mISDN: Make layer1 timer 3 value configurable
[deliverable/linux.git] / drivers / isdn / hardware / mISDN / hfcmulti.c
1 /*
2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3 *
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
7 *
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 *
28 * Thanks to Cologne Chip AG for this great controller!
29 */
30
31 /*
32 * module parameters:
33 * type:
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 * Bit 10 = spare
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 * Bit 13 = spare
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
49 * Bit 18 = spare
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 * bus (PCM master)
54 *
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
64 *
65 * HFC-E1 only bits:
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 * mode instead.
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 * (E1 only)
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 * for default.
80 * (all other bits are reserved and shall be 0)
81 *
82 * debug:
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
85 *
86 * poll:
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
92 *
93 * pcm:
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
105 *
106 * dmask and bmask:
107 * NOTE: One dmask value must be given for every HFC-E1 card.
108 * If omitted, the E1 card has D-channel on time slot 16, which is default.
109 * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
110 * If multiple bits are set, multiple virtual card fragments are created.
111 * For each bit set, a bmask value must be given. Each bit on the bmask
112 * value stands for a B-channel. The bmask may not overlap with dmask or
113 * with other bmask values for that card.
114 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
115 * This will create one fragment with D-channel on slot 1 with
116 * B-channels on slots 2..15, and a second fragment with D-channel
117 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
118 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
119 * not function.
120 * Example: dmask=0x00000001 bmask=0xfffffffe
121 * This will create a port with all 31 usable timeslots as
122 * B-channels.
123 * If no bits are set on bmask, no B-channel is created for that fragment.
124 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
125 * This will create 31 ports with one D-channel only.
126 * If you don't know how to use it, you don't need it!
127 *
128 * iomode:
129 * NOTE: only one mode value must be given for every card.
130 * -> See hfc_multi.h for HFC_IO_MODE_* values
131 * By default, the IO mode is pci memory IO (MEMIO).
132 * Some cards require specific IO mode, so it cannot be changed.
133 * It may be useful to set IO mode to register io (REGIO) to solve
134 * PCI bridge problems.
135 * If unsure, don't give this parameter.
136 *
137 * clockdelay_nt:
138 * NOTE: only one clockdelay_nt value must be given once for all cards.
139 * Give the value of the clock control register (A_ST_CLK_DLY)
140 * of the S/T interfaces in NT mode.
141 * This register is needed for the TBR3 certification, so don't change it.
142 *
143 * clockdelay_te:
144 * NOTE: only one clockdelay_te value must be given once
145 * Give the value of the clock control register (A_ST_CLK_DLY)
146 * of the S/T interfaces in TE mode.
147 * This register is needed for the TBR3 certification, so don't change it.
148 *
149 * clock:
150 * NOTE: only one clock value must be given once
151 * Selects interface with clock source for mISDN and applications.
152 * Set to card number starting with 1. Set to -1 to disable.
153 * By default, the first card is used as clock source.
154 *
155 * hwid:
156 * NOTE: only one hwid value must be given once
157 * Enable special embedded devices with XHFC controllers.
158 */
159
160 /*
161 * debug register access (never use this, it will flood your system log)
162 * #define HFC_REGISTER_DEBUG
163 */
164
165 #define HFC_MULTI_VERSION "2.03"
166
167 #include <linux/interrupt.h>
168 #include <linux/module.h>
169 #include <linux/slab.h>
170 #include <linux/pci.h>
171 #include <linux/delay.h>
172 #include <linux/mISDNhw.h>
173 #include <linux/mISDNdsp.h>
174
175 /*
176 #define IRQCOUNT_DEBUG
177 #define IRQ_DEBUG
178 */
179
180 #include "hfc_multi.h"
181 #ifdef ECHOPREP
182 #include "gaintab.h"
183 #endif
184
185 #define MAX_CARDS 8
186 #define MAX_PORTS (8 * MAX_CARDS)
187 #define MAX_FRAGS (32 * MAX_CARDS)
188
189 static LIST_HEAD(HFClist);
190 static spinlock_t HFClock; /* global hfc list lock */
191
192 static void ph_state_change(struct dchannel *);
193
194 static struct hfc_multi *syncmaster;
195 static int plxsd_master; /* if we have a master card (yet) */
196 static spinlock_t plx_lock; /* may not acquire other lock inside */
197
198 #define TYP_E1 1
199 #define TYP_4S 4
200 #define TYP_8S 8
201
202 static int poll_timer = 6; /* default = 128 samples = 16ms */
203 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
204 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
205 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
206 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
207 (0x60 MUST be included!) */
208
209 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
210 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
211 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
212
213 /*
214 * module stuff
215 */
216
217 static uint type[MAX_CARDS];
218 static int pcm[MAX_CARDS];
219 static uint dmask[MAX_CARDS];
220 static uint bmask[MAX_FRAGS];
221 static uint iomode[MAX_CARDS];
222 static uint port[MAX_PORTS];
223 static uint debug;
224 static uint poll;
225 static int clock;
226 static uint timer;
227 static uint clockdelay_te = CLKDEL_TE;
228 static uint clockdelay_nt = CLKDEL_NT;
229 #define HWID_NONE 0
230 #define HWID_MINIP4 1
231 #define HWID_MINIP8 2
232 #define HWID_MINIP16 3
233 static uint hwid = HWID_NONE;
234
235 static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
236
237 MODULE_AUTHOR("Andreas Eversberg");
238 MODULE_LICENSE("GPL");
239 MODULE_VERSION(HFC_MULTI_VERSION);
240 module_param(debug, uint, S_IRUGO | S_IWUSR);
241 module_param(poll, uint, S_IRUGO | S_IWUSR);
242 module_param(clock, int, S_IRUGO | S_IWUSR);
243 module_param(timer, uint, S_IRUGO | S_IWUSR);
244 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
245 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
246 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
247 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
248 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
249 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
250 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
251 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
252 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
253
254 #ifdef HFC_REGISTER_DEBUG
255 #define HFC_outb(hc, reg, val) \
256 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
257 #define HFC_outb_nodebug(hc, reg, val) \
258 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
259 #define HFC_inb(hc, reg) \
260 (hc->HFC_inb(hc, reg, __func__, __LINE__))
261 #define HFC_inb_nodebug(hc, reg) \
262 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
263 #define HFC_inw(hc, reg) \
264 (hc->HFC_inw(hc, reg, __func__, __LINE__))
265 #define HFC_inw_nodebug(hc, reg) \
266 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
267 #define HFC_wait(hc) \
268 (hc->HFC_wait(hc, __func__, __LINE__))
269 #define HFC_wait_nodebug(hc) \
270 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
271 #else
272 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
273 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
274 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
275 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
276 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
277 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
278 #define HFC_wait(hc) (hc->HFC_wait(hc))
279 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
280 #endif
281
282 #ifdef CONFIG_MISDN_HFCMULTI_8xx
283 #include "hfc_multi_8xx.h"
284 #endif
285
286 /* HFC_IO_MODE_PCIMEM */
287 static void
288 #ifdef HFC_REGISTER_DEBUG
289 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
290 const char *function, int line)
291 #else
292 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
293 #endif
294 {
295 writeb(val, hc->pci_membase + reg);
296 }
297 static u_char
298 #ifdef HFC_REGISTER_DEBUG
299 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
300 #else
301 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
302 #endif
303 {
304 return readb(hc->pci_membase + reg);
305 }
306 static u_short
307 #ifdef HFC_REGISTER_DEBUG
308 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
309 #else
310 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
311 #endif
312 {
313 return readw(hc->pci_membase + reg);
314 }
315 static void
316 #ifdef HFC_REGISTER_DEBUG
317 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
318 #else
319 HFC_wait_pcimem(struct hfc_multi *hc)
320 #endif
321 {
322 while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
323 cpu_relax();
324 }
325
326 /* HFC_IO_MODE_REGIO */
327 static void
328 #ifdef HFC_REGISTER_DEBUG
329 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
330 const char *function, int line)
331 #else
332 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
333 #endif
334 {
335 outb(reg, hc->pci_iobase + 4);
336 outb(val, hc->pci_iobase);
337 }
338 static u_char
339 #ifdef HFC_REGISTER_DEBUG
340 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
341 #else
342 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
343 #endif
344 {
345 outb(reg, hc->pci_iobase + 4);
346 return inb(hc->pci_iobase);
347 }
348 static u_short
349 #ifdef HFC_REGISTER_DEBUG
350 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
351 #else
352 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
353 #endif
354 {
355 outb(reg, hc->pci_iobase + 4);
356 return inw(hc->pci_iobase);
357 }
358 static void
359 #ifdef HFC_REGISTER_DEBUG
360 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
361 #else
362 HFC_wait_regio(struct hfc_multi *hc)
363 #endif
364 {
365 outb(R_STATUS, hc->pci_iobase + 4);
366 while (inb(hc->pci_iobase) & V_BUSY)
367 cpu_relax();
368 }
369
370 #ifdef HFC_REGISTER_DEBUG
371 static void
372 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
373 const char *function, int line)
374 {
375 char regname[256] = "", bits[9] = "xxxxxxxx";
376 int i;
377
378 i = -1;
379 while (hfc_register_names[++i].name) {
380 if (hfc_register_names[i].reg == reg)
381 strcat(regname, hfc_register_names[i].name);
382 }
383 if (regname[0] == '\0')
384 strcpy(regname, "register");
385
386 bits[7] = '0' + (!!(val & 1));
387 bits[6] = '0' + (!!(val & 2));
388 bits[5] = '0' + (!!(val & 4));
389 bits[4] = '0' + (!!(val & 8));
390 bits[3] = '0' + (!!(val & 16));
391 bits[2] = '0' + (!!(val & 32));
392 bits[1] = '0' + (!!(val & 64));
393 bits[0] = '0' + (!!(val & 128));
394 printk(KERN_DEBUG
395 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
396 hc->id, reg, regname, val, bits, function, line);
397 HFC_outb_nodebug(hc, reg, val);
398 }
399 static u_char
400 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
401 {
402 char regname[256] = "", bits[9] = "xxxxxxxx";
403 u_char val = HFC_inb_nodebug(hc, reg);
404 int i;
405
406 i = 0;
407 while (hfc_register_names[i++].name)
408 ;
409 while (hfc_register_names[++i].name) {
410 if (hfc_register_names[i].reg == reg)
411 strcat(regname, hfc_register_names[i].name);
412 }
413 if (regname[0] == '\0')
414 strcpy(regname, "register");
415
416 bits[7] = '0' + (!!(val & 1));
417 bits[6] = '0' + (!!(val & 2));
418 bits[5] = '0' + (!!(val & 4));
419 bits[4] = '0' + (!!(val & 8));
420 bits[3] = '0' + (!!(val & 16));
421 bits[2] = '0' + (!!(val & 32));
422 bits[1] = '0' + (!!(val & 64));
423 bits[0] = '0' + (!!(val & 128));
424 printk(KERN_DEBUG
425 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
426 hc->id, reg, regname, val, bits, function, line);
427 return val;
428 }
429 static u_short
430 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
431 {
432 char regname[256] = "";
433 u_short val = HFC_inw_nodebug(hc, reg);
434 int i;
435
436 i = 0;
437 while (hfc_register_names[i++].name)
438 ;
439 while (hfc_register_names[++i].name) {
440 if (hfc_register_names[i].reg == reg)
441 strcat(regname, hfc_register_names[i].name);
442 }
443 if (regname[0] == '\0')
444 strcpy(regname, "register");
445
446 printk(KERN_DEBUG
447 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
448 hc->id, reg, regname, val, function, line);
449 return val;
450 }
451 static void
452 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
453 {
454 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
455 hc->id, function, line);
456 HFC_wait_nodebug(hc);
457 }
458 #endif
459
460 /* write fifo data (REGIO) */
461 static void
462 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
463 {
464 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
465 while (len >> 2) {
466 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
467 data += 4;
468 len -= 4;
469 }
470 while (len >> 1) {
471 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
472 data += 2;
473 len -= 2;
474 }
475 while (len) {
476 outb(*data, hc->pci_iobase);
477 data++;
478 len--;
479 }
480 }
481 /* write fifo data (PCIMEM) */
482 static void
483 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
484 {
485 while (len >> 2) {
486 writel(cpu_to_le32(*(u32 *)data),
487 hc->pci_membase + A_FIFO_DATA0);
488 data += 4;
489 len -= 4;
490 }
491 while (len >> 1) {
492 writew(cpu_to_le16(*(u16 *)data),
493 hc->pci_membase + A_FIFO_DATA0);
494 data += 2;
495 len -= 2;
496 }
497 while (len) {
498 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
499 data++;
500 len--;
501 }
502 }
503
504 /* read fifo data (REGIO) */
505 static void
506 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
507 {
508 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
509 while (len >> 2) {
510 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
511 data += 4;
512 len -= 4;
513 }
514 while (len >> 1) {
515 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
516 data += 2;
517 len -= 2;
518 }
519 while (len) {
520 *data = inb(hc->pci_iobase);
521 data++;
522 len--;
523 }
524 }
525
526 /* read fifo data (PCIMEM) */
527 static void
528 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
529 {
530 while (len >> 2) {
531 *(u32 *)data =
532 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
533 data += 4;
534 len -= 4;
535 }
536 while (len >> 1) {
537 *(u16 *)data =
538 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
539 data += 2;
540 len -= 2;
541 }
542 while (len) {
543 *data = readb(hc->pci_membase + A_FIFO_DATA0);
544 data++;
545 len--;
546 }
547 }
548
549 static void
550 enable_hwirq(struct hfc_multi *hc)
551 {
552 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
553 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
554 }
555
556 static void
557 disable_hwirq(struct hfc_multi *hc)
558 {
559 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
560 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
561 }
562
563 #define NUM_EC 2
564 #define MAX_TDM_CHAN 32
565
566
567 inline void
568 enablepcibridge(struct hfc_multi *c)
569 {
570 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
571 }
572
573 inline void
574 disablepcibridge(struct hfc_multi *c)
575 {
576 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
577 }
578
579 inline unsigned char
580 readpcibridge(struct hfc_multi *hc, unsigned char address)
581 {
582 unsigned short cipv;
583 unsigned char data;
584
585 if (!hc->pci_iobase)
586 return 0;
587
588 /* slow down a PCI read access by 1 PCI clock cycle */
589 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
590
591 if (address == 0)
592 cipv = 0x4000;
593 else
594 cipv = 0x5800;
595
596 /* select local bridge port address by writing to CIP port */
597 /* data = HFC_inb(c, cipv); * was _io before */
598 outw(cipv, hc->pci_iobase + 4);
599 data = inb(hc->pci_iobase);
600
601 /* restore R_CTRL for normal PCI read cycle speed */
602 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
603
604 return data;
605 }
606
607 inline void
608 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
609 {
610 unsigned short cipv;
611 unsigned int datav;
612
613 if (!hc->pci_iobase)
614 return;
615
616 if (address == 0)
617 cipv = 0x4000;
618 else
619 cipv = 0x5800;
620
621 /* select local bridge port address by writing to CIP port */
622 outw(cipv, hc->pci_iobase + 4);
623 /* define a 32 bit dword with 4 identical bytes for write sequence */
624 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
625 ((__u32) data << 24);
626
627 /*
628 * write this 32 bit dword to the bridge data port
629 * this will initiate a write sequence of up to 4 writes to the same
630 * address on the local bus interface the number of write accesses
631 * is undefined but >=1 and depends on the next PCI transaction
632 * during write sequence on the local bus
633 */
634 outl(datav, hc->pci_iobase);
635 }
636
637 inline void
638 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
639 {
640 /* Do data pin read low byte */
641 HFC_outb(hc, R_GPIO_OUT1, reg);
642 }
643
644 inline void
645 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
646 {
647 cpld_set_reg(hc, reg);
648
649 enablepcibridge(hc);
650 writepcibridge(hc, 1, val);
651 disablepcibridge(hc);
652
653 return;
654 }
655
656 inline unsigned char
657 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
658 {
659 unsigned char bytein;
660
661 cpld_set_reg(hc, reg);
662
663 /* Do data pin read low byte */
664 HFC_outb(hc, R_GPIO_OUT1, reg);
665
666 enablepcibridge(hc);
667 bytein = readpcibridge(hc, 1);
668 disablepcibridge(hc);
669
670 return bytein;
671 }
672
673 inline void
674 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
675 {
676 cpld_write_reg(hc, 0, 0xff & addr);
677 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
678 }
679
680 inline unsigned short
681 vpm_read_address(struct hfc_multi *c)
682 {
683 unsigned short addr;
684 unsigned short highbit;
685
686 addr = cpld_read_reg(c, 0);
687 highbit = cpld_read_reg(c, 1);
688
689 addr = addr | (highbit << 8);
690
691 return addr & 0x1ff;
692 }
693
694 inline unsigned char
695 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
696 {
697 unsigned char res;
698
699 vpm_write_address(c, addr);
700
701 if (!which)
702 cpld_set_reg(c, 2);
703 else
704 cpld_set_reg(c, 3);
705
706 enablepcibridge(c);
707 res = readpcibridge(c, 1);
708 disablepcibridge(c);
709
710 cpld_set_reg(c, 0);
711
712 return res;
713 }
714
715 inline void
716 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
717 unsigned char data)
718 {
719 vpm_write_address(c, addr);
720
721 enablepcibridge(c);
722
723 if (!which)
724 cpld_set_reg(c, 2);
725 else
726 cpld_set_reg(c, 3);
727
728 writepcibridge(c, 1, data);
729
730 cpld_set_reg(c, 0);
731
732 disablepcibridge(c);
733
734 {
735 unsigned char regin;
736 regin = vpm_in(c, which, addr);
737 if (regin != data)
738 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
739 "0x%x\n", data, addr, regin);
740 }
741
742 }
743
744
745 static void
746 vpm_init(struct hfc_multi *wc)
747 {
748 unsigned char reg;
749 unsigned int mask;
750 unsigned int i, x, y;
751 unsigned int ver;
752
753 for (x = 0; x < NUM_EC; x++) {
754 /* Setup GPIO's */
755 if (!x) {
756 ver = vpm_in(wc, x, 0x1a0);
757 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
758 }
759
760 for (y = 0; y < 4; y++) {
761 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
762 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
763 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
764 }
765
766 /* Setup TDM path - sets fsync and tdm_clk as inputs */
767 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
768 vpm_out(wc, x, 0x1a3, reg & ~2);
769
770 /* Setup Echo length (256 taps) */
771 vpm_out(wc, x, 0x022, 1);
772 vpm_out(wc, x, 0x023, 0xff);
773
774 /* Setup timeslots */
775 vpm_out(wc, x, 0x02f, 0x00);
776 mask = 0x02020202 << (x * 4);
777
778 /* Setup the tdm channel masks for all chips */
779 for (i = 0; i < 4; i++)
780 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
781
782 /* Setup convergence rate */
783 printk(KERN_DEBUG "VPM: A-law mode\n");
784 reg = 0x00 | 0x10 | 0x01;
785 vpm_out(wc, x, 0x20, reg);
786 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
787 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
788
789 vpm_out(wc, x, 0x24, 0x02);
790 reg = vpm_in(wc, x, 0x24);
791 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
792
793 /* Initialize echo cans */
794 for (i = 0; i < MAX_TDM_CHAN; i++) {
795 if (mask & (0x00000001 << i))
796 vpm_out(wc, x, i, 0x00);
797 }
798
799 /*
800 * ARM arch at least disallows a udelay of
801 * more than 2ms... it gives a fake "__bad_udelay"
802 * reference at link-time.
803 * long delays in kernel code are pretty sucky anyway
804 * for now work around it using 5 x 2ms instead of 1 x 10ms
805 */
806
807 udelay(2000);
808 udelay(2000);
809 udelay(2000);
810 udelay(2000);
811 udelay(2000);
812
813 /* Put in bypass mode */
814 for (i = 0; i < MAX_TDM_CHAN; i++) {
815 if (mask & (0x00000001 << i))
816 vpm_out(wc, x, i, 0x01);
817 }
818
819 /* Enable bypass */
820 for (i = 0; i < MAX_TDM_CHAN; i++) {
821 if (mask & (0x00000001 << i))
822 vpm_out(wc, x, 0x78 + i, 0x01);
823 }
824
825 }
826 }
827
828 #ifdef UNUSED
829 static void
830 vpm_check(struct hfc_multi *hctmp)
831 {
832 unsigned char gpi2;
833
834 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
835
836 if ((gpi2 & 0x3) != 0x3)
837 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
838 }
839 #endif /* UNUSED */
840
841
842 /*
843 * Interface to enable/disable the HW Echocan
844 *
845 * these functions are called within a spin_lock_irqsave on
846 * the channel instance lock, so we are not disturbed by irqs
847 *
848 * we can later easily change the interface to make other
849 * things configurable, for now we configure the taps
850 *
851 */
852
853 static void
854 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
855 {
856 unsigned int timeslot;
857 unsigned int unit;
858 struct bchannel *bch = hc->chan[ch].bch;
859 #ifdef TXADJ
860 int txadj = -4;
861 struct sk_buff *skb;
862 #endif
863 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
864 return;
865
866 if (!bch)
867 return;
868
869 #ifdef TXADJ
870 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
871 sizeof(int), &txadj, GFP_ATOMIC);
872 if (skb)
873 recv_Bchannel_skb(bch, skb);
874 #endif
875
876 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
877 unit = ch % 4;
878
879 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
880 taps, timeslot);
881
882 vpm_out(hc, unit, timeslot, 0x7e);
883 }
884
885 static void
886 vpm_echocan_off(struct hfc_multi *hc, int ch)
887 {
888 unsigned int timeslot;
889 unsigned int unit;
890 struct bchannel *bch = hc->chan[ch].bch;
891 #ifdef TXADJ
892 int txadj = 0;
893 struct sk_buff *skb;
894 #endif
895
896 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
897 return;
898
899 if (!bch)
900 return;
901
902 #ifdef TXADJ
903 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
904 sizeof(int), &txadj, GFP_ATOMIC);
905 if (skb)
906 recv_Bchannel_skb(bch, skb);
907 #endif
908
909 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
910 unit = ch % 4;
911
912 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
913 timeslot);
914 /* FILLME */
915 vpm_out(hc, unit, timeslot, 0x01);
916 }
917
918
919 /*
920 * Speech Design resync feature
921 * NOTE: This is called sometimes outside interrupt handler.
