Merge git://git.infradead.org/mtd-2.6
[deliverable/linux.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3
4 Copyright(c) 1999 - 2006 Intel Corporation. All rights reserved.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2 of the License, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc., 59
18 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19
20 The full GNU General Public License is included in this distribution in the
21 file called LICENSE.
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28 *******************************************************************************/
29
30 #include "e1000.h"
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.1.9-k4"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50 static struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1049),
77 INTEL_E1000_ETHERNET_DEVICE(0x104A),
78 INTEL_E1000_ETHERNET_DEVICE(0x104B),
79 INTEL_E1000_ETHERNET_DEVICE(0x104C),
80 INTEL_E1000_ETHERNET_DEVICE(0x104D),
81 INTEL_E1000_ETHERNET_DEVICE(0x105E),
82 INTEL_E1000_ETHERNET_DEVICE(0x105F),
83 INTEL_E1000_ETHERNET_DEVICE(0x1060),
84 INTEL_E1000_ETHERNET_DEVICE(0x1075),
85 INTEL_E1000_ETHERNET_DEVICE(0x1076),
86 INTEL_E1000_ETHERNET_DEVICE(0x1077),
87 INTEL_E1000_ETHERNET_DEVICE(0x1078),
88 INTEL_E1000_ETHERNET_DEVICE(0x1079),
89 INTEL_E1000_ETHERNET_DEVICE(0x107A),
90 INTEL_E1000_ETHERNET_DEVICE(0x107B),
91 INTEL_E1000_ETHERNET_DEVICE(0x107C),
92 INTEL_E1000_ETHERNET_DEVICE(0x107D),
93 INTEL_E1000_ETHERNET_DEVICE(0x107E),
94 INTEL_E1000_ETHERNET_DEVICE(0x107F),
95 INTEL_E1000_ETHERNET_DEVICE(0x108A),
96 INTEL_E1000_ETHERNET_DEVICE(0x108B),
97 INTEL_E1000_ETHERNET_DEVICE(0x108C),
98 INTEL_E1000_ETHERNET_DEVICE(0x1096),
99 INTEL_E1000_ETHERNET_DEVICE(0x1098),
100 INTEL_E1000_ETHERNET_DEVICE(0x1099),
101 INTEL_E1000_ETHERNET_DEVICE(0x109A),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
107 {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
113 struct e1000_tx_ring *txdr);
114 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
115 struct e1000_rx_ring *rxdr);
116 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
117 struct e1000_tx_ring *tx_ring);
118 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
119 struct e1000_rx_ring *rx_ring);
120
121 /* Local Function Prototypes */
122
123 static int e1000_init_module(void);
124 static void e1000_exit_module(void);
125 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
126 static void __devexit e1000_remove(struct pci_dev *pdev);
127 static int e1000_alloc_queues(struct e1000_adapter *adapter);
128 static int e1000_sw_init(struct e1000_adapter *adapter);
129 static int e1000_open(struct net_device *netdev);
130 static int e1000_close(struct net_device *netdev);
131 static void e1000_configure_tx(struct e1000_adapter *adapter);
132 static void e1000_configure_rx(struct e1000_adapter *adapter);
133 static void e1000_setup_rctl(struct e1000_adapter *adapter);
134 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
135 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
136 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
137 struct e1000_tx_ring *tx_ring);
138 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
139 struct e1000_rx_ring *rx_ring);
140 static void e1000_set_multi(struct net_device *netdev);
141 static void e1000_update_phy_info(unsigned long data);
142 static void e1000_watchdog(unsigned long data);
143 static void e1000_82547_tx_fifo_stall(unsigned long data);
144 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
145 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
146 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
147 static int e1000_set_mac(struct net_device *netdev, void *p);
148 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
149 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
150 struct e1000_tx_ring *tx_ring);
151 #ifdef CONFIG_E1000_NAPI
152 static int e1000_clean(struct net_device *poll_dev, int *budget);
153 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
154 struct e1000_rx_ring *rx_ring,
155 int *work_done, int work_to_do);
156 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
157 struct e1000_rx_ring *rx_ring,
158 int *work_done, int work_to_do);
159 #else
160 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
161 struct e1000_rx_ring *rx_ring);
162 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
163 struct e1000_rx_ring *rx_ring);
164 #endif
165 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
166 struct e1000_rx_ring *rx_ring,
167 int cleaned_count);
168 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring,
170 int cleaned_count);
171 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
172 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
173 int cmd);
174 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
175 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
176 static void e1000_tx_timeout(struct net_device *dev);
177 static void e1000_reset_task(struct net_device *dev);
178 static void e1000_smartspeed(struct e1000_adapter *adapter);
179 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
180 struct sk_buff *skb);
181
182 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
183 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
184 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
185 static void e1000_restore_vlan(struct e1000_adapter *adapter);
186
187 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
188 #ifdef CONFIG_PM
189 static int e1000_resume(struct pci_dev *pdev);
190 #endif
191 static void e1000_shutdown(struct pci_dev *pdev);
192
193 #ifdef CONFIG_NET_POLL_CONTROLLER
194 /* for netdump / net console */
195 static void e1000_netpoll (struct net_device *netdev);
196 #endif
197
198 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
199 pci_channel_state_t state);
200 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
201 static void e1000_io_resume(struct pci_dev *pdev);
202
203 static struct pci_error_handlers e1000_err_handler = {
204 .error_detected = e1000_io_error_detected,
205 .slot_reset = e1000_io_slot_reset,
206 .resume = e1000_io_resume,
207 };
208
209 static struct pci_driver e1000_driver = {
210 .name = e1000_driver_name,
211 .id_table = e1000_pci_tbl,
212 .probe = e1000_probe,
213 .remove = __devexit_p(e1000_remove),
214 /* Power Managment Hooks */
215 .suspend = e1000_suspend,
216 #ifdef CONFIG_PM
217 .resume = e1000_resume,
218 #endif
219 .shutdown = e1000_shutdown,
220 .err_handler = &e1000_err_handler
221 };
222
223 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
224 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
225 MODULE_LICENSE("GPL");
226 MODULE_VERSION(DRV_VERSION);
227
228 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232 /**
233 * e1000_init_module - Driver Registration Routine
234 *
235 * e1000_init_module is the first routine called when the driver is
236 * loaded. All it does is register with the PCI subsystem.
237 **/
238
239 static int __init
240 e1000_init_module(void)
241 {
242 int ret;
243 printk(KERN_INFO "%s - version %s\n",
244 e1000_driver_string, e1000_driver_version);
245
246 printk(KERN_INFO "%s\n", e1000_copyright);
247
248 ret = pci_module_init(&e1000_driver);
249
250 return ret;
251 }
252
253 module_init(e1000_init_module);
254
255 /**
256 * e1000_exit_module - Driver Exit Cleanup Routine
257 *
258 * e1000_exit_module is called just before the driver is removed
259 * from memory.
260 **/
261
262 static void __exit
263 e1000_exit_module(void)
264 {
265 pci_unregister_driver(&e1000_driver);
266 }
267
268 module_exit(e1000_exit_module);
269
270 static int e1000_request_irq(struct e1000_adapter *adapter)
271 {
272 struct net_device *netdev = adapter->netdev;
273 int flags, err = 0;
274
275 flags = IRQF_SHARED;
276 #ifdef CONFIG_PCI_MSI
277 if (adapter->hw.mac_type > e1000_82547_rev_2) {
278 adapter->have_msi = TRUE;
279 if ((err = pci_enable_msi(adapter->pdev))) {
280 DPRINTK(PROBE, ERR,
281 "Unable to allocate MSI interrupt Error: %d\n", err);
282 adapter->have_msi = FALSE;
283 }
284 }
285 if (adapter->have_msi)
286 flags &= ~IRQF_SHARED;
287 #endif
288 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
289 netdev->name, netdev)))
290 DPRINTK(PROBE, ERR,
291 "Unable to allocate interrupt Error: %d\n", err);
292
293 return err;
294 }
295
296 static void e1000_free_irq(struct e1000_adapter *adapter)
297 {
298 struct net_device *netdev = adapter->netdev;
299
300 free_irq(adapter->pdev->irq, netdev);
301
302 #ifdef CONFIG_PCI_MSI
303 if (adapter->have_msi)
304 pci_disable_msi(adapter->pdev);
305 #endif
306 }
307
308 /**
309 * e1000_irq_disable - Mask off interrupt generation on the NIC
310 * @adapter: board private structure
311 **/
312
313 static void
314 e1000_irq_disable(struct e1000_adapter *adapter)
315 {
316 atomic_inc(&adapter->irq_sem);
317 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
318 E1000_WRITE_FLUSH(&adapter->hw);
319 synchronize_irq(adapter->pdev->irq);
320 }
321
322 /**
323 * e1000_irq_enable - Enable default interrupt generation settings
324 * @adapter: board private structure
325 **/
326
327 static void
328 e1000_irq_enable(struct e1000_adapter *adapter)
329 {
330 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
331 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
332 E1000_WRITE_FLUSH(&adapter->hw);
333 }
334 }
335
336 static void
337 e1000_update_mng_vlan(struct e1000_adapter *adapter)
338 {
339 struct net_device *netdev = adapter->netdev;
340 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
341 uint16_t old_vid = adapter->mng_vlan_id;
342 if (adapter->vlgrp) {
343 if (!adapter->vlgrp->vlan_devices[vid]) {
344 if (adapter->hw.mng_cookie.status &
345 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
346 e1000_vlan_rx_add_vid(netdev, vid);
347 adapter->mng_vlan_id = vid;
348 } else
349 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
350
351 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
352 (vid != old_vid) &&
353 !adapter->vlgrp->vlan_devices[old_vid])
354 e1000_vlan_rx_kill_vid(netdev, old_vid);
355 } else
356 adapter->mng_vlan_id = vid;
357 }
358 }
359
360 /**
361 * e1000_release_hw_control - release control of the h/w to f/w
362 * @adapter: address of board private structure
363 *
364 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
365 * For ASF and Pass Through versions of f/w this means that the
366 * driver is no longer loaded. For AMT version (only with 82573) i
367 * of the f/w this means that the netowrk i/f is closed.
