Merge tag 'omapdrm-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tomba/linux...
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61 [HPD_CRT] = SDE_CRT_HOTPLUG,
62 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65 [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120 I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121 POSTING_READ(GEN8_##type##_IMR(which)); \
122 I915_WRITE(GEN8_##type##_IER(which), 0); \
123 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124 POSTING_READ(GEN8_##type##_IIR(which)); \
125 I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126 POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130 I915_WRITE(type##IMR, 0xffffffff); \
131 POSTING_READ(type##IMR); \
132 I915_WRITE(type##IER, 0); \
133 I915_WRITE(type##IIR, 0xffffffff); \
134 POSTING_READ(type##IIR); \
135 I915_WRITE(type##IIR, 0xffffffff); \
136 POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141 */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143 i915_reg_t reg)
144 {
145 u32 val = I915_READ(reg);
146
147 if (val == 0)
148 return;
149
150 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151 i915_mmio_reg_offset(reg), val);
152 I915_WRITE(reg, 0xffffffff);
153 POSTING_READ(reg);
154 I915_WRITE(reg, 0xffffffff);
155 POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159 gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160 I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161 I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162 POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166 gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167 I915_WRITE(type##IER, (ier_val)); \
168 I915_WRITE(type##IMR, (imr_val)); \
169 POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173
174 /* For display hotplug interrupt */
175 static inline void
176 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
177 uint32_t mask,
178 uint32_t bits)
179 {
180 uint32_t val;
181
182 assert_spin_locked(&dev_priv->irq_lock);
183 WARN_ON(bits & ~mask);
184
185 val = I915_READ(PORT_HOTPLUG_EN);
186 val &= ~mask;
187 val |= bits;
188 I915_WRITE(PORT_HOTPLUG_EN, val);
189 }
190
191 /**
192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
193 * @dev_priv: driver private
194 * @mask: bits to update
195 * @bits: bits to enable
196 * NOTE: the HPD enable bits are modified both inside and outside
197 * of an interrupt context. To avoid that read-modify-write cycles
198 * interfer, these bits are protected by a spinlock. Since this
199 * function is usually not called from a context where the lock is
200 * held already, this function acquires the lock itself. A non-locking
201 * version is also available.
202 */
203 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
204 uint32_t mask,
205 uint32_t bits)
206 {
207 spin_lock_irq(&dev_priv->irq_lock);
208 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
209 spin_unlock_irq(&dev_priv->irq_lock);
210 }
211
212 /**
213 * ilk_update_display_irq - update DEIMR
214 * @dev_priv: driver private
215 * @interrupt_mask: mask of interrupt bits to update
216 * @enabled_irq_mask: mask of interrupt bits to enable
217 */
218 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
219 uint32_t interrupt_mask,
220 uint32_t enabled_irq_mask)
221 {
222 uint32_t new_val;
223
224 assert_spin_locked(&dev_priv->irq_lock);
225
226 WARN_ON(enabled_irq_mask & ~interrupt_mask);
227
228 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
229 return;
230
231 new_val = dev_priv->irq_mask;
232 new_val &= ~interrupt_mask;
233 new_val |= (~enabled_irq_mask & interrupt_mask);
234
235 if (new_val != dev_priv->irq_mask) {
236 dev_priv->irq_mask = new_val;
237 I915_WRITE(DEIMR, dev_priv->irq_mask);
238 POSTING_READ(DEIMR);
239 }
240 }
241
242 /**
243 * ilk_update_gt_irq - update GTIMR
244 * @dev_priv: driver private
245 * @interrupt_mask: mask of interrupt bits to update
246 * @enabled_irq_mask: mask of interrupt bits to enable
247 */
248 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
249 uint32_t interrupt_mask,
250 uint32_t enabled_irq_mask)
251 {
252 assert_spin_locked(&dev_priv->irq_lock);
253
254 WARN_ON(enabled_irq_mask & ~interrupt_mask);
255
256 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
257 return;
258
259 dev_priv->gt_irq_mask &= ~interrupt_mask;
260 dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
261 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
262 POSTING_READ(GTIMR);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267 ilk_update_gt_irq(dev_priv, mask, mask);
268 }
269
270 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
271 {
272 ilk_update_gt_irq(dev_priv, mask, 0);
273 }
274
275 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
276 {
277 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
278 }
279
280 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
281 {
282 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
283 }
284
285 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
286 {
287 return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
288 }
289
290 /**
291 * snb_update_pm_irq - update GEN6_PMIMR
292 * @dev_priv: driver private
293 * @interrupt_mask: mask of interrupt bits to update
294 * @enabled_irq_mask: mask of interrupt bits to enable
295 */
296 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
297 uint32_t interrupt_mask,
298 uint32_t enabled_irq_mask)
299 {
300 uint32_t new_val;
301
302 WARN_ON(enabled_irq_mask & ~interrupt_mask);
303
304 assert_spin_locked(&dev_priv->irq_lock);
305
306 new_val = dev_priv->pm_irq_mask;
307 new_val &= ~interrupt_mask;
308 new_val |= (~enabled_irq_mask & interrupt_mask);
309
310 if (new_val != dev_priv->pm_irq_mask) {
311 dev_priv->pm_irq_mask = new_val;
312 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
313 POSTING_READ(gen6_pm_imr(dev_priv));
314 }
315 }
316
317 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
318 {
319 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
320 return;
321
322 snb_update_pm_irq(dev_priv, mask, mask);
323 }
324
325 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
326 uint32_t mask)
327 {
328 snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
332 {
333 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334 return;
335
336 __gen6_disable_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_rps_interrupts(struct drm_device *dev)
340 {
341 struct drm_i915_private *dev_priv = dev->dev_private;
342 i915_reg_t reg = gen6_pm_iir(dev_priv);
343
344 spin_lock_irq(&dev_priv->irq_lock);
345 I915_WRITE(reg, dev_priv->pm_rps_events);
346 I915_WRITE(reg, dev_priv->pm_rps_events);
347 POSTING_READ(reg);
348 dev_priv->rps.pm_iir = 0;
349 spin_unlock_irq(&dev_priv->irq_lock);
350 }
351
352 void gen6_enable_rps_interrupts(struct drm_device *dev)
353 {
354 struct drm_i915_private *dev_priv = dev->dev_private;
355
356 spin_lock_irq(&dev_priv->irq_lock);
357
358 WARN_ON(dev_priv->rps.pm_iir);
359 WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
360 dev_priv->rps.interrupts_enabled = true;
361 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
362 dev_priv->pm_rps_events);
363 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
364
365 spin_unlock_irq(&dev_priv->irq_lock);
366 }
367
368 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
369 {
370 /*
371 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
372 * if GEN6_PM_UP_EI_EXPIRED is masked.
373 *
374 * TODO: verify if this can be reproduced on VLV,CHV.
375 */
376 if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
377 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
378
379 if (INTEL_INFO(dev_priv)->gen >= 8)
380 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
381
382 return mask;
383 }
384
385 void gen6_disable_rps_interrupts(struct drm_device *dev)
386 {
387 struct drm_i915_private *dev_priv = dev->dev_private;
388
389 spin_lock_irq(&dev_priv->irq_lock);
390 dev_priv->rps.interrupts_enabled = false;
391 spin_unlock_irq(&dev_priv->irq_lock);
392
393 cancel_work_sync(&dev_priv->rps.work);
394
395 spin_lock_irq(&dev_priv->irq_lock);
396
397 I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
398
399 __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
400 I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
401 ~dev_priv->pm_rps_events);
402
403 spin_unlock_irq(&dev_priv->irq_lock);
404
405 synchronize_irq(dev->irq);
406 }
407
408 /**
409 * bdw_update_port_irq - update DE port interrupt
410 * @dev_priv: driver private
411 * @interrupt_mask: mask of interrupt bits to update
412 * @enabled_irq_mask: mask of interrupt bits to enable
413 */
414 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
415 uint32_t interrupt_mask,
416 uint32_t enabled_irq_mask)
417 {
418 uint32_t new_val;
419 uint32_t old_val;
420
421 assert_spin_locked(&dev_priv->irq_lock);
422
423 WARN_ON(enabled_irq_mask & ~interrupt_mask);
424
425 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
426 return;
427
428 old_val = I915_READ(GEN8_DE_PORT_IMR);
429
430 new_val = old_val;
431 new_val &= ~interrupt_mask;
432 new_val |= (~enabled_irq_mask & interrupt_mask);
433
434 if (new_val != old_val) {
435 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
436 POSTING_READ(GEN8_DE_PORT_IMR);
437 }
438 }
439
440 /**
441 * bdw_update_pipe_irq - update DE pipe interrupt
442 * @dev_priv: driver private
443 * @pipe: pipe whose interrupt to update
444 * @interrupt_mask: mask of interrupt bits to update
445 * @enabled_irq_mask: mask of interrupt bits to enable
446 */
447 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
448 enum pipe pipe,
449 uint32_t interrupt_mask,
450 uint32_t enabled_irq_mask)
451 {
452 uint32_t new_val;
453
454 assert_spin_locked(&dev_priv->irq_lock);
455
456 WARN_ON(enabled_irq_mask & ~interrupt_mask);
457
458 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
459 return;
460
461 new_val = dev_priv->de_irq_mask[pipe];
462 new_val &= ~interrupt_mask;
463 new_val |= (~enabled_irq_mask & interrupt_mask);
464
465 if (new_val != dev_priv->de_irq_mask[pipe]) {
466 dev_priv->de_irq_mask[pipe] = new_val;
467 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
468 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
469 }
470 }
471
472 /**
473 * ibx_display_interrupt_update - update SDEIMR
474 * @dev_priv: driver private
475 * @interrupt_mask: mask of interrupt bits to update
476 * @enabled_irq_mask: mask of interrupt bits to enable
477 */
478 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
479 uint32_t interrupt_mask,
480 uint32_t enabled_irq_mask)
481 {
482 uint32_t sdeimr = I915_READ(SDEIMR);
483 sdeimr &= ~interrupt_mask;
484 sdeimr |= (~enabled_irq_mask & interrupt_mask);
485
486 WARN_ON(enabled_irq_mask & ~interrupt_mask);
487
488 assert_spin_locked(&dev_priv->irq_lock);
489
490 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
491 return;
492
493 I915_WRITE(SDEIMR, sdeimr);
494 POSTING_READ(SDEIMR);
495 }
496
497 static void
498 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
499 u32 enable_mask, u32 status_mask)
500 {
501 i915_reg_t reg = PIPESTAT(pipe);
502 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
503
504 assert_spin_locked(&dev_priv->irq_lock);
505 WARN_ON(!intel_irqs_enabled(dev_priv));
506
507 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
508 status_mask & ~PIPESTAT_INT_STATUS_MASK,
509 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
510 pipe_name(pipe), enable_mask, status_mask))
511 return;
512
513 if ((pipestat & enable_mask) == enable_mask)
514 return;
515
516 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
517
518 /* Enable the interrupt, clear any pending status */
519 pipestat |= enable_mask | status_mask;
520 I915_WRITE(reg, pipestat);
521 POSTING_READ(reg);
522 }
523
524 static void
525 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
526 u32 enable_mask, u32 status_mask)
527 {
528 i915_reg_t reg = PIPESTAT(pipe);
529 u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
530
531 assert_spin_locked(&dev_priv->irq_lock);
532 WARN_ON(!intel_irqs_enabled(dev_priv));
533
534 if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
535 status_mask & ~PIPESTAT_INT_STATUS_MASK,
536 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
537 pipe_name(pipe), enable_mask, status_mask))
538 return;
539
540 if ((pipestat & enable_mask) == 0)
541 return;
542
543 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
544
545 pipestat &= ~enable_mask;
546 I915_WRITE(reg, pipestat);
547 POSTING_READ(reg);
548 }
549
550 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
551 {
552 u32 enable_mask = status_mask << 16;
553
554 /*
555 * On pipe A we don't support the PSR interrupt yet,
556 * on pipe B and C the same bit MBZ.
557 */
558 if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
559 return 0;
560 /*
561 * On pipe B and C we don't support the PSR interrupt yet, on pipe
562 * A the same bit is for perf counters which we don't use either.
563 */
564 if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
565 return 0;
566
567 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
568 SPRITE0_FLIP_DONE_INT_EN_VLV |
569 SPRITE1_FLIP_DONE_INT_EN_VLV);
570 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
571 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
572 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
573 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
574
575 return enable_mask;
576 }
577
578 void
579 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
580 u32 status_mask)
581 {
582 u32 enable_mask;
583
584 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
585 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
586 status_mask);
587 else
588 enable_mask = status_mask << 16;
589 __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
590 }
591
592 void
593 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
594 u32 status_mask)
595 {
596 u32 enable_mask;
597
598 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
599 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
600 status_mask);
601 else
602 enable_mask = status_mask << 16;
603 __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
604 }
605
606 /**
607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
608 * @dev: drm device
609 */
610 static void i915_enable_asle_pipestat(struct drm_device *dev)
611 {
612 struct drm_i915_private *dev_priv = dev->dev_private;
613
614 if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
615 return;
616
617 spin_lock_irq(&dev_priv->irq_lock);
618
619 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
620 if (INTEL_INFO(dev)->gen >= 4)
621 i915_enable_pipestat(dev_priv, PIPE_A,
622 PIPE_LEGACY_BLC_EVENT_STATUS);
623
624 spin_unlock_irq(&dev_priv->irq_lock);
625 }
626
627 /*
628 * This timing diagram depicts the video signal in and
629 * around the vertical blanking period.
630 *
631 * Assumptions about the fictitious mode used in this example:
632 * vblank_start >= 3
633 * vsync_start = vblank_start + 1
634 * vsync_end = vblank_start + 2
635 * vtotal = vblank_start + 3
636 *
637 * start of vblank:
638 * latch double buffered registers
639 * increment frame counter (ctg+)
640 * generate start of vblank interrupt (gen4+)
641 * |
642 * | frame start:
643 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
644 * | may be shifted forward 1-3 extra lines via PIPECONF
645 * | |
646 * | | start of vsync:
647 * | | generate vsync interrupt
648 * | | |
649 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
650 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
651 * ----va---> <-----------------vb--------------------> <--------va-------------
652 * | | <----vs-----> |
653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
656 * | | |
657 * last visible pixel first visible pixel
658 * | increment frame counter (gen3/4)
659 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
660 *
661 * x = horizontal active
662 * _ = horizontal blanking
663 * hs = horizontal sync
664 * va = vertical active
665 * vb = vertical blanking
666 * vs = vertical sync
667 * vbs = vblank_start (number)
668 *
669 * Summary:
670 * - most events happen at the start of horizontal sync
671 * - frame start happens at the start of horizontal blank, 1-4 lines
672 * (depending on PIPECONF settings) after the start of vblank
673 * - gen3/4 pixel and frame counter are synchronized with the start
674 * of horizontal active on the first line of vertical active
675 */
676
677 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
678 {
679 /* Gen2 doesn't have a hardware frame counter */
680 return 0;
681 }
682
683 /* Called from drm generic code, passed a 'crtc', which
684 * we use as a pipe index
685 */
686 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
687 {
688 struct drm_i915_private *dev_priv = dev->dev_private;
689 i915_reg_t high_frame, low_frame;
690 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
691 struct intel_crtc *intel_crtc =
692 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
693 const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
694
695 htotal = mode->crtc_htotal;
696 hsync_start = mode->crtc_hsync_start;
697 vbl_start = mode->crtc_vblank_start;
698 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
699 vbl_start = DIV_ROUND_UP(vbl_start, 2);
700
701 /* Convert to pixel count */
702 vbl_start *= htotal;
703
704 /* Start of vblank event occurs at start of hsync */
705 vbl_start -= htotal - hsync_start;
706
707 high_frame = PIPEFRAME(pipe);
708 low_frame = PIPEFRAMEPIXEL(pipe);
709
710 /*
711 * High & low register fields aren't synchronized, so make sure
712 * we get a low value that's stable across two reads of the high
713 * register.
714 */
715 do {
716 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
717 low = I915_READ(low_frame);
718 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
719 } while (high1 != high2);
720
721 high1 >>= PIPE_FRAME_HIGH_SHIFT;
722 pixel = low & PIPE_PIXEL_MASK;
723 low >>= PIPE_FRAME_LOW_SHIFT;
724
725 /*
726 * The frame counter increments at beginning of active.
727 * Cook up a vblank counter by also checking the pixel
728 * counter against vblank start.
