469cec54f371eb0a1f9b23cbbb98b3313ded60c1
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm.h"
9 #include "dm-bio-list.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/moduleparam.h>
16 #include <linux/blkpg.h>
17 #include <linux/bio.h>
18 #include <linux/buffer_head.h>
19 #include <linux/mempool.h>
20 #include <linux/slab.h>
21 #include <linux/idr.h>
22 #include <linux/hdreg.h>
23 #include <linux/blktrace_api.h>
24 #include <linux/smp_lock.h>
25
26 #define DM_MSG_PREFIX "core"
27
28 static const char *_name = DM_NAME;
29
30 static unsigned int major = 0;
31 static unsigned int _major = 0;
32
33 static DEFINE_SPINLOCK(_minor_lock);
34 /*
35 * One of these is allocated per bio.
36 */
37 struct dm_io {
38 struct mapped_device *md;
39 int error;
40 atomic_t io_count;
41 struct bio *bio;
42 unsigned long start_time;
43 };
44
45 /*
46 * One of these is allocated per target within a bio. Hopefully
47 * this will be simplified out one day.
48 */
49 struct dm_target_io {
50 struct dm_io *io;
51 struct dm_target *ti;
52 union map_info info;
53 };
54
55 union map_info *dm_get_mapinfo(struct bio *bio)
56 {
57 if (bio && bio->bi_private)
58 return &((struct dm_target_io *)bio->bi_private)->info;
59 return NULL;
60 }
61
62 #define MINOR_ALLOCED ((void *)-1)
63
64 /*
65 * Bits for the md->flags field.
66 */
67 #define DMF_BLOCK_IO 0
68 #define DMF_SUSPENDED 1
69 #define DMF_FROZEN 2
70 #define DMF_FREEING 3
71 #define DMF_DELETING 4
72 #define DMF_NOFLUSH_SUSPENDING 5
73
74 /*
75 * Work processed by per-device workqueue.
76 */
77 struct dm_wq_req {
78 enum {
79 DM_WQ_FLUSH_ALL,
80 DM_WQ_FLUSH_DEFERRED,
81 } type;
82 struct work_struct work;
83 struct mapped_device *md;
84 void *context;
85 };
86
87 struct mapped_device {
88 struct rw_semaphore io_lock;
89 struct mutex suspend_lock;
90 spinlock_t pushback_lock;
91 rwlock_t map_lock;
92 atomic_t holders;
93 atomic_t open_count;
94
95 unsigned long flags;
96
97 struct request_queue *queue;
98 struct gendisk *disk;
99 char name[16];
100
101 void *interface_ptr;
102
103 /*
104 * A list of ios that arrived while we were suspended.
105 */
106 atomic_t pending;
107 wait_queue_head_t wait;
108 struct bio_list deferred;
109 struct bio_list pushback;
110
111 /*
112 * Processing queue (flush/barriers)
113 */
114 struct workqueue_struct *wq;
115
116 /*
117 * The current mapping.
118 */
119 struct dm_table *map;
120
121 /*
122 * io objects are allocated from here.
123 */
124 mempool_t *io_pool;
125 mempool_t *tio_pool;
126
127 struct bio_set *bs;
128
129 /*
130 * Event handling.
131 */
132 atomic_t event_nr;
133 wait_queue_head_t eventq;
134 atomic_t uevent_seq;
135 struct list_head uevent_list;
136 spinlock_t uevent_lock; /* Protect access to uevent_list */
137
138 /*
139 * freeze/thaw support require holding onto a super block
140 */
141 struct super_block *frozen_sb;
142 struct block_device *suspended_bdev;
143
144 /* forced geometry settings */
145 struct hd_geometry geometry;
146 };
147
148 #define MIN_IOS 256
149 static struct kmem_cache *_io_cache;
150 static struct kmem_cache *_tio_cache;
151
152 static int __init local_init(void)
153 {
154 int r;
155
156 /* allocate a slab for the dm_ios */
157 _io_cache = KMEM_CACHE(dm_io, 0);
158 if (!_io_cache)
159 return -ENOMEM;
160
161 /* allocate a slab for the target ios */
162 _tio_cache = KMEM_CACHE(dm_target_io, 0);
163 if (!_tio_cache) {
164 kmem_cache_destroy(_io_cache);
165 return -ENOMEM;
166 }
167
168 r = dm_uevent_init();
169 if (r) {
170 kmem_cache_destroy(_tio_cache);
171 kmem_cache_destroy(_io_cache);
172 return r;
173 }
174
175 _major = major;
176 r = register_blkdev(_major, _name);
177 if (r < 0) {
178 kmem_cache_destroy(_tio_cache);
179 kmem_cache_destroy(_io_cache);
180 dm_uevent_exit();
181 return r;
182 }
183
184 if (!_major)
185 _major = r;
186
187 return 0;
188 }
189
190 static void local_exit(void)
191 {
192 kmem_cache_destroy(_tio_cache);
193 kmem_cache_destroy(_io_cache);
194 unregister_blkdev(_major, _name);
195 dm_uevent_exit();
196
197 _major = 0;
198
199 DMINFO("cleaned up");
200 }
201
202 static int (*_inits[])(void) __initdata = {
203 local_init,
204 dm_target_init,
205 dm_linear_init,
206 dm_stripe_init,
207 dm_kcopyd_init,
208 dm_interface_init,
209 };
210
211 static void (*_exits[])(void) = {
212 local_exit,
213 dm_target_exit,
214 dm_linear_exit,
215 dm_stripe_exit,
216 dm_kcopyd_exit,
217 dm_interface_exit,
218 };
219
220 static int __init dm_init(void)
221 {
222 const int count = ARRAY_SIZE(_inits);
223
224 int r, i;
225
226 for (i = 0; i < count; i++) {
227 r = _inits[i]();
228 if (r)
229 goto bad;
230 }
231
232 return 0;
233
234 bad:
235 while (i--)
236 _exits[i]();
237
238 return r;
239 }
240
241 static void __exit dm_exit(void)
242 {
243 int i = ARRAY_SIZE(_exits);
244
245 while (i--)
246 _exits[i]();
247 }
248
249 /*
250 * Block device functions
251 */
252 static int dm_blk_open(struct inode *inode, struct file *file)
253 {
254 struct mapped_device *md;
255
256 spin_lock(&_minor_lock);
257
258 md = inode->i_bdev->bd_disk->private_data;
259 if (!md)
260 goto out;
261
262 if (test_bit(DMF_FREEING, &md->flags) ||
263 test_bit(DMF_DELETING, &md->flags)) {
264 md = NULL;
265 goto out;
266 }
267
268 dm_get(md);
269 atomic_inc(&md->open_count);
270
271 out:
272 spin_unlock(&_minor_lock);
273
274 return md ? 0 : -ENXIO;
275 }
276
277 static int dm_blk_close(struct inode *inode, struct file *file)
278 {
279 struct mapped_device *md;
280
281 md = inode->i_bdev->bd_disk->private_data;
282 atomic_dec(&md->open_count);
283 dm_put(md);
284 return 0;
285 }
286
287 int dm_open_count(struct mapped_device *md)
288 {
289 return atomic_read(&md->open_count);
290 }
291
292 /*
293 * Guarantees nothing is using the device before it's deleted.