368 *
369 **/
370
371 static void
372 e1000_release_hw_control(struct e1000_adapter *adapter)
373 {
374 uint32_t ctrl_ext;
375 uint32_t swsm;
376 uint32_t extcnf;
377
378 /* Let firmware taken over control of h/w */
379 switch (adapter->hw.mac_type) {
380 case e1000_82571:
381 case e1000_82572:
382 case e1000_80003es2lan:
383 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
384 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
385 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
386 break;
387 case e1000_82573:
388 swsm = E1000_READ_REG(&adapter->hw, SWSM);
389 E1000_WRITE_REG(&adapter->hw, SWSM,
390 swsm & ~E1000_SWSM_DRV_LOAD);
391 case e1000_ich8lan:
392 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
393 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
394 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
395 break;
396 default:
397 break;
398 }
399 }
400
401 /**
402 * e1000_get_hw_control - get control of the h/w from f/w
403 * @adapter: address of board private structure
404 *
405 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
406 * For ASF and Pass Through versions of f/w this means that
407 * the driver is loaded. For AMT version (only with 82573)
408 * of the f/w this means that the netowrk i/f is open.
409 *
410 **/
411
412 static void
413 e1000_get_hw_control(struct e1000_adapter *adapter)
414 {
415 uint32_t ctrl_ext;
416 uint32_t swsm;
417 uint32_t extcnf;
418 /* Let firmware know the driver has taken over */
419 switch (adapter->hw.mac_type) {
420 case e1000_82571:
421 case e1000_82572:
422 case e1000_80003es2lan:
423 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
424 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
425 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
426 break;
427 case e1000_82573:
428 swsm = E1000_READ_REG(&adapter->hw, SWSM);
429 E1000_WRITE_REG(&adapter->hw, SWSM,
430 swsm | E1000_SWSM_DRV_LOAD);
431 break;
432 case e1000_ich8lan:
433 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
434 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
435 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
436 break;
437 default:
438 break;
439 }
440 }
441
442 int
443 e1000_up(struct e1000_adapter *adapter)
444 {
445 struct net_device *netdev = adapter->netdev;
446 int i;
447
448 /* hardware has been reset, we need to reload some things */
449
450 e1000_set_multi(netdev);
451
452 e1000_restore_vlan(adapter);
453
454 e1000_configure_tx(adapter);
455 e1000_setup_rctl(adapter);
456 e1000_configure_rx(adapter);
457 /* call E1000_DESC_UNUSED which always leaves
458 * at least 1 descriptor unused to make sure
459 * next_to_use != next_to_clean */
460 for (i = 0; i < adapter->num_rx_queues; i++) {
461 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
462 adapter->alloc_rx_buf(adapter, ring,
463 E1000_DESC_UNUSED(ring));
464 }
465
466 adapter->tx_queue_len = netdev->tx_queue_len;
467
468 mod_timer(&adapter->watchdog_timer, jiffies);
469
470 #ifdef CONFIG_E1000_NAPI
471 netif_poll_enable(netdev);
472 #endif
473 e1000_irq_enable(adapter);
474
475 return 0;
476 }
477
478 /**
479 * e1000_power_up_phy - restore link in case the phy was powered down
480 * @adapter: address of board private structure
481 *
482 * The phy may be powered down to save power and turn off link when the
483 * driver is unloaded and wake on lan is not enabled (among others)
484 * *** this routine MUST be followed by a call to e1000_reset ***
485 *
486 **/
487
488 static void e1000_power_up_phy(struct e1000_adapter *adapter)
489 {
490 uint16_t mii_reg = 0;
491
492 /* Just clear the power down bit to wake the phy back up */
493 if (adapter->hw.media_type == e1000_media_type_copper) {
494 /* according to the manual, the phy will retain its
495 * settings across a power-down/up cycle */
496 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
497 mii_reg &= ~MII_CR_POWER_DOWN;
498 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
499 }
500 }
501
502 static void e1000_power_down_phy(struct e1000_adapter *adapter)
503 {
504 boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
505 e1000_check_mng_mode(&adapter->hw);
506 /* Power down the PHY so no link is implied when interface is down
507 * The PHY cannot be powered down if any of the following is TRUE
508 * (a) WoL is enabled
509 * (b) AMT is active
510 * (c) SoL/IDER session is active */
511 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
512 adapter->hw.mac_type != e1000_ich8lan &&
513 adapter->hw.media_type == e1000_media_type_copper &&
514 !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
515 !mng_mode_enabled &&
516 !e1000_check_phy_reset_block(&adapter->hw)) {
517 uint16_t mii_reg = 0;
518 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
519 mii_reg |= MII_CR_POWER_DOWN;
520 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
521 mdelay(1);
522 }
523 }
524
525 void
526 e1000_down(struct e1000_adapter *adapter)
527 {
528 struct net_device *netdev = adapter->netdev;
529
530 e1000_irq_disable(adapter);
531
532 del_timer_sync(&adapter->tx_fifo_stall_timer);
533 del_timer_sync(&adapter->watchdog_timer);
534 del_timer_sync(&adapter->phy_info_timer);
535
536 #ifdef CONFIG_E1000_NAPI
537 netif_poll_disable(netdev);
538 #endif
539 netdev->tx_queue_len = adapter->tx_queue_len;
540 adapter->link_speed = 0;
541 adapter->link_duplex = 0;
542 netif_carrier_off(netdev);
543 netif_stop_queue(netdev);
544
545 e1000_reset(adapter);
546 e1000_clean_all_tx_rings(adapter);
547 e1000_clean_all_rx_rings(adapter);
548 }
549
550 void
551 e1000_reinit_locked(struct e1000_adapter *adapter)
552 {
553 WARN_ON(in_interrupt());
554 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
555 msleep(1);
556 e1000_down(adapter);
557 e1000_up(adapter);
558 clear_bit(__E1000_RESETTING, &adapter->flags);
559 }
560
561 void
562 e1000_reset(struct e1000_adapter *adapter)
563 {
564 uint32_t pba, manc;
565 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
566
567 /* Repartition Pba for greater than 9k mtu
568 * To take effect CTRL.RST is required.
569 */
570
571 switch (adapter->hw.mac_type) {
572 case e1000_82547:
573 case e1000_82547_rev_2:
574 pba = E1000_PBA_30K;
575 break;
576 case e1000_82571:
577 case e1000_82572:
578 case e1000_80003es2lan:
579 pba = E1000_PBA_38K;
580 break;
581 case e1000_82573:
582 pba = E1000_PBA_12K;
583 break;
584 case e1000_ich8lan:
585 pba = E1000_PBA_8K;
586 break;
587 default:
588 pba = E1000_PBA_48K;
589 break;
590 }
591
592 if ((adapter->hw.mac_type != e1000_82573) &&
593 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
594 pba -= 8; /* allocate more FIFO for Tx */
595
596
597 if (adapter->hw.mac_type == e1000_82547) {
598 adapter->tx_fifo_head = 0;
599 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
600 adapter->tx_fifo_size =
601 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
602 atomic_set(&adapter->tx_fifo_stall, 0);
603 }
604
605 E1000_WRITE_REG(&adapter->hw, PBA, pba);
606
607 /* flow control settings */
608 /* Set the FC high water mark to 90% of the FIFO size.
