mmc: core: Prevent too long response times for suspend
[deliverable/linux.git] / drivers / mmc / card / block.c
1 /*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
43
44 #include <asm/system.h>
45 #include <asm/uaccess.h>
46
47 #include "queue.h"
48
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
54
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
61
62 static DEFINE_MUTEX(block_mutex);
63
64 /*
65 * The defaults come from config options but can be overriden by module
66 * or bootarg options.
67 */
68 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
69
70 /*
71 * We've only got one major, so number of mmcblk devices is
72 * limited to 256 / number of minors per device.
73 */
74 static int max_devices;
75
76 /* 256 minors, so at most 256 separate devices */
77 static DECLARE_BITMAP(dev_use, 256);
78 static DECLARE_BITMAP(name_use, 256);
79
80 /*
81 * There is one mmc_blk_data per slot.
82 */
83 struct mmc_blk_data {
84 spinlock_t lock;
85 struct gendisk *disk;
86 struct mmc_queue queue;
87 struct list_head part;
88
89 unsigned int flags;
90 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
91 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
92
93 unsigned int usage;
94 unsigned int read_only;
95 unsigned int part_type;
96 unsigned int name_idx;
97 unsigned int reset_done;
98 #define MMC_BLK_READ BIT(0)
99 #define MMC_BLK_WRITE BIT(1)
100 #define MMC_BLK_DISCARD BIT(2)
101 #define MMC_BLK_SECDISCARD BIT(3)
102
103 /*
104 * Only set in main mmc_blk_data associated
105 * with mmc_card with mmc_set_drvdata, and keeps
106 * track of the current selected device partition.
107 */
108 unsigned int part_curr;
109 struct device_attribute force_ro;
110 };
111
112 static DEFINE_MUTEX(open_lock);
113
114 enum mmc_blk_status {
115 MMC_BLK_SUCCESS = 0,
116 MMC_BLK_PARTIAL,
117 MMC_BLK_CMD_ERR,
118 MMC_BLK_RETRY,
119 MMC_BLK_ABORT,
120 MMC_BLK_DATA_ERR,
121 MMC_BLK_ECC_ERR,
122 };
123
124 module_param(perdev_minors, int, 0444);
125 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
126
127 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
128 {
129 struct mmc_blk_data *md;
130
131 mutex_lock(&open_lock);
132 md = disk->private_data;
133 if (md && md->usage == 0)
134 md = NULL;
135 if (md)
136 md->usage++;
137 mutex_unlock(&open_lock);
138
139 return md;
140 }
141
142 static inline int mmc_get_devidx(struct gendisk *disk)
143 {
144 int devmaj = MAJOR(disk_devt(disk));
145 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
146
147 if (!devmaj)
148 devidx = disk->first_minor / perdev_minors;
149 return devidx;
150 }
151
152 static void mmc_blk_put(struct mmc_blk_data *md)
153 {
154 mutex_lock(&open_lock);
155 md->usage--;
156 if (md->usage == 0) {
157 int devidx = mmc_get_devidx(md->disk);
158 blk_cleanup_queue(md->queue.queue);
159
160 __clear_bit(devidx, dev_use);
161
162 put_disk(md->disk);
163 kfree(md);
164 }
165 mutex_unlock(&open_lock);
166 }
167
168 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
169 char *buf)
170 {
171 int ret;
172 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
173
174 ret = snprintf(buf, PAGE_SIZE, "%d",
175 get_disk_ro(dev_to_disk(dev)) ^
176 md->read_only);
177 mmc_blk_put(md);
178 return ret;
179 }
180
181 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
182 const char *buf, size_t count)
183 {
184 int ret;
185 char *end;
186 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
187 unsigned long set = simple_strtoul(buf, &end, 0);
188 if (end == buf) {
189 ret = -EINVAL;
190 goto out;
191 }
192
193 set_disk_ro(dev_to_disk(dev), set || md->read_only);
194 ret = count;
195 out:
196 mmc_blk_put(md);
197 return ret;
198 }
199
200 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
201 {
202 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
203 int ret = -ENXIO;
204
205 mutex_lock(&block_mutex);
206 if (md) {
207 if (md->usage == 2)
208 check_disk_change(bdev);
209 ret = 0;
210
211 if ((mode & FMODE_WRITE) && md->read_only) {
212 mmc_blk_put(md);
213 ret = -EROFS;
214 }
215 }
216 mutex_unlock(&block_mutex);
217
218 return ret;
219 }
220
221 static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
222 {
223 struct mmc_blk_data *md = disk->private_data;
224
225 mutex_lock(&block_mutex);
226 mmc_blk_put(md);
227 mutex_unlock(&block_mutex);
228 return 0;
229 }
230
231 static int
232 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
233 {
234 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
235 geo->heads = 4;
236 geo->sectors = 16;
237 return 0;
238 }
239
240 struct mmc_blk_ioc_data {
241 struct mmc_ioc_cmd ic;
242 unsigned char *buf;
243 u64 buf_bytes;
244 };
245
246 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
247 struct mmc_ioc_cmd __user *user)
248 {
249 struct mmc_blk_ioc_data *idata;
250 int err;
251
252 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
253 if (!idata) {
254 err = -ENOMEM;
255 goto out;
256 }
257
258 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
259 err = -EFAULT;
260 goto idata_err;
261 }
262
263 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
264 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
265 err = -EOVERFLOW;
266 goto idata_err;
267 }
268
269 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
270 if (!idata->buf) {
271 err = -ENOMEM;
272 goto idata_err;
273 }
274
275 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
276 idata->ic.data_ptr, idata->buf_bytes)) {
277 err = -EFAULT;
278 goto copy_err;
279 }
280
281 return idata;
282
283 copy_err:
284 kfree(idata->buf);
285 idata_err:
286 kfree(idata);
287 out:
288 return ERR_PTR(err);
289 }
290
291 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
292 struct mmc_ioc_cmd __user *ic_ptr)
293 {
294 struct mmc_blk_ioc_data *idata;
295 struct mmc_blk_data *md;
296 struct mmc_card *card;
297 struct mmc_command cmd = {0};
298 struct mmc_data data = {0};
299 struct mmc_request mrq = {NULL};
300 struct scatterlist sg;
301 int err;
302
303 /*
304 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
305 * whole block device, not on a partition. This prevents overspray
306 * between sibling partitions.