922 * We must lock irqsave, so no other interrupt (other card) will occur!
923 * Also multiple interrupts may nest, so must lock each access (lists, card)!
924 */
925 static inline void
926 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
927 {
928 struct hfc_multi *hc, *next, *pcmmaster = NULL;
929 void __iomem *plx_acc_32;
930 u_int pv;
931 u_long flags;
932
933 spin_lock_irqsave(&HFClock, flags);
934 spin_lock(&plx_lock); /* must be locked inside other locks */
935
936 if (debug & DEBUG_HFCMULTI_PLXSD)
937 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
938 __func__, syncmaster);
939
940 /* select new master */
941 if (newmaster) {
942 if (debug & DEBUG_HFCMULTI_PLXSD)
943 printk(KERN_DEBUG "using provided controller\n");
944 } else {
945 list_for_each_entry_safe(hc, next, &HFClist, list) {
946 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
947 if (hc->syncronized) {
948 newmaster = hc;
949 break;
950 }
951 }
952 }
953 }
954
955 /* Disable sync of all cards */
956 list_for_each_entry_safe(hc, next, &HFClist, list) {
957 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
958 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
959 pv = readl(plx_acc_32);
960 pv &= ~PLX_SYNC_O_EN;
961 writel(pv, plx_acc_32);
962 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
963 pcmmaster = hc;
964 if (hc->ctype == HFC_TYPE_E1) {
965 if (debug & DEBUG_HFCMULTI_PLXSD)
966 printk(KERN_DEBUG
967 "Schedule SYNC_I\n");
968 hc->e1_resync |= 1; /* get SYNC_I */
969 }
970 }
971 }
972 }
973
974 if (newmaster) {
975 hc = newmaster;
976 if (debug & DEBUG_HFCMULTI_PLXSD)
977 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
978 "interface.\n", hc->id, hc);
979 /* Enable new sync master */
980 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
981 pv = readl(plx_acc_32);
982 pv |= PLX_SYNC_O_EN;
983 writel(pv, plx_acc_32);
984 /* switch to jatt PLL, if not disabled by RX_SYNC */
985 if (hc->ctype == HFC_TYPE_E1
986 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
987 if (debug & DEBUG_HFCMULTI_PLXSD)
988 printk(KERN_DEBUG "Schedule jatt PLL\n");
989 hc->e1_resync |= 2; /* switch to jatt */
990 }
991 } else {
992 if (pcmmaster) {
993 hc = pcmmaster;
994 if (debug & DEBUG_HFCMULTI_PLXSD)
995 printk(KERN_DEBUG
996 "id=%d (0x%p) = PCM master syncronized "
997 "with QUARTZ\n", hc->id, hc);
998 if (hc->ctype == HFC_TYPE_E1) {
999 /* Use the crystal clock for the PCM
1000 master card */
1001 if (debug & DEBUG_HFCMULTI_PLXSD)
1002 printk(KERN_DEBUG
1003 "Schedule QUARTZ for HFC-E1\n");
1004 hc->e1_resync |= 4; /* switch quartz */
1005 } else {
1006 if (debug & DEBUG_HFCMULTI_PLXSD)
1007 printk(KERN_DEBUG
1008 "QUARTZ is automatically "
1009 "enabled by HFC-%dS\n", hc->ctype);
1010 }
1011 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1012 pv = readl(plx_acc_32);
1013 pv |= PLX_SYNC_O_EN;
1014 writel(pv, plx_acc_32);
1015 } else
1016 if (!rm)
1017 printk(KERN_ERR "%s no pcm master, this MUST "
1018 "not happen!\n", __func__);
1019 }
1020 syncmaster = newmaster;
1021
1022 spin_unlock(&plx_lock);
1023 spin_unlock_irqrestore(&HFClock, flags);
1024 }
1025
1026 /* This must be called AND hc must be locked irqsave!!! */
1027 inline void
1028 plxsd_checksync(struct hfc_multi *hc, int rm)
1029 {
1030 if (hc->syncronized) {
1031 if (syncmaster == NULL) {
1032 if (debug & DEBUG_HFCMULTI_PLXSD)
1033 printk(KERN_DEBUG "%s: GOT sync on card %d"
1034 " (id=%d)\n", __func__, hc->id + 1,
1035 hc->id);
1036 hfcmulti_resync(hc, hc, rm);
1037 }
1038 } else {
1039 if (syncmaster == hc) {
1040 if (debug & DEBUG_HFCMULTI_PLXSD)
1041 printk(KERN_DEBUG "%s: LOST sync on card %d"
1042 " (id=%d)\n", __func__, hc->id + 1,
1043 hc->id);
1044 hfcmulti_resync(hc, NULL, rm);
1045 }
1046 }
1047 }
1048
1049
1050 /*
1051 * free hardware resources used by driver
1052 */
1053 static void
1054 release_io_hfcmulti(struct hfc_multi *hc)
1055 {
1056 void __iomem *plx_acc_32;
1057 u_int pv;
1058 u_long plx_flags;
1059
1060 if (debug & DEBUG_HFCMULTI_INIT)
1061 printk(KERN_DEBUG "%s: entered\n", __func__);
1062
1063 /* soft reset also masks all interrupts */
1064 hc->hw.r_cirm |= V_SRES;
1065 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1066 udelay(1000);
1067 hc->hw.r_cirm &= ~V_SRES;
1068 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1069 udelay(1000); /* instead of 'wait' that may cause locking */
1070
1071 /* release Speech Design card, if PLX was initialized */
1072 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1073 if (debug & DEBUG_HFCMULTI_PLXSD)
1074 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1075 __func__, hc->id + 1);
1076 spin_lock_irqsave(&plx_lock, plx_flags);
1077 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1078 writel(PLX_GPIOC_INIT, plx_acc_32);
1079 pv = readl(plx_acc_32);
1080 /* Termination off */
1081 pv &= ~PLX_TERM_ON;
1082 /* Disconnect the PCM */
1083 pv |= PLX_SLAVE_EN_N;
1084 pv &= ~PLX_MASTER_EN;
1085 pv &= ~PLX_SYNC_O_EN;
1086 /* Put the DSP in Reset */
1087 pv &= ~PLX_DSP_RES_N;
1088 writel(pv, plx_acc_32);
1089 if (debug & DEBUG_HFCMULTI_INIT)
1090 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1091 __func__, pv);
1092 spin_unlock_irqrestore(&plx_lock, plx_flags);
1093 }
1094
1095 /* disable memory mapped ports / io ports */
1096 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1097 if (hc->pci_dev)
1098 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1099 if (hc->pci_membase)
1100 iounmap(hc->pci_membase);
1101 if (hc->plx_membase)
1102 iounmap(hc->plx_membase);
1103 if (hc->pci_iobase)
1104 release_region(hc->pci_iobase, 8);
1105 if (hc->xhfc_membase)
1106 iounmap((void *)hc->xhfc_membase);
1107
1108 if (hc->pci_dev) {
1109 pci_disable_device(hc->pci_dev);
1110 pci_set_drvdata(hc->pci_dev, NULL);
1111 }
1112 if (debug & DEBUG_HFCMULTI_INIT)
1113 printk(KERN_DEBUG "%s: done\n", __func__);
1114 }
1115
1116 /*
1117 * function called to reset the HFC chip. A complete software reset of chip
1118 * and fifos is done. All configuration of the chip is done.
1119 */
1120
1121 static int
1122 init_chip(struct hfc_multi *hc)
1123 {
1124 u_long flags, val, val2 = 0, rev;
1125 int i, err = 0;
1126 u_char r_conf_en, rval;
1127 void __iomem *plx_acc_32;
1128 u_int pv;
1129 u_long plx_flags, hfc_flags;
1130 int plx_count;
1131 struct hfc_multi *pos, *next, *plx_last_hc;
1132
1133 spin_lock_irqsave(&hc->lock, flags);
1134 /* reset all registers */
1135 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1136
1137 /* revision check */
1138 if (debug & DEBUG_HFCMULTI_INIT)
1139 printk(KERN_DEBUG "%s: entered\n", __func__);
1140 val = HFC_inb(hc, R_CHIP_ID);
1141 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1142 (val >> 1) != 0x31) {
1143 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1144 err = -EIO;
1145 goto out;
1146 }
1147 rev = HFC_inb(hc, R_CHIP_RV);
1148 printk(KERN_INFO
1149 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1150 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1151 " (old FIFO handling)" : "");
1152 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1153 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1154 printk(KERN_WARNING
1155 "HFC_multi: NOTE: Your chip is revision 0, "
1156 "ask Cologne Chip for update. Newer chips "
1157 "have a better FIFO handling. Old chips "
1158 "still work but may have slightly lower "
1159 "HDLC transmit performance.\n");
1160 }
1161 if (rev > 1) {
1162 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1163 "consider chip revision = %ld. The chip / "
1164 "bridge may not work.\n", rev);
1165 }
1166
1167 /* set s-ram size */
1168 hc->Flen = 0x10;
1169 hc->Zmin = 0x80;
1170 hc->Zlen = 384;
1171 hc->DTMFbase = 0x1000;
1172 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1173 if (debug & DEBUG_HFCMULTI_INIT)
1174 printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1175 __func__);
1176 hc->hw.r_ctrl |= V_EXT_RAM;
1177 hc->hw.r_ram_sz = 1;
1178 hc->Flen = 0x20;
1179 hc->Zmin = 0xc0;
1180 hc->Zlen = 1856;
1181 hc->DTMFbase = 0x2000;
1182 }
1183 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1184 if (debug & DEBUG_HFCMULTI_INIT)
1185 printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1186 __func__);
1187 hc->hw.r_ctrl |= V_EXT_RAM;
1188 hc->hw.r_ram_sz = 2;
1189 hc->Flen = 0x20;
1190 hc->Zmin = 0xc0;
1191 hc->Zlen = 8000;
1192 hc->DTMFbase = 0x2000;
1193 }
1194 if (hc->ctype == HFC_TYPE_XHFC) {
1195 hc->Flen = 0x8;
1196 hc->Zmin = 0x0;
1197 hc->Zlen = 64;
1198 hc->DTMFbase = 0x0;
1199 }
1200 hc->max_trans = poll << 1;
1201 if (hc->max_trans > hc->Zlen)
1202 hc->max_trans = hc->Zlen;
1203
1204 /* Speech Design PLX bridge */
1205 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1206 if (debug & DEBUG_HFCMULTI_PLXSD)
1207 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1208 __func__, hc->id + 1);
1209 spin_lock_irqsave(&plx_lock, plx_flags);
1210 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1211 writel(PLX_GPIOC_INIT, plx_acc_32);
1212 pv = readl(plx_acc_32);
1213 /* The first and the last cards are terminating the PCM bus */
1214 pv |= PLX_TERM_ON; /* hc is currently the last */
1215 /* Disconnect the PCM */
1216 pv |= PLX_SLAVE_EN_N;
1217 pv &= ~PLX_MASTER_EN;
1218 pv &= ~PLX_SYNC_O_EN;
1219 /* Put the DSP in Reset */
1220 pv &= ~PLX_DSP_RES_N;
1221 writel(pv, plx_acc_32);
1222 spin_unlock_irqrestore(&plx_lock, plx_flags);
1223 if (debug & DEBUG_HFCMULTI_INIT)
1224 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1225 __func__, pv);
1226 /*
1227 * If we are the 3rd PLXSD card or higher, we must turn
1228 * termination of last PLXSD card off.
1229 */
1230 spin_lock_irqsave(&HFClock, hfc_flags);
1231 plx_count = 0;
1232 plx_last_hc = NULL;
1233 list_for_each_entry_safe(pos, next, &HFClist, list) {
1234 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1235 plx_count++;
1236 if (pos != hc)
1237 plx_last_hc = pos;
1238 }
1239 }
1240 if (plx_count >= 3) {
1241 if (debug & DEBUG_HFCMULTI_PLXSD)
1242 printk(KERN_DEBUG "%s: card %d is between, so "
1243 "we disable termination\n",
1244 __func__, plx_last_hc->id + 1);
1245 spin_lock_irqsave(&plx_lock, plx_flags);
1246 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1247 pv = readl(plx_acc_32);
1248 pv &= ~PLX_TERM_ON;
1249 writel(pv, plx_acc_32);
1250 spin_unlock_irqrestore(&plx_lock, plx_flags);
1251 if (debug & DEBUG_HFCMULTI_INIT)
1252 printk(KERN_DEBUG
1253 "%s: term off: PLX_GPIO=%x\n",
1254 __func__, pv);
1255 }
1256 spin_unlock_irqrestore(&HFClock, hfc_flags);
1257 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1258 }
1259
1260 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1261 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1262
1263 /* we only want the real Z2 read-pointer for revision > 0 */
1264 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1265 hc->hw.r_ram_sz |= V_FZ_MD;
1266
1267 /* select pcm mode */
1268 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1269 if (debug & DEBUG_HFCMULTI_INIT)
1270 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1271 __func__);
1272 } else
1273 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1274 if (debug & DEBUG_HFCMULTI_INIT)
1275 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1276 __func__);
1277 hc->hw.r_pcm_md0 |= V_PCM_MD;
1278 } else {
1279 if (debug & DEBUG_HFCMULTI_INIT)
1280 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1281 __func__);
1282 }
1283
1284 /* soft reset */
1285 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1286 if (hc->ctype == HFC_TYPE_XHFC)
1287 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1288 0x11 /* 16 Bytes TX/RX */);
1289 else
1290 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1291 HFC_outb(hc, R_FIFO_MD, 0);
1292 if (hc->ctype == HFC_TYPE_XHFC)
1293 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1294 else
1295 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1296 | V_RLD_EPR;
1297 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1298 udelay(100);
1299 hc->hw.r_cirm = 0;
1300 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1301 udelay(100);
1302 if (hc->ctype != HFC_TYPE_XHFC)
1303 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1304
1305 /* Speech Design PLX bridge pcm and sync mode */
1306 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1307 spin_lock_irqsave(&plx_lock, plx_flags);
1308 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1309 pv = readl(plx_acc_32);
1310 /* Connect PCM */
1311 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1312 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1313 pv |= PLX_SYNC_O_EN;
1314 if (debug & DEBUG_HFCMULTI_INIT)
1315 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1316 __func__, pv);
1317 } else {
1318 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1319 pv &= ~PLX_SYNC_O_EN;
1320 if (debug & DEBUG_HFCMULTI_INIT)
1321 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1322 __func__, pv);
1323 }
1324 writel(pv, plx_acc_32);
1325 spin_unlock_irqrestore(&plx_lock, plx_flags);
1326 }
1327
1328 /* PCM setup */
1329 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1330 if (hc->slots == 32)
1331 HFC_outb(hc, R_PCM_MD1, 0x00);
1332 if (hc->slots == 64)
1333 HFC_outb(hc, R_PCM_MD1, 0x10);
1334 if (hc->slots == 128)
1335 HFC_outb(hc, R_PCM_MD1, 0x20);
1336 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1337 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1338 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1339 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1340 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1341 else
1342 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1343 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1344 for (i = 0; i < 256; i++) {
1345 HFC_outb_nodebug(hc, R_SLOT, i);
1346 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1347 if (hc->ctype != HFC_TYPE_XHFC)
1348 HFC_outb_nodebug(hc, A_CONF, 0);
1349 hc->slot_owner[i] = -1;
1350 }
1351
1352 /* set clock speed */
1353 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1354 if (debug & DEBUG_HFCMULTI_INIT)
1355 printk(KERN_DEBUG
1356 "%s: setting double clock\n", __func__);
1357 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1358 }
1359
1360 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1361 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1362
1363 /* B410P GPIO */
1364 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1365 printk(KERN_NOTICE "Setting GPIOs\n");
1366 HFC_outb(hc, R_GPIO_SEL, 0x30);
1367 HFC_outb(hc, R_GPIO_EN1, 0x3);
1368 udelay(1000);
1369 printk(KERN_NOTICE "calling vpm_init\n");
1370 vpm_init(hc);
1371 }
1372
1373 /* check if R_F0_CNT counts (8 kHz frame count) */
1374 val = HFC_inb(hc, R_F0_CNTL);
1375 val += HFC_inb(hc, R_F0_CNTH) << 8;
1376 if (debug & DEBUG_HFCMULTI_INIT)
1377 printk(KERN_DEBUG
1378 "HFC_multi F0_CNT %ld after reset\n", val);
1379 spin_unlock_irqrestore(&hc->lock, flags);
1380 set_current_state(TASK_UNINTERRUPTIBLE);
1381 schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1382 spin_lock_irqsave(&hc->lock, flags);
1383 val2 = HFC_inb(hc, R_F0_CNTL);
1384 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1385 if (debug & DEBUG_HFCMULTI_INIT)
1386 printk(KERN_DEBUG
1387 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1388 val2);
1389 if (val2 >= val + 8) { /* 1 ms */
1390 /* it counts, so we keep the pcm mode */
1391 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1392 printk(KERN_INFO "controller is PCM bus MASTER\n");
1393 else
1394 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1395 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1396 else {
1397 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1398 printk(KERN_INFO "controller is PCM bus SLAVE "
1399 "(auto detected)\n");
1400 }
1401 } else {
1402 /* does not count */
1403 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1404 controller_fail:
1405 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1406 "pulse. Seems that controller fails.\n");
1407 err = -EIO;
1408 goto out;
1409 }
1410 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1411 printk(KERN_INFO "controller is PCM bus SLAVE "
1412 "(ignoring missing PCM clock)\n");
1413 } else {
1414 /* only one pcm master */
1415 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1416 && plxsd_master) {
1417 printk(KERN_ERR "HFC_multi ERROR, no clock "
1418 "on another Speech Design card found. "
1419 "Please be sure to connect PCM cable.\n");
1420 err = -EIO;
1421 goto out;
1422 }
1423 /* retry with master clock */
1424 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1425 spin_lock_irqsave(&plx_lock, plx_flags);
1426 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1427 pv = readl(plx_acc_32);
1428 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1429 pv |= PLX_SYNC_O_EN;
1430 writel(pv, plx_acc_32);
1431 spin_unlock_irqrestore(&plx_lock, plx_flags);
1432 if (debug & DEBUG_HFCMULTI_INIT)
1433 printk(KERN_DEBUG "%s: master: "
1434 "PLX_GPIO=%x\n", __func__, pv);
1435 }
1436 hc->hw.r_pcm_md0 |= V_PCM_MD;
1437 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1438 spin_unlock_irqrestore(&hc->lock, flags);
1439 set_current_state(TASK_UNINTERRUPTIBLE);
1440 schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1441 spin_lock_irqsave(&hc->lock, flags);
1442 val2 = HFC_inb(hc, R_F0_CNTL);
1443 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1444 if (debug & DEBUG_HFCMULTI_INIT)
1445 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1446 "10 ms (2nd try)\n", val2);
1447 if (val2 >= val + 8) { /* 1 ms */
1448 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1449 &hc->chip);
1450 printk(KERN_INFO "controller is PCM bus MASTER "
1451 "(auto detected)\n");
1452 } else
1453 goto controller_fail;
1454 }
1455 }
1456
1457 /* Release the DSP Reset */
1458 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1459 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1460 plxsd_master = 1;
1461 spin_lock_irqsave(&plx_lock, plx_flags);
1462 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1463 pv = readl(plx_acc_32);
1464 pv |= PLX_DSP_RES_N;
1465 writel(pv, plx_acc_32);
1466 spin_unlock_irqrestore(&plx_lock, plx_flags);
1467 if (debug & DEBUG_HFCMULTI_INIT)
1468 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1469 __func__, pv);
1470 }
1471
1472 /* pcm id */
1473 if (hc->pcm)
1474 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1475 hc->pcm);
1476 else {
1477 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1478 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1479 PCM_cnt++; /* SD has proprietary bridging */
1480 }
1481 hc->pcm = PCM_cnt;
1482 printk(KERN_INFO "controller has PCM BUS ID %d "
1483 "(auto selected)\n", hc->pcm);
1484 }
1485
1486 /* set up timer */
1487 HFC_outb(hc, R_TI_WD, poll_timer);
1488 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1489
1490 /* set E1 state machine IRQ */
1491 if (hc->ctype == HFC_TYPE_E1)
1492 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1493
1494 /* set DTMF detection */
1495 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1496 if (debug & DEBUG_HFCMULTI_INIT)
1497 printk(KERN_DEBUG "%s: enabling DTMF detection "
1498 "for all B-channel\n", __func__);
1499 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1500 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1501 hc->hw.r_dtmf |= V_ULAW_SEL;
1502 HFC_outb(hc, R_DTMF_N, 102 - 1);
1503 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1504 }
1505
1506 /* conference engine */
1507 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1508 r_conf_en = V_CONF_EN | V_ULAW;
1509 else
1510 r_conf_en = V_CONF_EN;
1511 if (hc->ctype != HFC_TYPE_XHFC)
1512 HFC_outb(hc, R_CONF_EN, r_conf_en);
1513
