;
687
688 if (!i915_pipe_enabled(dev, pipe)) {
689 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
690 "pipe %c\n", pipe_name(pipe));
691 return 0;
692 }
693
694 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
695 struct intel_crtc *intel_crtc =
696 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
697 const struct drm_display_mode *mode =
698 &intel_crtc->config.adjusted_mode;
699
700 vbl_start = mode->crtc_vblank_start * mode->crtc_htotal;
701 } else {
702 enum transcoder cpu_transcoder = (enum transcoder) pipe;
703 u32 htotal;
704
705 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
706 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
707
708 vbl_start *= htotal;
709 }
710
711 high_frame = PIPEFRAME(pipe);
712 low_frame = PIPEFRAMEPIXEL(pipe);
713
714 /*
715 * High & low register fields aren't synchronized, so make sure
716 * we get a low value that's stable across two reads of the high
717 * register.
718 */
719 do {
720 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
721 low = I915_READ(low_frame);
722 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
723 } while (high1 != high2);
724
725 high1 >>= PIPE_FRAME_HIGH_SHIFT;
726 pixel = low & PIPE_PIXEL_MASK;
727 low >>= PIPE_FRAME_LOW_SHIFT;
728
729 /*
730 * The frame counter increments at beginning of active.
731 * Cook up a vblank counter by also checking the pixel
732 * counter against vblank start.
733 */
734 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
735 }
736
737 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
738 {
739 struct drm_i915_private *dev_priv = dev->dev_private;
740 int reg = PIPE_FRMCOUNT_GM45(pipe);
741
742 if (!i915_pipe_enabled(dev, pipe)) {
743 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
744 "pipe %c\n", pipe_name(pipe));
745 return 0;
746 }
747
748 return I915_READ(reg);
749 }
750
751 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
752 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
753
754 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
755 unsigned int flags, int *vpos, int *hpos,
756 ktime_t *stime, ktime_t *etime)
757 {
758 struct drm_i915_private *dev_priv = dev->dev_private;
759 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
760 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
761 const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
762 int position;
763 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
764 bool in_vbl = true;
765 int ret = 0;
766 unsigned long irqflags;
767
768 if (!intel_crtc->active) {
769 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
770 "pipe %c\n", pipe_name(pipe));
771 return 0;
772 }
773
774 htotal = mode->crtc_htotal;
775 hsync_start = mode->crtc_hsync_start;
776 vtotal = mode->crtc_vtotal;
777 vbl_start = mode->crtc_vblank_start;
778 vbl_end = mode->crtc_vblank_end;
779
780 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
781 vbl_start = DIV_ROUND_UP(vbl_start, 2);
782 vbl_end /= 2;
783 vtotal /= 2;
784 }
785
786 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
787
788 /*
789 * Lock uncore.lock, as we will do multiple timing critical raw
790 * register reads, potentially with preemption disabled, so the
791 * following code must not block on uncore.lock.
792 */
793 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
794
795 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
796
797 /* Get optional system timestamp before query. */
798 if (stime)
799 *stime = ktime_get();
800
801 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
802 /* No obvious pixelcount register. Only query vertical
803 * scanout position from Display scan line register.
804 */
805 if (IS_GEN2(dev))
806 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
807 else
808 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
809
810 /*
811 * Scanline counter increments at leading edge of hsync, and
812 * it starts counting from vtotal-1 on the first active line.
813 * That means the scanline counter value is always one less
814 * than what we would expect. Ie. just after start of vblank,
815 * which also occurs at start of hsync (on the last active line),
816 * the scanline counter will read vblank_start-1.
817 */
818 position = (position + 1) % vtotal;
819 } else {
820 /* Have access to pixelcount since start of frame.
821 * We can split this into vertical and horizontal
822 * scanout position.
823 */
824 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
825
826 /* convert to pixel counts */
827 vbl_start *= htotal;
828 vbl_end *= htotal;
829 vtotal *= htotal;
830
831 /*
832 * Start of vblank interrupt is triggered at start of hsync,
833 * just prior to the first active line of vblank. However we
834 * consider lines to start at the leading edge of horizontal
835 * active. So, should we get here before we've crossed into
836 * the horizontal active of the first line in vblank, we would
837 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
838 * always add htotal-hsync_start to the current pixel position.
839 */
840 position = (position + htotal - hsync_start) % vtotal;
841 }
842
843 /* Get optional system timestamp after query. */
844 if (etime)
845 *etime = ktime_get();
846
847 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
848
849 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
850
851 in_vbl = position >= vbl_start && position < vbl_end;
852
853 /*
854 * While in vblank, position will be negative
855 * counting up towards 0 at vbl_end. And outside
856 * vblank, position will be positive counting
857 * up since vbl_end.
858 */
859 if (position >= vbl_start)
860 position -= vbl_end;
861 else
862 position += vtotal - vbl_end;
863
864 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
865 *vpos = position;
866 *hpos = 0;
867 } else {
868 *vpos = position / htotal;
869 *hpos = position - (*vpos * htotal);
870 }
871
872 /* In vblank? */
873 if (in_vbl)
874 ret |= DRM_SCANOUTPOS_INVBL;
875
876 return ret;
877 }
878
879 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
880 int *max_error,
881 struct timeval *vblank_time,
882 unsigned flags)
883 {
884 struct drm_crtc *crtc;
885
886 if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
887 DRM_ERROR("Invalid crtc %d\n", pipe);
888 return -EINVAL;
889 }
890
891 /* Get drm_crtc to timestamp: */
892 crtc = intel_get_crtc_for_pipe(dev, pipe);
893 if (crtc == NULL) {
894 DRM_ERROR("Invalid crtc %d\n", pipe);
895 return -EINVAL;
896 }
897
898 if (!crtc->enabled) {
899 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
900 return -EBUSY;
901 }
902
903 /* Helper routine in DRM core does all the work: */
904 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
905 vblank_time, flags,
906 crtc,
907 &to_intel_crtc(crtc)->config.adjusted_mode);
908 }
909
910 static bool intel_hpd_irq_event(struct drm_device *dev,
911 struct drm_connector *connector)
912 {
913 enum drm_connector_status old_status;
914
915 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
916 old_status = connector->status;
917
918 connector->status = connector->funcs->detect(connector, false);
919 if (old_status == connector->status)
920 return false;
921
922 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
923 connector->base.id,
924 drm_get_connector_name(connector),
925 drm_get_connector_status_name(old_status),
926 drm_get_connector_status_name(connector->status));
927
928 return true;
929 }
930
931 /*
932 * Handle hotplug events outside the interrupt handler proper.
933 */
934 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
935
936 static void i915_hotplug_work_func(struct work_struct *work)
937 {
938 struct drm_i915_private *dev_priv =
939 container_of(work, struct drm_i915_private, hotplug_work);
940 struct drm_device *dev = dev_priv->dev;
941 struct drm_mode_config *mode_config = &dev->mode_config;
942 struct intel_connector *intel_connector;
943 struct intel_encoder *intel_encoder;
944 struct drm_connector *connector;
945 unsigned long irqflags;
946 bool hpd_disabled = false;
947 bool changed = false;
948 u32 hpd_event_bits;
949
950 /* HPD irq before everything is fully set up. */
951 if (!dev_priv->enable_hotplug_processing)
952 return;
953
954 mutex_lock(&mode_config->mutex);
955 DRM_DEBUG_KMS("running encoder hotplug functions\n");
956
957 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
958
959 hpd_event_bits = dev_priv->hpd_event_bits;
960 dev_priv->hpd_event_bits = 0;
961 list_for_each_entry(connector, &mode_config->connector_list, head) {
962 intel_connector = to_intel_connector(connector);
963 intel_encoder = intel_connector->encoder;
964 if (intel_encoder->hpd_pin > HPD_NONE &&
965 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
966 connector->polled == DRM_CONNECTOR_POLL_HPD) {
967 DRM_INFO("HPD interrupt storm detected on connector %s: "
968 "switching from hotplug detection to polling\n",
969 drm_get_connector_name(connector));
970 dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
971 connector->polled = DRM_CONNECTOR_POLL_CONNECT
972 | DRM_CONNECTOR_POLL_DISCONNECT;
973 hpd_disabled = true;
974 }
975 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
976 DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
977 drm_get_connector_name(connector), intel_encoder->hpd_pin);
978 }
979 }
980 /* if there were no outputs to poll, poll was disabled,
981 * therefore make sure it's enabled when disabling HPD on
982 * some connectors */
983 if (hpd_disabled) {
984 drm_kms_helper_poll_enable(dev);
985 mod_timer(&dev_priv->hotplug_reenable_timer,
986 jiffies + msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
987 }
988
989 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
990
991 list_for_each_entry(connector, &mode_config->connector_list, head) {
992 intel_connector = to_intel_connector(connector);
993 intel_encoder = intel_connector->encoder;
994 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
995 if (intel_encoder->hot_plug)
996 intel_encoder->hot_plug(intel_encoder);
997 if (intel_hpd_irq_event(dev, connector))
998 changed = true;
999 }
1000 }
1001 mutex_unlock(&mode_config->mutex);
1002
1003 if (changed)
1004 drm_kms_helper_hotplug_event(dev);
1005 }
1006
1007 static void intel_hpd_irq_uninstall(struct drm_i915_private *dev_priv)
1008 {
1009 del_timer_sync(&dev_priv->hotplug_reenable_timer);
1010 }
1011
1012 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1013 {
1014 struct drm_i915_private *dev_priv = dev->dev_private;
1015 u32 busy_up, busy_down, max_avg, min_avg;
1016 u8 new_delay;
1017
1018 spin_lock(&mchdev_lock);
1019
1020 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1021
1022 new_delay = dev_priv->ips.cur_delay;
1023
1024 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1025 busy_up = I915_READ(RCPREVBSYTUPAVG);
1026 busy_down = I915_READ(RCPREVBSYTDNAVG);
1027 max_avg = I915_READ(RCBMAXAVG);
1028 min_avg = I915_READ(RCBMINAVG);
1029
1030 /* Handle RCS change request from hw */
1031 if (busy_up > max_avg) {
1032 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1033 new_delay = dev_priv->ips.cur_delay - 1;
1034 if (new_delay < dev_priv->ips.max_delay)
1035 new_delay = dev_priv->ips.max_delay;
1036 } else if (busy_down < min_avg) {
1037 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1038 new_delay = dev_priv->ips.cur_delay + 1;
1039 if (new_delay > dev_priv->ips.min_delay)
1040 new_delay = dev_priv->ips.min_delay;
1041 }
1042
1043 if (ironlake_set_drps(dev, new_delay))
1044 dev_priv->ips.cur_delay = new_delay;
1045
1046 spin_unlock(&mchdev_lock);
1047
1048 return;
1049 }
1050
1051 static void notify_ring(struct drm_device *dev,
1052 struct intel_ring_buffer *ring)
1053 {
1054 if (ring->obj == NULL)
1055 return;
1056
1057 trace_i915_gem_request_complete(ring);
1058
1059 wake_up_all(&ring->irq_queue);
1060 i915_queue_hangcheck(dev);
1061 }
1062
1063 static void gen6_pm_rps_work(struct work_struct *work)
1064 {
1065 struct drm_i915_private *dev_priv =
1066 container_of(work, struct drm_i915_private, rps.work);
1067 u32 pm_iir;
1068 int new_delay, adj;
1069
1070 spin_lock_irq(&dev_priv->irq_lock);
1071 pm_iir = dev_priv->rps.pm_iir;
1072 dev_priv->rps.pm_iir = 0;
1073 /* Make sure not to corrupt PMIMR state used by ringbuffer code */
1074 snb_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1075 spin_unlock_irq(&dev_priv->irq_lock);
1076
1077 /* Make sure we didn't queue anything we're not going to process. */
1078 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1079
1080 if ((pm_iir & dev_priv->pm_rps_events) == 0)
1081 return;
1082
1083 mutex_lock(&dev_priv->rps.hw_lock);
1084
1085 adj = dev_priv->rps.last_adj;
1086 if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1087 if (adj > 0)
1088 adj *= 2;
1089 else
1090 adj = 1;
1091 new_delay = dev_priv->rps.cur_freq + adj;
1092
1093 /*
1094 * For better performance, jump directly
1095 * to RPe if we're below it.
1096 */
1097 if (new_delay < dev_priv->rps.efficient_freq)
1098 new_delay = dev_priv->rps.efficient_freq;
1099 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1100 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1101 new_delay = dev_priv->rps.efficient_freq;
1102 else
1103 new_delay = dev_priv->rps.min_freq_softlimit;
1104 adj = 0;
1105 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1106 if (adj < 0)
1107 adj *= 2;
1108 else
1109 adj = -1;
1110 new_delay = dev_priv->rps.cur_freq + adj;
1111 } else { /* unknown event */
1112 new_delay = dev_priv->rps.cur_freq;
1113 }
1114
1115 /* sysfs frequency interfaces may have snuck in while servicing the
1116 * interrupt
1117 */
1118 new_delay = clamp_t(int, new_delay,
1119 dev_priv->rps.min_freq_softlimit,
1120 dev_priv->rps.max_freq_softlimit);
1121
1122 dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1123
1124 if (IS_VALLEYVIEW(dev_priv->dev))
1125 valleyview_set_rps(dev_priv->dev, new_delay);
1126 else
1127 gen6_set_rps(dev_priv->dev, new_delay);
1128
1129 mutex_unlock(&dev_priv->rps.hw_lock);
1130 }
1131
1132
1133 /**
1134 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1135 * occurred.
