drm/i915: Move common request allocation code into a common function
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31 /**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL (1 << 0x2)
144 #define RING_EXECLIST1_VALID (1 << 0x3)
145 #define RING_EXECLIST0_VALID (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156
157 #define CTX_LRI_HEADER_0 0x01
158 #define CTX_CONTEXT_CONTROL 0x02
159 #define CTX_RING_HEAD 0x04
160 #define CTX_RING_TAIL 0x06
161 #define CTX_RING_BUFFER_START 0x08
162 #define CTX_RING_BUFFER_CONTROL 0x0a
163 #define CTX_BB_HEAD_U 0x0c
164 #define CTX_BB_HEAD_L 0x0e
165 #define CTX_BB_STATE 0x10
166 #define CTX_SECOND_BB_HEAD_U 0x12
167 #define CTX_SECOND_BB_HEAD_L 0x14
168 #define CTX_SECOND_BB_STATE 0x16
169 #define CTX_BB_PER_CTX_PTR 0x18
170 #define CTX_RCS_INDIRECT_CTX 0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
172 #define CTX_LRI_HEADER_1 0x21
173 #define CTX_CTX_TIMESTAMP 0x22
174 #define CTX_PDP3_UDW 0x24
175 #define CTX_PDP3_LDW 0x26
176 #define CTX_PDP2_UDW 0x28
177 #define CTX_PDP2_LDW 0x2a
178 #define CTX_PDP1_UDW 0x2c
179 #define CTX_PDP1_LDW 0x2e
180 #define CTX_PDP0_UDW 0x30
181 #define CTX_PDP0_LDW 0x32
182 #define CTX_LRI_HEADER_2 0x41
183 #define CTX_R_PWR_CLK_STATE 0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191 enum {
192 ADVANCED_CONTEXT = 0,
193 LEGACY_CONTEXT,
194 ADVANCED_AD_CONTEXT,
195 LEGACY_64B_CONTEXT
196 };
197 #define GEN8_CTX_MODE_SHIFT 3
198 enum {
199 FAULT_AND_HANG = 0,
200 FAULT_AND_HALT, /* Debug only */
201 FAULT_AND_STREAM,
202 FAULT_AND_CONTINUE /* Unsupported */
203 };
204 #define GEN8_CTX_ID_SHIFT 32
205
206 static int intel_lr_context_pin(struct intel_engine_cs *ring,
207 struct intel_context *ctx);
208
209 /**
210 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
211 * @dev: DRM device.
212 * @enable_execlists: value of i915.enable_execlists module parameter.
213 *
214 * Only certain platforms support Execlists (the prerequisites being
215 * support for Logical Ring Contexts and Aliasing PPGTT or better).
216 *
217 * Return: 1 if Execlists is supported and has to be enabled.
218 */
219 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
220 {
221 WARN_ON(i915.enable_ppgtt == -1);
222
223 if (INTEL_INFO(dev)->gen >= 9)
224 return 1;
225
226 if (enable_execlists == 0)
227 return 0;
228
229 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
230 i915.use_mmio_flip >= 0)
231 return 1;
232
233 return 0;
234 }
235
236 /**
237 * intel_execlists_ctx_id() - get the Execlists Context ID
238 * @ctx_obj: Logical Ring Context backing object.
239 *
240 * Do not confuse with ctx->id! Unfortunately we have a name overload
241 * here: the old context ID we pass to userspace as a handler so that
242 * they can refer to a context, and the new context ID we pass to the
243 * ELSP so that the GPU can inform us of the context status via
244 * interrupts.
245 *
246 * Return: 20-bits globally unique context ID.
247 */
248 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
249 {
250 u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
251
252 /* LRCA is required to be 4K aligned so the more significant 20 bits
253 * are globally unique */
254 return lrca >> 12;
255 }
256
257 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
258 struct drm_i915_gem_object *ctx_obj)
259 {
260 struct drm_device *dev = ring->dev;
261 uint64_t desc;
262 uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
263
264 WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
265
266 desc = GEN8_CTX_VALID;
267 desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
268 desc |= GEN8_CTX_L3LLC_COHERENT;
269 desc |= GEN8_CTX_PRIVILEGE;
270 desc |= lrca;
271 desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
272
273 /* TODO: WaDisableLiteRestore when we start using semaphore
274 * signalling between Command Streamers */
275 /* desc |= GEN8_CTX_FORCE_RESTORE; */
276
277 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
278 if (IS_GEN9(dev) &&
279 INTEL_REVID(dev) <= SKL_REVID_B0 &&
280 (ring->id == BCS || ring->id == VCS ||
281 ring->id == VECS || ring->id == VCS2))
282 desc |= GEN8_CTX_FORCE_RESTORE;
283
284 return desc;
285 }
286
287 static void execlists_elsp_write(struct intel_engine_cs *ring,
288 struct drm_i915_gem_object *ctx_obj0,
289 struct drm_i915_gem_object *ctx_obj1)
290 {
291 struct drm_device *dev = ring->dev;
292 struct drm_i915_private *dev_priv = dev->dev_private;
293 uint64_t temp = 0;
294 uint32_t desc[4];
295
296 /* XXX: You must always write both descriptors in the order below. */
297 if (ctx_obj1)
298 temp = execlists_ctx_descriptor(ring, ctx_obj1);
299 else
300 temp = 0;
301 desc[1] = (u32)(temp >> 32);
302 desc[0] = (u32)temp;
303
304 temp = execlists_ctx_descriptor(ring, ctx_obj0);
305 desc[3] = (u32)(temp >> 32);
306 desc[2] = (u32)temp;
307
308 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
309 I915_WRITE(RING_ELSP(ring), desc[1]);
310 I915_WRITE(RING_ELSP(ring), desc[0]);
311 I915_WRITE(RING_ELSP(ring), desc[3]);
312
313 /* The context is automatically loaded after the following */
314 I915_WRITE(RING_ELSP(ring), desc[2]);
315
316 /* ELSP is a wo register, so use another nearby reg for posting instead */
317 POSTING_READ(RING_EXECLIST_STATUS(ring));
318 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
319 }
320
321 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
322 struct drm_i915_gem_object *ring_obj,
323 u32 tail)
324 {
325 struct page *page;
326 uint32_t *reg_state;
327
328 page = i915_gem_object_get_page(ctx_obj, 1);
329 reg_state = kmap_atomic(page);
330
331 reg_state[CTX_RING_TAIL+1] = tail;
332 reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
333
334 kunmap_atomic(reg_state);
335
336 return 0;
337 }
338
339 static void execlists_submit_contexts(struct intel_engine_cs *ring,
340 struct intel_context *to0, u32 tail0,
341 struct intel_context *to1, u32 tail1)
342 {
343 struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
344 struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
345 struct drm_i915_gem_object *ctx_obj1 = NULL;
346 struct intel_ringbuffer *ringbuf1 = NULL;
347
348 BUG_ON(!ctx_obj0);
349 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
350 WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
351
352 execlists_update_context(ctx_obj0, ringbuf0->obj, tail0);
353
354 if (to1) {
355 ringbuf1 = to1->engine[ring->id].ringbuf;
356 ctx_obj1 = to1->engine[ring->id].state;
357 BUG_ON(!ctx_obj1);
358 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
359 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
360
361 execlists_update_context(ctx_obj1, ringbuf1->obj, tail1);
362 }
363
364 execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
365 }
366
367 static void execlists_context_unqueue(struct intel_engine_cs *ring)
368 {
