cxgb3: Notify fatal errors
[deliverable/linux.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mii.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <asm/uaccess.h>
48
49 #include "common.h"
50 #include "cxgb3_ioctl.h"
51 #include "regs.h"
52 #include "cxgb3_offload.h"
53 #include "version.h"
54
55 #include "cxgb3_ctl_defs.h"
56 #include "t3_cpl.h"
57 #include "firmware_exports.h"
58
59 enum {
60 MAX_TXQ_ENTRIES = 16384,
61 MAX_CTRL_TXQ_ENTRIES = 1024,
62 MAX_RSPQ_ENTRIES = 16384,
63 MAX_RX_BUFFERS = 16384,
64 MAX_RX_JUMBO_BUFFERS = 16384,
65 MIN_TXQ_ENTRIES = 4,
66 MIN_CTRL_TXQ_ENTRIES = 4,
67 MIN_RSPQ_ENTRIES = 32,
68 MIN_FL_ENTRIES = 32
69 };
70
71 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
72
73 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
74 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
75 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
76
77 #define EEPROM_MAGIC 0x38E2F10C
78
79 #define CH_DEVICE(devid, idx) \
80 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
81
82 static const struct pci_device_id cxgb3_pci_tbl[] = {
83 CH_DEVICE(0x20, 0), /* PE9000 */
84 CH_DEVICE(0x21, 1), /* T302E */
85 CH_DEVICE(0x22, 2), /* T310E */
86 CH_DEVICE(0x23, 3), /* T320X */
87 CH_DEVICE(0x24, 1), /* T302X */
88 CH_DEVICE(0x25, 3), /* T320E */
89 CH_DEVICE(0x26, 2), /* T310X */
90 CH_DEVICE(0x30, 2), /* T3B10 */
91 CH_DEVICE(0x31, 3), /* T3B20 */
92 CH_DEVICE(0x32, 1), /* T3B02 */
93 {0,}
94 };
95
96 MODULE_DESCRIPTION(DRV_DESC);
97 MODULE_AUTHOR("Chelsio Communications");
98 MODULE_LICENSE("Dual BSD/GPL");
99 MODULE_VERSION(DRV_VERSION);
100 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
101
102 static int dflt_msg_enable = DFLT_MSG_ENABLE;
103
104 module_param(dflt_msg_enable, int, 0644);
105 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
106
107 /*
108 * The driver uses the best interrupt scheme available on a platform in the
109 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
110 * of these schemes the driver may consider as follows:
111 *
112 * msi = 2: choose from among all three options
113 * msi = 1: only consider MSI and pin interrupts
114 * msi = 0: force pin interrupts
115 */
116 static int msi = 2;
117
118 module_param(msi, int, 0644);
119 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
120
121 /*
122 * The driver enables offload as a default.
123 * To disable it, use ofld_disable = 1.
124 */
125
126 static int ofld_disable = 0;
127
128 module_param(ofld_disable, int, 0644);
129 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
130
131 /*
132 * We have work elements that we need to cancel when an interface is taken
133 * down. Normally the work elements would be executed by keventd but that
134 * can deadlock because of linkwatch. If our close method takes the rtnl
135 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
136 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
137 * for our work to complete. Get our own work queue to solve this.
138 */
139 static struct workqueue_struct *cxgb3_wq;
140
141 /**
142 * link_report - show link status and link speed/duplex
143 * @p: the port whose settings are to be reported
144 *
145 * Shows the link status, speed, and duplex of a port.
146 */
147 static void link_report(struct net_device *dev)
148 {
149 if (!netif_carrier_ok(dev))
150 printk(KERN_INFO "%s: link down\n", dev->name);
151 else {
152 const char *s = "10Mbps";
153 const struct port_info *p = netdev_priv(dev);
154
155 switch (p->link_config.speed) {
156 case SPEED_10000:
157 s = "10Gbps";
158 break;
159 case SPEED_1000:
160 s = "1000Mbps";
161 break;
162 case SPEED_100:
163 s = "100Mbps";
164 break;
165 }
166
167 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
168 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
169 }
170 }
171
172 /**
173 * t3_os_link_changed - handle link status changes
174 * @adapter: the adapter associated with the link change
175 * @port_id: the port index whose limk status has changed
176 * @link_stat: the new status of the link
177 * @speed: the new speed setting
178 * @duplex: the new duplex setting
179 * @pause: the new flow-control setting
180 *
181 * This is the OS-dependent handler for link status changes. The OS
182 * neutral handler takes care of most of the processing for these events,
183 * then calls this handler for any OS-specific processing.
184 */
185 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
186 int speed, int duplex, int pause)
187 {
188 struct net_device *dev = adapter->port[port_id];
189 struct port_info *pi = netdev_priv(dev);
190 struct cmac *mac = &pi->mac;
191
192 /* Skip changes from disabled ports. */
193 if (!netif_running(dev))
194 return;
195
196 if (link_stat != netif_carrier_ok(dev)) {
197 if (link_stat) {
198 t3_mac_enable(mac, MAC_DIRECTION_RX);
199 netif_carrier_on(dev);
200 } else {
201 netif_carrier_off(dev);
202 pi->phy.ops->power_down(&pi->phy, 1);
203 t3_mac_disable(mac, MAC_DIRECTION_RX);
204 t3_link_start(&pi->phy, mac, &pi->link_config);
205 }
206
207 link_report(dev);
208 }
209 }
210
211 /**
212 * t3_os_phymod_changed - handle PHY module changes
213 * @phy: the PHY reporting the module change
214 * @mod_type: new module type
215 *
216 * This is the OS-dependent handler for PHY module changes. It is
217 * invoked when a PHY module is removed or inserted for any OS-specific
218 * processing.
219 */
220 void t3_os_phymod_changed(struct adapter *adap, int port_id)
221 {
222 static const char *mod_str[] = {
223 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
224 };
225
226 const struct net_device *dev = adap->port[port_id];
227 const struct port_info *pi = netdev_priv(dev);
228
229 if (pi->phy.modtype == phy_modtype_none)
230 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
231 else
232 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
233 mod_str[pi->phy.modtype]);
234 }
235
236 static void cxgb_set_rxmode(struct net_device *dev)
237 {
238 struct t3_rx_mode rm;
239 struct port_info *pi = netdev_priv(dev);
240
241 init_rx_mode(&rm, dev, dev->mc_list);
242 t3_mac_set_rx_mode(&pi->mac, &rm);
243 }
244
245 /**
246 * link_start - enable a port
247 * @dev: the device to enable
248 *
249 * Performs the MAC and PHY actions needed to enable a port.
250 */
251 static void link_start(struct net_device *dev)
252 {
253 struct t3_rx_mode rm;
254 struct port_info *pi = netdev_priv(dev);
255 struct cmac *mac = &pi->mac;
256
257 init_rx_mode(&rm, dev, dev->mc_list);
258 t3_mac_reset(mac);
259 t3_mac_set_mtu(mac, dev->mtu);
260 t3_mac_set_address(mac, 0, dev->dev_addr);
261 t3_mac_set_rx_mode(mac, &rm);
262 t3_link_start(&pi->phy, mac, &pi->link_config);
263 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
264 }
265
266 static inline void cxgb_disable_msi(struct adapter *adapter)
267 {
268 if (adapter->flags & USING_MSIX) {
269 pci_disable_msix(adapter->pdev);
270 adapter->flags &= ~USING_MSIX;
271 } else if (adapter->flags & USING_MSI) {
272 pci_disable_msi(adapter->pdev);
273 adapter->flags &= ~USING_MSI;
274 }
275 }
276
277 /*
278 * Interrupt handler for asynchronous events used with MSI-X.
279 */
280 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
281 {
282 t3_slow_intr_handler(cookie);
283 return IRQ_HANDLED;
284 }
285
286 /*
287 * Name the MSI-X interrupts.
288 */
289 static void name_msix_vecs(struct adapter *adap)
290 {
291 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
292
293 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
294 adap->msix_info[0].desc[n] = 0;
295
296 for_each_port(adap, j) {
297 struct net_device *d = adap->port[j];
298 const struct port_info *pi = netdev_priv(d);
299
300 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
301 snprintf(adap->msix_info[msi_idx].desc, n,
302 "%s-%d", d->name, pi->first_qset + i);
303 adap->msix_info[msi_idx].desc[n] = 0;
304 }
305 }
306 }
307
308 static int request_msix_data_irqs(struct adapter *adap)
309 {
310 int i, j, err, qidx = 0;
311
312 for_each_port(adap, i) {
313 int nqsets = adap2pinfo(adap, i)->nqsets;
314
315 for (j = 0; j < nqsets; ++j) {
316 err = request_irq(adap->msix_info[qidx + 1].vec,
317 t3_intr_handler(adap,
318 adap->sge.qs[qidx].
319 rspq.polling), 0,
320 adap->msix_info[qidx + 1].desc,
321 &adap->sge.qs[qidx]);
322 if (err) {
323 while (--qidx >= 0)
324 free_irq(adap->msix_info[qidx + 1].vec,
325 &adap->sge.qs[qidx]);
326 return err;
327 }
328 qidx++;
329 }
330 }
331 return 0;
332 }
333
334 static void free_irq_resources(struct adapter *adapter)
335 {
336 if (adapter->flags & USING_MSIX) {
337 int i, n = 0;
338
339 free_irq(adapter->msix_info[0].vec, adapter);
340 for_each_port(adapter, i)
341 n += adap2pinfo(adapter, i)->nqsets;
342
343 for (i = 0; i < n; ++i)
344 free_irq(adapter->msix_info[i + 1].vec,
345 &adapter->sge.qs[i]);
346 } else
347 free_irq(adapter->pdev->irq, adapter);
348 }
349
350 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
351 unsigned long n)
352 {
353 int attempts = 5;
354
355 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
356 if (!--attempts)
357 return -ETIMEDOUT;
358 msleep(10);
359 }
360 return 0;
361 }
362
363 static int init_tp_parity(struct adapter *adap)
364 {
365 int i;
366 struct sk_buff *skb;
367 struct cpl_set_tcb_field *greq;
368 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
369
370 t3_tp_set_offload_mode(adap, 1);
371
372 for (i = 0; i < 16; i++) {
373 struct cpl_smt_write_req *req;
374
375 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
376 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
377 memset(req, 0, sizeof(*req));
378 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
379 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
380 req->iff = i;
381 t3_mgmt_tx(adap, skb);
382 }
383
384 for (i = 0; i < 2048; i++) {
385 struct cpl_l2t_write_req *req;
386
387 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
388 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
389 memset(req, 0, sizeof(*req));
390 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
391 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
392 req->params = htonl(V_L2T_W_IDX(i));
393 t3_mgmt_tx(adap, skb);
394 }
395
396 for (i = 0; i < 2048; i++) {
397 struct cpl_rte_write_req *req;
398
399 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
400 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
401 memset(req, 0, sizeof(*req));
402 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
403 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
404 req->l2t_idx = htonl(V_L2T_W_IDX(i));
405 t3_mgmt_tx(adap, skb);
406 }
407
408 skb = alloc_skb(sizeof(*greq), GFP_KERNEL | __GFP_NOFAIL);
409 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
410 memset(greq, 0, sizeof(*greq));
411 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
412 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
413 greq->mask = cpu_to_be64(1);
414 t3_mgmt_tx(adap, skb);
415
416 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
417 t3_tp_set_offload_mode(adap, 0);
418 return i;
419 }
420
421 /**
422 * setup_rss - configure RSS
423 * @adap: the adapter
424 *
425 * Sets up RSS to distribute packets to multiple receive queues. We
426 * configure the RSS CPU lookup table to distribute to the number of HW
427 * receive queues, and the response queue lookup table to narrow that
428 * down to the response queues actually configured for each port.
429 * We always configure the RSS mapping for two ports since the mapping
430 * table has plenty of entries.