307 */
308 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
309 return -EPERM;
310
311 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
312 if (IS_ERR(idata))
313 return PTR_ERR(idata);
314
315 cmd.opcode = idata->ic.opcode;
316 cmd.arg = idata->ic.arg;
317 cmd.flags = idata->ic.flags;
318
319 data.sg = &sg;
320 data.sg_len = 1;
321 data.blksz = idata->ic.blksz;
322 data.blocks = idata->ic.blocks;
323
324 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
325
326 if (idata->ic.write_flag)
327 data.flags = MMC_DATA_WRITE;
328 else
329 data.flags = MMC_DATA_READ;
330
331 mrq.cmd = &cmd;
332 mrq.data = &data;
333
334 md = mmc_blk_get(bdev->bd_disk);
335 if (!md) {
336 err = -EINVAL;
337 goto cmd_done;
338 }
339
340 card = md->queue.card;
341 if (IS_ERR(card)) {
342 err = PTR_ERR(card);
343 goto cmd_done;
344 }
345
346 mmc_claim_host(card->host);
347
348 if (idata->ic.is_acmd) {
349 err = mmc_app_cmd(card->host, card);
350 if (err)
351 goto cmd_rel_host;
352 }
353
354 /* data.flags must already be set before doing this. */
355 mmc_set_data_timeout(&data, card);
356 /* Allow overriding the timeout_ns for empirical tuning. */
357 if (idata->ic.data_timeout_ns)
358 data.timeout_ns = idata->ic.data_timeout_ns;
359
360 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
361 /*
362 * Pretend this is a data transfer and rely on the host driver
363 * to compute timeout. When all host drivers support
364 * cmd.cmd_timeout for R1B, this can be changed to:
365 *
366 * mrq.data = NULL;
367 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
368 */
369 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
370 }
371
372 mmc_wait_for_req(card->host, &mrq);
373
374 if (cmd.error) {
375 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
376 __func__, cmd.error);
377 err = cmd.error;
378 goto cmd_rel_host;
379 }
380 if (data.error) {
381 dev_err(mmc_dev(card->host), "%s: data error %d\n",
382 __func__, data.error);
383 err = data.error;
384 goto cmd_rel_host;
385 }
386
387 /*
388 * According to the SD specs, some commands require a delay after
389 * issuing the command.
390 */
391 if (idata->ic.postsleep_min_us)
392 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
393
394 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
395 err = -EFAULT;
396 goto cmd_rel_host;
397 }
398
399 if (!idata->ic.write_flag) {
400 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
401 idata->buf, idata->buf_bytes)) {
402 err = -EFAULT;
403 goto cmd_rel_host;
404 }
405 }
406
407 cmd_rel_host:
408 mmc_release_host(card->host);
409
410 cmd_done:
411 mmc_blk_put(md);
412 kfree(idata->buf);
413 kfree(idata);
414 return err;
415 }
416
417 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
418 unsigned int cmd, unsigned long arg)
419 {
420 int ret = -EINVAL;
421 if (cmd == MMC_IOC_CMD)
422 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
423 return ret;
424 }
425
426 #ifdef CONFIG_COMPAT
427 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
428 unsigned int cmd, unsigned long arg)
429 {
430 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
431 }
432 #endif
433
434 static const struct block_device_operations mmc_bdops = {
435 .open = mmc_blk_open,
436 .release = mmc_blk_release,
437 .getgeo = mmc_blk_getgeo,
438 .owner = THIS_MODULE,
439 .ioctl = mmc_blk_ioctl,
440 #ifdef CONFIG_COMPAT
441 .compat_ioctl = mmc_blk_compat_ioctl,
442 #endif
443 };
444
445 static inline int mmc_blk_part_switch(struct mmc_card *card,
446 struct mmc_blk_data *md)
447 {
448 int ret;
449 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
450
451 if (main_md->part_curr == md->part_type)
452 return 0;
453
454 if (mmc_card_mmc(card)) {
455 u8 part_config = card->ext_csd.part_config;
456
457 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
458 part_config |= md->part_type;
459
460 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
461 EXT_CSD_PART_CONFIG, part_config,
462 card->ext_csd.part_time);
463 if (ret)
464 return ret;
465
466 card->ext_csd.part_config = part_config;
467 }
468
469 main_md->part_curr = md->part_type;
470 return 0;
471 }
472
473 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
474 {
475 int err;
476 u32 result;
477 __be32 *blocks;
478
479 struct mmc_request mrq = {NULL};
480 struct mmc_command cmd = {0};
481 struct mmc_data data = {0};
482 unsigned int timeout_us;
483
484 struct scatterlist sg;
485
486 cmd.opcode = MMC_APP_CMD;
487 cmd.arg = card->rca << 16;
488 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
489
490 err = mmc_wait_for_cmd(card->host, &cmd, 0);
491 if (err)
492 return (u32)-1;
493 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
494 return (u32)-1;
495
496 memset(&cmd, 0, sizeof(struct mmc_command));
497
498 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
499 cmd.arg = 0;
500 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
501
502 data.timeout_ns = card->csd.tacc_ns * 100;
503 data.timeout_clks = card->csd.tacc_clks * 100;
504
505 timeout_us = data.timeout_ns / 1000;
506 timeout_us += data.timeout_clks * 1000 /
507 (card->host->ios.clock / 1000);
508
509 if (timeout_us > 100000) {
510 data.timeout_ns = 100000000;
511 data.timeout_clks = 0;
512 }
513
514 data.blksz = 4;
515 data.blocks = 1;
516 data.flags = MMC_DATA_READ;
517 data.sg = &sg;
518 data.sg_len = 1;
519
520 mrq.cmd = &cmd;
521 mrq.data = &data;
522
523 blocks = kmalloc(4, GFP_KERNEL);
524 if (!blocks)
525 return (u32)-1;
526
527 sg_init_one(&sg, blocks, 4);
528
529 mmc_wait_for_req(card->host, &mrq);
530
531 result = ntohl(*blocks);
532 kfree(blocks);
533
534 if (cmd.error || data.error)
535 result = (u32)-1;
536
537 return result;
538 }
539
540 static int send_stop(struct mmc_card *card, u32 *status)
541 {
542 struct mmc_command cmd = {0};
543 int err;
544
545 cmd.opcode = MMC_STOP_TRANSMISSION;
546 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
547 err = mmc_wait_for_cmd(card->host, &cmd, 5);
548 if (err == 0)
549 *status = cmd.resp[0];
550 return err;
551 }
552
553 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
554 {
555 struct mmc_command cmd = {0};
556 int err;
557
558 cmd.opcode = MMC_SEND_STATUS;
559 if (!mmc_host_is_spi(card->host))
560 cmd.arg = card->rca << 16;
561 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
562 err = mmc_wait_for_cmd(card->host, &cmd, retries);
563 if (err == 0)
564 *status = cmd.resp[0];
565 return err;
566 }
567
568 #define ERR_RETRY 2
569 #define ERR_ABORT 1
570 #define ERR_CONTINUE 0
571
572 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
573 bool status_valid, u32 status)
574 {
575 switch (error) {
576 case -EILSEQ:
577 /* response crc error, retry the r/w cmd */
578 pr_err("%s: %s sending %s command, card status %#x\n",
579 req->rq_disk->disk_name, "response CRC error",
580 name, status);
581 return ERR_RETRY;
582
583 case -ETIMEDOUT:
584 pr_err("%s: %s sending %s command, card status %#x\n",
585 req->rq_disk->disk_name, "timed out", name, status);
586
587 /* If the status cmd initially failed, retry the r/w cmd */
588 if (!status_valid)
589 return ERR_RETRY;
590
591 /*
592 * If it was a r/w cmd crc error, or illegal command
593 * (eg, issued in wrong state) then retry - we should
594 * have corrected the state problem above.