1136 * @work: workqueue struct
1137 *
1138 * Doesn't actually do anything except notify userspace. As a consequence of
1139 * this event, userspace should try to remap the bad rows since statistically
1140 * it is likely the same row is more likely to go bad again.
1141 */
1142 static void ivybridge_parity_work(struct work_struct *work)
1143 {
1144 struct drm_i915_private *dev_priv =
1145 container_of(work, struct drm_i915_private, l3_parity.error_work);
1146 u32 error_status, row, bank, subbank;
1147 char *parity_event[6];
1148 uint32_t misccpctl;
1149 unsigned long flags;
1150 uint8_t slice = 0;
1151
1152 /* We must turn off DOP level clock gating to access the L3 registers.
1153 * In order to prevent a get/put style interface, acquire struct mutex
1154 * any time we access those registers.
1155 */
1156 mutex_lock(&dev_priv->dev->struct_mutex);
1157
1158 /* If we've screwed up tracking, just let the interrupt fire again */
1159 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1160 goto out;
1161
1162 misccpctl = I915_READ(GEN7_MISCCPCTL);
1163 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1164 POSTING_READ(GEN7_MISCCPCTL);
1165
1166 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1167 u32 reg;
1168
1169 slice--;
1170 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1171 break;
1172
1173 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1174
1175 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1176
1177 error_status = I915_READ(reg);
1178 row = GEN7_PARITY_ERROR_ROW(error_status);
1179 bank = GEN7_PARITY_ERROR_BANK(error_status);
1180 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1181
1182 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1183 POSTING_READ(reg);
1184
1185 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1186 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1187 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1188 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1189 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1190 parity_event[5] = NULL;
1191
1192 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1193 KOBJ_CHANGE, parity_event);
1194
1195 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1196 slice, row, bank, subbank);
1197
1198 kfree(parity_event[4]);
1199 kfree(parity_event[3]);
1200 kfree(parity_event[2]);
1201 kfree(parity_event[1]);
1202 }
1203
1204 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1205
1206 out:
1207 WARN_ON(dev_priv->l3_parity.which_slice);
1208 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1209 ilk_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1210 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1211
1212 mutex_unlock(&dev_priv->dev->struct_mutex);
1213 }
1214
1215 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1216 {
1217 struct drm_i915_private *dev_priv = dev->dev_private;
1218
1219 if (!HAS_L3_DPF(dev))
1220 return;
1221
1222 spin_lock(&dev_priv->irq_lock);
1223 ilk_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1224 spin_unlock(&dev_priv->irq_lock);
1225
1226 iir &= GT_PARITY_ERROR(dev);
1227 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1228 dev_priv->l3_parity.which_slice |= 1 << 1;
1229
1230 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1231 dev_priv->l3_parity.which_slice |= 1 << 0;
1232
1233 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1234 }
1235
1236 static void ilk_gt_irq_handler(struct drm_device *dev,
1237 struct drm_i915_private *dev_priv,
1238 u32 gt_iir)
1239 {
1240 if (gt_iir &
1241 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1242 notify_ring(dev, &dev_priv->ring[RCS]);
1243 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1244 notify_ring(dev, &dev_priv->ring[VCS]);
1245 }
1246
1247 static void snb_gt_irq_handler(struct drm_device *dev,
1248 struct drm_i915_private *dev_priv,
1249 u32 gt_iir)
1250 {
1251
1252 if (gt_iir &
1253 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1254 notify_ring(dev, &dev_priv->ring[RCS]);
1255 if (gt_iir & GT_BSD_USER_INTERRUPT)
1256 notify_ring(dev, &dev_priv->ring[VCS]);
1257 if (gt_iir & GT_BLT_USER_INTERRUPT)
1258 notify_ring(dev, &dev_priv->ring[BCS]);
1259
1260 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1261 GT_BSD_CS_ERROR_INTERRUPT |
1262 GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1263 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1264 gt_iir);
1265 }
1266
1267 if (gt_iir & GT_PARITY_ERROR(dev))
1268 ivybridge_parity_error_irq_handler(dev, gt_iir);
1269 }
1270
1271 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1272 struct drm_i915_private *dev_priv,
1273 u32 master_ctl)
1274 {
1275 u32 rcs, bcs, vcs;
1276 uint32_t tmp = 0;
1277 irqreturn_t ret = IRQ_NONE;
1278
1279 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1280 tmp = I915_READ(GEN8_GT_IIR(0));
1281 if (tmp) {
1282 ret = IRQ_HANDLED;
1283 rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1284 bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1285 if (rcs & GT_RENDER_USER_INTERRUPT)
1286 notify_ring(dev, &dev_priv->ring[RCS]);
1287 if (bcs & GT_RENDER_USER_INTERRUPT)
1288 notify_ring(dev, &dev_priv->ring[BCS]);
1289 I915_WRITE(GEN8_GT_IIR(0), tmp);
1290 } else
1291 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1292 }
1293
1294 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1295 tmp = I915_READ(GEN8_GT_IIR(1));
1296 if (tmp) {
1297 ret = IRQ_HANDLED;
1298 vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1299 if (vcs & GT_RENDER_USER_INTERRUPT)
1300 notify_ring(dev, &dev_priv->ring[VCS]);
1301 vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1302 if (vcs & GT_RENDER_USER_INTERRUPT)
1303 notify_ring(dev, &dev_priv->ring[VCS2]);
1304 I915_WRITE(GEN8_GT_IIR(1), tmp);
1305 } else
1306 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1307 }
1308
1309 if (master_ctl & GEN8_GT_VECS_IRQ) {
1310 tmp = I915_READ(GEN8_GT_IIR(3));
1311 if (tmp) {
1312 ret = IRQ_HANDLED;
1313 vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1314 if (vcs & GT_RENDER_USER_INTERRUPT)
1315 notify_ring(dev, &dev_priv->ring[VECS]);
1316 I915_WRITE(GEN8_GT_IIR(3), tmp);
1317 } else
1318 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1319 }
1320
1321 return ret;
1322 }
1323
1324 #define HPD_STORM_DETECT_PERIOD 1000
1325 #define HPD_STORM_THRESHOLD 5
1326
1327 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1328 u32 hotplug_trigger,
1329 const u32 *hpd)
1330 {
1331 struct drm_i915_private *dev_priv = dev->dev_private;
1332 int i;
1333 bool storm_detected = false;
1334
1335 if (!hotplug_trigger)
1336 return;
1337
1338 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x\n",
1339 hotplug_trigger);
1340
1341 spin_lock(&dev_priv->irq_lock);
1342 for (i = 1; i < HPD_NUM_PINS; i++) {
1343
1344 if (hpd[i] & hotplug_trigger &&
1345 dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1346 /*
1347 * On GMCH platforms the interrupt mask bits only
1348 * prevent irq generation, not the setting of the
1349 * hotplug bits itself. So only WARN about unexpected
1350 * interrupts on saner platforms.
1351 */
1352 WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1353 "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1354 hotplug_trigger, i, hpd[i]);
1355
1356 continue;
1357 }
1358
1359 if (!(hpd[i] & hotplug_trigger) ||
1360 dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1361 continue;
1362
1363 dev_priv->hpd_event_bits |= (1 << i);
1364 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1365 dev_priv->hpd_stats[i].hpd_last_jiffies
1366 + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1367 dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1368 dev_priv->hpd_stats[i].hpd_cnt = 0;
1369 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1370 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1371 dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1372 dev_priv->hpd_event_bits &= ~(1 << i);
1373 DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1374 storm_detected = true;
1375 } else {
1376 dev_priv->hpd_stats[i].hpd_cnt++;
1377 DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1378 dev_priv->hpd_stats[i].hpd_cnt);
1379 }
1380 }
1381
1382 if (storm_detected)
1383 dev_priv->display.hpd_irq_setup(dev);
1384 spin_unlock(&dev_priv->irq_lock);
1385
1386 /*
1387 * Our hotplug handler can grab modeset locks (by calling down into the
1388 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1389 * queue for otherwise the flush_work in the pageflip code will
1390 * deadlock.
1391 */
1392 schedule_work(&dev_priv->hotplug_work);
1393 }
1394
1395 static void gmbus_irq_handler(struct drm_device *dev)
1396 {
1397 struct drm_i915_private *dev_priv = dev->dev_private;
1398
1399 wake_up_all(&dev_priv->gmbus_wait_queue);
1400 }
1401
1402 static void dp_aux_irq_handler(struct drm_device *dev)
1403 {
1404 struct drm_i915_private *dev_priv = dev->dev_private;
1405
1406 wake_up_all(&dev_priv->gmbus_wait_queue);
1407 }
1408
1409 #if defined(CONFIG_DEBUG_FS)
1410 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1411 uint32_t crc0, uint32_t crc1,
1412 uint32_t crc2, uint32_t crc3,
1413 uint32_t crc4)
1414 {
1415 struct drm_i915_private *dev_priv = dev->dev_private;
1416 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1417 struct intel_pipe_crc_entry *entry;
1418 int head, tail;
1419
1420 spin_lock(&pipe_crc->lock);
1421
1422 if (!pipe_crc->entries) {
1423 spin_unlock(&pipe_crc->lock);
1424 DRM_ERROR("spurious interrupt\n");
1425 return;
1426 }
1427
1428 head = pipe_crc->head;
1429 tail = pipe_crc->tail;
1430
1431 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1432 spin_unlock(&pipe_crc->lock);
1433 DRM_ERROR("CRC buffer overflowing\n");
1434 return;
1435 }
1436
1437 entry = &pipe_crc->entries[head];
1438
1439 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1440 entry->crc[0] = crc0;
1441 entry->crc[1] = crc1;
1442 entry->crc[2] = crc2;
1443 entry->crc[3] = crc3;
1444 entry->crc[4] = crc4;
1445
1446 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1447 pipe_crc->head = head;
1448
1449 spin_unlock(&pipe_crc->lock);
1450
1451 wake_up_interruptible(&pipe_crc->wq);
1452 }
1453 #else
1454 static inline void
1455 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1456 uint32_t crc0, uint32_t crc1,
1457 uint32_t crc2, uint32_t crc3,
1458 uint32_t crc4) {}
1459 #endif
1460
1461
1462 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1463 {
1464 struct drm_i915_private *dev_priv = dev->dev_private;
1465
1466 display_pipe_crc_irq_handler(dev, pipe,
1467 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1468 0, 0, 0, 0);
1469 }
1470
1471 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1472 {
1473 struct drm_i915_private *dev_priv = dev->dev_private;
1474
1475 display_pipe_crc_irq_handler(dev, pipe,
1476 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1477 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1478 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1479 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1480 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1481 }
1482
1483 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1484 {
1485 struct drm_i915_private *dev_priv = dev->dev_private;
1486 uint32_t res1, res2;
1487
1488 if (INTEL_INFO(dev)->gen >= 3)
1489 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1490 else
1491 res1 = 0;
1492
1493 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1494 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1495 else
1496 res2 = 0;
1497
1498 display_pipe_crc_irq_handler(dev, pipe,
1499 I915_READ(PIPE_CRC_RES_RED(pipe)),
1500 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1501 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1502 res1, res2);
1503 }
1504
1505 /* The RPS events need forcewake, so we add them to a work queue and mask their
1506 * IMR bits until the work is done. Other interrupts can be processed without
1507 * the work queue. */
1508 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1509 {
1510 if (pm_iir & dev_priv->pm_rps_events) {
1511 spin_lock(&dev_priv->irq_lock);
1512 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1513 snb_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1514 spin_unlock(&dev_priv->irq_lock);
1515
1516 queue_work(dev_priv->wq, &dev_priv->rps.work);
1517 }
1518
1519 if (HAS_VEBOX(dev_priv->dev)) {
1520 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1521 notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1522
1523 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
1524 i915_handle_error(dev_priv->dev, false,
1525 "VEBOX CS error interrupt 0x%08x",
1526 pm_iir);
1527 }
1528 }
1529 }
1530
1531 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1532 {
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 u32 pipe_stats[I915_MAX_PIPES] = { };
1535 int pipe;
1536
1537 spin_lock(&dev_priv->irq_lock);
1538 for_each_pipe(pipe) {
1539 int reg;
1540 u32 mask, iir_bit = 0;
1541
1542 /*
1543 * PIPESTAT bits get signalled even when the interrupt is
1544 * disabled with the mask bits, and some of the status bits do
1545 * not generate interrupts at all (like the underrun bit). Hence
1546 * we need to be careful that we only handle what we want to
1547 * handle.