431 */
432 static void setup_rss(struct adapter *adap)
433 {
434 int i;
435 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
436 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
437 u8 cpus[SGE_QSETS + 1];
438 u16 rspq_map[RSS_TABLE_SIZE];
439
440 for (i = 0; i < SGE_QSETS; ++i)
441 cpus[i] = i;
442 cpus[SGE_QSETS] = 0xff; /* terminator */
443
444 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
445 rspq_map[i] = i % nq0;
446 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
447 }
448
449 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
450 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
451 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
452 }
453
454 static void init_napi(struct adapter *adap)
455 {
456 int i;
457
458 for (i = 0; i < SGE_QSETS; i++) {
459 struct sge_qset *qs = &adap->sge.qs[i];
460
461 if (qs->adap)
462 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
463 64);
464 }
465
466 /*
467 * netif_napi_add() can be called only once per napi_struct because it
468 * adds each new napi_struct to a list. Be careful not to call it a
469 * second time, e.g., during EEH recovery, by making a note of it.
470 */
471 adap->flags |= NAPI_INIT;
472 }
473
474 /*
475 * Wait until all NAPI handlers are descheduled. This includes the handlers of
476 * both netdevices representing interfaces and the dummy ones for the extra
477 * queues.
478 */
479 static void quiesce_rx(struct adapter *adap)
480 {
481 int i;
482
483 for (i = 0; i < SGE_QSETS; i++)
484 if (adap->sge.qs[i].adap)
485 napi_disable(&adap->sge.qs[i].napi);
486 }
487
488 static void enable_all_napi(struct adapter *adap)
489 {
490 int i;
491 for (i = 0; i < SGE_QSETS; i++)
492 if (adap->sge.qs[i].adap)
493 napi_enable(&adap->sge.qs[i].napi);
494 }
495
496 /**
497 * set_qset_lro - Turn a queue set's LRO capability on and off
498 * @dev: the device the qset is attached to
499 * @qset_idx: the queue set index
500 * @val: the LRO switch
501 *
502 * Sets LRO on or off for a particular queue set.
503 * the device's features flag is updated to reflect the LRO
504 * capability when all queues belonging to the device are
505 * in the same state.
506 */
507 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
508 {
509 struct port_info *pi = netdev_priv(dev);
510 struct adapter *adapter = pi->adapter;
511
512 adapter->params.sge.qset[qset_idx].lro = !!val;
513 adapter->sge.qs[qset_idx].lro_enabled = !!val;
514 }
515
516 /**
517 * setup_sge_qsets - configure SGE Tx/Rx/response queues
518 * @adap: the adapter
519 *
520 * Determines how many sets of SGE queues to use and initializes them.
521 * We support multiple queue sets per port if we have MSI-X, otherwise
522 * just one queue set per port.
523 */
524 static int setup_sge_qsets(struct adapter *adap)
525 {
526 int i, j, err, irq_idx = 0, qset_idx = 0;
527 unsigned int ntxq = SGE_TXQ_PER_SET;
528
529 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
530 irq_idx = -1;
531
532 for_each_port(adap, i) {
533 struct net_device *dev = adap->port[i];
534 struct port_info *pi = netdev_priv(dev);
535
536 pi->qs = &adap->sge.qs[pi->first_qset];
537 for (j = pi->first_qset; j < pi->first_qset + pi->nqsets;
538 ++j, ++qset_idx) {
539 set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
540 err = t3_sge_alloc_qset(adap, qset_idx, 1,
541 (adap->flags & USING_MSIX) ? qset_idx + 1 :
542 irq_idx,
543 &adap->params.sge.qset[qset_idx], ntxq, dev,
544 netdev_get_tx_queue(dev, j));
545 if (err) {
546 t3_stop_sge_timers(adap);
547 t3_free_sge_resources(adap);
548 return err;
549 }
550 }
551 }
552
553 return 0;
554 }
555
556 static ssize_t attr_show(struct device *d, char *buf,
557 ssize_t(*format) (struct net_device *, char *))
558 {
559 ssize_t len;
560
561 /* Synchronize with ioctls that may shut down the device */
562 rtnl_lock();
563 len = (*format) (to_net_dev(d), buf);
564 rtnl_unlock();
565 return len;
566 }
567
568 static ssize_t attr_store(struct device *d,
569 const char *buf, size_t len,
570 ssize_t(*set) (struct net_device *, unsigned int),
571 unsigned int min_val, unsigned int max_val)
572 {
573 char *endp;
574 ssize_t ret;
575 unsigned int val;
576
577 if (!capable(CAP_NET_ADMIN))
578 return -EPERM;
579
580 val = simple_strtoul(buf, &endp, 0);
581 if (endp == buf || val < min_val || val > max_val)
582 return -EINVAL;
583
584 rtnl_lock();
585 ret = (*set) (to_net_dev(d), val);
586 if (!ret)
587 ret = len;
588 rtnl_unlock();
589 return ret;
590 }
591
592 #define CXGB3_SHOW(name, val_expr) \
593 static ssize_t format_##name(struct net_device *dev, char *buf) \
594 { \
595 struct port_info *pi = netdev_priv(dev); \
596 struct adapter *adap = pi->adapter; \
597 return sprintf(buf, "%u\n", val_expr); \
598 } \
599 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
600 char *buf) \
601 { \
602 return attr_show(d, buf, format_##name); \
603 }
604
605 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
606 {
607 struct port_info *pi = netdev_priv(dev);
608 struct adapter *adap = pi->adapter;
609 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
610
611 if (adap->flags & FULL_INIT_DONE)
612 return -EBUSY;
613 if (val && adap->params.rev == 0)
614 return -EINVAL;
615 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
616 min_tids)
617 return -EINVAL;
618 adap->params.mc5.nfilters = val;
619 return 0;
620 }
621
622 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
623 const char *buf, size_t len)
624 {
625 return attr_store(d, buf, len, set_nfilters, 0, ~0);
626 }
627
628 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
629 {
630 struct port_info *pi = netdev_priv(dev);
631 struct adapter *adap = pi->adapter;
632
633 if (adap->flags & FULL_INIT_DONE)
634 return -EBUSY;
635 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
636 MC5_MIN_TIDS)
637 return -EINVAL;
638 adap->params.mc5.nservers = val;
639 return 0;
640 }
641
642 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
643 const char *buf, size_t len)
644 {
645 return attr_store(d, buf, len, set_nservers, 0, ~0);
646 }
647
648 #define CXGB3_ATTR_R(name, val_expr) \
649 CXGB3_SHOW(name, val_expr) \
650 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
651
652 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
653 CXGB3_SHOW(name, val_expr) \
654 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
655
656 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
657 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
658 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
659
660 static struct attribute *cxgb3_attrs[] = {
661 &dev_attr_cam_size.attr,
662 &dev_attr_nfilters.attr,
663 &dev_attr_nservers.attr,
664 NULL
665 };
666
667 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
668
669 static ssize_t tm_attr_show(struct device *d,
670 char *buf, int sched)
671 {
672 struct port_info *pi = netdev_priv(to_net_dev(d));
673 struct adapter *adap = pi->adapter;
674 unsigned int v, addr, bpt, cpt;
675 ssize_t len;
676
677 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
678 rtnl_lock();
679 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
680 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
681 if (sched & 1)
682 v >>= 16;
683 bpt = (v >> 8) & 0xff;
684 cpt = v & 0xff;
685 if (!cpt)
686 len = sprintf(buf, "disabled\n");
687 else {
688 v = (adap->params.vpd.cclk * 1000) / cpt;
689 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
690 }
691 rtnl_unlock();
692 return len;
693 }
694
695 static ssize_t tm_attr_store(struct device *d,
696 const char *buf, size_t len, int sched)
697 {
698 struct port_info *pi = netdev_priv(to_net_dev(d));
699 struct adapter *adap = pi->adapter;
700 unsigned int val;
701 char *endp;
702 ssize_t ret;
703
704 if (!capable(CAP_NET_ADMIN))
705 return -EPERM;
706
707 val = simple_strtoul(buf, &endp, 0);
708 if (endp == buf || val > 10000000)
709 return -EINVAL;
710
711 rtnl_lock();
712 ret = t3_config_sched(adap, val, sched);
713 if (!ret)
714 ret = len;
715 rtnl_unlock();
716 return ret;
717 }
718
719 #define TM_ATTR(name, sched) \
720 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
721 char *buf) \
722 { \
723 return tm_attr_show(d, buf, sched); \
724 } \
725 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
726 const char *buf, size_t len) \
727 { \
728 return tm_attr_store(d, buf, len, sched); \
729 } \
730 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
731
732 TM_ATTR(sched0, 0);
733 TM_ATTR(sched1, 1);
734 TM_ATTR(sched2, 2);
735 TM_ATTR(sched3, 3);
736 TM_ATTR(sched4, 4);
737 TM_ATTR(sched5, 5);
738 TM_ATTR(sched6, 6);
739 TM_ATTR(sched7, 7);
740
741 static struct attribute *offload_attrs[] = {
742 &dev_attr_sched0.attr,
743 &dev_attr_sched1.attr,
744 &dev_attr_sched2.attr,
745 &dev_attr_sched3.attr,
746 &dev_attr_sched4.attr,
747 &dev_attr_sched5.attr,
748 &dev_attr_sched6.attr,
749 &dev_attr_sched7.attr,
750 NULL
751 };
752
753 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
754
755 /*
756 * Sends an sk_buff to an offload queue driver
757 * after dealing with any active network taps.
758 */
759 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
760 {
761 int ret;
762
763 local_bh_disable();
764 ret = t3_offload_tx(tdev, skb);
765 local_bh_enable();
766 return ret;
767 }
768
769 static int write_smt_entry(struct adapter *adapter, int idx)
770 {
771 struct cpl_smt_write_req *req;
772 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
773
774 if (!skb)
775 return -ENOMEM;
776
777 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
778 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
779 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
780 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
781 req->iff = idx;
782 memset(req->src_mac1, 0, sizeof(req->src_mac1));
783 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
784 skb->priority = 1;
785 offload_tx(&adapter->tdev, skb);
786 return 0;
787 }
788
789 static int init_smt(struct adapter *adapter)
790 {
791 int i;
792
793 for_each_port(adapter, i)
794 write_smt_entry(adapter, i);
795 return 0;
796 }
797
798 static void init_port_mtus(struct adapter *adapter)
799 {
800 unsigned int mtus = adapter->port[0]->mtu;
801
802 if (adapter->port[1])
803 mtus |= adapter->port[1]->mtu << 16;
804 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
805 }
806
807 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
808 int hi, int port)
809 {
810 struct sk_buff *skb;
811 struct mngt_pktsched_wr *req;
812 int ret;
813
814 skb = alloc_skb(sizeof(*req), GFP_KERNEL | __GFP_NOFAIL);
815 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
816 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
817 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
818 req->sched = sched;
819 req->idx = qidx;
820 req->min = lo;
821 req->max = hi;
822 req->binding = port;
823 ret = t3_mgmt_tx(adap, skb);
824
825 return ret;
826 }
827
828 static int bind_qsets(struct adapter *adap)
829 {
830 int i, j, err = 0;
831
832 for_each_port(adap, i) {
833 const struct port_info *pi = adap2pinfo(adap, i);
834
835 for (j = 0; j < pi->nqsets; ++j) {
836 int ret = send_pktsched_cmd(adap, 1,
837 pi->first_qset + j, -1,
838 -1, i);
839 if (ret)
840 err = ret;
841 }
842 }
843
844 return err;
845 }
846
847 #define FW_FNAME "cxgb3/t3fw-%d.%d.%d.bin"
848 #define TPSRAM_NAME "cxgb3/t3%c_psram-%d.%d.%d.bin"
849
850 static int upgrade_fw(struct adapter *adap)
851 {
852 int ret;
853 char buf[64];
854 const struct firmware *fw;
855 struct device *dev = &adap->pdev->dev;
856
857 snprintf(buf, sizeof(buf), FW_FNAME, FW_VERSION_MAJOR,
858 FW_VERSION_MINOR, FW_VERSION_MICRO);
859 ret = request_firmware(&fw, buf, dev);
860 if (ret < 0) {
861 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
862 buf);
863 return ret;
864 }
865 ret = t3_load_fw(adap, fw->data, fw->size);
866 release_firmware(fw);
867
868 if (ret == 0)
869 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
870 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
871 else
872 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
873 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
874
875 return ret;
876 }
877
878 static inline char t3rev2char(struct adapter *adapter)
879 {
880 char rev = 0;
881
882 switch(adapter->params.rev) {
883 case T3_REV_B:
884 case T3_REV_B2:
885 rev = 'b';
886 break;
887 case T3_REV_C:
888 rev = 'c';
889 break;
890 }
891 return rev;
892 }
893
894 static int update_tpsram(struct adapter *adap)
895 {
896 const struct firmware *tpsram;
897 char buf[64];
898 struct device *dev = &adap->pdev->dev;
899 int ret;
900 char rev;
901
902 rev = t3rev2char(adap);
903 if (!rev)
904 return 0;
905
906 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev,
907 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
908
909 ret = request_firmware(&tpsram, buf, dev);
910 if (ret < 0) {
911 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
912 buf);
913 return ret;
914 }
915
916 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
917 if (ret)
918 goto release_tpsram;
919
920 ret = t3_set_proto_sram(adap, tpsram->data);
921 if (ret == 0)
922 dev_info(dev,
923 "successful update of protocol engine "
924 "to %d.%d.%d\n",
925 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
926 else
927 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
928 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
929 if (ret)
930 dev_err(dev, "loading protocol SRAM failed\n");
931
932 release_tpsram:
933 release_firmware(tpsram);
934
935 return ret;
936 }
937
938 /**
939 * cxgb_up - enable the adapter
940 * @adapter: adapter being enabled
941 *
942 * Called when the first port is enabled, this function performs the
943 * actions necessary to make an adapter operational, such as completing
944 * the initialization of HW modules, and enabling interrupts.