369 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
370 struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
371
372 assert_spin_locked(&ring->execlist_lock);
373
374 if (list_empty(&ring->execlist_queue))
375 return;
376
377 /* Try to read in pairs */
378 list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
379 execlist_link) {
380 if (!req0) {
381 req0 = cursor;
382 } else if (req0->ctx == cursor->ctx) {
383 /* Same ctx: ignore first request, as second request
384 * will update tail past first request's workload */
385 cursor->elsp_submitted = req0->elsp_submitted;
386 list_del(&req0->execlist_link);
387 list_add_tail(&req0->execlist_link,
388 &ring->execlist_retired_req_list);
389 req0 = cursor;
390 } else {
391 req1 = cursor;
392 break;
393 }
394 }
395
396 WARN_ON(req1 && req1->elsp_submitted);
397
398 execlists_submit_contexts(ring, req0->ctx, req0->tail,
399 req1 ? req1->ctx : NULL,
400 req1 ? req1->tail : 0);
401
402 req0->elsp_submitted++;
403 if (req1)
404 req1->elsp_submitted++;
405 }
406
407 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
408 u32 request_id)
409 {
410 struct drm_i915_gem_request *head_req;
411
412 assert_spin_locked(&ring->execlist_lock);
413
414 head_req = list_first_entry_or_null(&ring->execlist_queue,
415 struct drm_i915_gem_request,
416 execlist_link);
417
418 if (head_req != NULL) {
419 struct drm_i915_gem_object *ctx_obj =
420 head_req->ctx->engine[ring->id].state;
421 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
422 WARN(head_req->elsp_submitted == 0,
423 "Never submitted head request\n");
424
425 if (--head_req->elsp_submitted <= 0) {
426 list_del(&head_req->execlist_link);
427 list_add_tail(&head_req->execlist_link,
428 &ring->execlist_retired_req_list);
429 return true;
430 }
431 }
432 }
433
434 return false;
435 }
436
437 /**
438 * intel_lrc_irq_handler() - handle Context Switch interrupts
439 * @ring: Engine Command Streamer to handle.
440 *
441 * Check the unread Context Status Buffers and manage the submission of new
442 * contexts to the ELSP accordingly.
443 */
444 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
445 {
446 struct drm_i915_private *dev_priv = ring->dev->dev_private;
447 u32 status_pointer;
448 u8 read_pointer;
449 u8 write_pointer;
450 u32 status;
451 u32 status_id;
452 u32 submit_contexts = 0;
453
454 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
455
456 read_pointer = ring->next_context_status_buffer;
457 write_pointer = status_pointer & 0x07;
458 if (read_pointer > write_pointer)
459 write_pointer += 6;
460
461 spin_lock(&ring->execlist_lock);
462
463 while (read_pointer < write_pointer) {
464 read_pointer++;
465 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
466 (read_pointer % 6) * 8);
467 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
468 (read_pointer % 6) * 8 + 4);
469
470 if (status & GEN8_CTX_STATUS_PREEMPTED) {
471 if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
472 if (execlists_check_remove_request(ring, status_id))
473 WARN(1, "Lite Restored request removed from queue\n");
474 } else
475 WARN(1, "Preemption without Lite Restore\n");
476 }
477
478 if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
479 (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
480 if (execlists_check_remove_request(ring, status_id))
481 submit_contexts++;
482 }
483 }
484
485 if (submit_contexts != 0)
486 execlists_context_unqueue(ring);
487
488 spin_unlock(&ring->execlist_lock);
489
490 WARN(submit_contexts > 2, "More than two context complete events?\n");
491 ring->next_context_status_buffer = write_pointer % 6;
492
493 I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
494 ((u32)ring->next_context_status_buffer & 0x07) << 8);
495 }
496
497 static int execlists_context_queue(struct intel_engine_cs *ring,
498 struct intel_context *to,
499 u32 tail,
500 struct drm_i915_gem_request *request)
501 {
502 struct drm_i915_gem_request *cursor;
503 struct drm_i915_private *dev_priv = ring->dev->dev_private;
504 unsigned long flags;
505 int num_elements = 0;
506
507 if (to != ring->default_context)
508 intel_lr_context_pin(ring, to);
509
510 if (!request) {
511 /*
512 * If there isn't a request associated with this submission,
513 * create one as a temporary holder.
514 */
515 request = kzalloc(sizeof(*request), GFP_KERNEL);
516 if (request == NULL)
517 return -ENOMEM;
518 request->ring = ring;
519 request->ctx = to;
520 kref_init(&request->ref);
521 request->uniq = dev_priv->request_uniq++;
522 i915_gem_context_reference(request->ctx);
523 } else {
524 i915_gem_request_reference(request);
525 WARN_ON(to != request->ctx);
526 }
527 request->tail = tail;
528
529 intel_runtime_pm_get(dev_priv);
530
531 spin_lock_irqsave(&ring->execlist_lock, flags);
532
533 list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
534 if (++num_elements > 2)
535 break;
536
537 if (num_elements > 2) {
538 struct drm_i915_gem_request *tail_req;
539
540 tail_req = list_last_entry(&ring->execlist_queue,
541 struct drm_i915_gem_request,
542 execlist_link);
543
544 if (to == tail_req->ctx) {
545 WARN(tail_req->elsp_submitted != 0,
546 "More than 2 already-submitted reqs queued\n");
547 list_del(&tail_req->execlist_link);
548 list_add_tail(&tail_req->execlist_link,
549 &ring->execlist_retired_req_list);
550 }
551 }
552
553 list_add_tail(&request->execlist_link, &ring->execlist_queue);
554 if (num_elements == 0)
555 execlists_context_unqueue(ring);
556
557 spin_unlock_irqrestore(&ring->execlist_lock, flags);
558
559 return 0;
560 }
561
562 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
563 struct intel_context *ctx)
564 {
565 struct intel_engine_cs *ring = ringbuf->ring;
566 uint32_t flush_domains;
567 int ret;
568
569 flush_domains = 0;
570 if (ring->gpu_caches_dirty)
571 flush_domains = I915_GEM_GPU_DOMAINS;
572
573 ret = ring->emit_flush(ringbuf, ctx,
574 I915_GEM_GPU_DOMAINS, flush_domains);
575 if (ret)
576 return ret;
577
578 ring->gpu_caches_dirty = false;
579 return 0;
580 }
581
582 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
583 struct intel_context *ctx,
584 struct list_head *vmas)
585 {
586 struct intel_engine_cs *ring = ringbuf->ring;
587 struct i915_vma *vma;
588 uint32_t flush_domains = 0;
589 bool flush_chipset = false;
590 int ret;
591
592 list_for_each_entry(vma, vmas, exec_list) {
593 struct drm_i915_gem_object *obj = vma->obj;
594
595 ret = i915_gem_object_sync(obj, ring);
596 if (ret)
597 return ret;
598
599 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
600 flush_chipset |= i915_gem_clflush_object(obj, false);
601
602 flush_domains |= obj->base.write_domain;
603 }
604
605 if (flush_domains & I915_GEM_DOMAIN_GTT)
606 wmb();
607
608 /* Unconditionally invalidate gpu caches and ensure that we do flush
609 * any residual writes from the previous batch.