609 * Required to clear last 3 LSB */
610 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
611 /* We can't use 90% on small FIFOs because the remainder
612 * would be less than 1 full frame. In this case, we size
613 * it to allow at least a full frame above the high water
614 * mark. */
615 if (pba < E1000_PBA_16K)
616 fc_high_water_mark = (pba * 1024) - 1600;
617
618 adapter->hw.fc_high_water = fc_high_water_mark;
619 adapter->hw.fc_low_water = fc_high_water_mark - 8;
620 if (adapter->hw.mac_type == e1000_80003es2lan)
621 adapter->hw.fc_pause_time = 0xFFFF;
622 else
623 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
624 adapter->hw.fc_send_xon = 1;
625 adapter->hw.fc = adapter->hw.original_fc;
626
627 /* Allow time for pending master requests to run */
628 e1000_reset_hw(&adapter->hw);
629 if (adapter->hw.mac_type >= e1000_82544)
630 E1000_WRITE_REG(&adapter->hw, WUC, 0);
631 if (e1000_init_hw(&adapter->hw))
632 DPRINTK(PROBE, ERR, "Hardware Error\n");
633 e1000_update_mng_vlan(adapter);
634 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
635 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
636
637 e1000_reset_adaptive(&adapter->hw);
638 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
639
640 if (!adapter->smart_power_down &&
641 (adapter->hw.mac_type == e1000_82571 ||
642 adapter->hw.mac_type == e1000_82572)) {
643 uint16_t phy_data = 0;
644 /* speed up time to link by disabling smart power down, ignore
645 * the return value of this function because there is nothing
646 * different we would do if it failed */
647 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
648 &phy_data);
649 phy_data &= ~IGP02E1000_PM_SPD;
650 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
651 phy_data);
652 }
653
654 if (adapter->hw.mac_type < e1000_ich8lan)
655 /* FIXME: this code is duplicate and wrong for PCI Express */
656 if (adapter->en_mng_pt) {
657 manc = E1000_READ_REG(&adapter->hw, MANC);
658 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
659 E1000_WRITE_REG(&adapter->hw, MANC, manc);
660 }
661 }
662
663 /**
664 * e1000_probe - Device Initialization Routine
665 * @pdev: PCI device information struct
666 * @ent: entry in e1000_pci_tbl
667 *
668 * Returns 0 on success, negative on failure
669 *
670 * e1000_probe initializes an adapter identified by a pci_dev structure.
671 * The OS initialization, configuring of the adapter private structure,
672 * and a hardware reset occur.
673 **/
674
675 static int __devinit
676 e1000_probe(struct pci_dev *pdev,
677 const struct pci_device_id *ent)
678 {
679 struct net_device *netdev;
680 struct e1000_adapter *adapter;
681 unsigned long mmio_start, mmio_len;
682 unsigned long flash_start, flash_len;
683
684 static int cards_found = 0;
685 static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
686 int i, err, pci_using_dac;
687 uint16_t eeprom_data;
688 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
689 if ((err = pci_enable_device(pdev)))
690 return err;
691
692 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
693 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
694 pci_using_dac = 1;
695 } else {
696 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
697 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
698 E1000_ERR("No usable DMA configuration, aborting\n");
699 return err;
700 }
701 pci_using_dac = 0;
702 }
703
704 if ((err = pci_request_regions(pdev, e1000_driver_name)))
705 return err;
706
707 pci_set_master(pdev);
708
709 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
710 if (!netdev) {
711 err = -ENOMEM;
712 goto err_alloc_etherdev;
713 }
714
715 SET_MODULE_OWNER(netdev);
716 SET_NETDEV_DEV(netdev, &pdev->dev);
717
718 pci_set_drvdata(pdev, netdev);
719 adapter = netdev_priv(netdev);
720 adapter->netdev = netdev;
721 adapter->pdev = pdev;
722 adapter->hw.back = adapter;
723 adapter->msg_enable = (1 << debug) - 1;
724
725 mmio_start = pci_resource_start(pdev, BAR_0);
726 mmio_len = pci_resource_len(pdev, BAR_0);
727
728 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
729 if (!adapter->hw.hw_addr) {
730 err = -EIO;
731 goto err_ioremap;
732 }
733
734 for (i = BAR_1; i <= BAR_5; i++) {
735 if (pci_resource_len(pdev, i) == 0)
736 continue;
737 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
738 adapter->hw.io_base = pci_resource_start(pdev, i);
739 break;
740 }
741 }
742
743 netdev->open = &e1000_open;
744 netdev->stop = &e1000_close;
745 netdev->hard_start_xmit = &e1000_xmit_frame;
746 netdev->get_stats = &e1000_get_stats;
747 netdev->set_multicast_list = &e1000_set_multi;
748 netdev->set_mac_address = &e1000_set_mac;
749 netdev->change_mtu = &e1000_change_mtu;
750 netdev->do_ioctl = &e1000_ioctl;
751 e1000_set_ethtool_ops(netdev);
752 netdev->tx_timeout = &e1000_tx_timeout;
753 netdev->watchdog_timeo = 5 * HZ;
754 #ifdef CONFIG_E1000_NAPI
755 netdev->poll = &e1000_clean;
756 netdev->weight = 64;
757 #endif
758 netdev->vlan_rx_register = e1000_vlan_rx_register;
759 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
760 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
761 #ifdef CONFIG_NET_POLL_CONTROLLER
762 netdev->poll_controller = e1000_netpoll;
763 #endif
764 strcpy(netdev->name, pci_name(pdev));
765
766 netdev->mem_start = mmio_start;
767 netdev->mem_end = mmio_start + mmio_len;
768 netdev->base_addr = adapter->hw.io_base;
769
770 adapter->bd_number = cards_found;
771
772 /* setup the private structure */
773
774 if ((err = e1000_sw_init(adapter)))
775 goto err_sw_init;
776
777 /* Flash BAR mapping must happen after e1000_sw_init
778 * because it depends on mac_type */
779 if ((adapter->hw.mac_type == e1000_ich8lan) &&
780 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
781 flash_start = pci_resource_start(pdev, 1);
782 flash_len = pci_resource_len(pdev, 1);
783 adapter->hw.flash_address = ioremap(flash_start, flash_len);
784 if (!adapter->hw.flash_address) {
785 err = -EIO;
786 goto err_flashmap;
787 }
788 }
789
790 if ((err = e1000_check_phy_reset_block(&adapter->hw)))
791 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
792
793 /* if ksp3, indicate if it's port a being setup */
794 if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
795 e1000_ksp3_port_a == 0)
796 adapter->ksp3_port_a = 1;
797 e1000_ksp3_port_a++;
798 /* Reset for multiple KP3 adapters */
799 if (e1000_ksp3_port_a == 4)
800 e1000_ksp3_port_a = 0;
801
802 if (adapter->hw.mac_type >= e1000_82543) {
803 netdev->features = NETIF_F_SG |
804 NETIF_F_HW_CSUM |
805 NETIF_F_HW_VLAN_TX |
806 NETIF_F_HW_VLAN_RX |
807 NETIF_F_HW_VLAN_FILTER;
808 if (adapter->hw.mac_type == e1000_ich8lan)
809 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
810 }
811
812 #ifdef NETIF_F_TSO
813 if ((adapter->hw.mac_type >= e1000_82544) &&
814 (adapter->hw.mac_type != e1000_82547))
815 netdev->features |= NETIF_F_TSO;
816
817 #ifdef NETIF_F_TSO_IPV6
818 if (adapter->hw.mac_type > e1000_82547_rev_2)
819 netdev->features |= NETIF_F_TSO_IPV6;
820 #endif
821 #endif
822 if (pci_using_dac)
823 netdev->features |= NETIF_F_HIGHDMA;
824
825 netdev->features |= NETIF_F_LLTX;
826
827 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
828
829 /* initialize eeprom parameters */
830
831 if (e1000_init_eeprom_params(&adapter->hw)) {
832 E1000_ERR("EEPROM initialization failed\n");
833 return -EIO;
834 }
835
836 /* before reading the EEPROM, reset the controller to
837 * put the device in a known good starting state */
838
839 e1000_reset_hw(&adapter->hw);
840
841 /* make sure the EEPROM is good */
842
843 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
844 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
845 err = -EIO;
846 goto err_eeprom;
847 }
848
849 /* copy the MAC address out of the EEPROM */
850
851 if (e1000_read_mac_addr(&adapter->hw))
852 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
853 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
854 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
855
856 if (!is_valid_ether_addr(netdev->perm_addr)) {
857 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
858 err = -EIO;
859 goto err_eeprom;
860 }
861
862 e1000_read_part_num(&adapter->hw, &(adapter->part_num));
863
864 e1000_get_bus_info(&adapter->hw);
865
866 init_timer(&adapter->tx_fifo_stall_timer);
867 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
868 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
869
870 init_timer(&adapter->watchdog_timer);
871 adapter->watchdog_timer.function = &e1000_watchdog;
872 adapter->watchdog_timer.data = (unsigned long) adapter;
873
874 init_timer(&adapter->phy_info_timer);
875 adapter->phy_info_timer.function = &e1000_update_phy_info;
876 adapter->phy_info_timer.data = (unsigned long) adapter;
877
878 INIT_WORK(&adapter->reset_task,
879 (void (*)(void *))e1000_reset_task, netdev);
880
881 /* we're going to reset, so assume we have no link for now */
882
883 netif_carrier_off(netdev);
884 netif_stop_queue(netdev);
885
886 e1000_check_options(adapter);
887
888 /* Initial Wake on LAN setting
889 * If APM wake is enabled in the EEPROM,
890 * enable the ACPI Magic Packet filter
891 */
892
893 switch (adapter->hw.mac_type) {
894 case e1000_82542_rev2_0:
895 case e1000_82542_rev2_1:
896 case e1000_82543:
897 break;
898 case e1000_82544:
899 e1000_read_eeprom(&adapter->hw,
900 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
901 eeprom_apme_mask = E1000_EEPROM_82544_APM;
902 break;
903 case e1000_ich8lan:
904 e1000_read_eeprom(&adapter->hw,
905 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
906 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
907 break;
908 case e1000_82546:
909 case e1000_82546_rev_3:
910 case e1000_82571:
911 case e1000_80003es2lan:
912 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
913 e1000_read_eeprom(&adapter->hw,
914 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
915 break;
916 }
917 /* Fall Through */
918 default:
919 e1000_read_eeprom(&adapter->hw,
920 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
921 break;
922 }
923 if (eeprom_data & eeprom_apme_mask)
924 adapter->wol |= E1000_WUFC_MAG;
925
926 /* print bus type/speed/width info */
927 {
928 struct e1000_hw *hw = &adapter->hw;
929 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
930 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
931 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
932 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
933 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
934 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
935 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
936 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
937 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
938 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
939 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
940 "32-bit"));
941 }
942
943 for (i = 0; i < 6; i++)
944 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
945
946 /* reset the hardware with the new settings */
947 e1000_reset(adapter);
948
949 /* If the controller is 82573 and f/w is AMT, do not set
950 * DRV_LOAD until the interface is up. For all other cases,
951 * let the f/w know that the h/w is now under the control
952 * of the driver. */
953 if (adapter->hw.mac_type != e1000_82573 ||
954 !e1000_check_mng_mode(&adapter->hw))
955 e1000_get_hw_control(adapter);
956
957 strcpy(netdev->name, "eth%d");
958 if ((err = register_netdev(netdev)))
959 goto err_register;
960
961 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
962
963 cards_found++;
964 return 0;
965
966 err_register:
967 if (adapter->hw.flash_address)
968 iounmap(adapter->hw.flash_address);
969 err_flashmap:
970 err_sw_init:
971 err_eeprom:
972 iounmap(adapter->hw.hw_addr);
973 err_ioremap:
974 free_netdev(netdev);
975 err_alloc_etherdev:
976 pci_release_regions(pdev);
977 return err;
978 }
979
980 /**
981 * e1000_remove - Device Removal Routine
982 * @pdev: PCI device information struct
983 *
984 * e1000_remove is called by the PCI subsystem to alert the driver
985 * that it should release a PCI device. The could be caused by a
986 * Hot-Plug event, or because the driver is going to be removed from
987 * memory.