595 */
596 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
597 return ERR_RETRY;
598
599 /* Otherwise abort the command */
600 return ERR_ABORT;
601
602 default:
603 /* We don't understand the error code the driver gave us */
604 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
605 req->rq_disk->disk_name, error, status);
606 return ERR_ABORT;
607 }
608 }
609
610 /*
611 * Initial r/w and stop cmd error recovery.
612 * We don't know whether the card received the r/w cmd or not, so try to
613 * restore things back to a sane state. Essentially, we do this as follows:
614 * - Obtain card status. If the first attempt to obtain card status fails,
615 * the status word will reflect the failed status cmd, not the failed
616 * r/w cmd. If we fail to obtain card status, it suggests we can no
617 * longer communicate with the card.
618 * - Check the card state. If the card received the cmd but there was a
619 * transient problem with the response, it might still be in a data transfer
620 * mode. Try to send it a stop command. If this fails, we can't recover.
621 * - If the r/w cmd failed due to a response CRC error, it was probably
622 * transient, so retry the cmd.
623 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
624 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
625 * illegal cmd, retry.
626 * Otherwise we don't understand what happened, so abort.
627 */
628 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
629 struct mmc_blk_request *brq, int *ecc_err)
630 {
631 bool prev_cmd_status_valid = true;
632 u32 status, stop_status = 0;
633 int err, retry;
634
635 /*
636 * Try to get card status which indicates both the card state
637 * and why there was no response. If the first attempt fails,
638 * we can't be sure the returned status is for the r/w command.
639 */
640 for (retry = 2; retry >= 0; retry--) {
641 err = get_card_status(card, &status, 0);
642 if (!err)
643 break;
644
645 prev_cmd_status_valid = false;
646 pr_err("%s: error %d sending status command, %sing\n",
647 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
648 }
649
650 /* We couldn't get a response from the card. Give up. */
651 if (err)
652 return ERR_ABORT;
653
654 /* Flag ECC errors */
655 if ((status & R1_CARD_ECC_FAILED) ||
656 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
657 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
658 *ecc_err = 1;
659
660 /*
661 * Check the current card state. If it is in some data transfer
662 * mode, tell it to stop (and hopefully transition back to TRAN.)
663 */
664 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
665 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
666 err = send_stop(card, &stop_status);
667 if (err)
668 pr_err("%s: error %d sending stop command\n",
669 req->rq_disk->disk_name, err);
670
671 /*
672 * If the stop cmd also timed out, the card is probably
673 * not present, so abort. Other errors are bad news too.
674 */
675 if (err)
676 return ERR_ABORT;
677 if (stop_status & R1_CARD_ECC_FAILED)
678 *ecc_err = 1;
679 }
680
681 /* Check for set block count errors */
682 if (brq->sbc.error)
683 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
684 prev_cmd_status_valid, status);
685
686 /* Check for r/w command errors */
687 if (brq->cmd.error)
688 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
689 prev_cmd_status_valid, status);
690
691 /* Data errors */
692 if (!brq->stop.error)
693 return ERR_CONTINUE;
694
695 /* Now for stop errors. These aren't fatal to the transfer. */
696 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
697 req->rq_disk->disk_name, brq->stop.error,
698 brq->cmd.resp[0], status);
699
700 /*
701 * Subsitute in our own stop status as this will give the error
702 * state which happened during the execution of the r/w command.
703 */
704 if (stop_status) {
705 brq->stop.resp[0] = stop_status;
706 brq->stop.error = 0;
707 }
708 return ERR_CONTINUE;
709 }
710
711 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
712 int type)
713 {
714 int err;
715
716 if (md->reset_done & type)
717 return -EEXIST;
718
719 md->reset_done |= type;
720 err = mmc_hw_reset(host);
721 /* Ensure we switch back to the correct partition */
722 if (err != -EOPNOTSUPP) {
723 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
724 int part_err;
725
726 main_md->part_curr = main_md->part_type;
727 part_err = mmc_blk_part_switch(host->card, md);
728 if (part_err) {
729 /*
730 * We have failed to get back into the correct
731 * partition, so we need to abort the whole request.
732 */
733 return -ENODEV;
734 }
735 }
736 return err;
737 }
738
739 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
740 {
741 md->reset_done &= ~type;
742 }
743
744 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
745 {
746 struct mmc_blk_data *md = mq->data;
747 struct mmc_card *card = md->queue.card;
748 unsigned int from, nr, arg;
749 int err = 0, type = MMC_BLK_DISCARD;
750
751 if (!mmc_can_erase(card)) {
752 err = -EOPNOTSUPP;
753 goto out;
754 }
755
756 from = blk_rq_pos(req);
757 nr = blk_rq_sectors(req);
758
759 if (mmc_can_discard(card))
760 arg = MMC_DISCARD_ARG;
761 else if (mmc_can_trim(card))
762 arg = MMC_TRIM_ARG;
763 else
764 arg = MMC_ERASE_ARG;
765 retry:
766 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
767 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
768 INAND_CMD38_ARG_EXT_CSD,
769 arg == MMC_TRIM_ARG ?
