e1000: Maybe stop TX if not enough free descriptors
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.7-k2"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
107 {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122 struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124 struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158 struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring,
163 int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171 struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring,
175 int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177 struct e1000_rx_ring *rx_ring,
178 int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181 int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189 struct sk_buff *skb);
190
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
195
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
201
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
206
207 extern void e1000_check_options(struct e1000_adapter *adapter);
208
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210 pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
213
214 static struct pci_error_handlers e1000_err_handler = {
215 .error_detected = e1000_io_error_detected,
216 .slot_reset = e1000_io_slot_reset,
217 .resume = e1000_io_resume,
218 };
219
220 static struct pci_driver e1000_driver = {
221 .name = e1000_driver_name,
222 .id_table = e1000_pci_tbl,
223 .probe = e1000_probe,
224 .remove = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226 /* Power Managment Hooks */
227 .suspend = e1000_suspend,
228 .resume = e1000_resume,
229 #endif
230 .shutdown = e1000_shutdown,
231 .err_handler = &e1000_err_handler
232 };
233
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
238
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
242
243 /**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249
250 static int __init
251 e1000_init_module(void)
252 {
253 int ret;
254 printk(KERN_INFO "%s - version %s\n",
255 e1000_driver_string, e1000_driver_version);
256
257 printk(KERN_INFO "%s\n", e1000_copyright);
258
259 ret = pci_register_driver(&e1000_driver);
260
261 return ret;
262 }
263
264 module_init(e1000_init_module);
265
266 /**
267 * e1000_exit_module - Driver Exit Cleanup Routine
268 *
269 * e1000_exit_module is called just before the driver is removed
270 * from memory.
271 **/
272
273 static void __exit
274 e1000_exit_module(void)
275 {
276 pci_unregister_driver(&e1000_driver);
277 }
278
279 module_exit(e1000_exit_module);
280
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283 struct net_device *netdev = adapter->netdev;
284 int flags, err = 0;
285
286 flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288 if (adapter->hw.mac_type > e1000_82547_rev_2) {
289 adapter->have_msi = TRUE;
290 if ((err = pci_enable_msi(adapter->pdev))) {
291 DPRINTK(PROBE, ERR,
292 "Unable to allocate MSI interrupt Error: %d\n", err);
293 adapter->have_msi = FALSE;
294 }
295 }
296 if (adapter->have_msi)
297 flags &= ~IRQF_SHARED;
298 #endif
299 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300 netdev->name, netdev)))
301 DPRINTK(PROBE, ERR,
302 "Unable to allocate interrupt Error: %d\n", err);
303
304 return err;
305 }
306
307 static void e1000_free_irq(struct e1000_adapter *adapter)
308 {
309 struct net_device *netdev = adapter->netdev;
310
311 free_irq(adapter->pdev->irq, netdev);
312
313 #ifdef CONFIG_PCI_MSI
314 if (adapter->have_msi)
315 pci_disable_msi(adapter->pdev);
316 #endif
317 }
318
319 /**
320 * e1000_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
322 **/
323
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
326 {
327 atomic_inc(&adapter->irq_sem);
328 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329 E1000_WRITE_FLUSH(&adapter->hw);
330 synchronize_irq(adapter->pdev->irq);
331 }
332
333 /**
334 * e1000_irq_enable - Enable default interrupt generation settings
335 * @adapter: board private structure
336 **/
337
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
340 {
341 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343 E1000_WRITE_FLUSH(&adapter->hw);
344 }
345 }
346
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
349 {
350 struct net_device *netdev = adapter->netdev;
351 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352 uint16_t old_vid = adapter->mng_vlan_id;
353 if (adapter->vlgrp) {
354 if (!adapter->vlgrp->vlan_devices[vid]) {
355 if (adapter->hw.mng_cookie.status &
356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357 e1000_vlan_rx_add_vid(netdev, vid);
358 adapter->mng_vlan_id = vid;
359 } else
360 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
361
362 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363 (vid != old_vid) &&
364 !adapter->vlgrp->vlan_devices[old_vid])
365 e1000_vlan_rx_kill_vid(netdev, old_vid);
366 } else
367 adapter->mng_vlan_id = vid;
368 }
369 }
370
371 /**
372 * e1000_release_hw_control - release control of the h/w to f/w
373 * @adapter: address of board private structure
374 *
375 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376 * For ASF and Pass Through versions of f/w this means that the
377 * driver is no longer loaded. For AMT version (only with 82573) i
378 * of the f/w this means that the netowrk i/f is closed.
379 *
380 **/
381
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
384 {
385 uint32_t ctrl_ext;
386 uint32_t swsm;
387 uint32_t extcnf;
388
389 /* Let firmware taken over control of h/w */
390 switch (adapter->hw.mac_type) {
391 case e1000_82571:
392 case e1000_82572:
393 case e1000_80003es2lan:
394 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397 break;
398 case e1000_82573:
399 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400 E1000_WRITE_REG(&adapter->hw, SWSM,
401 swsm & ~E1000_SWSM_DRV_LOAD);
402 case e1000_ich8lan:
403 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406 break;
407 default:
408 break;
409 }
410 }
411
412 /**
413 * e1000_get_hw_control - get control of the h/w from f/w
414 * @adapter: address of board private structure
415 *
416 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417 * For ASF and Pass Through versions of f/w this means that
418 * the driver is loaded. For AMT version (only with 82573)
419 * of the f/w this means that the netowrk i/f is open.
420 *
421 **/
422
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
425 {
426 uint32_t ctrl_ext;
427 uint32_t swsm;
428 uint32_t extcnf;
429 /* Let firmware know the driver has taken over */
430 switch (adapter->hw.mac_type) {
431 case e1000_82571:
432 case e1000_82572:
433 case e1000_80003es2lan:
434 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
435 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
436 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
437 break;
438 case e1000_82573:
439 swsm = E1000_READ_REG(&adapter->hw, SWSM);
440 E1000_WRITE_REG(&adapter->hw, SWSM,
441 swsm | E1000_SWSM_DRV_LOAD);
442 break;
443 case e1000_ich8lan:
444 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
445 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
446 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
447 break;
448 default:
449 break;
450 }
451 }
452
453 int
454 e1000_up(struct e1000_adapter *adapter)
455 {
456 struct net_device *netdev = adapter->netdev;
457 int i;
458
459 /* hardware has been reset, we need to reload some things */
460
461 e1000_set_multi(netdev);
462
463 e1000_restore_vlan(adapter);
464
465 e1000_configure_tx(adapter);
466 e1000_setup_rctl(adapter);
467 e1000_configure_rx(adapter);
468 /* call E1000_DESC_UNUSED which always leaves
469 * at least 1 descriptor unused to make sure
470 * next_to_use != next_to_clean */
471 for (i = 0; i < adapter->num_rx_queues; i++) {
472 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
473 adapter->alloc_rx_buf(adapter, ring,
474 E1000_DESC_UNUSED(ring));
475 }
476
477 adapter->tx_queue_len = netdev->tx_queue_len;
478
479 mod_timer(&adapter->watchdog_timer, jiffies);
480
481 #ifdef CONFIG_E1000_NAPI
482 netif_poll_enable(netdev);
483 #endif
484 e1000_irq_enable(adapter);
485
486 return 0;
487 }
488
489 /**
490 * e1000_power_up_phy - restore link in case the phy was powered down
491 * @adapter: address of board private structure
492 *
493 * The phy may be powered down to save power and turn off link when the
494 * driver is unloaded and wake on lan is not enabled (among others)
495 * *** this routine MUST be followed by a call to e1000_reset ***
496 *
497 **/
498
499 void e1000_power_up_phy(struct e1000_adapter *adapter)
500 {
501 uint16_t mii_reg = 0;
502
503 /* Just clear the power down bit to wake the phy back up */
504 if (adapter->hw.media_type == e1000_media_type_copper) {
505 /* according to the manual, the phy will retain its
506 * settings across a power-down/up cycle */
507 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
508 mii_reg &= ~MII_CR_POWER_DOWN;
509 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
510 }
511 }
512
513 static void e1000_power_down_phy(struct e1000_adapter *adapter)
514 {
515 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
516 e1000_check_mng_mode(&adapter->hw);
517 /* Power down the PHY so no link is implied when interface is down
518 * The PHY cannot be powered down if any of the following is TRUE
519 * (a) WoL is enabled
520 * (b) AMT is active
521 * (c) SoL/IDER session is active */
522 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
523 adapter->hw.mac_type != e1000_ich8lan &&
524 adapter->hw.media_type == e1000_media_type_copper &&
525 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
526 !mng_mode_enabled &&
527 !e1000_check_phy_reset_block(&adapter->hw)) {
528 uint16_t mii_reg = 0;
529 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
530 mii_reg |= MII_CR_POWER_DOWN;
531 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
532 mdelay(1);
533 }
534 }
535
536 void
537 e1000_down(struct e1000_adapter *adapter)
538 {
539 struct net_device *netdev = adapter->netdev;
540
541 e1000_irq_disable(adapter);
542
543 del_timer_sync(&adapter->tx_fifo_stall_timer);
544 del_timer_sync(&adapter->watchdog_timer);
545 del_timer_sync(&adapter->phy_info_timer);
546
547 #ifdef CONFIG_E1000_NAPI
548 netif_poll_disable(netdev);
549 #endif
550 netdev->tx_queue_len = adapter->tx_queue_len;
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553 netif_carrier_off(netdev);
554 netif_stop_queue(netdev);
555
556 e1000_reset(adapter);
557 e1000_clean_all_tx_rings(adapter);
558 e1000_clean_all_rx_rings(adapter);
559 }
560
561 void
562 e1000_reinit_locked(struct e1000_adapter *adapter)
563 {
564 WARN_ON(in_interrupt());
565 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
566 msleep(1);
567 e1000_down(adapter);
568 e1000_up(adapter);
569 clear_bit(__E1000_RESETTING, &adapter->flags);
570 }
571
572 void
573 e1000_reset(struct e1000_adapter *adapter)
574 {
575 uint32_t pba, manc;
576 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
577
578 /* Repartition Pba for greater than 9k mtu
579 * To take effect CTRL.RST is required.
580 */
581
582 switch (adapter->hw.mac_type) {
583 case e1000_82547:
584 case e1000_82547_rev_2:
585 pba = E1000_PBA_30K;
586 break;
587 case e1000_82571:
588 case e1000_82572:
589 case e1000_80003es2lan:
590 pba = E1000_PBA_38K;
591 break;
592 case e1000_82573:
593 pba = E1000_PBA_12K;
594 break;
595 case e1000_ich8lan:
596 pba = E1000_PBA_8K;
597 break;
598 default:
599 pba = E1000_PBA_48K;
600 break;
601 }
602
603 if ((adapter->hw.mac_type != e1000_82573) &&
604 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
605 pba -= 8; /* allocate more FIFO for Tx */
606
607
608 if (adapter->hw.mac_type == e1000_82547) {
609 adapter->tx_fifo_head = 0;
610 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
611 adapter->tx_fifo_size =
612 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
613 atomic_set(&adapter->tx_fifo_stall, 0);
614 }
615
616 E1000_WRITE_REG(&adapter->hw, PBA, pba);
617
618 /* flow control settings */
619 /* Set the FC high water mark to 90% of the FIFO size.
620 * Required to clear last 3 LSB */
621 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
622 /* We can't use 90% on small FIFOs because the remainder
623 * would be less than 1 full frame. In this case, we size
624 * it to allow at least a full frame above the high water
625 * mark. */
626 if (pba < E1000_PBA_16K)
627 fc_high_water_mark = (pba * 1024) - 1600;
628
629 adapter->hw.fc_high_water = fc_high_water_mark;
630 adapter->hw.fc_low_water = fc_high_water_mark - 8;
631 if (adapter->hw.mac_type == e1000_80003es2lan)
632 adapter->hw.fc_pause_time = 0xFFFF;
633 else
634 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
635 adapter->hw.fc_send_xon = 1;
636 adapter->hw.fc = adapter->hw.original_fc;
637
638 /* Allow time for pending master requests to run */
639 e1000_reset_hw(&adapter->hw);
640 if (adapter->hw.mac_type >= e1000_82544)
641 E1000_WRITE_REG(&adapter->hw, WUC, 0);
642 if (e1000_init_hw(&adapter->hw))
643 DPRINTK(PROBE, ERR, "Hardware Error\n");
644 e1000_update_mng_vlan(adapter);
645 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
646 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
647
648 e1000_reset_adaptive(&adapter->hw);
649 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
650
651 if (!adapter->smart_power_down &&
652 (adapter->hw.mac_type == e1000_82571 ||
653 adapter->hw.mac_type == e1000_82572)) {
654 uint16_t phy_data = 0;
655 /* speed up time to link by disabling smart power down, ignore
656 * the return value of this function because there is nothing
657 * different we would do if it failed */
658 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
659 &phy_data);
660 phy_data &= ~IGP02E1000_PM_SPD;
661 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
662 phy_data);
663 }
664
665 if ((adapter->en_mng_pt) && (adapter->hw.mac_type < e1000_82571)) {
666 manc = E1000_READ_REG(&adapter->hw, MANC);
667 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
668 E1000_WRITE_REG(&adapter->hw, MANC, manc);
669 }
670 }
671
672 /**
673 * e1000_probe - Device Initialization Routine
674 * @pdev: PCI device information struct
675 * @ent: entry in e1000_pci_tbl
676 *
677 * Returns 0 on success, negative on failure
678 *
679 * e1000_probe initializes an adapter identified by a pci_dev structure.
680 * The OS initialization, configuring of the adapter private structure,
681 * and a hardware reset occur.