1548 */
1549 mask = 0;
1550 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
1551 mask |= PIPE_FIFO_UNDERRUN_STATUS;
1552
1553 switch (pipe) {
1554 case PIPE_A:
1555 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1556 break;
1557 case PIPE_B:
1558 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1559 break;
1560 }
1561 if (iir & iir_bit)
1562 mask |= dev_priv->pipestat_irq_mask[pipe];
1563
1564 if (!mask)
1565 continue;
1566
1567 reg = PIPESTAT(pipe);
1568 mask |= PIPESTAT_INT_ENABLE_MASK;
1569 pipe_stats[pipe] = I915_READ(reg) & mask;
1570
1571 /*
1572 * Clear the PIPE*STAT regs before the IIR
1573 */
1574 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1575 PIPESTAT_INT_STATUS_MASK))
1576 I915_WRITE(reg, pipe_stats[pipe]);
1577 }
1578 spin_unlock(&dev_priv->irq_lock);
1579
1580 for_each_pipe(pipe) {
1581 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1582 drm_handle_vblank(dev, pipe);
1583
1584 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1585 intel_prepare_page_flip(dev, pipe);
1586 intel_finish_page_flip(dev, pipe);
1587 }
1588
1589 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1590 i9xx_pipe_crc_irq_handler(dev, pipe);
1591
1592 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
1593 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1594 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
1595 }
1596
1597 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1598 gmbus_irq_handler(dev);
1599 }
1600
1601 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1602 {
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1605
1606 if (IS_G4X(dev)) {
1607 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1608
1609 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_g4x);
1610 } else {
1611 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1612
1613 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_status_i915);
1614 }
1615
1616 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1617 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1618 dp_aux_irq_handler(dev);
1619
1620 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1621 /*
1622 * Make sure hotplug status is cleared before we clear IIR, or else we
1623 * may miss hotplug events.
1624 */
1625 POSTING_READ(PORT_HOTPLUG_STAT);
1626 }
1627
1628 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1629 {
1630 struct drm_device *dev = (struct drm_device *) arg;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 u32 iir, gt_iir, pm_iir;
1633 irqreturn_t ret = IRQ_NONE;
1634
1635 while (true) {
1636 iir = I915_READ(VLV_IIR);
1637 gt_iir = I915_READ(GTIIR);
1638 pm_iir = I915_READ(GEN6_PMIIR);
1639
1640 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1641 goto out;
1642
1643 ret = IRQ_HANDLED;
1644
1645 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1646
1647 valleyview_pipestat_irq_handler(dev, iir);
1648
1649 /* Consume port. Then clear IIR or we'll miss events */
1650 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1651 i9xx_hpd_irq_handler(dev);
1652
1653 if (pm_iir)
1654 gen6_rps_irq_handler(dev_priv, pm_iir);
1655
1656 I915_WRITE(GTIIR, gt_iir);
1657 I915_WRITE(GEN6_PMIIR, pm_iir);
1658 I915_WRITE(VLV_IIR, iir);
1659 }
1660
1661 out:
1662 return ret;
1663 }
1664
1665 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1666 {
1667 struct drm_i915_private *dev_priv = dev->dev_private;
1668 int pipe;
1669 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1670
1671 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1672
1673 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1674 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1675 SDE_AUDIO_POWER_SHIFT);
1676 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1677 port_name(port));
1678 }
1679
1680 if (pch_iir & SDE_AUX_MASK)
1681 dp_aux_irq_handler(dev);
1682
1683 if (pch_iir & SDE_GMBUS)
1684 gmbus_irq_handler(dev);
1685
1686 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1687 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1688
1689 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1690 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1691
1692 if (pch_iir & SDE_POISON)
1693 DRM_ERROR("PCH poison interrupt\n");
1694
1695 if (pch_iir & SDE_FDI_MASK)
1696 for_each_pipe(pipe)
1697 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1698 pipe_name(pipe),
1699 I915_READ(FDI_RX_IIR(pipe)));
1700
1701 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1702 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1703
1704 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1705 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1706
1707 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1708 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1709 false))
1710 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1711
1712 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1713 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1714 false))
1715 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1716 }
1717
1718 static void ivb_err_int_handler(struct drm_device *dev)
1719 {
1720 struct drm_i915_private *dev_priv = dev->dev_private;
1721 u32 err_int = I915_READ(GEN7_ERR_INT);
1722 enum pipe pipe;
1723
1724 if (err_int & ERR_INT_POISON)
1725 DRM_ERROR("Poison interrupt\n");
1726
1727 for_each_pipe(pipe) {
1728 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
1729 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
1730 false))
1731 DRM_ERROR("Pipe %c FIFO underrun\n",
1732 pipe_name(pipe));
1733 }
1734
1735 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1736 if (IS_IVYBRIDGE(dev))
1737 ivb_pipe_crc_irq_handler(dev, pipe);
1738 else
1739 hsw_pipe_crc_irq_handler(dev, pipe);
1740 }
1741 }
1742
1743 I915_WRITE(GEN7_ERR_INT, err_int);
1744 }
1745
1746 static void cpt_serr_int_handler(struct drm_device *dev)
1747 {
1748 struct drm_i915_private *dev_priv = dev->dev_private;
1749 u32 serr_int = I915_READ(SERR_INT);
1750
1751 if (serr_int & SERR_INT_POISON)
1752 DRM_ERROR("PCH poison interrupt\n");
1753
1754 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1755 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
1756 false))
1757 DRM_ERROR("PCH transcoder A FIFO underrun\n");
1758
1759 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1760 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
1761 false))
1762 DRM_ERROR("PCH transcoder B FIFO underrun\n");
1763
1764 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1765 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
1766 false))
1767 DRM_ERROR("PCH transcoder C FIFO underrun\n");
1768
1769 I915_WRITE(SERR_INT, serr_int);
1770 }
1771
1772 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1773 {
1774 struct drm_i915_private *dev_priv = dev->dev_private;
1775 int pipe;
1776 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1777
1778 intel_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1779
1780 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1781 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1782 SDE_AUDIO_POWER_SHIFT_CPT);
1783 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1784 port_name(port));
1785 }
1786
1787 if (pch_iir & SDE_AUX_MASK_CPT)
1788 dp_aux_irq_handler(dev);
1789
1790 if (pch_iir & SDE_GMBUS_CPT)
1791 gmbus_irq_handler(dev);
1792
1793 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1794 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1795
1796 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1797 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1798
1799 if (pch_iir & SDE_FDI_MASK_CPT)
1800 for_each_pipe(pipe)
1801 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1802 pipe_name(pipe),
1803 I915_READ(FDI_RX_IIR(pipe)));
1804
1805 if (pch_iir & SDE_ERROR_CPT)
1806 cpt_serr_int_handler(dev);
1807 }
1808
1809 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
1810 {
1811 struct drm_i915_private *dev_priv = dev->dev_private;
1812 enum pipe pipe;
1813
1814 if (de_iir & DE_AUX_CHANNEL_A)
1815 dp_aux_irq_handler(dev);
1816
1817 if (de_iir & DE_GSE)
1818 intel_opregion_asle_intr(dev);
1819
1820 if (de_iir & DE_POISON)
1821 DRM_ERROR("Poison interrupt\n");
1822
1823 for_each_pipe(pipe) {
1824 if (de_iir & DE_PIPE_VBLANK(pipe))
1825 drm_handle_vblank(dev, pipe);
1826
1827 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1828 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
1829 DRM_ERROR("Pipe %c FIFO underrun\n",
1830 pipe_name(pipe));
1831
1832 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1833 i9xx_pipe_crc_irq_handler(dev, pipe);
1834
1835 /* plane/pipes map 1:1 on ilk+ */
1836 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
1837 intel_prepare_page_flip(dev, pipe);
1838 intel_finish_page_flip_plane(dev, pipe);
1839 }
1840 }
1841
1842 /* check event from PCH */
1843 if (de_iir & DE_PCH_EVENT) {
1844 u32 pch_iir = I915_READ(SDEIIR);
1845
1846 if (HAS_PCH_CPT(dev))
1847 cpt_irq_handler(dev, pch_iir);
1848 else
1849 ibx_irq_handler(dev, pch_iir);
1850
1851 /* should clear PCH hotplug event before clear CPU irq */
1852 I915_WRITE(SDEIIR, pch_iir);
1853 }
1854
1855 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
1856 ironlake_rps_change_irq_handler(dev);
1857 }
1858
1859 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
1860 {
1861 struct drm_i915_private *dev_priv = dev->dev_private;
1862 enum pipe pipe;
1863
1864 if (de_iir & DE_ERR_INT_IVB)
1865 ivb_err_int_handler(dev);
1866
1867 if (de_iir & DE_AUX_CHANNEL_A_IVB)
1868 dp_aux_irq_handler(dev);
1869
1870 if (de_iir & DE_GSE_IVB)
1871 intel_opregion_asle_intr(dev);
1872
1873 for_each_pipe(pipe) {
1874 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
1875 drm_handle_vblank(dev, pipe);
1876
1877 /* plane/pipes map 1:1 on ilk+ */
1878 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
1879 intel_prepare_page_flip(dev, pipe);
1880 intel_finish_page_flip_plane(dev, pipe);
1881 }
1882 }
1883
1884 /* check event from PCH */
1885 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
1886 u32 pch_iir = I915_READ(SDEIIR);
1887
1888 cpt_irq_handler(dev, pch_iir);
1889
1890 /* clear PCH hotplug event before clear CPU irq */
1891 I915_WRITE(SDEIIR, pch_iir);
1892 }
1893 }
1894
1895 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
1896 {
1897 struct drm_device *dev = (struct drm_device *) arg;
1898 struct drm_i915_private *dev_priv = dev->dev_private;
1899 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
1900 irqreturn_t ret = IRQ_NONE;
1901
1902 /* We get interrupts on unclaimed registers, so check for this before we
1903 * do any I915_{READ,WRITE}. */
1904 intel_uncore_check_errors(dev);
1905
1906 /* disable master interrupt before clearing iir */
1907 de_ier = I915_READ(DEIER);
1908 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
1909 POSTING_READ(DEIER);
1910
1911 /* Disable south interrupts. We'll only write to SDEIIR once, so further
1912 * interrupts will will be stored on its back queue, and then we'll be
1913 * able to process them after we restore SDEIER (as soon as we restore
1914 * it, we'll get an interrupt if SDEIIR still has something to process
1915 * due to its back queue). */
1916 if (!HAS_PCH_NOP(dev)) {
1917 sde_ier = I915_READ(SDEIER);
1918 I915_WRITE(SDEIER, 0);
1919 POSTING_READ(SDEIER);
1920 }
1921
1922 gt_iir = I915_READ(GTIIR);
1923 if (gt_iir) {
1924 if (INTEL_INFO(dev)->gen >= 6)
1925 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1926 else
1927 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
1928 I915_WRITE(GTIIR, gt_iir);
1929 ret = IRQ_HANDLED;
1930 }
1931
1932 de_iir = I915_READ(DEIIR);
1933 if (de_iir) {
1934 if (INTEL_INFO(dev)->gen >= 7)
1935 ivb_display_irq_handler(dev, de_iir);
1936 else
1937 ilk_display_irq_handler(dev, de_iir);
1938 I915_WRITE(DEIIR, de_iir);
1939 ret = IRQ_HANDLED;
1940 }
1941
1942 if (INTEL_INFO(dev)->gen >= 6) {
1943 u32 pm_iir = I915_READ(GEN6_PMIIR);
1944 if (pm_iir) {
1945 gen6_rps_irq_handler(dev_priv, pm_iir);
1946 I915_WRITE(GEN6_PMIIR, pm_iir);
1947 ret = IRQ_HANDLED;
1948 }
1949 }
1950
1951 I915_WRITE(DEIER, de_ier);
1952 POSTING_READ(DEIER);
1953 if (!HAS_PCH_NOP(dev)) {
1954 I915_WRITE(SDEIER, sde_ier);
1955 POSTING_READ(SDEIER);
1956 }
1957
1958 return ret;
1959 }
1960
1961 static irqreturn_t gen8_irq_handler(int irq, void *arg)
1962 {
1963 struct drm_device *dev = arg;
1964 struct drm_i915_private *dev_priv = dev->dev_private;
1965 u32 master_ctl;
1966 irqreturn_t ret = IRQ_NONE;
1967 uint32_t tmp = 0;
1968 enum pipe pipe;
1969
1970 master_ctl = I915_READ(GEN8_MASTER_IRQ);
1971 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
1972 if (!master_ctl)
1973 return IRQ_NONE;
1974
1975 I915_WRITE(GEN8_MASTER_IRQ, 0);
1976 POSTING_READ(GEN8_MASTER_IRQ);
1977
1978 ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1979
1980 if (master_ctl & GEN8_DE_MISC_IRQ) {
1981 tmp = I915_READ(GEN8_DE_MISC_IIR);
1982 if (tmp & GEN8_DE_MISC_GSE)
1983 intel_opregion_asle_intr(dev);
1984 else if (tmp)
1985 DRM_ERROR("Unexpected DE Misc interrupt\n");
1986 else
1987 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
1988
1989 if (tmp) {
1990 I915_WRITE(GEN8_DE_MISC_IIR, tmp);
1991 ret = IRQ_HANDLED;
1992 }
1993 }
1994
1995 if (master_ctl & GEN8_DE_PORT_IRQ) {
1996 tmp = I915_READ(GEN8_DE_PORT_IIR);
1997 if (tmp & GEN8_AUX_CHANNEL_A)
1998 dp_aux_irq_handler(dev);
1999 else if (tmp)
2000 DRM_ERROR("Unexpected DE Port interrupt\n");
2001 else
2002 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2003
2004 if (tmp) {
2005 I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2006 ret = IRQ_HANDLED;
2007 }
2008 }
2009
2010 for_each_pipe(pipe) {
2011 uint32_t pipe_iir;
2012
2013 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2014 continue;
2015
2016 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2017 if (pipe_iir & GEN8_PIPE_VBLANK)
2018 drm_handle_vblank(dev, pipe);
2019
2020 if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2021 intel_prepare_page_flip(dev, pipe);
2022 intel_finish_page_flip_plane(dev, pipe);
2023 }
2024
2025 if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2026 hsw_pipe_crc_irq_handler(dev, pipe);
2027
2028 if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2029 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2030 false))
2031 DRM_ERROR("Pipe %c FIFO underrun\n",
2032 pipe_name(pipe));
2033 }
2034
2035 if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2036 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2037 pipe_name(pipe),
2038 pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2039 }
2040
2041 if (pipe_iir) {
2042 ret = IRQ_HANDLED;
2043 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2044 } else
2045 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2046 }
2047
2048 if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2049 /*
2050 * FIXME(BDW): Assume for now that the new interrupt handling
2051 * scheme also closed the SDE interrupt handling race we've seen
2052 * on older pch-split platforms. But this needs testing.