988 **/
989
990 static void __devexit
991 e1000_remove(struct pci_dev *pdev)
992 {
993 struct net_device *netdev = pci_get_drvdata(pdev);
994 struct e1000_adapter *adapter = netdev_priv(netdev);
995 uint32_t manc;
996 #ifdef CONFIG_E1000_NAPI
997 int i;
998 #endif
999
1000 flush_scheduled_work();
1001
1002 if (adapter->hw.mac_type >= e1000_82540 &&
1003 adapter->hw.mac_type != e1000_ich8lan &&
1004 adapter->hw.media_type == e1000_media_type_copper) {
1005 manc = E1000_READ_REG(&adapter->hw, MANC);
1006 if (manc & E1000_MANC_SMBUS_EN) {
1007 manc |= E1000_MANC_ARP_EN;
1008 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1009 }
1010 }
1011
1012 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1013 * would have already happened in close and is redundant. */
1014 e1000_release_hw_control(adapter);
1015
1016 unregister_netdev(netdev);
1017 #ifdef CONFIG_E1000_NAPI
1018 for (i = 0; i < adapter->num_rx_queues; i++)
1019 dev_put(&adapter->polling_netdev[i]);
1020 #endif
1021
1022 if (!e1000_check_phy_reset_block(&adapter->hw))
1023 e1000_phy_hw_reset(&adapter->hw);
1024
1025 kfree(adapter->tx_ring);
1026 kfree(adapter->rx_ring);
1027 #ifdef CONFIG_E1000_NAPI
1028 kfree(adapter->polling_netdev);
1029 #endif
1030
1031 iounmap(adapter->hw.hw_addr);
1032 if (adapter->hw.flash_address)
1033 iounmap(adapter->hw.flash_address);
1034 pci_release_regions(pdev);
1035
1036 free_netdev(netdev);
1037
1038 pci_disable_device(pdev);
1039 }
1040
1041 /**
1042 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1043 * @adapter: board private structure to initialize
1044 *
1045 * e1000_sw_init initializes the Adapter private data structure.
1046 * Fields are initialized based on PCI device information and
1047 * OS network device settings (MTU size).
1048 **/
1049
1050 static int __devinit
1051 e1000_sw_init(struct e1000_adapter *adapter)
1052 {
1053 struct e1000_hw *hw = &adapter->hw;
1054 struct net_device *netdev = adapter->netdev;
1055 struct pci_dev *pdev = adapter->pdev;
1056 #ifdef CONFIG_E1000_NAPI
1057 int i;
1058 #endif
1059
1060 /* PCI config space info */
1061
1062 hw->vendor_id = pdev->vendor;
1063 hw->device_id = pdev->device;
1064 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1065 hw->subsystem_id = pdev->subsystem_device;
1066
1067 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1068
1069 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1070
1071 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1072 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1073 hw->max_frame_size = netdev->mtu +
1074 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1075 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1076
1077 /* identify the MAC */
1078
1079 if (e1000_set_mac_type(hw)) {
1080 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1081 return -EIO;
1082 }
1083
1084 switch (hw->mac_type) {
1085 default:
1086 break;
1087 case e1000_82541:
1088 case e1000_82547:
1089 case e1000_82541_rev_2:
1090 case e1000_82547_rev_2:
1091 hw->phy_init_script = 1;
1092 break;
1093 }
1094
1095 e1000_set_media_type(hw);
1096
1097 hw->wait_autoneg_complete = FALSE;
1098 hw->tbi_compatibility_en = TRUE;
1099 hw->adaptive_ifs = TRUE;
1100
1101 /* Copper options */
1102
1103 if (hw->media_type == e1000_media_type_copper) {
1104 hw->mdix = AUTO_ALL_MODES;
1105 hw->disable_polarity_correction = FALSE;
1106 hw->master_slave = E1000_MASTER_SLAVE;
1107 }
1108
1109 adapter->num_tx_queues = 1;
1110 adapter->num_rx_queues = 1;
1111
1112 if (e1000_alloc_queues(adapter)) {
1113 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1114 return -ENOMEM;
1115 }
1116
1117 #ifdef CONFIG_E1000_NAPI
1118 for (i = 0; i < adapter->num_rx_queues; i++) {
1119 adapter->polling_netdev[i].priv = adapter;
1120 adapter->polling_netdev[i].poll = &e1000_clean;
1121 adapter->polling_netdev[i].weight = 64;
1122 dev_hold(&adapter->polling_netdev[i]);
1123 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1124 }
1125 spin_lock_init(&adapter->tx_queue_lock);
1126 #endif
1127
1128 atomic_set(&adapter->irq_sem, 1);
1129 spin_lock_init(&adapter->stats_lock);
1130
1131 return 0;
1132 }
1133
1134 /**
1135 * e1000_alloc_queues - Allocate memory for all rings
1136 * @adapter: board private structure to initialize
1137 *
1138 * We allocate one ring per queue at run-time since we don't know the
1139 * number of queues at compile-time. The polling_netdev array is
1140 * intended for Multiqueue, but should work fine with a single queue.
1141 **/
1142
1143 static int __devinit
1144 e1000_alloc_queues(struct e1000_adapter *adapter)
1145 {
1146 int size;
1147
1148 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1149 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1150 if (!adapter->tx_ring)
1151 return -ENOMEM;
1152 memset(adapter->tx_ring, 0, size);
1153
1154 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1155 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1156 if (!adapter->rx_ring) {
1157 kfree(adapter->tx_ring);
1158 return -ENOMEM;
1159 }
1160 memset(adapter->rx_ring, 0, size);
1161
1162 #ifdef CONFIG_E1000_NAPI
1163 size = sizeof(struct net_device) * adapter->num_rx_queues;
1164 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1165 if (!adapter->polling_netdev) {
1166 kfree(adapter->tx_ring);
1167 kfree(adapter->rx_ring);
1168 return -ENOMEM;
1169 }
1170 memset(adapter->polling_netdev, 0, size);
1171 #endif
1172
1173 return E1000_SUCCESS;
1174 }
1175
1176 /**
1177 * e1000_open - Called when a network interface is made active
1178 * @netdev: network interface device structure
1179 *
1180 * Returns 0 on success, negative value on failure
1181 *
1182 * The open entry point is called when a network interface is made
1183 * active by the system (IFF_UP). At this point all resources needed
1184 * for transmit and receive operations are allocated, the interrupt
1185 * handler is registered with the OS, the watchdog timer is started,
1186 * and the stack is notified that the interface is ready.