294 */
295 int dm_lock_for_deletion(struct mapped_device *md)
296 {
297 int r = 0;
298
299 spin_lock(&_minor_lock);
300
301 if (dm_open_count(md))
302 r = -EBUSY;
303 else
304 set_bit(DMF_DELETING, &md->flags);
305
306 spin_unlock(&_minor_lock);
307
308 return r;
309 }
310
311 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
312 {
313 struct mapped_device *md = bdev->bd_disk->private_data;
314
315 return dm_get_geometry(md, geo);
316 }
317
318 static int dm_blk_ioctl(struct inode *inode, struct file *file,
319 unsigned int cmd, unsigned long arg)
320 {
321 struct mapped_device *md;
322 struct dm_table *map;
323 struct dm_target *tgt;
324 int r = -ENOTTY;
325
326 /* We don't really need this lock, but we do need 'inode'. */
327 unlock_kernel();
328
329 md = inode->i_bdev->bd_disk->private_data;
330
331 map = dm_get_table(md);
332
333 if (!map || !dm_table_get_size(map))
334 goto out;
335
336 /* We only support devices that have a single target */
337 if (dm_table_get_num_targets(map) != 1)
338 goto out;
339
340 tgt = dm_table_get_target(map, 0);
341
342 if (dm_suspended(md)) {
343 r = -EAGAIN;
344 goto out;
345 }
346
347 if (tgt->type->ioctl)
348 r = tgt->type->ioctl(tgt, inode, file, cmd, arg);
349
350 out:
351 dm_table_put(map);
352
353 lock_kernel();
354 return r;
355 }
356
357 static struct dm_io *alloc_io(struct mapped_device *md)
358 {
359 return mempool_alloc(md->io_pool, GFP_NOIO);
360 }
361
362 static void free_io(struct mapped_device *md, struct dm_io *io)
363 {
364 mempool_free(io, md->io_pool);
365 }
366
367 static struct dm_target_io *alloc_tio(struct mapped_device *md)
368 {
369 return mempool_alloc(md->tio_pool, GFP_NOIO);
370 }
371
372 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
373 {
374 mempool_free(tio, md->tio_pool);
375 }
376
377 static void start_io_acct(struct dm_io *io)
378 {
379 struct mapped_device *md = io->md;
380
381 io->start_time = jiffies;
382
383 preempt_disable();
384 disk_round_stats(dm_disk(md));
385 preempt_enable();
386 dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
387 }
388
389 static int end_io_acct(struct dm_io *io)
390 {
391 struct mapped_device *md = io->md;
392 struct bio *bio = io->bio;
393 unsigned long duration = jiffies - io->start_time;
394 int pending;
395 int rw = bio_data_dir(bio);
396
397 preempt_disable();
398 disk_round_stats(dm_disk(md));
399 preempt_enable();
400 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
401
402 disk_stat_add(dm_disk(md), ticks[rw], duration);
403
404 return !pending;
405 }
406
407 /*
408 * Add the bio to the list of deferred io.
409 */
410 static int queue_io(struct mapped_device *md, struct bio *bio)
411 {
412 down_write(&md->io_lock);
413
414 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
415 up_write(&md->io_lock);
416 return 1;
417 }
418
419 bio_list_add(&md->deferred, bio);
420
421 up_write(&md->io_lock);
422 return 0; /* deferred successfully */
423 }
424
425 /*
426 * Everyone (including functions in this file), should use this
427 * function to access the md->map field, and make sure they call
428 * dm_table_put() when finished.
429 */
430 struct dm_table *dm_get_table(struct mapped_device *md)
431 {
432 struct dm_table *t;
433
434 read_lock(&md->map_lock);
435 t = md->map;
436 if (t)
437 dm_table_get(t);
438 read_unlock(&md->map_lock);
439
440 return t;
441 }
442
443 /*
444 * Get the geometry associated with a dm device
445 */
446 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
447 {
448 *geo = md->geometry;
449
450 return 0;
451 }
452
453 /*
454 * Set the geometry of a device.
455 */
456 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
457 {
458 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
459
460 if (geo->start > sz) {
461 DMWARN("Start sector is beyond the geometry limits.");
462 return -EINVAL;
463 }
464
465 md->geometry = *geo;
466
467 return 0;
468 }
469
470 /*-----------------------------------------------------------------
471 * CRUD START:
472 * A more elegant soln is in the works that uses the queue
473 * merge fn, unfortunately there are a couple of changes to
474 * the block layer that I want to make for this. So in the
475 * interests of getting something for people to use I give
476 * you this clearly demarcated crap.