1514 /* setting leds */
1515 switch (hc->leds) {
1516 case 1: /* HFC-E1 OEM */
1517 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1518 HFC_outb(hc, R_GPIO_SEL, 0x32);
1519 else
1520 HFC_outb(hc, R_GPIO_SEL, 0x30);
1521
1522 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1523 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1524
1525 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1526 break;
1527
1528 case 2: /* HFC-4S OEM */
1529 case 3:
1530 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1531 HFC_outb(hc, R_GPIO_EN1, 0xff);
1532 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1533 break;
1534 }
1535
1536 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1537 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1538 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1539 }
1540
1541 /* set master clock */
1542 if (hc->masterclk >= 0) {
1543 if (debug & DEBUG_HFCMULTI_INIT)
1544 printk(KERN_DEBUG "%s: setting ST master clock "
1545 "to port %d (0..%d)\n",
1546 __func__, hc->masterclk, hc->ports - 1);
1547 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1548 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1549 }
1550
1551
1552
1553 /* setting misc irq */
1554 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1555 if (debug & DEBUG_HFCMULTI_INIT)
1556 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1557 hc->hw.r_irqmsk_misc);
1558
1559 /* RAM access test */
1560 HFC_outb(hc, R_RAM_ADDR0, 0);
1561 HFC_outb(hc, R_RAM_ADDR1, 0);
1562 HFC_outb(hc, R_RAM_ADDR2, 0);
1563 for (i = 0; i < 256; i++) {
1564 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1565 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1566 }
1567 for (i = 0; i < 256; i++) {
1568 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1569 HFC_inb_nodebug(hc, R_RAM_DATA);
1570 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1571 if (rval != ((i * 3) & 0xff)) {
1572 printk(KERN_DEBUG
1573 "addr:%x val:%x should:%x\n", i, rval,
1574 (i * 3) & 0xff);
1575 err++;
1576 }
1577 }
1578 if (err) {
1579 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1580 err = -EIO;
1581 goto out;
1582 }
1583
1584 if (debug & DEBUG_HFCMULTI_INIT)
1585 printk(KERN_DEBUG "%s: done\n", __func__);
1586 out:
1587 spin_unlock_irqrestore(&hc->lock, flags);
1588 return err;
1589 }
1590
1591
1592 /*
1593 * control the watchdog
1594 */
1595 static void
1596 hfcmulti_watchdog(struct hfc_multi *hc)
1597 {
1598 hc->wdcount++;
1599
1600 if (hc->wdcount > 10) {
1601 hc->wdcount = 0;
1602 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1603 V_GPIO_OUT3 : V_GPIO_OUT2;
1604
1605 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1606 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1607 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1608 }
1609 }
1610
1611
1612
1613 /*
1614 * output leds
1615 */
1616 static void
1617 hfcmulti_leds(struct hfc_multi *hc)
1618 {
1619 unsigned long lled;
1620 unsigned long leddw;
1621 int i, state, active, leds;
1622 struct dchannel *dch;
1623 int led[4];
1624
1625 switch (hc->leds) {
1626 case 1: /* HFC-E1 OEM */
1627 /* 2 red steady: LOS
1628 * 1 red steady: L1 not active
1629 * 2 green steady: L1 active
1630 * 1st green flashing: activity on TX
1631 * 2nd green flashing: activity on RX
1632 */
1633 led[0] = 0;
1634 led[1] = 0;
1635 led[2] = 0;
1636 led[3] = 0;
1637 dch = hc->chan[hc->dnum[0]].dch;
1638 if (dch) {
1639 if (hc->chan[hc->dnum[0]].los)
1640 led[1] = 1;
1641 if (hc->e1_state != 1) {
1642 led[0] = 1;
1643 hc->flash[2] = 0;
1644 hc->flash[3] = 0;
1645 } else {
1646 led[2] = 1;
1647 led[3] = 1;
1648 if (!hc->flash[2] && hc->activity_tx)
1649 hc->flash[2] = poll;
1650 if (!hc->flash[3] && hc->activity_rx)
1651 hc->flash[3] = poll;
1652 if (hc->flash[2] && hc->flash[2] < 1024)
1653 led[2] = 0;
1654 if (hc->flash[3] && hc->flash[3] < 1024)
1655 led[3] = 0;
1656 if (hc->flash[2] >= 2048)
1657 hc->flash[2] = 0;
1658 if (hc->flash[3] >= 2048)
1659 hc->flash[3] = 0;
1660 if (hc->flash[2])
1661 hc->flash[2] += poll;
1662 if (hc->flash[3])
1663 hc->flash[3] += poll;
1664 }
1665 }
1666 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1667 /* leds are inverted */
1668 if (leds != (int)hc->ledstate) {
1669 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1670 hc->ledstate = leds;
1671 }
1672 break;
1673
1674 case 2: /* HFC-4S OEM */
1675 /* red steady: PH_DEACTIVATE
1676 * green steady: PH_ACTIVATE
1677 * green flashing: activity on TX
1678 */
1679 for (i = 0; i < 4; i++) {
1680 state = 0;
1681 active = -1;
1682 dch = hc->chan[(i << 2) | 2].dch;
1683 if (dch) {
1684 state = dch->state;
1685 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1686 active = 3;
1687 else
1688 active = 7;
1689 }
1690 if (state) {
1691 if (state == active) {
1692 led[i] = 1; /* led green */
1693 hc->activity_tx |= hc->activity_rx;
1694 if (!hc->flash[i] &&
1695 (hc->activity_tx & (1 << i)))
1696 hc->flash[i] = poll;
1697 if (hc->flash[i] && hc->flash[i] < 1024)
1698 led[i] = 0; /* led off */
1699 if (hc->flash[i] >= 2048)
1700 hc->flash[i] = 0;
1701 if (hc->flash[i])
1702 hc->flash[i] += poll;
1703 } else {
1704 led[i] = 2; /* led red */
1705 hc->flash[i] = 0;
1706 }
1707 } else
1708 led[i] = 0; /* led off */
1709 }
1710 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1711 leds = 0;
1712 for (i = 0; i < 4; i++) {
1713 if (led[i] == 1) {
1714 /*green*/
1715 leds |= (0x2 << (i * 2));
1716 } else if (led[i] == 2) {
1717 /*red*/
1718 leds |= (0x1 << (i * 2));
1719 }
1720 }
1721 if (leds != (int)hc->ledstate) {
1722 vpm_out(hc, 0, 0x1a8 + 3, leds);
1723 hc->ledstate = leds;
1724 }
1725 } else {
1726 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1727 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1728 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1729 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1730 if (leds != (int)hc->ledstate) {
1731 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1732 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1733 hc->ledstate = leds;
1734 }
1735 }
1736 break;
1737
1738 case 3: /* HFC 1S/2S Beronet */
1739 /* red steady: PH_DEACTIVATE
1740 * green steady: PH_ACTIVATE
1741 * green flashing: activity on TX
1742 */
1743 for (i = 0; i < 2; i++) {
1744 state = 0;
1745 active = -1;
1746 dch = hc->chan[(i << 2) | 2].dch;
1747 if (dch) {
1748 state = dch->state;
1749 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1750 active = 3;
1751 else
1752 active = 7;
1753 }
1754 if (state) {
1755 if (state == active) {
1756 led[i] = 1; /* led green */
1757 hc->activity_tx |= hc->activity_rx;
1758 if (!hc->flash[i] &&
1759 (hc->activity_tx & (1 << i)))
1760 hc->flash[i] = poll;
1761 if (hc->flash[i] < 1024)
1762 led[i] = 0; /* led off */
1763 if (hc->flash[i] >= 2048)
1764 hc->flash[i] = 0;
1765 if (hc->flash[i])
1766 hc->flash[i] += poll;
1767 } else {
1768 led[i] = 2; /* led red */
1769 hc->flash[i] = 0;
1770 }
1771 } else
1772 led[i] = 0; /* led off */
1773 }
1774 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1775 | ((led[1]&1) << 3);
1776 if (leds != (int)hc->ledstate) {
1777 HFC_outb_nodebug(hc, R_GPIO_EN1,
1778 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1779 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1780 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1781 hc->ledstate = leds;
1782 }
1783 break;
1784 case 8: /* HFC 8S+ Beronet */
1785 /* off: PH_DEACTIVATE
1786 * steady: PH_ACTIVATE
1787 * flashing: activity on TX
1788 */
1789 lled = 0xff; /* leds off */
1790 for (i = 0; i < 8; i++) {
1791 state = 0;
1792 active = -1;
1793 dch = hc->chan[(i << 2) | 2].dch;
1794 if (dch) {
1795 state = dch->state;
1796 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1797 active = 3;
1798 else
1799 active = 7;
1800 }
1801 if (state) {
1802 if (state == active) {
1803 lled &= ~(1 << i); /* led on */
1804 hc->activity_tx |= hc->activity_rx;
1805 if (!hc->flash[i] &&
1806 (hc->activity_tx & (1 << i)))
1807 hc->flash[i] = poll;
1808 if (hc->flash[i] < 1024)
1809 lled |= 1 << i; /* led off */
1810 if (hc->flash[i] >= 2048)
1811 hc->flash[i] = 0;
1812 if (hc->flash[i])
1813 hc->flash[i] += poll;
1814 } else
1815 hc->flash[i] = 0;
1816 }
1817 }
1818 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1819 if (leddw != hc->ledstate) {
1820 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1821 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1822 /* was _io before */
1823 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1824 outw(0x4000, hc->pci_iobase + 4);
1825 outl(leddw, hc->pci_iobase);
1826 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1827 hc->ledstate = leddw;
1828 }
1829 break;
1830 }
1831 hc->activity_tx = 0;
1832 hc->activity_rx = 0;
1833 }
1834 /*
1835 * read dtmf coefficients
1836 */
1837
1838 static void
1839 hfcmulti_dtmf(struct hfc_multi *hc)
1840 {
1841 s32 *coeff;
1842 u_int mantissa;
1843 int co, ch;
1844 struct bchannel *bch = NULL;
1845 u8 exponent;
1846 int dtmf = 0;
1847 int addr;
1848 u16 w_float;
1849 struct sk_buff *skb;
1850 struct mISDNhead *hh;
1851
1852 if (debug & DEBUG_HFCMULTI_DTMF)
1853 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1854 for (ch = 0; ch <= 31; ch++) {
1855 /* only process enabled B-channels */
1856 bch = hc->chan[ch].bch;
1857 if (!bch)
1858 continue;
1859 if (!hc->created[hc->chan[ch].port])
1860 continue;
1861 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1862 continue;
1863 if (debug & DEBUG_HFCMULTI_DTMF)
1864 printk(KERN_DEBUG "%s: dtmf channel %d:",
1865 __func__, ch);
1866 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1867 dtmf = 1;
1868 for (co = 0; co < 8; co++) {
1869 /* read W(n-1) coefficient */
1870 addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1871 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1872 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1873 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1874 | V_ADDR_INC);
1875 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1876 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1877 if (debug & DEBUG_HFCMULTI_DTMF)
1878 printk(" %04x", w_float);
1879
1880 /* decode float (see chip doc) */
1881 mantissa = w_float & 0x0fff;
1882 if (w_float & 0x8000)
1883 mantissa |= 0xfffff000;
1884 exponent = (w_float >> 12) & 0x7;
1885 if (exponent) {
1886 mantissa ^= 0x1000;
1887 mantissa <<= (exponent - 1);
1888 }
1889
1890 /* store coefficient */
1891 coeff[co << 1] = mantissa;
1892
1893 /* read W(n) coefficient */
1894 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1895 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1896 if (debug & DEBUG_HFCMULTI_DTMF)
1897 printk(" %04x", w_float);
1898
1899 /* decode float (see chip doc) */
1900 mantissa = w_float & 0x0fff;
1901 if (w_float & 0x8000)
1902 mantissa |= 0xfffff000;
1903 exponent = (w_float >> 12) & 0x7;
1904 if (exponent) {
1905 mantissa ^= 0x1000;
1906 mantissa <<= (exponent - 1);
1907 }
1908
1909 /* store coefficient */
1910 coeff[(co << 1) | 1] = mantissa;
1911 }
1912 if (debug & DEBUG_HFCMULTI_DTMF)
1913 printk(" DTMF ready %08x %08x %08x %08x "
1914 "%08x %08x %08x %08x\n",
1915 coeff[0], coeff[1], coeff[2], coeff[3],
1916 coeff[4], coeff[5], coeff[6], coeff[7]);
1917 hc->chan[ch].coeff_count++;
1918 if (hc->chan[ch].coeff_count == 8) {
1919 hc->chan[ch].coeff_count = 0;
1920 skb = mI_alloc_skb(512, GFP_ATOMIC);
1921 if (!skb) {
1922 printk(KERN_DEBUG "%s: No memory for skb\n",
1923 __func__);
1924 continue;
1925 }
1926 hh = mISDN_HEAD_P(skb);
1927 hh->prim = PH_CONTROL_IND;
1928 hh->id = DTMF_HFC_COEF;
1929 memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1930 recv_Bchannel_skb(bch, skb);
1931 }
1932 }
1933
1934 /* restart DTMF processing */
1935 hc->dtmf = dtmf;
1936 if (dtmf)
1937 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1938 }
1939
1940
1941 /*
1942 * fill fifo as much as possible
1943 */
1944
1945 static void
1946 hfcmulti_tx(struct hfc_multi *hc, int ch)
1947 {
1948 int i, ii, temp, len = 0;
1949 int Zspace, z1, z2; /* must be int for calculation */
1950 int Fspace, f1, f2;
1951 u_char *d;
1952 int *txpending, slot_tx;
1953 struct bchannel *bch;
1954 struct dchannel *dch;
1955 struct sk_buff **sp = NULL;
1956 int *idxp;
1957
1958 bch = hc->chan[ch].bch;
1959 dch = hc->chan[ch].dch;
1960 if ((!dch) && (!bch))
1961 return;
1962
1963 txpending = &hc->chan[ch].txpending;
1964 slot_tx = hc->chan[ch].slot_tx;
1965 if (dch) {
1966 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1967 return;
1968 sp = &dch->tx_skb;
1969 idxp = &dch->tx_idx;
1970 } else {
1971 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1972 return;
1973 sp = &bch->tx_skb;
1974 idxp = &bch->tx_idx;
1975 }
1976 if (*sp)
1977 len = (*sp)->len;
1978
1979 if ((!len) && *txpending != 1)
1980 return; /* no data */
1981
1982 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1983 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1984 (hc->chan[ch].slot_rx < 0) &&
1985 (hc->chan[ch].slot_tx < 0))
1986 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1987 else
1988 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1989 HFC_wait_nodebug(hc);
1990
1991 if (*txpending == 2) {
1992 /* reset fifo */
1993 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1994 HFC_wait_nodebug(hc);
1995 HFC_outb(hc, A_SUBCH_CFG, 0);
1996 *txpending = 1;
1997 }
1998 next_frame:
1999 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2000 f1 = HFC_inb_nodebug(hc, A_F1);
2001 f2 = HFC_inb_nodebug(hc, A_F2);
2002 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
2003 if (debug & DEBUG_HFCMULTI_FIFO)
2004 printk(KERN_DEBUG
2005 "%s(card %d): reread f2 because %d!=%d\n",
2006 __func__, hc->id + 1, temp, f2);
2007 f2 = temp; /* repeat until F2 is equal */
2008 }
2009 Fspace = f2 - f1 - 1;
2010 if (Fspace < 0)
2011 Fspace += hc->Flen;
2012 /*
2013 * Old FIFO handling doesn't give us the current Z2 read
2014 * pointer, so we cannot send the next frame before the fifo
2015 * is empty. It makes no difference except for a slightly
2016 * lower performance.
2017 */
2018 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
2019 if (f1 != f2)
2020 Fspace = 0;
2021 else
2022 Fspace = 1;
2023 }
2024 /* one frame only for ST D-channels, to allow resending */
2025 if (hc->ctype != HFC_TYPE_E1 && dch) {
2026 if (f1 != f2)
2027 Fspace = 0;
2028 }
2029 /* F-counter full condition */
2030 if (Fspace == 0)
2031 return;
2032 }
2033 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2034 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2035 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
2036 if (debug & DEBUG_HFCMULTI_FIFO)
2037 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2038 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2039 z2 = temp; /* repeat unti Z2 is equal */
2040 }
2041 hc->chan[ch].Zfill = z1 - z2;
2042 if (hc->chan[ch].Zfill < 0)
2043 hc->chan[ch].Zfill += hc->Zlen;
2044 Zspace = z2 - z1;
2045 if (Zspace <= 0)
2046 Zspace += hc->Zlen;
2047 Zspace -= 4; /* keep not too full, so pointers will not overrun */
2048 /* fill transparent data only to maxinum transparent load (minus 4) */
2049 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2050 Zspace = Zspace - hc->Zlen + hc->max_trans;
2051 if (Zspace <= 0) /* no space of 4 bytes */
2052 return;
2053
2054 /* if no data */
2055 if (!len) {
2056 if (z1 == z2) { /* empty */
2057 /* if done with FIFO audio data during PCM connection */
2058 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2059 *txpending && slot_tx >= 0) {
2060 if (debug & DEBUG_HFCMULTI_MODE)
2061 printk(KERN_DEBUG
2062 "%s: reconnecting PCM due to no "
2063 "more FIFO data: channel %d "
2064 "slot_tx %d\n",
2065 __func__, ch, slot_tx);
2066 /* connect slot */
2067 if (hc->ctype == HFC_TYPE_XHFC)
2068 HFC_outb(hc, A_CON_HDLC, 0xc0
2069 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2070 /* Enable FIFO, no interrupt */
2071 else
2072 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2073 V_HDLC_TRP | V_IFF);
2074 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2075 HFC_wait_nodebug(hc);
2076 if (hc->ctype == HFC_TYPE_XHFC)
2077 HFC_outb(hc, A_CON_HDLC, 0xc0
2078 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2079 /* Enable FIFO, no interrupt */
2080 else
2081 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2082 V_HDLC_TRP | V_IFF);
2083 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2084 HFC_wait_nodebug(hc);
2085 }
2086 *txpending = 0;
2087 }
2088 return; /* no data */
2089 }
2090
2091 /* "fill fifo if empty" feature */
2092 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2093 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2094 if (debug & DEBUG_HFCMULTI_FILL)
2095 printk(KERN_DEBUG "%s: buffer empty, so we have "
2096 "underrun\n", __func__);
2097 /* fill buffer, to prevent future underrun */
2098 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2099 Zspace -= (poll >> 1);
2100 }
2101
2102 /* if audio data and connected slot */
2103 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2104 && slot_tx >= 0) {
2105 if (debug & DEBUG_HFCMULTI_MODE)
2106 printk(KERN_DEBUG "%s: disconnecting PCM due to "
2107 "FIFO data: channel %d slot_tx %d\n",
2108 __func__, ch, slot_tx);
2109 /* disconnect slot */
2110 if (hc->ctype == HFC_TYPE_XHFC)
2111 HFC_outb(hc, A_CON_HDLC, 0x80
2112 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2113 /* Enable FIFO, no interrupt */
2114 else
2115 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2116 V_HDLC_TRP | V_IFF);
2117 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2118 HFC_wait_nodebug(hc);
2119 if (hc->ctype == HFC_TYPE_XHFC)
2120 HFC_outb(hc, A_CON_HDLC, 0x80
2121 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2122 /* Enable FIFO, no interrupt */
2123 else
2124 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2125 V_HDLC_TRP | V_IFF);
2126 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2127 HFC_wait_nodebug(hc);
2128 }
2129 *txpending = 1;
2130
2131 /* show activity */
2132 if (dch)
2133 hc->activity_tx |= 1 << hc->chan[ch].port;
2134
2135 /* fill fifo to what we have left */
2136 ii = len;
2137 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2138 temp = 1;
2139 else
2140 temp = 0;
2141 i = *idxp;
2142 d = (*sp)->data + i;
2143 if (ii - i > Zspace)
2144 ii = Zspace + i;
2145 if (debug & DEBUG_HFCMULTI_FIFO)
2146 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2147 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2148 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2149 temp ? "HDLC" : "TRANS");
2150
2151 /* Have to prep the audio data */
2152 hc->write_fifo(hc, d, ii - i);
2153 hc->chan[ch].Zfill += ii - i;
2154 *idxp = ii;
2155
2156 /* if not all data has been written */
2157 if (ii != len) {
2158 /* NOTE: fifo is started by the calling function */
2159 return;
2160 }
2161
2162 /* if all data has been written, terminate frame */
2163 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2164 /* increment f-counter */
2165 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2166 HFC_wait_nodebug(hc);
2167 }
2168
2169 /* send confirm, since get_net_bframe will not do it with trans */
2170 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2171 confirm_Bsend(bch);
2172
2173 /* check for next frame */
2174 dev_kfree_skb(*sp);
2175 if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2176 len = (*sp)->len;
2177 goto next_frame;
2178 }
2179 if (dch && get_next_dframe(dch)) {
2180 len = (*sp)->len;
2181 goto next_frame;
2182 }
2183
2184 /*
2185 * now we have no more data, so in case of transparent,
2186 * we set the last byte in fifo to 'silence' in case we will get
2187 * no more data at all. this prevents sending an undefined value.