2053 */
2054 u32 pch_iir = I915_READ(SDEIIR);
2055
2056 cpt_irq_handler(dev, pch_iir);
2057
2058 if (pch_iir) {
2059 I915_WRITE(SDEIIR, pch_iir);
2060 ret = IRQ_HANDLED;
2061 }
2062 }
2063
2064 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2065 POSTING_READ(GEN8_MASTER_IRQ);
2066
2067 return ret;
2068 }
2069
2070 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2071 bool reset_completed)
2072 {
2073 struct intel_ring_buffer *ring;
2074 int i;
2075
2076 /*
2077 * Notify all waiters for GPU completion events that reset state has
2078 * been changed, and that they need to restart their wait after
2079 * checking for potential errors (and bail out to drop locks if there is
2080 * a gpu reset pending so that i915_error_work_func can acquire them).
2081 */
2082
2083 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2084 for_each_ring(ring, dev_priv, i)
2085 wake_up_all(&ring->irq_queue);
2086
2087 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2088 wake_up_all(&dev_priv->pending_flip_queue);
2089
2090 /*
2091 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2092 * reset state is cleared.
2093 */
2094 if (reset_completed)
2095 wake_up_all(&dev_priv->gpu_error.reset_queue);
2096 }
2097
2098 /**
2099 * i915_error_work_func - do process context error handling work
2100 * @work: work struct
2101 *
2102 * Fire an error uevent so userspace can see that a hang or error
2103 * was detected.
2104 */
2105 static void i915_error_work_func(struct work_struct *work)
2106 {
2107 struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2108 work);
2109 struct drm_i915_private *dev_priv =
2110 container_of(error, struct drm_i915_private, gpu_error);
2111 struct drm_device *dev = dev_priv->dev;
2112 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2113 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2114 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2115 int ret;
2116
2117 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2118
2119 /*
2120 * Note that there's only one work item which does gpu resets, so we
2121 * need not worry about concurrent gpu resets potentially incrementing
2122 * error->reset_counter twice. We only need to take care of another
2123 * racing irq/hangcheck declaring the gpu dead for a second time. A
2124 * quick check for that is good enough: schedule_work ensures the
2125 * correct ordering between hang detection and this work item, and since
2126 * the reset in-progress bit is only ever set by code outside of this
2127 * work we don't need to worry about any other races.
2128 */
2129 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2130 DRM_DEBUG_DRIVER("resetting chip\n");
2131 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2132 reset_event);
2133
2134 /*
2135 * In most cases it's guaranteed that we get here with an RPM
2136 * reference held, for example because there is a pending GPU
2137 * request that won't finish until the reset is done. This
2138 * isn't the case at least when we get here by doing a
2139 * simulated reset via debugs, so get an RPM reference.
2140 */
2141 intel_runtime_pm_get(dev_priv);
2142 /*
2143 * All state reset _must_ be completed before we update the
2144 * reset counter, for otherwise waiters might miss the reset
2145 * pending state and not properly drop locks, resulting in
2146 * deadlocks with the reset work.
2147 */
2148 ret = i915_reset(dev);
2149
2150 intel_display_handle_reset(dev);
2151
2152 intel_runtime_pm_put(dev_priv);
2153
2154 if (ret == 0) {
2155 /*
2156 * After all the gem state is reset, increment the reset
2157 * counter and wake up everyone waiting for the reset to
2158 * complete.
2159 *
2160 * Since unlock operations are a one-sided barrier only,
2161 * we need to insert a barrier here to order any seqno
2162 * updates before
2163 * the counter increment.
2164 */
2165 smp_mb__before_atomic_inc();
2166 atomic_inc(&dev_priv->gpu_error.reset_counter);
2167
2168 kobject_uevent_env(&dev->primary->kdev->kobj,
2169 KOBJ_CHANGE, reset_done_event);
2170 } else {
2171 atomic_set_mask(I915_WEDGED, &error->reset_counter);
2172 }
2173
2174 /*
2175 * Note: The wake_up also serves as a memory barrier so that
2176 * waiters see the update value of the reset counter atomic_t.
2177 */
2178 i915_error_wake_up(dev_priv, true);
2179 }
2180 }
2181
2182 static void i915_report_and_clear_eir(struct drm_device *dev)
2183 {
2184 struct drm_i915_private *dev_priv = dev->dev_private;
2185 uint32_t instdone[I915_NUM_INSTDONE_REG];
2186 u32 eir = I915_READ(EIR);
2187 int pipe, i;
2188
2189 if (!eir)
2190 return;
2191
2192 pr_err("render error detected, EIR: 0x%08x\n", eir);
2193
2194 i915_get_extra_instdone(dev, instdone);
2195
2196 if (IS_G4X(dev)) {
2197 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2198 u32 ipeir = I915_READ(IPEIR_I965);
2199
2200 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2201 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2202 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2203 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2204 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2205 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2206 I915_WRITE(IPEIR_I965, ipeir);
2207 POSTING_READ(IPEIR_I965);
2208 }
2209 if (eir & GM45_ERROR_PAGE_TABLE) {
2210 u32 pgtbl_err = I915_READ(PGTBL_ER);
2211 pr_err("page table error\n");
2212 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2213 I915_WRITE(PGTBL_ER, pgtbl_err);
2214 POSTING_READ(PGTBL_ER);
2215 }
2216 }
2217
2218 if (!IS_GEN2(dev)) {
2219 if (eir & I915_ERROR_PAGE_TABLE) {
2220 u32 pgtbl_err = I915_READ(PGTBL_ER);
2221 pr_err("page table error\n");
2222 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2223 I915_WRITE(PGTBL_ER, pgtbl_err);
2224 POSTING_READ(PGTBL_ER);
2225 }
2226 }
2227
2228 if (eir & I915_ERROR_MEMORY_REFRESH) {
2229 pr_err("memory refresh error:\n");
2230 for_each_pipe(pipe)
2231 pr_err("pipe %c stat: 0x%08x\n",
2232 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2233 /* pipestat has already been acked */
2234 }
2235 if (eir & I915_ERROR_INSTRUCTION) {
2236 pr_err("instruction error\n");
2237 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2238 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2239 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2240 if (INTEL_INFO(dev)->gen < 4) {
2241 u32 ipeir = I915_READ(IPEIR);
2242
2243 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2244 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2245 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2246 I915_WRITE(IPEIR, ipeir);
2247 POSTING_READ(IPEIR);
2248 } else {
2249 u32 ipeir = I915_READ(IPEIR_I965);
2250
2251 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2252 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2253 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2254 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2255 I915_WRITE(IPEIR_I965, ipeir);
2256 POSTING_READ(IPEIR_I965);
2257 }
2258 }
2259
2260 I915_WRITE(EIR, eir);
2261 POSTING_READ(EIR);
2262 eir = I915_READ(EIR);
2263 if (eir) {
2264 /*
2265 * some errors might have become stuck,
2266 * mask them.
2267 */
2268 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2269 I915_WRITE(EMR, I915_READ(EMR) | eir);
2270 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2271 }
2272 }
2273
2274 /**
2275 * i915_handle_error - handle an error interrupt
2276 * @dev: drm device
2277 *
2278 * Do some basic checking of regsiter state at error interrupt time and
2279 * dump it to the syslog. Also call i915_capture_error_state() to make
2280 * sure we get a record and make it available in debugfs. Fire a uevent
2281 * so userspace knows something bad happened (should trigger collection
2282 * of a ring dump etc.).
2283 */
2284 void i915_handle_error(struct drm_device *dev, bool wedged,
2285 const char *fmt, ...)
2286 {
2287 struct drm_i915_private *dev_priv = dev->dev_private;
2288 va_list args;
2289 char error_msg[80];
2290
2291 va_start(args, fmt);
2292 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2293 va_end(args);
2294
2295 i915_capture_error_state(dev, wedged, error_msg);
2296 i915_report_and_clear_eir(dev);
2297
2298 if (wedged) {
2299 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2300 &dev_priv->gpu_error.reset_counter);
2301
2302 /*
2303 * Wakeup waiting processes so that the reset work function
2304 * i915_error_work_func doesn't deadlock trying to grab various
2305 * locks. By bumping the reset counter first, the woken
2306 * processes will see a reset in progress and back off,
2307 * releasing their locks and then wait for the reset completion.
2308 * We must do this for _all_ gpu waiters that might hold locks
2309 * that the reset work needs to acquire.
2310 *
2311 * Note: The wake_up serves as the required memory barrier to
2312 * ensure that the waiters see the updated value of the reset
2313 * counter atomic_t.
2314 */
2315 i915_error_wake_up(dev_priv, false);
2316 }
2317
2318 /*
2319 * Our reset work can grab modeset locks (since it needs to reset the
2320 * state of outstanding pagelips). Hence it must not be run on our own
2321 * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2322 * code will deadlock.