477 *---------------------------------------------------------------*/
478
479 static int __noflush_suspending(struct mapped_device *md)
480 {
481 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
482 }
483
484 /*
485 * Decrements the number of outstanding ios that a bio has been
486 * cloned into, completing the original io if necc.
487 */
488 static void dec_pending(struct dm_io *io, int error)
489 {
490 unsigned long flags;
491
492 /* Push-back supersedes any I/O errors */
493 if (error && !(io->error > 0 && __noflush_suspending(io->md)))
494 io->error = error;
495
496 if (atomic_dec_and_test(&io->io_count)) {
497 if (io->error == DM_ENDIO_REQUEUE) {
498 /*
499 * Target requested pushing back the I/O.
500 * This must be handled before the sleeper on
501 * suspend queue merges the pushback list.
502 */
503 spin_lock_irqsave(&io->md->pushback_lock, flags);
504 if (__noflush_suspending(io->md))
505 bio_list_add(&io->md->pushback, io->bio);
506 else
507 /* noflush suspend was interrupted. */
508 io->error = -EIO;
509 spin_unlock_irqrestore(&io->md->pushback_lock, flags);
510 }
511
512 if (end_io_acct(io))
513 /* nudge anyone waiting on suspend queue */
514 wake_up(&io->md->wait);
515
516 if (io->error != DM_ENDIO_REQUEUE) {
517 blk_add_trace_bio(io->md->queue, io->bio,
518 BLK_TA_COMPLETE);
519
520 bio_endio(io->bio, io->error);
521 }
522
523 free_io(io->md, io);
524 }
525 }
526
527 static void clone_endio(struct bio *bio, int error)
528 {
529 int r = 0;
530 struct dm_target_io *tio = bio->bi_private;
531 struct mapped_device *md = tio->io->md;
532 dm_endio_fn endio = tio->ti->type->end_io;
533
534 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
535 error = -EIO;
536
537 if (endio) {
538 r = endio(tio->ti, bio, error, &tio->info);
539 if (r < 0 || r == DM_ENDIO_REQUEUE)
540 /*
541 * error and requeue request are handled
542 * in dec_pending().
543 */
544 error = r;
545 else if (r == DM_ENDIO_INCOMPLETE)
546 /* The target will handle the io */
547 return;
548 else if (r) {
549 DMWARN("unimplemented target endio return value: %d", r);
550 BUG();
551 }
552 }
553
554 dec_pending(tio->io, error);
555
556 /*
557 * Store md for cleanup instead of tio which is about to get freed.
558 */
559 bio->bi_private = md->bs;
560
561 bio_put(bio);
562 free_tio(md, tio);
563 }
564
565 static sector_t max_io_len(struct mapped_device *md,
566 sector_t sector, struct dm_target *ti)
567 {
568 sector_t offset = sector - ti->begin;
569 sector_t len = ti->len - offset;
570
571 /*
572 * Does the target need to split even further ?
573 */
574 if (ti->split_io) {
575 sector_t boundary;
576 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
577 - offset;
578 if (len > boundary)
579 len = boundary;
580 }
581
582 return len;
583 }
584
585 static void __map_bio(struct dm_target *ti, struct bio *clone,
586 struct dm_target_io *tio)
587 {
588 int r;
589 sector_t sector;
590 struct mapped_device *md;
591
592 /*
593 * Sanity checks.
594 */
595 BUG_ON(!clone->bi_size);
596
597 clone->bi_end_io = clone_endio;
598 clone->bi_private = tio;
599
600 /*
601 * Map the clone. If r == 0 we don't need to do
602 * anything, the target has assumed ownership of
603 * this io.
604 */
605 atomic_inc(&tio->io->io_count);
606 sector = clone->bi_sector;
607 r = ti->type->map(ti, clone, &tio->info);
608 if (r == DM_MAPIO_REMAPPED) {
609 /* the bio has been remapped so dispatch it */
610
611 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
612 tio->io->bio->bi_bdev->bd_dev,
613 clone->bi_sector, sector);
614
615 generic_make_request(clone);
616 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
617 /* error the io and bail out, or requeue it if needed */
618 md = tio->io->md;
619 dec_pending(tio->io, r);
620 /*
621 * Store bio_set for cleanup.
622 */
623 clone->bi_private = md->bs;
624 bio_put(clone);
625 free_tio(md, tio);
626 } else if (r) {
627 DMWARN("unimplemented target map return value: %d", r);
628 BUG();
629 }
630 }
631
632 struct clone_info {
633 struct mapped_device *md;
634 struct dm_table *map;
635 struct bio *bio;
636 struct dm_io *io;
637 sector_t sector;
638 sector_t sector_count;
639 unsigned short idx;
640 };
641
642 static void dm_bio_destructor(struct bio *bio)
643 {
644 struct bio_set *bs = bio->bi_private;
645
646 bio_free(bio, bs);
647 }
648
649 /*
650 * Creates a little bio that is just does part of a bvec.
651 */
652 static struct bio *split_bvec(struct bio *bio, sector_t sector,
653 unsigned short idx, unsigned int offset,
654 unsigned int len, struct bio_set *bs)
655 {
656 struct bio *clone;
657 struct bio_vec *bv = bio->bi_io_vec + idx;
658
659 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
660 clone->bi_destructor = dm_bio_destructor;
661 *clone->bi_io_vec = *bv;
662
663 clone->bi_sector = sector;
664 clone->bi_bdev = bio->bi_bdev;
665 clone->bi_rw = bio->bi_rw;
666 clone->bi_vcnt = 1;
667 clone->bi_size = to_bytes(len);
668 clone->bi_io_vec->bv_offset = offset;
669 clone->bi_io_vec->bv_len = clone->bi_size;
670
671 return clone;
672 }
673
674 /*
675 * Creates a bio that consists of range of complete bvecs.