2188 */
2189 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2190 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2191 }
2192
2193
2194 /* NOTE: only called if E1 card is in active state */
2195 static void
2196 hfcmulti_rx(struct hfc_multi *hc, int ch)
2197 {
2198 int temp;
2199 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2200 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2201 int again = 0;
2202 struct bchannel *bch;
2203 struct dchannel *dch;
2204 struct sk_buff *skb, **sp = NULL;
2205 int maxlen;
2206
2207 bch = hc->chan[ch].bch;
2208 dch = hc->chan[ch].dch;
2209 if ((!dch) && (!bch))
2210 return;
2211 if (dch) {
2212 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2213 return;
2214 sp = &dch->rx_skb;
2215 maxlen = dch->maxlen;
2216 } else {
2217 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2218 return;
2219 sp = &bch->rx_skb;
2220 maxlen = bch->maxlen;
2221 }
2222 next_frame:
2223 /* on first AND before getting next valid frame, R_FIFO must be written
2224 to. */
2225 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2226 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2227 (hc->chan[ch].slot_rx < 0) &&
2228 (hc->chan[ch].slot_tx < 0))
2229 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2230 else
2231 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2232 HFC_wait_nodebug(hc);
2233
2234 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2235 if (hc->chan[ch].rx_off)
2236 return;
2237
2238 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2239 f1 = HFC_inb_nodebug(hc, A_F1);
2240 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2241 if (debug & DEBUG_HFCMULTI_FIFO)
2242 printk(KERN_DEBUG
2243 "%s(card %d): reread f1 because %d!=%d\n",
2244 __func__, hc->id + 1, temp, f1);
2245 f1 = temp; /* repeat until F1 is equal */
2246 }
2247 f2 = HFC_inb_nodebug(hc, A_F2);
2248 }
2249 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2250 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2251 if (debug & DEBUG_HFCMULTI_FIFO)
2252 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2253 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2254 z1 = temp; /* repeat until Z1 is equal */
2255 }
2256 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2257 Zsize = z1 - z2;
2258 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2259 /* complete hdlc frame */
2260 Zsize++;
2261 if (Zsize < 0)
2262 Zsize += hc->Zlen;
2263 /* if buffer is empty */
2264 if (Zsize <= 0)
2265 return;
2266
2267 if (*sp == NULL) {
2268 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2269 if (*sp == NULL) {
2270 printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2271 __func__);
2272 return;
2273 }
2274 }
2275 /* show activity */
2276 if (dch)
2277 hc->activity_rx |= 1 << hc->chan[ch].port;
2278
2279 /* empty fifo with what we have */
2280 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2281 if (debug & DEBUG_HFCMULTI_FIFO)
2282 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2283 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2284 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2285 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2286 f1, f2, Zsize + (*sp)->len, again);
2287 /* HDLC */
2288 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2289 if (debug & DEBUG_HFCMULTI_FIFO)
2290 printk(KERN_DEBUG
2291 "%s(card %d): hdlc-frame too large.\n",
2292 __func__, hc->id + 1);
2293 skb_trim(*sp, 0);
2294 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2295 HFC_wait_nodebug(hc);
2296 return;
2297 }
2298
2299 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2300
2301 if (f1 != f2) {
2302 /* increment Z2,F2-counter */
2303 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2304 HFC_wait_nodebug(hc);
2305 /* check size */
2306 if ((*sp)->len < 4) {
2307 if (debug & DEBUG_HFCMULTI_FIFO)
2308 printk(KERN_DEBUG
2309 "%s(card %d): Frame below minimum "
2310 "size\n", __func__, hc->id + 1);
2311 skb_trim(*sp, 0);
2312 goto next_frame;
2313 }
2314 /* there is at least one complete frame, check crc */
2315 if ((*sp)->data[(*sp)->len - 1]) {
2316 if (debug & DEBUG_HFCMULTI_CRC)
2317 printk(KERN_DEBUG
2318 "%s: CRC-error\n", __func__);
2319 skb_trim(*sp, 0);
2320 goto next_frame;
2321 }
2322 skb_trim(*sp, (*sp)->len - 3);
2323 if ((*sp)->len < MISDN_COPY_SIZE) {
2324 skb = *sp;
2325 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2326 if (*sp) {
2327 memcpy(skb_put(*sp, skb->len),
2328 skb->data, skb->len);
2329 skb_trim(skb, 0);
2330 } else {
2331 printk(KERN_DEBUG "%s: No mem\n",
2332 __func__);
2333 *sp = skb;
2334 skb = NULL;
2335 }
2336 } else {
2337 skb = NULL;
2338 }
2339 if (debug & DEBUG_HFCMULTI_FIFO) {
2340 printk(KERN_DEBUG "%s(card %d):",
2341 __func__, hc->id + 1);
2342 temp = 0;
2343 while (temp < (*sp)->len)
2344 printk(" %02x", (*sp)->data[temp++]);
2345 printk("\n");
2346 }
2347 if (dch)
2348 recv_Dchannel(dch);
2349 else
2350 recv_Bchannel(bch, MISDN_ID_ANY);
2351 *sp = skb;
2352 again++;
2353 goto next_frame;
2354 }
2355 /* there is an incomplete frame */
2356 } else {
2357 /* transparent */
2358 if (Zsize > skb_tailroom(*sp))
2359 Zsize = skb_tailroom(*sp);
2360 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2361 if (((*sp)->len) < MISDN_COPY_SIZE) {
2362 skb = *sp;
2363 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2364 if (*sp) {
2365 memcpy(skb_put(*sp, skb->len),
2366 skb->data, skb->len);
2367 skb_trim(skb, 0);
2368 } else {
2369 printk(KERN_DEBUG "%s: No mem\n", __func__);
2370 *sp = skb;
2371 skb = NULL;
2372 }
2373 } else {
2374 skb = NULL;
2375 }
2376 if (debug & DEBUG_HFCMULTI_FIFO)
2377 printk(KERN_DEBUG
2378 "%s(card %d): fifo(%d) reading %d bytes "
2379 "(z1=%04x, z2=%04x) TRANS\n",
2380 __func__, hc->id + 1, ch, Zsize, z1, z2);
2381 /* only bch is transparent */
2382 recv_Bchannel(bch, hc->chan[ch].Zfill);
2383 *sp = skb;
2384 }
2385 }
2386
2387
2388 /*
2389 * Interrupt handler
2390 */
2391 static void
2392 signal_state_up(struct dchannel *dch, int info, char *msg)
2393 {
2394 struct sk_buff *skb;
2395 int id, data = info;
2396
2397 if (debug & DEBUG_HFCMULTI_STATE)
2398 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2399
2400 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2401
2402 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2403 GFP_ATOMIC);
2404 if (!skb)
2405 return;
2406 recv_Dchannel_skb(dch, skb);
2407 }
2408
2409 static inline void
2410 handle_timer_irq(struct hfc_multi *hc)
2411 {
2412 int ch, temp;
2413 struct dchannel *dch;
2414 u_long flags;
2415
2416 /* process queued resync jobs */
2417 if (hc->e1_resync) {
2418 /* lock, so e1_resync gets not changed */
2419 spin_lock_irqsave(&HFClock, flags);
2420 if (hc->e1_resync & 1) {
2421 if (debug & DEBUG_HFCMULTI_PLXSD)
2422 printk(KERN_DEBUG "Enable SYNC_I\n");
2423 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2424 /* disable JATT, if RX_SYNC is set */
2425 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2426 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2427 }
2428 if (hc->e1_resync & 2) {
2429 if (debug & DEBUG_HFCMULTI_PLXSD)
2430 printk(KERN_DEBUG "Enable jatt PLL\n");
2431 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2432 }
2433 if (hc->e1_resync & 4) {
2434 if (debug & DEBUG_HFCMULTI_PLXSD)
2435 printk(KERN_DEBUG
2436 "Enable QUARTZ for HFC-E1\n");
2437 /* set jatt to quartz */
2438 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2439 | V_JATT_OFF);
2440 /* switch to JATT, in case it is not already */
2441 HFC_outb(hc, R_SYNC_OUT, 0);
2442 }
2443 hc->e1_resync = 0;
2444 spin_unlock_irqrestore(&HFClock, flags);
2445 }
2446
2447 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2448 for (ch = 0; ch <= 31; ch++) {
2449 if (hc->created[hc->chan[ch].port]) {
2450 hfcmulti_tx(hc, ch);
2451 /* fifo is started when switching to rx-fifo */
2452 hfcmulti_rx(hc, ch);
2453 if (hc->chan[ch].dch &&
2454 hc->chan[ch].nt_timer > -1) {
2455 dch = hc->chan[ch].dch;
2456 if (!(--hc->chan[ch].nt_timer)) {
2457 schedule_event(dch,
2458 FLG_PHCHANGE);
2459 if (debug &
2460 DEBUG_HFCMULTI_STATE)
2461 printk(KERN_DEBUG
2462 "%s: nt_timer at "
2463 "state %x\n",
2464 __func__,
2465 dch->state);
2466 }
2467 }
2468 }
2469 }
2470 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2471 dch = hc->chan[hc->dnum[0]].dch;
2472 /* LOS */
2473 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2474 hc->chan[hc->dnum[0]].los = temp;
2475 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2476 if (!temp && hc->chan[hc->dnum[0]].los)
2477 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2478 "LOS detected");
2479 if (temp && !hc->chan[hc->dnum[0]].los)
2480 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2481 "LOS gone");
2482 }
2483 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2484 /* AIS */
2485 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2486 if (!temp && hc->chan[hc->dnum[0]].ais)
2487 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2488 "AIS detected");
2489 if (temp && !hc->chan[hc->dnum[0]].ais)
2490 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2491 "AIS gone");
2492 hc->chan[hc->dnum[0]].ais = temp;
2493 }
2494 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2495 /* SLIP */
2496 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2497 if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2498 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2499 " bit SLIP detected RX");
2500 hc->chan[hc->dnum[0]].slip_rx = temp;
2501 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2502 if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2503 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2504 " bit SLIP detected TX");
2505 hc->chan[hc->dnum[0]].slip_tx = temp;
2506 }
2507 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2508 /* RDI */
2509 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2510 if (!temp && hc->chan[hc->dnum[0]].rdi)
2511 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2512 "RDI detected");
2513 if (temp && !hc->chan[hc->dnum[0]].rdi)
2514 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2515 "RDI gone");
2516 hc->chan[hc->dnum[0]].rdi = temp;
2517 }
2518 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2519 switch (hc->chan[hc->dnum[0]].sync) {
2520 case 0:
2521 if ((temp & 0x60) == 0x60) {
2522 if (debug & DEBUG_HFCMULTI_SYNC)
2523 printk(KERN_DEBUG
2524 "%s: (id=%d) E1 now "
2525 "in clock sync\n",
2526 __func__, hc->id);
2527 HFC_outb(hc, R_RX_OFF,
2528 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2529 HFC_outb(hc, R_TX_OFF,
2530 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2531 hc->chan[hc->dnum[0]].sync = 1;
2532 goto check_framesync;
2533 }
2534 break;
2535 case 1:
2536 if ((temp & 0x60) != 0x60) {
2537 if (debug & DEBUG_HFCMULTI_SYNC)
2538 printk(KERN_DEBUG
2539 "%s: (id=%d) E1 "
2540 "lost clock sync\n",
2541 __func__, hc->id);
2542 hc->chan[hc->dnum[0]].sync = 0;
2543 break;
2544 }
2545 check_framesync:
2546 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2547 if (temp == 0x27) {
2548 if (debug & DEBUG_HFCMULTI_SYNC)
2549 printk(KERN_DEBUG
2550 "%s: (id=%d) E1 "
2551 "now in frame sync\n",
2552 __func__, hc->id);
2553 hc->chan[hc->dnum[0]].sync = 2;
2554 }
2555 break;
2556 case 2:
2557 if ((temp & 0x60) != 0x60) {
2558 if (debug & DEBUG_HFCMULTI_SYNC)
2559 printk(KERN_DEBUG
2560 "%s: (id=%d) E1 lost "
2561 "clock & frame sync\n",
2562 __func__, hc->id);
2563 hc->chan[hc->dnum[0]].sync = 0;
2564 break;
2565 }
2566 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2567 if (temp != 0x27) {
2568 if (debug & DEBUG_HFCMULTI_SYNC)
2569 printk(KERN_DEBUG
2570 "%s: (id=%d) E1 "
2571 "lost frame sync\n",
2572 __func__, hc->id);
2573 hc->chan[hc->dnum[0]].sync = 1;
2574 }
2575 break;
2576 }
2577 }
2578
2579 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2580 hfcmulti_watchdog(hc);
2581
2582 if (hc->leds)
2583 hfcmulti_leds(hc);
2584 }
2585
2586 static void
2587 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2588 {
2589 struct dchannel *dch;
2590 int ch;
2591 int active;
2592 u_char st_status, temp;
2593
2594 /* state machine */
2595 for (ch = 0; ch <= 31; ch++) {
2596 if (hc->chan[ch].dch) {
2597 dch = hc->chan[ch].dch;
2598 if (r_irq_statech & 1) {
2599 HFC_outb_nodebug(hc, R_ST_SEL,
2600 hc->chan[ch].port);
2601 /* undocumented: delay after R_ST_SEL */
2602 udelay(1);
2603 /* undocumented: status changes during read */
2604 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2605 while (st_status != (temp =
2606 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2607 if (debug & DEBUG_HFCMULTI_STATE)
2608 printk(KERN_DEBUG "%s: reread "
2609 "STATE because %d!=%d\n",
2610 __func__, temp,
2611 st_status);
2612 st_status = temp; /* repeat */
2613 }
2614
2615 /* Speech Design TE-sync indication */
2616 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2617 dch->dev.D.protocol == ISDN_P_TE_S0) {
2618 if (st_status & V_FR_SYNC_ST)
2619 hc->syncronized |=
2620 (1 << hc->chan[ch].port);
2621 else
2622 hc->syncronized &=
2623 ~(1 << hc->chan[ch].port);
2624 }
2625 dch->state = st_status & 0x0f;
2626 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2627 active = 3;
2628 else
2629 active = 7;
2630 if (dch->state == active) {
2631 HFC_outb_nodebug(hc, R_FIFO,
2632 (ch << 1) | 1);
2633 HFC_wait_nodebug(hc);
2634 HFC_outb_nodebug(hc,
2635 R_INC_RES_FIFO, V_RES_F);
2636 HFC_wait_nodebug(hc);
2637 dch->tx_idx = 0;
2638 }
2639 schedule_event(dch, FLG_PHCHANGE);
2640 if (debug & DEBUG_HFCMULTI_STATE)
2641 printk(KERN_DEBUG
2642 "%s: S/T newstate %x port %d\n",
2643 __func__, dch->state,
2644 hc->chan[ch].port);
2645 }
2646 r_irq_statech >>= 1;
2647 }
2648 }
2649 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2650 plxsd_checksync(hc, 0);
2651 }
2652
2653 static void
2654 fifo_irq(struct hfc_multi *hc, int block)
2655 {
2656 int ch, j;
2657 struct dchannel *dch;
2658 struct bchannel *bch;
2659 u_char r_irq_fifo_bl;
2660
2661 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2662 j = 0;
2663 while (j < 8) {
2664 ch = (block << 2) + (j >> 1);
2665 dch = hc->chan[ch].dch;
2666 bch = hc->chan[ch].bch;
2667 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2668 j += 2;
2669 continue;
2670 }
2671 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2672 test_bit(FLG_ACTIVE, &dch->Flags)) {
2673 hfcmulti_tx(hc, ch);
2674 /* start fifo */
2675 HFC_outb_nodebug(hc, R_FIFO, 0);
2676 HFC_wait_nodebug(hc);
2677 }
2678 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2679 test_bit(FLG_ACTIVE, &bch->Flags)) {
2680 hfcmulti_tx(hc, ch);
2681 /* start fifo */
2682 HFC_outb_nodebug(hc, R_FIFO, 0);
2683 HFC_wait_nodebug(hc);
2684 }
2685 j++;
2686 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2687 test_bit(FLG_ACTIVE, &dch->Flags)) {
2688 hfcmulti_rx(hc, ch);
2689 }
2690 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2691 test_bit(FLG_ACTIVE, &bch->Flags)) {
2692 hfcmulti_rx(hc, ch);
2693 }
2694 j++;
2695 }
2696 }
2697
2698 #ifdef IRQ_DEBUG
2699 int irqsem;
2700 #endif
2701 static irqreturn_t
2702 hfcmulti_interrupt(int intno, void *dev_id)
2703 {
2704 #ifdef IRQCOUNT_DEBUG
2705 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2706 iq5 = 0, iq6 = 0, iqcnt = 0;
2707 #endif
2708 struct hfc_multi *hc = dev_id;
2709 struct dchannel *dch;
2710 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2711 int i;
2712 void __iomem *plx_acc;
2713 u_short wval;
2714 u_char e1_syncsta, temp, temp2;
2715 u_long flags;
2716
2717 if (!hc) {
2718 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2719 return IRQ_NONE;
2720 }
2721
2722 spin_lock(&hc->lock);
2723
2724 #ifdef IRQ_DEBUG
2725 if (irqsem)
2726 printk(KERN_ERR "irq for card %d during irq from "
2727 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2728 irqsem = hc->id + 1;
2729 #endif
2730 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2731 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2732 goto irq_notforus;
2733 #endif
2734 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2735 spin_lock_irqsave(&plx_lock, flags);
2736 plx_acc = hc->plx_membase + PLX_INTCSR;
2737 wval = readw(plx_acc);
2738 spin_unlock_irqrestore(&plx_lock, flags);
2739 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2740 goto irq_notforus;
2741 }
2742
2743 status = HFC_inb_nodebug(hc, R_STATUS);
2744 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2745 #ifdef IRQCOUNT_DEBUG
2746 if (r_irq_statech)
2747 iq1++;
2748 if (status & V_DTMF_STA)
2749 iq2++;
2750 if (status & V_LOST_STA)
2751 iq3++;
2752 if (status & V_EXT_IRQSTA)
2753 iq4++;
2754 if (status & V_MISC_IRQSTA)
2755 iq5++;
2756 if (status & V_FR_IRQSTA)
2757 iq6++;
2758 if (iqcnt++ > 5000) {
2759 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2760 iq1, iq2, iq3, iq4, iq5, iq6);
2761 iqcnt = 0;
2762 }
2763 #endif
2764
2765 if (!r_irq_statech &&
2766 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2767 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2768 /* irq is not for us */
2769 goto irq_notforus;
2770 }
2771 hc->irqcnt++;
2772 if (r_irq_statech) {
2773 if (hc->ctype != HFC_TYPE_E1)
2774 ph_state_irq(hc, r_irq_statech);
2775 }
2776 if (status & V_EXT_IRQSTA)
2777 ; /* external IRQ */
2778 if (status & V_LOST_STA) {
2779 /* LOST IRQ */
2780 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2781 }
2782 if (status & V_MISC_IRQSTA) {
2783 /* misc IRQ */
2784 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2785 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2786 if (r_irq_misc & V_STA_IRQ) {
2787 if (hc->ctype == HFC_TYPE_E1) {
2788 /* state machine */
2789 dch = hc->chan[hc->dnum[0]].dch;
2790 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2791 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2792 && hc->e1_getclock) {
2793 if (e1_syncsta & V_FR_SYNC_E1)
2794 hc->syncronized = 1;
2795 else
2796 hc->syncronized = 0;
2797 }
2798 /* undocumented: status changes during read */
2799 temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2800 while (temp != (temp2 =
2801 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2802 if (debug & DEBUG_HFCMULTI_STATE)
2803 printk(KERN_DEBUG "%s: reread "
2804 "STATE because %d!=%d\n",
2805 __func__, temp, temp2);
2806 temp = temp2; /* repeat */
2807 }
2808 /* broadcast state change to all fragments */
2809 if (debug & DEBUG_HFCMULTI_STATE)
2810 printk(KERN_DEBUG
2811 "%s: E1 (id=%d) newstate %x\n",
2812 __func__, hc->id, temp & 0x7);
2813 for (i = 0; i < hc->ports; i++) {
2814 dch = hc->chan[hc->dnum[i]].dch;
2815 dch->state = temp & 0x7;
2816 schedule_event(dch, FLG_PHCHANGE);
2817 }
2818
2819 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2820 plxsd_checksync(hc, 0);
2821 }
2822 }
2823 if (r_irq_misc & V_TI_IRQ) {
2824 if (hc->iclock_on)
2825 mISDN_clock_update(hc->iclock, poll, NULL);
2826 handle_timer_irq(hc);
2827 }
2828
2829 if (r_irq_misc & V_DTMF_IRQ)
2830 hfcmulti_dtmf(hc);
2831
2832 if (r_irq_misc & V_IRQ_PROC) {
2833 static int irq_proc_cnt;
2834 if (!irq_proc_cnt++)
2835 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2836 " this should not happen\n", __func__);
2837 }
2838
2839 }
2840 if (status & V_FR_IRQSTA) {
2841 /* FIFO IRQ */
2842 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2843 for (i = 0; i < 8; i++) {
2844 if (r_irq_oview & (1 << i))
2845 fifo_irq(hc, i);
2846 }
2847 }
2848
2849 #ifdef IRQ_DEBUG
2850 irqsem = 0;
2851 #endif
2852 spin_unlock(&hc->lock);
2853 return IRQ_HANDLED;
2854
2855 irq_notforus:
2856 #ifdef IRQ_DEBUG
2857 irqsem = 0;
2858 #endif
2859 spin_unlock(&hc->lock);
2860 return IRQ_NONE;
2861 }
2862
2863
2864 /*
2865 * timer callback for D-chan busy resolution. Currently no function
2866 */
2867
2868 static void
2869 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2870 {
2871 }
2872
2873
2874 /*
2875 * activate/deactivate hardware for selected channels and mode
2876 *
2877 * configure B-channel with the given protocol
2878 * ch eqals to the HFC-channel (0-31)
2879 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2880 * for S/T, 1-31 for E1)
2881 * the hdlc interrupts will be set/unset
2882 */
2883 static int
2884 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2885 int bank_tx, int slot_rx, int bank_rx)
2886 {
2887 int flow_tx = 0, flow_rx = 0, routing = 0;
2888 int oslot_tx, oslot_rx;
2889 int conf;
2890
2891 if (ch < 0 || ch > 31)
2892 return -EINVAL;
2893 oslot_tx = hc->chan[ch].slot_tx;
2894 oslot_rx = hc->chan[ch].slot_rx;
2895 conf = hc->chan[ch].conf;
2896
2897 if (debug & DEBUG_HFCMULTI_MODE)
2898 printk(KERN_DEBUG
2899 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2900 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2901 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2902 bank_tx, oslot_rx, slot_rx, bank_rx);
2903
2904 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2905 /* remove from slot */
2906 if (debug & DEBUG_HFCMULTI_MODE)
2907 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2908 __func__, oslot_tx);
2909 if (hc->slot_owner[oslot_tx << 1] == ch) {
2910 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2911 HFC_outb(hc, A_SL_CFG, 0);
2912 if (hc->ctype != HFC_TYPE_XHFC)
2913 HFC_outb(hc, A_CONF, 0);
2914 hc->slot_owner[oslot_tx << 1] = -1;
2915 } else {
2916 if (debug & DEBUG_HFCMULTI_MODE)
2917 printk(KERN_DEBUG
2918 "%s: we are not owner of this tx slot "