729 */
730 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
731 }
732
733 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
734 {
735 struct drm_i915_private *dev_priv = dev->dev_private;
736
737 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
738 }
739
740 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
741 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
742 {
743 struct drm_device *dev = crtc->base.dev;
744 struct drm_i915_private *dev_priv = dev->dev_private;
745 const struct drm_display_mode *mode = &crtc->base.hwmode;
746 enum pipe pipe = crtc->pipe;
747 int position, vtotal;
748
749 vtotal = mode->crtc_vtotal;
750 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
751 vtotal /= 2;
752
753 if (IS_GEN2(dev))
754 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
755 else
756 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
757
758 /*
759 * On HSW, the DSL reg (0x70000) appears to return 0 if we
760 * read it just before the start of vblank. So try it again
761 * so we don't accidentally end up spanning a vblank frame
762 * increment, causing the pipe_update_end() code to squak at us.
763 *
764 * The nature of this problem means we can't simply check the ISR
765 * bit and return the vblank start value; nor can we use the scanline
766 * debug register in the transcoder as it appears to have the same
767 * problem. We may need to extend this to include other platforms,
768 * but so far testing only shows the problem on HSW.
769 */
770 if (HAS_DDI(dev) && !position) {
771 int i, temp;
772
773 for (i = 0; i < 100; i++) {
774 udelay(1);
775 temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
776 DSL_LINEMASK_GEN3;
777 if (temp != position) {
778 position = temp;
779 break;
780 }
781 }
782 }
783
784 /*
785 * See update_scanline_offset() for the details on the
786 * scanline_offset adjustment.
787 */
788 return (position + crtc->scanline_offset) % vtotal;
789 }
790
791 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
792 unsigned int flags, int *vpos, int *hpos,
793 ktime_t *stime, ktime_t *etime,
794 const struct drm_display_mode *mode)
795 {
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
799 int position;
800 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
801 bool in_vbl = true;
802 int ret = 0;
803 unsigned long irqflags;
804
805 if (WARN_ON(!mode->crtc_clock)) {
806 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
807 "pipe %c\n", pipe_name(pipe));
808 return 0;
809 }
810
811 htotal = mode->crtc_htotal;
812 hsync_start = mode->crtc_hsync_start;
813 vtotal = mode->crtc_vtotal;
814 vbl_start = mode->crtc_vblank_start;
815 vbl_end = mode->crtc_vblank_end;
816
817 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
818 vbl_start = DIV_ROUND_UP(vbl_start, 2);
819 vbl_end /= 2;
820 vtotal /= 2;
821 }
822
823 ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
824
825 /*
826 * Lock uncore.lock, as we will do multiple timing critical raw
827 * register reads, potentially with preemption disabled, so the
828 * following code must not block on uncore.lock.
829 */
830 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
831
832 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
833
834 /* Get optional system timestamp before query. */
835 if (stime)
836 *stime = ktime_get();
837
838 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
839 /* No obvious pixelcount register. Only query vertical
840 * scanout position from Display scan line register.
841 */
842 position = __intel_get_crtc_scanline(intel_crtc);
843 } else {
844 /* Have access to pixelcount since start of frame.
845 * We can split this into vertical and horizontal
846 * scanout position.
847 */
848 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
849
850 /* convert to pixel counts */
851 vbl_start *= htotal;
852 vbl_end *= htotal;
853 vtotal *= htotal;
854
855 /*
856 * In interlaced modes, the pixel counter counts all pixels,
857 * so one field will have htotal more pixels. In order to avoid
858 * the reported position from jumping backwards when the pixel
859 * counter is beyond the length of the shorter field, just
860 * clamp the position the length of the shorter field. This
861 * matches how the scanline counter based position works since
862 * the scanline counter doesn't count the two half lines.
863 */
864 if (position >= vtotal)
865 position = vtotal - 1;
866
867 /*
868 * Start of vblank interrupt is triggered at start of hsync,
869 * just prior to the first active line of vblank. However we
870 * consider lines to start at the leading edge of horizontal
871 * active. So, should we get here before we've crossed into
872 * the horizontal active of the first line in vblank, we would
873 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
874 * always add htotal-hsync_start to the current pixel position.
875 */
876 position = (position + htotal - hsync_start) % vtotal;
877 }
878
879 /* Get optional system timestamp after query. */
880 if (etime)
881 *etime = ktime_get();
882
883 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
884
885 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
886
887 in_vbl = position >= vbl_start && position < vbl_end;
888
889 /*
890 * While in vblank, position will be negative
891 * counting up towards 0 at vbl_end. And outside
892 * vblank, position will be positive counting
893 * up since vbl_end.
894 */
895 if (position >= vbl_start)
896 position -= vbl_end;
897 else
898 position += vtotal - vbl_end;
899
900 if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
901 *vpos = position;
902 *hpos = 0;
903 } else {
904 *vpos = position / htotal;
905 *hpos = position - (*vpos * htotal);
906 }
907
908 /* In vblank? */
909 if (in_vbl)
910 ret |= DRM_SCANOUTPOS_IN_VBLANK;
911
912 return ret;
913 }
914
915 int intel_get_crtc_scanline(struct intel_crtc *crtc)
916 {
917 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
918 unsigned long irqflags;
919 int position;
920
921 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
922 position = __intel_get_crtc_scanline(crtc);
923 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925 return position;
926 }
927
928 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
929 int *max_error,
930 struct timeval *vblank_time,
931 unsigned flags)
932 {
933 struct drm_crtc *crtc;
934
935 if (pipe >= INTEL_INFO(dev)->num_pipes) {
936 DRM_ERROR("Invalid crtc %u\n", pipe);
937 return -EINVAL;
938 }
939
940 /* Get drm_crtc to timestamp: */
941 crtc = intel_get_crtc_for_pipe(dev, pipe);
942 if (crtc == NULL) {
943 DRM_ERROR("Invalid crtc %u\n", pipe);
944 return -EINVAL;
945 }
946
947 if (!crtc->hwmode.crtc_clock) {
948 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
949 return -EBUSY;
950 }
951
952 /* Helper routine in DRM core does all the work: */
953 return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
954 vblank_time, flags,
955 &crtc->hwmode);
956 }
957
958 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
959 {
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 u32 busy_up, busy_down, max_avg, min_avg;
962 u8 new_delay;
963
964 spin_lock(&mchdev_lock);
965
966 I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968 new_delay = dev_priv->ips.cur_delay;
969
970 I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971 busy_up = I915_READ(RCPREVBSYTUPAVG);
972 busy_down = I915_READ(RCPREVBSYTDNAVG);
973 max_avg = I915_READ(RCBMAXAVG);
974 min_avg = I915_READ(RCBMINAVG);
975
976 /* Handle RCS change request from hw */
977 if (busy_up > max_avg) {
978 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979 new_delay = dev_priv->ips.cur_delay - 1;
980 if (new_delay < dev_priv->ips.max_delay)
981 new_delay = dev_priv->ips.max_delay;
982 } else if (busy_down < min_avg) {
983 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984 new_delay = dev_priv->ips.cur_delay + 1;
985 if (new_delay > dev_priv->ips.min_delay)
986 new_delay = dev_priv->ips.min_delay;
987 }
988
989 if (ironlake_set_drps(dev, new_delay))
990 dev_priv->ips.cur_delay = new_delay;
991
992 spin_unlock(&mchdev_lock);
993
994 return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *ring)
998 {
999 if (!intel_ring_initialized(ring))
1000 return;
1001
1002 trace_i915_gem_request_notify(ring);
1003
1004 wake_up_all(&ring->irq_queue);
1005 }
1006
1007 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008 struct intel_rps_ei *ei)
1009 {
1010 ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011 ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012 ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013 }
1014
1015 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016 const struct intel_rps_ei *old,
1017 const struct intel_rps_ei *now,
1018 int threshold)
1019 {
1020 u64 time, c0;
1021 unsigned int mul = 100;
1022
1023 if (old->cz_clock == 0)
1024 return false;
1025
1026 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027 mul <<= 8;
1028
1029 time = now->cz_clock - old->cz_clock;
1030 time *= threshold * dev_priv->czclk_freq;
1031
1032 /* Workload can be split between render + media, e.g. SwapBuffers
1033 * being blitted in X after being rendered in mesa. To account for
1034 * this we need to combine both engines into our activity counter.
1035 */
1036 c0 = now->render_c0 - old->render_c0;
1037 c0 += now->media_c0 - old->media_c0;
1038 c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040 return c0 >= time;
1041 }
1042
1043 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044 {
1045 vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046 dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047 }
1048
1049 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050 {
1051 struct intel_rps_ei now;
1052 u32 events = 0;
1053
1054 if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055 return 0;
1056
1057 vlv_c0_read(dev_priv, &now);
1058 if (now.cz_clock == 0)
1059 return 0;
1060
1061 if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062 if (!vlv_c0_above(dev_priv,
1063 &dev_priv->rps.down_ei, &now,
1064 dev_priv->rps.down_threshold))
1065 events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066 dev_priv->rps.down_ei = now;
1067 }
1068
1069 if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070 if (vlv_c0_above(dev_priv,
1071 &dev_priv->rps.up_ei, &now,
1072 dev_priv->rps.up_threshold))
1073 events |= GEN6_PM_RP_UP_THRESHOLD;
1074 dev_priv->rps.up_ei = now;
1075 }
1076
1077 return events;
1078 }
1079
1080 static bool any_waiters(struct drm_i915_private *dev_priv)
1081 {
1082 struct intel_engine_cs *ring;
1083 int i;
1084
1085 for_each_ring(ring, dev_priv, i)
1086 if (ring->irq_refcount)
1087 return true;
1088
1089 return false;
1090 }
1091
1092 static void gen6_pm_rps_work(struct work_struct *work)
1093 {
1094 struct drm_i915_private *dev_priv =
1095 container_of(work, struct drm_i915_private, rps.work);
1096 bool client_boost;
1097 int new_delay, adj, min, max;
1098 u32 pm_iir;
1099
1100 spin_lock_irq(&dev_priv->irq_lock);
1101 /* Speed up work cancelation during disabling rps interrupts. */
1102 if (!dev_priv->rps.interrupts_enabled) {
1103 spin_unlock_irq(&dev_priv->irq_lock);
1104 return;
1105 }
1106
1107 /*
1108 * The RPS work is synced during runtime suspend, we don't require a
1109 * wakeref. TODO: instead of disabling the asserts make sure that we
1110 * always hold an RPM reference while the work is running.
1111 */
1112 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114 pm_iir = dev_priv->rps.pm_iir;
1115 dev_priv->rps.pm_iir = 0;
1116 /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118 client_boost = dev_priv->rps.client_boost;
1119 dev_priv->rps.client_boost = false;
1120 spin_unlock_irq(&dev_priv->irq_lock);
1121
1122 /* Make sure we didn't queue anything we're not going to process. */
1123 WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125 if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126 goto out;
1127
1128 mutex_lock(&dev_priv->rps.hw_lock);
1129
1130 pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132 adj = dev_priv->rps.last_adj;
1133 new_delay = dev_priv->rps.cur_freq;
1134 min = dev_priv->rps.min_freq_softlimit;
1135 max = dev_priv->rps.max_freq_softlimit;
1136
1137 if (client_boost) {
1138 new_delay = dev_priv->rps.max_freq_softlimit;
1139 adj = 0;
1140 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141 if (adj > 0)
1142 adj *= 2;
1143 else /* CHV needs even encode values */
1144 adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145 /*
1146 * For better performance, jump directly
1147 * to RPe if we're below it.
1148 */
1149 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150 new_delay = dev_priv->rps.efficient_freq;
1151 adj = 0;
1152 }
1153 } else if (any_waiters(dev_priv)) {
1154 adj = 0;
1155 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157 new_delay = dev_priv->rps.efficient_freq;
1158 else
1159 new_delay = dev_priv->rps.min_freq_softlimit;
1160 adj = 0;
1161 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162 if (adj < 0)
1163 adj *= 2;
1164 else /* CHV needs even encode values */
1165 adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1166 } else { /* unknown event */
1167 adj = 0;
1168 }
1169
1170 dev_priv->rps.last_adj = adj;
1171
1172 /* sysfs frequency interfaces may have snuck in while servicing the
1173 * interrupt
1174 */
1175 new_delay += adj;
1176 new_delay = clamp_t(int, new_delay, min, max);
1177
1178 intel_set_rps(dev_priv->dev, new_delay);
1179
1180 mutex_unlock(&dev_priv->rps.hw_lock);
1181 out:
1182 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1183 }
1184
1185
1186 /**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195 static void ivybridge_parity_work(struct work_struct *work)
1196 {
1197 struct drm_i915_private *dev_priv =
1198 container_of(work, struct drm_i915_private, l3_parity.error_work);
1199 u32 error_status, row, bank, subbank;
1200 char *parity_event[6];
1201 uint32_t misccpctl;
1202 uint8_t slice = 0;
1203
1204 /* We must turn off DOP level clock gating to access the L3 registers.
1205 * In order to prevent a get/put style interface, acquire struct mutex
1206 * any time we access those registers.