676 */
677 static struct bio *clone_bio(struct bio *bio, sector_t sector,
678 unsigned short idx, unsigned short bv_count,
679 unsigned int len, struct bio_set *bs)
680 {
681 struct bio *clone;
682
683 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
684 __bio_clone(clone, bio);
685 clone->bi_destructor = dm_bio_destructor;
686 clone->bi_sector = sector;
687 clone->bi_idx = idx;
688 clone->bi_vcnt = idx + bv_count;
689 clone->bi_size = to_bytes(len);
690 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
691
692 return clone;
693 }
694
695 static int __clone_and_map(struct clone_info *ci)
696 {
697 struct bio *clone, *bio = ci->bio;
698 struct dm_target *ti;
699 sector_t len = 0, max;
700 struct dm_target_io *tio;
701
702 ti = dm_table_find_target(ci->map, ci->sector);
703 if (!dm_target_is_valid(ti))
704 return -EIO;
705
706 max = max_io_len(ci->md, ci->sector, ti);
707
708 /*
709 * Allocate a target io object.
710 */
711 tio = alloc_tio(ci->md);
712 tio->io = ci->io;
713 tio->ti = ti;
714 memset(&tio->info, 0, sizeof(tio->info));
715
716 if (ci->sector_count <= max) {
717 /*
718 * Optimise for the simple case where we can do all of
719 * the remaining io with a single clone.
720 */
721 clone = clone_bio(bio, ci->sector, ci->idx,
722 bio->bi_vcnt - ci->idx, ci->sector_count,
723 ci->md->bs);
724 __map_bio(ti, clone, tio);
725 ci->sector_count = 0;
726
727 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
728 /*
729 * There are some bvecs that don't span targets.
730 * Do as many of these as possible.
731 */
732 int i;
733 sector_t remaining = max;
734 sector_t bv_len;
735
736 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
737 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
738
739 if (bv_len > remaining)
740 break;
741
742 remaining -= bv_len;
743 len += bv_len;
744 }
745
746 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
747 ci->md->bs);
748 __map_bio(ti, clone, tio);
749
750 ci->sector += len;
751 ci->sector_count -= len;
752 ci->idx = i;
753
754 } else {
755 /*
756 * Handle a bvec that must be split between two or more targets.
757 */
758 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
759 sector_t remaining = to_sector(bv->bv_len);
760 unsigned int offset = 0;
761
762 do {
763 if (offset) {
764 ti = dm_table_find_target(ci->map, ci->sector);
765 if (!dm_target_is_valid(ti))
766 return -EIO;
767
768 max = max_io_len(ci->md, ci->sector, ti);
769
770 tio = alloc_tio(ci->md);
771 tio->io = ci->io;
772 tio->ti = ti;
773 memset(&tio->info, 0, sizeof(tio->info));
774 }
775
776 len = min(remaining, max);
777
778 clone = split_bvec(bio, ci->sector, ci->idx,
779 bv->bv_offset + offset, len,
780 ci->md->bs);
781
782 __map_bio(ti, clone, tio);
783
784 ci->sector += len;
785 ci->sector_count -= len;
786 offset += to_bytes(len);
787 } while (remaining -= len);
788
789 ci->idx++;
790 }
791
792 return 0;
793 }
794
795 /*
796 * Split the bio into several clones.
797 */
798 static int __split_bio(struct mapped_device *md, struct bio *bio)
799 {
800 struct clone_info ci;
801 int error = 0;
802
803 ci.map = dm_get_table(md);
804 if (unlikely(!ci.map))
805 return -EIO;
806
807 ci.md = md;
808 ci.bio = bio;
809 ci.io = alloc_io(md);
810 ci.io->error = 0;
811 atomic_set(&ci.io->io_count, 1);
812 ci.io->bio = bio;
813 ci.io->md = md;
814 ci.sector = bio->bi_sector;
815 ci.sector_count = bio_sectors(bio);
816 ci.idx = bio->bi_idx;
817
818 start_io_acct(ci.io);
819 while (ci.sector_count && !error)
820 error = __clone_and_map(&ci);
821
822 /* drop the extra reference count */
823 dec_pending(ci.io, error);
824 dm_table_put(ci.map);
825
826 return 0;
827 }
828 /*-----------------------------------------------------------------
829 * CRUD END
830 *---------------------------------------------------------------*/
831
832 static int dm_merge_bvec(struct request_queue *q,
833 struct bvec_merge_data *bvm,
834 struct bio_vec *biovec)
835 {
836 struct mapped_device *md = q->queuedata;
837 struct dm_table *map = dm_get_table(md);
838 struct dm_target *ti;
839 sector_t max_sectors;
840 int max_size = 0;
841
842 if (unlikely(!map))
843 goto out;
844
845 ti = dm_table_find_target(map, bvm->bi_sector);
846
847 /*
848 * Find maximum amount of I/O that won't need splitting
849 */
850 max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
851 (sector_t) BIO_MAX_SECTORS);
852 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
853 if (max_size < 0)
854 max_size = 0;
855
856 /*
857 * merge_bvec_fn() returns number of bytes
858 * it can accept at this offset
859 * max is precomputed maximal io size
860 */
861 if (max_size && ti->type->merge)
862 max_size = ti->type->merge(ti, bvm, biovec, max_size);
863
864 dm_table_put(map);
865
866 out:
867 /*
868 * Always allow an entire first page
869 */
870 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
871 max_size = biovec->bv_len;
872
873 return max_size;
874 }
875
876 /*
877 * The request function that just remaps the bio built up by
878 * dm_merge_bvec.
879 */
880 static int dm_request(struct request_queue *q, struct bio *bio)
881 {
882 int r = -EIO;
883 int rw = bio_data_dir(bio);
884 struct mapped_device *md = q->queuedata;
885
886 /*
887 * There is no use in forwarding any barrier request since we can't
888 * guarantee it is (or can be) handled by the targets correctly.