610 */
611 return logical_ring_invalidate_all_caches(ringbuf, ctx);
612 }
613
614 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
615 struct intel_context *ctx)
616 {
617 int ret;
618
619 if (ctx != request->ring->default_context) {
620 ret = intel_lr_context_pin(request->ring, ctx);
621 if (ret)
622 return ret;
623 }
624
625 request->ringbuf = ctx->engine[request->ring->id].ringbuf;
626 request->ctx = ctx;
627 i915_gem_context_reference(request->ctx);
628
629 return 0;
630 }
631
632 static int logical_ring_wait_request(struct intel_ringbuffer *ringbuf,
633 int bytes)
634 {
635 struct intel_engine_cs *ring = ringbuf->ring;
636 struct drm_i915_gem_request *request;
637 int ret;
638
639 if (intel_ring_space(ringbuf) >= bytes)
640 return 0;
641
642 list_for_each_entry(request, &ring->request_list, list) {
643 /*
644 * The request queue is per-engine, so can contain requests
645 * from multiple ringbuffers. Here, we must ignore any that
646 * aren't from the ringbuffer we're considering.
647 */
648 struct intel_context *ctx = request->ctx;
649 if (ctx->engine[ring->id].ringbuf != ringbuf)
650 continue;
651
652 /* Would completion of this request free enough space? */
653 if (__intel_ring_space(request->tail, ringbuf->tail,
654 ringbuf->size) >= bytes) {
655 break;
656 }
657 }
658
659 if (&request->list == &ring->request_list)
660 return -ENOSPC;
661
662 ret = i915_wait_request(request);
663 if (ret)
664 return ret;
665
666 i915_gem_retire_requests_ring(ring);
667
668 return intel_ring_space(ringbuf) >= bytes ? 0 : -ENOSPC;
669 }
670
671 /*
672 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
673 * @ringbuf: Logical Ringbuffer to advance.
674 *
675 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
676 * really happens during submission is that the context and current tail will be placed
677 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
678 * point, the tail *inside* the context is updated and the ELSP written to.
679 */
680 static void
681 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
682 struct intel_context *ctx,
683 struct drm_i915_gem_request *request)
684 {
685 struct intel_engine_cs *ring = ringbuf->ring;
686
687 intel_logical_ring_advance(ringbuf);
688
689 if (intel_ring_stopped(ring))
690 return;
691
692 execlists_context_queue(ring, ctx, ringbuf->tail, request);
693 }
694
695 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
696 struct intel_context *ctx,
697 int bytes)
698 {
699 struct intel_engine_cs *ring = ringbuf->ring;
700 struct drm_device *dev = ring->dev;
701 struct drm_i915_private *dev_priv = dev->dev_private;
702 unsigned long end;
703 int ret;
704
705 ret = logical_ring_wait_request(ringbuf, bytes);
706 if (ret != -ENOSPC)
707 return ret;
708
709 /* Force the context submission in case we have been skipping it */
710 intel_logical_ring_advance_and_submit(ringbuf, ctx, NULL);
711
712 /* With GEM the hangcheck timer should kick us out of the loop,
713 * leaving it early runs the risk of corrupting GEM state (due
714 * to running on almost untested codepaths). But on resume
715 * timers don't work yet, so prevent a complete hang in that
716 * case by choosing an insanely large timeout. */
717 end = jiffies + 60 * HZ;
718
719 ret = 0;
720 do {
721 if (intel_ring_space(ringbuf) >= bytes)
722 break;
723
724 msleep(1);
725
726 if (dev_priv->mm.interruptible && signal_pending(current)) {
727 ret = -ERESTARTSYS;
728 break;
729 }
730
731 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
732 dev_priv->mm.interruptible);
733 if (ret)
734 break;
735
736 if (time_after(jiffies, end)) {
737 ret = -EBUSY;
738 break;
739 }
740 } while (1);
741
742 return ret;
743 }
744
745 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
746 struct intel_context *ctx)
747 {
748 uint32_t __iomem *virt;
749 int rem = ringbuf->size - ringbuf->tail;
750
751 if (ringbuf->space < rem) {
752 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
753
754 if (ret)
755 return ret;
756 }
757
758 virt = ringbuf->virtual_start + ringbuf->tail;
759 rem /= 4;
760 while (rem--)
761 iowrite32(MI_NOOP, virt++);
762
763 ringbuf->tail = 0;
764 intel_ring_update_space(ringbuf);
765
766 return 0;
767 }
768
769 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
770 struct intel_context *ctx, int bytes)
771 {
772 int ret;
773
774 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
775 ret = logical_ring_wrap_buffer(ringbuf, ctx);
776 if (unlikely(ret))
777 return ret;
778 }
779
780 if (unlikely(ringbuf->space < bytes)) {
781 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
782 if (unlikely(ret))
783 return ret;
784 }
785
786 return 0;
787 }
788
789 /**
790 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
791 *
792 * @ringbuf: Logical ringbuffer.
793 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
794 *
795 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
796 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
797 * and also preallocates a request (every workload submission is still mediated through
798 * requests, same as it did with legacy ringbuffer submission).
799 *
800 * Return: non-zero if the ringbuffer is not ready to be written to.
801 */
802 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
803 struct intel_context *ctx, int num_dwords)
804 {
805 struct intel_engine_cs *ring = ringbuf->ring;
806 struct drm_device *dev = ring->dev;
807 struct drm_i915_private *dev_priv = dev->dev_private;
808 int ret;
809
810 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
811 dev_priv->mm.interruptible);
812 if (ret)
813 return ret;
814
815 ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
816 if (ret)
817 return ret;
818
819 /* Preallocate the olr before touching the ring */
820 ret = i915_gem_request_alloc(ring, ctx);
821 if (ret)
822 return ret;
823
824 ringbuf->space -= num_dwords * sizeof(uint32_t);
825 return 0;
826 }
827
828 /**
829 * execlists_submission() - submit a batchbuffer for execution, Execlists style
830 * @dev: DRM device.
831 * @file: DRM file.
832 * @ring: Engine Command Streamer to submit to.
833 * @ctx: Context to employ for this submission.