945 *
946 * Must be called with the rtnl lock held.
947 */
948 static int cxgb_up(struct adapter *adap)
949 {
950 int err;
951
952 if (!(adap->flags & FULL_INIT_DONE)) {
953 err = t3_check_fw_version(adap);
954 if (err == -EINVAL) {
955 err = upgrade_fw(adap);
956 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
957 FW_VERSION_MAJOR, FW_VERSION_MINOR,
958 FW_VERSION_MICRO, err ? "failed" : "succeeded");
959 }
960
961 err = t3_check_tpsram_version(adap);
962 if (err == -EINVAL) {
963 err = update_tpsram(adap);
964 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
965 TP_VERSION_MAJOR, TP_VERSION_MINOR,
966 TP_VERSION_MICRO, err ? "failed" : "succeeded");
967 }
968
969 /*
970 * Clear interrupts now to catch errors if t3_init_hw fails.
971 * We clear them again later as initialization may trigger
972 * conditions that can interrupt.
973 */
974 t3_intr_clear(adap);
975
976 err = t3_init_hw(adap, 0);
977 if (err)
978 goto out;
979
980 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
981 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
982
983 err = setup_sge_qsets(adap);
984 if (err)
985 goto out;
986
987 setup_rss(adap);
988 if (!(adap->flags & NAPI_INIT))
989 init_napi(adap);
990 adap->flags |= FULL_INIT_DONE;
991 }
992
993 t3_intr_clear(adap);
994
995 if (adap->flags & USING_MSIX) {
996 name_msix_vecs(adap);
997 err = request_irq(adap->msix_info[0].vec,
998 t3_async_intr_handler, 0,
999 adap->msix_info[0].desc, adap);
1000 if (err)
1001 goto irq_err;
1002
1003 err = request_msix_data_irqs(adap);
1004 if (err) {
1005 free_irq(adap->msix_info[0].vec, adap);
1006 goto irq_err;
1007 }
1008 } else if ((err = request_irq(adap->pdev->irq,
1009 t3_intr_handler(adap,
1010 adap->sge.qs[0].rspq.
1011 polling),
1012 (adap->flags & USING_MSI) ?
1013 0 : IRQF_SHARED,
1014 adap->name, adap)))
1015 goto irq_err;
1016
1017 enable_all_napi(adap);
1018 t3_sge_start(adap);
1019 t3_intr_enable(adap);
1020
1021 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1022 is_offload(adap) && init_tp_parity(adap) == 0)
1023 adap->flags |= TP_PARITY_INIT;
1024
1025 if (adap->flags & TP_PARITY_INIT) {
1026 t3_write_reg(adap, A_TP_INT_CAUSE,
1027 F_CMCACHEPERR | F_ARPLUTPERR);
1028 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1029 }
1030
1031 if (!(adap->flags & QUEUES_BOUND)) {
1032 err = bind_qsets(adap);
1033 if (err) {
1034 CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1035 t3_intr_disable(adap);
1036 free_irq_resources(adap);
1037 goto out;
1038 }
1039 adap->flags |= QUEUES_BOUND;
1040 }
1041
1042 out:
1043 return err;
1044 irq_err:
1045 CH_ERR(adap, "request_irq failed, err %d\n", err);
1046 goto out;
1047 }
1048
1049 /*
1050 * Release resources when all the ports and offloading have been stopped.
1051 */
1052 static void cxgb_down(struct adapter *adapter)
1053 {
1054 t3_sge_stop(adapter);
1055 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1056 t3_intr_disable(adapter);
1057 spin_unlock_irq(&adapter->work_lock);
1058
1059 free_irq_resources(adapter);
1060 flush_workqueue(cxgb3_wq); /* wait for external IRQ handler */
1061 quiesce_rx(adapter);
1062 }
1063
1064 static void schedule_chk_task(struct adapter *adap)
1065 {
1066 unsigned int timeo;
1067
1068 timeo = adap->params.linkpoll_period ?
1069 (HZ * adap->params.linkpoll_period) / 10 :
1070 adap->params.stats_update_period * HZ;
1071 if (timeo)
1072 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1073 }
1074
1075 static int offload_open(struct net_device *dev)
1076 {
1077 struct port_info *pi = netdev_priv(dev);
1078 struct adapter *adapter = pi->adapter;
1079 struct t3cdev *tdev = dev2t3cdev(dev);
1080 int adap_up = adapter->open_device_map & PORT_MASK;
1081 int err;
1082
1083 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1084 return 0;
1085
1086 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1087 goto out;
1088
1089 t3_tp_set_offload_mode(adapter, 1);
1090 tdev->lldev = adapter->port[0];
1091 err = cxgb3_offload_activate(adapter);
1092 if (err)
1093 goto out;
1094
1095 init_port_mtus(adapter);
1096 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1097 adapter->params.b_wnd,
1098 adapter->params.rev == 0 ?
1099 adapter->port[0]->mtu : 0xffff);
1100 init_smt(adapter);
1101
1102 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1103 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1104
1105 /* Call back all registered clients */
1106 cxgb3_add_clients(tdev);
1107
1108 out:
1109 /* restore them in case the offload module has changed them */
1110 if (err) {
1111 t3_tp_set_offload_mode(adapter, 0);
1112 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1113 cxgb3_set_dummy_ops(tdev);
1114 }
1115 return err;
1116 }
1117
1118 static int offload_close(struct t3cdev *tdev)
1119 {
1120 struct adapter *adapter = tdev2adap(tdev);
1121
1122 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1123 return 0;
1124
1125 /* Call back all registered clients */
1126 cxgb3_remove_clients(tdev);
1127
1128 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1129
1130 tdev->lldev = NULL;
1131 cxgb3_set_dummy_ops(tdev);
1132 t3_tp_set_offload_mode(adapter, 0);
1133 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1134
1135 if (!adapter->open_device_map)
1136 cxgb_down(adapter);
1137
1138 cxgb3_offload_deactivate(adapter);
1139 return 0;
1140 }
1141
1142 static int cxgb_open(struct net_device *dev)
1143 {
1144 struct port_info *pi = netdev_priv(dev);
1145 struct adapter *adapter = pi->adapter;
1146 int other_ports = adapter->open_device_map & PORT_MASK;
1147 int err;
1148
1149 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1150 return err;
1151
1152 set_bit(pi->port_id, &adapter->open_device_map);
1153 if (is_offload(adapter) && !ofld_disable) {
1154 err = offload_open(dev);
1155 if (err)
1156 printk(KERN_WARNING
1157 "Could not initialize offload capabilities\n");
1158 }
1159
1160 dev->real_num_tx_queues = pi->nqsets;
1161 link_start(dev);
1162 t3_port_intr_enable(adapter, pi->port_id);
1163 netif_tx_start_all_queues(dev);
1164 if (!other_ports)
1165 schedule_chk_task(adapter);
1166
1167 return 0;
1168 }
1169
1170 static int cxgb_close(struct net_device *dev)
1171 {
1172 struct port_info *pi = netdev_priv(dev);
1173 struct adapter *adapter = pi->adapter;
1174
1175 t3_port_intr_disable(adapter, pi->port_id);
1176 netif_tx_stop_all_queues(dev);
1177 pi->phy.ops->power_down(&pi->phy, 1);
1178 netif_carrier_off(dev);
1179 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1180
1181 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1182 clear_bit(pi->port_id, &adapter->open_device_map);
1183 spin_unlock_irq(&adapter->work_lock);
1184
1185 if (!(adapter->open_device_map & PORT_MASK))
1186 cancel_rearming_delayed_workqueue(cxgb3_wq,
1187 &adapter->adap_check_task);
1188
1189 if (!adapter->open_device_map)
1190 cxgb_down(adapter);
1191
1192 return 0;
1193 }
1194
1195 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1196 {
1197 struct port_info *pi = netdev_priv(dev);
1198 struct adapter *adapter = pi->adapter;
1199 struct net_device_stats *ns = &pi->netstats;
1200 const struct mac_stats *pstats;
1201
1202 spin_lock(&adapter->stats_lock);
1203 pstats = t3_mac_update_stats(&pi->mac);
1204 spin_unlock(&adapter->stats_lock);
1205
1206 ns->tx_bytes = pstats->tx_octets;
1207 ns->tx_packets = pstats->tx_frames;
1208 ns->rx_bytes = pstats->rx_octets;
1209 ns->rx_packets = pstats->rx_frames;
1210 ns->multicast = pstats->rx_mcast_frames;
1211
1212 ns->tx_errors = pstats->tx_underrun;
1213 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1214 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1215 pstats->rx_fifo_ovfl;
1216
1217 /* detailed rx_errors */
1218 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1219 ns->rx_over_errors = 0;
1220 ns->rx_crc_errors = pstats->rx_fcs_errs;
1221 ns->rx_frame_errors = pstats->rx_symbol_errs;
1222 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1223 ns->rx_missed_errors = pstats->rx_cong_drops;
1224
1225 /* detailed tx_errors */
1226 ns->tx_aborted_errors = 0;
1227 ns->tx_carrier_errors = 0;
1228 ns->tx_fifo_errors = pstats->tx_underrun;
1229 ns->tx_heartbeat_errors = 0;
1230 ns->tx_window_errors = 0;
1231 return ns;
1232 }
1233
1234 static u32 get_msglevel(struct net_device *dev)
1235 {
1236 struct port_info *pi = netdev_priv(dev);
1237 struct adapter *adapter = pi->adapter;
1238
1239 return adapter->msg_enable;
1240 }
1241
1242 static void set_msglevel(struct net_device *dev, u32 val)
1243 {
1244 struct port_info *pi = netdev_priv(dev);
1245 struct adapter *adapter = pi->adapter;
1246
1247 adapter->msg_enable = val;
1248 }
1249
1250 static char stats_strings[][ETH_GSTRING_LEN] = {
1251 "TxOctetsOK ",
1252 "TxFramesOK ",
1253 "TxMulticastFramesOK",
1254 "TxBroadcastFramesOK",
1255 "TxPauseFrames ",
1256 "TxUnderrun ",