889 */
890 if (unlikely(bio_barrier(bio))) {
891 bio_endio(bio, -EOPNOTSUPP);
892 return 0;
893 }
894
895 down_read(&md->io_lock);
896
897 disk_stat_inc(dm_disk(md), ios[rw]);
898 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
899
900 /*
901 * If we're suspended we have to queue
902 * this io for later.
903 */
904 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
905 up_read(&md->io_lock);
906
907 if (bio_rw(bio) != READA)
908 r = queue_io(md, bio);
909
910 if (r <= 0)
911 goto out_req;
912
913 /*
914 * We're in a while loop, because someone could suspend
915 * before we get to the following read lock.
916 */
917 down_read(&md->io_lock);
918 }
919
920 r = __split_bio(md, bio);
921 up_read(&md->io_lock);
922
923 out_req:
924 if (r < 0)
925 bio_io_error(bio);
926
927 return 0;
928 }
929
930 static void dm_unplug_all(struct request_queue *q)
931 {
932 struct mapped_device *md = q->queuedata;
933 struct dm_table *map = dm_get_table(md);
934
935 if (map) {
936 dm_table_unplug_all(map);
937 dm_table_put(map);
938 }
939 }
940
941 static int dm_any_congested(void *congested_data, int bdi_bits)
942 {
943 int r;
944 struct mapped_device *md = (struct mapped_device *) congested_data;
945 struct dm_table *map = dm_get_table(md);
946
947 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
948 r = bdi_bits;
949 else
950 r = dm_table_any_congested(map, bdi_bits);
951
952 dm_table_put(map);
953 return r;
954 }
955
956 /*-----------------------------------------------------------------
957 * An IDR is used to keep track of allocated minor numbers.
958 *---------------------------------------------------------------*/
959 static DEFINE_IDR(_minor_idr);
960
961 static void free_minor(int minor)
962 {
963 spin_lock(&_minor_lock);
964 idr_remove(&_minor_idr, minor);
965 spin_unlock(&_minor_lock);
966 }
967
968 /*
969 * See if the device with a specific minor # is free.
970 */
971 static int specific_minor(int minor)
972 {
973 int r, m;
974
975 if (minor >= (1 << MINORBITS))
976 return -EINVAL;
977
978 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
979 if (!r)
980 return -ENOMEM;
981
982 spin_lock(&_minor_lock);
983
984 if (idr_find(&_minor_idr, minor)) {
985 r = -EBUSY;
986 goto out;
987 }
988
989 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
990 if (r)
991 goto out;
992
993 if (m != minor) {
994 idr_remove(&_minor_idr, m);
995 r = -EBUSY;
996 goto out;
997 }
998
999 out:
1000 spin_unlock(&_minor_lock);
1001 return r;
1002 }
1003
1004 static int next_free_minor(int *minor)
1005 {
1006 int r, m;
1007
1008 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1009 if (!r)
1010 return -ENOMEM;
1011
1012 spin_lock(&_minor_lock);
1013
1014 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1015 if (r)
1016 goto out;
1017
1018 if (m >= (1 << MINORBITS)) {
1019 idr_remove(&_minor_idr, m);
1020 r = -ENOSPC;
1021 goto out;
1022 }
1023
1024 *minor = m;
1025
1026 out:
1027 spin_unlock(&_minor_lock);
1028 return r;
1029 }
1030
1031 static struct block_device_operations dm_blk_dops;
1032
1033 /*
1034 * Allocate and initialise a blank device with a given minor.
1035 */
1036 static struct mapped_device *alloc_dev(int minor)
1037 {
1038 int r;
1039 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1040 void *old_md;
1041
1042 if (!md) {
1043 DMWARN("unable to allocate device, out of memory.");
1044 return NULL;
1045 }
1046
1047 if (!try_module_get(THIS_MODULE))
1048 goto bad_module_get;
1049
1050 /* get a minor number for the dev */
1051 if (minor == DM_ANY_MINOR)
1052 r = next_free_minor(&minor);
1053 else
1054 r = specific_minor(minor);
1055 if (r < 0)
1056 goto bad_minor;
1057
1058 init_rwsem(&md->io_lock);
1059 mutex_init(&md->suspend_lock);
1060 spin_lock_init(&md->pushback_lock);
1061 rwlock_init(&md->map_lock);
1062 atomic_set(&md->holders, 1);
1063 atomic_set(&md->open_count, 0);
1064 atomic_set(&md->event_nr, 0);
1065 atomic_set(&md->uevent_seq, 0);
1066 INIT_LIST_HEAD(&md->uevent_list);
1067 spin_lock_init(&md->uevent_lock);
1068
1069 md->queue = blk_alloc_queue(GFP_KERNEL);
1070 if (!md->queue)
1071 goto bad_queue;
1072
1073 md->queue->queuedata = md;
1074 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1075 md->queue->backing_dev_info.congested_data = md;
1076 blk_queue_make_request(md->queue, dm_request);
1077 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1078 md->queue->unplug_fn = dm_unplug_all;
1079 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1080
1081 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
1082 if (!md->io_pool)
1083 goto bad_io_pool;
1084
1085 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
1086 if (!md->tio_pool)
1087 goto bad_tio_pool;
1088
1089 md->bs = bioset_create(16, 16);
1090 if (!md->bs)
1091 goto bad_no_bioset;
1092
1093 md->disk = alloc_disk(1);
1094 if (!md->disk)
1095 goto bad_disk;
1096
1097 atomic_set(&md->pending, 0);
1098 init_waitqueue_head(&md->wait);
1099 init_waitqueue_head(&md->eventq);
1100
1101 md->disk->major = _major;
1102 md->disk->first_minor = minor;
1103 md->disk->fops = &dm_blk_dops;
1104 md->disk->queue = md->queue;
1105 md->disk->private_data = md;