834 * @args: execbuffer call arguments.
835 * @vmas: list of vmas.
836 * @batch_obj: the batchbuffer to submit.
837 * @exec_start: batchbuffer start virtual address pointer.
838 * @dispatch_flags: translated execbuffer call flags.
839 *
840 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
841 * away the submission details of the execbuffer ioctl call.
842 *
843 * Return: non-zero if the submission fails.
844 */
845 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
846 struct intel_engine_cs *ring,
847 struct intel_context *ctx,
848 struct drm_i915_gem_execbuffer2 *args,
849 struct list_head *vmas,
850 struct drm_i915_gem_object *batch_obj,
851 u64 exec_start, u32 dispatch_flags)
852 {
853 struct drm_i915_private *dev_priv = dev->dev_private;
854 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
855 int instp_mode;
856 u32 instp_mask;
857 int ret;
858
859 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
860 instp_mask = I915_EXEC_CONSTANTS_MASK;
861 switch (instp_mode) {
862 case I915_EXEC_CONSTANTS_REL_GENERAL:
863 case I915_EXEC_CONSTANTS_ABSOLUTE:
864 case I915_EXEC_CONSTANTS_REL_SURFACE:
865 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
866 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
867 return -EINVAL;
868 }
869
870 if (instp_mode != dev_priv->relative_constants_mode) {
871 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
872 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
873 return -EINVAL;
874 }
875
876 /* The HW changed the meaning on this bit on gen6 */
877 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
878 }
879 break;
880 default:
881 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
882 return -EINVAL;
883 }
884
885 if (args->num_cliprects != 0) {
886 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
887 return -EINVAL;
888 } else {
889 if (args->DR4 == 0xffffffff) {
890 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
891 args->DR4 = 0;
892 }
893
894 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
895 DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
896 return -EINVAL;
897 }
898 }
899
900 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
901 DRM_DEBUG("sol reset is gen7 only\n");
902 return -EINVAL;
903 }
904
905 ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
906 if (ret)
907 return ret;
908
909 if (ring == &dev_priv->ring[RCS] &&
910 instp_mode != dev_priv->relative_constants_mode) {
911 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
912 if (ret)
913 return ret;
914
915 intel_logical_ring_emit(ringbuf, MI_NOOP);
916 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
917 intel_logical_ring_emit(ringbuf, INSTPM);
918 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
919 intel_logical_ring_advance(ringbuf);
920
921 dev_priv->relative_constants_mode = instp_mode;
922 }
923
924 ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
925 if (ret)
926 return ret;
927
928 trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
929
930 i915_gem_execbuffer_move_to_active(vmas, ring);
931 i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
932
933 return 0;
934 }
935
936 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
937 {
938 struct drm_i915_gem_request *req, *tmp;
939 struct drm_i915_private *dev_priv = ring->dev->dev_private;
940 unsigned long flags;
941 struct list_head retired_list;
942
943 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
944 if (list_empty(&ring->execlist_retired_req_list))
945 return;
946
947 INIT_LIST_HEAD(&retired_list);
948 spin_lock_irqsave(&ring->execlist_lock, flags);
949 list_replace_init(&ring->execlist_retired_req_list, &retired_list);
950 spin_unlock_irqrestore(&ring->execlist_lock, flags);
951
952 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
953 struct intel_context *ctx = req->ctx;
954 struct drm_i915_gem_object *ctx_obj =
955 ctx->engine[ring->id].state;
956
957 if (ctx_obj && (ctx != ring->default_context))
958 intel_lr_context_unpin(ring, ctx);
959 intel_runtime_pm_put(dev_priv);
960 list_del(&req->execlist_link);
961 i915_gem_request_unreference(req);
962 }
963 }
964
965 void intel_logical_ring_stop(struct intel_engine_cs *ring)
966 {
967 struct drm_i915_private *dev_priv = ring->dev->dev_private;
968 int ret;
969
970 if (!intel_ring_initialized(ring))
971 return;
972
973 ret = intel_ring_idle(ring);
974 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
975 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
976 ring->name, ret);
977
978 /* TODO: Is this correct with Execlists enabled? */
979 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
980 if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
981 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
982 return;
983 }
984 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
985 }
986
987 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
988 struct intel_context *ctx)
989 {
990 struct intel_engine_cs *ring = ringbuf->ring;
991 int ret;
992
993 if (!ring->gpu_caches_dirty)
994 return 0;
995
996 ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
997 if (ret)
998 return ret;
999
1000 ring->gpu_caches_dirty = false;
1001 return 0;
1002 }
1003
1004 static int intel_lr_context_pin(struct intel_engine_cs *ring,
1005 struct intel_context *ctx)
1006 {
1007 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1008 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1009 int ret = 0;
1010
1011 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1012 if (ctx->engine[ring->id].pin_count++ == 0) {
1013 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1014 GEN8_LR_CONTEXT_ALIGN, 0);
1015 if (ret)
1016 goto reset_pin_count;
1017
1018 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1019 if (ret)
1020 goto unpin_ctx_obj;
1021 }
1022
1023 return ret;
1024
1025 unpin_ctx_obj:
1026 i915_gem_object_ggtt_unpin(ctx_obj);
1027 reset_pin_count:
1028 ctx->engine[ring->id].pin_count = 0;
1029
1030 return ret;
1031 }
1032
1033 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1034 struct intel_context *ctx)
1035 {
1036 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1037 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1038
1039 if (ctx_obj) {
1040 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1041 if (--ctx->engine[ring->id].pin_count == 0) {
1042 intel_unpin_ringbuffer_obj(ringbuf);
1043 i915_gem_object_ggtt_unpin(ctx_obj);
1044 }
1045 }
1046 }
1047
1048 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1049 struct intel_context *ctx)
1050 {
1051 int ret, i;
1052 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1053 struct drm_device *dev = ring->dev;
1054 struct drm_i915_private *dev_priv = dev->dev_private;
1055 struct i915_workarounds *w = &dev_priv->workarounds;
1056
1057 if (WARN_ON_ONCE(w->count == 0))
1058 return 0;
1059
1060 ring->gpu_caches_dirty = true;
1061 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1062 if (ret)
1063 return ret;
1064
1065 ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1066 if (ret)
1067 return ret;
1068
1069 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1070 for (i = 0; i < w->count; i++) {
1071 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1072 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1073 }
1074 intel_logical_ring_emit(ringbuf, MI_NOOP);
1075
1076 intel_logical_ring_advance(ringbuf);
1077
1078 ring->gpu_caches_dirty = true;
1079 ret = logical_ring_flush_all_caches(ringbuf, ctx);
1080 if (ret)
1081 return ret;
1082
1083 return 0;
1084 }
1085
1086 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1087 {
1088 struct drm_device *dev = ring->dev;
1089 struct drm_i915_private *dev_priv = dev->dev_private;
1090
1091 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1092 I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1093
1094 I915_WRITE(RING_MODE_GEN7(ring),
1095 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1096 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1097 POSTING_READ(RING_MODE_GEN7(ring));
1098 ring->next_context_status_buffer = 0;
1099 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1100
1101 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1102
1103 return 0;
1104 }
1105
1106 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1107 {
1108 struct drm_device *dev = ring->dev;
1109 struct drm_i915_private *dev_priv = dev->dev_private;
1110 int ret;
1111
1112 ret = gen8_init_common_ring(ring);
1113 if (ret)
1114 return ret;
1115
1116 /* We need to disable the AsyncFlip performance optimisations in order
1117 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1118 * programmed to '1' on all products.