682 **/
683
684 static int __devinit
685 e1000_probe(struct pci_dev *pdev,
686 const struct pci_device_id *ent)
687 {
688 struct net_device *netdev;
689 struct e1000_adapter *adapter;
690 unsigned long mmio_start, mmio_len;
691 unsigned long flash_start, flash_len;
692
693 static int cards_found = 0;
694 static int global_quad_port_a = 0; /* global ksp3 port a indication */
695 int i, err, pci_using_dac;
696 uint16_t eeprom_data = 0;
697 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
698 if ((err = pci_enable_device(pdev)))
699 return err;
700
701 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
702 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
703 pci_using_dac = 1;
704 } else {
705 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
706 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
707 E1000_ERR("No usable DMA configuration, aborting\n");
708 goto err_dma;
709 }
710 pci_using_dac = 0;
711 }
712
713 if ((err = pci_request_regions(pdev, e1000_driver_name)))
714 goto err_pci_reg;
715
716 pci_set_master(pdev);
717
718 err = -ENOMEM;
719 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
720 if (!netdev)
721 goto err_alloc_etherdev;
722
723 SET_MODULE_OWNER(netdev);
724 SET_NETDEV_DEV(netdev, &pdev->dev);
725
726 pci_set_drvdata(pdev, netdev);
727 adapter = netdev_priv(netdev);
728 adapter->netdev = netdev;
729 adapter->pdev = pdev;
730 adapter->hw.back = adapter;
731 adapter->msg_enable = (1 << debug) - 1;
732
733 mmio_start = pci_resource_start(pdev, BAR_0);
734 mmio_len = pci_resource_len(pdev, BAR_0);
735
736 err = -EIO;
737 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
738 if (!adapter->hw.hw_addr)
739 goto err_ioremap;
740
741 for (i = BAR_1; i <= BAR_5; i++) {
742 if (pci_resource_len(pdev, i) == 0)
743 continue;
744 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
745 adapter->hw.io_base = pci_resource_start(pdev, i);
746 break;
747 }
748 }
749
750 netdev->open = &e1000_open;
751 netdev->stop = &e1000_close;
752 netdev->hard_start_xmit = &e1000_xmit_frame;
753 netdev->get_stats = &e1000_get_stats;
754 netdev->set_multicast_list = &e1000_set_multi;
755 netdev->set_mac_address = &e1000_set_mac;
756 netdev->change_mtu = &e1000_change_mtu;
757 netdev->do_ioctl = &e1000_ioctl;
758 e1000_set_ethtool_ops(netdev);
759 netdev->tx_timeout = &e1000_tx_timeout;
760 netdev->watchdog_timeo = 5 * HZ;
761 #ifdef CONFIG_E1000_NAPI
762 netdev->poll = &e1000_clean;
763 netdev->weight = 64;
764 #endif
765 netdev->vlan_rx_register = e1000_vlan_rx_register;
766 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
767 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
768 #ifdef CONFIG_NET_POLL_CONTROLLER
769 netdev->poll_controller = e1000_netpoll;
770 #endif
771 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
772
773 netdev->mem_start = mmio_start;
774 netdev->mem_end = mmio_start + mmio_len;
775 netdev->base_addr = adapter->hw.io_base;
776
777 adapter->bd_number = cards_found;
778
779 /* setup the private structure */
780
781 if ((err = e1000_sw_init(adapter)))
782 goto err_sw_init;
783
784 err = -EIO;
785 /* Flash BAR mapping must happen after e1000_sw_init
786 * because it depends on mac_type */
787 if ((adapter->hw.mac_type == e1000_ich8lan) &&
788 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
789 flash_start = pci_resource_start(pdev, 1);
790 flash_len = pci_resource_len(pdev, 1);
791 adapter->hw.flash_address = ioremap(flash_start, flash_len);
792 if (!adapter->hw.flash_address)
793 goto err_flashmap;
794 }
795
796 if (e1000_check_phy_reset_block(&adapter->hw))
797 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
798
799 if (adapter->hw.mac_type >= e1000_82543) {
800 netdev->features = NETIF_F_SG |
801 NETIF_F_HW_CSUM |
802 NETIF_F_HW_VLAN_TX |
803 NETIF_F_HW_VLAN_RX |
804 NETIF_F_HW_VLAN_FILTER;
805 if (adapter->hw.mac_type == e1000_ich8lan)
806 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
807 }
808
809 #ifdef NETIF_F_TSO
810 if ((adapter->hw.mac_type >= e1000_82544) &&
811 (adapter->hw.mac_type != e1000_82547))
812 netdev->features |= NETIF_F_TSO;
813
814 #ifdef NETIF_F_TSO_IPV6
815 if (adapter->hw.mac_type > e1000_82547_rev_2)
816 netdev->features |= NETIF_F_TSO_IPV6;
817 #endif
818 #endif
819 if (pci_using_dac)
820 netdev->features |= NETIF_F_HIGHDMA;
821
822 netdev->features |= NETIF_F_LLTX;
823
824 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
825
826 /* initialize eeprom parameters */
827
828 if (e1000_init_eeprom_params(&adapter->hw)) {
829 E1000_ERR("EEPROM initialization failed\n");
830 goto err_eeprom;
831 }
832
833 /* before reading the EEPROM, reset the controller to
834 * put the device in a known good starting state */
835
836 e1000_reset_hw(&adapter->hw);
837
838 /* make sure the EEPROM is good */
839
840 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
841 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
842 goto err_eeprom;
843 }
844
845 /* copy the MAC address out of the EEPROM */
846
847 if (e1000_read_mac_addr(&adapter->hw))
848 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
849 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
850 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
851
852 if (!is_valid_ether_addr(netdev->perm_addr)) {
853 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
854 goto err_eeprom;
855 }
856
857 e1000_get_bus_info(&adapter->hw);
858
859 init_timer(&adapter->tx_fifo_stall_timer);
860 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
861 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
862
863 init_timer(&adapter->watchdog_timer);
864 adapter->watchdog_timer.function = &e1000_watchdog;
865 adapter->watchdog_timer.data = (unsigned long) adapter;
866
867 init_timer(&adapter->phy_info_timer);
868 adapter->phy_info_timer.function = &e1000_update_phy_info;
869 adapter->phy_info_timer.data = (unsigned long) adapter;
870
871 INIT_WORK(&adapter->reset_task,
872 (void (*)(void *))e1000_reset_task, netdev);
873
874 /* we're going to reset, so assume we have no link for now */
875
876 netif_carrier_off(netdev);
877 netif_stop_queue(netdev);
878
879 e1000_check_options(adapter);
880
881 /* Initial Wake on LAN setting
882 * If APM wake is enabled in the EEPROM,
883 * enable the ACPI Magic Packet filter
884 */
885
886 switch (adapter->hw.mac_type) {
887 case e1000_82542_rev2_0:
888 case e1000_82542_rev2_1:
889 case e1000_82543:
890 break;
891 case e1000_82544:
892 e1000_read_eeprom(&adapter->hw,
893 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
894 eeprom_apme_mask = E1000_EEPROM_82544_APM;
895 break;
896 case e1000_ich8lan:
897 e1000_read_eeprom(&adapter->hw,
898 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
899 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
900 break;
901 case e1000_82546:
902 case e1000_82546_rev_3:
903 case e1000_82571:
904 case e1000_80003es2lan:
905 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
906 e1000_read_eeprom(&adapter->hw,
907 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
908 break;
909 }
910 /* Fall Through */
911 default:
912 e1000_read_eeprom(&adapter->hw,
913 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
914 break;
915 }
916 if (eeprom_data & eeprom_apme_mask)
917 adapter->eeprom_wol |= E1000_WUFC_MAG;
918
919 /* now that we have the eeprom settings, apply the special cases
920 * where the eeprom may be wrong or the board simply won't support
921 * wake on lan on a particular port */
922 switch (pdev->device) {
923 case E1000_DEV_ID_82546GB_PCIE:
924 adapter->eeprom_wol = 0;
925 break;
926 case E1000_DEV_ID_82546EB_FIBER:
927 case E1000_DEV_ID_82546GB_FIBER:
928 case E1000_DEV_ID_82571EB_FIBER:
929 /* Wake events only supported on port A for dual fiber
930 * regardless of eeprom setting */
931 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
932 adapter->eeprom_wol = 0;
933 break;
934 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
935 case E1000_DEV_ID_82571EB_QUAD_COPPER:
936 /* if quad port adapter, disable WoL on all but port A */
937 if (global_quad_port_a != 0)
938 adapter->eeprom_wol = 0;
939 else
940 adapter->quad_port_a = 1;
941 /* Reset for multiple quad port adapters */
942 if (++global_quad_port_a == 4)
943 global_quad_port_a = 0;
944 break;
945 }
946
947 /* initialize the wol settings based on the eeprom settings */
948 adapter->wol = adapter->eeprom_wol;
949
950 /* print bus type/speed/width info */
951 {
952 struct e1000_hw *hw = &adapter->hw;
953 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
954 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
955 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
956 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
957 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
958 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
959 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
960 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
961 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
962 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
963 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
964 "32-bit"));
965 }
966
967 for (i = 0; i < 6; i++)
968 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
969
970 /* reset the hardware with the new settings */
971 e1000_reset(adapter);
972
973 /* If the controller is 82573 and f/w is AMT, do not set
974 * DRV_LOAD until the interface is up. For all other cases,
975 * let the f/w know that the h/w is now under the control
976 * of the driver. */
977 if (adapter->hw.mac_type != e1000_82573 ||
978 !e1000_check_mng_mode(&adapter->hw))
979 e1000_get_hw_control(adapter);
980
981 strcpy(netdev->name, "eth%d");
982 if ((err = register_netdev(netdev)))
983 goto err_register;
984
985 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
986
987 cards_found++;
988 return 0;
989
990 err_register:
991 e1000_release_hw_control(adapter);
992 err_eeprom:
993 if (!e1000_check_phy_reset_block(&adapter->hw))
994 e1000_phy_hw_reset(&adapter->hw);
995
996 if (adapter->hw.flash_address)
997 iounmap(adapter->hw.flash_address);
998 err_flashmap:
999 #ifdef CONFIG_E1000_NAPI
1000 for (i = 0; i < adapter->num_rx_queues; i++)
1001 dev_put(&adapter->polling_netdev[i]);
1002 #endif
1003
1004 kfree(adapter->tx_ring);
1005 kfree(adapter->rx_ring);
1006 #ifdef CONFIG_E1000_NAPI
1007 kfree(adapter->polling_netdev);
1008 #endif
1009 err_sw_init:
1010 iounmap(adapter->hw.hw_addr);
1011 err_ioremap:
1012 free_netdev(netdev);
1013 err_alloc_etherdev:
1014 pci_release_regions(pdev);
1015 err_pci_reg:
1016 err_dma:
1017 pci_disable_device(pdev);
1018 return err;
1019 }
1020
1021 /**
1022 * e1000_remove - Device Removal Routine
1023 * @pdev: PCI device information struct
1024 *
1025 * e1000_remove is called by the PCI subsystem to alert the driver
1026 * that it should release a PCI device. The could be caused by a
1027 * Hot-Plug event, or because the driver is going to be removed from
1028 * memory.
1029 **/
1030
1031 static void __devexit
1032 e1000_remove(struct pci_dev *pdev)
1033 {
1034 struct net_device *netdev = pci_get_drvdata(pdev);
1035 struct e1000_adapter *adapter = netdev_priv(netdev);
1036 uint32_t manc;
1037 #ifdef CONFIG_E1000_NAPI
1038 int i;
1039 #endif
1040
1041 flush_scheduled_work();
1042
1043 if (adapter->hw.mac_type < e1000_82571 &&
1044 adapter->hw.media_type == e1000_media_type_copper) {
1045 manc = E1000_READ_REG(&adapter->hw, MANC);
1046 if (manc & E1000_MANC_SMBUS_EN) {
1047 manc |= E1000_MANC_ARP_EN;
1048 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1049 }
1050 }
1051
1052 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1053 * would have already happened in close and is redundant. */
1054 e1000_release_hw_control(adapter);
1055
1056 unregister_netdev(netdev);
1057 #ifdef CONFIG_E1000_NAPI
1058 for (i = 0; i < adapter->num_rx_queues; i++)
1059 dev_put(&adapter->polling_netdev[i]);
1060 #endif
1061
1062 if (!e1000_check_phy_reset_block(&adapter->hw))
1063 e1000_phy_hw_reset(&adapter->hw);
1064
1065 kfree(adapter->tx_ring);
1066 kfree(adapter->rx_ring);
1067 #ifdef CONFIG_E1000_NAPI
1068 kfree(adapter->polling_netdev);
1069 #endif
1070
1071 iounmap(adapter->hw.hw_addr);
1072 if (adapter->hw.flash_address)
1073 iounmap(adapter->hw.flash_address);
1074 pci_release_regions(pdev);
1075
1076 free_netdev(netdev);
1077
1078 pci_disable_device(pdev);
1079 }
1080
1081 /**
1082 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1083 * @adapter: board private structure to initialize
1084 *
1085 * e1000_sw_init initializes the Adapter private data structure.
1086 * Fields are initialized based on PCI device information and
1087 * OS network device settings (MTU size).
1088 **/
1089
1090 static int __devinit
1091 e1000_sw_init(struct e1000_adapter *adapter)
1092 {
1093 struct e1000_hw *hw = &adapter->hw;
1094 struct net_device *netdev = adapter->netdev;
1095 struct pci_dev *pdev = adapter->pdev;
1096 #ifdef CONFIG_E1000_NAPI
1097 int i;
1098 #endif
1099
1100 /* PCI config space info */
1101
1102 hw->vendor_id = pdev->vendor;
1103 hw->device_id = pdev->device;
1104 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1105 hw->subsystem_id = pdev->subsystem_device;
1106
1107 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1108
1109 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1110
1111 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1112 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1113 hw->max_frame_size = netdev->mtu +
1114 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1115 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1116
1117 /* identify the MAC */
1118
1119 if (e1000_set_mac_type(hw)) {
1120 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1121 return -EIO;
1122 }
1123
1124 switch (hw->mac_type) {
1125 default:
1126 break;
1127 case e1000_82541:
1128 case e1000_82547:
1129 case e1000_82541_rev_2:
1130 case e1000_82547_rev_2:
1131 hw->phy_init_script = 1;
1132 break;
1133 }
1134
1135 e1000_set_media_type(hw);
1136
1137 hw->wait_autoneg_complete = FALSE;
1138 hw->tbi_compatibility_en = TRUE;
1139 hw->adaptive_ifs = TRUE;
1140
1141 /* Copper options */
1142
1143 if (hw->media_type == e1000_media_type_copper) {
1144 hw->mdix = AUTO_ALL_MODES;
1145 hw->disable_polarity_correction = FALSE;
1146 hw->master_slave = E1000_MASTER_SLAVE;
1147 }
1148
1149 adapter->num_tx_queues = 1;
1150 adapter->num_rx_queues = 1;
1151
1152 if (e1000_alloc_queues(adapter)) {
1153 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1154 return -ENOMEM;
1155 }
1156
1157 #ifdef CONFIG_E1000_NAPI
1158 for (i = 0; i < adapter->num_rx_queues; i++) {
1159 adapter->polling_netdev[i].priv = adapter;
1160 adapter->polling_netdev[i].poll = &e1000_clean;
1161 adapter->polling_netdev[i].weight = 64;
1162 dev_hold(&adapter->polling_netdev[i]);
1163 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1164 }
1165 spin_lock_init(&adapter->tx_queue_lock);
1166 #endif
1167
1168 atomic_set(&adapter->irq_sem, 1);
1169 spin_lock_init(&adapter->stats_lock);
1170
1171 return 0;
1172 }
1173
1174 /**
1175 * e1000_alloc_queues - Allocate memory for all rings
1176 * @adapter: board private structure to initialize
1177 *
1178 * We allocate one ring per queue at run-time since we don't know the
1179 * number of queues at compile-time. The polling_netdev array is
1180 * intended for Multiqueue, but should work fine with a single queue.
1181 **/
1182
1183 static int __devinit
1184 e1000_alloc_queues(struct e1000_adapter *adapter)
1185 {
1186 int size;
1187
1188 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1189 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1190 if (!adapter->tx_ring)
1191 return -ENOMEM;
1192 memset(adapter->tx_ring, 0, size);
1193
1194 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1195 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1196 if (!adapter->rx_ring) {
1197 kfree(adapter->tx_ring);
1198 return -ENOMEM;
1199 }
1200 memset(adapter->rx_ring, 0, size);
1201
1202 #ifdef CONFIG_E1000_NAPI
1203 size = sizeof(struct net_device) * adapter->num_rx_queues;
1204 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1205 if (!adapter->polling_netdev) {
1206 kfree(adapter->tx_ring);
1207 kfree(adapter->rx_ring);
1208 return -ENOMEM;
1209 }
1210 memset(adapter->polling_netdev, 0, size);
1211 #endif
1212
1213 return E1000_SUCCESS;
1214 }
1215
1216 /**
1217 * e1000_open - Called when a network interface is made active
1218 * @netdev: network interface device structure
1219 *
1220 * Returns 0 on success, negative value on failure
1221 *
1222 * The open entry point is called when a network interface is made
1223 * active by the system (IFF_UP). At this point all resources needed
1224 * for transmit and receive operations are allocated, the interrupt
1225 * handler is registered with the OS, the watchdog timer is started,
1226 * and the stack is notified that the interface is ready.
1227 **/
1228
1229 static int
1230 e1000_open(struct net_device *netdev)
1231 {
1232 struct e1000_adapter *adapter = netdev_priv(netdev);
1233 int err;
1234
1235 /* disallow open during test */
1236 if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1237 return -EBUSY;
1238
1239 /* allocate transmit descriptors */
1240
1241 if ((err = e1000_setup_all_tx_resources(adapter)))
1242 goto err_setup_tx;
1243
1244 /* allocate receive descriptors */
1245
1246 if ((err = e1000_setup_all_rx_resources(adapter)))
1247 goto err_setup_rx;
1248
1249 err = e1000_request_irq(adapter);
1250 if (err)
1251 goto err_req_irq;
1252
1253 e1000_power_up_phy(adapter);
1254
1255 if ((err = e1000_up(adapter)))
1256 goto err_up;
1257 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1258 if ((adapter->hw.mng_cookie.status &
1259 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1260 e1000_update_mng_vlan(adapter);
1261 }
1262
1263 /* If AMT is enabled, let the firmware know that the network
1264 * interface is now open */
1265 if (adapter->hw.mac_type == e1000_82573 &&
1266 e1000_check_mng_mode(&adapter->hw))
1267 e1000_get_hw_control(adapter);
1268
1269 return E1000_SUCCESS;
1270
1271 err_up:
1272 e1000_power_down_phy(adapter);
1273 e1000_free_irq(adapter);
1274 err_req_irq:
1275 e1000_free_all_rx_resources(adapter);
1276 err_setup_rx:
1277 e1000_free_all_tx_resources(adapter);
1278 err_setup_tx:
1279 e1000_reset(adapter);
1280
1281 return err;
1282 }
1283
1284 /**
1285 * e1000_close - Disables a network interface
1286 * @netdev: network interface device structure
1287 *
1288 * Returns 0, this is not allowed to fail
1289 *
1290 * The close entry point is called when an interface is de-activated
1291 * by the OS. The hardware is still under the drivers control, but
1292 * needs to be disabled. A global MAC reset is issued to stop the
1293 * hardware, and all transmit and receive resources are freed.
1294 **/
1295
1296 static int
1297 e1000_close(struct net_device *netdev)
1298 {
1299 struct e1000_adapter *adapter = netdev_priv(netdev);
1300
1301 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1302 e1000_down(adapter);
1303 e1000_power_down_phy(adapter);
1304 e1000_free_irq(adapter);
1305
1306 e1000_free_all_tx_resources(adapter);
1307 e1000_free_all_rx_resources(adapter);
1308
1309 if ((adapter->hw.mng_cookie.status &
1310 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1311 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1312 }
1313
1314 /* If AMT is enabled, let the firmware know that the network
1315 * interface is now closed */
1316 if (adapter->hw.mac_type == e1000_82573 &&
1317 e1000_check_mng_mode(&adapter->hw))
1318 e1000_release_hw_control(adapter);
1319
1320 return 0;
1321 }
1322
1323 /**
1324 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1325 * @adapter: address of board private structure
1326 * @start: address of beginning of memory
1327 * @len: length of memory
1328 **/
1329 static boolean_t
1330 e1000_check_64k_bound(struct e1000_adapter *adapter,
1331 void *start, unsigned long len)
1332 {
1333 unsigned long begin = (unsigned long) start;
1334 unsigned long end = begin + len;
1335
1336 /* First rev 82545 and 82546 need to not allow any memory
1337 * write location to cross 64k boundary due to errata 23 */
1338 if (adapter->hw.mac_type == e1000_82545 ||
1339 adapter->hw.mac_type == e1000_82546) {
1340 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1341 }
1342
1343 return TRUE;
1344 }
1345
1346 /**
1347 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1348 * @adapter: board private structure
1349 * @txdr: tx descriptor ring (for a specific queue) to setup
1350 *
1351 * Return 0 on success, negative on failure
1352 **/
1353
1354 static int
1355 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1356 struct e1000_tx_ring *txdr)
1357 {
1358 struct pci_dev *pdev = adapter->pdev;
1359 int size;
1360
1361 size = sizeof(struct e1000_buffer) * txdr->count;
1362 txdr->buffer_info = vmalloc(size);
1363 if (!txdr->buffer_info) {
1364 DPRINTK(PROBE, ERR,
1365 "Unable to allocate memory for the transmit descriptor ring\n");
1366 return -ENOMEM;
1367 }
1368 memset(txdr->buffer_info, 0, size);
1369
1370 /* round up to nearest 4K */
1371
1372 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1373 E1000_ROUNDUP(txdr->size, 4096);
1374
1375 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1376 if (!txdr->desc) {
1377 setup_tx_desc_die:
1378 vfree(txdr->buffer_info);
1379 DPRINTK(PROBE, ERR,
1380 "Unable to allocate memory for the transmit descriptor ring\n");
1381 return -ENOMEM;
1382 }
1383
1384 /* Fix for errata 23, can't cross 64kB boundary */
1385 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1386 void *olddesc = txdr->desc;
1387 dma_addr_t olddma = txdr->dma;
1388 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1389 "at %p\n", txdr->size, txdr->desc);
1390 /* Try again, without freeing the previous */
1391 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1392 /* Failed allocation, critical failure */
1393 if (!txdr->desc) {
1394 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1395 goto setup_tx_desc_die;
1396 }
1397
1398 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1399 /* give up */
1400 pci_free_consistent(pdev, txdr->size, txdr->desc,
1401 txdr->dma);
1402 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1403 DPRINTK(PROBE, ERR,
1404 "Unable to allocate aligned memory "
1405 "for the transmit descriptor ring\n");
1406 vfree(txdr->buffer_info);
1407 return -ENOMEM;
1408 } else {
1409 /* Free old allocation, new allocation was successful */
1410 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1411 }
1412 }
1413 memset(txdr->desc, 0, txdr->size);
1414
1415 txdr->next_to_use = 0;
1416 txdr->next_to_clean = 0;
1417 spin_lock_init(&txdr->tx_lock);
1418
1419 return 0;
1420 }
1421
1422 /**
1423 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1424 * (Descriptors) for all queues
1425 * @adapter: board private structure
1426 *
1427 * Return 0 on success, negative on failure
1428 **/
1429
1430 int
1431 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1432 {
1433 int i, err = 0;
1434
1435 for (i = 0; i < adapter->num_tx_queues; i++) {
1436 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1437 if (err) {
1438 DPRINTK(PROBE, ERR,
1439 "Allocation for Tx Queue %u failed\n", i);
1440 for (i-- ; i >= 0; i--)
1441 e1000_free_tx_resources(adapter,
1442 &adapter->tx_ring[i]);
1443 break;
1444 }
1445 }
1446
1447 return err;
1448 }
1449
1450 /**
1451 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1452 * @adapter: board private structure
1453 *
1454 * Configure the Tx unit of the MAC after a reset.