770 INAND_CMD38_ARG_TRIM :
771 INAND_CMD38_ARG_ERASE,
772 0);
773 if (err)
774 goto out;
775 }
776 err = mmc_erase(card, from, nr, arg);
777 out:
778 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
779 goto retry;
780 if (!err)
781 mmc_blk_reset_success(md, type);
782 spin_lock_irq(&md->lock);
783 __blk_end_request(req, err, blk_rq_bytes(req));
784 spin_unlock_irq(&md->lock);
785
786 return err ? 0 : 1;
787 }
788
789 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
790 struct request *req)
791 {
792 struct mmc_blk_data *md = mq->data;
793 struct mmc_card *card = md->queue.card;
794 unsigned int from, nr, arg;
795 int err = 0, type = MMC_BLK_SECDISCARD;
796
797 if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
798 err = -EOPNOTSUPP;
799 goto out;
800 }
801
802 /* The sanitize operation is supported at v4.5 only */
803 if (mmc_can_sanitize(card)) {
804 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
805 EXT_CSD_SANITIZE_START, 1, 0);
806 goto out;
807 }
808
809 from = blk_rq_pos(req);
810 nr = blk_rq_sectors(req);
811
812 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
813 arg = MMC_SECURE_TRIM1_ARG;
814 else
815 arg = MMC_SECURE_ERASE_ARG;
816 retry:
817 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
818 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
819 INAND_CMD38_ARG_EXT_CSD,
820 arg == MMC_SECURE_TRIM1_ARG ?
821 INAND_CMD38_ARG_SECTRIM1 :
822 INAND_CMD38_ARG_SECERASE,
823 0);
824 if (err)
825 goto out;
826 }
827 err = mmc_erase(card, from, nr, arg);
828 if (!err && arg == MMC_SECURE_TRIM1_ARG) {
829 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
830 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
831 INAND_CMD38_ARG_EXT_CSD,
832 INAND_CMD38_ARG_SECTRIM2,
833 0);
834 if (err)
835 goto out;
836 }
837 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
838 }
839 out:
840 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
841 goto retry;
842 if (!err)
843 mmc_blk_reset_success(md, type);
844 spin_lock_irq(&md->lock);
845 __blk_end_request(req, err, blk_rq_bytes(req));
846 spin_unlock_irq(&md->lock);
847
848 return err ? 0 : 1;
849 }
850
851 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
852 {
853 struct mmc_blk_data *md = mq->data;
854 struct mmc_card *card = md->queue.card;
855 int ret = 0;
856
857 ret = mmc_flush_cache(card);
858 if (ret)
859 ret = -EIO;
860
861 spin_lock_irq(&md->lock);
862 __blk_end_request_all(req, ret);
863 spin_unlock_irq(&md->lock);
864
865 return ret ? 0 : 1;
866 }
867
868 /*
869 * Reformat current write as a reliable write, supporting
870 * both legacy and the enhanced reliable write MMC cards.
871 * In each transfer we'll handle only as much as a single
872 * reliable write can handle, thus finish the request in
873 * partial completions.
874 */
875 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
876 struct mmc_card *card,
877 struct request *req)
878 {
879 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
880 /* Legacy mode imposes restrictions on transfers. */
881 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
882 brq->data.blocks = 1;
883
884 if (brq->data.blocks > card->ext_csd.rel_sectors)
885 brq->data.blocks = card->ext_csd.rel_sectors;
886 else if (brq->data.blocks < card->ext_csd.rel_sectors)
887 brq->data.blocks = 1;
888 }
889 }
890
891 #define CMD_ERRORS \
892 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
893 R1_ADDRESS_ERROR | /* Misaligned address */ \
894 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
895 R1_WP_VIOLATION | /* Tried to write to protected block */ \
896 R1_CC_ERROR | /* Card controller error */ \
897 R1_ERROR) /* General/unknown error */
898
899 static int mmc_blk_err_check(struct mmc_card *card,
900 struct mmc_async_req *areq)
901 {
902 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
903 mmc_active);
904 struct mmc_blk_request *brq = &mq_mrq->brq;
905 struct request *req = mq_mrq->req;
906 int ecc_err = 0;
907
908 /*
909 * sbc.error indicates a problem with the set block count
910 * command. No data will have been transferred.
911 *
912 * cmd.error indicates a problem with the r/w command. No
913 * data will have been transferred.
914 *
915 * stop.error indicates a problem with the stop command. Data
916 * may have been transferred, or may still be transferring.
917 */
918 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
919 brq->data.error) {
920 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
921 case ERR_RETRY:
922 return MMC_BLK_RETRY;
923 case ERR_ABORT:
924 return MMC_BLK_ABORT;
925 case ERR_CONTINUE:
926 break;
927 }
928 }
929
930 /*
931 * Check for errors relating to the execution of the
932 * initial command - such as address errors. No data
933 * has been transferred.
934 */
935 if (brq->cmd.resp[0] & CMD_ERRORS) {
936 pr_err("%s: r/w command failed, status = %#x\n",
937 req->rq_disk->disk_name, brq->cmd.resp[0]);
938 return MMC_BLK_ABORT;
939 }
940
941 /*
942 * Everything else is either success, or a data error of some
943 * kind. If it was a write, we may have transitioned to
944 * program mode, which we have to wait for it to complete.
945 */
946 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
947 u32 status;
948 do {
949 int err = get_card_status(card, &status, 5);
950 if (err) {
951 pr_err("%s: error %d requesting status\n",
952 req->rq_disk->disk_name, err);
953 return MMC_BLK_CMD_ERR;
954 }
955 /*
956 * Some cards mishandle the status bits,
957 * so make sure to check both the busy
958 * indication and the card state.