1119 *
1120 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1121 */
1122 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1123
1124 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1125
1126 return init_workarounds_ring(ring);
1127 }
1128
1129 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1130 {
1131 int ret;
1132
1133 ret = gen8_init_common_ring(ring);
1134 if (ret)
1135 return ret;
1136
1137 return init_workarounds_ring(ring);
1138 }
1139
1140 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1141 struct intel_context *ctx,
1142 u64 offset, unsigned dispatch_flags)
1143 {
1144 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1145 int ret;
1146
1147 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1148 if (ret)
1149 return ret;
1150
1151 /* FIXME(BDW): Address space and security selectors. */
1152 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1153 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1154 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1155 intel_logical_ring_emit(ringbuf, MI_NOOP);
1156 intel_logical_ring_advance(ringbuf);
1157
1158 return 0;
1159 }
1160
1161 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1162 {
1163 struct drm_device *dev = ring->dev;
1164 struct drm_i915_private *dev_priv = dev->dev_private;
1165 unsigned long flags;
1166
1167 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1168 return false;
1169
1170 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1171 if (ring->irq_refcount++ == 0) {
1172 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1173 POSTING_READ(RING_IMR(ring->mmio_base));
1174 }
1175 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1176
1177 return true;
1178 }
1179
1180 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1181 {
1182 struct drm_device *dev = ring->dev;
1183 struct drm_i915_private *dev_priv = dev->dev_private;
1184 unsigned long flags;
1185
1186 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1187 if (--ring->irq_refcount == 0) {
1188 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1189 POSTING_READ(RING_IMR(ring->mmio_base));
1190 }
1191 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1192 }
1193
1194 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1195 struct intel_context *ctx,
1196 u32 invalidate_domains,
1197 u32 unused)
1198 {
1199 struct intel_engine_cs *ring = ringbuf->ring;
1200 struct drm_device *dev = ring->dev;
1201 struct drm_i915_private *dev_priv = dev->dev_private;
1202 uint32_t cmd;
1203 int ret;
1204
1205 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1206 if (ret)
1207 return ret;
1208
1209 cmd = MI_FLUSH_DW + 1;
1210
1211 /* We always require a command barrier so that subsequent
1212 * commands, such as breadcrumb interrupts, are strictly ordered
1213 * wrt the contents of the write cache being flushed to memory
1214 * (and thus being coherent from the CPU).
1215 */
1216 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1217
1218 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1219 cmd |= MI_INVALIDATE_TLB;
1220 if (ring == &dev_priv->ring[VCS])
1221 cmd |= MI_INVALIDATE_BSD;
1222 }
1223
1224 intel_logical_ring_emit(ringbuf, cmd);
1225 intel_logical_ring_emit(ringbuf,
1226 I915_GEM_HWS_SCRATCH_ADDR |
1227 MI_FLUSH_DW_USE_GTT);
1228 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1229 intel_logical_ring_emit(ringbuf, 0); /* value */
1230 intel_logical_ring_advance(ringbuf);
1231
1232 return 0;
1233 }
1234
1235 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1236 struct intel_context *ctx,
1237 u32 invalidate_domains,
1238 u32 flush_domains)
1239 {
1240 struct intel_engine_cs *ring = ringbuf->ring;
1241 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1242 u32 flags = 0;
1243 int ret;
1244
1245 flags |= PIPE_CONTROL_CS_STALL;
1246
1247 if (flush_domains) {
1248 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1249 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1250 }
1251
1252 if (invalidate_domains) {
1253 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1254 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1255 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1256 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1257 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1258 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1259 flags |= PIPE_CONTROL_QW_WRITE;
1260 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1261 }
1262
1263 ret = intel_logical_ring_begin(ringbuf, ctx, 6);
1264 if (ret)
1265 return ret;
1266
1267 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1268 intel_logical_ring_emit(ringbuf, flags);
1269 intel_logical_ring_emit(ringbuf, scratch_addr);
1270 intel_logical_ring_emit(ringbuf, 0);
1271 intel_logical_ring_emit(ringbuf, 0);
1272 intel_logical_ring_emit(ringbuf, 0);
1273 intel_logical_ring_advance(ringbuf);
1274
1275 return 0;
1276 }
1277
1278 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1279 {
1280 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1281 }
1282
1283 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1284 {
1285 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1286 }
1287
1288 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1289 struct drm_i915_gem_request *request)
1290 {
1291 struct intel_engine_cs *ring = ringbuf->ring;
1292 u32 cmd;
1293 int ret;
1294
1295 ret = intel_logical_ring_begin(ringbuf, request->ctx, 6);
1296 if (ret)
1297 return ret;
1298
1299 cmd = MI_STORE_DWORD_IMM_GEN4;
1300 cmd |= MI_GLOBAL_GTT;
1301
1302 intel_logical_ring_emit(ringbuf, cmd);
1303 intel_logical_ring_emit(ringbuf,
1304 (ring->status_page.gfx_addr +
1305 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1306 intel_logical_ring_emit(ringbuf, 0);
1307 intel_logical_ring_emit(ringbuf,
1308 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1309 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1310 intel_logical_ring_emit(ringbuf, MI_NOOP);
1311 intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1312
1313 return 0;
1314 }
1315
1316 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1317 struct intel_context *ctx)
1318 {
1319 struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1320 struct render_state so;
1321 struct drm_i915_file_private *file_priv = ctx->file_priv;
1322 struct drm_file *file = file_priv ? file_priv->file : NULL;
1323 int ret;
1324
1325 ret = i915_gem_render_state_prepare(ring, &so);
1326 if (ret)
1327 return ret;
1328
1329 if (so.rodata == NULL)
1330 return 0;
1331
1332 ret = ring->emit_bb_start(ringbuf,
1333 ctx,
1334 so.ggtt_offset,
1335 I915_DISPATCH_SECURE);
1336 if (ret)
1337 goto out;
1338
1339 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1340
1341 ret = __i915_add_request(ring, file, so.obj);
1342 /* intel_logical_ring_add_request moves object to inactive if it
1343 * fails */
1344 out:
1345 i915_gem_render_state_fini(&so);
1346 return ret;
1347 }
1348
1349 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1350 struct intel_context *ctx)
1351 {
1352 int ret;
1353
1354 ret = intel_logical_ring_workarounds_emit(ring, ctx);
1355 if (ret)
1356 return ret;
1357
1358 return intel_lr_context_render_state_init(ring, ctx);
1359 }
1360
1361 /**
1362 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1363 *
1364 * @ring: Engine Command Streamer.