1455 **/
1456
1457 static void
1458 e1000_configure_tx(struct e1000_adapter *adapter)
1459 {
1460 uint64_t tdba;
1461 struct e1000_hw *hw = &adapter->hw;
1462 uint32_t tdlen, tctl, tipg, tarc;
1463 uint32_t ipgr1, ipgr2;
1464
1465 /* Setup the HW Tx Head and Tail descriptor pointers */
1466
1467 switch (adapter->num_tx_queues) {
1468 case 1:
1469 default:
1470 tdba = adapter->tx_ring[0].dma;
1471 tdlen = adapter->tx_ring[0].count *
1472 sizeof(struct e1000_tx_desc);
1473 E1000_WRITE_REG(hw, TDLEN, tdlen);
1474 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1475 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1476 E1000_WRITE_REG(hw, TDT, 0);
1477 E1000_WRITE_REG(hw, TDH, 0);
1478 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1479 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1480 break;
1481 }
1482
1483 /* Set the default values for the Tx Inter Packet Gap timer */
1484
1485 if (hw->media_type == e1000_media_type_fiber ||
1486 hw->media_type == e1000_media_type_internal_serdes)
1487 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1488 else
1489 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1490
1491 switch (hw->mac_type) {
1492 case e1000_82542_rev2_0:
1493 case e1000_82542_rev2_1:
1494 tipg = DEFAULT_82542_TIPG_IPGT;
1495 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1496 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1497 break;
1498 case e1000_80003es2lan:
1499 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1500 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1501 break;
1502 default:
1503 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1504 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1505 break;
1506 }
1507 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1508 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1509 E1000_WRITE_REG(hw, TIPG, tipg);
1510
1511 /* Set the Tx Interrupt Delay register */
1512
1513 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1514 if (hw->mac_type >= e1000_82540)
1515 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1516
1517 /* Program the Transmit Control Register */
1518
1519 tctl = E1000_READ_REG(hw, TCTL);
1520
1521 tctl &= ~E1000_TCTL_CT;
1522 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1523 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1524
1525 #ifdef DISABLE_MULR
1526 /* disable Multiple Reads for debugging */
1527 tctl &= ~E1000_TCTL_MULR;
1528 #endif
1529
1530 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1531 tarc = E1000_READ_REG(hw, TARC0);
1532 tarc |= ((1 << 25) | (1 << 21));
1533 E1000_WRITE_REG(hw, TARC0, tarc);
1534 tarc = E1000_READ_REG(hw, TARC1);
1535 tarc |= (1 << 25);
1536 if (tctl & E1000_TCTL_MULR)
1537 tarc &= ~(1 << 28);
1538 else
1539 tarc |= (1 << 28);
1540 E1000_WRITE_REG(hw, TARC1, tarc);
1541 } else if (hw->mac_type == e1000_80003es2lan) {
1542 tarc = E1000_READ_REG(hw, TARC0);
1543 tarc |= 1;
1544 E1000_WRITE_REG(hw, TARC0, tarc);
1545 tarc = E1000_READ_REG(hw, TARC1);
1546 tarc |= 1;
1547 E1000_WRITE_REG(hw, TARC1, tarc);
1548 }
1549
1550 e1000_config_collision_dist(hw);
1551
1552 /* Setup Transmit Descriptor Settings for eop descriptor */
1553 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1554 E1000_TXD_CMD_IFCS;
1555
1556 if (hw->mac_type < e1000_82543)
1557 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1558 else
1559 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1560
1561 /* Cache if we're 82544 running in PCI-X because we'll
1562 * need this to apply a workaround later in the send path. */
1563 if (hw->mac_type == e1000_82544 &&
1564 hw->bus_type == e1000_bus_type_pcix)
1565 adapter->pcix_82544 = 1;
1566
1567 E1000_WRITE_REG(hw, TCTL, tctl);
1568
1569 }
1570
1571 /**
1572 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1573 * @adapter: board private structure
1574 * @rxdr: rx descriptor ring (for a specific queue) to setup
1575 *
1576 * Returns 0 on success, negative on failure
1577 **/
1578
1579 static int
1580 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1581 struct e1000_rx_ring *rxdr)
1582 {
1583 struct pci_dev *pdev = adapter->pdev;
1584 int size, desc_len;
1585
1586 size = sizeof(struct e1000_buffer) * rxdr->count;
1587 rxdr->buffer_info = vmalloc(size);
1588 if (!rxdr->buffer_info) {
1589 DPRINTK(PROBE, ERR,
1590 "Unable to allocate memory for the receive descriptor ring\n");
1591 return -ENOMEM;
1592 }
1593 memset(rxdr->buffer_info, 0, size);
1594
1595 size = sizeof(struct e1000_ps_page) * rxdr->count;
1596 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1597 if (!rxdr->ps_page) {
1598 vfree(rxdr->buffer_info);
1599 DPRINTK(PROBE, ERR,
1600 "Unable to allocate memory for the receive descriptor ring\n");
1601 return -ENOMEM;
1602 }
1603 memset(rxdr->ps_page, 0, size);
1604
1605 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1606 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1607 if (!rxdr->ps_page_dma) {
1608 vfree(rxdr->buffer_info);
1609 kfree(rxdr->ps_page);
1610 DPRINTK(PROBE, ERR,
1611 "Unable to allocate memory for the receive descriptor ring\n");
1612 return -ENOMEM;
1613 }
1614 memset(rxdr->ps_page_dma, 0, size);
1615
1616 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1617 desc_len = sizeof(struct e1000_rx_desc);
1618 else
1619 desc_len = sizeof(union e1000_rx_desc_packet_split);
1620
1621 /* Round up to nearest 4K */
1622
1623 rxdr->size = rxdr->count * desc_len;
1624 E1000_ROUNDUP(rxdr->size, 4096);
1625
1626 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1627
1628 if (!rxdr->desc) {
1629 DPRINTK(PROBE, ERR,
1630 "Unable to allocate memory for the receive descriptor ring\n");
1631 setup_rx_desc_die:
1632 vfree(rxdr->buffer_info);
1633 kfree(rxdr->ps_page);
1634 kfree(rxdr->ps_page_dma);
1635 return -ENOMEM;
1636 }
1637
1638 /* Fix for errata 23, can't cross 64kB boundary */
1639 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1640 void *olddesc = rxdr->desc;
1641 dma_addr_t olddma = rxdr->dma;
1642 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1643 "at %p\n", rxdr->size, rxdr->desc);
1644 /* Try again, without freeing the previous */
1645 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1646 /* Failed allocation, critical failure */
1647 if (!rxdr->desc) {
1648 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1649 DPRINTK(PROBE, ERR,
1650 "Unable to allocate memory "
1651 "for the receive descriptor ring\n");
1652 goto setup_rx_desc_die;
1653 }
1654
1655 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1656 /* give up */
1657 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1658 rxdr->dma);
1659 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1660 DPRINTK(PROBE, ERR,
1661 "Unable to allocate aligned memory "
1662 "for the receive descriptor ring\n");
1663 goto setup_rx_desc_die;
1664 } else {
1665 /* Free old allocation, new allocation was successful */
1666 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1667 }
1668 }
1669 memset(rxdr->desc, 0, rxdr->size);
1670
1671 rxdr->next_to_clean = 0;
1672 rxdr->next_to_use = 0;
1673
1674 return 0;
1675 }
1676
1677 /**
1678 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1679 * (Descriptors) for all queues
1680 * @adapter: board private structure
1681 *
1682 * Return 0 on success, negative on failure
1683 **/
1684
1685 int
1686 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1687 {
1688 int i, err = 0;
1689
1690 for (i = 0; i < adapter->num_rx_queues; i++) {
1691 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1692 if (err) {
1693 DPRINTK(PROBE, ERR,
1694 "Allocation for Rx Queue %u failed\n", i);
1695 for (i-- ; i >= 0; i--)
1696 e1000_free_rx_resources(adapter,
1697 &adapter->rx_ring[i]);
1698 break;
1699 }
1700 }
1701
1702 return err;
1703 }
1704
1705 /**
1706 * e1000_setup_rctl - configure the receive control registers
1707 * @adapter: Board private structure
1708 **/
1709 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1710 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1711 static void
1712 e1000_setup_rctl(struct e1000_adapter *adapter)
1713 {
1714 uint32_t rctl, rfctl;
1715 uint32_t psrctl = 0;
1716 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1717 uint32_t pages = 0;
1718 #endif
1719
1720 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1721
1722 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1723
1724 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1725 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1726 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1727
1728 if (adapter->hw.tbi_compatibility_on == 1)
1729 rctl |= E1000_RCTL_SBP;
1730 else
1731 rctl &= ~E1000_RCTL_SBP;
1732
1733 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1734 rctl &= ~E1000_RCTL_LPE;
1735 else
1736 rctl |= E1000_RCTL_LPE;
1737
1738 /* Setup buffer sizes */
1739 rctl &= ~E1000_RCTL_SZ_4096;
1740 rctl |= E1000_RCTL_BSEX;
1741 switch (adapter->rx_buffer_len) {
1742 case E1000_RXBUFFER_256:
1743 rctl |= E1000_RCTL_SZ_256;
1744 rctl &= ~E1000_RCTL_BSEX;
1745 break;
1746 case E1000_RXBUFFER_512:
1747 rctl |= E1000_RCTL_SZ_512;
1748 rctl &= ~E1000_RCTL_BSEX;
1749 break;
1750 case E1000_RXBUFFER_1024:
1751 rctl |= E1000_RCTL_SZ_1024;
1752 rctl &= ~E1000_RCTL_BSEX;
1753 break;
1754 case E1000_RXBUFFER_2048:
1755 default:
1756 rctl |= E1000_RCTL_SZ_2048;
1757 rctl &= ~E1000_RCTL_BSEX;
1758 break;
1759 case E1000_RXBUFFER_4096:
1760 rctl |= E1000_RCTL_SZ_4096;
1761 break;
1762 case E1000_RXBUFFER_8192:
1763 rctl |= E1000_RCTL_SZ_8192;
1764 break;
1765 case E1000_RXBUFFER_16384:
1766 rctl |= E1000_RCTL_SZ_16384;
1767 break;
1768 }
1769
1770 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1771 /* 82571 and greater support packet-split where the protocol
1772 * header is placed in skb->data and the packet data is
1773 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1774 * In the case of a non-split, skb->data is linearly filled,
1775 * followed by the page buffers. Therefore, skb->data is
1776 * sized to hold the largest protocol header.
1777 */
1778 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1779 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1780 PAGE_SIZE <= 16384)
1781 adapter->rx_ps_pages = pages;
1782 else
1783 adapter->rx_ps_pages = 0;
1784 #endif
1785 if (adapter->rx_ps_pages) {
1786 /* Configure extra packet-split registers */
1787 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1788 rfctl |= E1000_RFCTL_EXTEN;
1789 /* disable IPv6 packet split support */
1790 rfctl |= E1000_RFCTL_IPV6_DIS;
1791 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1792
1793 rctl |= E1000_RCTL_DTYP_PS;
1794
1795 psrctl |= adapter->rx_ps_bsize0 >>
1796 E1000_PSRCTL_BSIZE0_SHIFT;
1797
1798 switch (adapter->rx_ps_pages) {
1799 case 3:
1800 psrctl |= PAGE_SIZE <<
1801 E1000_PSRCTL_BSIZE3_SHIFT;
1802 case 2:
1803 psrctl |= PAGE_SIZE <<
1804 E1000_PSRCTL_BSIZE2_SHIFT;
1805 case 1:
1806 psrctl |= PAGE_SIZE >>
1807 E1000_PSRCTL_BSIZE1_SHIFT;
1808 break;
1809 }
1810
1811 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1812 }
1813
1814 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1815 }
1816
1817 /**
1818 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1819 * @adapter: board private structure
1820 *
1821 * Configure the Rx unit of the MAC after a reset.