1257 "TxExtUnderrun ",
1258
1259 "TxFrames64 ",
1260 "TxFrames65To127 ",
1261 "TxFrames128To255 ",
1262 "TxFrames256To511 ",
1263 "TxFrames512To1023 ",
1264 "TxFrames1024To1518 ",
1265 "TxFrames1519ToMax ",
1266
1267 "RxOctetsOK ",
1268 "RxFramesOK ",
1269 "RxMulticastFramesOK",
1270 "RxBroadcastFramesOK",
1271 "RxPauseFrames ",
1272 "RxFCSErrors ",
1273 "RxSymbolErrors ",
1274 "RxShortErrors ",
1275 "RxJabberErrors ",
1276 "RxLengthErrors ",
1277 "RxFIFOoverflow ",
1278
1279 "RxFrames64 ",
1280 "RxFrames65To127 ",
1281 "RxFrames128To255 ",
1282 "RxFrames256To511 ",
1283 "RxFrames512To1023 ",
1284 "RxFrames1024To1518 ",
1285 "RxFrames1519ToMax ",
1286
1287 "PhyFIFOErrors ",
1288 "TSO ",
1289 "VLANextractions ",
1290 "VLANinsertions ",
1291 "TxCsumOffload ",
1292 "RxCsumGood ",
1293 "LroAggregated ",
1294 "LroFlushed ",
1295 "LroNoDesc ",
1296 "RxDrops ",
1297
1298 "CheckTXEnToggled ",
1299 "CheckResets ",
1300
1301 };
1302
1303 static int get_sset_count(struct net_device *dev, int sset)
1304 {
1305 switch (sset) {
1306 case ETH_SS_STATS:
1307 return ARRAY_SIZE(stats_strings);
1308 default:
1309 return -EOPNOTSUPP;
1310 }
1311 }
1312
1313 #define T3_REGMAP_SIZE (3 * 1024)
1314
1315 static int get_regs_len(struct net_device *dev)
1316 {
1317 return T3_REGMAP_SIZE;
1318 }
1319
1320 static int get_eeprom_len(struct net_device *dev)
1321 {
1322 return EEPROMSIZE;
1323 }
1324
1325 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1326 {
1327 struct port_info *pi = netdev_priv(dev);
1328 struct adapter *adapter = pi->adapter;
1329 u32 fw_vers = 0;
1330 u32 tp_vers = 0;
1331
1332 spin_lock(&adapter->stats_lock);
1333 t3_get_fw_version(adapter, &fw_vers);
1334 t3_get_tp_version(adapter, &tp_vers);
1335 spin_unlock(&adapter->stats_lock);
1336
1337 strcpy(info->driver, DRV_NAME);
1338 strcpy(info->version, DRV_VERSION);
1339 strcpy(info->bus_info, pci_name(adapter->pdev));
1340 if (!fw_vers)
1341 strcpy(info->fw_version, "N/A");
1342 else {
1343 snprintf(info->fw_version, sizeof(info->fw_version),
1344 "%s %u.%u.%u TP %u.%u.%u",
1345 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1346 G_FW_VERSION_MAJOR(fw_vers),
1347 G_FW_VERSION_MINOR(fw_vers),
1348 G_FW_VERSION_MICRO(fw_vers),
1349 G_TP_VERSION_MAJOR(tp_vers),
1350 G_TP_VERSION_MINOR(tp_vers),
1351 G_TP_VERSION_MICRO(tp_vers));
1352 }
1353 }
1354
1355 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1356 {
1357 if (stringset == ETH_SS_STATS)
1358 memcpy(data, stats_strings, sizeof(stats_strings));
1359 }
1360
1361 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1362 struct port_info *p, int idx)
1363 {
1364 int i;
1365 unsigned long tot = 0;
1366
1367 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1368 tot += adapter->sge.qs[i].port_stats[idx];
1369 return tot;
1370 }
1371
1372 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1373 u64 *data)
1374 {
1375 struct port_info *pi = netdev_priv(dev);
1376 struct adapter *adapter = pi->adapter;
1377 const struct mac_stats *s;
1378
1379 spin_lock(&adapter->stats_lock);
1380 s = t3_mac_update_stats(&pi->mac);
1381 spin_unlock(&adapter->stats_lock);
1382
1383 *data++ = s->tx_octets;
1384 *data++ = s->tx_frames;
1385 *data++ = s->tx_mcast_frames;
1386 *data++ = s->tx_bcast_frames;
1387 *data++ = s->tx_pause;
1388 *data++ = s->tx_underrun;
1389 *data++ = s->tx_fifo_urun;
1390
1391 *data++ = s->tx_frames_64;
1392 *data++ = s->tx_frames_65_127;
1393 *data++ = s->tx_frames_128_255;
1394 *data++ = s->tx_frames_256_511;
1395 *data++ = s->tx_frames_512_1023;
1396 *data++ = s->tx_frames_1024_1518;
1397 *data++ = s->tx_frames_1519_max;
1398
1399 *data++ = s->rx_octets;
1400 *data++ = s->rx_frames;
1401 *data++ = s->rx_mcast_frames;
1402 *data++ = s->rx_bcast_frames;
1403 *data++ = s->rx_pause;
1404 *data++ = s->rx_fcs_errs;
1405 *data++ = s->rx_symbol_errs;
1406 *data++ = s->rx_short;
1407 *data++ = s->rx_jabber;
1408 *data++ = s->rx_too_long;
1409 *data++ = s->rx_fifo_ovfl;
1410
1411 *data++ = s->rx_frames_64;
1412 *data++ = s->rx_frames_65_127;
1413 *data++ = s->rx_frames_128_255;
1414 *data++ = s->rx_frames_256_511;
1415 *data++ = s->rx_frames_512_1023;
1416 *data++ = s->rx_frames_1024_1518;
1417 *data++ = s->rx_frames_1519_max;
1418
1419 *data++ = pi->phy.fifo_errors;
1420
1421 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1422 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1423 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1424 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1425 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1426 *data++ = 0;
1427 *data++ = 0;
1428 *data++ = 0;
1429 *data++ = s->rx_cong_drops;
1430
1431 *data++ = s->num_toggled;
1432 *data++ = s->num_resets;
1433 }
1434
1435 static inline void reg_block_dump(struct adapter *ap, void *buf,
1436 unsigned int start, unsigned int end)
1437 {
1438 u32 *p = buf + start;
1439
1440 for (; start <= end; start += sizeof(u32))
1441 *p++ = t3_read_reg(ap, start);
1442 }
1443
1444 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1445 void *buf)
1446 {
1447 struct port_info *pi = netdev_priv(dev);
1448 struct adapter *ap = pi->adapter;
1449
1450 /*
1451 * Version scheme:
1452 * bits 0..9: chip version
1453 * bits 10..15: chip revision
1454 * bit 31: set for PCIe cards
1455 */
1456 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1457
1458 /*
1459 * We skip the MAC statistics registers because they are clear-on-read.
1460 * Also reading multi-register stats would need to synchronize with the
1461 * periodic mac stats accumulation. Hard to justify the complexity.
1462 */
1463 memset(buf, 0, T3_REGMAP_SIZE);
1464 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1465 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1466 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1467 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1468 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1469 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1470 XGM_REG(A_XGM_SERDES_STAT3, 1));
1471 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1472 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1473 }
1474
1475 static int restart_autoneg(struct net_device *dev)
1476 {
1477 struct port_info *p = netdev_priv(dev);
1478
1479 if (!netif_running(dev))
1480 return -EAGAIN;
1481 if (p->link_config.autoneg != AUTONEG_ENABLE)
1482 return -EINVAL;
1483 p->phy.ops->autoneg_restart(&p->phy);
1484 return 0;
1485 }
1486
1487 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1488 {
1489 struct port_info *pi = netdev_priv(dev);
1490 struct adapter *adapter = pi->adapter;
1491 int i;
1492
1493 if (data == 0)
1494 data = 2;
1495
1496 for (i = 0; i < data * 2; i++) {
1497 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1498 (i & 1) ? F_GPIO0_OUT_VAL : 0);
1499 if (msleep_interruptible(500))
1500 break;
1501 }
1502 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1503 F_GPIO0_OUT_VAL);
1504 return 0;
1505 }
1506
1507 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1508 {
1509 struct port_info *p = netdev_priv(dev);
1510
1511 cmd->supported = p->link_config.supported;
1512 cmd->advertising = p->link_config.advertising;
1513
1514 if (netif_carrier_ok(dev)) {
1515 cmd->speed = p->link_config.speed;
1516 cmd->duplex = p->link_config.duplex;
1517 } else {
1518 cmd->speed = -1;
1519 cmd->duplex = -1;
1520 }
1521
1522 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1523 cmd->phy_address = p->phy.addr;
1524 cmd->transceiver = XCVR_EXTERNAL;
1525 cmd->autoneg = p->link_config.autoneg;
1526 cmd->maxtxpkt = 0;
1527 cmd->maxrxpkt = 0;
1528 return 0;
1529 }
1530
1531 static int speed_duplex_to_caps(int speed, int duplex)
1532 {
1533 int cap = 0;
1534
1535 switch (speed) {
1536 case SPEED_10:
1537 if (duplex == DUPLEX_FULL)
1538 cap = SUPPORTED_10baseT_Full;
1539 else
1540 cap = SUPPORTED_10baseT_Half;
1541 break;
1542 case SPEED_100:
1543 if (duplex == DUPLEX_FULL)
1544 cap = SUPPORTED_100baseT_Full;
1545 else
1546 cap = SUPPORTED_100baseT_Half;
1547 break;
1548 case SPEED_1000:
1549 if (duplex == DUPLEX_FULL)
1550 cap = SUPPORTED_1000baseT_Full;
1551 else
1552 cap = SUPPORTED_1000baseT_Half;
1553 break;
1554 case SPEED_10000:
1555 if (duplex == DUPLEX_FULL)
1556 cap = SUPPORTED_10000baseT_Full;
1557 }
1558 return cap;
1559 }
1560
1561 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1562 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1563 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1564 ADVERTISED_10000baseT_Full)
1565
1566 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1567 {
1568 int cap;
1569 struct port_info *p = netdev_priv(dev);
1570 struct link_config *lc = &p->link_config;
1571
1572 if (!(lc->supported & SUPPORTED_Autoneg)) {
1573 /*
1574 * PHY offers a single speed/duplex. See if that's what's
1575 * being requested.