2323 */
2324 schedule_work(&dev_priv->gpu_error.work);
2325 }
2326
2327 static void __always_unused i915_pageflip_stall_check(struct drm_device *dev, int pipe)
2328 {
2329 struct drm_i915_private *dev_priv = dev->dev_private;
2330 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
2331 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2332 struct drm_i915_gem_object *obj;
2333 struct intel_unpin_work *work;
2334 unsigned long flags;
2335 bool stall_detected;
2336
2337 /* Ignore early vblank irqs */
2338 if (intel_crtc == NULL)
2339 return;
2340
2341 spin_lock_irqsave(&dev->event_lock, flags);
2342 work = intel_crtc->unpin_work;
2343
2344 if (work == NULL ||
2345 atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE ||
2346 !work->enable_stall_check) {
2347 /* Either the pending flip IRQ arrived, or we're too early. Don't check */
2348 spin_unlock_irqrestore(&dev->event_lock, flags);
2349 return;
2350 }
2351
2352 /* Potential stall - if we see that the flip has happened, assume a missed interrupt */
2353 obj = work->pending_flip_obj;
2354 if (INTEL_INFO(dev)->gen >= 4) {
2355 int dspsurf = DSPSURF(intel_crtc->plane);
2356 stall_detected = I915_HI_DISPBASE(I915_READ(dspsurf)) ==
2357 i915_gem_obj_ggtt_offset(obj);
2358 } else {
2359 int dspaddr = DSPADDR(intel_crtc->plane);
2360 stall_detected = I915_READ(dspaddr) == (i915_gem_obj_ggtt_offset(obj) +
2361 crtc->y * crtc->primary->fb->pitches[0] +
2362 crtc->x * crtc->primary->fb->bits_per_pixel/8);
2363 }
2364
2365 spin_unlock_irqrestore(&dev->event_lock, flags);
2366
2367 if (stall_detected) {
2368 DRM_DEBUG_DRIVER("Pageflip stall detected\n");
2369 intel_prepare_page_flip(dev, intel_crtc->plane);
2370 }
2371 }
2372
2373 /* Called from drm generic code, passed 'crtc' which
2374 * we use as a pipe index
2375 */
2376 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2377 {
2378 struct drm_i915_private *dev_priv = dev->dev_private;
2379 unsigned long irqflags;
2380
2381 if (!i915_pipe_enabled(dev, pipe))
2382 return -EINVAL;
2383
2384 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2385 if (INTEL_INFO(dev)->gen >= 4)
2386 i915_enable_pipestat(dev_priv, pipe,
2387 PIPE_START_VBLANK_INTERRUPT_STATUS);
2388 else
2389 i915_enable_pipestat(dev_priv, pipe,
2390 PIPE_VBLANK_INTERRUPT_STATUS);
2391
2392 /* maintain vblank delivery even in deep C-states */
2393 if (INTEL_INFO(dev)->gen == 3)
2394 I915_WRITE(INSTPM, _MASKED_BIT_DISABLE(INSTPM_AGPBUSY_DIS));
2395 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2396
2397 return 0;
2398 }
2399
2400 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2401 {
2402 struct drm_i915_private *dev_priv = dev->dev_private;
2403 unsigned long irqflags;
2404 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2405 DE_PIPE_VBLANK(pipe);
2406
2407 if (!i915_pipe_enabled(dev, pipe))
2408 return -EINVAL;
2409
2410 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2411 ironlake_enable_display_irq(dev_priv, bit);
2412 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2413
2414 return 0;
2415 }
2416
2417 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2418 {
2419 struct drm_i915_private *dev_priv = dev->dev_private;
2420 unsigned long irqflags;
2421
2422 if (!i915_pipe_enabled(dev, pipe))
2423 return -EINVAL;
2424
2425 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2426 i915_enable_pipestat(dev_priv, pipe,
2427 PIPE_START_VBLANK_INTERRUPT_STATUS);
2428 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2429
2430 return 0;
2431 }
2432
2433 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2434 {
2435 struct drm_i915_private *dev_priv = dev->dev_private;
2436 unsigned long irqflags;
2437
2438 if (!i915_pipe_enabled(dev, pipe))
2439 return -EINVAL;
2440
2441 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2442 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2443 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2444 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2445 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2446 return 0;
2447 }
2448
2449 /* Called from drm generic code, passed 'crtc' which
2450 * we use as a pipe index
2451 */
2452 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2453 {
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 unsigned long irqflags;
2456
2457 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2458 if (INTEL_INFO(dev)->gen == 3)
2459 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_DIS));
2460
2461 i915_disable_pipestat(dev_priv, pipe,
2462 PIPE_VBLANK_INTERRUPT_STATUS |
2463 PIPE_START_VBLANK_INTERRUPT_STATUS);
2464 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2465 }
2466
2467 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2468 {
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470 unsigned long irqflags;
2471 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2472 DE_PIPE_VBLANK(pipe);
2473
2474 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2475 ironlake_disable_display_irq(dev_priv, bit);
2476 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2477 }
2478
2479 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2480 {
2481 struct drm_i915_private *dev_priv = dev->dev_private;
2482 unsigned long irqflags;
2483
2484 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2485 i915_disable_pipestat(dev_priv, pipe,
2486 PIPE_START_VBLANK_INTERRUPT_STATUS);
2487 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2488 }
2489
2490 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2491 {
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 unsigned long irqflags;
2494
2495 if (!i915_pipe_enabled(dev, pipe))
2496 return;
2497
2498 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2499 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2500 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2501 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2502 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2503 }
2504
2505 static u32
2506 ring_last_seqno(struct intel_ring_buffer *ring)
2507 {
2508 return list_entry(ring->request_list.prev,
2509 struct drm_i915_gem_request, list)->seqno;
2510 }
2511
2512 static bool
2513 ring_idle(struct intel_ring_buffer *ring, u32 seqno)
2514 {
2515 return (list_empty(&ring->request_list) ||
2516 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2517 }
2518
2519 static bool
2520 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2521 {
2522 if (INTEL_INFO(dev)->gen >= 8) {
2523 /*
2524 * FIXME: gen8 semaphore support - currently we don't emit
2525 * semaphores on bdw anyway, but this needs to be addressed when
2526 * we merge that code.
2527 */
2528 return false;
2529 } else {
2530 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2531 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2532 MI_SEMAPHORE_REGISTER);
2533 }
2534 }
2535
2536 static struct intel_ring_buffer *
2537 semaphore_wait_to_signaller_ring(struct intel_ring_buffer *ring, u32 ipehr)
2538 {
2539 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2540 struct intel_ring_buffer *signaller;
2541 int i;
2542
2543 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2544 /*
2545 * FIXME: gen8 semaphore support - currently we don't emit
2546 * semaphores on bdw anyway, but this needs to be addressed when
2547 * we merge that code.
2548 */
2549 return NULL;
2550 } else {
2551 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2552
2553 for_each_ring(signaller, dev_priv, i) {
2554 if(ring == signaller)
2555 continue;
2556
2557 if (sync_bits ==
2558 signaller->semaphore_register[ring->id])
2559 return signaller;
2560 }
2561 }
2562
2563 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x\n",
2564 ring->id, ipehr);
2565
2566 return NULL;
2567 }
2568
2569 static struct intel_ring_buffer *
2570 semaphore_waits_for(struct intel_ring_buffer *ring, u32 *seqno)
2571 {
2572 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2573 u32 cmd, ipehr, head;
2574 int i;
2575
2576 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2577 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2578 return NULL;
2579
2580 /*
2581 * HEAD is likely pointing to the dword after the actual command,
2582 * so scan backwards until we find the MBOX. But limit it to just 3
2583 * dwords. Note that we don't care about ACTHD here since that might
2584 * point at at batch, and semaphores are always emitted into the
2585 * ringbuffer itself.
2586 */
2587 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2588
2589 for (i = 4; i; --i) {
2590 /*
2591 * Be paranoid and presume the hw has gone off into the wild -
2592 * our ring is smaller than what the hardware (and hence
2593 * HEAD_ADDR) allows. Also handles wrap-around.
2594 */
2595 head &= ring->size - 1;
2596
2597 /* This here seems to blow up */
2598 cmd = ioread32(ring->virtual_start + head);
2599 if (cmd == ipehr)
2600 break;
2601
2602 head -= 4;
2603 }
2604
2605 if (!i)
2606 return NULL;
2607
2608 *seqno = ioread32(ring->virtual_start + head + 4) + 1;
2609 return semaphore_wait_to_signaller_ring(ring, ipehr);
2610 }
2611
2612 static int semaphore_passed(struct intel_ring_buffer *ring)
2613 {
2614 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2615 struct intel_ring_buffer *signaller;
2616 u32 seqno, ctl;
2617
2618 ring->hangcheck.deadlock = true;
2619
2620 signaller = semaphore_waits_for(ring, &seqno);
2621 if (signaller == NULL || signaller->hangcheck.deadlock)
2622 return -1;
2623
2624 /* cursory check for an unkickable deadlock */
2625 ctl = I915_READ_CTL(signaller);
2626 if (ctl & RING_WAIT_SEMAPHORE && semaphore_passed(signaller) < 0)
2627 return -1;
2628
2629 return i915_seqno_passed(signaller->get_seqno(signaller, false), seqno);
2630 }
2631
2632 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2633 {
2634 struct intel_ring_buffer *ring;
2635 int i;
2636
2637 for_each_ring(ring, dev_priv, i)
2638 ring->hangcheck.deadlock = false;
2639 }
2640
2641 static enum intel_ring_hangcheck_action
2642 ring_stuck(struct intel_ring_buffer *ring, u64 acthd)
2643 {
2644 struct drm_device *dev = ring->dev;
2645 struct drm_i915_private *dev_priv = dev->dev_private;
2646 u32 tmp;
2647
2648 if (ring->hangcheck.acthd != acthd)
2649 return HANGCHECK_ACTIVE;
2650
2651 if (IS_GEN2(dev))
2652 return HANGCHECK_HUNG;
2653
2654 /* Is the chip hanging on a WAIT_FOR_EVENT?
2655 * If so we can simply poke the RB_WAIT bit
2656 * and break the hang. This should work on
2657 * all but the second generation chipsets.
2658 */
2659 tmp = I915_READ_CTL(ring);
2660 if (tmp & RING_WAIT) {
2661 i915_handle_error(dev, false,
2662 "Kicking stuck wait on %s",
2663 ring->name);
2664 I915_WRITE_CTL(ring, tmp);
2665 return HANGCHECK_KICK;
2666 }
2667
2668 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2669 switch (semaphore_passed(ring)) {
2670 default:
2671 return HANGCHECK_HUNG;
2672 case 1:
2673 i915_handle_error(dev, false,
2674 "Kicking stuck semaphore on %s",
2675 ring->name);
2676 I915_WRITE_CTL(ring, tmp);
2677 return HANGCHECK_KICK;
2678 case 0:
2679 return HANGCHECK_WAIT;
2680 }
2681 }
2682
2683 return HANGCHECK_HUNG;
2684 }
2685
2686 /**
2687 * This is called when the chip hasn't reported back with completed
2688 * batchbuffers in a long time. We keep track per ring seqno progress and
2689 * if there are no progress, hangcheck score for that ring is increased.
2690 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2691 * we kick the ring. If we see no progress on three subsequent calls
2692 * we assume chip is wedged and try to fix it by resetting the chip.
2693 */
2694 static void i915_hangcheck_elapsed(unsigned long data)
2695 {
2696 struct drm_device *dev = (struct drm_device *)data;
2697 struct drm_i915_private *dev_priv = dev->dev_private;
2698 struct intel_ring_buffer *ring;
2699 int i;
2700 int busy_count = 0, rings_hung = 0;
2701 bool stuck[I915_NUM_RINGS] = { 0 };
2702 #define BUSY 1
2703 #define KICK 5
2704 #define HUNG 20
2705
2706 if (!i915.enable_hangcheck)
2707 return;
2708
2709 for_each_ring(ring, dev_priv, i) {
2710 u64 acthd;
2711 u32 seqno;
2712 bool busy = true;
2713
2714 semaphore_clear_deadlocks(dev_priv);
2715
2716 seqno = ring->get_seqno(ring, false);
2717 acthd = intel_ring_get_active_head(ring);
2718
2719 if (ring->hangcheck.seqno == seqno) {
2720 if (ring_idle(ring, seqno)) {
2721 ring->hangcheck.action = HANGCHECK_IDLE;
2722
2723 if (waitqueue_active(&ring->irq_queue)) {
2724 /* Issue a wake-up to catch stuck h/w. */
2725 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2726 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2727 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2728 ring->name);
2729 else
2730 DRM_INFO("Fake missed irq on %s\n",
2731 ring->name);
2732 wake_up_all(&ring->irq_queue);
2733 }
2734 /* Safeguard against driver failure */
2735 ring->hangcheck.score += BUSY;
2736 } else
2737 busy = false;
2738 } else {
2739 /* We always increment the hangcheck score
2740 * if the ring is busy and still processing
2741 * the same request, so that no single request
2742 * can run indefinitely (such as a chain of
2743 * batches). The only time we do not increment
2744 * the hangcheck score on this ring, if this
2745 * ring is in a legitimate wait for another
2746 * ring. In that case the waiting ring is a
2747 * victim and we want to be sure we catch the
2748 * right culprit. Then every time we do kick
2749 * the ring, add a small increment to the
2750 * score so that we can catch a batch that is
2751 * being repeatedly kicked and so responsible
2752 * for stalling the machine.
2753 */
2754 ring->hangcheck.action = ring_stuck(ring,
2755 acthd);
2756
2757 switch (ring->hangcheck.action) {
2758 case HANGCHECK_IDLE:
2759 case HANGCHECK_WAIT:
2760 break;
2761 case HANGCHECK_ACTIVE:
2762 ring->hangcheck.score += BUSY;
2763 break;
2764 case HANGCHECK_KICK:
2765 ring->hangcheck.score += KICK;
2766 break;
2767 case HANGCHECK_HUNG:
2768 ring->hangcheck.score += HUNG;
2769 stuck[i] = true;
2770 break;
2771 }
2772 }
2773 } else {
2774 ring->hangcheck.action = HANGCHECK_ACTIVE;
2775
2776 /* Gradually reduce the count so that we catch DoS
2777 * attempts across multiple batches.
2778 */
2779 if (ring->hangcheck.score > 0)
2780 ring->hangcheck.score--;
2781 }
2782
2783 ring->hangcheck.seqno = seqno;
2784 ring->hangcheck.acthd = acthd;
2785 busy_count += busy;
2786 }
2787
2788 for_each_ring(ring, dev_priv, i) {
2789 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2790 DRM_INFO("%s on %s\n",
2791 stuck[i] ? "stuck" : "no progress",
2792 ring->name);
2793 rings_hung++;
2794 }
2795 }
2796
2797 if (rings_hung)
2798 return i915_handle_error(dev, true, "Ring hung");
2799
2800 if (busy_count)
2801 /* Reset timer case chip hangs without another request
2802 * being added */
2803 i915_queue_hangcheck(dev);
2804 }
2805
2806 void i915_queue_hangcheck(struct drm_device *dev)
2807 {
2808 struct drm_i915_private *dev_priv = dev->dev_private;
2809 if (!i915.enable_hangcheck)
2810 return;
2811
2812 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2813 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2814 }
2815
2816 static void ibx_irq_reset(struct drm_device *dev)
2817 {
2818 struct drm_i915_private *dev_priv = dev->dev_private;
2819
2820 if (HAS_PCH_NOP(dev))
2821 return;
2822
2823 GEN5_IRQ_RESET(SDE);
2824
2825 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2826 I915_WRITE(SERR_INT, 0xffffffff);
2827 }
2828
2829 /*
2830 * SDEIER is also touched by the interrupt handler to work around missed PCH
2831 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2832 * instead we unconditionally enable all PCH interrupt sources here, but then
2833 * only unmask them as needed with SDEIMR.
2834 *
2835 * This function needs to be called before interrupts are enabled.