1822 **/
1823
1824 static void
1825 e1000_configure_rx(struct e1000_adapter *adapter)
1826 {
1827 uint64_t rdba;
1828 struct e1000_hw *hw = &adapter->hw;
1829 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1830
1831 if (adapter->rx_ps_pages) {
1832 /* this is a 32 byte descriptor */
1833 rdlen = adapter->rx_ring[0].count *
1834 sizeof(union e1000_rx_desc_packet_split);
1835 adapter->clean_rx = e1000_clean_rx_irq_ps;
1836 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1837 } else {
1838 rdlen = adapter->rx_ring[0].count *
1839 sizeof(struct e1000_rx_desc);
1840 adapter->clean_rx = e1000_clean_rx_irq;
1841 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1842 }
1843
1844 /* disable receives while setting up the descriptors */
1845 rctl = E1000_READ_REG(hw, RCTL);
1846 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1847
1848 /* set the Receive Delay Timer Register */
1849 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1850
1851 if (hw->mac_type >= e1000_82540) {
1852 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1853 if (adapter->itr > 1)
1854 E1000_WRITE_REG(hw, ITR,
1855 1000000000 / (adapter->itr * 256));
1856 }
1857
1858 if (hw->mac_type >= e1000_82571) {
1859 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1860 /* Reset delay timers after every interrupt */
1861 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1862 #ifdef CONFIG_E1000_NAPI
1863 /* Auto-Mask interrupts upon ICR read. */
1864 ctrl_ext |= E1000_CTRL_EXT_IAME;
1865 #endif
1866 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1867 E1000_WRITE_REG(hw, IAM, ~0);
1868 E1000_WRITE_FLUSH(hw);
1869 }
1870
1871 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1872 * the Base and Length of the Rx Descriptor Ring */
1873 switch (adapter->num_rx_queues) {
1874 case 1:
1875 default:
1876 rdba = adapter->rx_ring[0].dma;
1877 E1000_WRITE_REG(hw, RDLEN, rdlen);
1878 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1879 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1880 E1000_WRITE_REG(hw, RDT, 0);
1881 E1000_WRITE_REG(hw, RDH, 0);
1882 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1883 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1884 break;
1885 }
1886
1887 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1888 if (hw->mac_type >= e1000_82543) {
1889 rxcsum = E1000_READ_REG(hw, RXCSUM);
1890 if (adapter->rx_csum == TRUE) {
1891 rxcsum |= E1000_RXCSUM_TUOFL;
1892
1893 /* Enable 82571 IPv4 payload checksum for UDP fragments
1894 * Must be used in conjunction with packet-split. */
1895 if ((hw->mac_type >= e1000_82571) &&
1896 (adapter->rx_ps_pages)) {
1897 rxcsum |= E1000_RXCSUM_IPPCSE;
1898 }
1899 } else {
1900 rxcsum &= ~E1000_RXCSUM_TUOFL;
1901 /* don't need to clear IPPCSE as it defaults to 0 */
1902 }
1903 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1904 }
1905
1906 /* Enable Receives */
1907 E1000_WRITE_REG(hw, RCTL, rctl);
1908 }
1909
1910 /**
1911 * e1000_free_tx_resources - Free Tx Resources per Queue
1912 * @adapter: board private structure
1913 * @tx_ring: Tx descriptor ring for a specific queue
1914 *
1915 * Free all transmit software resources
1916 **/
1917
1918 static void
1919 e1000_free_tx_resources(struct e1000_adapter *adapter,
1920 struct e1000_tx_ring *tx_ring)
1921 {
1922 struct pci_dev *pdev = adapter->pdev;
1923
1924 e1000_clean_tx_ring(adapter, tx_ring);
1925
1926 vfree(tx_ring->buffer_info);
1927 tx_ring->buffer_info = NULL;
1928
1929 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1930
1931 tx_ring->desc = NULL;
1932 }
1933
1934 /**
1935 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1936 * @adapter: board private structure
1937 *
1938 * Free all transmit software resources
1939 **/
1940
1941 void
1942 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944 int i;
1945
1946 for (i = 0; i < adapter->num_tx_queues; i++)
1947 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949
1950 static void
1951 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1952 struct e1000_buffer *buffer_info)
1953 {
1954 if (buffer_info->dma) {
1955 pci_unmap_page(adapter->pdev,
1956 buffer_info->dma,
1957 buffer_info->length,
1958 PCI_DMA_TODEVICE);
1959 }
1960 if (buffer_info->skb)
1961 dev_kfree_skb_any(buffer_info->skb);
1962 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1963 }
1964
1965 /**
1966 * e1000_clean_tx_ring - Free Tx Buffers
1967 * @adapter: board private structure
1968 * @tx_ring: ring to be cleaned
1969 **/
1970
1971 static void
1972 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1973 struct e1000_tx_ring *tx_ring)
1974 {
1975 struct e1000_buffer *buffer_info;
1976 unsigned long size;
1977 unsigned int i;
1978
1979 /* Free all the Tx ring sk_buffs */
1980
1981 for (i = 0; i < tx_ring->count; i++) {
1982 buffer_info = &tx_ring->buffer_info[i];
1983 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1984 }
1985
1986 size = sizeof(struct e1000_buffer) * tx_ring->count;
1987 memset(tx_ring->buffer_info, 0, size);
1988
1989 /* Zero out the descriptor ring */
1990
1991 memset(tx_ring->desc, 0, tx_ring->size);
1992
1993 tx_ring->next_to_use = 0;
1994 tx_ring->next_to_clean = 0;
1995 tx_ring->last_tx_tso = 0;
1996
1997 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1998 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1999 }
2000
2001 /**
2002 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2003 * @adapter: board private structure
2004 **/
2005
2006 static void
2007 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2008 {
2009 int i;
2010
2011 for (i = 0; i < adapter->num_tx_queues; i++)
2012 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2013 }
2014
2015 /**
2016 * e1000_free_rx_resources - Free Rx Resources
2017 * @adapter: board private structure
2018 * @rx_ring: ring to clean the resources from
2019 *
2020 * Free all receive software resources
2021 **/
2022
2023 static void
2024 e1000_free_rx_resources(struct e1000_adapter *adapter,
2025 struct e1000_rx_ring *rx_ring)
2026 {
2027 struct pci_dev *pdev = adapter->pdev;
2028
2029 e1000_clean_rx_ring(adapter, rx_ring);
2030
2031 vfree(rx_ring->buffer_info);
2032 rx_ring->buffer_info = NULL;
2033 kfree(rx_ring->ps_page);
2034 rx_ring->ps_page = NULL;
2035 kfree(rx_ring->ps_page_dma);
2036 rx_ring->ps_page_dma = NULL;
2037
2038 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2039
2040 rx_ring->desc = NULL;
2041 }
2042
2043 /**
2044 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2045 * @adapter: board private structure
2046 *
2047 * Free all receive software resources
2048 **/
2049
2050 void
2051 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2052 {
2053 int i;
2054
2055 for (i = 0; i < adapter->num_rx_queues; i++)
2056 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2057 }
2058
2059 /**
2060 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2061 * @adapter: board private structure
2062 * @rx_ring: ring to free buffers from
2063 **/
2064
2065 static void
2066 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2067 struct e1000_rx_ring *rx_ring)
2068 {
2069 struct e1000_buffer *buffer_info;
2070 struct e1000_ps_page *ps_page;
2071 struct e1000_ps_page_dma *ps_page_dma;
2072 struct pci_dev *pdev = adapter->pdev;
2073 unsigned long size;
2074 unsigned int i, j;
2075
2076 /* Free all the Rx ring sk_buffs */
2077 for (i = 0; i < rx_ring->count; i++) {
2078 buffer_info = &rx_ring->buffer_info[i];
2079 if (buffer_info->skb) {
2080 pci_unmap_single(pdev,
2081 buffer_info->dma,
2082 buffer_info->length,
2083 PCI_DMA_FROMDEVICE);
2084
2085 dev_kfree_skb(buffer_info->skb);
2086 buffer_info->skb = NULL;
2087 }
2088 ps_page = &rx_ring->ps_page[i];
2089 ps_page_dma = &rx_ring->ps_page_dma[i];
2090 for (j = 0; j < adapter->rx_ps_pages; j++) {
2091 if (!ps_page->ps_page[j]) break;
2092 pci_unmap_page(pdev,
2093 ps_page_dma->ps_page_dma[j],
2094 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2095 ps_page_dma->ps_page_dma[j] = 0;
2096 put_page(ps_page->ps_page[j]);
2097 ps_page->ps_page[j] = NULL;
2098 }
2099 }
2100
2101 size = sizeof(struct e1000_buffer) * rx_ring->count;
2102 memset(rx_ring->buffer_info, 0, size);
2103 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2104 memset(rx_ring->ps_page, 0, size);
2105 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2106 memset(rx_ring->ps_page_dma, 0, size);
2107
2108 /* Zero out the descriptor ring */
2109
2110 memset(rx_ring->desc, 0, rx_ring->size);
2111
2112 rx_ring->next_to_clean = 0;
2113 rx_ring->next_to_use = 0;
2114
2115 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2116 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2117 }
2118
2119 /**
2120 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2121 * @adapter: board private structure
2122 **/
2123
2124 static void
2125 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2126 {
2127 int i;
2128
2129 for (i = 0; i < adapter->num_rx_queues; i++)
2130 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2131 }
2132
2133 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2134 * and memory write and invalidate disabled for certain operations
2135 */
2136 static void
2137 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2138 {
2139 struct net_device *netdev = adapter->netdev;
2140 uint32_t rctl;
2141
2142 e1000_pci_clear_mwi(&adapter->hw);
2143
2144 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2145 rctl |= E1000_RCTL_RST;
2146 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2147 E1000_WRITE_FLUSH(&adapter->hw);
2148 mdelay(5);
2149
2150 if (netif_running(netdev))
2151 e1000_clean_all_rx_rings(adapter);
2152 }
2153
2154 static void
2155 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2156 {
2157 struct net_device *netdev = adapter->netdev;
2158 uint32_t rctl;
2159
2160 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2161 rctl &= ~E1000_RCTL_RST;
2162 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2163 E1000_WRITE_FLUSH(&adapter->hw);
2164 mdelay(5);
2165
2166 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2167 e1000_pci_set_mwi(&adapter->hw);
2168
2169 if (netif_running(netdev)) {
2170 /* No need to loop, because 82542 supports only 1 queue */
2171 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2172 e1000_configure_rx(adapter);
2173 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2174 }
2175 }
2176
2177 /**
2178 * e1000_set_mac - Change the Ethernet Address of the NIC
2179 * @netdev: network interface device structure
2180 * @p: pointer to an address structure
2181 *
2182 * Returns 0 on success, negative on failure
2183 **/
2184
2185 static int
2186 e1000_set_mac(struct net_device *netdev, void *p)
2187 {
2188 struct e1000_adapter *adapter = netdev_priv(netdev);
2189 struct sockaddr *addr = p;
2190
2191 if (!is_valid_ether_addr(addr->sa_data))
2192 return -EADDRNOTAVAIL;
2193
2194 /* 82542 2.0 needs to be in reset to write receive address registers */
2195
2196 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2197 e1000_enter_82542_rst(adapter);
2198
2199 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2200 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2201
2202 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2203
2204 /* With 82571 controllers, LAA may be overwritten (with the default)
2205 * due to controller reset from the other port. */
2206 if (adapter->hw.mac_type == e1000_82571) {
2207 /* activate the work around */
2208 adapter->hw.laa_is_present = 1;
2209
2210 /* Hold a copy of the LAA in RAR[14] This is done so that
2211 * between the time RAR[0] gets clobbered and the time it
2212 * gets fixed (in e1000_watchdog), the actual LAA is in one
2213 * of the RARs and no incoming packets directed to this port
2214 * are dropped. Eventaully the LAA will be in RAR[0] and
2215 * RAR[14] */
2216 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2217 E1000_RAR_ENTRIES - 1);
2218 }
2219
2220 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2221 e1000_leave_82542_rst(adapter);
2222
2223 return 0;
2224 }
2225
2226 /**
2227 * e1000_set_multi - Multicast and Promiscuous mode set
2228 * @netdev: network interface device structure
2229 *
2230 * The set_multi entry point is called whenever the multicast address
2231 * list or the network interface flags are updated. This routine is
2232 * responsible for configuring the hardware for proper multicast,
2233 * promiscuous mode, and all-multi behavior.
2234 **/
2235
2236 static void
2237 e1000_set_multi(struct net_device *netdev)
2238 {
2239 struct e1000_adapter *adapter = netdev_priv(netdev);
2240 struct e1000_hw *hw = &adapter->hw;
2241 struct dev_mc_list *mc_ptr;
2242 uint32_t rctl;
2243 uint32_t hash_value;
2244 int i, rar_entries = E1000_RAR_ENTRIES;
2245 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2246 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2247 E1000_NUM_MTA_REGISTERS;
2248
2249 if (adapter->hw.mac_type == e1000_ich8lan)
2250 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2251
2252 /* reserve RAR[14] for LAA over-write work-around */
2253 if (adapter->hw.mac_type == e1000_82571)
2254 rar_entries--;
2255
2256 /* Check for Promiscuous and All Multicast modes */
2257
2258 rctl = E1000_READ_REG(hw, RCTL);
2259
2260 if (netdev->flags & IFF_PROMISC) {
2261 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2262 } else if (netdev->flags & IFF_ALLMULTI) {
2263 rctl |= E1000_RCTL_MPE;
2264 rctl &= ~E1000_RCTL_UPE;
2265 } else {
2266 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2267 }
2268
2269 E1000_WRITE_REG(hw, RCTL, rctl);
2270
2271 /* 82542 2.0 needs to be in reset to write receive address registers */
2272
2273 if (hw->mac_type == e1000_82542_rev2_0)
2274 e1000_enter_82542_rst(adapter);
2275
2276 /* load the first 14 multicast address into the exact filters 1-14
2277 * RAR 0 is used for the station MAC adddress
2278 * if there are not 14 addresses, go ahead and clear the filters
2279 * -- with 82571 controllers only 0-13 entries are filled here
2280 */
2281 mc_ptr = netdev->mc_list;
2282
2283 for (i = 1; i < rar_entries; i++) {
2284 if (mc_ptr) {
2285 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2286 mc_ptr = mc_ptr->next;
2287 } else {
2288 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289 E1000_WRITE_FLUSH(hw);
2290 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291 E1000_WRITE_FLUSH(hw);
2292 }
2293 }
2294
2295 /* clear the old settings from the multicast hash table */
2296
2297 for (i = 0; i < mta_reg_count; i++) {
2298 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2299 E1000_WRITE_FLUSH(hw);
2300 }
2301
2302 /* load any remaining addresses into the hash table */
2303
2304 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2305 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2306 e1000_mta_set(hw, hash_value);
2307 }
2308
2309 if (hw->mac_type == e1000_82542_rev2_0)
2310 e1000_leave_82542_rst(adapter);
2311 }
2312
2313 /* Need to wait a few seconds after link up to get diagnostic information from
2314 * the phy */
2315
2316 static void
2317 e1000_update_phy_info(unsigned long data)
2318 {
2319 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2320 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2321 }
2322
2323 /**
2324 * e1000_82547_tx_fifo_stall - Timer Call-back
2325 * @data: pointer to adapter cast into an unsigned long
2326 **/
2327
2328 static void
2329 e1000_82547_tx_fifo_stall(unsigned long data)
2330 {
2331 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2332 struct net_device *netdev = adapter->netdev;
2333 uint32_t tctl;
2334
2335 if (atomic_read(&adapter->tx_fifo_stall)) {
2336 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2337 E1000_READ_REG(&adapter->hw, TDH)) &&
2338 (E1000_READ_REG(&adapter->hw, TDFT) ==
2339 E1000_READ_REG(&adapter->hw, TDFH)) &&
2340 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2341 E1000_READ_REG(&adapter->hw, TDFHS))) {
2342 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2343 E1000_WRITE_REG(&adapter->hw, TCTL,
2344 tctl & ~E1000_TCTL_EN);
2345 E1000_WRITE_REG(&adapter->hw, TDFT,
2346 adapter->tx_head_addr);
2347 E1000_WRITE_REG(&adapter->hw, TDFH,
2348 adapter->tx_head_addr);
2349 E1000_WRITE_REG(&adapter->hw, TDFTS,
2350 adapter->tx_head_addr);
2351 E1000_WRITE_REG(&adapter->hw, TDFHS,
2352 adapter->tx_head_addr);
2353 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2354 E1000_WRITE_FLUSH(&adapter->hw);
2355
2356 adapter->tx_fifo_head = 0;
2357 atomic_set(&adapter->tx_fifo_stall, 0);
2358 netif_wake_queue(netdev);
2359 } else {
2360 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2361 }
2362 }
2363 }
2364
2365 /**
2366 * e1000_watchdog - Timer Call-back
2367 * @data: pointer to adapter cast into an unsigned long
2368 **/
2369 static void
2370 e1000_watchdog(unsigned long data)
2371 {
2372 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2373 struct net_device *netdev = adapter->netdev;
2374 struct e1000_tx_ring *txdr = adapter->tx_ring;
2375 uint32_t link, tctl;
2376 int32_t ret_val;
2377
2378 ret_val = e1000_check_for_link(&adapter->hw);
2379 if ((ret_val == E1000_ERR_PHY) &&
2380 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2381 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2382 /* See e1000_kumeran_lock_loss_workaround() */
2383 DPRINTK(LINK, INFO,
2384 "Gigabit has been disabled, downgrading speed\n");
2385 }
2386 if (adapter->hw.mac_type == e1000_82573) {
2387 e1000_enable_tx_pkt_filtering(&adapter->hw);
2388 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2389 e1000_update_mng_vlan(adapter);
2390 }
2391
2392 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2393 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2394 link = !adapter->hw.serdes_link_down;
2395 else
2396 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2397
2398 if (link) {
2399 if (!netif_carrier_ok(netdev)) {
2400 boolean_t txb2b = 1;
2401 e1000_get_speed_and_duplex(&adapter->hw,
2402 &adapter->link_speed,
2403 &adapter->link_duplex);
2404
2405 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2406 adapter->link_speed,
2407 adapter->link_duplex == FULL_DUPLEX ?
2408 "Full Duplex" : "Half Duplex");
2409
2410 /* tweak tx_queue_len according to speed/duplex
2411 * and adjust the timeout factor */
2412 netdev->tx_queue_len = adapter->tx_queue_len;
2413 adapter->tx_timeout_factor = 1;
2414 switch (adapter->link_speed) {
2415 case SPEED_10:
2416 txb2b = 0;
2417 netdev->tx_queue_len = 10;
2418 adapter->tx_timeout_factor = 8;
2419 break;
2420 case SPEED_100:
2421 txb2b = 0;
2422 netdev->tx_queue_len = 100;
2423 /* maybe add some timeout factor ? */
2424 break;
2425 }
2426
2427 if ((adapter->hw.mac_type == e1000_82571 ||
2428 adapter->hw.mac_type == e1000_82572) &&
2429 txb2b == 0) {
2430 #define SPEED_MODE_BIT (1 << 21)
2431 uint32_t tarc0;
2432 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2433 tarc0 &= ~SPEED_MODE_BIT;
2434 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2435 }
2436
2437 #ifdef NETIF_F_TSO
2438 /* disable TSO for pcie and 10/100 speeds, to avoid
2439 * some hardware issues */
2440 if (!adapter->tso_force &&
2441 adapter->hw.bus_type == e1000_bus_type_pci_express){
2442 switch (adapter->link_speed) {
2443 case SPEED_10:
2444 case SPEED_100:
2445 DPRINTK(PROBE,INFO,
2446 "10/100 speed: disabling TSO\n");
2447 netdev->features &= ~NETIF_F_TSO;
2448 break;
2449 case SPEED_1000:
2450 netdev->features |= NETIF_F_TSO;
2451 break;
2452 default:
2453 /* oops */
2454 break;
2455 }
2456 }
2457 #endif
2458
2459 /* enable transmits in the hardware, need to do this
2460 * after setting TARC0 */
2461 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2462 tctl |= E1000_TCTL_EN;
2463 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2464
2465 netif_carrier_on(netdev);
2466 netif_wake_queue(netdev);
2467 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2468 adapter->smartspeed = 0;
2469 }
2470 } else {
2471 if (netif_carrier_ok(netdev)) {
2472 adapter->link_speed = 0;
2473 adapter->link_duplex = 0;
2474 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2475 netif_carrier_off(netdev);
2476 netif_stop_queue(netdev);
2477 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2478
2479 /* 80003ES2LAN workaround--
2480 * For packet buffer work-around on link down event;
2481 * disable receives in the ISR and
2482 * reset device here in the watchdog
2483 */
2484 if (adapter->hw.mac_type == e1000_80003es2lan)
2485 /* reset device */
2486 schedule_work(&adapter->reset_task);
2487 }
2488
2489 e1000_smartspeed(adapter);
2490 }
2491
2492 e1000_update_stats(adapter);
2493
2494 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2495 adapter->tpt_old = adapter->stats.tpt;
2496 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2497 adapter->colc_old = adapter->stats.colc;
2498
2499 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2500 adapter->gorcl_old = adapter->stats.gorcl;
2501 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2502 adapter->gotcl_old = adapter->stats.gotcl;
2503
2504 e1000_update_adaptive(&adapter->hw);
2505
2506 if (!netif_carrier_ok(netdev)) {
2507 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2508 /* We've lost link, so the controller stops DMA,
2509 * but we've got queued Tx work that's never going
2510 * to get done, so reset controller to flush Tx.