1576 */
1577 if (cmd->autoneg == AUTONEG_DISABLE) {
1578 cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1579 if (lc->supported & cap)
1580 return 0;
1581 }
1582 return -EINVAL;
1583 }
1584
1585 if (cmd->autoneg == AUTONEG_DISABLE) {
1586 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1587
1588 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1589 return -EINVAL;
1590 lc->requested_speed = cmd->speed;
1591 lc->requested_duplex = cmd->duplex;
1592 lc->advertising = 0;
1593 } else {
1594 cmd->advertising &= ADVERTISED_MASK;
1595 cmd->advertising &= lc->supported;
1596 if (!cmd->advertising)
1597 return -EINVAL;
1598 lc->requested_speed = SPEED_INVALID;
1599 lc->requested_duplex = DUPLEX_INVALID;
1600 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1601 }
1602 lc->autoneg = cmd->autoneg;
1603 if (netif_running(dev))
1604 t3_link_start(&p->phy, &p->mac, lc);
1605 return 0;
1606 }
1607
1608 static void get_pauseparam(struct net_device *dev,
1609 struct ethtool_pauseparam *epause)
1610 {
1611 struct port_info *p = netdev_priv(dev);
1612
1613 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1614 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1615 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1616 }
1617
1618 static int set_pauseparam(struct net_device *dev,
1619 struct ethtool_pauseparam *epause)
1620 {
1621 struct port_info *p = netdev_priv(dev);
1622 struct link_config *lc = &p->link_config;
1623
1624 if (epause->autoneg == AUTONEG_DISABLE)
1625 lc->requested_fc = 0;
1626 else if (lc->supported & SUPPORTED_Autoneg)
1627 lc->requested_fc = PAUSE_AUTONEG;
1628 else
1629 return -EINVAL;
1630
1631 if (epause->rx_pause)
1632 lc->requested_fc |= PAUSE_RX;
1633 if (epause->tx_pause)
1634 lc->requested_fc |= PAUSE_TX;
1635 if (lc->autoneg == AUTONEG_ENABLE) {
1636 if (netif_running(dev))
1637 t3_link_start(&p->phy, &p->mac, lc);
1638 } else {
1639 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1640 if (netif_running(dev))
1641 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1642 }
1643 return 0;
1644 }
1645
1646 static u32 get_rx_csum(struct net_device *dev)
1647 {
1648 struct port_info *p = netdev_priv(dev);
1649
1650 return p->rx_offload & T3_RX_CSUM;
1651 }
1652
1653 static int set_rx_csum(struct net_device *dev, u32 data)
1654 {
1655 struct port_info *p = netdev_priv(dev);
1656
1657 if (data) {
1658 p->rx_offload |= T3_RX_CSUM;
1659 } else {
1660 int i;
1661
1662 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1663 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1664 set_qset_lro(dev, i, 0);
1665 }
1666 return 0;
1667 }
1668
1669 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1670 {
1671 struct port_info *pi = netdev_priv(dev);
1672 struct adapter *adapter = pi->adapter;
1673 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1674
1675 e->rx_max_pending = MAX_RX_BUFFERS;
1676 e->rx_mini_max_pending = 0;
1677 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1678 e->tx_max_pending = MAX_TXQ_ENTRIES;
1679
1680 e->rx_pending = q->fl_size;
1681 e->rx_mini_pending = q->rspq_size;
1682 e->rx_jumbo_pending = q->jumbo_size;
1683 e->tx_pending = q->txq_size[0];
1684 }
1685
1686 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1687 {
1688 struct port_info *pi = netdev_priv(dev);
1689 struct adapter *adapter = pi->adapter;
1690 struct qset_params *q;
1691 int i;
1692
1693 if (e->rx_pending > MAX_RX_BUFFERS ||
1694 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1695 e->tx_pending > MAX_TXQ_ENTRIES ||
1696 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1697 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1698 e->rx_pending < MIN_FL_ENTRIES ||
1699 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1700 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1701 return -EINVAL;
1702
1703 if (adapter->flags & FULL_INIT_DONE)
1704 return -EBUSY;
1705
1706 q = &adapter->params.sge.qset[pi->first_qset];
1707 for (i = 0; i < pi->nqsets; ++i, ++q) {
1708 q->rspq_size = e->rx_mini_pending;
1709 q->fl_size = e->rx_pending;
1710 q->jumbo_size = e->rx_jumbo_pending;
1711 q->txq_size[0] = e->tx_pending;
1712 q->txq_size[1] = e->tx_pending;
1713 q->txq_size[2] = e->tx_pending;
1714 }
1715 return 0;
1716 }
1717
1718 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1719 {
1720 struct port_info *pi = netdev_priv(dev);
1721 struct adapter *adapter = pi->adapter;
1722 struct qset_params *qsp = &adapter->params.sge.qset[0];
1723 struct sge_qset *qs = &adapter->sge.qs[0];
1724
1725 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1726 return -EINVAL;
1727
1728 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1729 t3_update_qset_coalesce(qs, qsp);
1730 return 0;
1731 }
1732
1733 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1734 {
1735 struct port_info *pi = netdev_priv(dev);
1736 struct adapter *adapter = pi->adapter;
1737 struct qset_params *q = adapter->params.sge.qset;
1738
1739 c->rx_coalesce_usecs = q->coalesce_usecs;
1740 return 0;
1741 }
1742
1743 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1744 u8 * data)
1745 {
1746 struct port_info *pi = netdev_priv(dev);
1747 struct adapter *adapter = pi->adapter;
1748 int i, err = 0;
1749
1750 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1751 if (!buf)
1752 return -ENOMEM;
1753
1754 e->magic = EEPROM_MAGIC;
1755 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1756 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1757
1758 if (!err)
1759 memcpy(data, buf + e->offset, e->len);
1760 kfree(buf);
1761 return err;
1762 }
1763
1764 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1765 u8 * data)
1766 {
1767 struct port_info *pi = netdev_priv(dev);
1768 struct adapter *adapter = pi->adapter;
1769 u32 aligned_offset, aligned_len;
1770 __le32 *p;
1771 u8 *buf;
1772 int err;
1773
1774 if (eeprom->magic != EEPROM_MAGIC)
1775 return -EINVAL;
1776
1777 aligned_offset = eeprom->offset & ~3;
1778 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1779
1780 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1781 buf = kmalloc(aligned_len, GFP_KERNEL);
1782 if (!buf)
1783 return -ENOMEM;
1784 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
1785 if (!err && aligned_len > 4)
1786 err = t3_seeprom_read(adapter,
1787 aligned_offset + aligned_len - 4,
1788 (__le32 *) & buf[aligned_len - 4]);
1789 if (err)
1790 goto out;
1791 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1792 } else
1793 buf = data;
1794
1795 err = t3_seeprom_wp(adapter, 0);
1796 if (err)
1797 goto out;
1798
1799 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
1800 err = t3_seeprom_write(adapter, aligned_offset, *p);
1801 aligned_offset += 4;
1802 }
1803
1804 if (!err)
1805 err = t3_seeprom_wp(adapter, 1);
1806 out:
1807 if (buf != data)
1808 kfree(buf);
1809 return err;
1810 }
1811
1812 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1813 {
1814 wol->supported = 0;
1815 wol->wolopts = 0;
1816 memset(&wol->sopass, 0, sizeof(wol->sopass));
1817 }
1818
1819 static const struct ethtool_ops cxgb_ethtool_ops = {
1820 .get_settings = get_settings,
1821 .set_settings = set_settings,
1822 .get_drvinfo = get_drvinfo,
1823 .get_msglevel = get_msglevel,
1824 .set_msglevel = set_msglevel,
1825 .get_ringparam = get_sge_param,
1826 .set_ringparam = set_sge_param,
1827 .get_coalesce = get_coalesce,
1828 .set_coalesce = set_coalesce,
1829 .get_eeprom_len = get_eeprom_len,
1830 .get_eeprom = get_eeprom,
1831 .set_eeprom = set_eeprom,
1832 .get_pauseparam = get_pauseparam,
1833 .set_pauseparam = set_pauseparam,
1834 .get_rx_csum = get_rx_csum,
1835 .set_rx_csum = set_rx_csum,
1836 .set_tx_csum = ethtool_op_set_tx_csum,
1837 .set_sg = ethtool_op_set_sg,
1838 .get_link = ethtool_op_get_link,
1839 .get_strings = get_strings,
1840 .phys_id = cxgb3_phys_id,
1841 .nway_reset = restart_autoneg,
1842 .get_sset_count = get_sset_count,
1843 .get_ethtool_stats = get_stats,
1844 .get_regs_len = get_regs_len,
1845 .get_regs = get_regs,
1846 .get_wol = get_wol,
1847 .set_tso = ethtool_op_set_tso,
1848 };
1849
1850 static int in_range(int val, int lo, int hi)
1851 {
1852 return val < 0 || (val <= hi && val >= lo);
1853 }
1854
1855 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
1856 {
1857 struct port_info *pi = netdev_priv(dev);
1858 struct adapter *adapter = pi->adapter;
1859 u32 cmd;
1860 int ret;
1861
1862 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
1863 return -EFAULT;
1864
1865 switch (cmd) {
1866 case CHELSIO_SET_QSET_PARAMS:{
1867 int i;
1868 struct qset_params *q;
1869 struct ch_qset_params t;
1870 int q1 = pi->first_qset;
1871 int nqsets = pi->nqsets;
1872
1873 if (!capable(CAP_NET_ADMIN))
1874 return -EPERM;
1875 if (copy_from_user(&t, useraddr, sizeof(t)))
1876 return -EFAULT;
1877 if (t.qset_idx >= SGE_QSETS)
1878 return -EINVAL;
1879 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
1880 !in_range(t.cong_thres, 0, 255) ||
1881 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
1882 MAX_TXQ_ENTRIES) ||
1883 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
1884 MAX_TXQ_ENTRIES) ||
1885 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
1886 MAX_CTRL_TXQ_ENTRIES) ||
1887 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
1888 MAX_RX_BUFFERS)
1889 || !in_range(t.fl_size[1], MIN_FL_ENTRIES,
1890 MAX_RX_JUMBO_BUFFERS)
1891 || !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
1892 MAX_RSPQ_ENTRIES))
1893 return -EINVAL;
1894
1895 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
1896 for_each_port(adapter, i) {
1897 pi = adap2pinfo(adapter, i);
1898 if (t.qset_idx >= pi->first_qset &&
1899 t.qset_idx < pi->first_qset + pi->nqsets &&
1900 !(pi->rx_offload & T3_RX_CSUM))
1901 return -EINVAL;
1902 }
1903
1904 if ((adapter->flags & FULL_INIT_DONE) &&
1905 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
1906 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
1907 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
1908 t.polling >= 0 || t.cong_thres >= 0))
1909 return -EBUSY;
1910
1911 /* Allow setting of any available qset when offload enabled */
1912 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
1913 q1 = 0;
1914 for_each_port(adapter, i) {
1915 pi = adap2pinfo(adapter, i);
1916 nqsets += pi->first_qset + pi->nqsets;
1917 }
1918 }
1919
1920 if (t.qset_idx < q1)
1921 return -EINVAL;
1922 if (t.qset_idx > q1 + nqsets - 1)
1923 return -EINVAL;
1924
1925 q = &adapter->params.sge.qset[t.qset_idx];
1926
1927 if (t.rspq_size >= 0)
1928 q->rspq_size = t.rspq_size;
1929 if (t.fl_size[0] >= 0)
1930 q->fl_size = t.fl_size[0];
1931 if (t.fl_size[1] >= 0)
1932 q->jumbo_size = t.fl_size[1];
1933 if (t.txq_size[0] >= 0)
1934 q->txq_size[0] = t.txq_size[0];
1935 if (t.txq_size[1] >= 0)
1936 q->txq_size[1] = t.txq_size[1];
1937 if (t.txq_size[2] >= 0)
1938 q->txq_size[2] = t.txq_size[2];
1939 if (t.cong_thres >= 0)
1940 q->cong_thres = t.cong_thres;
1941 if (t.intr_lat >= 0) {
1942 struct sge_qset *qs =
1943 &adapter->sge.qs[t.qset_idx];
1944
1945 q->coalesce_usecs = t.intr_lat;
1946 t3_update_qset_coalesce(qs, q);
1947 }
1948 if (t.polling >= 0) {
1949 if (adapter->flags & USING_MSIX)
1950 q->polling = t.polling;
1951 else {
1952 /* No polling with INTx for T3A */
1953 if (adapter->params.rev == 0 &&
1954 !(adapter->flags & USING_MSI))
1955 t.polling = 0;
1956
1957 for (i = 0; i < SGE_QSETS; i++) {
1958 q = &adapter->params.sge.