1187 **/
1188
1189 static int
1190 e1000_open(struct net_device *netdev)
1191 {
1192 struct e1000_adapter *adapter = netdev_priv(netdev);
1193 int err;
1194
1195 /* disallow open during test */
1196 if (test_bit(__E1000_DRIVER_TESTING, &adapter->flags))
1197 return -EBUSY;
1198
1199 /* allocate transmit descriptors */
1200
1201 if ((err = e1000_setup_all_tx_resources(adapter)))
1202 goto err_setup_tx;
1203
1204 /* allocate receive descriptors */
1205
1206 if ((err = e1000_setup_all_rx_resources(adapter)))
1207 goto err_setup_rx;
1208
1209 err = e1000_request_irq(adapter);
1210 if (err)
1211 goto err_up;
1212
1213 e1000_power_up_phy(adapter);
1214
1215 if ((err = e1000_up(adapter)))
1216 goto err_up;
1217 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1218 if ((adapter->hw.mng_cookie.status &
1219 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1220 e1000_update_mng_vlan(adapter);
1221 }
1222
1223 /* If AMT is enabled, let the firmware know that the network
1224 * interface is now open */
1225 if (adapter->hw.mac_type == e1000_82573 &&
1226 e1000_check_mng_mode(&adapter->hw))
1227 e1000_get_hw_control(adapter);
1228
1229 return E1000_SUCCESS;
1230
1231 err_up:
1232 e1000_free_all_rx_resources(adapter);
1233 err_setup_rx:
1234 e1000_free_all_tx_resources(adapter);
1235 err_setup_tx:
1236 e1000_reset(adapter);
1237
1238 return err;
1239 }
1240
1241 /**
1242 * e1000_close - Disables a network interface
1243 * @netdev: network interface device structure
1244 *
1245 * Returns 0, this is not allowed to fail
1246 *
1247 * The close entry point is called when an interface is de-activated
1248 * by the OS. The hardware is still under the drivers control, but
1249 * needs to be disabled. A global MAC reset is issued to stop the
1250 * hardware, and all transmit and receive resources are freed.
1251 **/
1252
1253 static int
1254 e1000_close(struct net_device *netdev)
1255 {
1256 struct e1000_adapter *adapter = netdev_priv(netdev);
1257
1258 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1259 e1000_down(adapter);
1260 e1000_power_down_phy(adapter);
1261 e1000_free_irq(adapter);
1262
1263 e1000_free_all_tx_resources(adapter);
1264 e1000_free_all_rx_resources(adapter);
1265
1266 if ((adapter->hw.mng_cookie.status &
1267 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1268 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1269 }
1270
1271 /* If AMT is enabled, let the firmware know that the network
1272 * interface is now closed */
1273 if (adapter->hw.mac_type == e1000_82573 &&
1274 e1000_check_mng_mode(&adapter->hw))
1275 e1000_release_hw_control(adapter);
1276
1277 return 0;
1278 }
1279
1280 /**
1281 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1282 * @adapter: address of board private structure
1283 * @start: address of beginning of memory
1284 * @len: length of memory
1285 **/
1286 static boolean_t
1287 e1000_check_64k_bound(struct e1000_adapter *adapter,
1288 void *start, unsigned long len)
1289 {
1290 unsigned long begin = (unsigned long) start;
1291 unsigned long end = begin + len;
1292
1293 /* First rev 82545 and 82546 need to not allow any memory
1294 * write location to cross 64k boundary due to errata 23 */
1295 if (adapter->hw.mac_type == e1000_82545 ||
1296 adapter->hw.mac_type == e1000_82546) {
1297 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1298 }
1299
1300 return TRUE;
1301 }
1302
1303 /**
1304 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1305 * @adapter: board private structure
1306 * @txdr: tx descriptor ring (for a specific queue) to setup
1307 *
1308 * Return 0 on success, negative on failure
1309 **/
1310
1311 static int
1312 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1313 struct e1000_tx_ring *txdr)
1314 {
1315 struct pci_dev *pdev = adapter->pdev;
1316 int size;
1317
1318 size = sizeof(struct e1000_buffer) * txdr->count;
1319 txdr->buffer_info = vmalloc(size);
1320 if (!txdr->buffer_info) {
1321 DPRINTK(PROBE, ERR,
1322 "Unable to allocate memory for the transmit descriptor ring\n");
1323 return -ENOMEM;
1324 }
1325 memset(txdr->buffer_info, 0, size);
1326
1327 /* round up to nearest 4K */
1328
1329 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1330 E1000_ROUNDUP(txdr->size, 4096);
1331
1332 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1333 if (!txdr->desc) {
1334 setup_tx_desc_die:
1335 vfree(txdr->buffer_info);
1336 DPRINTK(PROBE, ERR,
1337 "Unable to allocate memory for the transmit descriptor ring\n");
1338 return -ENOMEM;
1339 }
1340
1341 /* Fix for errata 23, can't cross 64kB boundary */
1342 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1343 void *olddesc = txdr->desc;
1344 dma_addr_t olddma = txdr->dma;
1345 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1346 "at %p\n", txdr->size, txdr->desc);
1347 /* Try again, without freeing the previous */
1348 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1349 /* Failed allocation, critical failure */
1350 if (!txdr->desc) {
1351 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1352 goto setup_tx_desc_die;
1353 }
1354
1355 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1356 /* give up */
1357 pci_free_consistent(pdev, txdr->size, txdr->desc,
1358 txdr->dma);
1359 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1360 DPRINTK(PROBE, ERR,
1361 "Unable to allocate aligned memory "
1362 "for the transmit descriptor ring\n");
1363 vfree(txdr->buffer_info);
1364 return -ENOMEM;
1365 } else {
1366 /* Free old allocation, new allocation was successful */
1367 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1368 }
1369 }
1370 memset(txdr->desc, 0, txdr->size);
1371
1372 txdr->next_to_use = 0;
1373 txdr->next_to_clean = 0;
1374 spin_lock_init(&txdr->tx_lock);
1375
1376 return 0;
1377 }
1378
1379 /**
1380 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1381 * (Descriptors) for all queues
1382 * @adapter: board private structure
1383 *
1384 * If this function returns with an error, then it's possible one or
1385 * more of the rings is populated (while the rest are not). It is the
1386 * callers duty to clean those orphaned rings.
1387 *
1388 * Return 0 on success, negative on failure
1389 **/
1390
1391 int
1392 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1393 {
1394 int i, err = 0;
1395
1396 for (i = 0; i < adapter->num_tx_queues; i++) {
1397 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1398 if (err) {
1399 DPRINTK(PROBE, ERR,
1400 "Allocation for Tx Queue %u failed\n", i);
1401 break;
1402 }
1403 }
1404
1405 return err;
1406 }
1407
1408 /**
1409 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1410 * @adapter: board private structure
1411 *
1412 * Configure the Tx unit of the MAC after a reset.