959 */
960 } while (!(status & R1_READY_FOR_DATA) ||
961 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
962 }
963
964 if (brq->data.error) {
965 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
966 req->rq_disk->disk_name, brq->data.error,
967 (unsigned)blk_rq_pos(req),
968 (unsigned)blk_rq_sectors(req),
969 brq->cmd.resp[0], brq->stop.resp[0]);
970
971 if (rq_data_dir(req) == READ) {
972 if (ecc_err)
973 return MMC_BLK_ECC_ERR;
974 return MMC_BLK_DATA_ERR;
975 } else {
976 return MMC_BLK_CMD_ERR;
977 }
978 }
979
980 if (!brq->data.bytes_xfered)
981 return MMC_BLK_RETRY;
982
983 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
984 return MMC_BLK_PARTIAL;
985
986 return MMC_BLK_SUCCESS;
987 }
988
989 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
990 struct mmc_card *card,
991 int disable_multi,
992 struct mmc_queue *mq)
993 {
994 u32 readcmd, writecmd;
995 struct mmc_blk_request *brq = &mqrq->brq;
996 struct request *req = mqrq->req;
997 struct mmc_blk_data *md = mq->data;
998
999 /*
1000 * Reliable writes are used to implement Forced Unit Access and
1001 * REQ_META accesses, and are supported only on MMCs.
1002 *
1003 * XXX: this really needs a good explanation of why REQ_META
1004 * is treated special.
1005 */
1006 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1007 (req->cmd_flags & REQ_META)) &&
1008 (rq_data_dir(req) == WRITE) &&
1009 (md->flags & MMC_BLK_REL_WR);
1010
1011 memset(brq, 0, sizeof(struct mmc_blk_request));
1012 brq->mrq.cmd = &brq->cmd;
1013 brq->mrq.data = &brq->data;
1014
1015 brq->cmd.arg = blk_rq_pos(req);
1016 if (!mmc_card_blockaddr(card))
1017 brq->cmd.arg <<= 9;
1018 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1019 brq->data.blksz = 512;
1020 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1021 brq->stop.arg = 0;
1022 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1023 brq->data.blocks = blk_rq_sectors(req);
1024
1025 /*
1026 * The block layer doesn't support all sector count
1027 * restrictions, so we need to be prepared for too big
1028 * requests.
1029 */
1030 if (brq->data.blocks > card->host->max_blk_count)
1031 brq->data.blocks = card->host->max_blk_count;
1032
1033 /*
1034 * After a read error, we redo the request one sector at a time
1035 * in order to accurately determine which sectors can be read
1036 * successfully.
1037 */
1038 if (disable_multi && brq->data.blocks > 1)
1039 brq->data.blocks = 1;
1040
1041 if (brq->data.blocks > 1 || do_rel_wr) {
1042 /* SPI multiblock writes terminate using a special
1043 * token, not a STOP_TRANSMISSION request.
1044 */
1045 if (!mmc_host_is_spi(card->host) ||
1046 rq_data_dir(req) == READ)
1047 brq->mrq.stop = &brq->stop;
1048 readcmd = MMC_READ_MULTIPLE_BLOCK;
1049 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1050 } else {
1051 brq->mrq.stop = NULL;
1052 readcmd = MMC_READ_SINGLE_BLOCK;
1053 writecmd = MMC_WRITE_BLOCK;
1054 }
1055 if (rq_data_dir(req) == READ) {
1056 brq->cmd.opcode = readcmd;
1057 brq->data.flags |= MMC_DATA_READ;
1058 } else {
1059 brq->cmd.opcode = writecmd;
1060 brq->data.flags |= MMC_DATA_WRITE;
1061 }
1062
1063 if (do_rel_wr)
1064 mmc_apply_rel_rw(brq, card, req);
1065
1066 /*
1067 * Pre-defined multi-block transfers are preferable to
1068 * open ended-ones (and necessary for reliable writes).
1069 * However, it is not sufficient to just send CMD23,
1070 * and avoid the final CMD12, as on an error condition
1071 * CMD12 (stop) needs to be sent anyway. This, coupled
1072 * with Auto-CMD23 enhancements provided by some
1073 * hosts, means that the complexity of dealing
1074 * with this is best left to the host. If CMD23 is
1075 * supported by card and host, we'll fill sbc in and let
1076 * the host deal with handling it correctly. This means
1077 * that for hosts that don't expose MMC_CAP_CMD23, no
1078 * change of behavior will be observed.
1079 *
1080 * N.B: Some MMC cards experience perf degradation.
1081 * We'll avoid using CMD23-bounded multiblock writes for
1082 * these, while retaining features like reliable writes.
1083 */
1084
1085 if ((md->flags & MMC_BLK_CMD23) &&
1086 mmc_op_multi(brq->cmd.opcode) &&
1087 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23))) {
1088 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1089 brq->sbc.arg = brq->data.blocks |
1090 (do_rel_wr ? (1 << 31) : 0);
1091 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1092 brq->mrq.sbc = &brq->sbc;
1093 }
1094
1095 mmc_set_data_timeout(&brq->data, card);
1096
1097 brq->data.sg = mqrq->sg;
1098 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1099
1100 /*
1101 * Adjust the sg list so it is the same size as the
1102 * request.
1103 */
1104 if (brq->data.blocks != blk_rq_sectors(req)) {
1105 int i, data_size = brq->data.blocks << 9;
1106 struct scatterlist *sg;
1107
1108 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1109 data_size -= sg->length;
1110 if (data_size <= 0) {
1111 sg->length += data_size;
1112 i++;
1113 break;
1114 }
1115 }
1116 brq->data.sg_len = i;
1117 }
1118
1119 mqrq->mmc_active.mrq = &brq->mrq;
1120 mqrq->mmc_active.err_check = mmc_blk_err_check;
1121
1122 mmc_queue_bounce_pre(mqrq);
1123 }
1124
1125 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1126 struct mmc_blk_request *brq, struct request *req,
1127 int ret)
1128 {
1129 /*
1130 * If this is an SD card and we're writing, we can first
1131 * mark the known good sectors as ok.
1132 *
1133 * If the card is not SD, we can still ok written sectors
1134 * as reported by the controller (which might be less than
1135 * the real number of written sectors, but never more).