1959 qset[i];
1960 q->polling = t.polling;
1961 }
1962 }
1963 }
1964 if (t.lro >= 0)
1965 set_qset_lro(dev, t.qset_idx, t.lro);
1966
1967 break;
1968 }
1969 case CHELSIO_GET_QSET_PARAMS:{
1970 struct qset_params *q;
1971 struct ch_qset_params t;
1972 int q1 = pi->first_qset;
1973 int nqsets = pi->nqsets;
1974 int i;
1975
1976 if (copy_from_user(&t, useraddr, sizeof(t)))
1977 return -EFAULT;
1978
1979 /* Display qsets for all ports when offload enabled */
1980 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
1981 q1 = 0;
1982 for_each_port(adapter, i) {
1983 pi = adap2pinfo(adapter, i);
1984 nqsets = pi->first_qset + pi->nqsets;
1985 }
1986 }
1987
1988 if (t.qset_idx >= nqsets)
1989 return -EINVAL;
1990
1991 q = &adapter->params.sge.qset[q1 + t.qset_idx];
1992 t.rspq_size = q->rspq_size;
1993 t.txq_size[0] = q->txq_size[0];
1994 t.txq_size[1] = q->txq_size[1];
1995 t.txq_size[2] = q->txq_size[2];
1996 t.fl_size[0] = q->fl_size;
1997 t.fl_size[1] = q->jumbo_size;
1998 t.polling = q->polling;
1999 t.lro = q->lro;
2000 t.intr_lat = q->coalesce_usecs;
2001 t.cong_thres = q->cong_thres;
2002 t.qnum = q1;
2003
2004 if (adapter->flags & USING_MSIX)
2005 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2006 else
2007 t.vector = adapter->pdev->irq;
2008
2009 if (copy_to_user(useraddr, &t, sizeof(t)))
2010 return -EFAULT;
2011 break;
2012 }
2013 case CHELSIO_SET_QSET_NUM:{
2014 struct ch_reg edata;
2015 unsigned int i, first_qset = 0, other_qsets = 0;
2016
2017 if (!capable(CAP_NET_ADMIN))
2018 return -EPERM;
2019 if (adapter->flags & FULL_INIT_DONE)
2020 return -EBUSY;
2021 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2022 return -EFAULT;
2023 if (edata.val < 1 ||
2024 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2025 return -EINVAL;
2026
2027 for_each_port(adapter, i)
2028 if (adapter->port[i] && adapter->port[i] != dev)
2029 other_qsets += adap2pinfo(adapter, i)->nqsets;
2030
2031 if (edata.val + other_qsets > SGE_QSETS)
2032 return -EINVAL;
2033
2034 pi->nqsets = edata.val;
2035
2036 for_each_port(adapter, i)
2037 if (adapter->port[i]) {
2038 pi = adap2pinfo(adapter, i);
2039 pi->first_qset = first_qset;
2040 first_qset += pi->nqsets;
2041 }
2042 break;
2043 }
2044 case CHELSIO_GET_QSET_NUM:{
2045 struct ch_reg edata;
2046
2047 edata.cmd = CHELSIO_GET_QSET_NUM;
2048 edata.val = pi->nqsets;
2049 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2050 return -EFAULT;
2051 break;
2052 }
2053 case CHELSIO_LOAD_FW:{
2054 u8 *fw_data;
2055 struct ch_mem_range t;
2056
2057 if (!capable(CAP_SYS_RAWIO))
2058 return -EPERM;
2059 if (copy_from_user(&t, useraddr, sizeof(t)))
2060 return -EFAULT;
2061 /* Check t.len sanity ? */
2062 fw_data = kmalloc(t.len, GFP_KERNEL);
2063 if (!fw_data)
2064 return -ENOMEM;
2065
2066 if (copy_from_user
2067 (fw_data, useraddr + sizeof(t), t.len)) {
2068 kfree(fw_data);
2069 return -EFAULT;
2070 }
2071
2072 ret = t3_load_fw(adapter, fw_data, t.len);
2073 kfree(fw_data);
2074 if (ret)
2075 return ret;
2076 break;
2077 }
2078 case CHELSIO_SETMTUTAB:{
2079 struct ch_mtus m;
2080 int i;
2081
2082 if (!is_offload(adapter))
2083 return -EOPNOTSUPP;
2084 if (!capable(CAP_NET_ADMIN))
2085 return -EPERM;
2086 if (offload_running(adapter))
2087 return -EBUSY;
2088 if (copy_from_user(&m, useraddr, sizeof(m)))
2089 return -EFAULT;
2090 if (m.nmtus != NMTUS)
2091 return -EINVAL;
2092 if (m.mtus[0] < 81) /* accommodate SACK */
2093 return -EINVAL;
2094
2095 /* MTUs must be in ascending order */
2096 for (i = 1; i < NMTUS; ++i)
2097 if (m.mtus[i] < m.mtus[i - 1])
2098 return -EINVAL;
2099
2100 memcpy(adapter->params.mtus, m.mtus,
2101 sizeof(adapter->params.mtus));
2102 break;
2103 }
2104 case CHELSIO_GET_PM:{
2105 struct tp_params *p = &adapter->params.tp;
2106 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2107
2108 if (!is_offload(adapter))
2109 return -EOPNOTSUPP;
2110 m.tx_pg_sz = p->tx_pg_size;
2111 m.tx_num_pg = p->tx_num_pgs;
2112 m.rx_pg_sz = p->rx_pg_size;
2113 m.rx_num_pg = p->rx_num_pgs;
2114 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2115 if (copy_to_user(useraddr, &m, sizeof(m)))
2116 return -EFAULT;
2117 break;
2118 }
2119 case CHELSIO_SET_PM:{
2120 struct ch_pm m;
2121 struct tp_params *p = &adapter->params.tp;
2122
2123 if (!is_offload(adapter))
2124 return -EOPNOTSUPP;
2125 if (!capable(CAP_NET_ADMIN))
2126 return -EPERM;
2127 if (adapter->flags & FULL_INIT_DONE)
2128 return -EBUSY;
2129 if (copy_from_user(&m, useraddr, sizeof(m)))
2130 return -EFAULT;
2131 if (!is_power_of_2(m.rx_pg_sz) ||
2132 !is_power_of_2(m.tx_pg_sz))
2133 return -EINVAL; /* not power of 2 */
2134 if (!(m.rx_pg_sz & 0x14000))
2135 return -EINVAL; /* not 16KB or 64KB */
2136 if (!(m.tx_pg_sz & 0x1554000))
2137 return -EINVAL;
2138 if (m.tx_num_pg == -1)
2139 m.tx_num_pg = p->tx_num_pgs;
2140 if (m.rx_num_pg == -1)
2141 m.rx_num_pg = p->rx_num_pgs;
2142 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2143 return -EINVAL;
2144 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2145 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2146 return -EINVAL;
2147 p->rx_pg_size = m.rx_pg_sz;
2148 p->tx_pg_size = m.tx_pg_sz;
2149 p->rx_num_pgs = m.rx_num_pg;
2150 p->tx_num_pgs = m.tx_num_pg;
2151 break;
2152 }
2153 case CHELSIO_GET_MEM:{
2154 struct ch_mem_range t;
2155 struct mc7 *mem;
2156 u64 buf[32];
2157
2158 if (!is_offload(adapter))
2159 return -EOPNOTSUPP;
2160 if (!(adapter->flags & FULL_INIT_DONE))
2161 return -EIO; /* need the memory controllers */
2162 if (copy_from_user(&t, useraddr, sizeof(t)))
2163 return -EFAULT;
2164 if ((t.addr & 7) || (t.len & 7))
2165 return -EINVAL;
2166 if (t.mem_id == MEM_CM)
2167 mem = &adapter->cm;
2168 else if (t.mem_id == MEM_PMRX)
2169 mem = &adapter->pmrx;
2170 else if (t.mem_id == MEM_PMTX)
2171 mem = &adapter->pmtx;
2172 else
2173 return -EINVAL;
2174
2175 /*
2176 * Version scheme:
2177 * bits 0..9: chip version
2178 * bits 10..15: chip revision
2179 */
2180 t.version = 3 | (adapter->params.rev << 10);
2181 if (copy_to_user(useraddr, &t, sizeof(t)))
2182 return -EFAULT;
2183
2184 /*
2185 * Read 256 bytes at a time as len can be large and we don't
2186 * want to use huge intermediate buffers.
2187 */
2188 useraddr += sizeof(t); /* advance to start of buffer */
2189 while (t.len) {
2190 unsigned int chunk =
2191 min_t(unsigned int, t.len, sizeof(buf));
2192
2193 ret =
2194 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2195 buf);
2196 if (ret)
2197 return ret;
2198 if (copy_to_user(useraddr, buf, chunk))
2199 return -EFAULT;
2200 useraddr += chunk;
2201 t.addr += chunk;
2202 t.len -= chunk;
2203 }
2204 break;
2205 }
2206 case CHELSIO_SET_TRACE_FILTER:{
2207 struct ch_trace t;
2208 const struct trace_params *tp;
2209
2210 if (!capable(CAP_NET_ADMIN))
2211 return -EPERM;
2212 if (!offload_running(adapter))
2213 return -EAGAIN;
2214 if (copy_from_user(&t, useraddr, sizeof(t)))
2215 return -EFAULT;
2216
2217 tp = (const struct trace_params *)&t.sip;
2218 if (t.config_tx)
2219 t3_config_trace_filter(adapter, tp, 0,
2220 t.invert_match,
2221 t.trace_tx);
2222 if (t.config_rx)
2223 t3_config_trace_filter(adapter, tp, 1,
2224 t.invert_match,
2225 t.trace_rx);
2226 break;
2227 }
2228 default:
2229 return -EOPNOTSUPP;
2230 }
2231 return 0;
2232 }
2233
2234 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2235 {
2236 struct mii_ioctl_data *data = if_mii(req);
2237 struct port_info *pi = netdev_priv(dev);
2238 struct adapter *adapter = pi->adapter;
2239 int ret, mmd;
2240
2241 switch (cmd) {
2242 case SIOCGMIIPHY:
2243 data->phy_id = pi->phy.addr;
2244 /* FALLTHRU */
2245 case SIOCGMIIREG:{
2246 u32 val;
2247 struct cphy *phy = &pi->phy;
2248
2249 if (!phy->mdio_read)
2250 return -EOPNOTSUPP;
2251 if (is_10G(adapter)) {
2252 mmd = data->phy_id >> 8;
2253 if (!mmd)
2254 mmd = MDIO_DEV_PCS;
2255 else if (mmd > MDIO_DEV_VEND2)
2256 return -EINVAL;
2257
2258 ret =
2259 phy->mdio_read(adapter, data->phy_id & 0x1f,
2260 mmd, data->reg_num, &val);
2261 } else
2262 ret =
2263 phy->mdio_read(adapter, data->phy_id & 0x1f,
2264 0, data->reg_num & 0x1f,
2265 &val);
2266 if (!ret)
2267 data->val_out = val;
2268 break;
2269 }
2270 case SIOCSMIIREG:{
2271 struct cphy *phy = &pi->phy;
2272
2273 if (!capable(CAP_NET_ADMIN))
2274 return -EPERM;
2275 if (!phy->mdio_write)
2276 return -EOPNOTSUPP;
2277 if (is_10G(adapter)) {
2278 mmd = data->phy_id >> 8;
2279 if (!mmd)
2280 mmd = MDIO_DEV_PCS;
2281 else if (mmd > MDIO_DEV_VEND2)
2282 return -EINVAL;
2283
2284 ret =
2285 phy->mdio_write(adapter,
2286 data->phy_id & 0x1f, mmd,
2287 data->reg_num,
2288 data->val_in);
2289 } else
2290 ret =
2291 phy->mdio_write(adapter,
2292 data->phy_id & 0x1f, 0,
2293 data->reg_num & 0x1f,
2294 data->val_in);
2295 break;
2296 }
2297 case SIOCCHIOCTL:
2298 return cxgb_extension_ioctl(dev, req->ifr_data);
2299 default:
2300 return -EOPNOTSUPP;
2301 }
2302 return ret;
2303 }
2304
2305 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2306 {
2307 struct port_info *pi = netdev_priv(dev);
2308 struct adapter *adapter = pi->adapter;
2309 int ret;
2310
2311 if (new_mtu < 81) /* accommodate SACK */
2312 return -EINVAL;
2313 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2314 return ret;
2315 dev->mtu = new_mtu;
2316 init_port_mtus(adapter);
2317 if (adapter->params.rev == 0 && offload_running(adapter))
2318 t3_load_mtus(adapter, adapter->params.mtus,
2319 adapter->params.a_wnd, adapter->params.b_wnd,
2320 adapter->port[0]->mtu);
2321 return 0;
2322 }
2323
2324 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2325 {
2326 struct port_info *pi = netdev_priv(dev);
2327 struct adapter *adapter = pi->adapter;
2328 struct sockaddr *addr = p;
2329
2330 if (!is_valid_ether_addr(addr->sa_data))
2331 return -EINVAL;
2332
2333 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2334 t3_mac_set_address(&pi->mac, 0, dev->dev_addr);
2335 if (offload_running(adapter))
2336 write_smt_entry(adapter, pi->port_id);
2337 return 0;
2338 }
2339
2340 /**
2341 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2342 * @adap: the adapter
2343 * @p: the port
2344 *
2345 * Ensures that current Rx processing on any of the queues associated with
2346 * the given port completes before returning. We do this by acquiring and
2347 * releasing the locks of the response queues associated with the port.