1207 */
1208 mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210 /* If we've screwed up tracking, just let the interrupt fire again */
1211 if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212 goto out;
1213
1214 misccpctl = I915_READ(GEN7_MISCCPCTL);
1215 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216 POSTING_READ(GEN7_MISCCPCTL);
1217
1218 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219 i915_reg_t reg;
1220
1221 slice--;
1222 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223 break;
1224
1225 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227 reg = GEN7_L3CDERRST1(slice);
1228
1229 error_status = I915_READ(reg);
1230 row = GEN7_PARITY_ERROR_ROW(error_status);
1231 bank = GEN7_PARITY_ERROR_BANK(error_status);
1232 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235 POSTING_READ(reg);
1236
1237 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242 parity_event[5] = NULL;
1243
1244 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245 KOBJ_CHANGE, parity_event);
1246
1247 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248 slice, row, bank, subbank);
1249
1250 kfree(parity_event[4]);
1251 kfree(parity_event[3]);
1252 kfree(parity_event[2]);
1253 kfree(parity_event[1]);
1254 }
1255
1256 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258 out:
1259 WARN_ON(dev_priv->l3_parity.which_slice);
1260 spin_lock_irq(&dev_priv->irq_lock);
1261 gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262 spin_unlock_irq(&dev_priv->irq_lock);
1263
1264 mutex_unlock(&dev_priv->dev->struct_mutex);
1265 }
1266
1267 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268 {
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271 if (!HAS_L3_DPF(dev))
1272 return;
1273
1274 spin_lock(&dev_priv->irq_lock);
1275 gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276 spin_unlock(&dev_priv->irq_lock);
1277
1278 iir &= GT_PARITY_ERROR(dev);
1279 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280 dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282 if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283 dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285 queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286 }
1287
1288 static void ilk_gt_irq_handler(struct drm_device *dev,
1289 struct drm_i915_private *dev_priv,
1290 u32 gt_iir)
1291 {
1292 if (gt_iir &
1293 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294 notify_ring(&dev_priv->ring[RCS]);
1295 if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296 notify_ring(&dev_priv->ring[VCS]);
1297 }
1298
1299 static void snb_gt_irq_handler(struct drm_device *dev,
1300 struct drm_i915_private *dev_priv,
1301 u32 gt_iir)
1302 {
1303
1304 if (gt_iir &
1305 (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306 notify_ring(&dev_priv->ring[RCS]);
1307 if (gt_iir & GT_BSD_USER_INTERRUPT)
1308 notify_ring(&dev_priv->ring[VCS]);
1309 if (gt_iir & GT_BLT_USER_INTERRUPT)
1310 notify_ring(&dev_priv->ring[BCS]);
1311
1312 if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313 GT_BSD_CS_ERROR_INTERRUPT |
1314 GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317 if (gt_iir & GT_PARITY_ERROR(dev))
1318 ivybridge_parity_error_irq_handler(dev, gt_iir);
1319 }
1320
1321 static __always_inline void
1322 gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323 {
1324 if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325 notify_ring(ring);
1326 if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327 intel_lrc_irq_handler(ring);
1328 }
1329
1330 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331 u32 master_ctl)
1332 {
1333 irqreturn_t ret = IRQ_NONE;
1334
1335 if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336 u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337 if (iir) {
1338 I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339 ret = IRQ_HANDLED;
1340
1341 gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342 iir, GEN8_RCS_IRQ_SHIFT);
1343
1344 gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345 iir, GEN8_BCS_IRQ_SHIFT);
1346 } else
1347 DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348 }
1349
1350 if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351 u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352 if (iir) {
1353 I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354 ret = IRQ_HANDLED;
1355
1356 gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357 iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359 gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360 iir, GEN8_VCS2_IRQ_SHIFT);
1361 } else
1362 DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363 }
1364
1365 if (master_ctl & GEN8_GT_VECS_IRQ) {
1366 u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367 if (iir) {
1368 I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369 ret = IRQ_HANDLED;
1370
1371 gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372 iir, GEN8_VECS_IRQ_SHIFT);
1373 } else
1374 DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375 }
1376
1377 if (master_ctl & GEN8_GT_PM_IRQ) {
1378 u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379 if (iir & dev_priv->pm_rps_events) {
1380 I915_WRITE_FW(GEN8_GT_IIR(2),
1381 iir & dev_priv->pm_rps_events);
1382 ret = IRQ_HANDLED;
1383 gen6_rps_irq_handler(dev_priv, iir);
1384 } else
1385 DRM_ERROR("The master control interrupt lied (PM)!\n");
1386 }
1387
1388 return ret;
1389 }
1390
1391 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392 {
1393 switch (port) {
1394 case PORT_A:
1395 return val & PORTA_HOTPLUG_LONG_DETECT;
1396 case PORT_B:
1397 return val & PORTB_HOTPLUG_LONG_DETECT;
1398 case PORT_C:
1399 return val & PORTC_HOTPLUG_LONG_DETECT;
1400 default:
1401 return false;
1402 }
1403 }
1404
1405 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406 {
1407 switch (port) {
1408 case PORT_E:
1409 return val & PORTE_HOTPLUG_LONG_DETECT;
1410 default:
1411 return false;
1412 }
1413 }
1414
1415 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417 switch (port) {
1418 case PORT_A:
1419 return val & PORTA_HOTPLUG_LONG_DETECT;
1420 case PORT_B:
1421 return val & PORTB_HOTPLUG_LONG_DETECT;
1422 case PORT_C:
1423 return val & PORTC_HOTPLUG_LONG_DETECT;
1424 case PORT_D:
1425 return val & PORTD_HOTPLUG_LONG_DETECT;
1426 default:
1427 return false;
1428 }
1429 }
1430
1431 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432 {
1433 switch (port) {
1434 case PORT_A:
1435 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442 {
1443 switch (port) {
1444 case PORT_B:
1445 return val & PORTB_HOTPLUG_LONG_DETECT;
1446 case PORT_C:
1447 return val & PORTC_HOTPLUG_LONG_DETECT;
1448 case PORT_D:
1449 return val & PORTD_HOTPLUG_LONG_DETECT;
1450 default:
1451 return false;
1452 }
1453 }
1454
1455 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457 switch (port) {
1458 case PORT_B:
1459 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460 case PORT_C:
1461 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462 case PORT_D:
1463 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464 default:
1465 return false;
1466 }
1467 }
1468
1469 /*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477 u32 hotplug_trigger, u32 dig_hotplug_reg,
1478 const u32 hpd[HPD_NUM_PINS],
1479 bool long_pulse_detect(enum port port, u32 val))
1480 {
1481 enum port port;
1482 int i;
1483
1484 for_each_hpd_pin(i) {
1485 if ((hpd[i] & hotplug_trigger) == 0)
1486 continue;
1487
1488 *pin_mask |= BIT(i);
1489
1490 if (!intel_hpd_pin_to_port(i, &port))
1491 continue;
1492
1493 if (long_pulse_detect(port, dig_hotplug_reg))
1494 *long_mask |= BIT(i);
1495 }
1496
1497 DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500 }
1501
1502 static void gmbus_irq_handler(struct drm_device *dev)
1503 {
1504 struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506 wake_up_all(&dev_priv->gmbus_wait_queue);
1507 }
1508
1509 static void dp_aux_irq_handler(struct drm_device *dev)
1510 {
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513 wake_up_all(&dev_priv->gmbus_wait_queue);
1514 }
1515
1516 #if defined(CONFIG_DEBUG_FS)
1517 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518 uint32_t crc0, uint32_t crc1,
1519 uint32_t crc2, uint32_t crc3,
1520 uint32_t crc4)
1521 {
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524 struct intel_pipe_crc_entry *entry;
1525 int head, tail;
1526
1527 spin_lock(&pipe_crc->lock);
1528
1529 if (!pipe_crc->entries) {
1530 spin_unlock(&pipe_crc->lock);
1531 DRM_DEBUG_KMS("spurious interrupt\n");
1532 return;
1533 }
1534
1535 head = pipe_crc->head;
1536 tail = pipe_crc->tail;
1537
1538 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1539 spin_unlock(&pipe_crc->lock);
1540 DRM_ERROR("CRC buffer overflowing\n");
1541 return;
1542 }
1543
1544 entry = &pipe_crc->entries[head];
1545
1546 entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547 entry->crc[0] = crc0;
1548 entry->crc[1] = crc1;
1549 entry->crc[2] = crc2;
1550 entry->crc[3] = crc3;
1551 entry->crc[4] = crc4;
1552
1553 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554 pipe_crc->head = head;
1555
1556 spin_unlock(&pipe_crc->lock);
1557
1558 wake_up_interruptible(&pipe_crc->wq);
1559 }
1560 #else
1561 static inline void
1562 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563 uint32_t crc0, uint32_t crc1,
1564 uint32_t crc2, uint32_t crc3,
1565 uint32_t crc4) {}
1566 #endif
1567
1568
1569 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1570 {
1571 struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573 display_pipe_crc_irq_handler(dev, pipe,
1574 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575 0, 0, 0, 0);
1576 }
1577
1578 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1579 {
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582 display_pipe_crc_irq_handler(dev, pipe,
1583 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588 }
1589
1590 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1591 {
1592 struct drm_i915_private *dev_priv = dev->dev_private;
1593 uint32_t res1, res2;
1594
1595 if (INTEL_INFO(dev)->gen >= 3)
1596 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597 else
1598 res1 = 0;
1599
1600 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602 else
1603 res2 = 0;
1604
1605 display_pipe_crc_irq_handler(dev, pipe,
1606 I915_READ(PIPE_CRC_RES_RED(pipe)),
1607 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609 res1, res2);
1610 }
1611
1612 /* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616 {
1617 if (pm_iir & dev_priv->pm_rps_events) {
1618 spin_lock(&dev_priv->irq_lock);
1619 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620 if (dev_priv->rps.interrupts_enabled) {
1621 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622 queue_work(dev_priv->wq, &dev_priv->rps.work);
1623 }
1624 spin_unlock(&dev_priv->irq_lock);
1625 }
1626
1627 if (INTEL_INFO(dev_priv)->gen >= 8)
1628 return;
1629
1630 if (HAS_VEBOX(dev_priv->dev)) {
1631 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632 notify_ring(&dev_priv->ring[VECS]);
1633
1634 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636 }
1637 }
1638
1639 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640 {
1641 if (!drm_handle_vblank(dev, pipe))
1642 return false;
1643
1644 return true;
1645 }
1646
1647 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1648 {
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650 u32 pipe_stats[I915_MAX_PIPES] = { };
1651 int pipe;
1652
1653 spin_lock(&dev_priv->irq_lock);
1654 for_each_pipe(dev_priv, pipe) {
1655 i915_reg_t reg;
1656 u32 mask, iir_bit = 0;
1657
1658 /*
1659 * PIPESTAT bits get signalled even when the interrupt is
1660 * disabled with the mask bits, and some of the status bits do
1661 * not generate interrupts at all (like the underrun bit). Hence
1662 * we need to be careful that we only handle what we want to
1663 * handle.
1664 */
1665
1666 /* fifo underruns are filterered in the underrun handler. */
1667 mask = PIPE_FIFO_UNDERRUN_STATUS;
1668
1669 switch (pipe) {
1670 case PIPE_A:
1671 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1672 break;
1673 case PIPE_B:
1674 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1675 break;
1676 case PIPE_C:
1677 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1678 break;
1679 }
1680 if (iir & iir_bit)
1681 mask |= dev_priv->pipestat_irq_mask[pipe];
1682
1683 if (!mask)
1684 continue;
1685
1686 reg = PIPESTAT(pipe);
1687 mask |= PIPESTAT_INT_ENABLE_MASK;
1688 pipe_stats[pipe] = I915_READ(reg) & mask;
1689
1690 /*
1691 * Clear the PIPE*STAT regs before the IIR
1692 */
1693 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1694 PIPESTAT_INT_STATUS_MASK))
1695 I915_WRITE(reg, pipe_stats[pipe]);
1696 }
1697 spin_unlock(&dev_priv->irq_lock);
1698
1699 for_each_pipe(dev_priv, pipe) {
1700 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1701 intel_pipe_handle_vblank(dev, pipe))
1702 intel_check_page_flip(dev, pipe);
1703
1704 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1705 intel_prepare_page_flip(dev, pipe);
1706 intel_finish_page_flip(dev, pipe);
1707 }
1708
1709 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1710 i9xx_pipe_crc_irq_handler(dev, pipe);
1711
1712 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1713 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1714 }
1715
1716 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1717 gmbus_irq_handler(dev);
1718 }
1719
1720 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1721 {
1722 struct drm_i915_private *dev_priv = dev->dev_private;
1723 u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1724 u32 pin_mask = 0, long_mask = 0;
1725
1726 if (!hotplug_status)
1727 return;
1728
1729 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1730 /*
1731 * Make sure hotplug status is cleared before we clear IIR, or else we
1732 * may miss hotplug events.
1733 */
1734 POSTING_READ(PORT_HOTPLUG_STAT);
1735
1736 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1737 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1738
1739 if (hotplug_trigger) {
1740 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1741 hotplug_trigger, hpd_status_g4x,
1742 i9xx_port_hotplug_long_detect);
1743
1744 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1745 }
1746
1747 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1748 dp_aux_irq_handler(dev);
1749 } else {
1750 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1751
1752 if (hotplug_trigger) {
1753 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1754 hotplug_trigger, hpd_status_i915,
1755 i9xx_port_hotplug_long_detect);
1756 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1757 }
1758 }
1759 }
1760
1761 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1762 {
1763 struct drm_device *dev = arg;
1764 struct drm_i915_private *dev_priv = dev->dev_private;
1765 u32 iir, gt_iir, pm_iir;
1766 irqreturn_t ret = IRQ_NONE;
1767
1768 if (!intel_irqs_enabled(dev_priv))
1769 return IRQ_NONE;
1770
1771 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1772 disable_rpm_wakeref_asserts(dev_priv);
1773
1774 while (true) {
1775 /* Find, clear, then process each source of interrupt */
1776
1777 gt_iir = I915_READ(GTIIR);
1778 if (gt_iir)
1779 I915_WRITE(GTIIR, gt_iir);
1780
1781 pm_iir = I915_READ(GEN6_PMIIR);
1782 if (pm_iir)
1783 I915_WRITE(GEN6_PMIIR, pm_iir);
1784
1785 iir = I915_READ(VLV_IIR);
1786 if (iir) {
1787 /* Consume port before clearing IIR or we'll miss events */
1788 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1789 i9xx_hpd_irq_handler(dev);
1790 I915_WRITE(VLV_IIR, iir);
1791 }
1792
1793 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1794 goto out;
1795
1796 ret = IRQ_HANDLED;
1797
1798 if (gt_iir)
1799 snb_gt_irq_handler(dev, dev_priv, gt_iir);
1800 if (pm_iir)
1801 gen6_rps_irq_handler(dev_priv, pm_iir);
1802 /* Call regardless, as some status bits might not be
1803 * signalled in iir */
1804 valleyview_pipestat_irq_handler(dev, iir);
1805 }
1806
1807 out:
1808 enable_rpm_wakeref_asserts(dev_priv);
1809
1810 return ret;
1811 }
1812
1813 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1814 {
1815 struct drm_device *dev = arg;
1816 struct drm_i915_private *dev_priv = dev->dev_private;
1817 u32 master_ctl, iir;
1818 irqreturn_t ret = IRQ_NONE;
1819
1820 if (!intel_irqs_enabled(dev_priv))
1821 return IRQ_NONE;
1822
1823 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1824 disable_rpm_wakeref_asserts(dev_priv);
1825
1826 for (;;) {
1827 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1828 iir = I915_READ(VLV_IIR);
1829
1830 if (master_ctl == 0 && iir == 0)
1831 break;
1832
1833 ret = IRQ_HANDLED;
1834
1835 I915_WRITE(GEN8_MASTER_IRQ, 0);
1836
1837 /* Find, clear, then process each source of interrupt */
1838
1839 if (iir) {
1840 /* Consume port before clearing IIR or we'll miss events */
1841 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1842 i9xx_hpd_irq_handler(dev);
1843 I915_WRITE(VLV_IIR, iir);
1844 }
1845
1846 gen8_gt_irq_handler(dev_priv, master_ctl);
1847
1848 /* Call regardless, as some status bits might not be
1849 * signalled in iir */
1850 valleyview_pipestat_irq_handler(dev, iir);
1851
1852 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1853 POSTING_READ(GEN8_MASTER_IRQ);
1854 }
1855
1856 enable_rpm_wakeref_asserts(dev_priv);
1857
1858 return ret;
1859 }
1860
1861 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1862 const u32 hpd[HPD_NUM_PINS])
1863 {
1864 struct drm_i915_private *dev_priv = to_i915(dev);
1865 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1866
1867 /*
1868 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1869 * unless we touch the hotplug register, even if hotplug_trigger is
1870 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1871 * errors.
