drm/nouveau/mmu: namespace + nvidia gpu names (no binary change)
[deliverable/linux.git] / drivers / gpu / drm / nouveau / nvkm / subdev / mmu / gf100.c
1 /*
2 * Copyright 2010 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include <subdev/mmu.h>
25 #include <subdev/bar.h>
26 #include <subdev/fb.h>
27 #include <subdev/ltc.h>
28 #include <subdev/timer.h>
29
30 #include <core/gpuobj.h>
31
32 struct gf100_mmu_priv {
33 struct nvkm_mmu base;
34 };
35
36
37 /* Map from compressed to corresponding uncompressed storage type.
38 * The value 0xff represents an invalid storage type.
39 */
40 const u8 gf100_pte_storage_type_map[256] =
41 {
42 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0xff, 0x01, /* 0x00 */
43 0x01, 0x01, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff,
44 0xff, 0x11, 0xff, 0xff, 0xff, 0xff, 0xff, 0x11, /* 0x10 */
45 0x11, 0x11, 0x11, 0xff, 0xff, 0xff, 0xff, 0xff,
46 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x26, 0x27, /* 0x20 */
47 0x28, 0x29, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
48 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x30 */
49 0xff, 0xff, 0x26, 0x27, 0x28, 0x29, 0x26, 0x27,
50 0x28, 0x29, 0xff, 0xff, 0xff, 0xff, 0x46, 0xff, /* 0x40 */
51 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
52 0xff, 0x46, 0x46, 0x46, 0x46, 0xff, 0xff, 0xff, /* 0x50 */
53 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
54 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x60 */
55 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
56 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x70 */
57 0xff, 0xff, 0xff, 0x7b, 0xff, 0xff, 0xff, 0xff,
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7b, 0x7b, /* 0x80 */
59 0x7b, 0x7b, 0xff, 0x8b, 0x8c, 0x8d, 0x8e, 0xff,
60 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0x90 */
61 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
62 0xff, 0xff, 0xff, 0x8b, 0x8c, 0x8d, 0x8e, 0xa7, /* 0xa0 */
63 0xa8, 0xa9, 0xaa, 0xff, 0xff, 0xff, 0xff, 0xff,
64 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xb0 */
65 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xa7,
66 0xa8, 0xa9, 0xaa, 0xc3, 0xff, 0xff, 0xff, 0xff, /* 0xc0 */
67 0xff, 0xff, 0xff, 0xff, 0xfe, 0xfe, 0xc3, 0xc3,
68 0xc3, 0xc3, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 0xd0 */
69 0xfe, 0xff, 0xff, 0xfe, 0xff, 0xfe, 0xff, 0xfe,
70 0xfe, 0xff, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xff, /* 0xe0 */
71 0xff, 0xfe, 0xff, 0xfe, 0xff, 0xfe, 0xfe, 0xff,
72 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, /* 0xf0 */
73 0xfe, 0xfe, 0xfe, 0xfe, 0xff, 0xfd, 0xfe, 0xff
74 };
75
76
77 static void
78 gf100_vm_map_pgt(struct nvkm_gpuobj *pgd, u32 index, struct nvkm_gpuobj *pgt[2])
79 {
80 u32 pde[2] = { 0, 0 };
81
82 if (pgt[0])
83 pde[1] = 0x00000001 | (pgt[0]->addr >> 8);
84 if (pgt[1])
85 pde[0] = 0x00000001 | (pgt[1]->addr >> 8);
86
87 nv_wo32(pgd, (index * 8) + 0, pde[0]);
88 nv_wo32(pgd, (index * 8) + 4, pde[1]);
89 }
90
91 static inline u64
92 gf100_vm_addr(struct nvkm_vma *vma, u64 phys, u32 memtype, u32 target)
93 {
94 phys >>= 8;
95
96 phys |= 0x00000001; /* present */
97 if (vma->access & NV_MEM_ACCESS_SYS)
98 phys |= 0x00000002;
99
100 phys |= ((u64)target << 32);
101 phys |= ((u64)memtype << 36);
102 return phys;
103 }
104
105 static void
106 gf100_vm_map(struct nvkm_vma *vma, struct nvkm_gpuobj *pgt,
107 struct nvkm_mem *mem, u32 pte, u32 cnt, u64 phys, u64 delta)
108 {
109 u64 next = 1 << (vma->node->type - 8);
110
111 phys = gf100_vm_addr(vma, phys, mem->memtype, 0);
112 pte <<= 3;
113