2511 * (Do the reset outside of interrupt context). */
2512 adapter->tx_timeout_count++;
2513 schedule_work(&adapter->reset_task);
2514 }
2515 }
2516
2517 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2518 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2519 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2520 * asymmetrical Tx or Rx gets ITR=8000; everyone
2521 * else is between 2000-8000. */
2522 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2523 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2524 adapter->gotcl - adapter->gorcl :
2525 adapter->gorcl - adapter->gotcl) / 10000;
2526 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2527 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2528 }
2529
2530 /* Cause software interrupt to ensure rx ring is cleaned */
2531 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2532
2533 /* Force detection of hung controller every watchdog period */
2534 adapter->detect_tx_hung = TRUE;
2535
2536 /* With 82571 controllers, LAA may be overwritten due to controller
2537 * reset from the other port. Set the appropriate LAA in RAR[0] */
2538 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2539 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2540
2541 /* Reset the timer */
2542 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2543 }
2544
2545 #define E1000_TX_FLAGS_CSUM 0x00000001
2546 #define E1000_TX_FLAGS_VLAN 0x00000002
2547 #define E1000_TX_FLAGS_TSO 0x00000004
2548 #define E1000_TX_FLAGS_IPV4 0x00000008
2549 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2550 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2551
2552 static int
2553 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2554 struct sk_buff *skb)
2555 {
2556 #ifdef NETIF_F_TSO
2557 struct e1000_context_desc *context_desc;
2558 struct e1000_buffer *buffer_info;
2559 unsigned int i;
2560 uint32_t cmd_length = 0;
2561 uint16_t ipcse = 0, tucse, mss;
2562 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2563 int err;
2564
2565 if (skb_is_gso(skb)) {
2566 if (skb_header_cloned(skb)) {
2567 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2568 if (err)
2569 return err;
2570 }
2571
2572 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2573 mss = skb_shinfo(skb)->gso_size;
2574 if (skb->protocol == htons(ETH_P_IP)) {
2575 skb->nh.iph->tot_len = 0;
2576 skb->nh.iph->check = 0;
2577 skb->h.th->check =
2578 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2579 skb->nh.iph->daddr,
2580 0,
2581 IPPROTO_TCP,
2582 0);
2583 cmd_length = E1000_TXD_CMD_IP;
2584 ipcse = skb->h.raw - skb->data - 1;
2585 #ifdef NETIF_F_TSO_IPV6
2586 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2587 skb->nh.ipv6h->payload_len = 0;
2588 skb->h.th->check =
2589 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2590 &skb->nh.ipv6h->daddr,
2591 0,
2592 IPPROTO_TCP,
2593 0);
2594 ipcse = 0;
2595 #endif
2596 }
2597 ipcss = skb->nh.raw - skb->data;
2598 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2599 tucss = skb->h.raw - skb->data;
2600 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2601 tucse = 0;
2602
2603 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2604 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2605
2606 i = tx_ring->next_to_use;
2607 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2608 buffer_info = &tx_ring->buffer_info[i];
2609
2610 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2611 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2612 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2613 context_desc->upper_setup.tcp_fields.tucss = tucss;
2614 context_desc->upper_setup.tcp_fields.tucso = tucso;
2615 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2616 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2617 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2618 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2619
2620 buffer_info->time_stamp = jiffies;
2621
2622 if (++i == tx_ring->count) i = 0;
2623 tx_ring->next_to_use = i;
2624
2625 return TRUE;
2626 }
2627 #endif
2628
2629 return FALSE;
2630 }
2631
2632 static boolean_t
2633 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2634 struct sk_buff *skb)
2635 {
2636 struct e1000_context_desc *context_desc;
2637 struct e1000_buffer *buffer_info;
2638 unsigned int i;
2639 uint8_t css;
2640
2641 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2642 css = skb->h.raw - skb->data;
2643
2644 i = tx_ring->next_to_use;
2645 buffer_info = &tx_ring->buffer_info[i];
2646 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2647
2648 context_desc->upper_setup.tcp_fields.tucss = css;
2649 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2650 context_desc->upper_setup.tcp_fields.tucse = 0;
2651 context_desc->tcp_seg_setup.data = 0;
2652 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2653
2654 buffer_info->time_stamp = jiffies;
2655
2656 if (unlikely(++i == tx_ring->count)) i = 0;
2657 tx_ring->next_to_use = i;
2658
2659 return TRUE;
2660 }
2661
2662 return FALSE;
2663 }
2664
2665 #define E1000_MAX_TXD_PWR 12
2666 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2667
2668 static int
2669 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2670 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2671 unsigned int nr_frags, unsigned int mss)
2672 {
2673 struct e1000_buffer *buffer_info;
2674 unsigned int len = skb->len;
2675 unsigned int offset = 0, size, count = 0, i;
2676 unsigned int f;
2677 len -= skb->data_len;
2678
2679 i = tx_ring->next_to_use;
2680
2681 while (len) {
2682 buffer_info = &tx_ring->buffer_info[i];
2683 size = min(len, max_per_txd);
2684 #ifdef NETIF_F_TSO
2685 /* Workaround for Controller erratum --
2686 * descriptor for non-tso packet in a linear SKB that follows a
2687 * tso gets written back prematurely before the data is fully
2688 * DMA'd to the controller */
2689 if (!skb->data_len && tx_ring->last_tx_tso &&
2690 !skb_is_gso(skb)) {
2691 tx_ring->last_tx_tso = 0;
2692 size -= 4;
2693 }
2694
2695 /* Workaround for premature desc write-backs
2696 * in TSO mode. Append 4-byte sentinel desc */
2697 if (unlikely(mss && !nr_frags && size == len && size > 8))
2698 size -= 4;
2699 #endif
2700 /* work-around for errata 10 and it applies
2701 * to all controllers in PCI-X mode
2702 * The fix is to make sure that the first descriptor of a
2703 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2704 */
2705 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2706 (size > 2015) && count == 0))
2707 size = 2015;
2708
2709 /* Workaround for potential 82544 hang in PCI-X. Avoid
2710 * terminating buffers within evenly-aligned dwords. */
2711 if (unlikely(adapter->pcix_82544 &&
2712 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2713 size > 4))
2714 size -= 4;
2715
2716 buffer_info->length = size;
2717 buffer_info->dma =
2718 pci_map_single(adapter->pdev,
2719 skb->data + offset,
2720 size,
2721 PCI_DMA_TODEVICE);
2722 buffer_info->time_stamp = jiffies;
2723
2724 len -= size;
2725 offset += size;
2726 count++;
2727 if (unlikely(++i == tx_ring->count)) i = 0;
2728 }
2729
2730 for (f = 0; f < nr_frags; f++) {
2731 struct skb_frag_struct *frag;
2732
2733 frag = &skb_shinfo(skb)->frags[f];
2734 len = frag->size;
2735 offset = frag->page_offset;
2736
2737 while (len) {
2738 buffer_info = &tx_ring->buffer_info[i];
2739 size = min(len, max_per_txd);
2740 #ifdef NETIF_F_TSO
2741 /* Workaround for premature desc write-backs
2742 * in TSO mode. Append 4-byte sentinel desc */
2743 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2744 size -= 4;
2745 #endif
2746 /* Workaround for potential 82544 hang in PCI-X.
2747 * Avoid terminating buffers within evenly-aligned
2748 * dwords. */
2749 if (unlikely(adapter->pcix_82544 &&
2750 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2751 size > 4))
2752 size -= 4;
2753
2754 buffer_info->length = size;
2755 buffer_info->dma =
2756 pci_map_page(adapter->pdev,
2757 frag->page,
2758 offset,
2759 size,
2760 PCI_DMA_TODEVICE);
2761 buffer_info->time_stamp = jiffies;
2762
2763 len -= size;
2764 offset += size;
2765 count++;
2766 if (unlikely(++i == tx_ring->count)) i = 0;
2767 }
2768 }
2769
2770 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2771 tx_ring->buffer_info[i].skb = skb;
2772 tx_ring->buffer_info[first].next_to_watch = i;
2773
2774 return count;
2775 }
2776
2777 static void
2778 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2779 int tx_flags, int count)
2780 {
2781 struct e1000_tx_desc *tx_desc = NULL;
2782 struct e1000_buffer *buffer_info;
2783 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2784 unsigned int i;
2785
2786 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2787 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2788 E1000_TXD_CMD_TSE;
2789 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2790
2791 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2792 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2793 }
2794
2795 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2796 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2797 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2798 }
2799
2800 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2801 txd_lower |= E1000_TXD_CMD_VLE;
2802 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2803 }
2804
2805 i = tx_ring->next_to_use;
2806
2807 while (count--) {
2808 buffer_info = &tx_ring->buffer_info[i];
2809 tx_desc = E1000_TX_DESC(*tx_ring, i);
2810 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2811 tx_desc->lower.data =
2812 cpu_to_le32(txd_lower | buffer_info->length);
2813 tx_desc->upper.data = cpu_to_le32(txd_upper);
2814 if (unlikely(++i == tx_ring->count)) i = 0;
2815 }
2816
2817 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2818
2819 /* Force memory writes to complete before letting h/w
2820 * know there are new descriptors to fetch. (Only
2821 * applicable for weak-ordered memory model archs,
2822 * such as IA-64). */
2823 wmb();
2824
2825 tx_ring->next_to_use = i;
2826 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2827 }
2828
2829 /**
2830 * 82547 workaround to avoid controller hang in half-duplex environment.
2831 * The workaround is to avoid queuing a large packet that would span
2832 * the internal Tx FIFO ring boundary by notifying the stack to resend
2833 * the packet at a later time. This gives the Tx FIFO an opportunity to
2834 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2835 * to the beginning of the Tx FIFO.
2836 **/
2837
2838 #define E1000_FIFO_HDR 0x10
2839 #define E1000_82547_PAD_LEN 0x3E0
2840
2841 static int
2842 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2843 {
2844 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2845 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2846
2847 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2848
2849 if (adapter->link_duplex != HALF_DUPLEX)
2850 goto no_fifo_stall_required;
2851
2852 if (atomic_read(&adapter->tx_fifo_stall))
2853 return 1;
2854
2855 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2856 atomic_set(&adapter->tx_fifo_stall, 1);
2857 return 1;
2858 }
2859
2860 no_fifo_stall_required:
2861 adapter->tx_fifo_head += skb_fifo_len;
2862 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2863 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2864 return 0;
2865 }
2866
2867 #define MINIMUM_DHCP_PACKET_SIZE 282
2868 static int
2869 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2870 {
2871 struct e1000_hw *hw = &adapter->hw;
2872 uint16_t length, offset;
2873 if (vlan_tx_tag_present(skb)) {
2874 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2875 ( adapter->hw.mng_cookie.status &
2876 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2877 return 0;
2878 }
2879 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2880 struct ethhdr *eth = (struct ethhdr *) skb->data;
2881 if ((htons(ETH_P_IP) == eth->h_proto)) {
2882 const struct iphdr *ip =
2883 (struct iphdr *)((uint8_t *)skb->data+14);
2884 if (IPPROTO_UDP == ip->protocol) {
2885 struct udphdr *udp =
2886 (struct udphdr *)((uint8_t *)ip +
2887 (ip->ihl << 2));
2888 if (ntohs(udp->dest) == 67) {
2889 offset = (uint8_t *)udp + 8 - skb->data;
2890 length = skb->len - offset;
2891
2892 return e1000_mng_write_dhcp_info(hw,
2893 (uint8_t *)udp + 8,
2894 length);
2895 }
2896 }
2897 }
2898 }
2899 return 0;
2900 }
2901
2902 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2903 {
2904 struct e1000_adapter *adapter = netdev_priv(netdev);
2905 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2906
2907 netif_stop_queue(netdev);
2908 /* Herbert's original patch had:
2909 * smp_mb__after_netif_stop_queue();
2910 * but since that doesn't exist yet, just open code it. */
2911 smp_mb();
2912
2913 /* We need to check again in a case another CPU has just
2914 * made room available. */
2915 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2916 return -EBUSY;
2917
2918 /* A reprieve! */
2919 netif_start_queue(netdev);
2920 return 0;
2921 }
2922
2923 static int e1000_maybe_stop_tx(struct net_device *netdev,
2924 struct e1000_tx_ring *tx_ring, int size)
2925 {
2926 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2927 return 0;
2928 return __e1000_maybe_stop_tx(netdev, size);
2929 }
2930
2931 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2932 static int
2933 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2934 {
2935 struct e1000_adapter *adapter = netdev_priv(netdev);
2936 struct e1000_tx_ring *tx_ring;
2937 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2938 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2939 unsigned int tx_flags = 0;
2940 unsigned int len = skb->len;
2941 unsigned long flags;
2942 unsigned int nr_frags = 0;
2943 unsigned int mss = 0;
2944 int count = 0;
2945 int tso;
2946 unsigned int f;
2947 len -= skb->data_len;
2948
2949 /* This goes back to the question of how to logically map a tx queue
2950 * to a flow. Right now, performance is impacted slightly negatively
2951 * if using multiple tx queues. If the stack breaks away from a
2952 * single qdisc implementation, we can look at this again. */
2953 tx_ring = adapter->tx_ring;
2954
2955 if (unlikely(skb->len <= 0)) {
2956 dev_kfree_skb_any(skb);
2957 return NETDEV_TX_OK;
2958 }
2959
2960 #ifdef NETIF_F_TSO
2961 mss = skb_shinfo(skb)->gso_size;
2962 /* The controller does a simple calculation to
2963 * make sure there is enough room in the FIFO before
2964 * initiating the DMA for each buffer. The calc is:
2965 * 4 = ceil(buffer len/mss). To make sure we don't
2966 * overrun the FIFO, adjust the max buffer len if mss
2967 * drops. */
2968 if (mss) {
2969 uint8_t hdr_len;
2970 max_per_txd = min(mss << 2, max_per_txd);
2971 max_txd_pwr = fls(max_per_txd) - 1;
2972
2973 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2974 * points to just header, pull a few bytes of payload from
2975 * frags into skb->data */
2976 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2977 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2978 switch (adapter->hw.mac_type) {
2979 unsigned int pull_size;
2980 case e1000_82571:
2981 case e1000_82572:
2982 case e1000_82573:
2983 case e1000_ich8lan:
2984 pull_size = min((unsigned int)4, skb->data_len);
2985 if (!__pskb_pull_tail(skb, pull_size)) {
2986 DPRINTK(DRV, ERR,
2987 "__pskb_pull_tail failed.\n");
2988 dev_kfree_skb_any(skb);
2989 return NETDEV_TX_OK;
2990 }
2991 len = skb->len - skb->data_len;
2992 break;
2993 default:
2994 /* do nothing */
2995 break;
2996 }
2997 }
2998 }
2999
3000 /* reserve a descriptor for the offload context */
3001 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3002 count++;
3003 count++;
3004 #else
3005 if (skb->ip_summed == CHECKSUM_PARTIAL)
3006 count++;
3007 #endif
3008
3009 #ifdef NETIF_F_TSO
3010 /* Controller Erratum workaround */
3011 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3012 count++;
3013 #endif
3014
3015 count += TXD_USE_COUNT(len, max_txd_pwr);
3016
3017 if (adapter->pcix_82544)
3018 count++;
3019
3020 /* work-around for errata 10 and it applies to all controllers
3021 * in PCI-X mode, so add one more descriptor to the count
3022 */
3023 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3024 (len > 2015)))
3025 count++;
3026
3027 nr_frags = skb_shinfo(skb)->nr_frags;
3028 for (f = 0; f < nr_frags; f++)
3029 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3030 max_txd_pwr);
3031 if (adapter->pcix_82544)
3032 count += nr_frags;
3033
3034
3035 if (adapter->hw.tx_pkt_filtering &&
3036 (adapter->hw.mac_type == e1000_82573))
3037 e1000_transfer_dhcp_info(adapter, skb);
3038
3039 local_irq_save(flags);
3040 if (!spin_trylock(&tx_ring->tx_lock)) {
3041 /* Collision - tell upper layer to requeue */
3042 local_irq_restore(flags);
3043 return NETDEV_TX_LOCKED;
3044 }
3045
3046 /* need: count + 2 desc gap to keep tail from touching
3047 * head, otherwise try next time */
3048 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3049 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3050 return NETDEV_TX_BUSY;
3051 }
3052
3053 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3054 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3055 netif_stop_queue(netdev);
3056 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
3057 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3058 return NETDEV_TX_BUSY;
3059 }
3060 }
3061
3062 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3063 tx_flags |= E1000_TX_FLAGS_VLAN;
3064 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3065 }
3066
3067 first = tx_ring->next_to_use;
3068
3069 tso = e1000_tso(adapter, tx_ring, skb);
3070 if (tso < 0) {
3071 dev_kfree_skb_any(skb);
3072 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3073 return NETDEV_TX_OK;
3074 }
3075
3076 if (likely(tso)) {
3077 tx_ring->last_tx_tso = 1;
3078 tx_flags |= E1000_TX_FLAGS_TSO;
3079 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3080 tx_flags |= E1000_TX_FLAGS_CSUM;
3081
3082 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3083 * 82571 hardware supports TSO capabilities for IPv6 as well...
3084 * no longer assume, we must. */
3085 if (likely(skb->protocol == htons(ETH_P_IP)))
3086 tx_flags |= E1000_TX_FLAGS_IPV4;
3087
3088 e1000_tx_queue(adapter, tx_ring, tx_flags,
3089 e1000_tx_map(adapter, tx_ring, skb, first,
3090 max_per_txd, nr_frags, mss));
3091
3092 netdev->trans_start = jiffies;
3093
3094 /* Make sure there is space in the ring for the next send. */
3095 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3096
3097 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3098 return NETDEV_TX_OK;
3099 }
3100
3101 /**
3102 * e1000_tx_timeout - Respond to a Tx Hang
3103 * @netdev: network interface device structure
3104 **/
3105
3106 static void
3107 e1000_tx_timeout(struct net_device *netdev)
3108 {
3109 struct e1000_adapter *adapter = netdev_priv(netdev);
3110
3111 /* Do the reset outside of interrupt context */
3112 adapter->tx_timeout_count++;
3113 schedule_work(&adapter->reset_task);
3114 }
3115
3116 static void
3117 e1000_reset_task(struct net_device *netdev)
3118 {
3119 struct e1000_adapter *adapter = netdev_priv(netdev);
3120
3121 e1000_reinit_locked(adapter);
3122 }
3123
3124 /**
3125 * e1000_get_stats - Get System Network Statistics
3126 * @netdev: network interface device structure
3127 *
3128 * Returns the address of the device statistics structure.
3129 * The statistics are actually updated from the timer callback.