1872 */
1873 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1874 if (!hotplug_trigger) {
1875 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1876 PORTD_HOTPLUG_STATUS_MASK |
1877 PORTC_HOTPLUG_STATUS_MASK |
1878 PORTB_HOTPLUG_STATUS_MASK;
1879 dig_hotplug_reg &= ~mask;
1880 }
1881
1882 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1883 if (!hotplug_trigger)
1884 return;
1885
1886 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1887 dig_hotplug_reg, hpd,
1888 pch_port_hotplug_long_detect);
1889
1890 intel_hpd_irq_handler(dev, pin_mask, long_mask);
1891 }
1892
1893 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1894 {
1895 struct drm_i915_private *dev_priv = dev->dev_private;
1896 int pipe;
1897 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1898
1899 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1900
1901 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1902 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1903 SDE_AUDIO_POWER_SHIFT);
1904 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1905 port_name(port));
1906 }
1907
1908 if (pch_iir & SDE_AUX_MASK)
1909 dp_aux_irq_handler(dev);
1910
1911 if (pch_iir & SDE_GMBUS)
1912 gmbus_irq_handler(dev);
1913
1914 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1915 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1916
1917 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1918 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1919
1920 if (pch_iir & SDE_POISON)
1921 DRM_ERROR("PCH poison interrupt\n");
1922
1923 if (pch_iir & SDE_FDI_MASK)
1924 for_each_pipe(dev_priv, pipe)
1925 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
1926 pipe_name(pipe),
1927 I915_READ(FDI_RX_IIR(pipe)));
1928
1929 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1930 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1931
1932 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1933 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1934
1935 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1936 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1937
1938 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1939 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1940 }
1941
1942 static void ivb_err_int_handler(struct drm_device *dev)
1943 {
1944 struct drm_i915_private *dev_priv = dev->dev_private;
1945 u32 err_int = I915_READ(GEN7_ERR_INT);
1946 enum pipe pipe;
1947
1948 if (err_int & ERR_INT_POISON)
1949 DRM_ERROR("Poison interrupt\n");
1950
1951 for_each_pipe(dev_priv, pipe) {
1952 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1953 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1954
1955 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1956 if (IS_IVYBRIDGE(dev))
1957 ivb_pipe_crc_irq_handler(dev, pipe);
1958 else
1959 hsw_pipe_crc_irq_handler(dev, pipe);
1960 }
1961 }
1962
1963 I915_WRITE(GEN7_ERR_INT, err_int);
1964 }
1965
1966 static void cpt_serr_int_handler(struct drm_device *dev)
1967 {
1968 struct drm_i915_private *dev_priv = dev->dev_private;
1969 u32 serr_int = I915_READ(SERR_INT);
1970
1971 if (serr_int & SERR_INT_POISON)
1972 DRM_ERROR("PCH poison interrupt\n");
1973
1974 if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1975 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1976
1977 if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1978 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1979
1980 if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1981 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1982
1983 I915_WRITE(SERR_INT, serr_int);
1984 }
1985
1986 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1987 {
1988 struct drm_i915_private *dev_priv = dev->dev_private;
1989 int pipe;
1990 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1991
1992 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1993
1994 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1995 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1996 SDE_AUDIO_POWER_SHIFT_CPT);
1997 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1998 port_name(port));
1999 }
2000
2001 if (pch_iir & SDE_AUX_MASK_CPT)
2002 dp_aux_irq_handler(dev);
2003
2004 if (pch_iir & SDE_GMBUS_CPT)
2005 gmbus_irq_handler(dev);
2006
2007 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2008 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2009
2010 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2011 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2012
2013 if (pch_iir & SDE_FDI_MASK_CPT)
2014 for_each_pipe(dev_priv, pipe)
2015 DRM_DEBUG_DRIVER(" pipe %c FDI IIR: 0x%08x\n",
2016 pipe_name(pipe),
2017 I915_READ(FDI_RX_IIR(pipe)));
2018
2019 if (pch_iir & SDE_ERROR_CPT)
2020 cpt_serr_int_handler(dev);
2021 }
2022
2023 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2024 {
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2027 ~SDE_PORTE_HOTPLUG_SPT;
2028 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2029 u32 pin_mask = 0, long_mask = 0;
2030
2031 if (hotplug_trigger) {
2032 u32 dig_hotplug_reg;
2033
2034 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2035 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2036
2037 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2038 dig_hotplug_reg, hpd_spt,
2039 spt_port_hotplug_long_detect);
2040 }
2041
2042 if (hotplug2_trigger) {
2043 u32 dig_hotplug_reg;
2044
2045 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2046 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2047
2048 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2049 dig_hotplug_reg, hpd_spt,
2050 spt_port_hotplug2_long_detect);
2051 }
2052
2053 if (pin_mask)
2054 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2055
2056 if (pch_iir & SDE_GMBUS_CPT)
2057 gmbus_irq_handler(dev);
2058 }
2059
2060 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2061 const u32 hpd[HPD_NUM_PINS])
2062 {
2063 struct drm_i915_private *dev_priv = to_i915(dev);
2064 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2065
2066 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2067 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2068
2069 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2070 dig_hotplug_reg, hpd,
2071 ilk_port_hotplug_long_detect);
2072
2073 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2074 }
2075
2076 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2077 {
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079 enum pipe pipe;
2080 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2081
2082 if (hotplug_trigger)
2083 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2084
2085 if (de_iir & DE_AUX_CHANNEL_A)
2086 dp_aux_irq_handler(dev);
2087
2088 if (de_iir & DE_GSE)
2089 intel_opregion_asle_intr(dev);
2090
2091 if (de_iir & DE_POISON)
2092 DRM_ERROR("Poison interrupt\n");
2093
2094 for_each_pipe(dev_priv, pipe) {
2095 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2096 intel_pipe_handle_vblank(dev, pipe))
2097 intel_check_page_flip(dev, pipe);
2098
2099 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2100 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2101
2102 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2103 i9xx_pipe_crc_irq_handler(dev, pipe);
2104
2105 /* plane/pipes map 1:1 on ilk+ */
2106 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2107 intel_prepare_page_flip(dev, pipe);
2108 intel_finish_page_flip_plane(dev, pipe);
2109 }
2110 }
2111
2112 /* check event from PCH */
2113 if (de_iir & DE_PCH_EVENT) {
2114 u32 pch_iir = I915_READ(SDEIIR);
2115
2116 if (HAS_PCH_CPT(dev))
2117 cpt_irq_handler(dev, pch_iir);
2118 else
2119 ibx_irq_handler(dev, pch_iir);
2120
2121 /* should clear PCH hotplug event before clear CPU irq */
2122 I915_WRITE(SDEIIR, pch_iir);
2123 }
2124
2125 if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2126 ironlake_rps_change_irq_handler(dev);
2127 }
2128
2129 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2130 {
2131 struct drm_i915_private *dev_priv = dev->dev_private;
2132 enum pipe pipe;
2133 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2134
2135 if (hotplug_trigger)
2136 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2137
2138 if (de_iir & DE_ERR_INT_IVB)
2139 ivb_err_int_handler(dev);
2140
2141 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2142 dp_aux_irq_handler(dev);
2143
2144 if (de_iir & DE_GSE_IVB)
2145 intel_opregion_asle_intr(dev);
2146
2147 for_each_pipe(dev_priv, pipe) {
2148 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2149 intel_pipe_handle_vblank(dev, pipe))
2150 intel_check_page_flip(dev, pipe);
2151
2152 /* plane/pipes map 1:1 on ilk+ */
2153 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2154 intel_prepare_page_flip(dev, pipe);
2155 intel_finish_page_flip_plane(dev, pipe);
2156 }
2157 }
2158
2159 /* check event from PCH */
2160 if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2161 u32 pch_iir = I915_READ(SDEIIR);
2162
2163 cpt_irq_handler(dev, pch_iir);
2164
2165 /* clear PCH hotplug event before clear CPU irq */
2166 I915_WRITE(SDEIIR, pch_iir);
2167 }
2168 }
2169
2170 /*
2171 * To handle irqs with the minimum potential races with fresh interrupts, we:
2172 * 1 - Disable Master Interrupt Control.
2173 * 2 - Find the source(s) of the interrupt.
2174 * 3 - Clear the Interrupt Identity bits (IIR).
2175 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2176 * 5 - Re-enable Master Interrupt Control.
2177 */
2178 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2179 {
2180 struct drm_device *dev = arg;
2181 struct drm_i915_private *dev_priv = dev->dev_private;
2182 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2183 irqreturn_t ret = IRQ_NONE;
2184
2185 if (!intel_irqs_enabled(dev_priv))
2186 return IRQ_NONE;
2187
2188 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2189 disable_rpm_wakeref_asserts(dev_priv);
2190
2191 /* disable master interrupt before clearing iir */
2192 de_ier = I915_READ(DEIER);
2193 I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2194 POSTING_READ(DEIER);
2195
2196 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2197 * interrupts will will be stored on its back queue, and then we'll be
2198 * able to process them after we restore SDEIER (as soon as we restore
2199 * it, we'll get an interrupt if SDEIIR still has something to process
2200 * due to its back queue). */
2201 if (!HAS_PCH_NOP(dev)) {
2202 sde_ier = I915_READ(SDEIER);
2203 I915_WRITE(SDEIER, 0);
2204 POSTING_READ(SDEIER);
2205 }
2206
2207 /* Find, clear, then process each source of interrupt */
2208
2209 gt_iir = I915_READ(GTIIR);
2210 if (gt_iir) {
2211 I915_WRITE(GTIIR, gt_iir);
2212 ret = IRQ_HANDLED;
2213 if (INTEL_INFO(dev)->gen >= 6)
2214 snb_gt_irq_handler(dev, dev_priv, gt_iir);
2215 else
2216 ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2217 }
2218
2219 de_iir = I915_READ(DEIIR);
2220 if (de_iir) {
2221 I915_WRITE(DEIIR, de_iir);
2222 ret = IRQ_HANDLED;
2223 if (INTEL_INFO(dev)->gen >= 7)
2224 ivb_display_irq_handler(dev, de_iir);
2225 else
2226 ilk_display_irq_handler(dev, de_iir);
2227 }
2228
2229 if (INTEL_INFO(dev)->gen >= 6) {
2230 u32 pm_iir = I915_READ(GEN6_PMIIR);
2231 if (pm_iir) {
2232 I915_WRITE(GEN6_PMIIR, pm_iir);
2233 ret = IRQ_HANDLED;
2234 gen6_rps_irq_handler(dev_priv, pm_iir);
2235 }
2236 }
2237
2238 I915_WRITE(DEIER, de_ier);
2239 POSTING_READ(DEIER);
2240 if (!HAS_PCH_NOP(dev)) {
2241 I915_WRITE(SDEIER, sde_ier);
2242 POSTING_READ(SDEIER);
2243 }
2244
2245 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2246 enable_rpm_wakeref_asserts(dev_priv);
2247
2248 return ret;
2249 }
2250
2251 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2252 const u32 hpd[HPD_NUM_PINS])
2253 {
2254 struct drm_i915_private *dev_priv = to_i915(dev);
2255 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2256
2257 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2258 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2259
2260 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2261 dig_hotplug_reg, hpd,
2262 bxt_port_hotplug_long_detect);
2263
2264 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2265 }
2266
2267 static irqreturn_t
2268 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2269 {
2270 struct drm_device *dev = dev_priv->dev;
2271 irqreturn_t ret = IRQ_NONE;
2272 u32 iir;
2273 enum pipe pipe;
2274
2275 if (master_ctl & GEN8_DE_MISC_IRQ) {
2276 iir = I915_READ(GEN8_DE_MISC_IIR);
2277 if (iir) {
2278 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2279 ret = IRQ_HANDLED;
2280 if (iir & GEN8_DE_MISC_GSE)
2281 intel_opregion_asle_intr(dev);
2282 else
2283 DRM_ERROR("Unexpected DE Misc interrupt\n");
2284 }
2285 else
2286 DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2287 }
2288
2289 if (master_ctl & GEN8_DE_PORT_IRQ) {
2290 iir = I915_READ(GEN8_DE_PORT_IIR);
2291 if (iir) {
2292 u32 tmp_mask;
2293 bool found = false;
2294
2295 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2296 ret = IRQ_HANDLED;
2297
2298 tmp_mask = GEN8_AUX_CHANNEL_A;
2299 if (INTEL_INFO(dev_priv)->gen >= 9)
2300 tmp_mask |= GEN9_AUX_CHANNEL_B |
2301 GEN9_AUX_CHANNEL_C |
2302 GEN9_AUX_CHANNEL_D;
2303
2304 if (iir & tmp_mask) {
2305 dp_aux_irq_handler(dev);
2306 found = true;
2307 }
2308
2309 if (IS_BROXTON(dev_priv)) {
2310 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2311 if (tmp_mask) {
2312 bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
2313 found = true;
2314 }
2315 } else if (IS_BROADWELL(dev_priv)) {
2316 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2317 if (tmp_mask) {
2318 ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
2319 found = true;
2320 }
2321 }
2322
2323 if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2324 gmbus_irq_handler(dev);
2325 found = true;
2326 }
2327
2328 if (!found)
2329 DRM_ERROR("Unexpected DE Port interrupt\n");
2330 }
2331 else
2332 DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2333 }
2334
2335 for_each_pipe(dev_priv, pipe) {
2336 u32 flip_done, fault_errors;
2337
2338 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2339 continue;
2340
2341 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2342 if (!iir) {
2343 DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2344 continue;
2345 }
2346
2347 ret = IRQ_HANDLED;
2348 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2349
2350 if (iir & GEN8_PIPE_VBLANK &&
2351 intel_pipe_handle_vblank(dev, pipe))
2352 intel_check_page_flip(dev, pipe);
2353
2354 flip_done = iir;
2355 if (INTEL_INFO(dev_priv)->gen >= 9)
2356 flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2357 else
2358 flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2359
2360 if (flip_done) {
2361 intel_prepare_page_flip(dev, pipe);
2362 intel_finish_page_flip_plane(dev, pipe);
2363 }
2364
2365 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2366 hsw_pipe_crc_irq_handler(dev, pipe);
2367
2368 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2369 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2370
2371 fault_errors = iir;
2372 if (INTEL_INFO(dev_priv)->gen >= 9)
2373 fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2374 else
2375 fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2376
2377 if (fault_errors)
2378 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2379 pipe_name(pipe),
2380 fault_errors);
2381 }
2382
2383 if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2384 master_ctl & GEN8_DE_PCH_IRQ) {
2385 /*
2386 * FIXME(BDW): Assume for now that the new interrupt handling
2387 * scheme also closed the SDE interrupt handling race we've seen
2388 * on older pch-split platforms. But this needs testing.
2389 */
2390 iir = I915_READ(SDEIIR);
2391 if (iir) {
2392 I915_WRITE(SDEIIR, iir);
2393 ret = IRQ_HANDLED;
2394
2395 if (HAS_PCH_SPT(dev_priv))
2396 spt_irq_handler(dev, iir);
2397 else
2398 cpt_irq_handler(dev, iir);
2399 } else {
2400 /*
2401 * Like on previous PCH there seems to be something
2402 * fishy going on with forwarding PCH interrupts.
2403 */
2404 DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2405 }
2406 }
2407
2408 return ret;
2409 }
2410
2411 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2412 {
2413 struct drm_device *dev = arg;
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 u32 master_ctl;
2416 irqreturn_t ret;
2417
2418 if (!intel_irqs_enabled(dev_priv))
2419 return IRQ_NONE;
2420
2421 master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2422 master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2423 if (!master_ctl)
2424 return IRQ_NONE;
2425
2426 I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2427
2428 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2429 disable_rpm_wakeref_asserts(dev_priv);
2430
2431 /* Find, clear, then process each source of interrupt */
2432 ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2433 ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2434
2435 I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2436 POSTING_READ_FW(GEN8_MASTER_IRQ);
2437
2438 enable_rpm_wakeref_asserts(dev_priv);
2439
2440 return ret;
2441 }
2442
2443 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2444 bool reset_completed)
2445 {
2446 struct intel_engine_cs *ring;
2447 int i;
2448
2449 /*
2450 * Notify all waiters for GPU completion events that reset state has
2451 * been changed, and that they need to restart their wait after
2452 * checking for potential errors (and bail out to drop locks if there is
2453 * a gpu reset pending so that i915_error_work_func can acquire them).
2454 */
2455
2456 /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2457 for_each_ring(ring, dev_priv, i)
2458 wake_up_all(&ring->irq_queue);
2459
2460 /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2461 wake_up_all(&dev_priv->pending_flip_queue);
2462
2463 /*
2464 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2465 * reset state is cleared.
2466 */
2467 if (reset_completed)
2468 wake_up_all(&dev_priv->gpu_error.reset_queue);
2469 }
2470
2471 /**
2472 * i915_reset_and_wakeup - do process context error handling work
2473 * @dev: drm device
2474 *
2475 * Fire an error uevent so userspace can see that a hang or error
2476 * was detected.
2477 */
2478 static void i915_reset_and_wakeup(struct drm_device *dev)
2479 {
2480 struct drm_i915_private *dev_priv = to_i915(dev);
2481 struct i915_gpu_error *error = &dev_priv->gpu_error;
2482 char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2483 char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2484 char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2485 int ret;
2486
2487 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2488
2489 /*
2490 * Note that there's only one work item which does gpu resets, so we
2491 * need not worry about concurrent gpu resets potentially incrementing
2492 * error->reset_counter twice. We only need to take care of another
2493 * racing irq/hangcheck declaring the gpu dead for a second time. A
2494 * quick check for that is good enough: schedule_work ensures the
2495 * correct ordering between hang detection and this work item, and since
2496 * the reset in-progress bit is only ever set by code outside of this
2497 * work we don't need to worry about any other races.
2498 */
2499 if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2500 DRM_DEBUG_DRIVER("resetting chip\n");
2501 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2502 reset_event);
2503
2504 /*
2505 * In most cases it's guaranteed that we get here with an RPM
2506 * reference held, for example because there is a pending GPU
2507 * request that won't finish until the reset is done. This
2508 * isn't the case at least when we get here by doing a
2509 * simulated reset via debugs, so get an RPM reference.
2510 */
2511 intel_runtime_pm_get(dev_priv);
2512
2513 intel_prepare_reset(dev);
2514
2515 /*
2516 * All state reset _must_ be completed before we update the
2517 * reset counter, for otherwise waiters might miss the reset
2518 * pending state and not properly drop locks, resulting in
2519 * deadlocks with the reset work.
2520 */
2521 ret = i915_reset(dev);
2522
2523 intel_finish_reset(dev);
2524
2525 intel_runtime_pm_put(dev_priv);
2526
2527 if (ret == 0) {
2528 /*
2529 * After all the gem state is reset, increment the reset
2530 * counter and wake up everyone waiting for the reset to
2531 * complete.
2532 *
2533 * Since unlock operations are a one-sided barrier only,
2534 * we need to insert a barrier here to order any seqno
2535 * updates before
2536 * the counter increment.
2537 */
2538 smp_mb__before_atomic();
2539 atomic_inc(&dev_priv->gpu_error.reset_counter);
2540
2541 kobject_uevent_env(&dev->primary->kdev->kobj,
2542 KOBJ_CHANGE, reset_done_event);
2543 } else {
2544 atomic_or(I915_WEDGED, &error->reset_counter);
2545 }
2546
2547 /*
2548 * Note: The wake_up also serves as a memory barrier so that
2549 * waiters see the update value of the reset counter atomic_t.