114 if (mem->tag) {
115 struct nvkm_ltc *ltc = nvkm_ltc(vma->vm->mmu);
116 u32 tag = mem->tag->offset + (delta >> 17);
117 phys |= (u64)tag << (32 + 12);
118 next |= (u64)1 << (32 + 12);
119 ltc->tags_clear(ltc, tag, cnt);
120 }
121
122 while (cnt--) {
123 nv_wo32(pgt, pte + 0, lower_32_bits(phys));
124 nv_wo32(pgt, pte + 4, upper_32_bits(phys));
125 phys += next;
126 pte += 8;
127 }
128 }
129
130 static void
131 gf100_vm_map_sg(struct nvkm_vma *vma, struct nvkm_gpuobj *pgt,
132 struct nvkm_mem *mem, u32 pte, u32 cnt, dma_addr_t *list)
133 {
134 u32 target = (vma->access & NV_MEM_ACCESS_NOSNOOP) ? 7 : 5;
135 /* compressed storage types are invalid for system memory */
136 u32 memtype = gf100_pte_storage_type_map[mem->memtype & 0xff];
137
138 pte <<= 3;
139 while (cnt--) {
140 u64 phys = gf100_vm_addr(vma, *list++, memtype, target);
141 nv_wo32(pgt, pte + 0, lower_32_bits(phys));
142 nv_wo32(pgt, pte + 4, upper_32_bits(phys));
143 pte += 8;
144 }
145 }
146
147 static void
148 gf100_vm_unmap(struct nvkm_gpuobj *pgt, u32 pte, u32 cnt)
149 {
150 pte <<= 3;
151 while (cnt--) {
152 nv_wo32(pgt, pte + 0, 0x00000000);
153 nv_wo32(pgt, pte + 4, 0x00000000);
154 pte += 8;
155 }
156 }
157
158 static void
159 gf100_vm_flush(struct nvkm_vm *vm)
160 {
161 struct gf100_mmu_priv *priv = (void *)vm->mmu;
162 struct nvkm_bar *bar = nvkm_bar(priv);
163 struct nvkm_vm_pgd *vpgd;
164 u32 type;
165
166 bar->flush(bar);
167
168 type = 0x00000001; /* PAGE_ALL */
169 if (atomic_read(&vm->engref[NVDEV_SUBDEV_BAR]))
170 type |= 0x00000004; /* HUB_ONLY */
171
172 mutex_lock(&nv_subdev(priv)->mutex);
173 list_for_each_entry(vpgd, &vm->pgd_list, head) {
174 /* looks like maybe a "free flush slots" counter, the
175 * faster you write to 0x100cbc to more it decreases
176 */
177 if (!nv_wait_ne(priv, 0x100c80, 0x00ff0000, 0x00000000)) {
178 nv_error(priv, "vm timeout 0: 0x%08x %d\n",
179 nv_rd32(priv, 0x100c80), type);
180 }
181
182 nv_wr32(priv, 0x100cb8, vpgd->obj->addr >> 8);
183 nv_wr32(priv, 0x100cbc, 0x80000000 | type);
184
185 /* wait for flush to be queued? */
186 if (!nv_wait(priv, 0x100c80, 0x00008000, 0x00008000)) {
187 nv_error(priv, "vm timeout 1: 0x%08x %d\n",
188 nv_rd32(priv, 0x100c80), type);
189 }
190 }
191 mutex_unlock(&nv_subdev(priv)->mutex);
192 }
193
194 static int
195 gf100_vm_create(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset,
196 struct nvkm_vm **pvm)
197 {
198 return nvkm_vm_create(mmu, offset, length, mm_offset, 4096, pvm);
199 }
200
201 static int
202 gf100_mmu_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
203 struct nvkm_oclass *oclass, void *data, u32 size,
204 struct nvkm_object **pobject)
205 {
206 struct gf100_mmu_priv *priv;
207 int ret;
208
209 ret = nvkm_mmu_create(parent, engine, oclass, "VM", "vm", &priv);
210 *pobject = nv_object(priv);
211 if (ret)
212 return ret;
213
214 priv->base.limit = 1ULL << 40;
215 priv->base.dma_bits = 40;
216 priv->base.pgt_bits = 27 - 12;
217 priv->base.spg_shift = 12;
218 priv->base.lpg_shift = 17;
219 priv->base.create = gf100_vm_create;
220 priv->base.map_pgt = gf100_vm_map_pgt;
221 priv->base.map = gf100_vm_map;
222 priv->base.map_sg = gf100_vm_map_sg;
223 priv->base.unmap = gf100_vm_unmap;
224 priv->base.flush = gf100_vm_flush;
225 return 0;
226 }
227
228 struct nvkm_oclass
229 gf100_mmu_oclass = {
230 .handle = NV_SUBDEV(MMU, 0xc0),
231 .ofuncs = &(struct nvkm_ofuncs) {
232 .ctor = gf100_mmu_ctor,
233 .dtor = _nvkm_mmu_dtor,
234 .init = _nvkm_mmu_init,
235 .fini = _nvkm_mmu_fini,
236 },
237 };
This page took 0.03761 seconds and 5 git commands to generate.