1365 *
1366 */
1367 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1368 {
1369 struct drm_i915_private *dev_priv;
1370
1371 if (!intel_ring_initialized(ring))
1372 return;
1373
1374 dev_priv = ring->dev->dev_private;
1375
1376 intel_logical_ring_stop(ring);
1377 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1378 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1379
1380 if (ring->cleanup)
1381 ring->cleanup(ring);
1382
1383 i915_cmd_parser_fini_ring(ring);
1384
1385 if (ring->status_page.obj) {
1386 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1387 ring->status_page.obj = NULL;
1388 }
1389 }
1390
1391 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1392 {
1393 int ret;
1394
1395 /* Intentionally left blank. */
1396 ring->buffer = NULL;
1397
1398 ring->dev = dev;
1399 INIT_LIST_HEAD(&ring->active_list);
1400 INIT_LIST_HEAD(&ring->request_list);
1401 init_waitqueue_head(&ring->irq_queue);
1402
1403 INIT_LIST_HEAD(&ring->execlist_queue);
1404 INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1405 spin_lock_init(&ring->execlist_lock);
1406
1407 ret = i915_cmd_parser_init_ring(ring);
1408 if (ret)
1409 return ret;
1410
1411 ret = intel_lr_context_deferred_create(ring->default_context, ring);
1412
1413 return ret;
1414 }
1415
1416 static int logical_render_ring_init(struct drm_device *dev)
1417 {
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1420 int ret;
1421
1422 ring->name = "render ring";
1423 ring->id = RCS;
1424 ring->mmio_base = RENDER_RING_BASE;
1425 ring->irq_enable_mask =
1426 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1427 ring->irq_keep_mask =
1428 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1429 if (HAS_L3_DPF(dev))
1430 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1431
1432 if (INTEL_INFO(dev)->gen >= 9)
1433 ring->init_hw = gen9_init_render_ring;
1434 else
1435 ring->init_hw = gen8_init_render_ring;
1436 ring->init_context = gen8_init_rcs_context;
1437 ring->cleanup = intel_fini_pipe_control;
1438 ring->get_seqno = gen8_get_seqno;
1439 ring->set_seqno = gen8_set_seqno;
1440 ring->emit_request = gen8_emit_request;
1441 ring->emit_flush = gen8_emit_flush_render;
1442 ring->irq_get = gen8_logical_ring_get_irq;
1443 ring->irq_put = gen8_logical_ring_put_irq;
1444 ring->emit_bb_start = gen8_emit_bb_start;
1445
1446 ring->dev = dev;
1447 ret = logical_ring_init(dev, ring);
1448 if (ret)
1449 return ret;
1450
1451 return intel_init_pipe_control(ring);
1452 }
1453
1454 static int logical_bsd_ring_init(struct drm_device *dev)
1455 {
1456 struct drm_i915_private *dev_priv = dev->dev_private;
1457 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1458
1459 ring->name = "bsd ring";
1460 ring->id = VCS;
1461 ring->mmio_base = GEN6_BSD_RING_BASE;
1462 ring->irq_enable_mask =
1463 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1464 ring->irq_keep_mask =
1465 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1466
1467 ring->init_hw = gen8_init_common_ring;
1468 ring->get_seqno = gen8_get_seqno;
1469 ring->set_seqno = gen8_set_seqno;
1470 ring->emit_request = gen8_emit_request;
1471 ring->emit_flush = gen8_emit_flush;
1472 ring->irq_get = gen8_logical_ring_get_irq;
1473 ring->irq_put = gen8_logical_ring_put_irq;
1474 ring->emit_bb_start = gen8_emit_bb_start;
1475
1476 return logical_ring_init(dev, ring);
1477 }
1478
1479 static int logical_bsd2_ring_init(struct drm_device *dev)
1480 {
1481 struct drm_i915_private *dev_priv = dev->dev_private;
1482 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1483
1484 ring->name = "bds2 ring";
1485 ring->id = VCS2;
1486 ring->mmio_base = GEN8_BSD2_RING_BASE;
1487 ring->irq_enable_mask =
1488 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1489 ring->irq_keep_mask =
1490 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1491
1492 ring->init_hw = gen8_init_common_ring;
1493 ring->get_seqno = gen8_get_seqno;
1494 ring->set_seqno = gen8_set_seqno;
1495 ring->emit_request = gen8_emit_request;
1496 ring->emit_flush = gen8_emit_flush;
1497 ring->irq_get = gen8_logical_ring_get_irq;
1498 ring->irq_put = gen8_logical_ring_put_irq;
1499 ring->emit_bb_start = gen8_emit_bb_start;
1500
1501 return logical_ring_init(dev, ring);
1502 }
1503
1504 static int logical_blt_ring_init(struct drm_device *dev)
1505 {
1506 struct drm_i915_private *dev_priv = dev->dev_private;
1507 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1508
1509 ring->name = "blitter ring";
1510 ring->id = BCS;
1511 ring->mmio_base = BLT_RING_BASE;
1512 ring->irq_enable_mask =
1513 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1514 ring->irq_keep_mask =
1515 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1516
1517 ring->init_hw = gen8_init_common_ring;
1518 ring->get_seqno = gen8_get_seqno;
1519 ring->set_seqno = gen8_set_seqno;
1520 ring->emit_request = gen8_emit_request;
1521 ring->emit_flush = gen8_emit_flush;
1522 ring->irq_get = gen8_logical_ring_get_irq;
1523 ring->irq_put = gen8_logical_ring_put_irq;
1524 ring->emit_bb_start = gen8_emit_bb_start;
1525
1526 return logical_ring_init(dev, ring);
1527 }
1528
1529 static int logical_vebox_ring_init(struct drm_device *dev)
1530 {
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1533
1534 ring->name = "video enhancement ring";
1535 ring->id = VECS;
1536 ring->mmio_base = VEBOX_RING_BASE;
1537 ring->irq_enable_mask =
1538 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1539 ring->irq_keep_mask =
1540 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1541
1542 ring->init_hw = gen8_init_common_ring;
1543 ring->get_seqno = gen8_get_seqno;
1544 ring->set_seqno = gen8_set_seqno;
1545 ring->emit_request = gen8_emit_request;
1546 ring->emit_flush = gen8_emit_flush;
1547 ring->irq_get = gen8_logical_ring_get_irq;
1548 ring->irq_put = gen8_logical_ring_put_irq;
1549 ring->emit_bb_start = gen8_emit_bb_start;
1550
1551 return logical_ring_init(dev, ring);
1552 }
1553
1554 /**
1555 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1556 * @dev: DRM device.
1557 *
1558 * This function inits the engines for an Execlists submission style (the equivalent in the
1559 * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1560 * those engines that are present in the hardware.