1106 sprintf(md->disk->disk_name, "dm-%d", minor);
1107 add_disk(md->disk);
1108 format_dev_t(md->name, MKDEV(_major, minor));
1109
1110 md->wq = create_singlethread_workqueue("kdmflush");
1111 if (!md->wq)
1112 goto bad_thread;
1113
1114 /* Populate the mapping, nobody knows we exist yet */
1115 spin_lock(&_minor_lock);
1116 old_md = idr_replace(&_minor_idr, md, minor);
1117 spin_unlock(&_minor_lock);
1118
1119 BUG_ON(old_md != MINOR_ALLOCED);
1120
1121 return md;
1122
1123 bad_thread:
1124 put_disk(md->disk);
1125 bad_disk:
1126 bioset_free(md->bs);
1127 bad_no_bioset:
1128 mempool_destroy(md->tio_pool);
1129 bad_tio_pool:
1130 mempool_destroy(md->io_pool);
1131 bad_io_pool:
1132 blk_cleanup_queue(md->queue);
1133 bad_queue:
1134 free_minor(minor);
1135 bad_minor:
1136 module_put(THIS_MODULE);
1137 bad_module_get:
1138 kfree(md);
1139 return NULL;
1140 }
1141
1142 static void unlock_fs(struct mapped_device *md);
1143
1144 static void free_dev(struct mapped_device *md)
1145 {
1146 int minor = md->disk->first_minor;
1147
1148 if (md->suspended_bdev) {
1149 unlock_fs(md);
1150 bdput(md->suspended_bdev);
1151 }
1152 destroy_workqueue(md->wq);
1153 mempool_destroy(md->tio_pool);
1154 mempool_destroy(md->io_pool);
1155 bioset_free(md->bs);
1156 del_gendisk(md->disk);
1157 free_minor(minor);
1158
1159 spin_lock(&_minor_lock);
1160 md->disk->private_data = NULL;
1161 spin_unlock(&_minor_lock);
1162
1163 put_disk(md->disk);
1164 blk_cleanup_queue(md->queue);
1165 module_put(THIS_MODULE);
1166 kfree(md);
1167 }
1168
1169 /*
1170 * Bind a table to the device.
1171 */
1172 static void event_callback(void *context)
1173 {
1174 unsigned long flags;
1175 LIST_HEAD(uevents);
1176 struct mapped_device *md = (struct mapped_device *) context;
1177
1178 spin_lock_irqsave(&md->uevent_lock, flags);
1179 list_splice_init(&md->uevent_list, &uevents);
1180 spin_unlock_irqrestore(&md->uevent_lock, flags);
1181
1182 dm_send_uevents(&uevents, &md->disk->dev.kobj);
1183
1184 atomic_inc(&md->event_nr);
1185 wake_up(&md->eventq);
1186 }
1187
1188 static void __set_size(struct mapped_device *md, sector_t size)
1189 {
1190 set_capacity(md->disk, size);
1191
1192 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
1193 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1194 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
1195 }
1196
1197 static int __bind(struct mapped_device *md, struct dm_table *t)
1198 {
1199 struct request_queue *q = md->queue;
1200 sector_t size;
1201
1202 size = dm_table_get_size(t);
1203
1204 /*
1205 * Wipe any geometry if the size of the table changed.
1206 */
1207 if (size != get_capacity(md->disk))
1208 memset(&md->geometry, 0, sizeof(md->geometry));
1209
1210 if (md->suspended_bdev)
1211 __set_size(md, size);
1212 if (size == 0)
1213 return 0;
1214
1215 dm_table_get(t);
1216 dm_table_event_callback(t, event_callback, md);
1217
1218 write_lock(&md->map_lock);
1219 md->map = t;
1220 dm_table_set_restrictions(t, q);
1221 write_unlock(&md->map_lock);
1222
1223 return 0;
1224 }
1225
1226 static void __unbind(struct mapped_device *md)
1227 {
1228 struct dm_table *map = md->map;
1229
1230 if (!map)
1231 return;
1232
1233 dm_table_event_callback(map, NULL, NULL);
1234 write_lock(&md->map_lock);
1235 md->map = NULL;
1236 write_unlock(&md->map_lock);
1237 dm_table_put(map);
1238 }
1239
1240 /*
1241 * Constructor for a new device.
1242 */
1243 int dm_create(int minor, struct mapped_device **result)
1244 {
1245 struct mapped_device *md;
1246
1247 md = alloc_dev(minor);
1248 if (!md)
1249 return -ENXIO;
1250
1251 *result = md;
1252 return 0;
1253 }
1254
1255 static struct mapped_device *dm_find_md(dev_t dev)
1256 {
1257 struct mapped_device *md;
1258 unsigned minor = MINOR(dev);
1259
1260 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1261 return NULL;
1262
1263 spin_lock(&_minor_lock);
1264
1265 md = idr_find(&_minor_idr, minor);
1266 if (md && (md == MINOR_ALLOCED ||
1267 (dm_disk(md)->first_minor != minor) ||
1268 test_bit(DMF_FREEING, &md->flags))) {
1269 md = NULL;
1270 goto out;
1271 }
1272
1273 out:
1274 spin_unlock(&_minor_lock);
1275
1276 return md;
1277 }
1278
1279 struct mapped_device *dm_get_md(dev_t dev)
1280 {
1281 struct mapped_device *md = dm_find_md(dev);
1282
1283 if (md)
1284 dm_get(md);
1285
1286 return md;
1287 }
1288
1289 void *dm_get_mdptr(struct mapped_device *md)
1290 {
1291 return md->interface_ptr;
1292 }
1293
1294 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1295 {
1296 md->interface_ptr = ptr;
1297 }
1298
1299 void dm_get(struct mapped_device *md)
1300 {
1301 atomic_inc(&md->holders);
1302 }
1303
1304 const char *dm_device_name(struct mapped_device *md)
1305 {
1306 return md->name;
1307 }
1308 EXPORT_SYMBOL_GPL(dm_device_name);
1309
1310 void dm_put(struct mapped_device *md)
1311 {
1312 struct dm_table *map;
1313
1314 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1315
1316 if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
1317 map = dm_get_table(md);
1318 idr_replace(&_minor_idr, MINOR_ALLOCED, dm_disk(md)->first_minor);
1319 set_bit(DMF_FREEING, &md->flags);
1320 spin_unlock(&_minor_lock);
1321 if (!dm_suspended(md)) {