2550 */
2551 i915_error_wake_up(dev_priv, true);
2552 }
2553 }
2554
2555 static void i915_report_and_clear_eir(struct drm_device *dev)
2556 {
2557 struct drm_i915_private *dev_priv = dev->dev_private;
2558 uint32_t instdone[I915_NUM_INSTDONE_REG];
2559 u32 eir = I915_READ(EIR);
2560 int pipe, i;
2561
2562 if (!eir)
2563 return;
2564
2565 pr_err("render error detected, EIR: 0x%08x\n", eir);
2566
2567 i915_get_extra_instdone(dev, instdone);
2568
2569 if (IS_G4X(dev)) {
2570 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2571 u32 ipeir = I915_READ(IPEIR_I965);
2572
2573 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2574 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2575 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2576 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2577 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2578 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2579 I915_WRITE(IPEIR_I965, ipeir);
2580 POSTING_READ(IPEIR_I965);
2581 }
2582 if (eir & GM45_ERROR_PAGE_TABLE) {
2583 u32 pgtbl_err = I915_READ(PGTBL_ER);
2584 pr_err("page table error\n");
2585 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2586 I915_WRITE(PGTBL_ER, pgtbl_err);
2587 POSTING_READ(PGTBL_ER);
2588 }
2589 }
2590
2591 if (!IS_GEN2(dev)) {
2592 if (eir & I915_ERROR_PAGE_TABLE) {
2593 u32 pgtbl_err = I915_READ(PGTBL_ER);
2594 pr_err("page table error\n");
2595 pr_err(" PGTBL_ER: 0x%08x\n", pgtbl_err);
2596 I915_WRITE(PGTBL_ER, pgtbl_err);
2597 POSTING_READ(PGTBL_ER);
2598 }
2599 }
2600
2601 if (eir & I915_ERROR_MEMORY_REFRESH) {
2602 pr_err("memory refresh error:\n");
2603 for_each_pipe(dev_priv, pipe)
2604 pr_err("pipe %c stat: 0x%08x\n",
2605 pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2606 /* pipestat has already been acked */
2607 }
2608 if (eir & I915_ERROR_INSTRUCTION) {
2609 pr_err("instruction error\n");
2610 pr_err(" INSTPM: 0x%08x\n", I915_READ(INSTPM));
2611 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2612 pr_err(" INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2613 if (INTEL_INFO(dev)->gen < 4) {
2614 u32 ipeir = I915_READ(IPEIR);
2615
2616 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR));
2617 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR));
2618 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD));
2619 I915_WRITE(IPEIR, ipeir);
2620 POSTING_READ(IPEIR);
2621 } else {
2622 u32 ipeir = I915_READ(IPEIR_I965);
2623
2624 pr_err(" IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2625 pr_err(" IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2626 pr_err(" INSTPS: 0x%08x\n", I915_READ(INSTPS));
2627 pr_err(" ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2628 I915_WRITE(IPEIR_I965, ipeir);
2629 POSTING_READ(IPEIR_I965);
2630 }
2631 }
2632
2633 I915_WRITE(EIR, eir);
2634 POSTING_READ(EIR);
2635 eir = I915_READ(EIR);
2636 if (eir) {
2637 /*
2638 * some errors might have become stuck,
2639 * mask them.
2640 */
2641 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2642 I915_WRITE(EMR, I915_READ(EMR) | eir);
2643 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2644 }
2645 }
2646
2647 /**
2648 * i915_handle_error - handle a gpu error
2649 * @dev: drm device
2650 *
2651 * Do some basic checking of register state at error time and
2652 * dump it to the syslog. Also call i915_capture_error_state() to make
2653 * sure we get a record and make it available in debugfs. Fire a uevent
2654 * so userspace knows something bad happened (should trigger collection
2655 * of a ring dump etc.).
2656 */
2657 void i915_handle_error(struct drm_device *dev, bool wedged,
2658 const char *fmt, ...)
2659 {
2660 struct drm_i915_private *dev_priv = dev->dev_private;
2661 va_list args;
2662 char error_msg[80];
2663
2664 va_start(args, fmt);
2665 vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2666 va_end(args);
2667
2668 i915_capture_error_state(dev, wedged, error_msg);
2669 i915_report_and_clear_eir(dev);
2670
2671 if (wedged) {
2672 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2673 &dev_priv->gpu_error.reset_counter);
2674
2675 /*
2676 * Wakeup waiting processes so that the reset function
2677 * i915_reset_and_wakeup doesn't deadlock trying to grab
2678 * various locks. By bumping the reset counter first, the woken
2679 * processes will see a reset in progress and back off,
2680 * releasing their locks and then wait for the reset completion.
2681 * We must do this for _all_ gpu waiters that might hold locks
2682 * that the reset work needs to acquire.
2683 *
2684 * Note: The wake_up serves as the required memory barrier to
2685 * ensure that the waiters see the updated value of the reset
2686 * counter atomic_t.
2687 */
2688 i915_error_wake_up(dev_priv, false);
2689 }
2690
2691 i915_reset_and_wakeup(dev);
2692 }
2693
2694 /* Called from drm generic code, passed 'crtc' which
2695 * we use as a pipe index
2696 */
2697 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2698 {
2699 struct drm_i915_private *dev_priv = dev->dev_private;
2700 unsigned long irqflags;
2701
2702 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2703 if (INTEL_INFO(dev)->gen >= 4)
2704 i915_enable_pipestat(dev_priv, pipe,
2705 PIPE_START_VBLANK_INTERRUPT_STATUS);
2706 else
2707 i915_enable_pipestat(dev_priv, pipe,
2708 PIPE_VBLANK_INTERRUPT_STATUS);
2709 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2710
2711 return 0;
2712 }
2713
2714 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2715 {
2716 struct drm_i915_private *dev_priv = dev->dev_private;
2717 unsigned long irqflags;
2718 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2719 DE_PIPE_VBLANK(pipe);
2720
2721 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2722 ilk_enable_display_irq(dev_priv, bit);
2723 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2724
2725 return 0;
2726 }
2727
2728 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2729 {
2730 struct drm_i915_private *dev_priv = dev->dev_private;
2731 unsigned long irqflags;
2732
2733 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2734 i915_enable_pipestat(dev_priv, pipe,
2735 PIPE_START_VBLANK_INTERRUPT_STATUS);
2736 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2737
2738 return 0;
2739 }
2740
2741 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2742 {
2743 struct drm_i915_private *dev_priv = dev->dev_private;
2744 unsigned long irqflags;
2745
2746 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2747 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2748 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2749
2750 return 0;
2751 }
2752
2753 /* Called from drm generic code, passed 'crtc' which
2754 * we use as a pipe index
2755 */
2756 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2757 {
2758 struct drm_i915_private *dev_priv = dev->dev_private;
2759 unsigned long irqflags;
2760
2761 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2762 i915_disable_pipestat(dev_priv, pipe,
2763 PIPE_VBLANK_INTERRUPT_STATUS |
2764 PIPE_START_VBLANK_INTERRUPT_STATUS);
2765 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2766 }
2767
2768 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2769 {
2770 struct drm_i915_private *dev_priv = dev->dev_private;
2771 unsigned long irqflags;
2772 uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2773 DE_PIPE_VBLANK(pipe);
2774
2775 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2776 ilk_disable_display_irq(dev_priv, bit);
2777 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2778 }
2779
2780 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2781 {
2782 struct drm_i915_private *dev_priv = dev->dev_private;
2783 unsigned long irqflags;
2784
2785 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2786 i915_disable_pipestat(dev_priv, pipe,
2787 PIPE_START_VBLANK_INTERRUPT_STATUS);
2788 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2789 }
2790
2791 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2792 {
2793 struct drm_i915_private *dev_priv = dev->dev_private;
2794 unsigned long irqflags;
2795
2796 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2798 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2799 }
2800
2801 static bool
2802 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2803 {
2804 return (list_empty(&ring->request_list) ||
2805 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2806 }
2807
2808 static bool
2809 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2810 {
2811 if (INTEL_INFO(dev)->gen >= 8) {
2812 return (ipehr >> 23) == 0x1c;
2813 } else {
2814 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2815 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2816 MI_SEMAPHORE_REGISTER);
2817 }
2818 }
2819
2820 static struct intel_engine_cs *
2821 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2822 {
2823 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2824 struct intel_engine_cs *signaller;
2825 int i;
2826
2827 if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2828 for_each_ring(signaller, dev_priv, i) {
2829 if (ring == signaller)
2830 continue;
2831
2832 if (offset == signaller->semaphore.signal_ggtt[ring->id])
2833 return signaller;
2834 }
2835 } else {
2836 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2837
2838 for_each_ring(signaller, dev_priv, i) {
2839 if(ring == signaller)
2840 continue;
2841
2842 if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2843 return signaller;
2844 }
2845 }
2846
2847 DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2848 ring->id, ipehr, offset);
2849
2850 return NULL;
2851 }
2852
2853 static struct intel_engine_cs *
2854 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2855 {
2856 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2857 u32 cmd, ipehr, head;
2858 u64 offset = 0;
2859 int i, backwards;
2860
2861 /*
2862 * This function does not support execlist mode - any attempt to
2863 * proceed further into this function will result in a kernel panic
2864 * when dereferencing ring->buffer, which is not set up in execlist
2865 * mode.
2866 *
2867 * The correct way of doing it would be to derive the currently
2868 * executing ring buffer from the current context, which is derived
2869 * from the currently running request. Unfortunately, to get the
2870 * current request we would have to grab the struct_mutex before doing
2871 * anything else, which would be ill-advised since some other thread
2872 * might have grabbed it already and managed to hang itself, causing
2873 * the hang checker to deadlock.
2874 *
2875 * Therefore, this function does not support execlist mode in its
2876 * current form. Just return NULL and move on.
2877 */
2878 if (ring->buffer == NULL)
2879 return NULL;
2880
2881 ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2882 if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2883 return NULL;
2884
2885 /*
2886 * HEAD is likely pointing to the dword after the actual command,
2887 * so scan backwards until we find the MBOX. But limit it to just 3
2888 * or 4 dwords depending on the semaphore wait command size.
2889 * Note that we don't care about ACTHD here since that might
2890 * point at at batch, and semaphores are always emitted into the
2891 * ringbuffer itself.
2892 */
2893 head = I915_READ_HEAD(ring) & HEAD_ADDR;
2894 backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2895
2896 for (i = backwards; i; --i) {
2897 /*
2898 * Be paranoid and presume the hw has gone off into the wild -
2899 * our ring is smaller than what the hardware (and hence
2900 * HEAD_ADDR) allows. Also handles wrap-around.
2901 */
2902 head &= ring->buffer->size - 1;
2903
2904 /* This here seems to blow up */
2905 cmd = ioread32(ring->buffer->virtual_start + head);
2906 if (cmd == ipehr)
2907 break;
2908
2909 head -= 4;
2910 }
2911
2912 if (!i)
2913 return NULL;
2914
2915 *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2916 if (INTEL_INFO(ring->dev)->gen >= 8) {
2917 offset = ioread32(ring->buffer->virtual_start + head + 12);
2918 offset <<= 32;
2919 offset = ioread32(ring->buffer->virtual_start + head + 8);
2920 }
2921 return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2922 }
2923
2924 static int semaphore_passed(struct intel_engine_cs *ring)
2925 {
2926 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2927 struct intel_engine_cs *signaller;
2928 u32 seqno;
2929
2930 ring->hangcheck.deadlock++;
2931
2932 signaller = semaphore_waits_for(ring, &seqno);
2933 if (signaller == NULL)
2934 return -1;
2935
2936 /* Prevent pathological recursion due to driver bugs */
2937 if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2938 return -1;
2939
2940 if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2941 return 1;
2942
2943 /* cursory check for an unkickable deadlock */
2944 if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2945 semaphore_passed(signaller) < 0)
2946 return -1;
2947
2948 return 0;
2949 }
2950
2951 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2952 {
2953 struct intel_engine_cs *ring;
2954 int i;
2955
2956 for_each_ring(ring, dev_priv, i)
2957 ring->hangcheck.deadlock = 0;
2958 }
2959
2960 static bool subunits_stuck(struct intel_engine_cs *ring)
2961 {
2962 u32 instdone[I915_NUM_INSTDONE_REG];
2963 bool stuck;
2964 int i;
2965
2966 if (ring->id != RCS)
2967 return true;
2968
2969 i915_get_extra_instdone(ring->dev, instdone);
2970
2971 /* There might be unstable subunit states even when
2972 * actual head is not moving. Filter out the unstable ones by
2973 * accumulating the undone -> done transitions and only
2974 * consider those as progress.
2975 */
2976 stuck = true;
2977 for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2978 const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2979
2980 if (tmp != ring->hangcheck.instdone[i])
2981 stuck = false;
2982
2983 ring->hangcheck.instdone[i] |= tmp;
2984 }
2985
2986 return stuck;
2987 }
2988
2989 static enum intel_ring_hangcheck_action
2990 head_stuck(struct intel_engine_cs *ring, u64 acthd)
2991 {
2992 if (acthd != ring->hangcheck.acthd) {
2993
2994 /* Clear subunit states on head movement */
2995 memset(ring->hangcheck.instdone, 0,
2996 sizeof(ring->hangcheck.instdone));
2997
2998 if (acthd > ring->hangcheck.max_acthd) {
2999 ring->hangcheck.max_acthd = acthd;
3000 return HANGCHECK_ACTIVE;
3001 }
3002
3003 return HANGCHECK_ACTIVE_LOOP;
3004 }
3005
3006 if (!subunits_stuck(ring))
3007 return HANGCHECK_ACTIVE;
3008
3009 return HANGCHECK_HUNG;
3010 }
3011
3012 static enum intel_ring_hangcheck_action
3013 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3014 {
3015 struct drm_device *dev = ring->dev;
3016 struct drm_i915_private *dev_priv = dev->dev_private;
3017 enum intel_ring_hangcheck_action ha;
3018 u32 tmp;
3019
3020 ha = head_stuck(ring, acthd);
3021 if (ha != HANGCHECK_HUNG)
3022 return ha;
3023
3024 if (IS_GEN2(dev))
3025 return HANGCHECK_HUNG;
3026
3027 /* Is the chip hanging on a WAIT_FOR_EVENT?
3028 * If so we can simply poke the RB_WAIT bit
3029 * and break the hang. This should work on
3030 * all but the second generation chipsets.
3031 */
3032 tmp = I915_READ_CTL(ring);
3033 if (tmp & RING_WAIT) {
3034 i915_handle_error(dev, false,
3035 "Kicking stuck wait on %s",
3036 ring->name);
3037 I915_WRITE_CTL(ring, tmp);
3038 return HANGCHECK_KICK;
3039 }
3040
3041 if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3042 switch (semaphore_passed(ring)) {
3043 default:
3044 return HANGCHECK_HUNG;
3045 case 1:
3046 i915_handle_error(dev, false,
3047 "Kicking stuck semaphore on %s",
3048 ring->name);
3049 I915_WRITE_CTL(ring, tmp);
3050 return HANGCHECK_KICK;
3051 case 0:
3052 return HANGCHECK_WAIT;
3053 }
3054 }
3055
3056 return HANGCHECK_HUNG;
3057 }
3058
3059 /*
3060 * This is called when the chip hasn't reported back with completed
3061 * batchbuffers in a long time. We keep track per ring seqno progress and
3062 * if there are no progress, hangcheck score for that ring is increased.
3063 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3064 * we kick the ring. If we see no progress on three subsequent calls
3065 * we assume chip is wedged and try to fix it by resetting the chip.
3066 */
3067 static void i915_hangcheck_elapsed(struct work_struct *work)
3068 {
3069 struct drm_i915_private *dev_priv =
3070 container_of(work, typeof(*dev_priv),
3071 gpu_error.hangcheck_work.work);
3072 struct drm_device *dev = dev_priv->dev;
3073 struct intel_engine_cs *ring;
3074 int i;
3075 int busy_count = 0, rings_hung = 0;
3076 bool stuck[I915_NUM_RINGS] = { 0 };
3077 #define BUSY 1
3078 #define KICK 5
3079 #define HUNG 20
3080
3081 if (!i915.enable_hangcheck)
3082 return;
3083
3084 /*
3085 * The hangcheck work is synced during runtime suspend, we don't
3086 * require a wakeref. TODO: instead of disabling the asserts make
3087 * sure that we hold a reference when this work is running.
3088 */
3089 DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3090
3091 /* As enabling the GPU requires fairly extensive mmio access,
3092 * periodically arm the mmio checker to see if we are triggering
3093 * any invalid access.