1561 *
1562 * Return: non-zero if the initialization failed.
1563 */
1564 int intel_logical_rings_init(struct drm_device *dev)
1565 {
1566 struct drm_i915_private *dev_priv = dev->dev_private;
1567 int ret;
1568
1569 ret = logical_render_ring_init(dev);
1570 if (ret)
1571 return ret;
1572
1573 if (HAS_BSD(dev)) {
1574 ret = logical_bsd_ring_init(dev);
1575 if (ret)
1576 goto cleanup_render_ring;
1577 }
1578
1579 if (HAS_BLT(dev)) {
1580 ret = logical_blt_ring_init(dev);
1581 if (ret)
1582 goto cleanup_bsd_ring;
1583 }
1584
1585 if (HAS_VEBOX(dev)) {
1586 ret = logical_vebox_ring_init(dev);
1587 if (ret)
1588 goto cleanup_blt_ring;
1589 }
1590
1591 if (HAS_BSD2(dev)) {
1592 ret = logical_bsd2_ring_init(dev);
1593 if (ret)
1594 goto cleanup_vebox_ring;
1595 }
1596
1597 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1598 if (ret)
1599 goto cleanup_bsd2_ring;
1600
1601 return 0;
1602
1603 cleanup_bsd2_ring:
1604 intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1605 cleanup_vebox_ring:
1606 intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1607 cleanup_blt_ring:
1608 intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1609 cleanup_bsd_ring:
1610 intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1611 cleanup_render_ring:
1612 intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1613
1614 return ret;
1615 }
1616
1617 static u32
1618 make_rpcs(struct drm_device *dev)
1619 {
1620 u32 rpcs = 0;
1621
1622 /*
1623 * No explicit RPCS request is needed to ensure full
1624 * slice/subslice/EU enablement prior to Gen9.
1625 */
1626 if (INTEL_INFO(dev)->gen < 9)
1627 return 0;
1628
1629 /*
1630 * Starting in Gen9, render power gating can leave
1631 * slice/subslice/EU in a partially enabled state. We
1632 * must make an explicit request through RPCS for full
1633 * enablement.
1634 */
1635 if (INTEL_INFO(dev)->has_slice_pg) {
1636 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1637 rpcs |= INTEL_INFO(dev)->slice_total <<
1638 GEN8_RPCS_S_CNT_SHIFT;
1639 rpcs |= GEN8_RPCS_ENABLE;
1640 }
1641
1642 if (INTEL_INFO(dev)->has_subslice_pg) {
1643 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1644 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1645 GEN8_RPCS_SS_CNT_SHIFT;
1646 rpcs |= GEN8_RPCS_ENABLE;
1647 }
1648
1649 if (INTEL_INFO(dev)->has_eu_pg) {
1650 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1651 GEN8_RPCS_EU_MIN_SHIFT;
1652 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1653 GEN8_RPCS_EU_MAX_SHIFT;
1654 rpcs |= GEN8_RPCS_ENABLE;
1655 }
1656
1657 return rpcs;
1658 }
1659
1660 static int
1661 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1662 struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1663 {
1664 struct drm_device *dev = ring->dev;
1665 struct drm_i915_private *dev_priv = dev->dev_private;
1666 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1667 struct page *page;
1668 uint32_t *reg_state;
1669 int ret;
1670
1671 if (!ppgtt)
1672 ppgtt = dev_priv->mm.aliasing_ppgtt;
1673
1674 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1675 if (ret) {
1676 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1677 return ret;
1678 }
1679
1680 ret = i915_gem_object_get_pages(ctx_obj);
1681 if (ret) {
1682 DRM_DEBUG_DRIVER("Could not get object pages\n");
1683 return ret;
1684 }
1685
1686 i915_gem_object_pin_pages(ctx_obj);
1687
1688 /* The second page of the context object contains some fields which must
1689 * be set up prior to the first execution. */
1690 page = i915_gem_object_get_page(ctx_obj, 1);
1691 reg_state = kmap_atomic(page);
1692
1693 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1694 * commands followed by (reg, value) pairs. The values we are setting here are
1695 * only for the first context restore: on a subsequent save, the GPU will
1696 * recreate this batchbuffer with new values (including all the missing
1697 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1698 if (ring->id == RCS)
1699 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1700 else
1701 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1702 reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1703 reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1704 reg_state[CTX_CONTEXT_CONTROL+1] =
1705 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1706 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1707 reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1708 reg_state[CTX_RING_HEAD+1] = 0;
1709 reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1710 reg_state[CTX_RING_TAIL+1] = 0;
1711 reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1712 /* Ring buffer start address is not known until the buffer is pinned.
1713 * It is written to the context image in execlists_update_context()
1714 */
1715 reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1716 reg_state[CTX_RING_BUFFER_CONTROL+1] =
1717 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1718 reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1719 reg_state[CTX_BB_HEAD_U+1] = 0;
1720 reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1721 reg_state[CTX_BB_HEAD_L+1] = 0;
1722 reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1723 reg_state[CTX_BB_STATE+1] = (1<<5);
1724 reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1725 reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1726 reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1727 reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1728 reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1729 reg_state[CTX_SECOND_BB_STATE+1] = 0;
1730 if (ring->id == RCS) {
1731 /* TODO: according to BSpec, the register state context
1732 * for CHV does not have these. OTOH, these registers do
1733 * exist in CHV. I'm waiting for a clarification */
1734 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1735 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1736 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1737 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1738 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1739 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1740 }
1741 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1742 reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1743 reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1744 reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1745 reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1746 reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1747 reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1748 reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1749 reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1750 reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1751 reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1752 reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1753 reg_state[CTX_PDP3_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1754 reg_state[CTX_PDP3_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[3]->daddr);
1755 reg_state[CTX_PDP2_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1756 reg_state[CTX_PDP2_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[2]->daddr);
1757 reg_state[CTX_PDP1_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1758 reg_state[CTX_PDP1_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[1]->daddr);
1759 reg_state[CTX_PDP0_UDW+1] = upper_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1760 reg_state[CTX_PDP0_LDW+1] = lower_32_bits(ppgtt->pdp.page_directory[0]->daddr);
1761 if (ring->id == RCS) {
1762 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1763 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1764 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1765 }
1766
1767 kunmap_atomic(reg_state);
1768
1769 ctx_obj->dirty = 1;
1770 set_page_dirty(page);
1771 i915_gem_object_unpin_pages(ctx_obj);
1772
1773 return 0;
1774 }
1775
1776 /**
1777 * intel_lr_context_free() - free the LRC specific bits of a context
1778 * @ctx: the LR context to free.
1779 *
1780 * The real context freeing is done in i915_gem_context_free: this only
1781 * takes care of the bits that are LRC related: the per-engine backing
1782 * objects and the logical ringbuffer.