1413 **/
1414
1415 static void
1416 e1000_configure_tx(struct e1000_adapter *adapter)
1417 {
1418 uint64_t tdba;
1419 struct e1000_hw *hw = &adapter->hw;
1420 uint32_t tdlen, tctl, tipg, tarc;
1421 uint32_t ipgr1, ipgr2;
1422
1423 /* Setup the HW Tx Head and Tail descriptor pointers */
1424
1425 switch (adapter->num_tx_queues) {
1426 case 1:
1427 default:
1428 tdba = adapter->tx_ring[0].dma;
1429 tdlen = adapter->tx_ring[0].count *
1430 sizeof(struct e1000_tx_desc);
1431 E1000_WRITE_REG(hw, TDLEN, tdlen);
1432 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1433 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1434 E1000_WRITE_REG(hw, TDT, 0);
1435 E1000_WRITE_REG(hw, TDH, 0);
1436 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1437 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1438 break;
1439 }
1440
1441 /* Set the default values for the Tx Inter Packet Gap timer */
1442
1443 if (hw->media_type == e1000_media_type_fiber ||
1444 hw->media_type == e1000_media_type_internal_serdes)
1445 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1446 else
1447 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1448
1449 switch (hw->mac_type) {
1450 case e1000_82542_rev2_0:
1451 case e1000_82542_rev2_1:
1452 tipg = DEFAULT_82542_TIPG_IPGT;
1453 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1454 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1455 break;
1456 case e1000_80003es2lan:
1457 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1458 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1459 break;
1460 default:
1461 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1462 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1463 break;
1464 }
1465 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1466 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1467 E1000_WRITE_REG(hw, TIPG, tipg);
1468
1469 /* Set the Tx Interrupt Delay register */
1470
1471 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1472 if (hw->mac_type >= e1000_82540)
1473 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1474
1475 /* Program the Transmit Control Register */
1476
1477 tctl = E1000_READ_REG(hw, TCTL);
1478
1479 tctl &= ~E1000_TCTL_CT;
1480 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1481 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1482
1483 #ifdef DISABLE_MULR
1484 /* disable Multiple Reads for debugging */
1485 tctl &= ~E1000_TCTL_MULR;
1486 #endif
1487
1488 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1489 tarc = E1000_READ_REG(hw, TARC0);
1490 tarc |= ((1 << 25) | (1 << 21));
1491 E1000_WRITE_REG(hw, TARC0, tarc);
1492 tarc = E1000_READ_REG(hw, TARC1);
1493 tarc |= (1 << 25);
1494 if (tctl & E1000_TCTL_MULR)
1495 tarc &= ~(1 << 28);
1496 else
1497 tarc |= (1 << 28);
1498 E1000_WRITE_REG(hw, TARC1, tarc);
1499 } else if (hw->mac_type == e1000_80003es2lan) {
1500 tarc = E1000_READ_REG(hw, TARC0);
1501 tarc |= 1;
1502 if (hw->media_type == e1000_media_type_internal_serdes)
1503 tarc |= (1 << 20);
1504 E1000_WRITE_REG(hw, TARC0, tarc);
1505 tarc = E1000_READ_REG(hw, TARC1);
1506 tarc |= 1;
1507 E1000_WRITE_REG(hw, TARC1, tarc);
1508 }
1509
1510 e1000_config_collision_dist(hw);
1511
1512 /* Setup Transmit Descriptor Settings for eop descriptor */
1513 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1514 E1000_TXD_CMD_IFCS;
1515
1516 if (hw->mac_type < e1000_82543)
1517 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1518 else
1519 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1520
1521 /* Cache if we're 82544 running in PCI-X because we'll
1522 * need this to apply a workaround later in the send path. */
1523 if (hw->mac_type == e1000_82544 &&
1524 hw->bus_type == e1000_bus_type_pcix)
1525 adapter->pcix_82544 = 1;
1526
1527 E1000_WRITE_REG(hw, TCTL, tctl);
1528
1529 }
1530
1531 /**
1532 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1533 * @adapter: board private structure
1534 * @rxdr: rx descriptor ring (for a specific queue) to setup
1535 *
1536 * Returns 0 on success, negative on failure
1537 **/
1538
1539 static int
1540 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1541 struct e1000_rx_ring *rxdr)
1542 {
1543 struct pci_dev *pdev = adapter->pdev;
1544 int size, desc_len;
1545
1546 size = sizeof(struct e1000_buffer) * rxdr->count;
1547 rxdr->buffer_info = vmalloc(size);
1548 if (!rxdr->buffer_info) {
1549 DPRINTK(PROBE, ERR,
1550 "Unable to allocate memory for the receive descriptor ring\n");
1551 return -ENOMEM;
1552 }
1553 memset(rxdr->buffer_info, 0, size);
1554
1555 size = sizeof(struct e1000_ps_page) * rxdr->count;
1556 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1557 if (!rxdr->ps_page) {
1558 vfree(rxdr->buffer_info);
1559 DPRINTK(PROBE, ERR,
1560 "Unable to allocate memory for the receive descriptor ring\n");
1561 return -ENOMEM;
1562 }
1563 memset(rxdr->ps_page, 0, size);
1564
1565 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1566 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1567 if (!rxdr->ps_page_dma) {
1568 vfree(rxdr->buffer_info);
1569 kfree(rxdr->ps_page);
1570 DPRINTK(PROBE, ERR,
1571 "Unable to allocate memory for the receive descriptor ring\n");
1572 return -ENOMEM;
1573 }
1574 memset(rxdr->ps_page_dma, 0, size);
1575
1576 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1577 desc_len = sizeof(struct e1000_rx_desc);
1578 else
1579 desc_len = sizeof(union e1000_rx_desc_packet_split);
1580
1581 /* Round up to nearest 4K */
1582
1583 rxdr->size = rxdr->count * desc_len;
1584 E1000_ROUNDUP(rxdr->size, 4096);
1585
1586 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1587
1588 if (!rxdr->desc) {
1589 DPRINTK(PROBE, ERR,
1590 "Unable to allocate memory for the receive descriptor ring\n");
1591 setup_rx_desc_die:
1592 vfree(rxdr->buffer_info);
1593 kfree(rxdr->ps_page);
1594 kfree(rxdr->ps_page_dma);
1595 return -ENOMEM;
1596 }
1597
1598 /* Fix for errata 23, can't cross 64kB boundary */
1599 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1600 void *olddesc = rxdr->desc;
1601 dma_addr_t olddma = rxdr->dma;
1602 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1603 "at %p\n", rxdr->size, rxdr->desc);
1604 /* Try again, without freeing the previous */
1605 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1606 /* Failed allocation, critical failure */
1607 if (!rxdr->desc) {
1608 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1609 DPRINTK(PROBE, ERR,
1610 "Unable to allocate memory "
1611 "for the receive descriptor ring\n");
1612 goto setup_rx_desc_die;
1613 }
1614
1615 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1616 /* give up */
1617 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1618 rxdr->dma);
1619 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1620 DPRINTK(PROBE, ERR,
1621 "Unable to allocate aligned memory "
1622 "for the receive descriptor ring\n");
1623 goto setup_rx_desc_die;
1624 } else {
1625 /* Free old allocation, new allocation was successful */
1626 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1627 }
1628 }
1629 memset(rxdr->desc, 0, rxdr->size);
1630
1631 rxdr->next_to_clean = 0;
1632 rxdr->next_to_use = 0;
1633
1634 return 0;
1635 }
1636
1637 /**
1638 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1639 * (Descriptors) for all queues
1640 * @adapter: board private structure
1641 *
1642 * If this function returns with an error, then it's possible one or
1643 * more of the rings is populated (while the rest are not). It is the
1644 * callers duty to clean those orphaned rings.
1645 *
1646 * Return 0 on success, negative on failure
1647 **/
1648
1649 int
1650 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1651 {
1652 int i, err = 0;
1653
1654 for (i = 0; i < adapter->num_rx_queues; i++) {
1655 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1656 if (err) {
1657 DPRINTK(PROBE, ERR,
1658 "Allocation for Rx Queue %u failed\n", i);
1659 break;
1660 }
1661 }
1662
1663 return err;
1664 }
1665
1666 /**
1667 * e1000_setup_rctl - configure the receive control registers
1668 * @adapter: Board private structure
1669 **/
1670 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1671 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1672 static void
1673 e1000_setup_rctl(struct e1000_adapter *adapter)
1674 {
1675 uint32_t rctl, rfctl;
1676 uint32_t psrctl = 0;
1677 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1678 uint32_t pages = 0;
1679 #endif
1680
1681 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1682
1683 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1684
1685 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1686 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1687 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1688
1689 if (adapter->hw.tbi_compatibility_on == 1)
1690 rctl |= E1000_RCTL_SBP;
1691 else
1692 rctl &= ~E1000_RCTL_SBP;
1693
1694 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1695 rctl &= ~E1000_RCTL_LPE;
1696 else
1697 rctl |= E1000_RCTL_LPE;
1698
1699 /* Setup buffer sizes */
1700 rctl &= ~E1000_RCTL_SZ_4096;
1701 rctl |= E1000_RCTL_BSEX;
1702 switch (adapter->rx_buffer_len) {
1703 case E1000_RXBUFFER_256:
1704 rctl |= E1000_RCTL_SZ_256;
1705 rctl &= ~E1000_RCTL_BSEX;
1706 break;
1707 case E1000_RXBUFFER_512:
1708 rctl |= E1000_RCTL_SZ_512;
1709 rctl &= ~E1000_RCTL_BSEX;
1710 break;
1711 case E1000_RXBUFFER_1024:
1712 rctl |= E1000_RCTL_SZ_1024;
1713 rctl &= ~E1000_RCTL_BSEX;
1714 break;
1715 case E1000_RXBUFFER_2048:
1716 default:
1717 rctl |= E1000_RCTL_SZ_2048;
1718 rctl &= ~E1000_RCTL_BSEX;
1719 break;
1720 case E1000_RXBUFFER_4096:
1721 rctl |= E1000_RCTL_SZ_4096;
1722 break;
1723 case E1000_RXBUFFER_8192:
1724 rctl |= E1000_RCTL_SZ_8192;
1725 break;
1726 case E1000_RXBUFFER_16384:
1727 rctl |= E1000_RCTL_SZ_16384;
1728 break;
1729 }
1730
1731 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1732 /* 82571 and greater support packet-split where the protocol
1733 * header is placed in skb->data and the packet data is
1734 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1735 * In the case of a non-split, skb->data is linearly filled,
1736 * followed by the page buffers. Therefore, skb->data is
1737 * sized to hold the largest protocol header.