3094 */
3095 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3096
3097 for_each_ring(ring, dev_priv, i) {
3098 u64 acthd;
3099 u32 seqno;
3100 bool busy = true;
3101
3102 semaphore_clear_deadlocks(dev_priv);
3103
3104 seqno = ring->get_seqno(ring, false);
3105 acthd = intel_ring_get_active_head(ring);
3106
3107 if (ring->hangcheck.seqno == seqno) {
3108 if (ring_idle(ring, seqno)) {
3109 ring->hangcheck.action = HANGCHECK_IDLE;
3110
3111 if (waitqueue_active(&ring->irq_queue)) {
3112 /* Issue a wake-up to catch stuck h/w. */
3113 if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3114 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3115 DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3116 ring->name);
3117 else
3118 DRM_INFO("Fake missed irq on %s\n",
3119 ring->name);
3120 wake_up_all(&ring->irq_queue);
3121 }
3122 /* Safeguard against driver failure */
3123 ring->hangcheck.score += BUSY;
3124 } else
3125 busy = false;
3126 } else {
3127 /* We always increment the hangcheck score
3128 * if the ring is busy and still processing
3129 * the same request, so that no single request
3130 * can run indefinitely (such as a chain of
3131 * batches). The only time we do not increment
3132 * the hangcheck score on this ring, if this
3133 * ring is in a legitimate wait for another
3134 * ring. In that case the waiting ring is a
3135 * victim and we want to be sure we catch the
3136 * right culprit. Then every time we do kick
3137 * the ring, add a small increment to the
3138 * score so that we can catch a batch that is
3139 * being repeatedly kicked and so responsible
3140 * for stalling the machine.
3141 */
3142 ring->hangcheck.action = ring_stuck(ring,
3143 acthd);
3144
3145 switch (ring->hangcheck.action) {
3146 case HANGCHECK_IDLE:
3147 case HANGCHECK_WAIT:
3148 case HANGCHECK_ACTIVE:
3149 break;
3150 case HANGCHECK_ACTIVE_LOOP:
3151 ring->hangcheck.score += BUSY;
3152 break;
3153 case HANGCHECK_KICK:
3154 ring->hangcheck.score += KICK;
3155 break;
3156 case HANGCHECK_HUNG:
3157 ring->hangcheck.score += HUNG;
3158 stuck[i] = true;
3159 break;
3160 }
3161 }
3162 } else {
3163 ring->hangcheck.action = HANGCHECK_ACTIVE;
3164
3165 /* Gradually reduce the count so that we catch DoS
3166 * attempts across multiple batches.
3167 */
3168 if (ring->hangcheck.score > 0)
3169 ring->hangcheck.score--;
3170
3171 /* Clear head and subunit states on seqno movement */
3172 ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3173
3174 memset(ring->hangcheck.instdone, 0,
3175 sizeof(ring->hangcheck.instdone));
3176 }
3177
3178 ring->hangcheck.seqno = seqno;
3179 ring->hangcheck.acthd = acthd;
3180 busy_count += busy;
3181 }
3182
3183 for_each_ring(ring, dev_priv, i) {
3184 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3185 DRM_INFO("%s on %s\n",
3186 stuck[i] ? "stuck" : "no progress",
3187 ring->name);
3188 rings_hung++;
3189 }
3190 }
3191
3192 if (rings_hung) {
3193 i915_handle_error(dev, true, "Ring hung");
3194 goto out;
3195 }
3196
3197 if (busy_count)
3198 /* Reset timer case chip hangs without another request
3199 * being added */
3200 i915_queue_hangcheck(dev);
3201
3202 out:
3203 ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3204 }
3205
3206 void i915_queue_hangcheck(struct drm_device *dev)
3207 {
3208 struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3209
3210 if (!i915.enable_hangcheck)
3211 return;
3212
3213 /* Don't continually defer the hangcheck so that it is always run at
3214 * least once after work has been scheduled on any ring. Otherwise,
3215 * we will ignore a hung ring if a second ring is kept busy.
3216 */
3217
3218 queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3219 round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3220 }
3221
3222 static void ibx_irq_reset(struct drm_device *dev)
3223 {
3224 struct drm_i915_private *dev_priv = dev->dev_private;
3225
3226 if (HAS_PCH_NOP(dev))
3227 return;
3228
3229 GEN5_IRQ_RESET(SDE);
3230
3231 if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3232 I915_WRITE(SERR_INT, 0xffffffff);
3233 }
3234
3235 /*
3236 * SDEIER is also touched by the interrupt handler to work around missed PCH
3237 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3238 * instead we unconditionally enable all PCH interrupt sources here, but then
3239 * only unmask them as needed with SDEIMR.
3240 *
3241 * This function needs to be called before interrupts are enabled.
3242 */
3243 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3244 {
3245 struct drm_i915_private *dev_priv = dev->dev_private;
3246
3247 if (HAS_PCH_NOP(dev))
3248 return;
3249
3250 WARN_ON(I915_READ(SDEIER) != 0);
3251 I915_WRITE(SDEIER, 0xffffffff);
3252 POSTING_READ(SDEIER);
3253 }
3254
3255 static void gen5_gt_irq_reset(struct drm_device *dev)
3256 {
3257 struct drm_i915_private *dev_priv = dev->dev_private;
3258
3259 GEN5_IRQ_RESET(GT);
3260 if (INTEL_INFO(dev)->gen >= 6)
3261 GEN5_IRQ_RESET(GEN6_PM);
3262 }
3263
3264 /* drm_dma.h hooks
3265 */
3266 static void ironlake_irq_reset(struct drm_device *dev)
3267 {
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269
3270 I915_WRITE(HWSTAM, 0xffffffff);
3271
3272 GEN5_IRQ_RESET(DE);
3273 if (IS_GEN7(dev))
3274 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3275
3276 gen5_gt_irq_reset(dev);
3277
3278 ibx_irq_reset(dev);
3279 }
3280
3281 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3282 {
3283 enum pipe pipe;
3284
3285 i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3286 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3287
3288 for_each_pipe(dev_priv, pipe)
3289 I915_WRITE(PIPESTAT(pipe), 0xffff);
3290
3291 GEN5_IRQ_RESET(VLV_);
3292 }
3293
3294 static void valleyview_irq_preinstall(struct drm_device *dev)
3295 {
3296 struct drm_i915_private *dev_priv = dev->dev_private;
3297
3298 /* VLV magic */
3299 I915_WRITE(VLV_IMR, 0);
3300 I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3301 I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3302 I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3303
3304 gen5_gt_irq_reset(dev);
3305
3306 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3307
3308 vlv_display_irq_reset(dev_priv);
3309 }
3310
3311 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3312 {
3313 GEN8_IRQ_RESET_NDX(GT, 0);
3314 GEN8_IRQ_RESET_NDX(GT, 1);
3315 GEN8_IRQ_RESET_NDX(GT, 2);
3316 GEN8_IRQ_RESET_NDX(GT, 3);
3317 }
3318
3319 static void gen8_irq_reset(struct drm_device *dev)
3320 {
3321 struct drm_i915_private *dev_priv = dev->dev_private;
3322 int pipe;
3323
3324 I915_WRITE(GEN8_MASTER_IRQ, 0);
3325 POSTING_READ(GEN8_MASTER_IRQ);
3326
3327 gen8_gt_irq_reset(dev_priv);
3328
3329 for_each_pipe(dev_priv, pipe)
3330 if (intel_display_power_is_enabled(dev_priv,
3331 POWER_DOMAIN_PIPE(pipe)))
3332 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3333
3334 GEN5_IRQ_RESET(GEN8_DE_PORT_);
3335 GEN5_IRQ_RESET(GEN8_DE_MISC_);
3336 GEN5_IRQ_RESET(GEN8_PCU_);
3337
3338 if (HAS_PCH_SPLIT(dev))
3339 ibx_irq_reset(dev);
3340 }
3341
3342 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3343 unsigned int pipe_mask)
3344 {
3345 uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3346
3347 spin_lock_irq(&dev_priv->irq_lock);
3348 if (pipe_mask & 1 << PIPE_A)
3349 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3350 dev_priv->de_irq_mask[PIPE_A],
3351 ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3352 if (pipe_mask & 1 << PIPE_B)
3353 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3354 dev_priv->de_irq_mask[PIPE_B],
3355 ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3356 if (pipe_mask & 1 << PIPE_C)
3357 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3358 dev_priv->de_irq_mask[PIPE_C],
3359 ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3360 spin_unlock_irq(&dev_priv->irq_lock);
3361 }
3362
3363 static void cherryview_irq_preinstall(struct drm_device *dev)
3364 {
3365 struct drm_i915_private *dev_priv = dev->dev_private;
3366
3367 I915_WRITE(GEN8_MASTER_IRQ, 0);
3368 POSTING_READ(GEN8_MASTER_IRQ);
3369
3370 gen8_gt_irq_reset(dev_priv);
3371
3372 GEN5_IRQ_RESET(GEN8_PCU_);
3373
3374 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3375
3376 vlv_display_irq_reset(dev_priv);
3377 }
3378
3379 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3380 const u32 hpd[HPD_NUM_PINS])
3381 {
3382 struct drm_i915_private *dev_priv = to_i915(dev);
3383 struct intel_encoder *encoder;
3384 u32 enabled_irqs = 0;
3385
3386 for_each_intel_encoder(dev, encoder)
3387 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3388 enabled_irqs |= hpd[encoder->hpd_pin];
3389
3390 return enabled_irqs;
3391 }
3392
3393 static void ibx_hpd_irq_setup(struct drm_device *dev)
3394 {
3395 struct drm_i915_private *dev_priv = dev->dev_private;
3396 u32 hotplug_irqs, hotplug, enabled_irqs;
3397
3398 if (HAS_PCH_IBX(dev)) {
3399 hotplug_irqs = SDE_HOTPLUG_MASK;
3400 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3401 } else {
3402 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3403 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3404 }
3405
3406 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3407
3408 /*
3409 * Enable digital hotplug on the PCH, and configure the DP short pulse
3410 * duration to 2ms (which is the minimum in the Display Port spec).
3411 * The pulse duration bits are reserved on LPT+.
3412 */
3413 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3414 hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3415 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3416 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3417 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3418 /*
3419 * When CPU and PCH are on the same package, port A
3420 * HPD must be enabled in both north and south.
3421 */
3422 if (HAS_PCH_LPT_LP(dev))
3423 hotplug |= PORTA_HOTPLUG_ENABLE;
3424 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3425 }
3426
3427 static void spt_hpd_irq_setup(struct drm_device *dev)
3428 {
3429 struct drm_i915_private *dev_priv = dev->dev_private;
3430 u32 hotplug_irqs, hotplug, enabled_irqs;
3431
3432 hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3433 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3434
3435 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3436
3437 /* Enable digital hotplug on the PCH */
3438 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3439 hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3440 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3441 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3442
3443 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3444 hotplug |= PORTE_HOTPLUG_ENABLE;
3445 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3446 }
3447
3448 static void ilk_hpd_irq_setup(struct drm_device *dev)
3449 {
3450 struct drm_i915_private *dev_priv = dev->dev_private;
3451 u32 hotplug_irqs, hotplug, enabled_irqs;
3452
3453 if (INTEL_INFO(dev)->gen >= 8) {
3454 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3455 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3456
3457 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3458 } else if (INTEL_INFO(dev)->gen >= 7) {
3459 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3460 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3461
3462 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3463 } else {
3464 hotplug_irqs = DE_DP_A_HOTPLUG;
3465 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3466
3467 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3468 }
3469
3470 /*
3471 * Enable digital hotplug on the CPU, and configure the DP short pulse
3472 * duration to 2ms (which is the minimum in the Display Port spec)
3473 * The pulse duration bits are reserved on HSW+.
3474 */
3475 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3476 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3477 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3478 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3479
3480 ibx_hpd_irq_setup(dev);
3481 }
3482
3483 static void bxt_hpd_irq_setup(struct drm_device *dev)
3484 {
3485 struct drm_i915_private *dev_priv = dev->dev_private;
3486 u32 hotplug_irqs, hotplug, enabled_irqs;
3487
3488 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3489 hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3490
3491 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3492
3493 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3494 hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3495 PORTA_HOTPLUG_ENABLE;
3496 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3497 }
3498
3499 static void ibx_irq_postinstall(struct drm_device *dev)
3500 {
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502 u32 mask;
3503
3504 if (HAS_PCH_NOP(dev))
3505 return;
3506
3507 if (HAS_PCH_IBX(dev))
3508 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3509 else
3510 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3511
3512 gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3513 I915_WRITE(SDEIMR, ~mask);
3514 }
3515
3516 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3517 {
3518 struct drm_i915_private *dev_priv = dev->dev_private;
3519 u32 pm_irqs, gt_irqs;
3520
3521 pm_irqs = gt_irqs = 0;
3522
3523 dev_priv->gt_irq_mask = ~0;
3524 if (HAS_L3_DPF(dev)) {
3525 /* L3 parity interrupt is always unmasked. */
3526 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3527 gt_irqs |= GT_PARITY_ERROR(dev);
3528 }
3529
3530 gt_irqs |= GT_RENDER_USER_INTERRUPT;
3531 if (IS_GEN5(dev)) {
3532 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3533 ILK_BSD_USER_INTERRUPT;
3534 } else {
3535 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3536 }
3537
3538 GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3539
3540 if (INTEL_INFO(dev)->gen >= 6) {
3541 /*
3542 * RPS interrupts will get enabled/disabled on demand when RPS
3543 * itself is enabled/disabled.
3544 */
3545 if (HAS_VEBOX(dev))
3546 pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3547
3548 dev_priv->pm_irq_mask = 0xffffffff;
3549 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3550 }
3551 }
3552
3553 static int ironlake_irq_postinstall(struct drm_device *dev)
3554 {
3555 struct drm_i915_private *dev_priv = dev->dev_private;
3556 u32 display_mask, extra_mask;
3557
3558 if (INTEL_INFO(dev)->gen >= 7) {
3559 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3560 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3561 DE_PLANEB_FLIP_DONE_IVB |
3562 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3563 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3564 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3565 DE_DP_A_HOTPLUG_IVB);
3566 } else {
3567 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3568 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3569 DE_AUX_CHANNEL_A |
3570 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3571 DE_POISON);
3572 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3573 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3574 DE_DP_A_HOTPLUG);
3575 }
3576
3577 dev_priv->irq_mask = ~display_mask;
3578
3579 I915_WRITE(HWSTAM, 0xeffe);
3580
3581 ibx_irq_pre_postinstall(dev);
3582
3583 GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3584
3585 gen5_gt_irq_postinstall(dev);
3586
3587 ibx_irq_postinstall(dev);
3588
3589 if (IS_IRONLAKE_M(dev)) {
3590 /* Enable PCU event interrupts
3591 *
3592 * spinlocking not required here for correctness since interrupt
3593 * setup is guaranteed to run in single-threaded context. But we
3594 * need it to make the assert_spin_locked happy. */
3595 spin_lock_irq(&dev_priv->irq_lock);
3596 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3597 spin_unlock_irq(&dev_priv->irq_lock);
3598 }
3599
3600 return 0;
3601 }
3602
3603 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3604 {
3605 u32 pipestat_mask;
3606 u32 iir_mask;
3607 enum pipe pipe;
3608
3609 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3610 PIPE_FIFO_UNDERRUN_STATUS;
3611
3612 for_each_pipe(dev_priv, pipe)
3613 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3614 POSTING_READ(PIPESTAT(PIPE_A));
3615
3616 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3617 PIPE_CRC_DONE_INTERRUPT_STATUS;
3618
3619 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3620 for_each_pipe(dev_priv, pipe)
3621 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3622
3623 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3624 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3625 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3626 if (IS_CHERRYVIEW(dev_priv))
3627 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3628 dev_priv->irq_mask &= ~iir_mask;
3629
3630 I915_WRITE(VLV_IIR, iir_mask);
3631 I915_WRITE(VLV_IIR, iir_mask);
3632 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3633 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3634 POSTING_READ(VLV_IMR);
3635 }
3636
3637 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3638 {
3639 u32 pipestat_mask;
3640 u32 iir_mask;
3641 enum pipe pipe;
3642
3643 iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3644 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3645 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3646 if (IS_CHERRYVIEW(dev_priv))
3647 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3648
3649 dev_priv->irq_mask |= iir_mask;
3650 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3651 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3652 I915_WRITE(VLV_IIR, iir_mask);
3653 I915_WRITE(VLV_IIR, iir_mask);
3654 POSTING_READ(VLV_IIR);
3655
3656 pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3657 PIPE_CRC_DONE_INTERRUPT_STATUS;
3658
3659 i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3660 for_each_pipe(dev_priv, pipe)
3661 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3662
3663 pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3664 PIPE_FIFO_UNDERRUN_STATUS;
3665
3666 for_each_pipe(dev_priv, pipe)
3667 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3668 POSTING_READ(PIPESTAT(PIPE_A));
3669 }
3670
3671 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3672 {
3673 assert_spin_locked(&dev_priv->irq_lock);
3674
3675 if (dev_priv->display_irqs_enabled)
3676 return;
3677
3678 dev_priv->display_irqs_enabled = true;
3679
3680 if (intel_irqs_enabled(dev_priv))
3681 valleyview_display_irqs_install(dev_priv);
3682 }
3683
3684 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3685 {
3686 assert_spin_locked(&dev_priv->irq_lock);
3687
3688 if (!dev_priv->display_irqs_enabled)
3689 return;
3690
3691 dev_priv->display_irqs_enabled = false;
3692
3693 if (intel_irqs_enabled(dev_priv))
3694 valleyview_display_irqs_uninstall(dev_priv);
3695 }
3696
3697 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3698 {
3699 dev_priv->irq_mask = ~0;
3700
3701 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3702 POSTING_READ(PORT_HOTPLUG_EN);
3703
3704 I915_WRITE(VLV_IIR, 0xffffffff);
3705 I915_WRITE(VLV_IIR, 0xffffffff);
3706 I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3707 I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3708 POSTING_READ(VLV_IMR);
3709
3710 /* Interrupt setup is already guaranteed to be single-threaded, this is
3711 * just to make the assert_spin_locked check happy. */
3712 spin_lock_irq(&dev_priv->irq_lock);
3713 if (dev_priv->display_irqs_enabled)
3714 valleyview_display_irqs_install(dev_priv);
3715 spin_unlock_irq(&dev_priv->irq_lock);
3716 }
3717
3718 static int valleyview_irq_postinstall(struct drm_device *dev)
3719 {
3720 struct drm_i915_private *dev_priv = dev->dev_private;
3721
3722 vlv_display_irq_postinstall(dev_priv);
3723
3724 gen5_gt_irq_postinstall(dev);
3725
3726 /* ack & enable invalid PTE error interrupts */
3727 #if 0 /* FIXME: add support to irq handler for checking these bits */
3728 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3729 I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3730 #endif
3731
3732 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3733
3734 return 0;
3735 }
3736
3737 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3738 {
3739 /* These are interrupts we'll toggle with the ring mask register */
3740 uint32_t gt_interrupts[] = {
3741 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3742 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3743 GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3744 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3745 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3746 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3747 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3748 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3749 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3750 0,
3751 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3752 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3753 };
3754
3755 dev_priv->pm_irq_mask = 0xffffffff;
3756 GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3757 GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3758 /*
3759 * RPS interrupts will get enabled/disabled on demand when RPS itself
3760 * is enabled/disabled.