1322 dm_table_presuspend_targets(map);
1323 dm_table_postsuspend_targets(map);
1324 }
1325 __unbind(md);
1326 dm_table_put(map);
1327 free_dev(md);
1328 }
1329 }
1330 EXPORT_SYMBOL_GPL(dm_put);
1331
1332 static int dm_wait_for_completion(struct mapped_device *md)
1333 {
1334 int r = 0;
1335
1336 while (1) {
1337 set_current_state(TASK_INTERRUPTIBLE);
1338
1339 smp_mb();
1340 if (!atomic_read(&md->pending))
1341 break;
1342
1343 if (signal_pending(current)) {
1344 r = -EINTR;
1345 break;
1346 }
1347
1348 io_schedule();
1349 }
1350 set_current_state(TASK_RUNNING);
1351
1352 return r;
1353 }
1354
1355 /*
1356 * Process the deferred bios
1357 */
1358 static void __flush_deferred_io(struct mapped_device *md)
1359 {
1360 struct bio *c;
1361
1362 while ((c = bio_list_pop(&md->deferred))) {
1363 if (__split_bio(md, c))
1364 bio_io_error(c);
1365 }
1366
1367 clear_bit(DMF_BLOCK_IO, &md->flags);
1368 }
1369
1370 static void __merge_pushback_list(struct mapped_device *md)
1371 {
1372 unsigned long flags;
1373
1374 spin_lock_irqsave(&md->pushback_lock, flags);
1375 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1376 bio_list_merge_head(&md->deferred, &md->pushback);
1377 bio_list_init(&md->pushback);
1378 spin_unlock_irqrestore(&md->pushback_lock, flags);
1379 }
1380
1381 static void dm_wq_work(struct work_struct *work)
1382 {
1383 struct dm_wq_req *req = container_of(work, struct dm_wq_req, work);
1384 struct mapped_device *md = req->md;
1385
1386 down_write(&md->io_lock);
1387 switch (req->type) {
1388 case DM_WQ_FLUSH_ALL:
1389 __merge_pushback_list(md);
1390 /* pass through */
1391 case DM_WQ_FLUSH_DEFERRED:
1392 __flush_deferred_io(md);
1393 break;
1394 default:
1395 DMERR("dm_wq_work: unrecognised work type %d", req->type);
1396 BUG();
1397 }
1398 up_write(&md->io_lock);
1399 }
1400
1401 static void dm_wq_queue(struct mapped_device *md, int type, void *context,
1402 struct dm_wq_req *req)
1403 {
1404 req->type = type;
1405 req->md = md;
1406 req->context = context;
1407 INIT_WORK(&req->work, dm_wq_work);
1408 queue_work(md->wq, &req->work);
1409 }
1410
1411 static void dm_queue_flush(struct mapped_device *md, int type, void *context)
1412 {
1413 struct dm_wq_req req;
1414
1415 dm_wq_queue(md, type, context, &req);
1416 flush_workqueue(md->wq);
1417 }
1418
1419 /*
1420 * Swap in a new table (destroying old one).
1421 */
1422 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1423 {
1424 int r = -EINVAL;
1425
1426 mutex_lock(&md->suspend_lock);
1427
1428 /* device must be suspended */
1429 if (!dm_suspended(md))
1430 goto out;
1431
1432 /* without bdev, the device size cannot be changed */
1433 if (!md->suspended_bdev)
1434 if (get_capacity(md->disk) != dm_table_get_size(table))
1435 goto out;
1436
1437 __unbind(md);
1438 r = __bind(md, table);
1439
1440 out:
1441 mutex_unlock(&md->suspend_lock);
1442 return r;
1443 }
1444
1445 /*
1446 * Functions to lock and unlock any filesystem running on the
1447 * device.
1448 */
1449 static int lock_fs(struct mapped_device *md)
1450 {
1451 int r;
1452
1453 WARN_ON(md->frozen_sb);
1454
1455 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1456 if (IS_ERR(md->frozen_sb)) {
1457 r = PTR_ERR(md->frozen_sb);
1458 md->frozen_sb = NULL;
1459 return r;
1460 }
1461
1462 set_bit(DMF_FROZEN, &md->flags);
1463
1464 /* don't bdput right now, we don't want the bdev
1465 * to go away while it is locked.
1466 */
1467 return 0;
1468 }
1469
1470 static void unlock_fs(struct mapped_device *md)
1471 {
1472 if (!test_bit(DMF_FROZEN, &md->flags))
1473 return;
1474
1475 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1476 md->frozen_sb = NULL;
1477 clear_bit(DMF_FROZEN, &md->flags);
1478 }
1479
1480 /*
1481 * We need to be able to change a mapping table under a mounted
1482 * filesystem. For example we might want to move some data in
1483 * the background. Before the table can be swapped with
1484 * dm_bind_table, dm_suspend must be called to flush any in
1485 * flight bios and ensure that any further io gets deferred.
1486 */
1487 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
1488 {
1489 struct dm_table *map = NULL;
1490 DECLARE_WAITQUEUE(wait, current);
1491 int r = 0;
1492 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
1493 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
1494
1495 mutex_lock(&md->suspend_lock);
1496
1497 if (dm_suspended(md)) {
1498 r = -EINVAL;
1499 goto out_unlock;
1500 }
1501
1502 map = dm_get_table(md);
1503
1504 /*
1505 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1506 * This flag is cleared before dm_suspend returns.
1507 */
1508 if (noflush)
1509 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
1510
1511 /* This does not get reverted if there's an error later. */
1512 dm_table_presuspend_targets(map);
1513
1514 /* bdget() can stall if the pending I/Os are not flushed */
1515 if (!noflush) {
1516 md->suspended_bdev = bdget_disk(md->disk, 0);
1517 if (!md->suspended_bdev) {
1518 DMWARN("bdget failed in dm_suspend");
1519 r = -ENOMEM;
1520 goto flush_and_out;
1521 }
1522
1523 /*
1524 * Flush I/O to the device. noflush supersedes do_lockfs,
1525 * because lock_fs() needs to flush I/Os.