2836 */
2837 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2838 {
2839 struct drm_i915_private *dev_priv = dev->dev_private;
2840
2841 if (HAS_PCH_NOP(dev))
2842 return;
2843
2844 WARN_ON(I915_READ(SDEIER) != 0);
2845 I915_WRITE(SDEIER, 0xffffffff);
2846 POSTING_READ(SDEIER);
2847 }
2848
2849 static void gen5_gt_irq_reset(struct drm_device *dev)
2850 {
2851 struct drm_i915_private *dev_priv = dev->dev_private;
2852
2853 GEN5_IRQ_RESET(GT);
2854 if (INTEL_INFO(dev)->gen >= 6)
2855 GEN5_IRQ_RESET(GEN6_PM);
2856 }
2857
2858 /* drm_dma.h hooks
2859 */
2860 static void ironlake_irq_reset(struct drm_device *dev)
2861 {
2862 struct drm_i915_private *dev_priv = dev->dev_private;
2863
2864 I915_WRITE(HWSTAM, 0xffffffff);
2865
2866 GEN5_IRQ_RESET(DE);
2867 if (IS_GEN7(dev))
2868 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2869
2870 gen5_gt_irq_reset(dev);
2871
2872 ibx_irq_reset(dev);
2873 }
2874
2875 static void ironlake_irq_preinstall(struct drm_device *dev)
2876 {
2877 ironlake_irq_reset(dev);
2878 }
2879
2880 static void valleyview_irq_preinstall(struct drm_device *dev)
2881 {
2882 struct drm_i915_private *dev_priv = dev->dev_private;
2883 int pipe;
2884
2885 /* VLV magic */
2886 I915_WRITE(VLV_IMR, 0);
2887 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
2888 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
2889 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
2890
2891 /* and GT */
2892 I915_WRITE(GTIIR, I915_READ(GTIIR));
2893 I915_WRITE(GTIIR, I915_READ(GTIIR));
2894
2895 gen5_gt_irq_reset(dev);
2896
2897 I915_WRITE(DPINVGTT, 0xff);
2898
2899 I915_WRITE(PORT_HOTPLUG_EN, 0);
2900 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2901 for_each_pipe(pipe)
2902 I915_WRITE(PIPESTAT(pipe), 0xffff);
2903 I915_WRITE(VLV_IIR, 0xffffffff);
2904 I915_WRITE(VLV_IMR, 0xffffffff);
2905 I915_WRITE(VLV_IER, 0x0);
2906 POSTING_READ(VLV_IER);
2907 }
2908
2909 static void gen8_irq_reset(struct drm_device *dev)
2910 {
2911 struct drm_i915_private *dev_priv = dev->dev_private;
2912 int pipe;
2913
2914 I915_WRITE(GEN8_MASTER_IRQ, 0);
2915 POSTING_READ(GEN8_MASTER_IRQ);
2916
2917 GEN8_IRQ_RESET_NDX(GT, 0);
2918 GEN8_IRQ_RESET_NDX(GT, 1);
2919 GEN8_IRQ_RESET_NDX(GT, 2);
2920 GEN8_IRQ_RESET_NDX(GT, 3);
2921
2922 for_each_pipe(pipe)
2923 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
2924
2925 GEN5_IRQ_RESET(GEN8_DE_PORT_);
2926 GEN5_IRQ_RESET(GEN8_DE_MISC_);
2927 GEN5_IRQ_RESET(GEN8_PCU_);
2928
2929 ibx_irq_reset(dev);
2930 }
2931
2932 static void gen8_irq_preinstall(struct drm_device *dev)
2933 {
2934 gen8_irq_reset(dev);
2935 }
2936
2937 static void ibx_hpd_irq_setup(struct drm_device *dev)
2938 {
2939 struct drm_i915_private *dev_priv = dev->dev_private;
2940 struct drm_mode_config *mode_config = &dev->mode_config;
2941 struct intel_encoder *intel_encoder;
2942 u32 hotplug_irqs, hotplug, enabled_irqs = 0;
2943
2944 if (HAS_PCH_IBX(dev)) {
2945 hotplug_irqs = SDE_HOTPLUG_MASK;
2946 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2947 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2948 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
2949 } else {
2950 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2951 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
2952 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
2953 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
2954 }
2955
2956 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
2957
2958 /*
2959 * Enable digital hotplug on the PCH, and configure the DP short pulse
2960 * duration to 2ms (which is the minimum in the Display Port spec)
2961 *
2962 * This register is the same on all known PCH chips.
2963 */
2964 hotplug = I915_READ(PCH_PORT_HOTPLUG);
2965 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
2966 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2967 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2968 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2969 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2970 }
2971
2972 static void ibx_irq_postinstall(struct drm_device *dev)
2973 {
2974 struct drm_i915_private *dev_priv = dev->dev_private;
2975 u32 mask;
2976
2977 if (HAS_PCH_NOP(dev))
2978 return;
2979
2980 if (HAS_PCH_IBX(dev))
2981 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
2982 else
2983 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
2984
2985 GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
2986 I915_WRITE(SDEIMR, ~mask);
2987 }
2988
2989 static void gen5_gt_irq_postinstall(struct drm_device *dev)
2990 {
2991 struct drm_i915_private *dev_priv = dev->dev_private;
2992 u32 pm_irqs, gt_irqs;
2993
2994 pm_irqs = gt_irqs = 0;
2995
2996 dev_priv->gt_irq_mask = ~0;
2997 if (HAS_L3_DPF(dev)) {
2998 /* L3 parity interrupt is always unmasked. */
2999 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3000 gt_irqs |= GT_PARITY_ERROR(dev);
3001 }
3002
3003 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3004 if (IS_GEN5(dev)) {
3005 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3006 ILK_BSD_USER_INTERRUPT;
3007 } else {
3008 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3009 }
3010
3011 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3012
3013 if (INTEL_INFO(dev)->gen >= 6) {
3014 pm_irqs |= dev_priv->pm_rps_events;
3015
3016 if (HAS_VEBOX(dev))
3017 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3018
3019 dev_priv->pm_irq_mask = 0xffffffff;
3020 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3021 }
3022 }
3023
3024 static int ironlake_irq_postinstall(struct drm_device *dev)
3025 {
3026 unsigned long irqflags;
3027 struct drm_i915_private *dev_priv = dev->dev_private;
3028 u32 display_mask, extra_mask;
3029
3030 if (INTEL_INFO(dev)->gen >= 7) {
3031 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3032 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3033 DE_PLANEB_FLIP_DONE_IVB |
3034 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3035 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3036 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3037 } else {
3038 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3039 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3040 DE_AUX_CHANNEL_A |
3041 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3042 DE_POISON);
3043 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3044 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3045 }
3046
3047 dev_priv->irq_mask = ~display_mask;
3048
3049 I915_WRITE(HWSTAM, 0xeffe);
3050
3051 ibx_irq_pre_postinstall(dev);
3052
3053 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3054
3055 gen5_gt_irq_postinstall(dev);
3056
3057 ibx_irq_postinstall(dev);
3058
3059 if (IS_IRONLAKE_M(dev)) {
3060 /* Enable PCU event interrupts
3061 *
3062 * spinlocking not required here for correctness since interrupt
3063 * setup is guaranteed to run in single-threaded context. But we
3064 * need it to make the assert_spin_locked happy. */
3065 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3066 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3067 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3068 }
3069
3070 return 0;
3071 }
3072
3073 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3074 {
3075 u32 pipestat_mask;
3076 u32 iir_mask;
3077
3078 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3079 PIPE_FIFO_UNDERRUN_STATUS;
3080
3081 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3082 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3083 POSTING_READ(PIPESTAT(PIPE_A));
3084
3085 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3086 PIPE_CRC_DONE_INTERRUPT_STATUS;
3087
3088 i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3089 PIPE_GMBUS_INTERRUPT_STATUS);
3090 i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3091
3092 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3093 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3094 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3095 dev_priv->irq_mask &= ~iir_mask;
3096
3097 I915_WRITE(VLV_IIR, iir_mask);
3098 I915_WRITE(VLV_IIR, iir_mask);
3099 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3100 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3101 POSTING_READ(VLV_IER);
3102 }
3103
3104 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3105 {
3106 u32 pipestat_mask;
3107 u32 iir_mask;
3108
3109 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3110 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3111 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3112
3113 dev_priv->irq_mask |= iir_mask;
3114 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3115 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3116 I915_WRITE(VLV_IIR, iir_mask);
3117 I915_WRITE(VLV_IIR, iir_mask);
3118 POSTING_READ(VLV_IIR);
3119
3120 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3121 PIPE_CRC_DONE_INTERRUPT_STATUS;
3122
3123 i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3124 PIPE_GMBUS_INTERRUPT_STATUS);
3125 i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3126
3127 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3128 PIPE_FIFO_UNDERRUN_STATUS;
3129 I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3130 I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3131 POSTING_READ(PIPESTAT(PIPE_A));
3132 }
3133
3134 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3135 {
3136 assert_spin_locked(&dev_priv->irq_lock);
3137
3138 if (dev_priv->display_irqs_enabled)
3139 return;
3140
3141 dev_priv->display_irqs_enabled = true;
3142
3143 if (dev_priv->dev->irq_enabled)
3144 valleyview_display_irqs_install(dev_priv);
3145 }
3146
3147 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3148 {
3149 assert_spin_locked(&dev_priv->irq_lock);
3150
3151 if (!dev_priv->display_irqs_enabled)
3152 return;
3153
3154 dev_priv->display_irqs_enabled = false;
3155
3156 if (dev_priv->dev->irq_enabled)
3157 valleyview_display_irqs_uninstall(dev_priv);
3158 }
3159
3160 static int valleyview_irq_postinstall(struct drm_device *dev)
3161 {
3162 struct drm_i915_private *dev_priv = dev->dev_private;
3163 unsigned long irqflags;
3164
3165 dev_priv->irq_mask = ~0;
3166
3167 I915_WRITE(PORT_HOTPLUG_EN, 0);
3168 POSTING_READ(PORT_HOTPLUG_EN);
3169
3170 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3171 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3172 I915_WRITE(VLV_IIR, 0xffffffff);
3173 POSTING_READ(VLV_IER);
3174
3175 /* Interrupt setup is already guaranteed to be single-threaded, this is
3176 * just to make the assert_spin_locked check happy. */
3177 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3178 if (dev_priv->display_irqs_enabled)
3179 valleyview_display_irqs_install(dev_priv);
3180 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3181
3182 I915_WRITE(VLV_IIR, 0xffffffff);
3183 I915_WRITE(VLV_IIR, 0xffffffff);
3184
3185 gen5_gt_irq_postinstall(dev);
3186
3187 /* ack & enable invalid PTE error interrupts */
3188 #if 0 /* FIXME: add support to irq handler for checking these bits */
3189 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3190 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3191 #endif
3192
3193 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3194
3195 return 0;
3196 }
3197
3198 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3199 {
3200 int i;
3201
3202 /* These are interrupts we'll toggle with the ring mask register */
3203 uint32_t gt_interrupts[] = {
3204 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3205 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3206 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3207 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3208 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3209 0,
3210 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3211 };
3212
3213 for (i = 0; i < ARRAY_SIZE(gt_interrupts); i++)
3214 GEN8_IRQ_INIT_NDX(GT, i, ~gt_interrupts[i], gt_interrupts[i]);
3215 }
3216
3217 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3218 {
3219 struct drm_device *dev = dev_priv->dev;
3220 uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3221 GEN8_PIPE_CDCLK_CRC_DONE |
3222 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3223 uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3224 GEN8_PIPE_FIFO_UNDERRUN;
3225 int pipe;
3226 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3227 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3228 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3229
3230 for_each_pipe(pipe)
3231 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe, dev_priv->de_irq_mask[pipe],
3232 de_pipe_enables);
3233
3234 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3235 }
3236
3237 static int gen8_irq_postinstall(struct drm_device *dev)
3238 {
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240
3241 ibx_irq_pre_postinstall(dev);
3242
3243 gen8_gt_irq_postinstall(dev_priv);
3244 gen8_de_irq_postinstall(dev_priv);
3245
3246 ibx_irq_postinstall(dev);
3247
3248 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3249 POSTING_READ(GEN8_MASTER_IRQ);
3250
3251 return 0;
3252 }
3253
3254 static void gen8_irq_uninstall(struct drm_device *dev)
3255 {
3256 struct drm_i915_private *dev_priv = dev->dev_private;
3257
3258 if (!dev_priv)
3259 return;
3260
3261 intel_hpd_irq_uninstall(dev_priv);
3262
3263 gen8_irq_reset(dev);
3264 }
3265
3266 static void valleyview_irq_uninstall(struct drm_device *dev)
3267 {
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269 unsigned long irqflags;
3270 int pipe;
3271
3272 if (!dev_priv)
3273 return;
3274
3275 I915_WRITE(VLV_MASTER_IER, 0);
3276
3277 intel_hpd_irq_uninstall(dev_priv);
3278
3279 for_each_pipe(pipe)
3280 I915_WRITE(PIPESTAT(pipe), 0xffff);
3281
3282 I915_WRITE(HWSTAM, 0xffffffff);
3283 I915_WRITE(PORT_HOTPLUG_EN, 0);
3284 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3285
3286 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3287 if (dev_priv->display_irqs_enabled)
3288 valleyview_display_irqs_uninstall(dev_priv);
3289 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3290
3291 dev_priv->irq_mask = 0;
3292
3293 I915_WRITE(VLV_IIR, 0xffffffff);
3294 I915_WRITE(VLV_IMR, 0xffffffff);
3295 I915_WRITE(VLV_IER, 0x0);
3296 POSTING_READ(VLV_IER);
3297 }
3298
3299 static void ironlake_irq_uninstall(struct drm_device *dev)
3300 {
3301 struct drm_i915_private *dev_priv = dev->dev_private;
3302
3303 if (!dev_priv)
3304 return;
3305
3306 intel_hpd_irq_uninstall(dev_priv);
3307
3308 ironlake_irq_reset(dev);
3309 }
3310
3311 static void i8xx_irq_preinstall(struct drm_device * dev)
3312 {
3313 struct drm_i915_private *dev_priv = dev->dev_private;
3314 int pipe;
3315
3316 for_each_pipe(pipe)
3317 I915_WRITE(PIPESTAT(pipe), 0);
3318 I915_WRITE16(IMR, 0xffff);
3319 I915_WRITE16(IER, 0x0);
3320 POSTING_READ16(IER);
3321 }
3322
3323 static int i8xx_irq_postinstall(struct drm_device *dev)
3324 {
3325 struct drm_i915_private *dev_priv = dev->dev_private;
3326 unsigned long irqflags;
3327
3328 I915_WRITE16(EMR,
3329 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3330
3331 /* Unmask the interrupts that we always want on. */
3332 dev_priv->irq_mask =
3333 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3334 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3335 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3336 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3337 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3338 I915_WRITE16(IMR, dev_priv->irq_mask);
3339
3340 I915_WRITE16(IER,
3341 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3342 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3343 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3344 I915_USER_INTERRUPT);
3345 POSTING_READ16(IER);
3346
3347 /* Interrupt setup is already guaranteed to be single-threaded, this is
3348 * just to make the assert_spin_locked check happy. */
3349 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3350 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3351 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3352 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3353
3354 return 0;
3355 }
3356
3357 /*
3358 * Returns true when a page flip has completed.