2348 */
2349 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2350 {
2351 int i;
2352
2353 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2354 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2355
2356 spin_lock_irq(&q->lock);
2357 spin_unlock_irq(&q->lock);
2358 }
2359 }
2360
2361 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2362 {
2363 struct port_info *pi = netdev_priv(dev);
2364 struct adapter *adapter = pi->adapter;
2365
2366 pi->vlan_grp = grp;
2367 if (adapter->params.rev > 0)
2368 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2369 else {
2370 /* single control for all ports */
2371 unsigned int i, have_vlans = 0;
2372 for_each_port(adapter, i)
2373 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2374
2375 t3_set_vlan_accel(adapter, 1, have_vlans);
2376 }
2377 t3_synchronize_rx(adapter, pi);
2378 }
2379
2380 #ifdef CONFIG_NET_POLL_CONTROLLER
2381 static void cxgb_netpoll(struct net_device *dev)
2382 {
2383 struct port_info *pi = netdev_priv(dev);
2384 struct adapter *adapter = pi->adapter;
2385 int qidx;
2386
2387 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2388 struct sge_qset *qs = &adapter->sge.qs[qidx];
2389 void *source;
2390
2391 if (adapter->flags & USING_MSIX)
2392 source = qs;
2393 else
2394 source = adapter;
2395
2396 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2397 }
2398 }
2399 #endif
2400
2401 /*
2402 * Periodic accumulation of MAC statistics.
2403 */
2404 static void mac_stats_update(struct adapter *adapter)
2405 {
2406 int i;
2407
2408 for_each_port(adapter, i) {
2409 struct net_device *dev = adapter->port[i];
2410 struct port_info *p = netdev_priv(dev);
2411
2412 if (netif_running(dev)) {
2413 spin_lock(&adapter->stats_lock);
2414 t3_mac_update_stats(&p->mac);
2415 spin_unlock(&adapter->stats_lock);
2416 }
2417 }
2418 }
2419
2420 static void check_link_status(struct adapter *adapter)
2421 {
2422 int i;
2423
2424 for_each_port(adapter, i) {
2425 struct net_device *dev = adapter->port[i];
2426 struct port_info *p = netdev_priv(dev);
2427
2428 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev))
2429 t3_link_changed(adapter, i);
2430 }
2431 }
2432
2433 static void check_t3b2_mac(struct adapter *adapter)
2434 {
2435 int i;
2436
2437 if (!rtnl_trylock()) /* synchronize with ifdown */
2438 return;
2439
2440 for_each_port(adapter, i) {
2441 struct net_device *dev = adapter->port[i];
2442 struct port_info *p = netdev_priv(dev);
2443 int status;
2444
2445 if (!netif_running(dev))
2446 continue;
2447
2448 status = 0;
2449 if (netif_running(dev) && netif_carrier_ok(dev))
2450 status = t3b2_mac_watchdog_task(&p->mac);
2451 if (status == 1)
2452 p->mac.stats.num_toggled++;
2453 else if (status == 2) {
2454 struct cmac *mac = &p->mac;
2455
2456 t3_mac_set_mtu(mac, dev->mtu);
2457 t3_mac_set_address(mac, 0, dev->dev_addr);
2458 cxgb_set_rxmode(dev);
2459 t3_link_start(&p->phy, mac, &p->link_config);
2460 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2461 t3_port_intr_enable(adapter, p->port_id);
2462 p->mac.stats.num_resets++;
2463 }
2464 }
2465 rtnl_unlock();
2466 }
2467
2468
2469 static void t3_adap_check_task(struct work_struct *work)
2470 {
2471 struct adapter *adapter = container_of(work, struct adapter,
2472 adap_check_task.work);
2473 const struct adapter_params *p = &adapter->params;
2474
2475 adapter->check_task_cnt++;
2476
2477 /* Check link status for PHYs without interrupts */
2478 if (p->linkpoll_period)
2479 check_link_status(adapter);
2480
2481 /* Accumulate MAC stats if needed */
2482 if (!p->linkpoll_period ||
2483 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2484 p->stats_update_period) {
2485 mac_stats_update(adapter);
2486 adapter->check_task_cnt = 0;
2487 }
2488
2489 if (p->rev == T3_REV_B2)
2490 check_t3b2_mac(adapter);
2491
2492 /* Schedule the next check update if any port is active. */
2493 spin_lock_irq(&adapter->work_lock);
2494 if (adapter->open_device_map & PORT_MASK)
2495 schedule_chk_task(adapter);
2496 spin_unlock_irq(&adapter->work_lock);
2497 }
2498
2499 /*
2500 * Processes external (PHY) interrupts in process context.
2501 */
2502 static void ext_intr_task(struct work_struct *work)
2503 {
2504 struct adapter *adapter = container_of(work, struct adapter,
2505 ext_intr_handler_task);
2506
2507 t3_phy_intr_handler(adapter);
2508
2509 /* Now reenable external interrupts */
2510 spin_lock_irq(&adapter->work_lock);
2511 if (adapter->slow_intr_mask) {
2512 adapter->slow_intr_mask |= F_T3DBG;
2513 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2514 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2515 adapter->slow_intr_mask);
2516 }
2517 spin_unlock_irq(&adapter->work_lock);
2518 }
2519
2520 /*
2521 * Interrupt-context handler for external (PHY) interrupts.
2522 */
2523 void t3_os_ext_intr_handler(struct adapter *adapter)
2524 {
2525 /*
2526 * Schedule a task to handle external interrupts as they may be slow
2527 * and we use a mutex to protect MDIO registers. We disable PHY
2528 * interrupts in the meantime and let the task reenable them when
2529 * it's done.
2530 */
2531 spin_lock(&adapter->work_lock);
2532 if (adapter->slow_intr_mask) {
2533 adapter->slow_intr_mask &= ~F_T3DBG;
2534 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2535 adapter->slow_intr_mask);
2536 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2537 }
2538 spin_unlock(&adapter->work_lock);
2539 }
2540
2541 static int t3_adapter_error(struct adapter *adapter, int reset)
2542 {
2543 int i, ret = 0;
2544
2545 if (is_offload(adapter) &&
2546 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2547 cxgb3_err_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2548 offload_close(&adapter->tdev);
2549 }
2550
2551 /* Stop all ports */
2552 for_each_port(adapter, i) {
2553 struct net_device *netdev = adapter->port[i];
2554
2555 if (netif_running(netdev))
2556 cxgb_close(netdev);
2557 }
2558
2559 /* Stop SGE timers */
2560 t3_stop_sge_timers(adapter);
2561
2562 adapter->flags &= ~FULL_INIT_DONE;
2563
2564 if (reset)
2565 ret = t3_reset_adapter(adapter);
2566
2567 pci_disable_device(adapter->pdev);
2568
2569 return ret;
2570 }
2571
2572 static int t3_reenable_adapter(struct adapter *adapter)
2573 {
2574 if (pci_enable_device(adapter->pdev)) {
2575 dev_err(&adapter->pdev->dev,
2576 "Cannot re-enable PCI device after reset.\n");
2577 goto err;
2578 }
2579 pci_set_master(adapter->pdev);
2580 pci_restore_state(adapter->pdev);
2581
2582 /* Free sge resources */
2583 t3_free_sge_resources(adapter);
2584
2585 if (t3_replay_prep_adapter(adapter))
2586 goto err;
2587
2588 return 0;
2589 err:
2590 return -1;
2591 }
2592
2593 static void t3_resume_ports(struct adapter *adapter)
2594 {
2595 int i;
2596
2597 /* Restart the ports */
2598 for_each_port(adapter, i) {
2599 struct net_device *netdev = adapter->port[i];
2600
2601 if (netif_running(netdev)) {
2602 if (cxgb_open(netdev)) {
2603 dev_err(&adapter->pdev->dev,
2604 "can't bring device back up"
2605 " after reset\n");
2606 continue;
2607 }
2608 }
2609 }
2610
2611 if (is_offload(adapter) && !ofld_disable)
2612 cxgb3_err_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2613 }
2614
2615 /*
2616 * processes a fatal error.
2617 * Bring the ports down, reset the chip, bring the ports back up.
2618 */
2619 static void fatal_error_task(struct work_struct *work)
2620 {
2621 struct adapter *adapter = container_of(work, struct adapter,
2622 fatal_error_handler_task);
2623 int err = 0;
2624
2625 rtnl_lock();
2626 err = t3_adapter_error(adapter, 1);
2627 if (!err)
2628 err = t3_reenable_adapter(adapter);
2629 if (!err)
2630 t3_resume_ports(adapter);
2631
2632 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2633 rtnl_unlock();
2634 }
2635
2636 void t3_fatal_err(struct adapter *adapter)
2637 {
2638 unsigned int fw_status[4];
2639
2640 if (adapter->flags & FULL_INIT_DONE) {
2641 t3_sge_stop(adapter);
2642 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2643 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2644 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2645 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2646
2647 spin_lock(&adapter->work_lock);
2648 t3_intr_disable(adapter);
2649 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2650 spin_unlock(&adapter->work_lock);
2651 }
2652 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2653 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2654 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2655 fw_status[0], fw_status[1],
2656 fw_status[2], fw_status[3]);
2657
2658 }
2659
2660 /**
2661 * t3_io_error_detected - called when PCI error is detected
2662 * @pdev: Pointer to PCI device
2663 * @state: The current pci connection state
2664 *
2665 * This function is called after a PCI bus error affecting
2666 * this device has been detected.
2667 */
2668 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2669 pci_channel_state_t state)
2670 {
2671 struct adapter *adapter = pci_get_drvdata(pdev);
2672 int ret;
2673
2674 ret = t3_adapter_error(adapter, 0);
2675
2676 /* Request a slot reset. */
2677 return PCI_ERS_RESULT_NEED_RESET;
2678 }
2679
2680 /**
2681 * t3_io_slot_reset - called after the pci bus has been reset.
2682 * @pdev: Pointer to PCI device
2683 *
2684 * Restart the card from scratch, as if from a cold-boot.
2685 */
2686 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
2687 {
2688 struct adapter *adapter = pci_get_drvdata(pdev);
2689
2690 if (!t3_reenable_adapter(adapter))
2691 return PCI_ERS_RESULT_RECOVERED;
2692
2693 return PCI_ERS_RESULT_DISCONNECT;
2694 }
2695
2696 /**
2697 * t3_io_resume - called when traffic can start flowing again.
2698 * @pdev: Pointer to PCI device
2699 *
2700 * This callback is called when the error recovery driver tells us that
2701 * its OK to resume normal operation.
2702 */
2703 static void t3_io_resume(struct pci_dev *pdev)
2704 {
2705 struct adapter *adapter = pci_get_drvdata(pdev);
2706
2707 t3_resume_ports(adapter);
2708 }
2709
2710 static struct pci_error_handlers t3_err_handler = {
2711 .error_detected = t3_io_error_detected,
2712 .slot_reset = t3_io_slot_reset,
2713 .resume = t3_io_resume,
2714 };
2715
2716 /*
2717 * Set the number of qsets based on the number of CPUs and the number of ports,
2718 * not to exceed the number of available qsets, assuming there are enough qsets
2719 * per port in HW.