2919 "anymore, channel %d is.\n",
2920 __func__, hc->slot_owner[oslot_tx << 1]);
2921 }
2922 }
2923
2924 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2925 /* remove from slot */
2926 if (debug & DEBUG_HFCMULTI_MODE)
2927 printk(KERN_DEBUG
2928 "%s: remove from slot %d (RX)\n",
2929 __func__, oslot_rx);
2930 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2931 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2932 HFC_outb(hc, A_SL_CFG, 0);
2933 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2934 } else {
2935 if (debug & DEBUG_HFCMULTI_MODE)
2936 printk(KERN_DEBUG
2937 "%s: we are not owner of this rx slot "
2938 "anymore, channel %d is.\n",
2939 __func__,
2940 hc->slot_owner[(oslot_rx << 1) | 1]);
2941 }
2942 }
2943
2944 if (slot_tx < 0) {
2945 flow_tx = 0x80; /* FIFO->ST */
2946 /* disable pcm slot */
2947 hc->chan[ch].slot_tx = -1;
2948 hc->chan[ch].bank_tx = 0;
2949 } else {
2950 /* set pcm slot */
2951 if (hc->chan[ch].txpending)
2952 flow_tx = 0x80; /* FIFO->ST */
2953 else
2954 flow_tx = 0xc0; /* PCM->ST */
2955 /* put on slot */
2956 routing = bank_tx ? 0xc0 : 0x80;
2957 if (conf >= 0 || bank_tx > 1)
2958 routing = 0x40; /* loop */
2959 if (debug & DEBUG_HFCMULTI_MODE)
2960 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2961 " %d flow %02x routing %02x conf %d (TX)\n",
2962 __func__, ch, slot_tx, bank_tx,
2963 flow_tx, routing, conf);
2964 HFC_outb(hc, R_SLOT, slot_tx << 1);
2965 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2966 if (hc->ctype != HFC_TYPE_XHFC)
2967 HFC_outb(hc, A_CONF,
2968 (conf < 0) ? 0 : (conf | V_CONF_SL));
2969 hc->slot_owner[slot_tx << 1] = ch;
2970 hc->chan[ch].slot_tx = slot_tx;
2971 hc->chan[ch].bank_tx = bank_tx;
2972 }
2973 if (slot_rx < 0) {
2974 /* disable pcm slot */
2975 flow_rx = 0x80; /* ST->FIFO */
2976 hc->chan[ch].slot_rx = -1;
2977 hc->chan[ch].bank_rx = 0;
2978 } else {
2979 /* set pcm slot */
2980 if (hc->chan[ch].txpending)
2981 flow_rx = 0x80; /* ST->FIFO */
2982 else
2983 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2984 /* put on slot */
2985 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2986 if (conf >= 0 || bank_rx > 1)
2987 routing = 0x40; /* loop */
2988 if (debug & DEBUG_HFCMULTI_MODE)
2989 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2990 " %d flow %02x routing %02x conf %d (RX)\n",
2991 __func__, ch, slot_rx, bank_rx,
2992 flow_rx, routing, conf);
2993 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2994 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2995 hc->slot_owner[(slot_rx << 1) | 1] = ch;
2996 hc->chan[ch].slot_rx = slot_rx;
2997 hc->chan[ch].bank_rx = bank_rx;
2998 }
2999
3000 switch (protocol) {
3001 case (ISDN_P_NONE):
3002 /* disable TX fifo */
3003 HFC_outb(hc, R_FIFO, ch << 1);
3004 HFC_wait(hc);
3005 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
3006 HFC_outb(hc, A_SUBCH_CFG, 0);
3007 HFC_outb(hc, A_IRQ_MSK, 0);
3008 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3009 HFC_wait(hc);
3010 /* disable RX fifo */
3011 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3012 HFC_wait(hc);
3013 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
3014 HFC_outb(hc, A_SUBCH_CFG, 0);
3015 HFC_outb(hc, A_IRQ_MSK, 0);
3016 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3017 HFC_wait(hc);
3018 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
3019 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
3020 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
3021 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3022 /* undocumented: delay after R_ST_SEL */
3023 udelay(1);
3024 HFC_outb(hc, A_ST_CTRL0,
3025 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3026 }
3027 if (hc->chan[ch].bch) {
3028 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3029 test_and_clear_bit(FLG_TRANSPARENT,
3030 &hc->chan[ch].bch->Flags);
3031 }
3032 break;
3033 case (ISDN_P_B_RAW): /* B-channel */
3034
3035 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
3036 (hc->chan[ch].slot_rx < 0) &&
3037 (hc->chan[ch].slot_tx < 0)) {
3038
3039 printk(KERN_DEBUG
3040 "Setting B-channel %d to echo cancelable "
3041 "state on PCM slot %d\n", ch,
3042 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3043 printk(KERN_DEBUG
3044 "Enabling pass through for channel\n");
3045 vpm_out(hc, ch, ((ch / 4) * 8) +
3046 ((ch % 4) * 4) + 1, 0x01);
3047 /* rx path */
3048 /* S/T -> PCM */
3049 HFC_outb(hc, R_FIFO, (ch << 1));
3050 HFC_wait(hc);
3051 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3052 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3053 ((ch % 4) * 4) + 1) << 1);
3054 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3055
3056 /* PCM -> FIFO */
3057 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3058 HFC_wait(hc);
3059 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3060 HFC_outb(hc, A_SUBCH_CFG, 0);
3061 HFC_outb(hc, A_IRQ_MSK, 0);
3062 if (hc->chan[ch].protocol != protocol) {
3063 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3064 HFC_wait(hc);
3065 }
3066 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3067 ((ch % 4) * 4) + 1) << 1) | 1);
3068 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3069
3070 /* tx path */
3071 /* PCM -> S/T */
3072 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3073 HFC_wait(hc);
3074 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3075 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3076 ((ch % 4) * 4)) << 1) | 1);
3077 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3078
3079 /* FIFO -> PCM */
3080 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3081 HFC_wait(hc);
3082 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3083 HFC_outb(hc, A_SUBCH_CFG, 0);
3084 HFC_outb(hc, A_IRQ_MSK, 0);
3085 if (hc->chan[ch].protocol != protocol) {
3086 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3087 HFC_wait(hc);
3088 }
3089 /* tx silence */
3090 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3091 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3092 ((ch % 4) * 4)) << 1);
3093 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3094 } else {
3095 /* enable TX fifo */
3096 HFC_outb(hc, R_FIFO, ch << 1);
3097 HFC_wait(hc);
3098 if (hc->ctype == HFC_TYPE_XHFC)
3099 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3100 V_HDLC_TRP | V_IFF);
3101 /* Enable FIFO, no interrupt */
3102 else
3103 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3104 V_HDLC_TRP | V_IFF);
3105 HFC_outb(hc, A_SUBCH_CFG, 0);
3106 HFC_outb(hc, A_IRQ_MSK, 0);
3107 if (hc->chan[ch].protocol != protocol) {
3108 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3109 HFC_wait(hc);
3110 }
3111 /* tx silence */
3112 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3113 /* enable RX fifo */
3114 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3115 HFC_wait(hc);
3116 if (hc->ctype == HFC_TYPE_XHFC)
3117 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3118 V_HDLC_TRP);
3119 /* Enable FIFO, no interrupt*/
3120 else
3121 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3122 V_HDLC_TRP);
3123 HFC_outb(hc, A_SUBCH_CFG, 0);
3124 HFC_outb(hc, A_IRQ_MSK, 0);
3125 if (hc->chan[ch].protocol != protocol) {
3126 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3127 HFC_wait(hc);
3128 }
3129 }
3130 if (hc->ctype != HFC_TYPE_E1) {
3131 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3132 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3133 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3134 /* undocumented: delay after R_ST_SEL */
3135 udelay(1);
3136 HFC_outb(hc, A_ST_CTRL0,
3137 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3138 }
3139 if (hc->chan[ch].bch)
3140 test_and_set_bit(FLG_TRANSPARENT,
3141 &hc->chan[ch].bch->Flags);
3142 break;
3143 case (ISDN_P_B_HDLC): /* B-channel */
3144 case (ISDN_P_TE_S0): /* D-channel */
3145 case (ISDN_P_NT_S0):
3146 case (ISDN_P_TE_E1):
3147 case (ISDN_P_NT_E1):
3148 /* enable TX fifo */
3149 HFC_outb(hc, R_FIFO, ch << 1);
3150 HFC_wait(hc);
3151 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3152 /* E1 or B-channel */
3153 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3154 HFC_outb(hc, A_SUBCH_CFG, 0);
3155 } else {
3156 /* D-Channel without HDLC fill flags */
3157 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3158 HFC_outb(hc, A_SUBCH_CFG, 2);
3159 }
3160 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3161 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3162 HFC_wait(hc);
3163 /* enable RX fifo */
3164 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3165 HFC_wait(hc);
3166 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3167 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3168 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3169 else
3170 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3171 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3172 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3173 HFC_wait(hc);
3174 if (hc->chan[ch].bch) {
3175 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3176 if (hc->ctype != HFC_TYPE_E1) {
3177 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3178 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3179 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3180 /* undocumented: delay after R_ST_SEL */
3181 udelay(1);
3182 HFC_outb(hc, A_ST_CTRL0,
3183 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3184 }
3185 }
3186 break;
3187 default:
3188 printk(KERN_DEBUG "%s: protocol not known %x\n",
3189 __func__, protocol);
3190 hc->chan[ch].protocol = ISDN_P_NONE;
3191 return -ENOPROTOOPT;
3192 }
3193 hc->chan[ch].protocol = protocol;
3194 return 0;
3195 }
3196
3197
3198 /*
3199 * connect/disconnect PCM
3200 */
3201
3202 static void
3203 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3204 int slot_rx, int bank_rx)
3205 {
3206 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3207 /* disable PCM */
3208 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3209 return;
3210 }
3211
3212 /* enable pcm */
3213 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3214 slot_rx, bank_rx);
3215 }
3216
3217 /*
3218 * set/disable conference
3219 */
3220
3221 static void
3222 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3223 {
3224 if (num >= 0 && num <= 7)
3225 hc->chan[ch].conf = num;
3226 else
3227 hc->chan[ch].conf = -1;
3228 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3229 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3230 hc->chan[ch].bank_rx);
3231 }
3232
3233
3234 /*
3235 * set/disable sample loop
3236 */
3237
3238 /* NOTE: this function is experimental and therefore disabled */
3239
3240 /*
3241 * Layer 1 callback function
3242 */
3243 static int
3244 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3245 {
3246 struct hfc_multi *hc = dch->hw;
3247 u_long flags;
3248
3249 switch (cmd) {
3250 case INFO3_P8:
3251 case INFO3_P10:
3252 break;
3253 case HW_RESET_REQ:
3254 /* start activation */
3255 spin_lock_irqsave(&hc->lock, flags);
3256 if (hc->ctype == HFC_TYPE_E1) {
3257 if (debug & DEBUG_HFCMULTI_MSG)
3258 printk(KERN_DEBUG
3259 "%s: HW_RESET_REQ no BRI\n",
3260 __func__);
3261 } else {
3262 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3263 /* undocumented: delay after R_ST_SEL */
3264 udelay(1);
3265 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3266 udelay(6); /* wait at least 5,21us */
3267 HFC_outb(hc, A_ST_WR_STATE, 3);
3268 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3269 /* activate */
3270 }
3271 spin_unlock_irqrestore(&hc->lock, flags);
3272 l1_event(dch->l1, HW_POWERUP_IND);
3273 break;
3274 case HW_DEACT_REQ:
3275 /* start deactivation */
3276 spin_lock_irqsave(&hc->lock, flags);
3277 if (hc->ctype == HFC_TYPE_E1) {
3278 if (debug & DEBUG_HFCMULTI_MSG)
3279 printk(KERN_DEBUG
3280 "%s: HW_DEACT_REQ no BRI\n",
3281 __func__);
3282 } else {
3283 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3284 /* undocumented: delay after R_ST_SEL */
3285 udelay(1);
3286 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3287 /* deactivate */
3288 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3289 hc->syncronized &=
3290 ~(1 << hc->chan[dch->slot].port);
3291 plxsd_checksync(hc, 0);
3292 }
3293 }
3294 skb_queue_purge(&dch->squeue);
3295 if (dch->tx_skb) {
3296 dev_kfree_skb(dch->tx_skb);
3297 dch->tx_skb = NULL;
3298 }
3299 dch->tx_idx = 0;
3300 if (dch->rx_skb) {
3301 dev_kfree_skb(dch->rx_skb);
3302 dch->rx_skb = NULL;
3303 }
3304 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3305 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3306 del_timer(&dch->timer);
3307 spin_unlock_irqrestore(&hc->lock, flags);
3308 break;
3309 case HW_POWERUP_REQ:
3310 spin_lock_irqsave(&hc->lock, flags);
3311 if (hc->ctype == HFC_TYPE_E1) {
3312 if (debug & DEBUG_HFCMULTI_MSG)
3313 printk(KERN_DEBUG
3314 "%s: HW_POWERUP_REQ no BRI\n",
3315 __func__);
3316 } else {
3317 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3318 /* undocumented: delay after R_ST_SEL */
3319 udelay(1);
3320 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3321 udelay(6); /* wait at least 5,21us */
3322 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3323 }
3324 spin_unlock_irqrestore(&hc->lock, flags);
3325 break;
3326 case PH_ACTIVATE_IND:
3327 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3328 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3329 GFP_ATOMIC);
3330 break;
3331 case PH_DEACTIVATE_IND:
3332 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3333 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3334 GFP_ATOMIC);
3335 break;
3336 default:
3337 if (dch->debug & DEBUG_HW)
3338 printk(KERN_DEBUG "%s: unknown command %x\n",
3339 __func__, cmd);
3340 return -1;
3341 }
3342 return 0;
3343 }
3344
3345 /*
3346 * Layer2 -> Layer 1 Transfer
3347 */
3348
3349 static int
3350 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3351 {
3352 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3353 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3354 struct hfc_multi *hc = dch->hw;
3355 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3356 int ret = -EINVAL;
3357 unsigned int id;
3358 u_long flags;
3359
3360 switch (hh->prim) {
3361 case PH_DATA_REQ:
3362 if (skb->len < 1)
3363 break;
3364 spin_lock_irqsave(&hc->lock, flags);
3365 ret = dchannel_senddata(dch, skb);
3366 if (ret > 0) { /* direct TX */
3367 id = hh->id; /* skb can be freed */
3368 hfcmulti_tx(hc, dch->slot);
3369 ret = 0;
3370 /* start fifo */
3371 HFC_outb(hc, R_FIFO, 0);
3372 HFC_wait(hc);
3373 spin_unlock_irqrestore(&hc->lock, flags);
3374 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3375 } else
3376 spin_unlock_irqrestore(&hc->lock, flags);
3377 return ret;
3378 case PH_ACTIVATE_REQ:
3379 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3380 spin_lock_irqsave(&hc->lock, flags);
3381 ret = 0;
3382 if (debug & DEBUG_HFCMULTI_MSG)
3383 printk(KERN_DEBUG
3384 "%s: PH_ACTIVATE port %d (0..%d)\n",
3385 __func__, hc->chan[dch->slot].port,
3386 hc->ports - 1);
3387 /* start activation */
3388 if (hc->ctype == HFC_TYPE_E1) {
3389 ph_state_change(dch);
3390 if (debug & DEBUG_HFCMULTI_STATE)
3391 printk(KERN_DEBUG
3392 "%s: E1 report state %x \n",
3393 __func__, dch->state);
3394 } else {
3395 HFC_outb(hc, R_ST_SEL,
3396 hc->chan[dch->slot].port);
3397 /* undocumented: delay after R_ST_SEL */
3398 udelay(1);
3399 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3400 /* G1 */
3401 udelay(6); /* wait at least 5,21us */
3402 HFC_outb(hc, A_ST_WR_STATE, 1);
3403 HFC_outb(hc, A_ST_WR_STATE, 1 |
3404 (V_ST_ACT * 3)); /* activate */
3405 dch->state = 1;
3406 }
3407 spin_unlock_irqrestore(&hc->lock, flags);
3408 } else
3409 ret = l1_event(dch->l1, hh->prim);
3410 break;
3411 case PH_DEACTIVATE_REQ:
3412 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3413 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3414 spin_lock_irqsave(&hc->lock, flags);
3415 if (debug & DEBUG_HFCMULTI_MSG)
3416 printk(KERN_DEBUG
3417 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3418 __func__, hc->chan[dch->slot].port,
3419 hc->ports - 1);
3420 /* start deactivation */
3421 if (hc->ctype == HFC_TYPE_E1) {
3422 if (debug & DEBUG_HFCMULTI_MSG)
3423 printk(KERN_DEBUG
3424 "%s: PH_DEACTIVATE no BRI\n",
3425 __func__);
3426 } else {
3427 HFC_outb(hc, R_ST_SEL,
3428 hc->chan[dch->slot].port);
3429 /* undocumented: delay after R_ST_SEL */
3430 udelay(1);
3431 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3432 /* deactivate */
3433 dch->state = 1;
3434 }
3435 skb_queue_purge(&dch->squeue);
3436 if (dch->tx_skb) {
3437 dev_kfree_skb(dch->tx_skb);
3438 dch->tx_skb = NULL;
3439 }
3440 dch->tx_idx = 0;
3441 if (dch->rx_skb) {
3442 dev_kfree_skb(dch->rx_skb);
3443 dch->rx_skb = NULL;
3444 }
3445 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3446 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3447 del_timer(&dch->timer);
3448 #ifdef FIXME
3449 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3450 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3451 #endif
3452 ret = 0;
3453 spin_unlock_irqrestore(&hc->lock, flags);
3454 } else
3455 ret = l1_event(dch->l1, hh->prim);
3456 break;
3457 }
3458 if (!ret)
3459 dev_kfree_skb(skb);
3460 return ret;
3461 }
3462
3463 static void
3464 deactivate_bchannel(struct bchannel *bch)
3465 {
3466 struct hfc_multi *hc = bch->hw;
3467 u_long flags;
3468
3469 spin_lock_irqsave(&hc->lock, flags);
3470 mISDN_clear_bchannel(bch);
3471 hc->chan[bch->slot].coeff_count = 0;
3472 hc->chan[bch->slot].rx_off = 0;
3473 hc->chan[bch->slot].conf = -1;
3474 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3475 spin_unlock_irqrestore(&hc->lock, flags);
3476 }
3477
3478 static int
3479 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3480 {
3481 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3482 struct hfc_multi *hc = bch->hw;
3483 int ret = -EINVAL;
3484 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3485 unsigned int id;
3486 u_long flags;
3487
3488 switch (hh->prim) {
3489 case PH_DATA_REQ:
3490 if (!skb->len)
3491 break;
3492 spin_lock_irqsave(&hc->lock, flags);
3493 ret = bchannel_senddata(bch, skb);
3494 if (ret > 0) { /* direct TX */
3495 id = hh->id; /* skb can be freed */
3496 hfcmulti_tx(hc, bch->slot);
3497 ret = 0;
3498 /* start fifo */
3499 HFC_outb_nodebug(hc, R_FIFO, 0);
3500 HFC_wait_nodebug(hc);
3501 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3502 spin_unlock_irqrestore(&hc->lock, flags);
3503 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3504 } else
3505 spin_unlock_irqrestore(&hc->lock, flags);
3506 } else
3507 spin_unlock_irqrestore(&hc->lock, flags);
3508 return ret;
3509 case PH_ACTIVATE_REQ:
3510 if (debug & DEBUG_HFCMULTI_MSG)
3511 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3512 __func__, bch->slot);
3513 spin_lock_irqsave(&hc->lock, flags);
3514 /* activate B-channel if not already activated */
3515 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3516 hc->chan[bch->slot].txpending = 0;
3517 ret = mode_hfcmulti(hc, bch->slot,
3518 ch->protocol,
3519 hc->chan[bch->slot].slot_tx,
3520 hc->chan[bch->slot].bank_tx,
3521 hc->chan[bch->slot].slot_rx,
3522 hc->chan[bch->slot].bank_rx);
3523 if (!ret) {
3524 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3525 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3526 /* start decoder */
3527 hc->dtmf = 1;
3528 if (debug & DEBUG_HFCMULTI_DTMF)
3529 printk(KERN_DEBUG
3530 "%s: start dtmf decoder\n",
3531 __func__);
3532 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3533 V_RST_DTMF);
3534 }
3535 }
3536 } else
3537 ret = 0;
3538 spin_unlock_irqrestore(&hc->lock, flags);
3539 if (!ret)
3540 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3541 GFP_KERNEL);
3542 break;
3543 case PH_CONTROL_REQ:
3544 spin_lock_irqsave(&hc->lock, flags);
3545 switch (hh->id) {
3546 case HFC_SPL_LOOP_ON: /* set sample loop */
3547 if (debug & DEBUG_HFCMULTI_MSG)
3548 printk(KERN_DEBUG
3549 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3550 __func__, skb->len);
3551 ret = 0;
3552 break;
3553 case HFC_SPL_LOOP_OFF: /* set silence */
3554 if (debug & DEBUG_HFCMULTI_MSG)
3555 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3556 __func__);
3557 ret = 0;
3558 break;
3559 default:
3560 printk(KERN_ERR
3561 "%s: unknown PH_CONTROL_REQ info %x\n",
3562 __func__, hh->id);
3563 ret = -EINVAL;
3564 }
3565 spin_unlock_irqrestore(&hc->lock, flags);
3566 break;
3567 case PH_DEACTIVATE_REQ:
3568 deactivate_bchannel(bch); /* locked there */
3569 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3570 GFP_KERNEL);
3571 ret = 0;
3572 break;
3573 }
3574 if (!ret)
3575 dev_kfree_skb(skb);
3576 return ret;
3577 }
3578
3579 /*
3580 * bchannel control function
3581 */
3582 static int
3583 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3584 {
3585 int ret = 0;
3586 struct dsp_features *features =
3587 (struct dsp_features *)(*((u_long *)&cq->p1));
3588 struct hfc_multi *hc = bch->hw;
3589 int slot_tx;
3590 int bank_tx;
3591 int slot_rx;
3592 int bank_rx;
3593 int num;
3594
3595 switch (cq->op) {
3596 case MISDN_CTRL_GETOP:
3597 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3598 | MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
3599 break;