3761 */
3762 GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3763 GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3764 }
3765
3766 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3767 {
3768 uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3769 uint32_t de_pipe_enables;
3770 u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3771 u32 de_port_enables;
3772 enum pipe pipe;
3773
3774 if (INTEL_INFO(dev_priv)->gen >= 9) {
3775 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3776 GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3777 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3778 GEN9_AUX_CHANNEL_D;
3779 if (IS_BROXTON(dev_priv))
3780 de_port_masked |= BXT_DE_PORT_GMBUS;
3781 } else {
3782 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3783 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3784 }
3785
3786 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3787 GEN8_PIPE_FIFO_UNDERRUN;
3788
3789 de_port_enables = de_port_masked;
3790 if (IS_BROXTON(dev_priv))
3791 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3792 else if (IS_BROADWELL(dev_priv))
3793 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3794
3795 dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3796 dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3797 dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3798
3799 for_each_pipe(dev_priv, pipe)
3800 if (intel_display_power_is_enabled(dev_priv,
3801 POWER_DOMAIN_PIPE(pipe)))
3802 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3803 dev_priv->de_irq_mask[pipe],
3804 de_pipe_enables);
3805
3806 GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3807 }
3808
3809 static int gen8_irq_postinstall(struct drm_device *dev)
3810 {
3811 struct drm_i915_private *dev_priv = dev->dev_private;
3812
3813 if (HAS_PCH_SPLIT(dev))
3814 ibx_irq_pre_postinstall(dev);
3815
3816 gen8_gt_irq_postinstall(dev_priv);
3817 gen8_de_irq_postinstall(dev_priv);
3818
3819 if (HAS_PCH_SPLIT(dev))
3820 ibx_irq_postinstall(dev);
3821
3822 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3823 POSTING_READ(GEN8_MASTER_IRQ);
3824
3825 return 0;
3826 }
3827
3828 static int cherryview_irq_postinstall(struct drm_device *dev)
3829 {
3830 struct drm_i915_private *dev_priv = dev->dev_private;
3831
3832 vlv_display_irq_postinstall(dev_priv);
3833
3834 gen8_gt_irq_postinstall(dev_priv);
3835
3836 I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3837 POSTING_READ(GEN8_MASTER_IRQ);
3838
3839 return 0;
3840 }
3841
3842 static void gen8_irq_uninstall(struct drm_device *dev)
3843 {
3844 struct drm_i915_private *dev_priv = dev->dev_private;
3845
3846 if (!dev_priv)
3847 return;
3848
3849 gen8_irq_reset(dev);
3850 }
3851
3852 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3853 {
3854 /* Interrupt setup is already guaranteed to be single-threaded, this is
3855 * just to make the assert_spin_locked check happy. */
3856 spin_lock_irq(&dev_priv->irq_lock);
3857 if (dev_priv->display_irqs_enabled)
3858 valleyview_display_irqs_uninstall(dev_priv);
3859 spin_unlock_irq(&dev_priv->irq_lock);
3860
3861 vlv_display_irq_reset(dev_priv);
3862
3863 dev_priv->irq_mask = ~0;
3864 }
3865
3866 static void valleyview_irq_uninstall(struct drm_device *dev)
3867 {
3868 struct drm_i915_private *dev_priv = dev->dev_private;
3869
3870 if (!dev_priv)
3871 return;
3872
3873 I915_WRITE(VLV_MASTER_IER, 0);
3874
3875 gen5_gt_irq_reset(dev);
3876
3877 I915_WRITE(HWSTAM, 0xffffffff);
3878
3879 vlv_display_irq_uninstall(dev_priv);
3880 }
3881
3882 static void cherryview_irq_uninstall(struct drm_device *dev)
3883 {
3884 struct drm_i915_private *dev_priv = dev->dev_private;
3885
3886 if (!dev_priv)
3887 return;
3888
3889 I915_WRITE(GEN8_MASTER_IRQ, 0);
3890 POSTING_READ(GEN8_MASTER_IRQ);
3891
3892 gen8_gt_irq_reset(dev_priv);
3893
3894 GEN5_IRQ_RESET(GEN8_PCU_);
3895
3896 vlv_display_irq_uninstall(dev_priv);
3897 }
3898
3899 static void ironlake_irq_uninstall(struct drm_device *dev)
3900 {
3901 struct drm_i915_private *dev_priv = dev->dev_private;
3902
3903 if (!dev_priv)
3904 return;
3905
3906 ironlake_irq_reset(dev);
3907 }
3908
3909 static void i8xx_irq_preinstall(struct drm_device * dev)
3910 {
3911 struct drm_i915_private *dev_priv = dev->dev_private;
3912 int pipe;
3913
3914 for_each_pipe(dev_priv, pipe)
3915 I915_WRITE(PIPESTAT(pipe), 0);
3916 I915_WRITE16(IMR, 0xffff);
3917 I915_WRITE16(IER, 0x0);
3918 POSTING_READ16(IER);
3919 }
3920
3921 static int i8xx_irq_postinstall(struct drm_device *dev)
3922 {
3923 struct drm_i915_private *dev_priv = dev->dev_private;
3924
3925 I915_WRITE16(EMR,
3926 ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3927
3928 /* Unmask the interrupts that we always want on. */
3929 dev_priv->irq_mask =
3930 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3931 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3932 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3933 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3934 I915_WRITE16(IMR, dev_priv->irq_mask);
3935
3936 I915_WRITE16(IER,
3937 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3938 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3939 I915_USER_INTERRUPT);
3940 POSTING_READ16(IER);
3941
3942 /* Interrupt setup is already guaranteed to be single-threaded, this is
3943 * just to make the assert_spin_locked check happy. */
3944 spin_lock_irq(&dev_priv->irq_lock);
3945 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3946 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3947 spin_unlock_irq(&dev_priv->irq_lock);
3948
3949 return 0;
3950 }
3951
3952 /*
3953 * Returns true when a page flip has completed.
3954 */
3955 static bool i8xx_handle_vblank(struct drm_device *dev,
3956 int plane, int pipe, u32 iir)
3957 {
3958 struct drm_i915_private *dev_priv = dev->dev_private;
3959 u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3960
3961 if (!intel_pipe_handle_vblank(dev, pipe))
3962 return false;
3963
3964 if ((iir & flip_pending) == 0)
3965 goto check_page_flip;
3966
3967 /* We detect FlipDone by looking for the change in PendingFlip from '1'
3968 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3969 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3970 * the flip is completed (no longer pending). Since this doesn't raise
3971 * an interrupt per se, we watch for the change at vblank.
3972 */
3973 if (I915_READ16(ISR) & flip_pending)
3974 goto check_page_flip;
3975
3976 intel_prepare_page_flip(dev, plane);
3977 intel_finish_page_flip(dev, pipe);
3978 return true;
3979
3980 check_page_flip:
3981 intel_check_page_flip(dev, pipe);
3982 return false;
3983 }
3984
3985 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3986 {
3987 struct drm_device *dev = arg;
3988 struct drm_i915_private *dev_priv = dev->dev_private;
3989 u16 iir, new_iir;
3990 u32 pipe_stats[2];
3991 int pipe;
3992 u16 flip_mask =
3993 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3994 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3995 irqreturn_t ret;
3996
3997 if (!intel_irqs_enabled(dev_priv))
3998 return IRQ_NONE;
3999
4000 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4001 disable_rpm_wakeref_asserts(dev_priv);
4002
4003 ret = IRQ_NONE;
4004 iir = I915_READ16(IIR);
4005 if (iir == 0)
4006 goto out;
4007
4008 while (iir & ~flip_mask) {
4009 /* Can't rely on pipestat interrupt bit in iir as it might
4010 * have been cleared after the pipestat interrupt was received.
4011 * It doesn't set the bit in iir again, but it still produces
4012 * interrupts (for non-MSI).
4013 */
4014 spin_lock(&dev_priv->irq_lock);
4015 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4016 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4017
4018 for_each_pipe(dev_priv, pipe) {
4019 i915_reg_t reg = PIPESTAT(pipe);
4020 pipe_stats[pipe] = I915_READ(reg);
4021
4022 /*
4023 * Clear the PIPE*STAT regs before the IIR
4024 */
4025 if (pipe_stats[pipe] & 0x8000ffff)
4026 I915_WRITE(reg, pipe_stats[pipe]);
4027 }
4028 spin_unlock(&dev_priv->irq_lock);
4029
4030 I915_WRITE16(IIR, iir & ~flip_mask);
4031 new_iir = I915_READ16(IIR); /* Flush posted writes */
4032
4033 if (iir & I915_USER_INTERRUPT)
4034 notify_ring(&dev_priv->ring[RCS]);
4035
4036 for_each_pipe(dev_priv, pipe) {
4037 int plane = pipe;
4038 if (HAS_FBC(dev))
4039 plane = !plane;
4040
4041 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4042 i8xx_handle_vblank(dev, plane, pipe, iir))
4043 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4044
4045 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4046 i9xx_pipe_crc_irq_handler(dev, pipe);
4047
4048 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4049 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4050 pipe);
4051 }
4052
4053 iir = new_iir;
4054 }
4055 ret = IRQ_HANDLED;
4056
4057 out:
4058 enable_rpm_wakeref_asserts(dev_priv);
4059
4060 return ret;
4061 }
4062
4063 static void i8xx_irq_uninstall(struct drm_device * dev)
4064 {
4065 struct drm_i915_private *dev_priv = dev->dev_private;
4066 int pipe;
4067
4068 for_each_pipe(dev_priv, pipe) {
4069 /* Clear enable bits; then clear status bits */
4070 I915_WRITE(PIPESTAT(pipe), 0);
4071 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4072 }
4073 I915_WRITE16(IMR, 0xffff);
4074 I915_WRITE16(IER, 0x0);
4075 I915_WRITE16(IIR, I915_READ16(IIR));
4076 }
4077
4078 static void i915_irq_preinstall(struct drm_device * dev)
4079 {
4080 struct drm_i915_private *dev_priv = dev->dev_private;
4081 int pipe;
4082
4083 if (I915_HAS_HOTPLUG(dev)) {
4084 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4085 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4086 }
4087
4088 I915_WRITE16(HWSTAM, 0xeffe);
4089 for_each_pipe(dev_priv, pipe)
4090 I915_WRITE(PIPESTAT(pipe), 0);
4091 I915_WRITE(IMR, 0xffffffff);
4092 I915_WRITE(IER, 0x0);
4093 POSTING_READ(IER);
4094 }
4095
4096 static int i915_irq_postinstall(struct drm_device *dev)
4097 {
4098 struct drm_i915_private *dev_priv = dev->dev_private;
4099 u32 enable_mask;
4100
4101 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4102
4103 /* Unmask the interrupts that we always want on. */
4104 dev_priv->irq_mask =
4105 ~(I915_ASLE_INTERRUPT |
4106 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4107 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4108 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4109 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4110
4111 enable_mask =
4112 I915_ASLE_INTERRUPT |
4113 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4114 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4115 I915_USER_INTERRUPT;
4116
4117 if (I915_HAS_HOTPLUG(dev)) {
4118 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4119 POSTING_READ(PORT_HOTPLUG_EN);
4120
4121 /* Enable in IER... */
4122 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4123 /* and unmask in IMR */
4124 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4125 }
4126
4127 I915_WRITE(IMR, dev_priv->irq_mask);
4128 I915_WRITE(IER, enable_mask);
4129 POSTING_READ(IER);
4130
4131 i915_enable_asle_pipestat(dev);
4132
4133 /* Interrupt setup is already guaranteed to be single-threaded, this is
4134 * just to make the assert_spin_locked check happy. */
4135 spin_lock_irq(&dev_priv->irq_lock);
4136 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4137 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4138 spin_unlock_irq(&dev_priv->irq_lock);
4139
4140 return 0;
4141 }
4142
4143 /*
4144 * Returns true when a page flip has completed.
4145 */
4146 static bool i915_handle_vblank(struct drm_device *dev,
4147 int plane, int pipe, u32 iir)
4148 {
4149 struct drm_i915_private *dev_priv = dev->dev_private;
4150 u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4151
4152 if (!intel_pipe_handle_vblank(dev, pipe))
4153 return false;
4154
4155 if ((iir & flip_pending) == 0)
4156 goto check_page_flip;
4157
4158 /* We detect FlipDone by looking for the change in PendingFlip from '1'
4159 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4160 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4161 * the flip is completed (no longer pending). Since this doesn't raise
4162 * an interrupt per se, we watch for the change at vblank.
4163 */
4164 if (I915_READ(ISR) & flip_pending)
4165 goto check_page_flip;
4166
4167 intel_prepare_page_flip(dev, plane);
4168 intel_finish_page_flip(dev, pipe);
4169 return true;
4170
4171 check_page_flip:
4172 intel_check_page_flip(dev, pipe);
4173 return false;
4174 }
4175
4176 static irqreturn_t i915_irq_handler(int irq, void *arg)
4177 {
4178 struct drm_device *dev = arg;
4179 struct drm_i915_private *dev_priv = dev->dev_private;
4180 u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4181 u32 flip_mask =
4182 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4183 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4184 int pipe, ret = IRQ_NONE;
4185
4186 if (!intel_irqs_enabled(dev_priv))
4187 return IRQ_NONE;
4188
4189 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4190 disable_rpm_wakeref_asserts(dev_priv);
4191
4192 iir = I915_READ(IIR);
4193 do {
4194 bool irq_received = (iir & ~flip_mask) != 0;
4195 bool blc_event = false;
4196
4197 /* Can't rely on pipestat interrupt bit in iir as it might
4198 * have been cleared after the pipestat interrupt was received.
4199 * It doesn't set the bit in iir again, but it still produces
4200 * interrupts (for non-MSI).