3130 **/
3131
3132 static struct net_device_stats *
3133 e1000_get_stats(struct net_device *netdev)
3134 {
3135 struct e1000_adapter *adapter = netdev_priv(netdev);
3136
3137 /* only return the current stats */
3138 return &adapter->net_stats;
3139 }
3140
3141 /**
3142 * e1000_change_mtu - Change the Maximum Transfer Unit
3143 * @netdev: network interface device structure
3144 * @new_mtu: new value for maximum frame size
3145 *
3146 * Returns 0 on success, negative on failure
3147 **/
3148
3149 static int
3150 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3151 {
3152 struct e1000_adapter *adapter = netdev_priv(netdev);
3153 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3154 uint16_t eeprom_data = 0;
3155
3156 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3157 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3158 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3159 return -EINVAL;
3160 }
3161
3162 /* Adapter-specific max frame size limits. */
3163 switch (adapter->hw.mac_type) {
3164 case e1000_undefined ... e1000_82542_rev2_1:
3165 case e1000_ich8lan:
3166 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3167 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3168 return -EINVAL;
3169 }
3170 break;
3171 case e1000_82573:
3172 /* Jumbo Frames not supported if:
3173 * - this is not an 82573L device
3174 * - ASPM is enabled in any way (0x1A bits 3:2) */
3175 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3176 &eeprom_data);
3177 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3178 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3179 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3180 DPRINTK(PROBE, ERR,
3181 "Jumbo Frames not supported.\n");
3182 return -EINVAL;
3183 }
3184 break;
3185 }
3186 /* ERT will be enabled later to enable wire speed receives */
3187
3188 /* fall through to get support */
3189 case e1000_82571:
3190 case e1000_82572:
3191 case e1000_80003es2lan:
3192 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3193 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3194 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3195 return -EINVAL;
3196 }
3197 break;
3198 default:
3199 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3200 break;
3201 }
3202
3203 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3204 * means we reserve 2 more, this pushes us to allocate from the next
3205 * larger slab size
3206 * i.e. RXBUFFER_2048 --> size-4096 slab */
3207
3208 if (max_frame <= E1000_RXBUFFER_256)
3209 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3210 else if (max_frame <= E1000_RXBUFFER_512)
3211 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3212 else if (max_frame <= E1000_RXBUFFER_1024)
3213 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3214 else if (max_frame <= E1000_RXBUFFER_2048)
3215 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3216 else if (max_frame <= E1000_RXBUFFER_4096)
3217 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3218 else if (max_frame <= E1000_RXBUFFER_8192)
3219 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3220 else if (max_frame <= E1000_RXBUFFER_16384)
3221 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3222
3223 /* adjust allocation if LPE protects us, and we aren't using SBP */
3224 if (!adapter->hw.tbi_compatibility_on &&
3225 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3226 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3227 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3228
3229 netdev->mtu = new_mtu;
3230
3231 if (netif_running(netdev))
3232 e1000_reinit_locked(adapter);
3233
3234 adapter->hw.max_frame_size = max_frame;
3235
3236 return 0;
3237 }
3238
3239 /**
3240 * e1000_update_stats - Update the board statistics counters
3241 * @adapter: board private structure
3242 **/
3243
3244 void
3245 e1000_update_stats(struct e1000_adapter *adapter)
3246 {
3247 struct e1000_hw *hw = &adapter->hw;
3248 struct pci_dev *pdev = adapter->pdev;
3249 unsigned long flags;
3250 uint16_t phy_tmp;
3251
3252 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3253
3254 /*
3255 * Prevent stats update while adapter is being reset, or if the pci
3256 * connection is down.
3257 */
3258 if (adapter->link_speed == 0)
3259 return;
3260 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3261 return;
3262
3263 spin_lock_irqsave(&adapter->stats_lock, flags);
3264
3265 /* these counters are modified from e1000_adjust_tbi_stats,
3266 * called from the interrupt context, so they must only
3267 * be written while holding adapter->stats_lock
3268 */
3269
3270 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3271 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3272 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3273 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3274 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3275 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3276 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3277
3278 if (adapter->hw.mac_type != e1000_ich8lan) {
3279 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3280 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3281 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3282 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3283 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3284 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3285 }
3286
3287 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3288 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3289 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3290 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3291 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3292 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3293 adapter->stats.dc += E1000_READ_REG(hw, DC);
3294 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3295 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3296 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3297 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3298 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3299 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3300 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3301 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3302 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3303 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3304 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3305 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3306 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3307 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3308 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3309 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3310 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3311 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3312 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3313
3314 if (adapter->hw.mac_type != e1000_ich8lan) {
3315 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3316 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3317 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3318 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3319 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3320 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3321 }
3322
3323 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3324 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3325
3326 /* used for adaptive IFS */
3327
3328 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3329 adapter->stats.tpt += hw->tx_packet_delta;
3330 hw->collision_delta = E1000_READ_REG(hw, COLC);
3331 adapter->stats.colc += hw->collision_delta;
3332
3333 if (hw->mac_type >= e1000_82543) {
3334 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3335 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3336 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3337 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3338 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3339 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3340 }
3341 if (hw->mac_type > e1000_82547_rev_2) {
3342 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3343 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3344
3345 if (adapter->hw.mac_type != e1000_ich8lan) {
3346 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3347 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3348 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3349 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3350 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3351 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3352 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3353 }
3354 }
3355
3356 /* Fill out the OS statistics structure */
3357
3358 adapter->net_stats.rx_packets = adapter->stats.gprc;
3359 adapter->net_stats.tx_packets = adapter->stats.gptc;
3360 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3361 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3362 adapter->net_stats.multicast = adapter->stats.mprc;
3363 adapter->net_stats.collisions = adapter->stats.colc;
3364
3365 /* Rx Errors */
3366
3367 /* RLEC on some newer hardware can be incorrect so build
3368 * our own version based on RUC and ROC */
3369 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3370 adapter->stats.crcerrs + adapter->stats.algnerrc +
3371 adapter->stats.ruc + adapter->stats.roc +
3372 adapter->stats.cexterr;
3373 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3374 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3375 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3376 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3377 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3378
3379 /* Tx Errors */
3380 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3381 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3382 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3383 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3384 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3385
3386 /* Tx Dropped needs to be maintained elsewhere */
3387
3388 /* Phy Stats */
3389
3390 if (hw->media_type == e1000_media_type_copper) {
3391 if ((adapter->link_speed == SPEED_1000) &&
3392 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3393 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3394 adapter->phy_stats.idle_errors += phy_tmp;
3395 }
3396
3397 if ((hw->mac_type <= e1000_82546) &&
3398 (hw->phy_type == e1000_phy_m88) &&
3399 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3400 adapter->phy_stats.receive_errors += phy_tmp;
3401 }
3402
3403 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3404 }
3405
3406 /**
3407 * e1000_intr - Interrupt Handler
3408 * @irq: interrupt number
3409 * @data: pointer to a network interface device structure
3410 * @pt_regs: CPU registers structure
3411 **/
3412
3413 static irqreturn_t
3414 e1000_intr(int irq, void *data, struct pt_regs *regs)
3415 {
3416 struct net_device *netdev = data;
3417 struct e1000_adapter *adapter = netdev_priv(netdev);
3418 struct e1000_hw *hw = &adapter->hw;
3419 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3420 #ifndef CONFIG_E1000_NAPI
3421 int i;
3422 #else
3423 /* Interrupt Auto-Mask...upon reading ICR,
3424 * interrupts are masked. No need for the
3425 * IMC write, but it does mean we should
3426 * account for it ASAP. */
3427 if (likely(hw->mac_type >= e1000_82571))
3428 atomic_inc(&adapter->irq_sem);
3429 #endif
3430
3431 if (unlikely(!icr)) {
3432 #ifdef CONFIG_E1000_NAPI
3433 if (hw->mac_type >= e1000_82571)
3434 e1000_irq_enable(adapter);
3435 #endif
3436 return IRQ_NONE; /* Not our interrupt */
3437 }
3438
3439 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3440 hw->get_link_status = 1;
3441 /* 80003ES2LAN workaround--
3442 * For packet buffer work-around on link down event;
3443 * disable receives here in the ISR and
3444 * reset adapter in watchdog
3445 */
3446 if (netif_carrier_ok(netdev) &&
3447 (adapter->hw.mac_type == e1000_80003es2lan)) {
3448 /* disable receives */
3449 rctl = E1000_READ_REG(hw, RCTL);
3450 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3451 }
3452 mod_timer(&adapter->watchdog_timer, jiffies);
3453 }
3454
3455 #ifdef CONFIG_E1000_NAPI
3456 if (unlikely(hw->mac_type < e1000_82571)) {
3457 atomic_inc(&adapter->irq_sem);
3458 E1000_WRITE_REG(hw, IMC, ~0);
3459 E1000_WRITE_FLUSH(hw);
3460 }
3461 if (likely(netif_rx_schedule_prep(netdev)))
3462 __netif_rx_schedule(netdev);
3463 else
3464 e1000_irq_enable(adapter);
3465 #else
3466 /* Writing IMC and IMS is needed for 82547.
3467 * Due to Hub Link bus being occupied, an interrupt
3468 * de-assertion message is not able to be sent.
3469 * When an interrupt assertion message is generated later,
3470 * two messages are re-ordered and sent out.
3471 * That causes APIC to think 82547 is in de-assertion
3472 * state, while 82547 is in assertion state, resulting
3473 * in dead lock. Writing IMC forces 82547 into
3474 * de-assertion state.
3475 */
3476 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3477 atomic_inc(&adapter->irq_sem);
3478 E1000_WRITE_REG(hw, IMC, ~0);
3479 }
3480
3481 for (i = 0; i < E1000_MAX_INTR; i++)
3482 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3483 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3484 break;
3485
3486 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3487 e1000_irq_enable(adapter);
3488
3489 #endif
3490
3491 return IRQ_HANDLED;
3492 }
3493
3494 #ifdef CONFIG_E1000_NAPI
3495 /**
3496 * e1000_clean - NAPI Rx polling callback
3497 * @adapter: board private structure
3498 **/
3499
3500 static int
3501 e1000_clean(struct net_device *poll_dev, int *budget)
3502 {
3503 struct e1000_adapter *adapter;
3504 int work_to_do = min(*budget, poll_dev->quota);
3505 int tx_cleaned = 0, work_done = 0;
3506
3507 /* Must NOT use netdev_priv macro here. */
3508 adapter = poll_dev->priv;
3509
3510 /* Keep link state information with original netdev */
3511 if (!netif_carrier_ok(poll_dev))
3512 goto quit_polling;
3513
3514 /* e1000_clean is called per-cpu. This lock protects
3515 * tx_ring[0] from being cleaned by multiple cpus
3516 * simultaneously. A failure obtaining the lock means
3517 * tx_ring[0] is currently being cleaned anyway. */
3518 if (spin_trylock(&adapter->tx_queue_lock)) {
3519 tx_cleaned = e1000_clean_tx_irq(adapter,
3520 &adapter->tx_ring[0]);
3521 spin_unlock(&adapter->tx_queue_lock);
3522 }
3523
3524 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3525 &work_done, work_to_do);
3526
3527 *budget -= work_done;
3528 poll_dev->quota -= work_done;
3529
3530 /* If no Tx and not enough Rx work done, exit the polling mode */
3531 if ((!tx_cleaned && (work_done == 0)) ||
3532 !netif_running(poll_dev)) {
3533 quit_polling:
3534 netif_rx_complete(poll_dev);
3535 e1000_irq_enable(adapter);
3536 return 0;
3537 }
3538
3539 return 1;
3540 }
3541
3542 #endif
3543 /**
3544 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3545 * @adapter: board private structure
3546 **/
3547
3548 static boolean_t
3549 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3550 struct e1000_tx_ring *tx_ring)
3551 {
3552 struct net_device *netdev = adapter->netdev;
3553 struct e1000_tx_desc *tx_desc, *eop_desc;
3554 struct e1000_buffer *buffer_info;
3555 unsigned int i, eop;
3556 #ifdef CONFIG_E1000_NAPI
3557 unsigned int count = 0;
3558 #endif
3559 boolean_t cleaned = FALSE;
3560
3561 i = tx_ring->next_to_clean;
3562 eop = tx_ring->buffer_info[i].next_to_watch;
3563 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3564
3565 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3566 for (cleaned = FALSE; !cleaned; ) {
3567 tx_desc = E1000_TX_DESC(*tx_ring, i);
3568 buffer_info = &tx_ring->buffer_info[i];
3569 cleaned = (i == eop);
3570
3571 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3572 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3573
3574 if (unlikely(++i == tx_ring->count)) i = 0;
3575 }
3576
3577
3578 eop = tx_ring->buffer_info[i].next_to_watch;
3579 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3580 #ifdef CONFIG_E1000_NAPI
3581 #define E1000_TX_WEIGHT 64
3582 /* weight of a sort for tx, to avoid endless transmit cleanup */
3583 if (count++ == E1000_TX_WEIGHT) break;
3584 #endif
3585 }
3586
3587 tx_ring->next_to_clean = i;
3588
3589 #define TX_WAKE_THRESHOLD 32
3590 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3591 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3592 /* Make sure that anybody stopping the queue after this
3593 * sees the new next_to_clean.
3594 */
3595 smp_mb();
3596 if (netif_queue_stopped(netdev))
3597 netif_wake_queue(netdev);
3598 }
3599
3600 if (adapter->detect_tx_hung) {
3601 /* Detect a transmit hang in hardware, this serializes the
3602 * check with the clearing of time_stamp and movement of i */
3603 adapter->detect_tx_hung = FALSE;
3604 if (tx_ring->buffer_info[eop].dma &&
3605 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3606 (adapter->tx_timeout_factor * HZ))
3607 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3608 E1000_STATUS_TXOFF)) {
3609
3610 /* detected Tx unit hang */
3611 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3612 " Tx Queue <%lu>\n"
3613 " TDH <%x>\n"
3614 " TDT <%x>\n"
3615 " next_to_use <%x>\n"
3616 " next_to_clean <%x>\n"
3617 "buffer_info[next_to_clean]\n"
3618 " time_stamp <%lx>\n"
3619 " next_to_watch <%x>\n"
3620 " jiffies <%lx>\n"
3621 " next_to_watch.status <%x>\n",
3622 (unsigned long)((tx_ring - adapter->tx_ring) /
3623 sizeof(struct e1000_tx_ring)),
3624 readl(adapter->hw.hw_addr + tx_ring->tdh),
3625 readl(adapter->hw.hw_addr + tx_ring->tdt),
3626 tx_ring->next_to_use,
3627 tx_ring->next_to_clean,
3628 tx_ring->buffer_info[eop].time_stamp,
3629 eop,
3630 jiffies,
3631 eop_desc->upper.fields.status);
3632 netif_stop_queue(netdev);
3633 }
3634 }
3635 return cleaned;
3636 }
3637
3638 /**
3639 * e1000_rx_checksum - Receive Checksum Offload for 82543
3640 * @adapter: board private structure
3641 * @status_err: receive descriptor status and error fields
3642 * @csum: receive descriptor csum field
3643 * @sk_buff: socket buffer with received data
3644 **/
3645
3646 static void
3647 e1000_rx_checksum(struct e1000_adapter *adapter,
3648 uint32_t status_err, uint32_t csum,
3649 struct sk_buff *skb)
3650 {
3651 uint16_t status = (uint16_t)status_err;
3652 uint8_t errors = (uint8_t)(status_err >> 24);
3653 skb->ip_summed = CHECKSUM_NONE;
3654
3655 /* 82543 or newer only */
3656 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3657 /* Ignore Checksum bit is set */
3658 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3659 /* TCP/UDP checksum error bit is set */
3660 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3661 /* let the stack verify checksum errors */
3662 adapter->hw_csum_err++;
3663 return;
3664 }
3665 /* TCP/UDP Checksum has not been calculated */
3666 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3667 if (!(status & E1000_RXD_STAT_TCPCS))
3668 return;
3669 } else {
3670 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3671 return;
3672 }
3673 /* It must be a TCP or UDP packet with a valid checksum */
3674 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3675 /* TCP checksum is good */
3676 skb->ip_summed = CHECKSUM_UNNECESSARY;
3677 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3678 /* IP fragment with UDP payload */
3679 /* Hardware complements the payload checksum, so we undo it
3680 * and then put the value in host order for further stack use.