3600 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3601 hc->chan[bch->slot].rx_off = !!cq->p1;
3602 if (!hc->chan[bch->slot].rx_off) {
3603 /* reset fifo on rx on */
3604 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3605 HFC_wait_nodebug(hc);
3606 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3607 HFC_wait_nodebug(hc);
3608 }
3609 if (debug & DEBUG_HFCMULTI_MSG)
3610 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3611 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3612 break;
3613 case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3614 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3615 if (debug & DEBUG_HFCMULTI_MSG)
3616 printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3617 "off=%d)\n", __func__, bch->nr, !!cq->p1);
3618 break;
3619 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3620 if (debug & DEBUG_HFCMULTI_MSG)
3621 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3622 __func__);
3623 /* create confirm */
3624 features->hfc_id = hc->id;
3625 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3626 features->hfc_dtmf = 1;
3627 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3628 features->hfc_conf = 1;
3629 features->hfc_loops = 0;
3630 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3631 features->hfc_echocanhw = 1;
3632 } else {
3633 features->pcm_id = hc->pcm;
3634 features->pcm_slots = hc->slots;
3635 features->pcm_banks = 2;
3636 }
3637 break;
3638 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3639 slot_tx = cq->p1 & 0xff;
3640 bank_tx = cq->p1 >> 8;
3641 slot_rx = cq->p2 & 0xff;
3642 bank_rx = cq->p2 >> 8;
3643 if (debug & DEBUG_HFCMULTI_MSG)
3644 printk(KERN_DEBUG
3645 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3646 "slot %d bank %d (RX)\n",
3647 __func__, slot_tx, bank_tx,
3648 slot_rx, bank_rx);
3649 if (slot_tx < hc->slots && bank_tx <= 2 &&
3650 slot_rx < hc->slots && bank_rx <= 2)
3651 hfcmulti_pcm(hc, bch->slot,
3652 slot_tx, bank_tx, slot_rx, bank_rx);
3653 else {
3654 printk(KERN_WARNING
3655 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3656 "slot %d bank %d (RX) out of range\n",
3657 __func__, slot_tx, bank_tx,
3658 slot_rx, bank_rx);
3659 ret = -EINVAL;
3660 }
3661 break;
3662 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3663 if (debug & DEBUG_HFCMULTI_MSG)
3664 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3665 __func__);
3666 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3667 break;
3668 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3669 num = cq->p1 & 0xff;
3670 if (debug & DEBUG_HFCMULTI_MSG)
3671 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3672 __func__, num);
3673 if (num <= 7)
3674 hfcmulti_conf(hc, bch->slot, num);
3675 else {
3676 printk(KERN_WARNING
3677 "%s: HW_CONF_JOIN conf %d out of range\n",
3678 __func__, num);
3679 ret = -EINVAL;
3680 }
3681 break;
3682 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3683 if (debug & DEBUG_HFCMULTI_MSG)
3684 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3685 hfcmulti_conf(hc, bch->slot, -1);
3686 break;
3687 case MISDN_CTRL_HFC_ECHOCAN_ON:
3688 if (debug & DEBUG_HFCMULTI_MSG)
3689 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3690 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3691 vpm_echocan_on(hc, bch->slot, cq->p1);
3692 else
3693 ret = -EINVAL;
3694 break;
3695
3696 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3697 if (debug & DEBUG_HFCMULTI_MSG)
3698 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3699 __func__);
3700 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3701 vpm_echocan_off(hc, bch->slot);
3702 else
3703 ret = -EINVAL;
3704 break;
3705 default:
3706 printk(KERN_WARNING "%s: unknown Op %x\n",
3707 __func__, cq->op);
3708 ret = -EINVAL;
3709 break;
3710 }
3711 return ret;
3712 }
3713
3714 static int
3715 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3716 {
3717 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3718 struct hfc_multi *hc = bch->hw;
3719 int err = -EINVAL;
3720 u_long flags;
3721
3722 if (bch->debug & DEBUG_HW)
3723 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3724 __func__, cmd, arg);
3725 switch (cmd) {
3726 case CLOSE_CHANNEL:
3727 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3728 if (test_bit(FLG_ACTIVE, &bch->Flags))
3729 deactivate_bchannel(bch); /* locked there */
3730 ch->protocol = ISDN_P_NONE;
3731 ch->peer = NULL;
3732 module_put(THIS_MODULE);
3733 err = 0;
3734 break;
3735 case CONTROL_CHANNEL:
3736 spin_lock_irqsave(&hc->lock, flags);
3737 err = channel_bctrl(bch, arg);
3738 spin_unlock_irqrestore(&hc->lock, flags);
3739 break;
3740 default:
3741 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3742 __func__, cmd);
3743 }
3744 return err;
3745 }
3746
3747 /*
3748 * handle D-channel events
3749 *
3750 * handle state change event
3751 */
3752 static void
3753 ph_state_change(struct dchannel *dch)
3754 {
3755 struct hfc_multi *hc;
3756 int ch, i;
3757
3758 if (!dch) {
3759 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3760 return;
3761 }
3762 hc = dch->hw;
3763 ch = dch->slot;
3764
3765 if (hc->ctype == HFC_TYPE_E1) {
3766 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3767 if (debug & DEBUG_HFCMULTI_STATE)
3768 printk(KERN_DEBUG
3769 "%s: E1 TE (id=%d) newstate %x\n",
3770 __func__, hc->id, dch->state);
3771 } else {
3772 if (debug & DEBUG_HFCMULTI_STATE)
3773 printk(KERN_DEBUG
3774 "%s: E1 NT (id=%d) newstate %x\n",
3775 __func__, hc->id, dch->state);
3776 }
3777 switch (dch->state) {
3778 case (1):
3779 if (hc->e1_state != 1) {
3780 for (i = 1; i <= 31; i++) {
3781 /* reset fifos on e1 activation */
3782 HFC_outb_nodebug(hc, R_FIFO,
3783 (i << 1) | 1);
3784 HFC_wait_nodebug(hc);
3785 HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3786 V_RES_F);
3787 HFC_wait_nodebug(hc);
3788 }
3789 }
3790 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3791 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3792 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3793 break;
3794
3795 default:
3796 if (hc->e1_state != 1)
3797 return;
3798 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3799 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3800 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3801 }
3802 hc->e1_state = dch->state;
3803 } else {
3804 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3805 if (debug & DEBUG_HFCMULTI_STATE)
3806 printk(KERN_DEBUG
3807 "%s: S/T TE newstate %x\n",
3808 __func__, dch->state);
3809 switch (dch->state) {
3810 case (0):
3811 l1_event(dch->l1, HW_RESET_IND);
3812 break;
3813 case (3):
3814 l1_event(dch->l1, HW_DEACT_IND);
3815 break;
3816 case (5):
3817 case (8):
3818 l1_event(dch->l1, ANYSIGNAL);
3819 break;
3820 case (6):
3821 l1_event(dch->l1, INFO2);
3822 break;
3823 case (7):
3824 l1_event(dch->l1, INFO4_P8);
3825 break;
3826 }
3827 } else {
3828 if (debug & DEBUG_HFCMULTI_STATE)
3829 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3830 __func__, dch->state);
3831 switch (dch->state) {
3832 case (2):
3833 if (hc->chan[ch].nt_timer == 0) {
3834 hc->chan[ch].nt_timer = -1;
3835 HFC_outb(hc, R_ST_SEL,
3836 hc->chan[ch].port);
3837 /* undocumented: delay after R_ST_SEL */
3838 udelay(1);
3839 HFC_outb(hc, A_ST_WR_STATE, 4 |
3840 V_ST_LD_STA); /* G4 */
3841 udelay(6); /* wait at least 5,21us */
3842 HFC_outb(hc, A_ST_WR_STATE, 4);
3843 dch->state = 4;
3844 } else {
3845 /* one extra count for the next event */
3846 hc->chan[ch].nt_timer =
3847 nt_t1_count[poll_timer] + 1;
3848 HFC_outb(hc, R_ST_SEL,
3849 hc->chan[ch].port);
3850 /* undocumented: delay after R_ST_SEL */
3851 udelay(1);
3852 /* allow G2 -> G3 transition */
3853 HFC_outb(hc, A_ST_WR_STATE, 2 |
3854 V_SET_G2_G3);
3855 }
3856 break;
3857 case (1):
3858 hc->chan[ch].nt_timer = -1;
3859 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3860 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3861 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3862 break;
3863 case (4):
3864 hc->chan[ch].nt_timer = -1;
3865 break;
3866 case (3):
3867 hc->chan[ch].nt_timer = -1;
3868 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3869 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3870 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3871 break;
3872 }
3873 }
3874 }
3875 }
3876
3877 /*
3878 * called for card mode init message
3879 */
3880
3881 static void
3882 hfcmulti_initmode(struct dchannel *dch)
3883 {
3884 struct hfc_multi *hc = dch->hw;
3885 u_char a_st_wr_state, r_e1_wr_sta;
3886 int i, pt;
3887
3888 if (debug & DEBUG_HFCMULTI_INIT)
3889 printk(KERN_DEBUG "%s: entered\n", __func__);
3890
3891 i = dch->slot;
3892 pt = hc->chan[i].port;
3893 if (hc->ctype == HFC_TYPE_E1) {
3894 /* E1 */
3895 hc->chan[hc->dnum[pt]].slot_tx = -1;
3896 hc->chan[hc->dnum[pt]].slot_rx = -1;
3897 hc->chan[hc->dnum[pt]].conf = -1;
3898 if (hc->dnum[pt]) {
3899 mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3900 -1, 0, -1, 0);
3901 dch->timer.function = (void *) hfcmulti_dbusy_timer;
3902 dch->timer.data = (long) dch;
3903 init_timer(&dch->timer);
3904 }
3905 for (i = 1; i <= 31; i++) {
3906 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3907 continue;
3908 hc->chan[i].slot_tx = -1;
3909 hc->chan[i].slot_rx = -1;
3910 hc->chan[i].conf = -1;
3911 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3912 }
3913 }
3914 if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3915 /* E1, port 0 */
3916 dch = hc->chan[hc->dnum[0]].dch;
3917 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3918 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3919 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3920 }
3921 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3922 HFC_outb(hc, R_RX0, 0);
3923 hc->hw.r_tx0 = 0 | V_OUT_EN;
3924 } else {
3925 HFC_outb(hc, R_RX0, 1);
3926 hc->hw.r_tx0 = 1 | V_OUT_EN;
3927 }
3928 hc->hw.r_tx1 = V_ATX | V_NTRI;
3929 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3930 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3931 HFC_outb(hc, R_TX_FR0, 0x00);
3932 HFC_outb(hc, R_TX_FR1, 0xf8);
3933
3934 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3935 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3936
3937 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3938
3939 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3940 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3941
3942 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3943 if (debug & DEBUG_HFCMULTI_INIT)
3944 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3945 __func__);
3946 r_e1_wr_sta = 0; /* G0 */
3947 hc->e1_getclock = 0;
3948 } else {
3949 if (debug & DEBUG_HFCMULTI_INIT)
3950 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3951 __func__);
3952 r_e1_wr_sta = 0; /* F0 */
3953 hc->e1_getclock = 1;
3954 }
3955 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3956 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3957 else
3958 HFC_outb(hc, R_SYNC_OUT, 0);
3959 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3960 hc->e1_getclock = 1;
3961 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3962 hc->e1_getclock = 0;
3963 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3964 /* SLAVE (clock master) */
3965 if (debug & DEBUG_HFCMULTI_INIT)
3966 printk(KERN_DEBUG
3967 "%s: E1 port is clock master "
3968 "(clock from PCM)\n", __func__);
3969 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3970 } else {
3971 if (hc->e1_getclock) {
3972 /* MASTER (clock slave) */
3973 if (debug & DEBUG_HFCMULTI_INIT)
3974 printk(KERN_DEBUG
3975 "%s: E1 port is clock slave "
3976 "(clock to PCM)\n", __func__);
3977 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3978 } else {
3979 /* MASTER (clock master) */
3980 if (debug & DEBUG_HFCMULTI_INIT)
3981 printk(KERN_DEBUG "%s: E1 port is "
3982 "clock master "
3983 "(clock from QUARTZ)\n",
3984 __func__);
3985 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3986 V_PCM_SYNC | V_JATT_OFF);
3987 HFC_outb(hc, R_SYNC_OUT, 0);
3988 }
3989 }
3990 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3991 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3992 HFC_outb(hc, R_PWM0, 0x50);
3993 HFC_outb(hc, R_PWM1, 0xff);
3994 /* state machine setup */
3995 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3996 udelay(6); /* wait at least 5,21us */
3997 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3998 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3999 hc->syncronized = 0;
4000 plxsd_checksync(hc, 0);
4001 }
4002 }
4003 if (hc->ctype != HFC_TYPE_E1) {
4004 /* ST */
4005 hc->chan[i].slot_tx = -1;
4006 hc->chan[i].slot_rx = -1;
4007 hc->chan[i].conf = -1;
4008 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
4009 dch->timer.function = (void *) hfcmulti_dbusy_timer;
4010 dch->timer.data = (long) dch;
4011 init_timer(&dch->timer);
4012 hc->chan[i - 2].slot_tx = -1;
4013 hc->chan[i - 2].slot_rx = -1;
4014 hc->chan[i - 2].conf = -1;
4015 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
4016 hc->chan[i - 1].slot_tx = -1;
4017 hc->chan[i - 1].slot_rx = -1;
4018 hc->chan[i - 1].conf = -1;
4019 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
4020 /* select interface */
4021 HFC_outb(hc, R_ST_SEL, pt);
4022 /* undocumented: delay after R_ST_SEL */
4023 udelay(1);
4024 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
4025 if (debug & DEBUG_HFCMULTI_INIT)
4026 printk(KERN_DEBUG
4027 "%s: ST port %d is NT-mode\n",
4028 __func__, pt);
4029 /* clock delay */
4030 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
4031 a_st_wr_state = 1; /* G1 */
4032 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
4033 } else {
4034 if (debug & DEBUG_HFCMULTI_INIT)
4035 printk(KERN_DEBUG
4036 "%s: ST port %d is TE-mode\n",
4037 __func__, pt);
4038 /* clock delay */
4039 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
4040 a_st_wr_state = 2; /* F2 */
4041 hc->hw.a_st_ctrl0[pt] = 0;
4042 }
4043 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
4044 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
4045 if (hc->ctype == HFC_TYPE_XHFC) {
4046 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
4047 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
4048 0x7c << 1 /* V_ST_PULSE */);
4049 }
4050 /* line setup */
4051 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
4052 /* disable E-channel */
4053 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
4054 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4055 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4056 else
4057 HFC_outb(hc, A_ST_CTRL1, 0);
4058 /* enable B-channel receive */
4059 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
4060 /* state machine setup */
4061 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4062 udelay(6); /* wait at least 5,21us */
4063 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4064 hc->hw.r_sci_msk |= 1 << pt;
4065 /* state machine interrupts */
4066 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4067 /* unset sync on port */
4068 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4069 hc->syncronized &=
4070 ~(1 << hc->chan[dch->slot].port);
4071 plxsd_checksync(hc, 0);
4072 }
4073 }
4074 if (debug & DEBUG_HFCMULTI_INIT)
4075 printk("%s: done\n", __func__);
4076 }
4077
4078
4079 static int
4080 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4081 struct channel_req *rq)
4082 {
4083 int err = 0;
4084 u_long flags;
4085
4086 if (debug & DEBUG_HW_OPEN)
4087 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4088 dch->dev.id, __builtin_return_address(0));
4089 if (rq->protocol == ISDN_P_NONE)
4090 return -EINVAL;
4091 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4092 (dch->dev.D.protocol != rq->protocol)) {
4093 if (debug & DEBUG_HFCMULTI_MODE)
4094 printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4095 __func__, dch->dev.D.protocol, rq->protocol);
4096 }
4097 if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4098 (rq->protocol != ISDN_P_TE_S0))
4099 l1_event(dch->l1, CLOSE_CHANNEL);
4100 if (dch->dev.D.protocol != rq->protocol) {
4101 if (rq->protocol == ISDN_P_TE_S0) {
4102 err = create_l1(dch, hfcm_l1callback);
4103 if (err)
4104 return err;
4105 }
4106 dch->dev.D.protocol = rq->protocol;
4107 spin_lock_irqsave(&hc->lock, flags);
4108 hfcmulti_initmode(dch);
4109 spin_unlock_irqrestore(&hc->lock, flags);
4110 }
4111 if (test_bit(FLG_ACTIVE, &dch->Flags))
4112 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4113 0, NULL, GFP_KERNEL);
4114 rq->ch = &dch->dev.D;
4115 if (!try_module_get(THIS_MODULE))
4116 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4117 return 0;
4118 }
4119
4120 static int
4121 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4122 struct channel_req *rq)
4123 {
4124 struct bchannel *bch;
4125 int ch;
4126
4127 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4128 return -EINVAL;
4129 if (rq->protocol == ISDN_P_NONE)
4130 return -EINVAL;
4131 if (hc->ctype == HFC_TYPE_E1)
4132 ch = rq->adr.channel;
4133 else
4134 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4135 bch = hc->chan[ch].bch;
4136 if (!bch) {
4137 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4138 __func__, ch);
4139 return -EINVAL;
4140 }
4141 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4142 return -EBUSY; /* b-channel can be only open once */
4143 test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
4144 bch->ch.protocol = rq->protocol;
4145 hc->chan[ch].rx_off = 0;
4146 rq->ch = &bch->ch;
4147 if (!try_module_get(THIS_MODULE))
4148 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4149 return 0;
4150 }
4151
4152 /*
4153 * device control function
4154 */
4155 static int
4156 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4157 {
4158 struct hfc_multi *hc = dch->hw;
4159 int ret = 0;
4160 int wd_mode, wd_cnt;
4161
4162 switch (cq->op) {
4163 case MISDN_CTRL_GETOP:
4164 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4165 break;
4166 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4167 wd_cnt = cq->p1 & 0xf;
4168 wd_mode = !!(cq->p1 >> 4);
4169 if (debug & DEBUG_HFCMULTI_MSG)
4170 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4171 ", counter 0x%x\n", __func__,
4172 wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4173 /* set the watchdog timer */
4174 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4175 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4176 if (hc->ctype == HFC_TYPE_XHFC)
4177 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4178 /* init the watchdog register and reset the counter */
4179 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4180 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4181 /* enable the watchdog output for Speech-Design */
4182 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4183 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
4184 HFC_outb(hc, R_GPIO_OUT1, 0);
4185 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4186 }
4187 break;
4188 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4189 if (debug & DEBUG_HFCMULTI_MSG)
4190 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4191 __func__);
4192 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4193 break;
4194 case MISDN_CTRL_L1_TIMER3:
4195 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4196 break;
4197 default:
4198 printk(KERN_WARNING "%s: unknown Op %x\n",
4199 __func__, cq->op);
4200 ret = -EINVAL;
4201 break;
4202 }
4203 return ret;
4204 }
4205
4206 static int
4207 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4208 {
4209 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4210 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4211 struct hfc_multi *hc = dch->hw;
4212 struct channel_req *rq;
4213 int err = 0;
4214 u_long flags;
4215
4216 if (dch->debug & DEBUG_HW)
4217 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4218 __func__, cmd, arg);
4219 switch (cmd) {
4220 case OPEN_CHANNEL:
4221 rq = arg;
4222 switch (rq->protocol) {
4223 case ISDN_P_TE_S0:
4224 case ISDN_P_NT_S0:
4225 if (hc->ctype == HFC_TYPE_E1) {
4226 err = -EINVAL;
4227 break;
4228 }
4229 err = open_dchannel(hc, dch, rq); /* locked there */
4230 break;
4231 case ISDN_P_TE_E1:
4232 case ISDN_P_NT_E1:
4233 if (hc->ctype != HFC_TYPE_E1) {
4234 err = -EINVAL;
4235 break;
4236 }
4237 err = open_dchannel(hc, dch, rq); /* locked there */
4238 break;
4239 default:
4240 spin_lock_irqsave(&hc->lock, flags);
4241 err = open_bchannel(hc, dch, rq);
4242 spin_unlock_irqrestore(&hc->lock, flags);
4243 }
4244 break;
4245 case CLOSE_CHANNEL:
4246 if (debug & DEBUG_HW_OPEN)
4247 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4248 __func__, dch->dev.id,
4249 __builtin_return_address(0));
4250 module_put(THIS_MODULE);
4251 break;
4252 case CONTROL_CHANNEL:
4253 spin_lock_irqsave(&hc->lock, flags);
4254 err = channel_dctrl(dch, arg);
4255 spin_unlock_irqrestore(&hc->lock, flags);
4256 break;
4257 default:
4258 if (dch->debug & DEBUG_HW)
4259 printk(KERN_DEBUG "%s: unknown command %x\n",
4260 __func__, cmd);
4261 err = -EINVAL;
4262 }
4263 return err;
4264 }
4265
4266 static int
4267 clockctl(void *priv, int enable)
4268 {
4269 struct hfc_multi *hc = priv;
4270
4271 hc->iclock_on = enable;
4272 return 0;
4273 }
4274
4275 /*
4276 * initialize the card
4277 */
4278
4279 /*
4280 * start timer irq, wait some time and check if we have interrupts.