1738 */
1739 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1740 if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1741 PAGE_SIZE <= 16384)
1742 adapter->rx_ps_pages = pages;
1743 else
1744 adapter->rx_ps_pages = 0;
1745 #endif
1746 if (adapter->rx_ps_pages) {
1747 /* Configure extra packet-split registers */
1748 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1749 rfctl |= E1000_RFCTL_EXTEN;
1750 /* disable IPv6 packet split support */
1751 rfctl |= E1000_RFCTL_IPV6_DIS;
1752 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1753
1754 rctl |= E1000_RCTL_DTYP_PS;
1755
1756 psrctl |= adapter->rx_ps_bsize0 >>
1757 E1000_PSRCTL_BSIZE0_SHIFT;
1758
1759 switch (adapter->rx_ps_pages) {
1760 case 3:
1761 psrctl |= PAGE_SIZE <<
1762 E1000_PSRCTL_BSIZE3_SHIFT;
1763 case 2:
1764 psrctl |= PAGE_SIZE <<
1765 E1000_PSRCTL_BSIZE2_SHIFT;
1766 case 1:
1767 psrctl |= PAGE_SIZE >>
1768 E1000_PSRCTL_BSIZE1_SHIFT;
1769 break;
1770 }
1771
1772 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1773 }
1774
1775 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1776 }
1777
1778 /**
1779 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1780 * @adapter: board private structure
1781 *
1782 * Configure the Rx unit of the MAC after a reset.
1783 **/
1784
1785 static void
1786 e1000_configure_rx(struct e1000_adapter *adapter)
1787 {
1788 uint64_t rdba;
1789 struct e1000_hw *hw = &adapter->hw;
1790 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1791
1792 if (adapter->rx_ps_pages) {
1793 /* this is a 32 byte descriptor */
1794 rdlen = adapter->rx_ring[0].count *
1795 sizeof(union e1000_rx_desc_packet_split);
1796 adapter->clean_rx = e1000_clean_rx_irq_ps;
1797 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1798 } else {
1799 rdlen = adapter->rx_ring[0].count *
1800 sizeof(struct e1000_rx_desc);
1801 adapter->clean_rx = e1000_clean_rx_irq;
1802 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1803 }
1804
1805 /* disable receives while setting up the descriptors */
1806 rctl = E1000_READ_REG(hw, RCTL);
1807 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1808
1809 /* set the Receive Delay Timer Register */
1810 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1811
1812 if (hw->mac_type >= e1000_82540) {
1813 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1814 if (adapter->itr > 1)
1815 E1000_WRITE_REG(hw, ITR,
1816 1000000000 / (adapter->itr * 256));
1817 }
1818
1819 if (hw->mac_type >= e1000_82571) {
1820 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1821 /* Reset delay timers after every interrupt */
1822 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1823 #ifdef CONFIG_E1000_NAPI
1824 /* Auto-Mask interrupts upon ICR read. */
1825 ctrl_ext |= E1000_CTRL_EXT_IAME;
1826 #endif
1827 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1828 E1000_WRITE_REG(hw, IAM, ~0);
1829 E1000_WRITE_FLUSH(hw);
1830 }
1831
1832 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1833 * the Base and Length of the Rx Descriptor Ring */
1834 switch (adapter->num_rx_queues) {
1835 case 1:
1836 default:
1837 rdba = adapter->rx_ring[0].dma;
1838 E1000_WRITE_REG(hw, RDLEN, rdlen);
1839 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1840 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1841 E1000_WRITE_REG(hw, RDT, 0);
1842 E1000_WRITE_REG(hw, RDH, 0);
1843 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1844 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1845 break;
1846 }
1847
1848 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1849 if (hw->mac_type >= e1000_82543) {
1850 rxcsum = E1000_READ_REG(hw, RXCSUM);
1851 if (adapter->rx_csum == TRUE) {
1852 rxcsum |= E1000_RXCSUM_TUOFL;
1853
1854 /* Enable 82571 IPv4 payload checksum for UDP fragments
1855 * Must be used in conjunction with packet-split. */
1856 if ((hw->mac_type >= e1000_82571) &&
1857 (adapter->rx_ps_pages)) {
1858 rxcsum |= E1000_RXCSUM_IPPCSE;
1859 }
1860 } else {
1861 rxcsum &= ~E1000_RXCSUM_TUOFL;
1862 /* don't need to clear IPPCSE as it defaults to 0 */
1863 }
1864 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1865 }
1866
1867 /* Enable Receives */
1868 E1000_WRITE_REG(hw, RCTL, rctl);
1869 }
1870
1871 /**
1872 * e1000_free_tx_resources - Free Tx Resources per Queue
1873 * @adapter: board private structure
1874 * @tx_ring: Tx descriptor ring for a specific queue
1875 *
1876 * Free all transmit software resources
1877 **/
1878
1879 static void
1880 e1000_free_tx_resources(struct e1000_adapter *adapter,
1881 struct e1000_tx_ring *tx_ring)
1882 {
1883 struct pci_dev *pdev = adapter->pdev;
1884
1885 e1000_clean_tx_ring(adapter, tx_ring);
1886
1887 vfree(tx_ring->buffer_info);
1888 tx_ring->buffer_info = NULL;
1889
1890 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1891
1892 tx_ring->desc = NULL;
1893 }
1894
1895 /**
1896 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1897 * @adapter: board private structure
1898 *
1899 * Free all transmit software resources
1900 **/
1901
1902 void
1903 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1904 {
1905 int i;
1906
1907 for (i = 0; i < adapter->num_tx_queues; i++)
1908 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1909 }
1910
1911 static void
1912 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1913 struct e1000_buffer *buffer_info)
1914 {
1915 if (buffer_info->dma) {
1916 pci_unmap_page(adapter->pdev,
1917 buffer_info->dma,
1918 buffer_info->length,
1919 PCI_DMA_TODEVICE);
1920 }
1921 if (buffer_info->skb)
1922 dev_kfree_skb_any(buffer_info->skb);
1923 memset(buffer_info, 0, sizeof(struct e1000_buffer));
1924 }
1925
1926 /**
1927 * e1000_clean_tx_ring - Free Tx Buffers
1928 * @adapter: board private structure
1929 * @tx_ring: ring to be cleaned
1930 **/
1931
1932 static void
1933 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1934 struct e1000_tx_ring *tx_ring)
1935 {
1936 struct e1000_buffer *buffer_info;
1937 unsigned long size;
1938 unsigned int i;
1939
1940 /* Free all the Tx ring sk_buffs */
1941
1942 for (i = 0; i < tx_ring->count; i++) {
1943 buffer_info = &tx_ring->buffer_info[i];
1944 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1945 }
1946
1947 size = sizeof(struct e1000_buffer) * tx_ring->count;
1948 memset(tx_ring->buffer_info, 0, size);
1949
1950 /* Zero out the descriptor ring */
1951
1952 memset(tx_ring->desc, 0, tx_ring->size);
1953
1954 tx_ring->next_to_use = 0;
1955 tx_ring->next_to_clean = 0;
1956 tx_ring->last_tx_tso = 0;
1957
1958 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1959 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1960 }
1961
1962 /**
1963 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1964 * @adapter: board private structure
1965 **/
1966
1967 static void
1968 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1969 {
1970 int i;
1971
1972 for (i = 0; i < adapter->num_tx_queues; i++)
1973 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1974 }
1975
1976 /**
1977 * e1000_free_rx_resources - Free Rx Resources
1978 * @adapter: board private structure
1979 * @rx_ring: ring to clean the resources from
1980 *
1981 * Free all receive software resources
1982 **/
1983
1984 static void
1985 e1000_free_rx_resources(struct e1000_adapter *adapter,
1986 struct e1000_rx_ring *rx_ring)
1987 {
1988 struct pci_dev *pdev = adapter->pdev;
1989
1990 e1000_clean_rx_ring(adapter, rx_ring);
1991
1992 vfree(rx_ring->buffer_info);
1993 rx_ring->buffer_info = NULL;
1994 kfree(rx_ring->ps_page);
1995 rx_ring->ps_page = NULL;
1996 kfree(rx_ring->ps_page_dma);
1997 rx_ring->ps_page_dma = NULL;
1998
1999 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2000
2001 rx_ring->desc = NULL;
2002 }
2003
2004 /**
2005 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2006 * @adapter: board private structure
2007 *
2008 * Free all receive software resources
2009 **/
2010
2011 void
2012 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2013 {
2014 int i;
2015
2016 for (i = 0; i < adapter->num_rx_queues; i++)
2017 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2018 }
2019
2020 /**
2021 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2022 * @adapter: board private structure
2023 * @rx_ring: ring to free buffers from
2024 **/
2025
2026 static void
2027 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2028 struct e1000_rx_ring *rx_ring)
2029 {
2030 struct e1000_buffer *buffer_info;
2031 struct e1000_ps_page *ps_page;
2032 struct e1000_ps_page_dma *ps_page_dma;
2033 struct pci_dev *pdev = adapter->pdev;
2034 unsigned long size;
2035 unsigned int i, j;
2036
2037 /* Free all the Rx ring sk_buffs */
2038 for (i = 0; i < rx_ring->count; i++) {
2039 buffer_info = &rx_ring->buffer_info[i];
2040 if (buffer_info->skb) {
2041 pci_unmap_single(pdev,
2042 buffer_info->dma,
2043 buffer_info->length,
2044 PCI_DMA_FROMDEVICE);
2045
2046 dev_kfree_skb(buffer_info->skb);
2047 buffer_info->skb = NULL;
2048 }
2049 ps_page = &rx_ring->ps_page[i];
2050 ps_page_dma = &rx_ring->ps_page_dma[i];
2051 for (j = 0; j < adapter->rx_ps_pages; j++) {
2052 if (!ps_page->ps_page[j]) break;