1136 */
1137 if (mmc_card_sd(card)) {
1138 u32 blocks;
1139
1140 blocks = mmc_sd_num_wr_blocks(card);
1141 if (blocks != (u32)-1) {
1142 spin_lock_irq(&md->lock);
1143 ret = __blk_end_request(req, 0, blocks << 9);
1144 spin_unlock_irq(&md->lock);
1145 }
1146 } else {
1147 spin_lock_irq(&md->lock);
1148 ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1149 spin_unlock_irq(&md->lock);
1150 }
1151 return ret;
1152 }
1153
1154 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1155 {
1156 struct mmc_blk_data *md = mq->data;
1157 struct mmc_card *card = md->queue.card;
1158 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1159 int ret = 1, disable_multi = 0, retry = 0, type;
1160 enum mmc_blk_status status;
1161 struct mmc_queue_req *mq_rq;
1162 struct request *req;
1163 struct mmc_async_req *areq;
1164
1165 if (!rqc && !mq->mqrq_prev->req)
1166 return 0;
1167
1168 do {
1169 if (rqc) {
1170 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1171 areq = &mq->mqrq_cur->mmc_active;
1172 } else
1173 areq = NULL;
1174 areq = mmc_start_req(card->host, areq, (int *) &status);
1175 if (!areq)
1176 return 0;
1177
1178 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1179 brq = &mq_rq->brq;
1180 req = mq_rq->req;
1181 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1182 mmc_queue_bounce_post(mq_rq);
1183
1184 switch (status) {
1185 case MMC_BLK_SUCCESS:
1186 case MMC_BLK_PARTIAL:
1187 /*
1188 * A block was successfully transferred.
1189 */
1190 mmc_blk_reset_success(md, type);
1191 spin_lock_irq(&md->lock);
1192 ret = __blk_end_request(req, 0,
1193 brq->data.bytes_xfered);
1194 spin_unlock_irq(&md->lock);
1195 /*
1196 * If the blk_end_request function returns non-zero even
1197 * though all data has been transferred and no errors
1198 * were returned by the host controller, it's a bug.
1199 */
1200 if (status == MMC_BLK_SUCCESS && ret) {
1201 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1202 __func__, blk_rq_bytes(req),
1203 brq->data.bytes_xfered);
1204 rqc = NULL;
1205 goto cmd_abort;
1206 }
1207 break;
1208 case MMC_BLK_CMD_ERR:
1209 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1210 if (!mmc_blk_reset(md, card->host, type))
1211 break;
1212 goto cmd_abort;
1213 case MMC_BLK_RETRY:
1214 if (retry++ < 5)
1215 break;
1216 /* Fall through */
1217 case MMC_BLK_ABORT:
1218 if (!mmc_blk_reset(md, card->host, type))
1219 break;
1220 goto cmd_abort;
1221 case MMC_BLK_DATA_ERR: {
1222 int err;
1223
1224 err = mmc_blk_reset(md, card->host, type);
1225 if (!err)
1226 break;
1227 if (err == -ENODEV)
1228 goto cmd_abort;
1229 /* Fall through */
1230 }
1231 case MMC_BLK_ECC_ERR:
1232 if (brq->data.blocks > 1) {
1233 /* Redo read one sector at a time */
1234 pr_warning("%s: retrying using single block read\n",
1235 req->rq_disk->disk_name);
1236 disable_multi = 1;
1237 break;
1238 }
1239 /*
1240 * After an error, we redo I/O one sector at a
1241 * time, so we only reach here after trying to
1242 * read a single sector.
1243 */
1244 spin_lock_irq(&md->lock);
1245 ret = __blk_end_request(req, -EIO,
1246 brq->data.blksz);
1247 spin_unlock_irq(&md->lock);
1248 if (!ret)
1249 goto start_new_req;
1250 break;
1251 }
1252
1253 if (ret) {
1254 /*
1255 * In case of a incomplete request
1256 * prepare it again and resend.
1257 */
1258 mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1259 mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1260 }
1261 } while (ret);
1262
1263 return 1;
1264
1265 cmd_abort:
1266 spin_lock_irq(&md->lock);
1267 while (ret)
1268 ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1269 spin_unlock_irq(&md->lock);
1270
1271 start_new_req:
1272 if (rqc) {
1273 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1274 mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1275 }
1276
1277 return 0;
1278 }
1279
1280 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1281 {
1282 int ret;
1283 struct mmc_blk_data *md = mq->data;
1284 struct mmc_card *card = md->queue.card;
1285
1286 if (req && !mq->mqrq_prev->req)
1287 /* claim host only for the first request */
1288 mmc_claim_host(card->host);
1289
1290 ret = mmc_blk_part_switch(card, md);
1291 if (ret) {
1292 if (req) {
1293 spin_lock_irq(&md->lock);
1294 __blk_end_request_all(req, -EIO);
1295 spin_unlock_irq(&md->lock);
1296 }
1297 ret = 0;
1298 goto out;
1299 }
1300
1301 if (req && req->cmd_flags & REQ_DISCARD) {
1302 /* complete ongoing async transfer before issuing discard */
1303 if (card->host->areq)
1304 mmc_blk_issue_rw_rq(mq, NULL);
1305 if (req->cmd_flags & REQ_SECURE)
1306 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1307 else
1308 ret = mmc_blk_issue_discard_rq(mq, req);
1309 } else if (req && req->cmd_flags & REQ_FLUSH) {
1310 /* complete ongoing async transfer before issuing flush */
1311 if (card->host->areq)
1312 mmc_blk_issue_rw_rq(mq, NULL);
1313 ret = mmc_blk_issue_flush(mq, req);
1314 } else {
1315 ret = mmc_blk_issue_rw_rq(mq, req);
1316 }
1317
1318 out:
1319 if (!req)
1320 /* release host only when there are no more requests */
1321 mmc_release_host(card->host);
1322 return ret;
1323 }
1324
1325 static inline int mmc_blk_readonly(struct mmc_card *card)
1326 {
1327 return mmc_card_readonly(card) ||
1328 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1329 }
1330
1331 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1332 struct device *parent,
1333 sector_t size,
1334 bool default_ro,
1335 const char *subname)
1336 {
1337 struct mmc_blk_data *md;
1338 int devidx, ret;
1339
1340 devidx = find_first_zero_bit(dev_use, max_devices);
1341 if (devidx >= max_devices)
1342 return ERR_PTR(-ENOSPC);
1343 __set_bit(devidx, dev_use);
1344
1345 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1346 if (!md) {
1347 ret = -ENOMEM;
1348 goto out;
1349 }
1350
1351 /*
1352 * !subname implies we are creating main mmc_blk_data that will be
1353 * associated with mmc_card with mmc_set_drvdata. Due to device
1354 * partitions, devidx will not coincide with a per-physical card
1355 * index anymore so we keep track of a name index.