4281 * if not, reset chip and try again.
4282 */
4283 static int
4284 init_card(struct hfc_multi *hc)
4285 {
4286 int err = -EIO;
4287 u_long flags;
4288 void __iomem *plx_acc;
4289 u_long plx_flags;
4290
4291 if (debug & DEBUG_HFCMULTI_INIT)
4292 printk(KERN_DEBUG "%s: entered\n", __func__);
4293
4294 spin_lock_irqsave(&hc->lock, flags);
4295 /* set interrupts but leave global interrupt disabled */
4296 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4297 disable_hwirq(hc);
4298 spin_unlock_irqrestore(&hc->lock, flags);
4299
4300 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4301 "HFC-multi", hc)) {
4302 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4303 hc->irq);
4304 hc->irq = 0;
4305 return -EIO;
4306 }
4307
4308 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4309 spin_lock_irqsave(&plx_lock, plx_flags);
4310 plx_acc = hc->plx_membase + PLX_INTCSR;
4311 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4312 plx_acc); /* enable PCI & LINT1 irq */
4313 spin_unlock_irqrestore(&plx_lock, plx_flags);
4314 }
4315
4316 if (debug & DEBUG_HFCMULTI_INIT)
4317 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4318 __func__, hc->irq, hc->irqcnt);
4319 err = init_chip(hc);
4320 if (err)
4321 goto error;
4322 /*
4323 * Finally enable IRQ output
4324 * this is only allowed, if an IRQ routine is already
4325 * established for this HFC, so don't do that earlier
4326 */
4327 spin_lock_irqsave(&hc->lock, flags);
4328 enable_hwirq(hc);
4329 spin_unlock_irqrestore(&hc->lock, flags);
4330 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4331 set_current_state(TASK_UNINTERRUPTIBLE);
4332 schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4333 /* turn IRQ off until chip is completely initialized */
4334 spin_lock_irqsave(&hc->lock, flags);
4335 disable_hwirq(hc);
4336 spin_unlock_irqrestore(&hc->lock, flags);
4337 if (debug & DEBUG_HFCMULTI_INIT)
4338 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4339 __func__, hc->irq, hc->irqcnt);
4340 if (hc->irqcnt) {
4341 if (debug & DEBUG_HFCMULTI_INIT)
4342 printk(KERN_DEBUG "%s: done\n", __func__);
4343
4344 return 0;
4345 }
4346 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4347 printk(KERN_INFO "ignoring missing interrupts\n");
4348 return 0;
4349 }
4350
4351 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4352 hc->irq);
4353
4354 err = -EIO;
4355
4356 error:
4357 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4358 spin_lock_irqsave(&plx_lock, plx_flags);
4359 plx_acc = hc->plx_membase + PLX_INTCSR;
4360 writew(0x00, plx_acc); /*disable IRQs*/
4361 spin_unlock_irqrestore(&plx_lock, plx_flags);
4362 }
4363
4364 if (debug & DEBUG_HFCMULTI_INIT)
4365 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4366 if (hc->irq) {
4367 free_irq(hc->irq, hc);
4368 hc->irq = 0;
4369 }
4370
4371 if (debug & DEBUG_HFCMULTI_INIT)
4372 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4373 return err;
4374 }
4375
4376 /*
4377 * find pci device and set it up
4378 */
4379
4380 static int
4381 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4382 const struct pci_device_id *ent)
4383 {
4384 struct hm_map *m = (struct hm_map *)ent->driver_data;
4385
4386 printk(KERN_INFO
4387 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4388 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4389
4390 hc->pci_dev = pdev;
4391 if (m->clock2)
4392 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4393
4394 if (ent->device == 0xB410) {
4395 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4396 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4397 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4398 hc->slots = 32;
4399 }
4400
4401 if (hc->pci_dev->irq <= 0) {
4402 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4403 return -EIO;
4404 }
4405 if (pci_enable_device(hc->pci_dev)) {
4406 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4407 return -EIO;
4408 }
4409 hc->leds = m->leds;
4410 hc->ledstate = 0xAFFEAFFE;
4411 hc->opticalsupport = m->opticalsupport;
4412
4413 hc->pci_iobase = 0;
4414 hc->pci_membase = NULL;
4415 hc->plx_membase = NULL;
4416
4417 /* set memory access methods */
4418 if (m->io_mode) /* use mode from card config */
4419 hc->io_mode = m->io_mode;
4420 switch (hc->io_mode) {
4421 case HFC_IO_MODE_PLXSD:
4422 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4423 hc->slots = 128; /* required */
4424 hc->HFC_outb = HFC_outb_pcimem;
4425 hc->HFC_inb = HFC_inb_pcimem;
4426 hc->HFC_inw = HFC_inw_pcimem;
4427 hc->HFC_wait = HFC_wait_pcimem;
4428 hc->read_fifo = read_fifo_pcimem;
4429 hc->write_fifo = write_fifo_pcimem;
4430 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4431 /* MEMBASE 1 is PLX PCI Bridge */
4432
4433 if (!hc->plx_origmembase) {
4434 printk(KERN_WARNING
4435 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4436 pci_disable_device(hc->pci_dev);
4437 return -EIO;
4438 }
4439
4440 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4441 if (!hc->plx_membase) {
4442 printk(KERN_WARNING
4443 "HFC-multi: failed to remap plx address space. "
4444 "(internal error)\n");
4445 pci_disable_device(hc->pci_dev);
4446 return -EIO;
4447 }
4448 printk(KERN_INFO
4449 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4450 (u_long)hc->plx_membase, hc->plx_origmembase);
4451
4452 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4453 /* MEMBASE 1 is PLX PCI Bridge */
4454 if (!hc->pci_origmembase) {
4455 printk(KERN_WARNING
4456 "HFC-multi: No IO-Memory for PCI card found\n");
4457 pci_disable_device(hc->pci_dev);
4458 return -EIO;
4459 }
4460
4461 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4462 if (!hc->pci_membase) {
4463 printk(KERN_WARNING "HFC-multi: failed to remap io "
4464 "address space. (internal error)\n");
4465 pci_disable_device(hc->pci_dev);
4466 return -EIO;
4467 }
4468
4469 printk(KERN_INFO
4470 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4471 "leds-type %d\n",
4472 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4473 hc->pci_dev->irq, HZ, hc->leds);
4474 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4475 break;
4476 case HFC_IO_MODE_PCIMEM:
4477 hc->HFC_outb = HFC_outb_pcimem;
4478 hc->HFC_inb = HFC_inb_pcimem;
4479 hc->HFC_inw = HFC_inw_pcimem;
4480 hc->HFC_wait = HFC_wait_pcimem;
4481 hc->read_fifo = read_fifo_pcimem;
4482 hc->write_fifo = write_fifo_pcimem;
4483 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4484 if (!hc->pci_origmembase) {
4485 printk(KERN_WARNING
4486 "HFC-multi: No IO-Memory for PCI card found\n");
4487 pci_disable_device(hc->pci_dev);
4488 return -EIO;
4489 }
4490
4491 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4492 if (!hc->pci_membase) {
4493 printk(KERN_WARNING
4494 "HFC-multi: failed to remap io address space. "
4495 "(internal error)\n");
4496 pci_disable_device(hc->pci_dev);
4497 return -EIO;
4498 }
4499 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4500 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4501 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4502 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4503 break;
4504 case HFC_IO_MODE_REGIO:
4505 hc->HFC_outb = HFC_outb_regio;
4506 hc->HFC_inb = HFC_inb_regio;
4507 hc->HFC_inw = HFC_inw_regio;
4508 hc->HFC_wait = HFC_wait_regio;
4509 hc->read_fifo = read_fifo_regio;
4510 hc->write_fifo = write_fifo_regio;
4511 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4512 if (!hc->pci_iobase) {
4513 printk(KERN_WARNING
4514 "HFC-multi: No IO for PCI card found\n");
4515 pci_disable_device(hc->pci_dev);
4516 return -EIO;
4517 }
4518
4519 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4520 printk(KERN_WARNING "HFC-multi: failed to request "
4521 "address space at 0x%08lx (internal error)\n",
4522 hc->pci_iobase);
4523 pci_disable_device(hc->pci_dev);
4524 return -EIO;
4525 }
4526
4527 printk(KERN_INFO
4528 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4529 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4530 hc->pci_dev->irq, HZ, hc->leds);
4531 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4532 break;
4533 default:
4534 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4535 pci_disable_device(hc->pci_dev);
4536 return -EIO;
4537 }
4538
4539 pci_set_drvdata(hc->pci_dev, hc);
4540
4541 /* At this point the needed PCI config is done */
4542 /* fifos are still not enabled */
4543 return 0;
4544 }
4545
4546
4547 /*
4548 * remove port
4549 */
4550
4551 static void
4552 release_port(struct hfc_multi *hc, struct dchannel *dch)
4553 {
4554 int pt, ci, i = 0;
4555 u_long flags;
4556 struct bchannel *pb;
4557
4558 ci = dch->slot;
4559 pt = hc->chan[ci].port;
4560
4561 if (debug & DEBUG_HFCMULTI_INIT)
4562 printk(KERN_DEBUG "%s: entered for port %d\n",
4563 __func__, pt + 1);
4564
4565 if (pt >= hc->ports) {
4566 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4567 __func__, pt + 1);
4568 return;
4569 }
4570
4571 if (debug & DEBUG_HFCMULTI_INIT)
4572 printk(KERN_DEBUG "%s: releasing port=%d\n",
4573 __func__, pt + 1);
4574
4575 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4576 l1_event(dch->l1, CLOSE_CHANNEL);
4577
4578 hc->chan[ci].dch = NULL;
4579
4580 if (hc->created[pt]) {
4581 hc->created[pt] = 0;
4582 mISDN_unregister_device(&dch->dev);
4583 }
4584
4585 spin_lock_irqsave(&hc->lock, flags);
4586
4587 if (dch->timer.function) {
4588 del_timer(&dch->timer);
4589 dch->timer.function = NULL;
4590 }
4591
4592 if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4593 /* remove sync */
4594 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4595 hc->syncronized = 0;
4596 plxsd_checksync(hc, 1);
4597 }
4598 /* free channels */
4599 for (i = 0; i <= 31; i++) {
4600 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4601 continue;
4602 if (hc->chan[i].bch) {
4603 if (debug & DEBUG_HFCMULTI_INIT)
4604 printk(KERN_DEBUG
4605 "%s: free port %d channel %d\n",
4606 __func__, hc->chan[i].port + 1, i);
4607 pb = hc->chan[i].bch;
4608 hc->chan[i].bch = NULL;
4609 spin_unlock_irqrestore(&hc->lock, flags);
4610 mISDN_freebchannel(pb);
4611 kfree(pb);
4612 kfree(hc->chan[i].coeff);
4613 spin_lock_irqsave(&hc->lock, flags);
4614 }
4615 }
4616 } else {
4617 /* remove sync */
4618 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4619 hc->syncronized &=
4620 ~(1 << hc->chan[ci].port);
4621 plxsd_checksync(hc, 1);
4622 }
4623 /* free channels */
4624 if (hc->chan[ci - 2].bch) {
4625 if (debug & DEBUG_HFCMULTI_INIT)
4626 printk(KERN_DEBUG
4627 "%s: free port %d channel %d\n",
4628 __func__, hc->chan[ci - 2].port + 1,
4629 ci - 2);
4630 pb = hc->chan[ci - 2].bch;
4631 hc->chan[ci - 2].bch = NULL;
4632 spin_unlock_irqrestore(&hc->lock, flags);
4633 mISDN_freebchannel(pb);
4634 kfree(pb);
4635 kfree(hc->chan[ci - 2].coeff);
4636 spin_lock_irqsave(&hc->lock, flags);
4637 }
4638 if (hc->chan[ci - 1].bch) {
4639 if (debug & DEBUG_HFCMULTI_INIT)
4640 printk(KERN_DEBUG
4641 "%s: free port %d channel %d\n",
4642 __func__, hc->chan[ci - 1].port + 1,
4643 ci - 1);
4644 pb = hc->chan[ci - 1].bch;
4645 hc->chan[ci - 1].bch = NULL;
4646 spin_unlock_irqrestore(&hc->lock, flags);
4647 mISDN_freebchannel(pb);
4648 kfree(pb);
4649 kfree(hc->chan[ci - 1].coeff);
4650 spin_lock_irqsave(&hc->lock, flags);
4651 }
4652 }
4653
4654 spin_unlock_irqrestore(&hc->lock, flags);
4655
4656 if (debug & DEBUG_HFCMULTI_INIT)
4657 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4658 pt+1, ci);
4659 mISDN_freedchannel(dch);
4660 kfree(dch);
4661
4662 if (debug & DEBUG_HFCMULTI_INIT)
4663 printk(KERN_DEBUG "%s: done!\n", __func__);
4664 }
4665
4666 static void
4667 release_card(struct hfc_multi *hc)
4668 {
4669 u_long flags;
4670 int ch;
4671
4672 if (debug & DEBUG_HFCMULTI_INIT)
4673 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4674 __func__, hc->id);
4675
4676 /* unregister clock source */
4677 if (hc->iclock)
4678 mISDN_unregister_clock(hc->iclock);
4679
4680 /* disable and free irq */
4681 spin_lock_irqsave(&hc->lock, flags);
4682 disable_hwirq(hc);
4683 spin_unlock_irqrestore(&hc->lock, flags);
4684 udelay(1000);
4685 if (hc->irq) {
4686 if (debug & DEBUG_HFCMULTI_INIT)
4687 printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4688 __func__, hc->irq, hc);
4689 free_irq(hc->irq, hc);
4690 hc->irq = 0;
4691
4692 }
4693
4694 /* disable D-channels & B-channels */
4695 if (debug & DEBUG_HFCMULTI_INIT)
4696 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4697 __func__);
4698 for (ch = 0; ch <= 31; ch++) {
4699 if (hc->chan[ch].dch)
4700 release_port(hc, hc->chan[ch].dch);
4701 }
4702
4703 /* dimm leds */
4704 if (hc->leds)
4705 hfcmulti_leds(hc);
4706
4707 /* release hardware */
4708 release_io_hfcmulti(hc);
4709
4710 if (debug & DEBUG_HFCMULTI_INIT)
4711 printk(KERN_DEBUG "%s: remove instance from list\n",
4712 __func__);
4713 list_del(&hc->list);
4714
4715 if (debug & DEBUG_HFCMULTI_INIT)
4716 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4717 if (hc == syncmaster)
4718 syncmaster = NULL;
4719 kfree(hc);
4720 if (debug & DEBUG_HFCMULTI_INIT)
4721 printk(KERN_DEBUG "%s: card successfully removed\n",
4722 __func__);
4723 }
4724
4725 static void
4726 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4727 {
4728 /* set optical line type */
4729 if (port[Port_cnt] & 0x001) {
4730 if (!m->opticalsupport) {
4731 printk(KERN_INFO
4732 "This board has no optical "
4733 "support\n");
4734 } else {
4735 if (debug & DEBUG_HFCMULTI_INIT)
4736 printk(KERN_DEBUG
4737 "%s: PORT set optical "
4738 "interfacs: card(%d) "
4739 "port(%d)\n",
4740 __func__,
4741 HFC_cnt + 1, 1);
4742 test_and_set_bit(HFC_CFG_OPTICAL,
4743 &hc->chan[hc->dnum[0]].cfg);
4744 }
4745 }
4746 /* set LOS report */
4747 if (port[Port_cnt] & 0x004) {
4748 if (debug & DEBUG_HFCMULTI_INIT)
4749 printk(KERN_DEBUG "%s: PORT set "
4750 "LOS report: card(%d) port(%d)\n",
4751 __func__, HFC_cnt + 1, 1);
4752 test_and_set_bit(HFC_CFG_REPORT_LOS,
4753 &hc->chan[hc->dnum[0]].cfg);
4754 }
4755 /* set AIS report */
4756 if (port[Port_cnt] & 0x008) {
4757 if (debug & DEBUG_HFCMULTI_INIT)
4758 printk(KERN_DEBUG "%s: PORT set "
4759 "AIS report: card(%d) port(%d)\n",
4760 __func__, HFC_cnt + 1, 1);
4761 test_and_set_bit(HFC_CFG_REPORT_AIS,
4762 &hc->chan[hc->dnum[0]].cfg);
4763 }
4764 /* set SLIP report */
4765 if (port[Port_cnt] & 0x010) {
4766 if (debug & DEBUG_HFCMULTI_INIT)
4767 printk(KERN_DEBUG
4768 "%s: PORT set SLIP report: "
4769 "card(%d) port(%d)\n",
4770 __func__, HFC_cnt + 1, 1);
4771 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4772 &hc->chan[hc->dnum[0]].cfg);
4773 }
4774 /* set RDI report */
4775 if (port[Port_cnt] & 0x020) {
4776 if (debug & DEBUG_HFCMULTI_INIT)
4777 printk(KERN_DEBUG
4778 "%s: PORT set RDI report: "
4779 "card(%d) port(%d)\n",
4780 __func__, HFC_cnt + 1, 1);
4781 test_and_set_bit(HFC_CFG_REPORT_RDI,
4782 &hc->chan[hc->dnum[0]].cfg);
4783 }
4784 /* set CRC-4 Mode */
4785 if (!(port[Port_cnt] & 0x100)) {
4786 if (debug & DEBUG_HFCMULTI_INIT)
4787 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4788 " card(%d) port(%d)\n",
4789 __func__, HFC_cnt + 1, 1);
4790 test_and_set_bit(HFC_CFG_CRC4,
4791 &hc->chan[hc->dnum[0]].cfg);
4792 } else {
4793 if (debug & DEBUG_HFCMULTI_INIT)
4794 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4795 " report: card(%d) port(%d)\n",
4796 __func__, HFC_cnt + 1, 1);
4797 }
4798 /* set forced clock */
4799 if (port[Port_cnt] & 0x0200) {
4800 if (debug & DEBUG_HFCMULTI_INIT)
4801 printk(KERN_DEBUG "%s: PORT force getting clock from "
4802 "E1: card(%d) port(%d)\n",
4803 __func__, HFC_cnt + 1, 1);
4804 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4805 } else
4806 if (port[Port_cnt] & 0x0400) {
4807 if (debug & DEBUG_HFCMULTI_INIT)
4808 printk(KERN_DEBUG "%s: PORT force putting clock to "
4809 "E1: card(%d) port(%d)\n",
4810 __func__, HFC_cnt + 1, 1);
4811 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4812 }
4813 /* set JATT PLL */
4814 if (port[Port_cnt] & 0x0800) {
4815 if (debug & DEBUG_HFCMULTI_INIT)
4816 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4817 "E1: card(%d) port(%d)\n",
4818 __func__, HFC_cnt + 1, 1);
4819 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4820 }
4821 /* set elastic jitter buffer */
4822 if (port[Port_cnt] & 0x3000) {
4823 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4824 if (debug & DEBUG_HFCMULTI_INIT)
4825 printk(KERN_DEBUG
4826 "%s: PORT set elastic "
4827 "buffer to %d: card(%d) port(%d)\n",
4828 __func__, hc->chan[hc->dnum[0]].jitter,
4829 HFC_cnt + 1, 1);
4830 } else
4831 hc->chan[hc->dnum[0]].jitter = 2; /* default */
4832 }
4833
4834 static int
4835 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4836 {
4837 struct dchannel *dch;
4838 struct bchannel *bch;
4839 int ch, ret = 0;
4840 char name[MISDN_MAX_IDLEN];
4841 int bcount = 0;
4842
4843 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4844 if (!dch)
4845 return -ENOMEM;
4846 dch->debug = debug;
4847 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4848 dch->hw = hc;
4849 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4850 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4851 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4852 dch->dev.D.send = handle_dmsg;
4853 dch->dev.D.ctrl = hfcm_dctrl;
4854 dch->slot = hc->dnum[pt];
4855 hc->chan[hc->dnum[pt]].dch = dch;
4856 hc->chan[hc->dnum[pt]].port = pt;
4857 hc->chan[hc->dnum[pt]].nt_timer = -1;
4858 for (ch = 1; ch <= 31; ch++) {
4859 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4860 continue;
4861 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4862 if (!bch) {
4863 printk(KERN_ERR "%s: no memory for bchannel\n",
4864 __func__);
4865 ret = -ENOMEM;
4866 goto free_chan;
4867 }
4868 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4869 if (!hc->chan[ch].coeff) {
4870 printk(KERN_ERR "%s: no memory for coeffs\n",
4871 __func__);
4872 ret = -ENOMEM;
4873 kfree(bch);
4874 goto free_chan;
4875 }
4876 bch->nr = ch;
4877 bch->slot = ch;
4878 bch->debug = debug;
4879 mISDN_initbchannel(bch, MAX_DATA_MEM);
4880 bch->hw = hc;
4881 bch->ch.send = handle_bmsg;
4882 bch->ch.ctrl = hfcm_bctrl;
4883 bch->ch.nr = ch;
4884 list_add(&bch->ch.list, &dch->dev.bchannels);
4885 hc->chan[ch].bch = bch;
4886 hc->chan[ch].port = pt;
4887 set_channelmap(bch->nr, dch->dev.channelmap);
4888 bcount++;
4889 }
4890 dch->dev.nrbchan = bcount;
4891 if (pt == 0)
4892 init_e1_port_hw(hc, m);
4893 if (hc->ports > 1)
4894 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4895 HFC_cnt + 1, pt+1);
4896 else
4897 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4898 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4899 if (ret)
4900 goto free_chan;
4901 hc->created[pt] = 1;
4902 return ret;
4903 free_chan:
4904 release_port(hc, dch);
4905 return ret;
4906 }
4907
4908 static int
4909 init_multi_port(struct hfc_multi *hc, int pt)
4910 {
4911 struct dchannel *dch;
4912 struct bchannel *bch;
4913 int ch, i, ret = 0;
4914 char name[MISDN_MAX_IDLEN];
4915
4916 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4917 if (!dch)
4918 return -ENOMEM;
4919 dch->debug = debug;
4920 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4921 dch->hw = hc;
4922 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4923 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4924 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4925 dch->dev.D.send = handle_dmsg;
4926 dch->dev.D.ctrl = hfcm_dctrl;
4927 dch->dev.nrbchan = 2;
4928 i = pt << 2;
4929 dch->slot = i + 2;
4930 hc->chan[i + 2].dch = dch;
4931 hc->chan[i + 2].port = pt;
4932 hc->chan[i + 2].nt_timer = -1;
4933 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4934 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4935 if (!bch) {
4936 printk(KERN_ERR "%s: no memory for bchannel\n",
4937 __func__);
4938 ret = -ENOMEM;
4939 goto free_chan;
4940 }
4941 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4942 if (!hc->chan[i + ch].coeff) {
4943 printk(KERN_ERR "%s: no memory for coeffs\n",
4944 __func__);
4945 ret = -ENOMEM;
4946 kfree(bch);
4947 goto free_chan;
4948 }
4949 bch->nr = ch + 1;
4950 bch->slot = i + ch;
4951 bch->debug = debug;
4952 mISDN_initbchannel(bch, MAX_DATA_MEM);
4953 bch->hw = hc;
4954 bch->ch.send = handle_bmsg;
4955 bch->ch.ctrl = hfcm_bctrl;
4956 bch->ch.nr = ch + 1;
4957 list_add(&bch->ch.list, &dch->dev.bchannels);
4958 hc->chan[i + ch].bch = bch;
4959 hc->chan[i + ch].port = pt;
4960 set_channelmap(bch->nr, dch->dev.channelmap);
4961 }
4962 /* set master clock */
4963 if (port[Port_cnt] & 0x001) {
4964 if (debug & DEBUG_HFCMULTI_INIT)
4965 printk(KERN_DEBUG
4966 "%s: PROTOCOL set master clock: "
4967 "card(%d) port(%d)\n",
4968 __func__, HFC_cnt + 1, pt + 1);
4969 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4970 printk(KERN_ERR "Error: Master clock "
4971 "for port(%d) of card(%d) is only"