2720 */
2721 static void set_nqsets(struct adapter *adap)
2722 {
2723 int i, j = 0;
2724 int num_cpus = num_online_cpus();
2725 int hwports = adap->params.nports;
2726 int nqsets = adap->msix_nvectors - 1;
2727
2728 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
2729 if (hwports == 2 &&
2730 (hwports * nqsets > SGE_QSETS ||
2731 num_cpus >= nqsets / hwports))
2732 nqsets /= hwports;
2733 if (nqsets > num_cpus)
2734 nqsets = num_cpus;
2735 if (nqsets < 1 || hwports == 4)
2736 nqsets = 1;
2737 } else
2738 nqsets = 1;
2739
2740 for_each_port(adap, i) {
2741 struct port_info *pi = adap2pinfo(adap, i);
2742
2743 pi->first_qset = j;
2744 pi->nqsets = nqsets;
2745 j = pi->first_qset + nqsets;
2746
2747 dev_info(&adap->pdev->dev,
2748 "Port %d using %d queue sets.\n", i, nqsets);
2749 }
2750 }
2751
2752 static int __devinit cxgb_enable_msix(struct adapter *adap)
2753 {
2754 struct msix_entry entries[SGE_QSETS + 1];
2755 int vectors;
2756 int i, err;
2757
2758 vectors = ARRAY_SIZE(entries);
2759 for (i = 0; i < vectors; ++i)
2760 entries[i].entry = i;
2761
2762 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
2763 vectors = err;
2764
2765 if (!err && vectors < (adap->params.nports + 1))
2766 err = -1;
2767
2768 if (!err) {
2769 for (i = 0; i < vectors; ++i)
2770 adap->msix_info[i].vec = entries[i].vector;
2771 adap->msix_nvectors = vectors;
2772 }
2773
2774 return err;
2775 }
2776
2777 static void __devinit print_port_info(struct adapter *adap,
2778 const struct adapter_info *ai)
2779 {
2780 static const char *pci_variant[] = {
2781 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
2782 };
2783
2784 int i;
2785 char buf[80];
2786
2787 if (is_pcie(adap))
2788 snprintf(buf, sizeof(buf), "%s x%d",
2789 pci_variant[adap->params.pci.variant],
2790 adap->params.pci.width);
2791 else
2792 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
2793 pci_variant[adap->params.pci.variant],
2794 adap->params.pci.speed, adap->params.pci.width);
2795
2796 for_each_port(adap, i) {
2797 struct net_device *dev = adap->port[i];
2798 const struct port_info *pi = netdev_priv(dev);
2799
2800 if (!test_bit(i, &adap->registered_device_map))
2801 continue;
2802 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
2803 dev->name, ai->desc, pi->phy.desc,
2804 is_offload(adap) ? "R" : "", adap->params.rev, buf,
2805 (adap->flags & USING_MSIX) ? " MSI-X" :
2806 (adap->flags & USING_MSI) ? " MSI" : "");
2807 if (adap->name == dev->name && adap->params.vpd.mclk)
2808 printk(KERN_INFO
2809 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
2810 adap->name, t3_mc7_size(&adap->cm) >> 20,
2811 t3_mc7_size(&adap->pmtx) >> 20,
2812 t3_mc7_size(&adap->pmrx) >> 20,
2813 adap->params.vpd.sn);
2814 }
2815 }
2816
2817 static const struct net_device_ops cxgb_netdev_ops = {
2818 .ndo_open = cxgb_open,
2819 .ndo_stop = cxgb_close,
2820 .ndo_start_xmit = t3_eth_xmit,
2821 .ndo_get_stats = cxgb_get_stats,
2822 .ndo_validate_addr = eth_validate_addr,
2823 .ndo_set_multicast_list = cxgb_set_rxmode,
2824 .ndo_do_ioctl = cxgb_ioctl,
2825 .ndo_change_mtu = cxgb_change_mtu,
2826 .ndo_set_mac_address = cxgb_set_mac_addr,
2827 .ndo_vlan_rx_register = vlan_rx_register,
2828 #ifdef CONFIG_NET_POLL_CONTROLLER
2829 .ndo_poll_controller = cxgb_netpoll,
2830 #endif
2831 };
2832
2833 static int __devinit init_one(struct pci_dev *pdev,
2834 const struct pci_device_id *ent)
2835 {
2836 static int version_printed;
2837
2838 int i, err, pci_using_dac = 0;
2839 unsigned long mmio_start, mmio_len;
2840 const struct adapter_info *ai;
2841 struct adapter *adapter = NULL;
2842 struct port_info *pi;
2843
2844 if (!version_printed) {
2845 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
2846 ++version_printed;
2847 }
2848
2849 if (!cxgb3_wq) {
2850 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
2851 if (!cxgb3_wq) {
2852 printk(KERN_ERR DRV_NAME
2853 ": cannot initialize work queue\n");
2854 return -ENOMEM;
2855 }
2856 }
2857
2858 err = pci_request_regions(pdev, DRV_NAME);
2859 if (err) {
2860 /* Just info, some other driver may have claimed the device. */
2861 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
2862 return err;
2863 }
2864
2865 err = pci_enable_device(pdev);
2866 if (err) {
2867 dev_err(&pdev->dev, "cannot enable PCI device\n");
2868 goto out_release_regions;
2869 }
2870
2871 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2872 pci_using_dac = 1;
2873 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
2874 if (err) {
2875 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
2876 "coherent allocations\n");
2877 goto out_disable_device;
2878 }
2879 } else if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
2880 dev_err(&pdev->dev, "no usable DMA configuration\n");
2881 goto out_disable_device;
2882 }
2883
2884 pci_set_master(pdev);
2885 pci_save_state(pdev);
2886
2887 mmio_start = pci_resource_start(pdev, 0);
2888 mmio_len = pci_resource_len(pdev, 0);
2889 ai = t3_get_adapter_info(ent->driver_data);
2890
2891 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2892 if (!adapter) {
2893 err = -ENOMEM;
2894 goto out_disable_device;
2895 }
2896
2897 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
2898 if (!adapter->regs) {
2899 dev_err(&pdev->dev, "cannot map device registers\n");
2900 err = -ENOMEM;
2901 goto out_free_adapter;
2902 }
2903
2904 adapter->pdev = pdev;
2905 adapter->name = pci_name(pdev);
2906 adapter->msg_enable = dflt_msg_enable;
2907 adapter->mmio_len = mmio_len;
2908
2909 mutex_init(&adapter->mdio_lock);
2910 spin_lock_init(&adapter->work_lock);
2911 spin_lock_init(&adapter->stats_lock);
2912
2913 INIT_LIST_HEAD(&adapter->adapter_list);
2914 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
2915 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
2916 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
2917
2918 for (i = 0; i < ai->nports; ++i) {
2919 struct net_device *netdev;
2920
2921 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
2922 if (!netdev) {
2923 err = -ENOMEM;
2924 goto out_free_dev;
2925 }
2926
2927 SET_NETDEV_DEV(netdev, &pdev->dev);
2928
2929 adapter->port[i] = netdev;
2930 pi = netdev_priv(netdev);
2931 pi->adapter = adapter;
2932 pi->rx_offload = T3_RX_CSUM | T3_LRO;
2933 pi->port_id = i;
2934 netif_carrier_off(netdev);
2935 netif_tx_stop_all_queues(netdev);
2936 netdev->irq = pdev->irq;
2937 netdev->mem_start = mmio_start;
2938 netdev->mem_end = mmio_start + mmio_len - 1;
2939 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
2940 netdev->features |= NETIF_F_LLTX;
2941 netdev->features |= NETIF_F_GRO;
2942 if (pci_using_dac)
2943 netdev->features |= NETIF_F_HIGHDMA;
2944
2945 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2946 netdev->netdev_ops = &cxgb_netdev_ops;
2947 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
2948 }
2949
2950 pci_set_drvdata(pdev, adapter);
2951 if (t3_prep_adapter(adapter, ai, 1) < 0) {
2952 err = -ENODEV;
2953 goto out_free_dev;
2954 }
2955
2956 /*
2957 * The card is now ready to go. If any errors occur during device
2958 * registration we do not fail the whole card but rather proceed only
2959 * with the ports we manage to register successfully. However we must
2960 * register at least one net device.
2961 */
2962 for_each_port(adapter, i) {
2963 err = register_netdev(adapter->port[i]);
2964 if (err)
2965 dev_warn(&pdev->dev,
2966 "cannot register net device %s, skipping\n",
2967 adapter->port[i]->name);
2968 else {
2969 /*
2970 * Change the name we use for messages to the name of
2971 * the first successfully registered interface.
2972 */
2973 if (!adapter->registered_device_map)
2974 adapter->name = adapter->port[i]->name;
2975
2976 __set_bit(i, &adapter->registered_device_map);
2977 }
2978 }
2979 if (!adapter->registered_device_map) {
2980 dev_err(&pdev->dev, "could not register any net devices\n");
2981 goto out_free_dev;
2982 }
2983
2984 /* Driver's ready. Reflect it on LEDs */
2985 t3_led_ready(adapter);
2986
2987 if (is_offload(adapter)) {
2988 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
2989 cxgb3_adapter_ofld(adapter);
2990 }
2991
2992 /* See what interrupts we'll be using */
2993 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
2994 adapter->flags |= USING_MSIX;
2995 else if (msi > 0 && pci_enable_msi(pdev) == 0)
2996 adapter->flags |= USING_MSI;
2997
2998 set_nqsets(adapter);
2999
3000 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3001 &cxgb3_attr_group);
3002
3003 print_port_info(adapter, ai);
3004 return 0;
3005
3006 out_free_dev:
3007 iounmap(adapter->regs);
3008 for (i = ai->nports - 1; i >= 0; --i)
3009 if (adapter->port[i])
3010 free_netdev(adapter->port[i]);
3011
3012 out_free_adapter:
3013 kfree(adapter);
3014
3015 out_disable_device:
3016 pci_disable_device(pdev);
3017 out_release_regions:
3018 pci_release_regions(pdev);
3019 pci_set_drvdata(pdev, NULL);
3020 return err;
3021 }
3022
3023 static void __devexit remove_one(struct pci_dev *pdev)
3024 {
3025 struct adapter *adapter = pci_get_drvdata(pdev);
3026
3027 if (adapter) {
3028 int i;
3029
3030 t3_sge_stop(adapter);
3031 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3032 &cxgb3_attr_group);
3033
3034 if (is_offload(adapter)) {
3035 cxgb3_adapter_unofld(adapter);
3036 if (test_bit(OFFLOAD_DEVMAP_BIT,
3037 &adapter->open_device_map))
3038 offload_close(&adapter->tdev);
3039 }
3040
3041 for_each_port(adapter, i)
3042 if (test_bit(i, &adapter->registered_device_map))
3043 unregister_netdev(adapter->port[i]);
3044
3045 t3_stop_sge_timers(adapter);
3046 t3_free_sge_resources(adapter);
3047 cxgb_disable_msi(adapter);
3048
3049 for_each_port(adapter, i)
3050 if (adapter->port[i])
3051 free_netdev(adapter->port[i]);
3052
3053 iounmap(adapter->regs);
3054 kfree(adapter);
3055 pci_release_regions(pdev);
3056 pci_disable_device(pdev);
3057 pci_set_drvdata(pdev, NULL);
3058 }
3059 }
3060
3061 static struct pci_driver driver = {
3062 .name = DRV_NAME,
3063 .id_table = cxgb3_pci_tbl,
3064 .probe = init_one,
3065 .remove = __devexit_p(remove_one),
3066 .err_handler = &t3_err_handler,
3067 };
3068
3069 static int __init cxgb3_init_module(void)
3070 {
3071 int ret;
3072
3073 cxgb3_offload_init();
3074
3075 ret = pci_register_driver(&driver);
3076 return ret;
3077 }
3078
3079 static void __exit cxgb3_cleanup_module(void)
3080 {
3081 pci_unregister_driver(&driver);
3082 if (cxgb3_wq)
3083 destroy_workqueue(cxgb3_wq);
3084 }
3085
3086 module_init(cxgb3_init_module);
3087 module_exit(cxgb3_cleanup_module);
This page took 0.122478 seconds and 5 git commands to generate.