1526 */
1527 if (do_lockfs) {
1528 r = lock_fs(md);
1529 if (r)
1530 goto out;
1531 }
1532 }
1533
1534 /*
1535 * First we set the BLOCK_IO flag so no more ios will be mapped.
1536 */
1537 down_write(&md->io_lock);
1538 set_bit(DMF_BLOCK_IO, &md->flags);
1539
1540 add_wait_queue(&md->wait, &wait);
1541 up_write(&md->io_lock);
1542
1543 /* unplug */
1544 if (map)
1545 dm_table_unplug_all(map);
1546
1547 /*
1548 * Wait for the already-mapped ios to complete.
1549 */
1550 r = dm_wait_for_completion(md);
1551
1552 down_write(&md->io_lock);
1553 remove_wait_queue(&md->wait, &wait);
1554
1555 if (noflush)
1556 __merge_pushback_list(md);
1557 up_write(&md->io_lock);
1558
1559 /* were we interrupted ? */
1560 if (r < 0) {
1561 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1562
1563 unlock_fs(md);
1564 goto out; /* pushback list is already flushed, so skip flush */
1565 }
1566
1567 dm_table_postsuspend_targets(map);
1568
1569 set_bit(DMF_SUSPENDED, &md->flags);
1570
1571 flush_and_out:
1572 if (r && noflush)
1573 /*
1574 * Because there may be already I/Os in the pushback list,
1575 * flush them before return.
1576 */
1577 dm_queue_flush(md, DM_WQ_FLUSH_ALL, NULL);
1578
1579 out:
1580 if (r && md->suspended_bdev) {
1581 bdput(md->suspended_bdev);
1582 md->suspended_bdev = NULL;
1583 }
1584
1585 dm_table_put(map);
1586
1587 out_unlock:
1588 mutex_unlock(&md->suspend_lock);
1589 return r;
1590 }
1591
1592 int dm_resume(struct mapped_device *md)
1593 {
1594 int r = -EINVAL;
1595 struct dm_table *map = NULL;
1596
1597 mutex_lock(&md->suspend_lock);
1598 if (!dm_suspended(md))
1599 goto out;
1600
1601 map = dm_get_table(md);
1602 if (!map || !dm_table_get_size(map))
1603 goto out;
1604
1605 r = dm_table_resume_targets(map);
1606 if (r)
1607 goto out;
1608
1609 dm_queue_flush(md, DM_WQ_FLUSH_DEFERRED, NULL);
1610
1611 unlock_fs(md);
1612
1613 if (md->suspended_bdev) {
1614 bdput(md->suspended_bdev);
1615 md->suspended_bdev = NULL;
1616 }
1617
1618 clear_bit(DMF_SUSPENDED, &md->flags);
1619
1620 dm_table_unplug_all(map);
1621
1622 dm_kobject_uevent(md);
1623
1624 r = 0;
1625
1626 out:
1627 dm_table_put(map);
1628 mutex_unlock(&md->suspend_lock);
1629
1630 return r;
1631 }
1632
1633 /*-----------------------------------------------------------------
1634 * Event notification.
1635 *---------------------------------------------------------------*/
1636 void dm_kobject_uevent(struct mapped_device *md)
1637 {
1638 kobject_uevent(&md->disk->dev.kobj, KOBJ_CHANGE);
1639 }
1640
1641 uint32_t dm_next_uevent_seq(struct mapped_device *md)
1642 {
1643 return atomic_add_return(1, &md->uevent_seq);
1644 }
1645
1646 uint32_t dm_get_event_nr(struct mapped_device *md)
1647 {
1648 return atomic_read(&md->event_nr);
1649 }
1650
1651 int dm_wait_event(struct mapped_device *md, int event_nr)
1652 {
1653 return wait_event_interruptible(md->eventq,
1654 (event_nr != atomic_read(&md->event_nr)));
1655 }
1656
1657 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
1658 {
1659 unsigned long flags;
1660
1661 spin_lock_irqsave(&md->uevent_lock, flags);
1662 list_add(elist, &md->uevent_list);
1663 spin_unlock_irqrestore(&md->uevent_lock, flags);
1664 }
1665
1666 /*
1667 * The gendisk is only valid as long as you have a reference
1668 * count on 'md'.
1669 */
1670 struct gendisk *dm_disk(struct mapped_device *md)
1671 {
1672 return md->disk;
1673 }
1674
1675 int dm_suspended(struct mapped_device *md)
1676 {
1677 return test_bit(DMF_SUSPENDED, &md->flags);
1678 }
1679
1680 int dm_noflush_suspending(struct dm_target *ti)
1681 {
1682 struct mapped_device *md = dm_table_get_md(ti->table);
1683 int r = __noflush_suspending(md);
1684
1685 dm_put(md);
1686
1687 return r;
1688 }
1689 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
1690
1691 static struct block_device_operations dm_blk_dops = {
1692 .open = dm_blk_open,
1693 .release = dm_blk_close,
1694 .ioctl = dm_blk_ioctl,
1695 .getgeo = dm_blk_getgeo,
1696 .owner = THIS_MODULE
1697 };
1698
1699 EXPORT_SYMBOL(dm_get_mapinfo);
1700
1701 /*
1702 * module hooks
1703 */
1704 module_init(dm_init);
1705 module_exit(dm_exit);
1706
1707 module_param(major, uint, 0);
1708 MODULE_PARM_DESC(major, "The major number of the device mapper");
1709 MODULE_DESCRIPTION(DM_NAME " driver");
1710 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1711 MODULE_LICENSE("GPL");
This page took 0.081995 seconds and 4 git commands to generate.