3681 */
3682 csum = ntohl(csum ^ 0xFFFF);
3683 skb->csum = csum;
3684 skb->ip_summed = CHECKSUM_COMPLETE;
3685 }
3686 adapter->hw_csum_good++;
3687 }
3688
3689 /**
3690 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3691 * @adapter: board private structure
3692 **/
3693
3694 static boolean_t
3695 #ifdef CONFIG_E1000_NAPI
3696 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3697 struct e1000_rx_ring *rx_ring,
3698 int *work_done, int work_to_do)
3699 #else
3700 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3701 struct e1000_rx_ring *rx_ring)
3702 #endif
3703 {
3704 struct net_device *netdev = adapter->netdev;
3705 struct pci_dev *pdev = adapter->pdev;
3706 struct e1000_rx_desc *rx_desc, *next_rxd;
3707 struct e1000_buffer *buffer_info, *next_buffer;
3708 unsigned long flags;
3709 uint32_t length;
3710 uint8_t last_byte;
3711 unsigned int i;
3712 int cleaned_count = 0;
3713 boolean_t cleaned = FALSE;
3714
3715 i = rx_ring->next_to_clean;
3716 rx_desc = E1000_RX_DESC(*rx_ring, i);
3717 buffer_info = &rx_ring->buffer_info[i];
3718
3719 while (rx_desc->status & E1000_RXD_STAT_DD) {
3720 struct sk_buff *skb;
3721 u8 status;
3722 #ifdef CONFIG_E1000_NAPI
3723 if (*work_done >= work_to_do)
3724 break;
3725 (*work_done)++;
3726 #endif
3727 status = rx_desc->status;
3728 skb = buffer_info->skb;
3729 buffer_info->skb = NULL;
3730
3731 prefetch(skb->data - NET_IP_ALIGN);
3732
3733 if (++i == rx_ring->count) i = 0;
3734 next_rxd = E1000_RX_DESC(*rx_ring, i);
3735 prefetch(next_rxd);
3736
3737 next_buffer = &rx_ring->buffer_info[i];
3738
3739 cleaned = TRUE;
3740 cleaned_count++;
3741 pci_unmap_single(pdev,
3742 buffer_info->dma,
3743 buffer_info->length,
3744 PCI_DMA_FROMDEVICE);
3745
3746 length = le16_to_cpu(rx_desc->length);
3747
3748 /* adjust length to remove Ethernet CRC */
3749 length -= 4;
3750
3751 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3752 /* All receives must fit into a single buffer */
3753 E1000_DBG("%s: Receive packet consumed multiple"
3754 " buffers\n", netdev->name);
3755 /* recycle */
3756 buffer_info->skb = skb;
3757 goto next_desc;
3758 }
3759
3760 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3761 last_byte = *(skb->data + length - 1);
3762 if (TBI_ACCEPT(&adapter->hw, status,
3763 rx_desc->errors, length, last_byte)) {
3764 spin_lock_irqsave(&adapter->stats_lock, flags);
3765 e1000_tbi_adjust_stats(&adapter->hw,
3766 &adapter->stats,
3767 length, skb->data);
3768 spin_unlock_irqrestore(&adapter->stats_lock,
3769 flags);
3770 length--;
3771 } else {
3772 /* recycle */
3773 buffer_info->skb = skb;
3774 goto next_desc;
3775 }
3776 }
3777
3778 /* code added for copybreak, this should improve
3779 * performance for small packets with large amounts
3780 * of reassembly being done in the stack */
3781 #define E1000_CB_LENGTH 256
3782 if (length < E1000_CB_LENGTH) {
3783 struct sk_buff *new_skb =
3784 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3785 if (new_skb) {
3786 skb_reserve(new_skb, NET_IP_ALIGN);
3787 memcpy(new_skb->data - NET_IP_ALIGN,
3788 skb->data - NET_IP_ALIGN,
3789 length + NET_IP_ALIGN);
3790 /* save the skb in buffer_info as good */
3791 buffer_info->skb = skb;
3792 skb = new_skb;
3793 skb_put(skb, length);
3794 }
3795 } else
3796 skb_put(skb, length);
3797
3798 /* end copybreak code */
3799
3800 /* Receive Checksum Offload */
3801 e1000_rx_checksum(adapter,
3802 (uint32_t)(status) |
3803 ((uint32_t)(rx_desc->errors) << 24),
3804 le16_to_cpu(rx_desc->csum), skb);
3805
3806 skb->protocol = eth_type_trans(skb, netdev);
3807 #ifdef CONFIG_E1000_NAPI
3808 if (unlikely(adapter->vlgrp &&
3809 (status & E1000_RXD_STAT_VP))) {
3810 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3811 le16_to_cpu(rx_desc->special) &
3812 E1000_RXD_SPC_VLAN_MASK);
3813 } else {
3814 netif_receive_skb(skb);
3815 }
3816 #else /* CONFIG_E1000_NAPI */
3817 if (unlikely(adapter->vlgrp &&
3818 (status & E1000_RXD_STAT_VP))) {
3819 vlan_hwaccel_rx(skb, adapter->vlgrp,
3820 le16_to_cpu(rx_desc->special) &
3821 E1000_RXD_SPC_VLAN_MASK);
3822 } else {
3823 netif_rx(skb);
3824 }
3825 #endif /* CONFIG_E1000_NAPI */
3826 netdev->last_rx = jiffies;
3827
3828 next_desc:
3829 rx_desc->status = 0;
3830
3831 /* return some buffers to hardware, one at a time is too slow */
3832 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3833 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3834 cleaned_count = 0;
3835 }
3836
3837 /* use prefetched values */
3838 rx_desc = next_rxd;
3839 buffer_info = next_buffer;
3840 }
3841 rx_ring->next_to_clean = i;
3842
3843 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3844 if (cleaned_count)
3845 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3846
3847 return cleaned;
3848 }
3849
3850 /**
3851 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3852 * @adapter: board private structure
3853 **/
3854
3855 static boolean_t
3856 #ifdef CONFIG_E1000_NAPI
3857 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3858 struct e1000_rx_ring *rx_ring,
3859 int *work_done, int work_to_do)
3860 #else
3861 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3862 struct e1000_rx_ring *rx_ring)
3863 #endif
3864 {
3865 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3866 struct net_device *netdev = adapter->netdev;
3867 struct pci_dev *pdev = adapter->pdev;
3868 struct e1000_buffer *buffer_info, *next_buffer;
3869 struct e1000_ps_page *ps_page;
3870 struct e1000_ps_page_dma *ps_page_dma;
3871 struct sk_buff *skb;
3872 unsigned int i, j;
3873 uint32_t length, staterr;
3874 int cleaned_count = 0;
3875 boolean_t cleaned = FALSE;
3876
3877 i = rx_ring->next_to_clean;
3878 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3879 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3880 buffer_info = &rx_ring->buffer_info[i];
3881
3882 while (staterr & E1000_RXD_STAT_DD) {
3883 ps_page = &rx_ring->ps_page[i];
3884 ps_page_dma = &rx_ring->ps_page_dma[i];
3885 #ifdef CONFIG_E1000_NAPI
3886 if (unlikely(*work_done >= work_to_do))
3887 break;
3888 (*work_done)++;
3889 #endif
3890 skb = buffer_info->skb;
3891
3892 /* in the packet split case this is header only */
3893 prefetch(skb->data - NET_IP_ALIGN);
3894
3895 if (++i == rx_ring->count) i = 0;
3896 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3897 prefetch(next_rxd);
3898
3899 next_buffer = &rx_ring->buffer_info[i];
3900
3901 cleaned = TRUE;
3902 cleaned_count++;
3903 pci_unmap_single(pdev, buffer_info->dma,
3904 buffer_info->length,
3905 PCI_DMA_FROMDEVICE);
3906
3907 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3908 E1000_DBG("%s: Packet Split buffers didn't pick up"
3909 " the full packet\n", netdev->name);
3910 dev_kfree_skb_irq(skb);
3911 goto next_desc;
3912 }
3913
3914 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3915 dev_kfree_skb_irq(skb);
3916 goto next_desc;
3917 }
3918
3919 length = le16_to_cpu(rx_desc->wb.middle.length0);
3920
3921 if (unlikely(!length)) {
3922 E1000_DBG("%s: Last part of the packet spanning"
3923 " multiple descriptors\n", netdev->name);
3924 dev_kfree_skb_irq(skb);
3925 goto next_desc;
3926 }
3927
3928 /* Good Receive */
3929 skb_put(skb, length);
3930
3931 {
3932 /* this looks ugly, but it seems compiler issues make it
3933 more efficient than reusing j */
3934 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3935
3936 /* page alloc/put takes too long and effects small packet
3937 * throughput, so unsplit small packets and save the alloc/put*/
3938 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3939 u8 *vaddr;
3940 /* there is no documentation about how to call
3941 * kmap_atomic, so we can't hold the mapping
3942 * very long */
3943 pci_dma_sync_single_for_cpu(pdev,
3944 ps_page_dma->ps_page_dma[0],
3945 PAGE_SIZE,
3946 PCI_DMA_FROMDEVICE);
3947 vaddr = kmap_atomic(ps_page->ps_page[0],
3948 KM_SKB_DATA_SOFTIRQ);
3949 memcpy(skb->tail, vaddr, l1);
3950 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3951 pci_dma_sync_single_for_device(pdev,
3952 ps_page_dma->ps_page_dma[0],
3953 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3954 /* remove the CRC */
3955 l1 -= 4;
3956 skb_put(skb, l1);
3957 goto copydone;
3958 } /* if */
3959 }
3960
3961 for (j = 0; j < adapter->rx_ps_pages; j++) {
3962 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3963 break;
3964 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3965 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3966 ps_page_dma->ps_page_dma[j] = 0;
3967 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3968 length);
3969 ps_page->ps_page[j] = NULL;
3970 skb->len += length;
3971 skb->data_len += length;
3972 skb->truesize += length;
3973 }
3974
3975 /* strip the ethernet crc, problem is we're using pages now so
3976 * this whole operation can get a little cpu intensive */
3977 pskb_trim(skb, skb->len - 4);
3978
3979 copydone:
3980 e1000_rx_checksum(adapter, staterr,
3981 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3982 skb->protocol = eth_type_trans(skb, netdev);
3983
3984 if (likely(rx_desc->wb.upper.header_status &
3985 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3986 adapter->rx_hdr_split++;
3987 #ifdef CONFIG_E1000_NAPI
3988 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3989 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3990 le16_to_cpu(rx_desc->wb.middle.vlan) &
3991 E1000_RXD_SPC_VLAN_MASK);
3992 } else {
3993 netif_receive_skb(skb);
3994 }
3995 #else /* CONFIG_E1000_NAPI */
3996 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3997 vlan_hwaccel_rx(skb, adapter->vlgrp,
3998 le16_to_cpu(rx_desc->wb.middle.vlan) &
3999 E1000_RXD_SPC_VLAN_MASK);
4000 } else {
4001 netif_rx(skb);
4002 }
4003 #endif /* CONFIG_E1000_NAPI */
4004 netdev->last_rx = jiffies;
4005
4006 next_desc:
4007 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4008 buffer_info->skb = NULL;
4009
4010 /* return some buffers to hardware, one at a time is too slow */
4011 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4012 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4013 cleaned_count = 0;
4014 }
4015
4016 /* use prefetched values */
4017 rx_desc = next_rxd;
4018 buffer_info = next_buffer;
4019
4020 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4021 }
4022 rx_ring->next_to_clean = i;
4023
4024 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4025 if (cleaned_count)
4026 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4027
4028 return cleaned;
4029 }
4030
4031 /**
4032 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4033 * @adapter: address of board private structure
4034 **/
4035
4036 static void
4037 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4038 struct e1000_rx_ring *rx_ring,
4039 int cleaned_count)
4040 {
4041 struct net_device *netdev = adapter->netdev;
4042 struct pci_dev *pdev = adapter->pdev;
4043 struct e1000_rx_desc *rx_desc;
4044 struct e1000_buffer *buffer_info;
4045 struct sk_buff *skb;
4046 unsigned int i;
4047 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4048
4049 i = rx_ring->next_to_use;
4050 buffer_info = &rx_ring->buffer_info[i];
4051
4052 while (cleaned_count--) {
4053 skb = buffer_info->skb;
4054 if (skb) {
4055 skb_trim(skb, 0);
4056 goto map_skb;
4057 }
4058
4059 skb = netdev_alloc_skb(netdev, bufsz);
4060 if (unlikely(!skb)) {
4061 /* Better luck next round */
4062 adapter->alloc_rx_buff_failed++;
4063 break;
4064 }
4065
4066 /* Fix for errata 23, can't cross 64kB boundary */
4067 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4068 struct sk_buff *oldskb = skb;
4069 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4070 "at %p\n", bufsz, skb->data);
4071 /* Try again, without freeing the previous */
4072 skb = netdev_alloc_skb(netdev, bufsz);
4073 /* Failed allocation, critical failure */
4074 if (!skb) {
4075 dev_kfree_skb(oldskb);
4076 break;
4077 }
4078
4079 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4080 /* give up */
4081 dev_kfree_skb(skb);
4082 dev_kfree_skb(oldskb);
4083 break; /* while !buffer_info->skb */
4084 }
4085
4086 /* Use new allocation */
4087 dev_kfree_skb(oldskb);
4088 }
4089 /* Make buffer alignment 2 beyond a 16 byte boundary
4090 * this will result in a 16 byte aligned IP header after
4091 * the 14 byte MAC header is removed
4092 */
4093 skb_reserve(skb, NET_IP_ALIGN);
4094
4095 buffer_info->skb = skb;
4096 buffer_info->length = adapter->rx_buffer_len;
4097 map_skb:
4098 buffer_info->dma = pci_map_single(pdev,
4099 skb->data,
4100 adapter->rx_buffer_len,
4101 PCI_DMA_FROMDEVICE);
4102
4103 /* Fix for errata 23, can't cross 64kB boundary */
4104 if (!e1000_check_64k_bound(adapter,
4105 (void *)(unsigned long)buffer_info->dma,
4106 adapter->rx_buffer_len)) {
4107 DPRINTK(RX_ERR, ERR,
4108 "dma align check failed: %u bytes at %p\n",
4109 adapter->rx_buffer_len,
4110 (void *)(unsigned long)buffer_info->dma);
4111 dev_kfree_skb(skb);
4112 buffer_info->skb = NULL;
4113
4114 pci_unmap_single(pdev, buffer_info->dma,
4115 adapter->rx_buffer_len,
4116 PCI_DMA_FROMDEVICE);
4117
4118 break; /* while !buffer_info->skb */
4119 }
4120 rx_desc = E1000_RX_DESC(*rx_ring, i);
4121 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4122
4123 if (unlikely(++i == rx_ring->count))
4124 i = 0;
4125 buffer_info = &rx_ring->buffer_info[i];
4126 }
4127
4128 if (likely(rx_ring->next_to_use != i)) {
4129 rx_ring->next_to_use = i;
4130 if (unlikely(i-- == 0))
4131 i = (rx_ring->count - 1);
4132
4133 /* Force memory writes to complete before letting h/w
4134 * know there are new descriptors to fetch. (Only
4135 * applicable for weak-ordered memory model archs,
4136 * such as IA-64). */
4137 wmb();
4138 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4139 }
4140 }
4141
4142 /**
4143 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4144 * @adapter: address of board private structure
4145 **/
4146
4147 static void
4148 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4149 struct e1000_rx_ring *rx_ring,
4150 int cleaned_count)
4151 {
4152 struct net_device *netdev = adapter->netdev;
4153 struct pci_dev *pdev = adapter->pdev;
4154 union e1000_rx_desc_packet_split *rx_desc;
4155 struct e1000_buffer *buffer_info;
4156 struct e1000_ps_page *ps_page;
4157 struct e1000_ps_page_dma *ps_page_dma;
4158 struct sk_buff *skb;
4159 unsigned int i, j;
4160
4161 i = rx_ring->next_to_use;
4162 buffer_info = &rx_ring->buffer_info[i];
4163 ps_page = &rx_ring->ps_page[i];
4164 ps_page_dma = &rx_ring->ps_page_dma[i];
4165
4166 while (cleaned_count--) {
4167 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4168
4169 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4170 if (j < adapter->rx_ps_pages) {
4171 if (likely(!ps_page->ps_page[j])) {
4172 ps_page->ps_page[j] =
4173 alloc_page(GFP_ATOMIC);
4174 if (unlikely(!ps_page->ps_page[j])) {
4175 adapter->alloc_rx_buff_failed++;
4176 goto no_buffers;
4177 }
4178 ps_page_dma->ps_page_dma[j] =
4179 pci_map_page(pdev,
4180 ps_page->ps_page[j],
4181 0, PAGE_SIZE,
4182 PCI_DMA_FROMDEVICE);
4183 }
4184 /* Refresh the desc even if buffer_addrs didn't
4185 * change because each write-back erases
4186 * this info.
4187 */
4188 rx_desc->read.buffer_addr[j+1] =
4189 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4190 } else
4191 rx_desc->read.buffer_addr[j+1] = ~0;
4192 }
4193
4194 skb = netdev_alloc_skb(netdev,
4195 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4196
4197 if (unlikely(!skb)) {
4198 adapter->alloc_rx_buff_failed++;
4199 break;
4200 }
4201
4202 /* Make buffer alignment 2 beyond a 16 byte boundary
4203 * this will result in a 16 byte aligned IP header after
4204 * the 14 byte MAC header is removed
4205 */
4206 skb_reserve(skb, NET_IP_ALIGN);
4207
4208 buffer_info->skb = skb;
4209 buffer_info->length = adapter->rx_ps_bsize0;
4210 buffer_info->dma = pci_map_single(pdev, skb->data,
4211 adapter->rx_ps_bsize0,
4212 PCI_DMA_FROMDEVICE);
4213
4214 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4215
4216 if (unlikely(++i == rx_ring->count)) i = 0;
4217 buffer_info = &rx_ring->buffer_info[i];
4218 ps_page = &rx_ring->ps_page[i];
4219 ps_page_dma = &rx_ring->ps_page_dma[i];
4220 }
4221
4222 no_buffers:
4223 if (likely(rx_ring->next_to_use != i)) {
4224 rx_ring->next_to_use = i;
4225 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4226
4227 /* Force memory writes to complete before letting h/w
4228 * know there are new descriptors to fetch. (Only
4229 * applicable for weak-ordered memory model archs,
4230 * such as IA-64). */
4231 wmb();
4232 /* Hardware increments by 16 bytes, but packet split
4233 * descriptors are 32 bytes...so we increment tail
4234 * twice as much.