3359 */
3360 static bool i8xx_handle_vblank(struct drm_device *dev,
3361 int plane, int pipe, u32 iir)
3362 {
3363 struct drm_i915_private *dev_priv = dev->dev_private;
3364 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3365
3366 if (!drm_handle_vblank(dev, pipe))
3367 return false;
3368
3369 if ((iir & flip_pending) == 0)
3370 return false;
3371
3372 intel_prepare_page_flip(dev, plane);
3373
3374 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3375 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3376 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3377 * the flip is completed (no longer pending). Since this doesn't raise
3378 * an interrupt per se, we watch for the change at vblank.
3379 */
3380 if (I915_READ16(ISR) & flip_pending)
3381 return false;
3382
3383 intel_finish_page_flip(dev, pipe);
3384
3385 return true;
3386 }
3387
3388 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3389 {
3390 struct drm_device *dev = (struct drm_device *) arg;
3391 struct drm_i915_private *dev_priv = dev->dev_private;
3392 u16 iir, new_iir;
3393 u32 pipe_stats[2];
3394 unsigned long irqflags;
3395 int pipe;
3396 u16 flip_mask =
3397 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3398 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3399
3400 iir = I915_READ16(IIR);
3401 if (iir == 0)
3402 return IRQ_NONE;
3403
3404 while (iir & ~flip_mask) {
3405 /* Can't rely on pipestat interrupt bit in iir as it might
3406 * have been cleared after the pipestat interrupt was received.
3407 * It doesn't set the bit in iir again, but it still produces
3408 * interrupts (for non-MSI).
3409 */
3410 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3411 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3412 i915_handle_error(dev, false,
3413 "Command parser error, iir 0x%08x",
3414 iir);
3415
3416 for_each_pipe(pipe) {
3417 int reg = PIPESTAT(pipe);
3418 pipe_stats[pipe] = I915_READ(reg);
3419
3420 /*
3421 * Clear the PIPE*STAT regs before the IIR
3422 */
3423 if (pipe_stats[pipe] & 0x8000ffff)
3424 I915_WRITE(reg, pipe_stats[pipe]);
3425 }
3426 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3427
3428 I915_WRITE16(IIR, iir & ~flip_mask);
3429 new_iir = I915_READ16(IIR); /* Flush posted writes */
3430
3431 i915_update_dri1_breadcrumb(dev);
3432
3433 if (iir & I915_USER_INTERRUPT)
3434 notify_ring(dev, &dev_priv->ring[RCS]);
3435
3436 for_each_pipe(pipe) {
3437 int plane = pipe;
3438 if (HAS_FBC(dev))
3439 plane = !plane;
3440
3441 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3442 i8xx_handle_vblank(dev, plane, pipe, iir))
3443 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3444
3445 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3446 i9xx_pipe_crc_irq_handler(dev, pipe);
3447
3448 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3449 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3450 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3451 }
3452
3453 iir = new_iir;
3454 }
3455
3456 return IRQ_HANDLED;
3457 }
3458
3459 static void i8xx_irq_uninstall(struct drm_device * dev)
3460 {
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 int pipe;
3463
3464 for_each_pipe(pipe) {
3465 /* Clear enable bits; then clear status bits */
3466 I915_WRITE(PIPESTAT(pipe), 0);
3467 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3468 }
3469 I915_WRITE16(IMR, 0xffff);
3470 I915_WRITE16(IER, 0x0);
3471 I915_WRITE16(IIR, I915_READ16(IIR));
3472 }
3473
3474 static void i915_irq_preinstall(struct drm_device * dev)
3475 {
3476 struct drm_i915_private *dev_priv = dev->dev_private;
3477 int pipe;
3478
3479 if (I915_HAS_HOTPLUG(dev)) {
3480 I915_WRITE(PORT_HOTPLUG_EN, 0);
3481 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3482 }
3483
3484 I915_WRITE16(HWSTAM, 0xeffe);
3485 for_each_pipe(pipe)
3486 I915_WRITE(PIPESTAT(pipe), 0);
3487 I915_WRITE(IMR, 0xffffffff);
3488 I915_WRITE(IER, 0x0);
3489 POSTING_READ(IER);
3490 }
3491
3492 static int i915_irq_postinstall(struct drm_device *dev)
3493 {
3494 struct drm_i915_private *dev_priv = dev->dev_private;
3495 u32 enable_mask;
3496 unsigned long irqflags;
3497
3498 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3499
3500 /* Unmask the interrupts that we always want on. */
3501 dev_priv->irq_mask =
3502 ~(I915_ASLE_INTERRUPT |
3503 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3504 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3505 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3506 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3507 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3508
3509 enable_mask =
3510 I915_ASLE_INTERRUPT |
3511 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3512 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3513 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3514 I915_USER_INTERRUPT;
3515
3516 if (I915_HAS_HOTPLUG(dev)) {
3517 I915_WRITE(PORT_HOTPLUG_EN, 0);
3518 POSTING_READ(PORT_HOTPLUG_EN);
3519
3520 /* Enable in IER... */
3521 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3522 /* and unmask in IMR */
3523 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3524 }
3525
3526 I915_WRITE(IMR, dev_priv->irq_mask);
3527 I915_WRITE(IER, enable_mask);
3528 POSTING_READ(IER);
3529
3530 i915_enable_asle_pipestat(dev);
3531
3532 /* Interrupt setup is already guaranteed to be single-threaded, this is
3533 * just to make the assert_spin_locked check happy. */
3534 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3535 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3536 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3537 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3538
3539 return 0;
3540 }
3541
3542 /*
3543 * Returns true when a page flip has completed.
3544 */
3545 static bool i915_handle_vblank(struct drm_device *dev,
3546 int plane, int pipe, u32 iir)
3547 {
3548 struct drm_i915_private *dev_priv = dev->dev_private;
3549 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3550
3551 if (!drm_handle_vblank(dev, pipe))
3552 return false;
3553
3554 if ((iir & flip_pending) == 0)
3555 return false;
3556
3557 intel_prepare_page_flip(dev, plane);
3558
3559 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3560 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3561 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3562 * the flip is completed (no longer pending). Since this doesn't raise
3563 * an interrupt per se, we watch for the change at vblank.
3564 */
3565 if (I915_READ(ISR) & flip_pending)
3566 return false;
3567
3568 intel_finish_page_flip(dev, pipe);
3569
3570 return true;
3571 }
3572
3573 static irqreturn_t i915_irq_handler(int irq, void *arg)
3574 {
3575 struct drm_device *dev = (struct drm_device *) arg;
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3578 unsigned long irqflags;
3579 u32 flip_mask =
3580 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3581 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3582 int pipe, ret = IRQ_NONE;
3583
3584 iir = I915_READ(IIR);
3585 do {
3586 bool irq_received = (iir & ~flip_mask) != 0;
3587 bool blc_event = false;
3588
3589 /* Can't rely on pipestat interrupt bit in iir as it might
3590 * have been cleared after the pipestat interrupt was received.
3591 * It doesn't set the bit in iir again, but it still produces
3592 * interrupts (for non-MSI).
3593 */
3594 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3595 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3596 i915_handle_error(dev, false,
3597 "Command parser error, iir 0x%08x",
3598 iir);
3599
3600 for_each_pipe(pipe) {
3601 int reg = PIPESTAT(pipe);
3602 pipe_stats[pipe] = I915_READ(reg);
3603
3604 /* Clear the PIPE*STAT regs before the IIR */
3605 if (pipe_stats[pipe] & 0x8000ffff) {
3606 I915_WRITE(reg, pipe_stats[pipe]);
3607 irq_received = true;
3608 }
3609 }
3610 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3611
3612 if (!irq_received)
3613 break;
3614
3615 /* Consume port. Then clear IIR or we'll miss events */
3616 if (I915_HAS_HOTPLUG(dev) &&
3617 iir & I915_DISPLAY_PORT_INTERRUPT)
3618 i9xx_hpd_irq_handler(dev);
3619
3620 I915_WRITE(IIR, iir & ~flip_mask);
3621 new_iir = I915_READ(IIR); /* Flush posted writes */
3622
3623 if (iir & I915_USER_INTERRUPT)
3624 notify_ring(dev, &dev_priv->ring[RCS]);
3625
3626 for_each_pipe(pipe) {
3627 int plane = pipe;
3628 if (HAS_FBC(dev))
3629 plane = !plane;
3630
3631 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3632 i915_handle_vblank(dev, plane, pipe, iir))
3633 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3634
3635 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3636 blc_event = true;
3637
3638 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3639 i9xx_pipe_crc_irq_handler(dev, pipe);
3640
3641 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3642 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3643 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3644 }
3645
3646 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3647 intel_opregion_asle_intr(dev);
3648
3649 /* With MSI, interrupts are only generated when iir
3650 * transitions from zero to nonzero. If another bit got
3651 * set while we were handling the existing iir bits, then
3652 * we would never get another interrupt.
3653 *
3654 * This is fine on non-MSI as well, as if we hit this path
3655 * we avoid exiting the interrupt handler only to generate
3656 * another one.
3657 *
3658 * Note that for MSI this could cause a stray interrupt report
3659 * if an interrupt landed in the time between writing IIR and
3660 * the posting read. This should be rare enough to never
3661 * trigger the 99% of 100,000 interrupts test for disabling
3662 * stray interrupts.
3663 */
3664 ret = IRQ_HANDLED;
3665 iir = new_iir;
3666 } while (iir & ~flip_mask);
3667
3668 i915_update_dri1_breadcrumb(dev);
3669
3670 return ret;
3671 }
3672
3673 static void i915_irq_uninstall(struct drm_device * dev)
3674 {
3675 struct drm_i915_private *dev_priv = dev->dev_private;
3676 int pipe;
3677
3678 intel_hpd_irq_uninstall(dev_priv);
3679
3680 if (I915_HAS_HOTPLUG(dev)) {
3681 I915_WRITE(PORT_HOTPLUG_EN, 0);
3682 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3683 }
3684
3685 I915_WRITE16(HWSTAM, 0xffff);
3686 for_each_pipe(pipe) {
3687 /* Clear enable bits; then clear status bits */
3688 I915_WRITE(PIPESTAT(pipe), 0);
3689 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3690 }
3691 I915_WRITE(IMR, 0xffffffff);
3692 I915_WRITE(IER, 0x0);
3693
3694 I915_WRITE(IIR, I915_READ(IIR));
3695 }
3696
3697 static void i965_irq_preinstall(struct drm_device * dev)
3698 {
3699 struct drm_i915_private *dev_priv = dev->dev_private;
3700 int pipe;
3701
3702 I915_WRITE(PORT_HOTPLUG_EN, 0);
3703 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3704
3705 I915_WRITE(HWSTAM, 0xeffe);
3706 for_each_pipe(pipe)
3707 I915_WRITE(PIPESTAT(pipe), 0);
3708 I915_WRITE(IMR, 0xffffffff);
3709 I915_WRITE(IER, 0x0);
3710 POSTING_READ(IER);
3711 }
3712
3713 static int i965_irq_postinstall(struct drm_device *dev)
3714 {
3715 struct drm_i915_private *dev_priv = dev->dev_private;
3716 u32 enable_mask;
3717 u32 error_mask;
3718 unsigned long irqflags;
3719
3720 /* Unmask the interrupts that we always want on. */
3721 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3722 I915_DISPLAY_PORT_INTERRUPT |
3723 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3724 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3725 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3726 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3727 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3728
3729 enable_mask = ~dev_priv->irq_mask;
3730 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3731 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3732 enable_mask |= I915_USER_INTERRUPT;
3733
3734 if (IS_G4X(dev))
3735 enable_mask |= I915_BSD_USER_INTERRUPT;
3736
3737 /* Interrupt setup is already guaranteed to be single-threaded, this is
3738 * just to make the assert_spin_locked check happy. */
3739 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3740 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3741 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3742 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3743 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3744
3745 /*
3746 * Enable some error detection, note the instruction error mask
3747 * bit is reserved, so we leave it masked.