1783 */
1784 void intel_lr_context_free(struct intel_context *ctx)
1785 {
1786 int i;
1787
1788 for (i = 0; i < I915_NUM_RINGS; i++) {
1789 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1790
1791 if (ctx_obj) {
1792 struct intel_ringbuffer *ringbuf =
1793 ctx->engine[i].ringbuf;
1794 struct intel_engine_cs *ring = ringbuf->ring;
1795
1796 if (ctx == ring->default_context) {
1797 intel_unpin_ringbuffer_obj(ringbuf);
1798 i915_gem_object_ggtt_unpin(ctx_obj);
1799 }
1800 WARN_ON(ctx->engine[ring->id].pin_count);
1801 intel_destroy_ringbuffer_obj(ringbuf);
1802 kfree(ringbuf);
1803 drm_gem_object_unreference(&ctx_obj->base);
1804 }
1805 }
1806 }
1807
1808 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1809 {
1810 int ret = 0;
1811
1812 WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1813
1814 switch (ring->id) {
1815 case RCS:
1816 if (INTEL_INFO(ring->dev)->gen >= 9)
1817 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1818 else
1819 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1820 break;
1821 case VCS:
1822 case BCS:
1823 case VECS:
1824 case VCS2:
1825 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1826 break;
1827 }
1828
1829 return ret;
1830 }
1831
1832 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1833 struct drm_i915_gem_object *default_ctx_obj)
1834 {
1835 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1836
1837 /* The status page is offset 0 from the default context object
1838 * in LRC mode. */
1839 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1840 ring->status_page.page_addr =
1841 kmap(sg_page(default_ctx_obj->pages->sgl));
1842 ring->status_page.obj = default_ctx_obj;
1843
1844 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1845 (u32)ring->status_page.gfx_addr);
1846 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1847 }
1848
1849 /**
1850 * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1851 * @ctx: LR context to create.
1852 * @ring: engine to be used with the context.
1853 *
1854 * This function can be called more than once, with different engines, if we plan
1855 * to use the context with them. The context backing objects and the ringbuffers
1856 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1857 * the creation is a deferred call: it's better to make sure first that we need to use
1858 * a given ring with the context.
1859 *
1860 * Return: non-zero on error.
1861 */
1862 int intel_lr_context_deferred_create(struct intel_context *ctx,
1863 struct intel_engine_cs *ring)
1864 {
1865 const bool is_global_default_ctx = (ctx == ring->default_context);
1866 struct drm_device *dev = ring->dev;
1867 struct drm_i915_gem_object *ctx_obj;
1868 uint32_t context_size;
1869 struct intel_ringbuffer *ringbuf;
1870 int ret;
1871
1872 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1873 WARN_ON(ctx->engine[ring->id].state);
1874
1875 context_size = round_up(get_lr_context_size(ring), 4096);
1876
1877 ctx_obj = i915_gem_alloc_context_obj(dev, context_size);
1878 if (IS_ERR(ctx_obj)) {
1879 ret = PTR_ERR(ctx_obj);
1880 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed: %d\n", ret);
1881 return ret;
1882 }
1883
1884 if (is_global_default_ctx) {
1885 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1886 if (ret) {
1887 DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1888 ret);
1889 drm_gem_object_unreference(&ctx_obj->base);
1890 return ret;
1891 }
1892 }
1893
1894 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1895 if (!ringbuf) {
1896 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1897 ring->name);
1898 ret = -ENOMEM;
1899 goto error_unpin_ctx;
1900 }
1901
1902 ringbuf->ring = ring;
1903
1904 ringbuf->size = 32 * PAGE_SIZE;
1905 ringbuf->effective_size = ringbuf->size;
1906 ringbuf->head = 0;
1907 ringbuf->tail = 0;
1908 ringbuf->last_retired_head = -1;
1909 intel_ring_update_space(ringbuf);
1910
1911 if (ringbuf->obj == NULL) {
1912 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1913 if (ret) {
1914 DRM_DEBUG_DRIVER(
1915 "Failed to allocate ringbuffer obj %s: %d\n",
1916 ring->name, ret);
1917 goto error_free_rbuf;
1918 }
1919
1920 if (is_global_default_ctx) {
1921 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1922 if (ret) {
1923 DRM_ERROR(
1924 "Failed to pin and map ringbuffer %s: %d\n",
1925 ring->name, ret);
1926 goto error_destroy_rbuf;
1927 }
1928 }
1929
1930 }
1931
1932 ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1933 if (ret) {
1934 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1935 goto error;
1936 }
1937
1938 ctx->engine[ring->id].ringbuf = ringbuf;
1939 ctx->engine[ring->id].state = ctx_obj;
1940
1941 if (ctx == ring->default_context)
1942 lrc_setup_hardware_status_page(ring, ctx_obj);
1943 else if (ring->id == RCS && !ctx->rcs_initialized) {
1944 if (ring->init_context) {
1945 ret = ring->init_context(ring, ctx);
1946 if (ret) {
1947 DRM_ERROR("ring init context: %d\n", ret);
1948 ctx->engine[ring->id].ringbuf = NULL;
1949 ctx->engine[ring->id].state = NULL;
1950 goto error;
1951 }
1952 }
1953
1954 ctx->rcs_initialized = true;
1955 }
1956
1957 return 0;
1958
1959 error:
1960 if (is_global_default_ctx)
1961 intel_unpin_ringbuffer_obj(ringbuf);
1962 error_destroy_rbuf:
1963 intel_destroy_ringbuffer_obj(ringbuf);
1964 error_free_rbuf:
1965 kfree(ringbuf);
1966 error_unpin_ctx:
1967 if (is_global_default_ctx)
1968 i915_gem_object_ggtt_unpin(ctx_obj);
1969 drm_gem_object_unreference(&ctx_obj->base);
1970 return ret;
1971 }
1972
1973 void intel_lr_context_reset(struct drm_device *dev,
1974 struct intel_context *ctx)
1975 {
1976 struct drm_i915_private *dev_priv = dev->dev_private;
1977 struct intel_engine_cs *ring;
1978 int i;
1979
1980 for_each_ring(ring, dev_priv, i) {
1981 struct drm_i915_gem_object *ctx_obj =
1982 ctx->engine[ring->id].state;
1983 struct intel_ringbuffer *ringbuf =
1984 ctx->engine[ring->id].ringbuf;
1985 uint32_t *reg_state;
1986 struct page *page;
1987
1988 if (!ctx_obj)
1989 continue;
1990
1991 if (i915_gem_object_get_pages(ctx_obj)) {
1992 WARN(1, "Failed get_pages for context obj\n");
1993 continue;
1994 }
1995 page = i915_gem_object_get_page(ctx_obj, 1);
1996 reg_state = kmap_atomic(page);
1997
1998 reg_state[CTX_RING_HEAD+1] = 0;
1999 reg_state[CTX_RING_TAIL+1] = 0;
2000
2001 kunmap_atomic(reg_state);
2002
2003 ringbuf->head = 0;
2004 ringbuf->tail = 0;
2005 }
2006 }
This page took 0.076896 seconds and 5 git commands to generate.