4235 */
4236 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4237 }
4238 }
4239
4240 /**
4241 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4242 * @adapter:
4243 **/
4244
4245 static void
4246 e1000_smartspeed(struct e1000_adapter *adapter)
4247 {
4248 uint16_t phy_status;
4249 uint16_t phy_ctrl;
4250
4251 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4252 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4253 return;
4254
4255 if (adapter->smartspeed == 0) {
4256 /* If Master/Slave config fault is asserted twice,
4257 * we assume back-to-back */
4258 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4259 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4260 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4261 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4262 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4263 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4264 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4265 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4266 phy_ctrl);
4267 adapter->smartspeed++;
4268 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4269 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4270 &phy_ctrl)) {
4271 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4272 MII_CR_RESTART_AUTO_NEG);
4273 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4274 phy_ctrl);
4275 }
4276 }
4277 return;
4278 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4279 /* If still no link, perhaps using 2/3 pair cable */
4280 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4281 phy_ctrl |= CR_1000T_MS_ENABLE;
4282 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4283 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4284 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4285 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4286 MII_CR_RESTART_AUTO_NEG);
4287 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4288 }
4289 }
4290 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4291 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4292 adapter->smartspeed = 0;
4293 }
4294
4295 /**
4296 * e1000_ioctl -
4297 * @netdev:
4298 * @ifreq:
4299 * @cmd:
4300 **/
4301
4302 static int
4303 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4304 {
4305 switch (cmd) {
4306 case SIOCGMIIPHY:
4307 case SIOCGMIIREG:
4308 case SIOCSMIIREG:
4309 return e1000_mii_ioctl(netdev, ifr, cmd);
4310 default:
4311 return -EOPNOTSUPP;
4312 }
4313 }
4314
4315 /**
4316 * e1000_mii_ioctl -
4317 * @netdev:
4318 * @ifreq:
4319 * @cmd:
4320 **/
4321
4322 static int
4323 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4324 {
4325 struct e1000_adapter *adapter = netdev_priv(netdev);
4326 struct mii_ioctl_data *data = if_mii(ifr);
4327 int retval;
4328 uint16_t mii_reg;
4329 uint16_t spddplx;
4330 unsigned long flags;
4331
4332 if (adapter->hw.media_type != e1000_media_type_copper)
4333 return -EOPNOTSUPP;
4334
4335 switch (cmd) {
4336 case SIOCGMIIPHY:
4337 data->phy_id = adapter->hw.phy_addr;
4338 break;
4339 case SIOCGMIIREG:
4340 if (!capable(CAP_NET_ADMIN))
4341 return -EPERM;
4342 spin_lock_irqsave(&adapter->stats_lock, flags);
4343 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4344 &data->val_out)) {
4345 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4346 return -EIO;
4347 }
4348 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4349 break;
4350 case SIOCSMIIREG:
4351 if (!capable(CAP_NET_ADMIN))
4352 return -EPERM;
4353 if (data->reg_num & ~(0x1F))
4354 return -EFAULT;
4355 mii_reg = data->val_in;
4356 spin_lock_irqsave(&adapter->stats_lock, flags);
4357 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4358 mii_reg)) {
4359 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4360 return -EIO;
4361 }
4362 if (adapter->hw.media_type == e1000_media_type_copper) {
4363 switch (data->reg_num) {
4364 case PHY_CTRL:
4365 if (mii_reg & MII_CR_POWER_DOWN)
4366 break;
4367 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4368 adapter->hw.autoneg = 1;
4369 adapter->hw.autoneg_advertised = 0x2F;
4370 } else {
4371 if (mii_reg & 0x40)
4372 spddplx = SPEED_1000;
4373 else if (mii_reg & 0x2000)
4374 spddplx = SPEED_100;
4375 else
4376 spddplx = SPEED_10;
4377 spddplx += (mii_reg & 0x100)
4378 ? DUPLEX_FULL :
4379 DUPLEX_HALF;
4380 retval = e1000_set_spd_dplx(adapter,
4381 spddplx);
4382 if (retval) {
4383 spin_unlock_irqrestore(
4384 &adapter->stats_lock,
4385 flags);
4386 return retval;
4387 }
4388 }
4389 if (netif_running(adapter->netdev))
4390 e1000_reinit_locked(adapter);
4391 else
4392 e1000_reset(adapter);
4393 break;
4394 case M88E1000_PHY_SPEC_CTRL:
4395 case M88E1000_EXT_PHY_SPEC_CTRL:
4396 if (e1000_phy_reset(&adapter->hw)) {
4397 spin_unlock_irqrestore(
4398 &adapter->stats_lock, flags);
4399 return -EIO;
4400 }
4401 break;
4402 }
4403 } else {
4404 switch (data->reg_num) {
4405 case PHY_CTRL:
4406 if (mii_reg & MII_CR_POWER_DOWN)
4407 break;
4408 if (netif_running(adapter->netdev))
4409 e1000_reinit_locked(adapter);
4410 else
4411 e1000_reset(adapter);
4412 break;
4413 }
4414 }
4415 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4416 break;
4417 default:
4418 return -EOPNOTSUPP;
4419 }
4420 return E1000_SUCCESS;
4421 }
4422
4423 void
4424 e1000_pci_set_mwi(struct e1000_hw *hw)
4425 {
4426 struct e1000_adapter *adapter = hw->back;
4427 int ret_val = pci_set_mwi(adapter->pdev);
4428
4429 if (ret_val)
4430 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4431 }
4432
4433 void
4434 e1000_pci_clear_mwi(struct e1000_hw *hw)
4435 {
4436 struct e1000_adapter *adapter = hw->back;
4437
4438 pci_clear_mwi(adapter->pdev);
4439 }
4440
4441 void
4442 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4443 {
4444 struct e1000_adapter *adapter = hw->back;
4445
4446 pci_read_config_word(adapter->pdev, reg, value);
4447 }
4448
4449 void
4450 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4451 {
4452 struct e1000_adapter *adapter = hw->back;
4453
4454 pci_write_config_word(adapter->pdev, reg, *value);
4455 }
4456
4457 void
4458 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4459 {
4460 outl(value, port);
4461 }
4462
4463 static void
4464 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4465 {
4466 struct e1000_adapter *adapter = netdev_priv(netdev);
4467 uint32_t ctrl, rctl;
4468
4469 e1000_irq_disable(adapter);
4470 adapter->vlgrp = grp;
4471
4472 if (grp) {
4473 /* enable VLAN tag insert/strip */
4474 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4475 ctrl |= E1000_CTRL_VME;
4476 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4477
4478 if (adapter->hw.mac_type != e1000_ich8lan) {
4479 /* enable VLAN receive filtering */
4480 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4481 rctl |= E1000_RCTL_VFE;
4482 rctl &= ~E1000_RCTL_CFIEN;
4483 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4484 e1000_update_mng_vlan(adapter);
4485 }
4486 } else {
4487 /* disable VLAN tag insert/strip */
4488 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4489 ctrl &= ~E1000_CTRL_VME;
4490 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4491
4492 if (adapter->hw.mac_type != e1000_ich8lan) {
4493 /* disable VLAN filtering */
4494 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4495 rctl &= ~E1000_RCTL_VFE;
4496 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4497 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4498 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4499 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4500 }
4501 }
4502 }
4503
4504 e1000_irq_enable(adapter);
4505 }
4506
4507 static void
4508 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4509 {
4510 struct e1000_adapter *adapter = netdev_priv(netdev);
4511 uint32_t vfta, index;
4512
4513 if ((adapter->hw.mng_cookie.status &
4514 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4515 (vid == adapter->mng_vlan_id))
4516 return;
4517 /* add VID to filter table */
4518 index = (vid >> 5) & 0x7F;
4519 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4520 vfta |= (1 << (vid & 0x1F));
4521 e1000_write_vfta(&adapter->hw, index, vfta);
4522 }
4523
4524 static void
4525 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4526 {
4527 struct e1000_adapter *adapter = netdev_priv(netdev);
4528 uint32_t vfta, index;
4529
4530 e1000_irq_disable(adapter);
4531
4532 if (adapter->vlgrp)
4533 adapter->vlgrp->vlan_devices[vid] = NULL;
4534
4535 e1000_irq_enable(adapter);
4536
4537 if ((adapter->hw.mng_cookie.status &
4538 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4539 (vid == adapter->mng_vlan_id)) {
4540 /* release control to f/w */
4541 e1000_release_hw_control(adapter);
4542 return;
4543 }
4544
4545 /* remove VID from filter table */
4546 index = (vid >> 5) & 0x7F;
4547 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4548 vfta &= ~(1 << (vid & 0x1F));
4549 e1000_write_vfta(&adapter->hw, index, vfta);
4550 }
4551
4552 static void
4553 e1000_restore_vlan(struct e1000_adapter *adapter)
4554 {
4555 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4556
4557 if (adapter->vlgrp) {
4558 uint16_t vid;
4559 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4560 if (!adapter->vlgrp->vlan_devices[vid])
4561 continue;
4562 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4563 }
4564 }
4565 }
4566
4567 int
4568 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4569 {
4570 adapter->hw.autoneg = 0;
4571
4572 /* Fiber NICs only allow 1000 gbps Full duplex */
4573 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4574 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4575 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4576 return -EINVAL;
4577 }
4578
4579 switch (spddplx) {
4580 case SPEED_10 + DUPLEX_HALF:
4581 adapter->hw.forced_speed_duplex = e1000_10_half;
4582 break;
4583 case SPEED_10 + DUPLEX_FULL:
4584 adapter->hw.forced_speed_duplex = e1000_10_full;
4585 break;
4586 case SPEED_100 + DUPLEX_HALF:
4587 adapter->hw.forced_speed_duplex = e1000_100_half;
4588 break;
4589 case SPEED_100 + DUPLEX_FULL:
4590 adapter->hw.forced_speed_duplex = e1000_100_full;
4591 break;
4592 case SPEED_1000 + DUPLEX_FULL:
4593 adapter->hw.autoneg = 1;
4594 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4595 break;
4596 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4597 default:
4598 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4599 return -EINVAL;
4600 }
4601 return 0;
4602 }
4603
4604 #ifdef CONFIG_PM
4605 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4606 * bus we're on (PCI(X) vs. PCI-E)
4607 */
4608 #define PCIE_CONFIG_SPACE_LEN 256
4609 #define PCI_CONFIG_SPACE_LEN 64
4610 static int
4611 e1000_pci_save_state(struct e1000_adapter *adapter)
4612 {
4613 struct pci_dev *dev = adapter->pdev;
4614 int size;
4615 int i;
4616
4617 if (adapter->hw.mac_type >= e1000_82571)
4618 size = PCIE_CONFIG_SPACE_LEN;
4619 else
4620 size = PCI_CONFIG_SPACE_LEN;
4621
4622 WARN_ON(adapter->config_space != NULL);
4623
4624 adapter->config_space = kmalloc(size, GFP_KERNEL);
4625 if (!adapter->config_space) {
4626 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4627 return -ENOMEM;
4628 }
4629 for (i = 0; i < (size / 4); i++)
4630 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4631 return 0;
4632 }
4633
4634 static void
4635 e1000_pci_restore_state(struct e1000_adapter *adapter)
4636 {
4637 struct pci_dev *dev = adapter->pdev;
4638 int size;
4639 int i;
4640
4641 if (adapter->config_space == NULL)
4642 return;
4643
4644 if (adapter->hw.mac_type >= e1000_82571)
4645 size = PCIE_CONFIG_SPACE_LEN;
4646 else
4647 size = PCI_CONFIG_SPACE_LEN;
4648 for (i = 0; i < (size / 4); i++)
4649 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4650 kfree(adapter->config_space);
4651 adapter->config_space = NULL;
4652 return;
4653 }
4654 #endif /* CONFIG_PM */
4655
4656 static int
4657 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4658 {
4659 struct net_device *netdev = pci_get_drvdata(pdev);
4660 struct e1000_adapter *adapter = netdev_priv(netdev);
4661 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4662 uint32_t wufc = adapter->wol;
4663 #ifdef CONFIG_PM
4664 int retval = 0;
4665 #endif
4666
4667 netif_device_detach(netdev);
4668
4669 if (netif_running(netdev)) {
4670 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4671 e1000_down(adapter);
4672 }
4673
4674 #ifdef CONFIG_PM
4675 /* Implement our own version of pci_save_state(pdev) because pci-
4676 * express adapters have 256-byte config spaces. */
4677 retval = e1000_pci_save_state(adapter);
4678 if (retval)
4679 return retval;
4680 #endif
4681
4682 status = E1000_READ_REG(&adapter->hw, STATUS);
4683 if (status & E1000_STATUS_LU)
4684 wufc &= ~E1000_WUFC_LNKC;
4685
4686 if (wufc) {
4687 e1000_setup_rctl(adapter);
4688 e1000_set_multi(netdev);
4689
4690 /* turn on all-multi mode if wake on multicast is enabled */
4691 if (wufc & E1000_WUFC_MC) {
4692 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4693 rctl |= E1000_RCTL_MPE;
4694 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4695 }
4696
4697 if (adapter->hw.mac_type >= e1000_82540) {
4698 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4699 /* advertise wake from D3Cold */
4700 #define E1000_CTRL_ADVD3WUC 0x00100000
4701 /* phy power management enable */
4702 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4703 ctrl |= E1000_CTRL_ADVD3WUC |
4704 E1000_CTRL_EN_PHY_PWR_MGMT;
4705 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4706 }
4707
4708 if (adapter->hw.media_type == e1000_media_type_fiber ||
4709 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4710 /* keep the laser running in D3 */
4711 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4712 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4713 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4714 }
4715
4716 /* Allow time for pending master requests to run */
4717 e1000_disable_pciex_master(&adapter->hw);
4718
4719 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4720 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4721 pci_enable_wake(pdev, PCI_D3hot, 1);
4722 pci_enable_wake(pdev, PCI_D3cold, 1);
4723 } else {
4724 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4725 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4726 pci_enable_wake(pdev, PCI_D3hot, 0);
4727 pci_enable_wake(pdev, PCI_D3cold, 0);
4728 }
4729
4730 if (adapter->hw.mac_type < e1000_82571 &&
4731 adapter->hw.media_type == e1000_media_type_copper) {
4732 manc = E1000_READ_REG(&adapter->hw, MANC);
4733 if (manc & E1000_MANC_SMBUS_EN) {
4734 manc |= E1000_MANC_ARP_EN;
4735 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4736 pci_enable_wake(pdev, PCI_D3hot, 1);
4737 pci_enable_wake(pdev, PCI_D3cold, 1);
4738 }
4739 }
4740
4741 if (adapter->hw.phy_type == e1000_phy_igp_3)
4742 e1000_phy_powerdown_workaround(&adapter->hw);
4743
4744 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4745 * would have already happened in close and is redundant. */
4746 e1000_release_hw_control(adapter);
4747
4748 pci_disable_device(pdev);
4749
4750 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4751
4752 return 0;
4753 }
4754
4755 #ifdef CONFIG_PM
4756 static int
4757 e1000_resume(struct pci_dev *pdev)
4758 {
4759 struct net_device *netdev = pci_get_drvdata(pdev);
4760 struct e1000_adapter *adapter = netdev_priv(netdev);
4761 uint32_t manc, err;
4762
4763 pci_set_power_state(pdev, PCI_D0);
4764 e1000_pci_restore_state(adapter);
4765 if ((err = pci_enable_device(pdev))) {
4766 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4767 return err;
4768 }
4769 pci_set_master(pdev);
4770
4771 pci_enable_wake(pdev, PCI_D3hot, 0);
4772 pci_enable_wake(pdev, PCI_D3cold, 0);
4773
4774 e1000_reset(adapter);
4775 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4776
4777 if (netif_running(netdev))
4778 e1000_up(adapter);
4779
4780 netif_device_attach(netdev);
4781
4782 if (adapter->hw.mac_type < e1000_82571 &&
4783 adapter->hw.media_type == e1000_media_type_copper) {
4784 manc = E1000_READ_REG(&adapter->hw, MANC);
4785 manc &= ~(E1000_MANC_ARP_EN);
4786 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4787 }
4788
4789 /* If the controller is 82573 and f/w is AMT, do not set
4790 * DRV_LOAD until the interface is up. For all other cases,
4791 * let the f/w know that the h/w is now under the control
4792 * of the driver. */
4793 if (adapter->hw.mac_type != e1000_82573 ||
4794 !e1000_check_mng_mode(&adapter->hw))
4795 e1000_get_hw_control(adapter);
4796
4797 return 0;
4798 }
4799 #endif
4800
4801 static void e1000_shutdown(struct pci_dev *pdev)
4802 {
4803 e1000_suspend(pdev, PMSG_SUSPEND);
4804 }
4805
4806 #ifdef CONFIG_NET_POLL_CONTROLLER
4807 /*
4808 * Polling 'interrupt' - used by things like netconsole to send skbs
4809 * without having to re-enable interrupts. It's not called while
4810 * the interrupt routine is executing.
4811 */
4812 static void
4813 e1000_netpoll(struct net_device *netdev)
4814 {
4815 struct e1000_adapter *adapter = netdev_priv(netdev);
4816
4817 disable_irq(adapter->pdev->irq);
4818 e1000_intr(adapter->pdev->irq, netdev, NULL);
4819 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4820 #ifndef CONFIG_E1000_NAPI
4821 adapter->clean_rx(adapter, adapter->rx_ring);
4822 #endif
4823 enable_irq(adapter->pdev->irq);
4824 }
4825 #endif
4826
4827 /**
4828 * e1000_io_error_detected - called when PCI error is detected
4829 * @pdev: Pointer to PCI device
4830 * @state: The current pci conneection state
4831 *
4832 * This function is called after a PCI bus error affecting
4833 * this device has been detected.
4834 */
4835 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4836 {
4837 struct net_device *netdev = pci_get_drvdata(pdev);
4838 struct e1000_adapter *adapter = netdev->priv;
4839
4840 netif_device_detach(netdev);
4841
4842 if (netif_running(netdev))
4843 e1000_down(adapter);
4844 pci_disable_device(pdev);
4845
4846 /* Request a slot slot reset. */
4847 return PCI_ERS_RESULT_NEED_RESET;
4848 }
4849
4850 /**
4851 * e1000_io_slot_reset - called after the pci bus has been reset.
4852 * @pdev: Pointer to PCI device
4853 *
4854 * Restart the card from scratch, as if from a cold-boot. Implementation
4855 * resembles the first-half of the e1000_resume routine.
4856 */
4857 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4858 {
4859 struct net_device *netdev = pci_get_drvdata(pdev);
4860 struct e1000_adapter *adapter = netdev->priv;
4861
4862 if (pci_enable_device(pdev)) {
4863 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4864 return PCI_ERS_RESULT_DISCONNECT;
4865 }
4866 pci_set_master(pdev);
4867
4868 pci_enable_wake(pdev, 3, 0);
4869 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4870
4871 /* Perform card reset only on one instance of the card */
4872 if (PCI_FUNC (pdev->devfn) != 0)
4873 return PCI_ERS_RESULT_RECOVERED;
4874
4875 e1000_reset(adapter);
4876 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4877
4878 return PCI_ERS_RESULT_RECOVERED;
4879 }
4880
4881 /**
4882 * e1000_io_resume - called when traffic can start flowing again.
4883 * @pdev: Pointer to PCI device
4884 *
4885 * This callback is called when the error recovery driver tells us that
4886 * its OK to resume normal operation. Implementation resembles the
4887 * second-half of the e1000_resume routine.
4888 */
4889 static void e1000_io_resume(struct pci_dev *pdev)
4890 {
4891 struct net_device *netdev = pci_get_drvdata(pdev);
4892 struct e1000_adapter *adapter = netdev->priv;
4893 uint32_t manc, swsm;
4894
4895 if (netif_running(netdev)) {
4896 if (e1000_up(adapter)) {
4897 printk("e1000: can't bring device back up after reset\n");
4898 return;
4899 }
4900 }
4901
4902 netif_device_attach(netdev);
4903
4904 if (adapter->hw.mac_type >= e1000_82540 &&
4905 adapter->hw.media_type == e1000_media_type_copper) {
4906 manc = E1000_READ_REG(&adapter->hw, MANC);
4907 manc &= ~(E1000_MANC_ARP_EN);
4908 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4909 }
4910
4911 switch (adapter->hw.mac_type) {
4912 case e1000_82573:
4913 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4914 E1000_WRITE_REG(&adapter->hw, SWSM,
4915 swsm | E1000_SWSM_DRV_LOAD);
4916 break;
4917 default:
4918 break;
4919 }
4920
4921 if (netif_running(netdev))
4922 mod_timer(&adapter->watchdog_timer, jiffies);
4923 }
4924
4925 /* e1000_main.c */
This page took 0.13557 seconds and 6 git commands to generate.