4201 */
4202 spin_lock(&dev_priv->irq_lock);
4203 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4204 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4205
4206 for_each_pipe(dev_priv, pipe) {
4207 i915_reg_t reg = PIPESTAT(pipe);
4208 pipe_stats[pipe] = I915_READ(reg);
4209
4210 /* Clear the PIPE*STAT regs before the IIR */
4211 if (pipe_stats[pipe] & 0x8000ffff) {
4212 I915_WRITE(reg, pipe_stats[pipe]);
4213 irq_received = true;
4214 }
4215 }
4216 spin_unlock(&dev_priv->irq_lock);
4217
4218 if (!irq_received)
4219 break;
4220
4221 /* Consume port. Then clear IIR or we'll miss events */
4222 if (I915_HAS_HOTPLUG(dev) &&
4223 iir & I915_DISPLAY_PORT_INTERRUPT)
4224 i9xx_hpd_irq_handler(dev);
4225
4226 I915_WRITE(IIR, iir & ~flip_mask);
4227 new_iir = I915_READ(IIR); /* Flush posted writes */
4228
4229 if (iir & I915_USER_INTERRUPT)
4230 notify_ring(&dev_priv->ring[RCS]);
4231
4232 for_each_pipe(dev_priv, pipe) {
4233 int plane = pipe;
4234 if (HAS_FBC(dev))
4235 plane = !plane;
4236
4237 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4238 i915_handle_vblank(dev, plane, pipe, iir))
4239 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4240
4241 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4242 blc_event = true;
4243
4244 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4245 i9xx_pipe_crc_irq_handler(dev, pipe);
4246
4247 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4248 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4249 pipe);
4250 }
4251
4252 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4253 intel_opregion_asle_intr(dev);
4254
4255 /* With MSI, interrupts are only generated when iir
4256 * transitions from zero to nonzero. If another bit got
4257 * set while we were handling the existing iir bits, then
4258 * we would never get another interrupt.
4259 *
4260 * This is fine on non-MSI as well, as if we hit this path
4261 * we avoid exiting the interrupt handler only to generate
4262 * another one.
4263 *
4264 * Note that for MSI this could cause a stray interrupt report
4265 * if an interrupt landed in the time between writing IIR and
4266 * the posting read. This should be rare enough to never
4267 * trigger the 99% of 100,000 interrupts test for disabling
4268 * stray interrupts.
4269 */
4270 ret = IRQ_HANDLED;
4271 iir = new_iir;
4272 } while (iir & ~flip_mask);
4273
4274 enable_rpm_wakeref_asserts(dev_priv);
4275
4276 return ret;
4277 }
4278
4279 static void i915_irq_uninstall(struct drm_device * dev)
4280 {
4281 struct drm_i915_private *dev_priv = dev->dev_private;
4282 int pipe;
4283
4284 if (I915_HAS_HOTPLUG(dev)) {
4285 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4286 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4287 }
4288
4289 I915_WRITE16(HWSTAM, 0xffff);
4290 for_each_pipe(dev_priv, pipe) {
4291 /* Clear enable bits; then clear status bits */
4292 I915_WRITE(PIPESTAT(pipe), 0);
4293 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4294 }
4295 I915_WRITE(IMR, 0xffffffff);
4296 I915_WRITE(IER, 0x0);
4297
4298 I915_WRITE(IIR, I915_READ(IIR));
4299 }
4300
4301 static void i965_irq_preinstall(struct drm_device * dev)
4302 {
4303 struct drm_i915_private *dev_priv = dev->dev_private;
4304 int pipe;
4305
4306 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4307 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4308
4309 I915_WRITE(HWSTAM, 0xeffe);
4310 for_each_pipe(dev_priv, pipe)
4311 I915_WRITE(PIPESTAT(pipe), 0);
4312 I915_WRITE(IMR, 0xffffffff);
4313 I915_WRITE(IER, 0x0);
4314 POSTING_READ(IER);
4315 }
4316
4317 static int i965_irq_postinstall(struct drm_device *dev)
4318 {
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320 u32 enable_mask;
4321 u32 error_mask;
4322
4323 /* Unmask the interrupts that we always want on. */
4324 dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4325 I915_DISPLAY_PORT_INTERRUPT |
4326 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4327 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4328 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4329 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4330 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4331
4332 enable_mask = ~dev_priv->irq_mask;
4333 enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4334 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4335 enable_mask |= I915_USER_INTERRUPT;
4336
4337 if (IS_G4X(dev))
4338 enable_mask |= I915_BSD_USER_INTERRUPT;
4339
4340 /* Interrupt setup is already guaranteed to be single-threaded, this is
4341 * just to make the assert_spin_locked check happy. */
4342 spin_lock_irq(&dev_priv->irq_lock);
4343 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4344 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4345 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4346 spin_unlock_irq(&dev_priv->irq_lock);
4347
4348 /*
4349 * Enable some error detection, note the instruction error mask
4350 * bit is reserved, so we leave it masked.
4351 */
4352 if (IS_G4X(dev)) {
4353 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4354 GM45_ERROR_MEM_PRIV |
4355 GM45_ERROR_CP_PRIV |
4356 I915_ERROR_MEMORY_REFRESH);
4357 } else {
4358 error_mask = ~(I915_ERROR_PAGE_TABLE |
4359 I915_ERROR_MEMORY_REFRESH);
4360 }
4361 I915_WRITE(EMR, error_mask);
4362
4363 I915_WRITE(IMR, dev_priv->irq_mask);
4364 I915_WRITE(IER, enable_mask);
4365 POSTING_READ(IER);
4366
4367 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4368 POSTING_READ(PORT_HOTPLUG_EN);
4369
4370 i915_enable_asle_pipestat(dev);
4371
4372 return 0;
4373 }
4374
4375 static void i915_hpd_irq_setup(struct drm_device *dev)
4376 {
4377 struct drm_i915_private *dev_priv = dev->dev_private;
4378 u32 hotplug_en;
4379
4380 assert_spin_locked(&dev_priv->irq_lock);
4381
4382 /* Note HDMI and DP share hotplug bits */
4383 /* enable bits are the same for all generations */
4384 hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4385 /* Programming the CRT detection parameters tends
4386 to generate a spurious hotplug event about three
4387 seconds later. So just do it once.
4388 */
4389 if (IS_G4X(dev))
4390 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4391 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4392
4393 /* Ignore TV since it's buggy */
4394 i915_hotplug_interrupt_update_locked(dev_priv,
4395 HOTPLUG_INT_EN_MASK |
4396 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4397 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4398 hotplug_en);
4399 }
4400
4401 static irqreturn_t i965_irq_handler(int irq, void *arg)
4402 {
4403 struct drm_device *dev = arg;
4404 struct drm_i915_private *dev_priv = dev->dev_private;
4405 u32 iir, new_iir;
4406 u32 pipe_stats[I915_MAX_PIPES];
4407 int ret = IRQ_NONE, pipe;
4408 u32 flip_mask =
4409 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4410 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4411
4412 if (!intel_irqs_enabled(dev_priv))
4413 return IRQ_NONE;
4414
4415 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4416 disable_rpm_wakeref_asserts(dev_priv);
4417
4418 iir = I915_READ(IIR);
4419
4420 for (;;) {
4421 bool irq_received = (iir & ~flip_mask) != 0;
4422 bool blc_event = false;
4423
4424 /* Can't rely on pipestat interrupt bit in iir as it might
4425 * have been cleared after the pipestat interrupt was received.
4426 * It doesn't set the bit in iir again, but it still produces
4427 * interrupts (for non-MSI).
4428 */
4429 spin_lock(&dev_priv->irq_lock);
4430 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4431 DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4432
4433 for_each_pipe(dev_priv, pipe) {
4434 i915_reg_t reg = PIPESTAT(pipe);
4435 pipe_stats[pipe] = I915_READ(reg);
4436
4437 /*
4438 * Clear the PIPE*STAT regs before the IIR
4439 */
4440 if (pipe_stats[pipe] & 0x8000ffff) {
4441 I915_WRITE(reg, pipe_stats[pipe]);
4442 irq_received = true;
4443 }
4444 }
4445 spin_unlock(&dev_priv->irq_lock);
4446
4447 if (!irq_received)
4448 break;
4449
4450 ret = IRQ_HANDLED;
4451
4452 /* Consume port. Then clear IIR or we'll miss events */
4453 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4454 i9xx_hpd_irq_handler(dev);
4455
4456 I915_WRITE(IIR, iir & ~flip_mask);
4457 new_iir = I915_READ(IIR); /* Flush posted writes */
4458
4459 if (iir & I915_USER_INTERRUPT)
4460 notify_ring(&dev_priv->ring[RCS]);
4461 if (iir & I915_BSD_USER_INTERRUPT)
4462 notify_ring(&dev_priv->ring[VCS]);
4463
4464 for_each_pipe(dev_priv, pipe) {
4465 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4466 i915_handle_vblank(dev, pipe, pipe, iir))
4467 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4468
4469 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4470 blc_event = true;
4471
4472 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4473 i9xx_pipe_crc_irq_handler(dev, pipe);
4474
4475 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4476 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4477 }
4478
4479 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4480 intel_opregion_asle_intr(dev);
4481
4482 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4483 gmbus_irq_handler(dev);
4484
4485 /* With MSI, interrupts are only generated when iir
4486 * transitions from zero to nonzero. If another bit got
4487 * set while we were handling the existing iir bits, then
4488 * we would never get another interrupt.
4489 *
4490 * This is fine on non-MSI as well, as if we hit this path
4491 * we avoid exiting the interrupt handler only to generate
4492 * another one.
4493 *
4494 * Note that for MSI this could cause a stray interrupt report
4495 * if an interrupt landed in the time between writing IIR and
4496 * the posting read. This should be rare enough to never
4497 * trigger the 99% of 100,000 interrupts test for disabling
4498 * stray interrupts.
4499 */
4500 iir = new_iir;
4501 }
4502
4503 enable_rpm_wakeref_asserts(dev_priv);
4504
4505 return ret;
4506 }
4507
4508 static void i965_irq_uninstall(struct drm_device * dev)
4509 {
4510 struct drm_i915_private *dev_priv = dev->dev_private;
4511 int pipe;
4512
4513 if (!dev_priv)
4514 return;
4515
4516 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4517 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4518
4519 I915_WRITE(HWSTAM, 0xffffffff);
4520 for_each_pipe(dev_priv, pipe)
4521 I915_WRITE(PIPESTAT(pipe), 0);
4522 I915_WRITE(IMR, 0xffffffff);
4523 I915_WRITE(IER, 0x0);
4524
4525 for_each_pipe(dev_priv, pipe)
4526 I915_WRITE(PIPESTAT(pipe),
4527 I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4528 I915_WRITE(IIR, I915_READ(IIR));
4529 }
4530
4531 /**
4532 * intel_irq_init - initializes irq support
4533 * @dev_priv: i915 device instance
4534 *
4535 * This function initializes all the irq support including work items, timers
4536 * and all the vtables. It does not setup the interrupt itself though.
4537 */
4538 void intel_irq_init(struct drm_i915_private *dev_priv)
4539 {
4540 struct drm_device *dev = dev_priv->dev;
4541
4542 intel_hpd_init_work(dev_priv);
4543
4544 INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4545 INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4546
4547 /* Let's track the enabled rps events */
4548 if (IS_VALLEYVIEW(dev_priv))
4549 /* WaGsvRC0ResidencyMethod:vlv */
4550 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4551 else
4552 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4553
4554 INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4555 i915_hangcheck_elapsed);
4556
4557 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4558
4559 if (IS_GEN2(dev_priv)) {
4560 dev->max_vblank_count = 0;
4561 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4562 } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4563 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4564 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4565 } else {
4566 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4567 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4568 }
4569
4570 /*
4571 * Opt out of the vblank disable timer on everything except gen2.
4572 * Gen2 doesn't have a hardware frame counter and so depends on
4573 * vblank interrupts to produce sane vblank seuquence numbers.
4574 */
4575 if (!IS_GEN2(dev_priv))
4576 dev->vblank_disable_immediate = true;
4577
4578 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4579 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4580
4581 if (IS_CHERRYVIEW(dev_priv)) {
4582 dev->driver->irq_handler = cherryview_irq_handler;
4583 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4584 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4585 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4586 dev->driver->enable_vblank = valleyview_enable_vblank;
4587 dev->driver->disable_vblank = valleyview_disable_vblank;
4588 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4589 } else if (IS_VALLEYVIEW(dev_priv)) {
4590 dev->driver->irq_handler = valleyview_irq_handler;
4591 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4592 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4593 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4594 dev->driver->enable_vblank = valleyview_enable_vblank;
4595 dev->driver->disable_vblank = valleyview_disable_vblank;
4596 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4597 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4598 dev->driver->irq_handler = gen8_irq_handler;
4599 dev->driver->irq_preinstall = gen8_irq_reset;
4600 dev->driver->irq_postinstall = gen8_irq_postinstall;
4601 dev->driver->irq_uninstall = gen8_irq_uninstall;
4602 dev->driver->enable_vblank = gen8_enable_vblank;
4603 dev->driver->disable_vblank = gen8_disable_vblank;
4604 if (IS_BROXTON(dev))
4605 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4606 else if (HAS_PCH_SPT(dev))
4607 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4608 else
4609 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4610 } else if (HAS_PCH_SPLIT(dev)) {
4611 dev->driver->irq_handler = ironlake_irq_handler;
4612 dev->driver->irq_preinstall = ironlake_irq_reset;
4613 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4614 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4615 dev->driver->enable_vblank = ironlake_enable_vblank;
4616 dev->driver->disable_vblank = ironlake_disable_vblank;
4617 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4618 } else {
4619 if (INTEL_INFO(dev_priv)->gen == 2) {
4620 dev->driver->irq_preinstall = i8xx_irq_preinstall;
4621 dev->driver->irq_postinstall = i8xx_irq_postinstall;
4622 dev->driver->irq_handler = i8xx_irq_handler;
4623 dev->driver->irq_uninstall = i8xx_irq_uninstall;
4624 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4625 dev->driver->irq_preinstall = i915_irq_preinstall;
4626 dev->driver->irq_postinstall = i915_irq_postinstall;
4627 dev->driver->irq_uninstall = i915_irq_uninstall;
4628 dev->driver->irq_handler = i915_irq_handler;
4629 } else {
4630 dev->driver->irq_preinstall = i965_irq_preinstall;
4631 dev->driver->irq_postinstall = i965_irq_postinstall;
4632 dev->driver->irq_uninstall = i965_irq_uninstall;
4633 dev->driver->irq_handler = i965_irq_handler;
4634 }
4635 if (I915_HAS_HOTPLUG(dev_priv))
4636 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4637 dev->driver->enable_vblank = i915_enable_vblank;
4638 dev->driver->disable_vblank = i915_disable_vblank;
4639 }
4640 }
4641
4642 /**
4643 * intel_irq_install - enables the hardware interrupt
4644 * @dev_priv: i915 device instance
4645 *
4646 * This function enables the hardware interrupt handling, but leaves the hotplug
4647 * handling still disabled. It is called after intel_irq_init().
4648 *
4649 * In the driver load and resume code we need working interrupts in a few places
4650 * but don't want to deal with the hassle of concurrent probe and hotplug
4651 * workers. Hence the split into this two-stage approach.
4652 */
4653 int intel_irq_install(struct drm_i915_private *dev_priv)
4654 {
4655 /*
4656 * We enable some interrupt sources in our postinstall hooks, so mark
4657 * interrupts as enabled _before_ actually enabling them to avoid
4658 * special cases in our ordering checks.
4659 */
4660 dev_priv->pm.irqs_enabled = true;
4661
4662 return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4663 }
4664
4665 /**
4666 * intel_irq_uninstall - finilizes all irq handling
4667 * @dev_priv: i915 device instance
4668 *
4669 * This stops interrupt and hotplug handling and unregisters and frees all
4670 * resources acquired in the init functions.
4671 */
4672 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4673 {
4674 drm_irq_uninstall(dev_priv->dev);
4675 intel_hpd_cancel_work(dev_priv);
4676 dev_priv->pm.irqs_enabled = false;
4677 }
4678
4679 /**
4680 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4681 * @dev_priv: i915 device instance
4682 *
4683 * This function is used to disable interrupts at runtime, both in the runtime
4684 * pm and the system suspend/resume code.
4685 */
4686 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4687 {
4688 dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4689 dev_priv->pm.irqs_enabled = false;
4690 synchronize_irq(dev_priv->dev->irq);
4691 }
4692
4693 /**
4694 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4695 * @dev_priv: i915 device instance
4696 *
4697 * This function is used to enable interrupts at runtime, both in the runtime
4698 * pm and the system suspend/resume code.
4699 */
4700 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4701 {
4702 dev_priv->pm.irqs_enabled = true;
4703 dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4704 dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4705 }
This page took 0.15148 seconds and 6 git commands to generate.