1356 */
1357 if (!subname) {
1358 md->name_idx = find_first_zero_bit(name_use, max_devices);
1359 __set_bit(md->name_idx, name_use);
1360 }
1361 else
1362 md->name_idx = ((struct mmc_blk_data *)
1363 dev_to_disk(parent)->private_data)->name_idx;
1364
1365 /*
1366 * Set the read-only status based on the supported commands
1367 * and the write protect switch.
1368 */
1369 md->read_only = mmc_blk_readonly(card);
1370
1371 md->disk = alloc_disk(perdev_minors);
1372 if (md->disk == NULL) {
1373 ret = -ENOMEM;
1374 goto err_kfree;
1375 }
1376
1377 spin_lock_init(&md->lock);
1378 INIT_LIST_HEAD(&md->part);
1379 md->usage = 1;
1380
1381 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1382 if (ret)
1383 goto err_putdisk;
1384
1385 md->queue.issue_fn = mmc_blk_issue_rq;
1386 md->queue.data = md;
1387
1388 md->disk->major = MMC_BLOCK_MAJOR;
1389 md->disk->first_minor = devidx * perdev_minors;
1390 md->disk->fops = &mmc_bdops;
1391 md->disk->private_data = md;
1392 md->disk->queue = md->queue.queue;
1393 md->disk->driverfs_dev = parent;
1394 set_disk_ro(md->disk, md->read_only || default_ro);
1395
1396 /*
1397 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1398 *
1399 * - be set for removable media with permanent block devices
1400 * - be unset for removable block devices with permanent media
1401 *
1402 * Since MMC block devices clearly fall under the second
1403 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1404 * should use the block device creation/destruction hotplug
1405 * messages to tell when the card is present.
1406 */
1407
1408 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1409 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1410
1411 blk_queue_logical_block_size(md->queue.queue, 512);
1412 set_capacity(md->disk, size);
1413
1414 if (mmc_host_cmd23(card->host)) {
1415 if (mmc_card_mmc(card) ||
1416 (mmc_card_sd(card) &&
1417 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1418 md->flags |= MMC_BLK_CMD23;
1419 }
1420
1421 if (mmc_card_mmc(card) &&
1422 md->flags & MMC_BLK_CMD23 &&
1423 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1424 card->ext_csd.rel_sectors)) {
1425 md->flags |= MMC_BLK_REL_WR;
1426 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1427 }
1428
1429 return md;
1430
1431 err_putdisk:
1432 put_disk(md->disk);
1433 err_kfree:
1434 kfree(md);
1435 out:
1436 return ERR_PTR(ret);
1437 }
1438
1439 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1440 {
1441 sector_t size;
1442 struct mmc_blk_data *md;
1443
1444 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1445 /*
1446 * The EXT_CSD sector count is in number or 512 byte
1447 * sectors.
1448 */
1449 size = card->ext_csd.sectors;
1450 } else {
1451 /*
1452 * The CSD capacity field is in units of read_blkbits.
1453 * set_capacity takes units of 512 bytes.
1454 */
1455 size = card->csd.capacity << (card->csd.read_blkbits - 9);
1456 }
1457
1458 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL);
1459 return md;
1460 }
1461
1462 static int mmc_blk_alloc_part(struct mmc_card *card,
1463 struct mmc_blk_data *md,
1464 unsigned int part_type,
1465 sector_t size,
1466 bool default_ro,
1467 const char *subname)
1468 {
1469 char cap_str[10];
1470 struct mmc_blk_data *part_md;
1471
1472 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1473 subname);
1474 if (IS_ERR(part_md))
1475 return PTR_ERR(part_md);
1476 part_md->part_type = part_type;
1477 list_add(&part_md->part, &md->part);
1478
1479 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1480 cap_str, sizeof(cap_str));
1481 pr_info("%s: %s %s partition %u %s\n",
1482 part_md->disk->disk_name, mmc_card_id(card),
1483 mmc_card_name(card), part_md->part_type, cap_str);
1484 return 0;
1485 }
1486
1487 /* MMC Physical partitions consist of two boot partitions and
1488 * up to four general purpose partitions.
1489 * For each partition enabled in EXT_CSD a block device will be allocatedi
1490 * to provide access to the partition.
1491 */
1492
1493 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1494 {
1495 int idx, ret = 0;
1496
1497 if (!mmc_card_mmc(card))
1498 return 0;
1499
1500 for (idx = 0; idx < card->nr_parts; idx++) {
1501 if (card->part[idx].size) {
1502 ret = mmc_blk_alloc_part(card, md,
1503 card->part[idx].part_cfg,
1504 card->part[idx].size >> 9,
1505 card->part[idx].force_ro,
1506 card->part[idx].name);
1507 if (ret)
1508 return ret;
1509 }
1510 }
1511
1512 return ret;
1513 }
1514
1515 static int
1516 mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
1517 {
1518 int err;
1519
1520 mmc_claim_host(card->host);
1521 err = mmc_set_blocklen(card, 512);
1522 mmc_release_host(card->host);
1523
1524 if (err) {
1525 pr_err("%s: unable to set block size to 512: %d\n",
1526 md->disk->disk_name, err);
1527 return -EINVAL;
1528 }
1529
1530 return 0;
1531 }
1532
1533 static void mmc_blk_remove_req(struct mmc_blk_data *md)
1534 {
1535 if (md) {
1536 if (md->disk->flags & GENHD_FL_UP) {
1537 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1538
1539 /* Stop new requests from getting into the queue */
1540 del_gendisk(md->disk);
1541 }
1542
1543 /* Then flush out any already in there */
1544 mmc_cleanup_queue(&md->queue);
1545 mmc_blk_put(md);
1546 }
1547 }
1548
1549 static void mmc_blk_remove_parts(struct mmc_card *card,
1550 struct mmc_blk_data *md)
1551 {
1552 struct list_head *pos, *q;
1553 struct mmc_blk_data *part_md;
1554
1555 __clear_bit(md->name_idx, name_use);
1556 list_for_each_safe(pos, q, &md->part) {
1557 part_md = list_entry(pos, struct mmc_blk_data, part);
1558 list_del(pos);
1559 mmc_blk_remove_req(part_md);
1560 }
1561 }
1562
1563 static int mmc_add_disk(struct mmc_blk_data *md)
1564 {
1565 int ret;
1566
1567 add_disk(md->disk);
1568 md->force_ro.show = force_ro_show;
1569 md->force_ro.store = force_ro_store;
1570 sysfs_attr_init(&md->force_ro.attr);
1571 md->force_ro.attr.name = "force_ro";
1572 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1573 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1574 if (ret)
1575 del_gendisk(md->disk);
1576
1577 return ret;
1578 }
1579
1580 static const struct mmc_fixup blk_fixups[] =
1581 {
1582 MMC_FIXUP("SEM02G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1583 MMC_FIXUP("SEM04G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1584 MMC_FIXUP("SEM08G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1585 MMC_FIXUP("SEM16G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1586 MMC_FIXUP("SEM32G", 0x2, 0x100, add_quirk, MMC_QUIRK_INAND_CMD38),
1587
1588 /*
1589 * Some MMC cards experience performance degradation with CMD23
1590 * instead of CMD12-bounded multiblock transfers. For now we'll
1591 * black list what's bad...