3748 */
3749 if (IS_G4X(dev)) {
3750 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3751 GM45_ERROR_MEM_PRIV |
3752 GM45_ERROR_CP_PRIV |
3753 I915_ERROR_MEMORY_REFRESH);
3754 } else {
3755 error_mask = ~(I915_ERROR_PAGE_TABLE |
3756 I915_ERROR_MEMORY_REFRESH);
3757 }
3758 I915_WRITE(EMR, error_mask);
3759
3760 I915_WRITE(IMR, dev_priv->irq_mask);
3761 I915_WRITE(IER, enable_mask);
3762 POSTING_READ(IER);
3763
3764 I915_WRITE(PORT_HOTPLUG_EN, 0);
3765 POSTING_READ(PORT_HOTPLUG_EN);
3766
3767 i915_enable_asle_pipestat(dev);
3768
3769 return 0;
3770 }
3771
3772 static void i915_hpd_irq_setup(struct drm_device *dev)
3773 {
3774 struct drm_i915_private *dev_priv = dev->dev_private;
3775 struct drm_mode_config *mode_config = &dev->mode_config;
3776 struct intel_encoder *intel_encoder;
3777 u32 hotplug_en;
3778
3779 assert_spin_locked(&dev_priv->irq_lock);
3780
3781 if (I915_HAS_HOTPLUG(dev)) {
3782 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
3783 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
3784 /* Note HDMI and DP share hotplug bits */
3785 /* enable bits are the same for all generations */
3786 list_for_each_entry(intel_encoder, &mode_config->encoder_list, base.head)
3787 if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3788 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
3789 /* Programming the CRT detection parameters tends
3790 to generate a spurious hotplug event about three
3791 seconds later. So just do it once.
3792 */
3793 if (IS_G4X(dev))
3794 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3795 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
3796 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3797
3798 /* Ignore TV since it's buggy */
3799 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
3800 }
3801 }
3802
3803 static irqreturn_t i965_irq_handler(int irq, void *arg)
3804 {
3805 struct drm_device *dev = (struct drm_device *) arg;
3806 struct drm_i915_private *dev_priv = dev->dev_private;
3807 u32 iir, new_iir;
3808 u32 pipe_stats[I915_MAX_PIPES];
3809 unsigned long irqflags;
3810 int ret = IRQ_NONE, pipe;
3811 u32 flip_mask =
3812 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3813 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3814
3815 iir = I915_READ(IIR);
3816
3817 for (;;) {
3818 bool irq_received = (iir & ~flip_mask) != 0;
3819 bool blc_event = false;
3820
3821 /* Can't rely on pipestat interrupt bit in iir as it might
3822 * have been cleared after the pipestat interrupt was received.
3823 * It doesn't set the bit in iir again, but it still produces
3824 * interrupts (for non-MSI).
3825 */
3826 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3827 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3828 i915_handle_error(dev, false,
3829 "Command parser error, iir 0x%08x",
3830 iir);
3831
3832 for_each_pipe(pipe) {
3833 int reg = PIPESTAT(pipe);
3834 pipe_stats[pipe] = I915_READ(reg);
3835
3836 /*
3837 * Clear the PIPE*STAT regs before the IIR
3838 */
3839 if (pipe_stats[pipe] & 0x8000ffff) {
3840 I915_WRITE(reg, pipe_stats[pipe]);
3841 irq_received = true;
3842 }
3843 }
3844 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3845
3846 if (!irq_received)
3847 break;
3848
3849 ret = IRQ_HANDLED;
3850
3851 /* Consume port. Then clear IIR or we'll miss events */
3852 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3853 i9xx_hpd_irq_handler(dev);
3854
3855 I915_WRITE(IIR, iir & ~flip_mask);
3856 new_iir = I915_READ(IIR); /* Flush posted writes */
3857
3858 if (iir & I915_USER_INTERRUPT)
3859 notify_ring(dev, &dev_priv->ring[RCS]);
3860 if (iir & I915_BSD_USER_INTERRUPT)
3861 notify_ring(dev, &dev_priv->ring[VCS]);
3862
3863 for_each_pipe(pipe) {
3864 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
3865 i915_handle_vblank(dev, pipe, pipe, iir))
3866 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
3867
3868 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3869 blc_event = true;
3870
3871 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3872 i9xx_pipe_crc_irq_handler(dev, pipe);
3873
3874 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
3875 intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
3876 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
3877 }
3878
3879 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3880 intel_opregion_asle_intr(dev);
3881
3882 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
3883 gmbus_irq_handler(dev);
3884
3885 /* With MSI, interrupts are only generated when iir
3886 * transitions from zero to nonzero. If another bit got
3887 * set while we were handling the existing iir bits, then
3888 * we would never get another interrupt.
3889 *
3890 * This is fine on non-MSI as well, as if we hit this path
3891 * we avoid exiting the interrupt handler only to generate
3892 * another one.
3893 *
3894 * Note that for MSI this could cause a stray interrupt report
3895 * if an interrupt landed in the time between writing IIR and
3896 * the posting read. This should be rare enough to never
3897 * trigger the 99% of 100,000 interrupts test for disabling
3898 * stray interrupts.
3899 */
3900 iir = new_iir;
3901 }
3902
3903 i915_update_dri1_breadcrumb(dev);
3904
3905 return ret;
3906 }
3907
3908 static void i965_irq_uninstall(struct drm_device * dev)
3909 {
3910 struct drm_i915_private *dev_priv = dev->dev_private;
3911 int pipe;
3912
3913 if (!dev_priv)
3914 return;
3915
3916 intel_hpd_irq_uninstall(dev_priv);
3917
3918 I915_WRITE(PORT_HOTPLUG_EN, 0);
3919 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3920
3921 I915_WRITE(HWSTAM, 0xffffffff);
3922 for_each_pipe(pipe)
3923 I915_WRITE(PIPESTAT(pipe), 0);
3924 I915_WRITE(IMR, 0xffffffff);
3925 I915_WRITE(IER, 0x0);
3926
3927 for_each_pipe(pipe)
3928 I915_WRITE(PIPESTAT(pipe),
3929 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
3930 I915_WRITE(IIR, I915_READ(IIR));
3931 }
3932
3933 static void intel_hpd_irq_reenable(unsigned long data)
3934 {
3935 struct drm_i915_private *dev_priv = (struct drm_i915_private *)data;
3936 struct drm_device *dev = dev_priv->dev;
3937 struct drm_mode_config *mode_config = &dev->mode_config;
3938 unsigned long irqflags;
3939 int i;
3940
3941 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3942 for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
3943 struct drm_connector *connector;
3944
3945 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
3946 continue;
3947
3948 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
3949
3950 list_for_each_entry(connector, &mode_config->connector_list, head) {
3951 struct intel_connector *intel_connector = to_intel_connector(connector);
3952
3953 if (intel_connector->encoder->hpd_pin == i) {
3954 if (connector->polled != intel_connector->polled)
3955 DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
3956 drm_get_connector_name(connector));
3957 connector->polled = intel_connector->polled;
3958 if (!connector->polled)
3959 connector->polled = DRM_CONNECTOR_POLL_HPD;
3960 }
3961 }
3962 }
3963 if (dev_priv->display.hpd_irq_setup)
3964 dev_priv->display.hpd_irq_setup(dev);
3965 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3966 }
3967
3968 void intel_irq_init(struct drm_device *dev)
3969 {
3970 struct drm_i915_private *dev_priv = dev->dev_private;
3971
3972 INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
3973 INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
3974 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
3975 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
3976
3977 /* Let's track the enabled rps events */
3978 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
3979
3980 setup_timer(&dev_priv->gpu_error.hangcheck_timer,
3981 i915_hangcheck_elapsed,
3982 (unsigned long) dev);
3983 setup_timer(&dev_priv->hotplug_reenable_timer, intel_hpd_irq_reenable,
3984 (unsigned long) dev_priv);
3985
3986 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
3987
3988 if (IS_GEN2(dev)) {
3989 dev->max_vblank_count = 0;
3990 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
3991 } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
3992 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
3993 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
3994 } else {
3995 dev->driver->get_vblank_counter = i915_get_vblank_counter;
3996 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
3997 }
3998
3999 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4000 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4001 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4002 }
4003
4004 if (IS_VALLEYVIEW(dev)) {
4005 dev->driver->irq_handler = valleyview_irq_handler;
4006 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4007 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4008 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4009 dev->driver->enable_vblank = valleyview_enable_vblank;
4010 dev->driver->disable_vblank = valleyview_disable_vblank;
4011 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4012 } else if (IS_GEN8(dev)) {
4013 dev->driver->irq_handler = gen8_irq_handler;
4014 dev->driver->irq_preinstall = gen8_irq_preinstall;
4015 dev->driver->irq_postinstall = gen8_irq_postinstall;
4016 dev->driver->irq_uninstall = gen8_irq_uninstall;
4017 dev->driver->enable_vblank = gen8_enable_vblank;
4018 dev->driver->disable_vblank = gen8_disable_vblank;
4019 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4020 } else if (HAS_PCH_SPLIT(dev)) {
4021 dev->driver->irq_handler = ironlake_irq_handler;
4022 dev->driver->irq_preinstall = ironlake_irq_preinstall;
4023 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4024 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4025 dev->driver->enable_vblank = ironlake_enable_vblank;
4026 dev->driver->disable_vblank = ironlake_disable_vblank;
4027 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4028 } else {
4029 if (INTEL_INFO(dev)->gen == 2) {
4030 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4031 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4032 dev->driver->irq_handler = i8xx_irq_handler;
4033 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4034 } else if (INTEL_INFO(dev)->gen == 3) {
4035 dev->driver->irq_preinstall = i915_irq_preinstall;
4036 dev->driver->irq_postinstall = i915_irq_postinstall;
4037 dev->driver->irq_uninstall = i915_irq_uninstall;
4038 dev->driver->irq_handler = i915_irq_handler;
4039 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4040 } else {
4041 dev->driver->irq_preinstall = i965_irq_preinstall;
4042 dev->driver->irq_postinstall = i965_irq_postinstall;
4043 dev->driver->irq_uninstall = i965_irq_uninstall;
4044 dev->driver->irq_handler = i965_irq_handler;
4045 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4046 }
4047 dev->driver->enable_vblank = i915_enable_vblank;
4048 dev->driver->disable_vblank = i915_disable_vblank;
4049 }
4050 }
4051
4052 void intel_hpd_init(struct drm_device *dev)
4053 {
4054 struct drm_i915_private *dev_priv = dev->dev_private;
4055 struct drm_mode_config *mode_config = &dev->mode_config;
4056 struct drm_connector *connector;
4057 unsigned long irqflags;
4058 int i;
4059
4060 for (i = 1; i < HPD_NUM_PINS; i++) {
4061 dev_priv->hpd_stats[i].hpd_cnt = 0;
4062 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4063 }
4064 list_for_each_entry(connector, &mode_config->connector_list, head) {
4065 struct intel_connector *intel_connector = to_intel_connector(connector);
4066 connector->polled = intel_connector->polled;
4067 if (!connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4068 connector->polled = DRM_CONNECTOR_POLL_HPD;
4069 }
4070
4071 /* Interrupt setup is already guaranteed to be single-threaded, this is
4072 * just to make the assert_spin_locked checks happy. */
4073 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4074 if (dev_priv->display.hpd_irq_setup)
4075 dev_priv->display.hpd_irq_setup(dev);
4076 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4077 }
4078
4079 /* Disable interrupts so we can allow runtime PM. */
4080 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4081 {
4082 struct drm_i915_private *dev_priv = dev->dev_private;
4083
4084 dev->driver->irq_uninstall(dev);
4085 dev_priv->pm.irqs_disabled = true;
4086 }
4087
4088 /* Restore interrupts so we can recover from runtime PM. */
4089 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4090 {
4091 struct drm_i915_private *dev_priv = dev->dev_private;
4092
4093 dev_priv->pm.irqs_disabled = false;
4094 dev->driver->irq_preinstall(dev);
4095 dev->driver->irq_postinstall(dev);
4096 }
This page took 0.28478 seconds and 6 git commands to generate.