4972 " possible with TE-mode\n",
4973 pt + 1, HFC_cnt + 1);
4974 ret = -EINVAL;
4975 goto free_chan;
4976 }
4977 if (hc->masterclk >= 0) {
4978 printk(KERN_ERR "Error: Master clock "
4979 "for port(%d) of card(%d) already "
4980 "defined for port(%d)\n",
4981 pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4982 ret = -EINVAL;
4983 goto free_chan;
4984 }
4985 hc->masterclk = pt;
4986 }
4987 /* set transmitter line to non capacitive */
4988 if (port[Port_cnt] & 0x002) {
4989 if (debug & DEBUG_HFCMULTI_INIT)
4990 printk(KERN_DEBUG
4991 "%s: PROTOCOL set non capacitive "
4992 "transmitter: card(%d) port(%d)\n",
4993 __func__, HFC_cnt + 1, pt + 1);
4994 test_and_set_bit(HFC_CFG_NONCAP_TX,
4995 &hc->chan[i + 2].cfg);
4996 }
4997 /* disable E-channel */
4998 if (port[Port_cnt] & 0x004) {
4999 if (debug & DEBUG_HFCMULTI_INIT)
5000 printk(KERN_DEBUG
5001 "%s: PROTOCOL disable E-channel: "
5002 "card(%d) port(%d)\n",
5003 __func__, HFC_cnt + 1, pt + 1);
5004 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
5005 &hc->chan[i + 2].cfg);
5006 }
5007 if (hc->ctype == HFC_TYPE_XHFC) {
5008 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
5009 HFC_cnt + 1, pt + 1);
5010 ret = mISDN_register_device(&dch->dev, NULL, name);
5011 } else {
5012 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
5013 hc->ctype, HFC_cnt + 1, pt + 1);
5014 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
5015 }
5016 if (ret)
5017 goto free_chan;
5018 hc->created[pt] = 1;
5019 return ret;
5020 free_chan:
5021 release_port(hc, dch);
5022 return ret;
5023 }
5024
5025 static int
5026 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
5027 const struct pci_device_id *ent)
5028 {
5029 int ret_err = 0;
5030 int pt;
5031 struct hfc_multi *hc;
5032 u_long flags;
5033 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
5034 int i, ch;
5035 u_int maskcheck;
5036
5037 if (HFC_cnt >= MAX_CARDS) {
5038 printk(KERN_ERR "too many cards (max=%d).\n",
5039 MAX_CARDS);
5040 return -EINVAL;
5041 }
5042 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
5043 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
5044 "type[%d] %d was supplied as module parameter\n",
5045 m->vendor_name, m->card_name, m->type, HFC_cnt,
5046 type[HFC_cnt] & 0xff);
5047 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
5048 "first, to see cards and their types.");
5049 return -EINVAL;
5050 }
5051 if (debug & DEBUG_HFCMULTI_INIT)
5052 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
5053 __func__, m->vendor_name, m->card_name, m->type,
5054 type[HFC_cnt]);
5055
5056 /* allocate card+fifo structure */
5057 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
5058 if (!hc) {
5059 printk(KERN_ERR "No kmem for HFC-Multi card\n");
5060 return -ENOMEM;
5061 }
5062 spin_lock_init(&hc->lock);
5063 hc->mtyp = m;
5064 hc->ctype = m->type;
5065 hc->ports = m->ports;
5066 hc->id = HFC_cnt;
5067 hc->pcm = pcm[HFC_cnt];
5068 hc->io_mode = iomode[HFC_cnt];
5069 if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5070 /* fragment card */
5071 pt = 0;
5072 maskcheck = 0;
5073 for (ch = 0; ch <= 31; ch++) {
5074 if (!((1 << ch) & dmask[E1_cnt]))
5075 continue;
5076 hc->dnum[pt] = ch;
5077 hc->bmask[pt] = bmask[bmask_cnt++];
5078 if ((maskcheck & hc->bmask[pt])
5079 || (dmask[E1_cnt] & hc->bmask[pt])) {
5080 printk(KERN_INFO
5081 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5082 E1_cnt + 1, pt);
5083 return -EINVAL;
5084 }
5085 maskcheck |= hc->bmask[pt];
5086 printk(KERN_INFO
5087 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5088 E1_cnt + 1, ch, hc->bmask[pt]);
5089 pt++;
5090 }
5091 hc->ports = pt;
5092 }
5093 if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5094 /* default card layout */
5095 hc->dnum[0] = 16;
5096 hc->bmask[0] = 0xfffefffe;
5097 hc->ports = 1;
5098 }
5099
5100 /* set chip specific features */
5101 hc->masterclk = -1;
5102 if (type[HFC_cnt] & 0x100) {
5103 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5104 hc->silence = 0xff; /* ulaw silence */
5105 } else
5106 hc->silence = 0x2a; /* alaw silence */
5107 if ((poll >> 1) > sizeof(hc->silence_data)) {
5108 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5109 "please fix\n");
5110 return -EINVAL;
5111 }
5112 for (i = 0; i < (poll >> 1); i++)
5113 hc->silence_data[i] = hc->silence;
5114
5115 if (hc->ctype != HFC_TYPE_XHFC) {
5116 if (!(type[HFC_cnt] & 0x200))
5117 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5118 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5119 }
5120
5121 if (type[HFC_cnt] & 0x800)
5122 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5123 if (type[HFC_cnt] & 0x1000) {
5124 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5125 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5126 }
5127 if (type[HFC_cnt] & 0x4000)
5128 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5129 if (type[HFC_cnt] & 0x8000)
5130 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5131 hc->slots = 32;
5132 if (type[HFC_cnt] & 0x10000)
5133 hc->slots = 64;
5134 if (type[HFC_cnt] & 0x20000)
5135 hc->slots = 128;
5136 if (type[HFC_cnt] & 0x80000) {
5137 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5138 hc->wdcount = 0;
5139 hc->wdbyte = V_GPIO_OUT2;
5140 printk(KERN_NOTICE "Watchdog enabled\n");
5141 }
5142
5143 if (pdev && ent)
5144 /* setup pci, hc->slots may change due to PLXSD */
5145 ret_err = setup_pci(hc, pdev, ent);
5146 else
5147 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5148 ret_err = setup_embedded(hc, m);
5149 #else
5150 {
5151 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5152 ret_err = -EIO;
5153 }
5154 #endif
5155 if (ret_err) {
5156 if (hc == syncmaster)
5157 syncmaster = NULL;
5158 kfree(hc);
5159 return ret_err;
5160 }
5161
5162 hc->HFC_outb_nodebug = hc->HFC_outb;
5163 hc->HFC_inb_nodebug = hc->HFC_inb;
5164 hc->HFC_inw_nodebug = hc->HFC_inw;
5165 hc->HFC_wait_nodebug = hc->HFC_wait;
5166 #ifdef HFC_REGISTER_DEBUG
5167 hc->HFC_outb = HFC_outb_debug;
5168 hc->HFC_inb = HFC_inb_debug;
5169 hc->HFC_inw = HFC_inw_debug;
5170 hc->HFC_wait = HFC_wait_debug;
5171 #endif
5172 /* create channels */
5173 for (pt = 0; pt < hc->ports; pt++) {
5174 if (Port_cnt >= MAX_PORTS) {
5175 printk(KERN_ERR "too many ports (max=%d).\n",
5176 MAX_PORTS);
5177 ret_err = -EINVAL;
5178 goto free_card;
5179 }
5180 if (hc->ctype == HFC_TYPE_E1)
5181 ret_err = init_e1_port(hc, m, pt);
5182 else
5183 ret_err = init_multi_port(hc, pt);
5184 if (debug & DEBUG_HFCMULTI_INIT)
5185 printk(KERN_DEBUG
5186 "%s: Registering D-channel, card(%d) port(%d) "
5187 "result %d\n",
5188 __func__, HFC_cnt + 1, pt + 1, ret_err);
5189
5190 if (ret_err) {
5191 while (pt) { /* release already registered ports */
5192 pt--;
5193 if (hc->ctype == HFC_TYPE_E1)
5194 release_port(hc,
5195 hc->chan[hc->dnum[pt]].dch);
5196 else
5197 release_port(hc,
5198 hc->chan[(pt << 2) + 2].dch);
5199 }
5200 goto free_card;
5201 }
5202 if (hc->ctype != HFC_TYPE_E1)
5203 Port_cnt++; /* for each S0 port */
5204 }
5205 if (hc->ctype == HFC_TYPE_E1) {
5206 Port_cnt++; /* for each E1 port */
5207 E1_cnt++;
5208 }
5209
5210 /* disp switches */
5211 switch (m->dip_type) {
5212 case DIP_4S:
5213 /*
5214 * Get DIP setting for beroNet 1S/2S/4S cards
5215 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5216 * GPI 19/23 (R_GPI_IN2))
5217 */
5218 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5219 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5220 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5221
5222 /* Port mode (TE/NT) jumpers */
5223 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
5224
5225 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5226 pmj = ~pmj & 0xf;
5227
5228 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5229 m->vendor_name, m->card_name, dips, pmj);
5230 break;
5231 case DIP_8S:
5232 /*
5233 * Get DIP Setting for beroNet 8S0+ cards
5234 * Enable PCI auxbridge function
5235 */
5236 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5237 /* prepare access to auxport */
5238 outw(0x4000, hc->pci_iobase + 4);
5239 /*
5240 * some dummy reads are required to
5241 * read valid DIP switch data
5242 */
5243 dips = inb(hc->pci_iobase);
5244 dips = inb(hc->pci_iobase);
5245 dips = inb(hc->pci_iobase);
5246 dips = ~inb(hc->pci_iobase) & 0x3F;
5247 outw(0x0, hc->pci_iobase + 4);
5248 /* disable PCI auxbridge function */
5249 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5250 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5251 m->vendor_name, m->card_name, dips);
5252 break;
5253 case DIP_E1:
5254 /*
5255 * get DIP Setting for beroNet E1 cards
5256 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5257 */
5258 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5259 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5260 m->vendor_name, m->card_name, dips);
5261 break;
5262 }
5263
5264 /* add to list */
5265 spin_lock_irqsave(&HFClock, flags);
5266 list_add_tail(&hc->list, &HFClist);
5267 spin_unlock_irqrestore(&HFClock, flags);
5268
5269 /* use as clock source */
5270 if (clock == HFC_cnt + 1)
5271 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5272
5273 /* initialize hardware */
5274 hc->irq = (m->irq) ? : hc->pci_dev->irq;
5275 ret_err = init_card(hc);
5276 if (ret_err) {
5277 printk(KERN_ERR "init card returns %d\n", ret_err);
5278 release_card(hc);
5279 return ret_err;
5280 }
5281
5282 /* start IRQ and return */
5283 spin_lock_irqsave(&hc->lock, flags);
5284 enable_hwirq(hc);
5285 spin_unlock_irqrestore(&hc->lock, flags);
5286 return 0;
5287
5288 free_card:
5289 release_io_hfcmulti(hc);
5290 if (hc == syncmaster)
5291 syncmaster = NULL;
5292 kfree(hc);
5293 return ret_err;
5294 }
5295
5296 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5297 {
5298 struct hfc_multi *card = pci_get_drvdata(pdev);
5299 u_long flags;
5300
5301 if (debug)
5302 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5303 "device:%x subvendor:%x subdevice:%x\n",
5304 pdev->vendor, pdev->device,
5305 pdev->subsystem_vendor, pdev->subsystem_device);
5306
5307 if (card) {
5308 spin_lock_irqsave(&HFClock, flags);
5309 release_card(card);
5310 spin_unlock_irqrestore(&HFClock, flags);
5311 } else {
5312 if (debug)
5313 printk(KERN_DEBUG "%s: drvdata already removed\n",
5314 __func__);
5315 }
5316 }
5317
5318 #define VENDOR_CCD "Cologne Chip AG"
5319 #define VENDOR_BN "beroNet GmbH"
5320 #define VENDOR_DIG "Digium Inc."
5321 #define VENDOR_JH "Junghanns.NET GmbH"
5322 #define VENDOR_PRIM "PrimuX"
5323
5324 static const struct hm_map hfcm_map[] = {
5325 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5326 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5327 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5328 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5329 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5330 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5331 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5332 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5333 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5334 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5335 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5336 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5337
5338 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5339 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5340 HFC_IO_MODE_REGIO, 0},
5341 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5342 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5343
5344 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5345 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5346 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5347
5348 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5349 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5350 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5351 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5352
5353 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5354 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5355 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5356
5357 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5358 HFC_IO_MODE_PLXSD, 0},
5359 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5360 HFC_IO_MODE_PLXSD, 0},
5361 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5362 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5363 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5364 /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5365 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5366 /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5367 /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5368 /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5369 };
5370
5371 #undef H
5372 #define H(x) ((unsigned long)&hfcm_map[x])
5373 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5374
5375 /* Cards with HFC-4S Chip */
5376 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5377 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5378 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5379 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5380 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5381 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5382 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5383 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5384 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5385 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5386 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5387 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5388 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5389 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5390 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5391 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5392 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5393 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5394 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5395 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5396 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5397 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5398 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5399 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5400 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5401 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5402 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5403 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5404 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5405 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5406 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5407 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5408
5409 /* Cards with HFC-8S Chip */
5410 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5411 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5412 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5413 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5414 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5415 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5416 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5417 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5418 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5419 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5420 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5421 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5422 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5423 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5424 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5425 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5426 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5427 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
5428
5429
5430 /* Cards with HFC-E1 Chip */
5431 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5432 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5433 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5434 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5435 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5436 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5437 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5438 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5439
5440 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5441 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5442 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5443 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5444 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5445 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5446
5447 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5448 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5449 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5450 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5451
5452 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5453 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5454
5455 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5456 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5457 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5458 {0, }
5459 };
5460 #undef H
5461
5462 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5463
5464 static int
5465 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5466 {
5467 struct hm_map *m = (struct hm_map *)ent->driver_data;
5468 int ret;
5469
5470 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5471 ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5472 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5473 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5474 printk(KERN_ERR
5475 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5476 "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5477 pdev->device, pdev->subsystem_vendor,
5478 pdev->subsystem_device);
5479 printk(KERN_ERR
5480 "Please contact the driver maintainer for support.\n");
5481 return -ENODEV;
5482 }
5483 ret = hfcmulti_init(m, pdev, ent);
5484 if (ret)
5485 return ret;
5486 HFC_cnt++;
5487 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5488 return 0;
5489 }
5490
5491 static struct pci_driver hfcmultipci_driver = {
5492 .name = "hfc_multi",
5493 .probe = hfcmulti_probe,
5494 .remove = __devexit_p(hfc_remove_pci),
5495 .id_table = hfmultipci_ids,
5496 };
5497
5498 static void __exit
5499 HFCmulti_cleanup(void)
5500 {
5501 struct hfc_multi *card, *next;
5502
5503 /* get rid of all devices of this driver */
5504 list_for_each_entry_safe(card, next, &HFClist, list)
5505 release_card(card);
5506 pci_unregister_driver(&hfcmultipci_driver);
5507 }
5508
5509 static int __init
5510 HFCmulti_init(void)
5511 {
5512 int err;
5513 int i, xhfc = 0;
5514 struct hm_map m;
5515
5516 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5517
5518 #ifdef IRQ_DEBUG
5519 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5520 #endif
5521
5522 spin_lock_init(&HFClock);
5523 spin_lock_init(&plx_lock);
5524
5525 if (debug & DEBUG_HFCMULTI_INIT)
5526 printk(KERN_DEBUG "%s: init entered\n", __func__);
5527
5528 switch (poll) {
5529 case 0:
5530 poll_timer = 6;
5531 poll = 128;
5532 break;
5533 case 8:
5534 poll_timer = 2;
5535 break;
5536 case 16:
5537 poll_timer = 3;
5538 break;
5539 case 32:
5540 poll_timer = 4;
5541 break;
5542 case 64:
5543 poll_timer = 5;
5544 break;
5545 case 128:
5546 poll_timer = 6;
5547 break;
5548 case 256:
5549 poll_timer = 7;
5550 break;
5551 default:
5552 printk(KERN_ERR
5553 "%s: Wrong poll value (%d).\n", __func__, poll);
5554 err = -EINVAL;
5555 return err;
5556
5557 }
5558
5559 if (!clock)
5560 clock = 1;
5561
5562 /* Register the embedded devices.
5563 * This should be done before the PCI cards registration */
5564 switch (hwid) {
5565 case HWID_MINIP4:
5566 xhfc = 1;
5567 m = hfcm_map[31];
5568 break;
5569 case HWID_MINIP8:
5570 xhfc = 2;
5571 m = hfcm_map[31];
5572 break;
5573 case HWID_MINIP16:
5574 xhfc = 4;
5575 m = hfcm_map[31];
5576 break;
5577 default:
5578 xhfc = 0;
5579 }
5580
5581 for (i = 0; i < xhfc; ++i) {
5582 err = hfcmulti_init(&m, NULL, NULL);
5583 if (err) {
5584 printk(KERN_ERR "error registering embedded driver: "
5585 "%x\n", err);
5586 return err;
5587 }
5588 HFC_cnt++;
5589 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5590 }
5591
5592 /* Register the PCI cards */
5593 err = pci_register_driver(&hfcmultipci_driver);
5594 if (err < 0) {
5595 printk(KERN_ERR "error registering pci driver: %x\n", err);
5596 return err;
5597 }
5598
5599 return 0;
5600 }
5601
5602
5603 module_init(HFCmulti_init);
5604 module_exit(HFCmulti_cleanup);
This page took 0.195807 seconds and 5 git commands to generate.