1592 * - Certain Toshiba cards.
1593 *
1594 * N.B. This doesn't affect SD cards.
1595 */
1596 MMC_FIXUP("MMC08G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1597 MMC_QUIRK_BLK_NO_CMD23),
1598 MMC_FIXUP("MMC16G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1599 MMC_QUIRK_BLK_NO_CMD23),
1600 MMC_FIXUP("MMC32G", 0x11, CID_OEMID_ANY, add_quirk_mmc,
1601 MMC_QUIRK_BLK_NO_CMD23),
1602 END_FIXUP
1603 };
1604
1605 static int mmc_blk_probe(struct mmc_card *card)
1606 {
1607 struct mmc_blk_data *md, *part_md;
1608 int err;
1609 char cap_str[10];
1610
1611 /*
1612 * Check that the card supports the command class(es) we need.
1613 */
1614 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1615 return -ENODEV;
1616
1617 md = mmc_blk_alloc(card);
1618 if (IS_ERR(md))
1619 return PTR_ERR(md);
1620
1621 err = mmc_blk_set_blksize(md, card);
1622 if (err)
1623 goto out;
1624
1625 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1626 cap_str, sizeof(cap_str));
1627 pr_info("%s: %s %s %s %s\n",
1628 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1629 cap_str, md->read_only ? "(ro)" : "");
1630
1631 if (mmc_blk_alloc_parts(card, md))
1632 goto out;
1633
1634 mmc_set_drvdata(card, md);
1635 mmc_fixup_device(card, blk_fixups);
1636
1637 if (mmc_add_disk(md))
1638 goto out;
1639
1640 list_for_each_entry(part_md, &md->part, part) {
1641 if (mmc_add_disk(part_md))
1642 goto out;
1643 }
1644 return 0;
1645
1646 out:
1647 mmc_blk_remove_parts(card, md);
1648 mmc_blk_remove_req(md);
1649 return err;
1650 }
1651
1652 static void mmc_blk_remove(struct mmc_card *card)
1653 {
1654 struct mmc_blk_data *md = mmc_get_drvdata(card);
1655
1656 mmc_blk_remove_parts(card, md);
1657 mmc_claim_host(card->host);
1658 mmc_blk_part_switch(card, md);
1659 mmc_release_host(card->host);
1660 mmc_blk_remove_req(md);
1661 mmc_set_drvdata(card, NULL);
1662 }
1663
1664 #ifdef CONFIG_PM
1665 static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
1666 {
1667 struct mmc_blk_data *part_md;
1668 struct mmc_blk_data *md = mmc_get_drvdata(card);
1669
1670 if (md) {
1671 mmc_queue_suspend(&md->queue);
1672 list_for_each_entry(part_md, &md->part, part) {
1673 mmc_queue_suspend(&part_md->queue);
1674 }
1675 }
1676 return 0;
1677 }
1678
1679 static int mmc_blk_resume(struct mmc_card *card)
1680 {
1681 struct mmc_blk_data *part_md;
1682 struct mmc_blk_data *md = mmc_get_drvdata(card);
1683
1684 if (md) {
1685 mmc_blk_set_blksize(md, card);
1686
1687 /*
1688 * Resume involves the card going into idle state,
1689 * so current partition is always the main one.
1690 */
1691 md->part_curr = md->part_type;
1692 mmc_queue_resume(&md->queue);
1693 list_for_each_entry(part_md, &md->part, part) {
1694 mmc_queue_resume(&part_md->queue);
1695 }
1696 }
1697 return 0;
1698 }
1699 #else
1700 #define mmc_blk_suspend NULL
1701 #define mmc_blk_resume NULL
1702 #endif
1703
1704 static struct mmc_driver mmc_driver = {
1705 .drv = {
1706 .name = "mmcblk",
1707 },
1708 .probe = mmc_blk_probe,
1709 .remove = mmc_blk_remove,
1710 .suspend = mmc_blk_suspend,
1711 .resume = mmc_blk_resume,
1712 };
1713
1714 static int __init mmc_blk_init(void)
1715 {
1716 int res;
1717
1718 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1719 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1720
1721 max_devices = 256 / perdev_minors;
1722
1723 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1724 if (res)
1725 goto out;
1726
1727 res = mmc_register_driver(&mmc_driver);
1728 if (res)
1729 goto out2;
1730
1731 return 0;
1732 out2:
1733 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1734 out:
1735 return res;
1736 }
1737
1738 static void __exit mmc_blk_exit(void)
1739 {
1740 mmc_unregister_driver(&mmc_driver);
1741 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1742 }
1743
1744 module_init(mmc_blk_init);
1745 module_exit(mmc_blk_exit);
1746
1747 MODULE_LICENSE("GPL");
1748 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
1749
This page took 0.068789 seconds and 6 git commands to generate.