2053 pci_unmap_page(pdev,
2054 ps_page_dma->ps_page_dma[j],
2055 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2056 ps_page_dma->ps_page_dma[j] = 0;
2057 put_page(ps_page->ps_page[j]);
2058 ps_page->ps_page[j] = NULL;
2059 }
2060 }
2061
2062 size = sizeof(struct e1000_buffer) * rx_ring->count;
2063 memset(rx_ring->buffer_info, 0, size);
2064 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2065 memset(rx_ring->ps_page, 0, size);
2066 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2067 memset(rx_ring->ps_page_dma, 0, size);
2068
2069 /* Zero out the descriptor ring */
2070
2071 memset(rx_ring->desc, 0, rx_ring->size);
2072
2073 rx_ring->next_to_clean = 0;
2074 rx_ring->next_to_use = 0;
2075
2076 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2077 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2078 }
2079
2080 /**
2081 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2082 * @adapter: board private structure
2083 **/
2084
2085 static void
2086 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2087 {
2088 int i;
2089
2090 for (i = 0; i < adapter->num_rx_queues; i++)
2091 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2092 }
2093
2094 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2095 * and memory write and invalidate disabled for certain operations
2096 */
2097 static void
2098 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2099 {
2100 struct net_device *netdev = adapter->netdev;
2101 uint32_t rctl;
2102
2103 e1000_pci_clear_mwi(&adapter->hw);
2104
2105 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2106 rctl |= E1000_RCTL_RST;
2107 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2108 E1000_WRITE_FLUSH(&adapter->hw);
2109 mdelay(5);
2110
2111 if (netif_running(netdev))
2112 e1000_clean_all_rx_rings(adapter);
2113 }
2114
2115 static void
2116 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2117 {
2118 struct net_device *netdev = adapter->netdev;
2119 uint32_t rctl;
2120
2121 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2122 rctl &= ~E1000_RCTL_RST;
2123 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2124 E1000_WRITE_FLUSH(&adapter->hw);
2125 mdelay(5);
2126
2127 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2128 e1000_pci_set_mwi(&adapter->hw);
2129
2130 if (netif_running(netdev)) {
2131 /* No need to loop, because 82542 supports only 1 queue */
2132 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2133 e1000_configure_rx(adapter);
2134 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2135 }
2136 }
2137
2138 /**
2139 * e1000_set_mac - Change the Ethernet Address of the NIC
2140 * @netdev: network interface device structure
2141 * @p: pointer to an address structure
2142 *
2143 * Returns 0 on success, negative on failure
2144 **/
2145
2146 static int
2147 e1000_set_mac(struct net_device *netdev, void *p)
2148 {
2149 struct e1000_adapter *adapter = netdev_priv(netdev);
2150 struct sockaddr *addr = p;
2151
2152 if (!is_valid_ether_addr(addr->sa_data))
2153 return -EADDRNOTAVAIL;
2154
2155 /* 82542 2.0 needs to be in reset to write receive address registers */
2156
2157 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2158 e1000_enter_82542_rst(adapter);
2159
2160 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2161 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2162
2163 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2164
2165 /* With 82571 controllers, LAA may be overwritten (with the default)
2166 * due to controller reset from the other port. */
2167 if (adapter->hw.mac_type == e1000_82571) {
2168 /* activate the work around */
2169 adapter->hw.laa_is_present = 1;
2170
2171 /* Hold a copy of the LAA in RAR[14] This is done so that
2172 * between the time RAR[0] gets clobbered and the time it
2173 * gets fixed (in e1000_watchdog), the actual LAA is in one
2174 * of the RARs and no incoming packets directed to this port
2175 * are dropped. Eventaully the LAA will be in RAR[0] and
2176 * RAR[14] */
2177 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2178 E1000_RAR_ENTRIES - 1);
2179 }
2180
2181 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2182 e1000_leave_82542_rst(adapter);
2183
2184 return 0;
2185 }
2186
2187 /**
2188 * e1000_set_multi - Multicast and Promiscuous mode set
2189 * @netdev: network interface device structure
2190 *
2191 * The set_multi entry point is called whenever the multicast address
2192 * list or the network interface flags are updated. This routine is
2193 * responsible for configuring the hardware for proper multicast,
2194 * promiscuous mode, and all-multi behavior.
2195 **/
2196
2197 static void
2198 e1000_set_multi(struct net_device *netdev)
2199 {
2200 struct e1000_adapter *adapter = netdev_priv(netdev);
2201 struct e1000_hw *hw = &adapter->hw;
2202 struct dev_mc_list *mc_ptr;
2203 uint32_t rctl;
2204 uint32_t hash_value;
2205 int i, rar_entries = E1000_RAR_ENTRIES;
2206 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2207 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2208 E1000_NUM_MTA_REGISTERS;
2209
2210 if (adapter->hw.mac_type == e1000_ich8lan)
2211 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2212
2213 /* reserve RAR[14] for LAA over-write work-around */
2214 if (adapter->hw.mac_type == e1000_82571)
2215 rar_entries--;
2216
2217 /* Check for Promiscuous and All Multicast modes */
2218
2219 rctl = E1000_READ_REG(hw, RCTL);
2220
2221 if (netdev->flags & IFF_PROMISC) {
2222 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2223 } else if (netdev->flags & IFF_ALLMULTI) {
2224 rctl |= E1000_RCTL_MPE;
2225 rctl &= ~E1000_RCTL_UPE;
2226 } else {
2227 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2228 }
2229
2230 E1000_WRITE_REG(hw, RCTL, rctl);
2231
2232 /* 82542 2.0 needs to be in reset to write receive address registers */
2233
2234 if (hw->mac_type == e1000_82542_rev2_0)
2235 e1000_enter_82542_rst(adapter);
2236
2237 /* load the first 14 multicast address into the exact filters 1-14
2238 * RAR 0 is used for the station MAC adddress
2239 * if there are not 14 addresses, go ahead and clear the filters
2240 * -- with 82571 controllers only 0-13 entries are filled here
2241 */
2242 mc_ptr = netdev->mc_list;
2243
2244 for (i = 1; i < rar_entries; i++) {
2245 if (mc_ptr) {
2246 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2247 mc_ptr = mc_ptr->next;
2248 } else {
2249 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2250 E1000_WRITE_FLUSH(hw);
2251 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2252 E1000_WRITE_FLUSH(hw);
2253 }
2254 }
2255
2256 /* clear the old settings from the multicast hash table */
2257
2258 for (i = 0; i < mta_reg_count; i++) {
2259 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2260 E1000_WRITE_FLUSH(hw);
2261 }
2262
2263 /* load any remaining addresses into the hash table */
2264
2265 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2266 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2267 e1000_mta_set(hw, hash_value);
2268 }
2269
2270 if (hw->mac_type == e1000_82542_rev2_0)
2271 e1000_leave_82542_rst(adapter);
2272 }
2273
2274 /* Need to wait a few seconds after link up to get diagnostic information from
2275 * the phy */
2276
2277 static void
2278 e1000_update_phy_info(unsigned long data)
2279 {
2280 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2281 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2282 }
2283
2284 /**
2285 * e1000_82547_tx_fifo_stall - Timer Call-back
2286 * @data: pointer to adapter cast into an unsigned long
2287 **/
2288
2289 static void
2290 e1000_82547_tx_fifo_stall(unsigned long data)
2291 {
2292 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2293 struct net_device *netdev = adapter->netdev;
2294 uint32_t tctl;
2295
2296 if (atomic_read(&adapter->tx_fifo_stall)) {
2297 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2298 E1000_READ_REG(&adapter->hw, TDH)) &&
2299 (E1000_READ_REG(&adapter->hw, TDFT) ==
2300 E1000_READ_REG(&adapter->hw, TDFH)) &&
2301 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2302 E1000_READ_REG(&adapter->hw, TDFHS))) {
2303 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2304 E1000_WRITE_REG(&adapter->hw, TCTL,
2305 tctl & ~E1000_TCTL_EN);
2306 E1000_WRITE_REG(&adapter->hw, TDFT,
2307 adapter->tx_head_addr);
2308 E1000_WRITE_REG(&adapter->hw, TDFH,
2309 adapter->tx_head_addr);
2310 E1000_WRITE_REG(&adapter->hw, TDFTS,
2311 adapter->tx_head_addr);
2312 E1000_WRITE_REG(&adapter->hw, TDFHS,
2313 adapter->tx_head_addr);
2314 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2315 E1000_WRITE_FLUSH(&adapter->hw);
2316
2317 adapter->tx_fifo_head = 0;
2318 atomic_set(&adapter->tx_fifo_stall, 0);
2319 netif_wake_queue(netdev);
2320 } else {
2321 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2322 }
2323 }
2324 }
2325
2326 /**
2327 * e1000_watchdog - Timer Call-back
2328 * @data: pointer to adapter cast into an unsigned long
2329 **/
2330 static void
2331 e1000_watchdog(unsigned long data)
2332 {
2333 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2334 struct net_device *netdev = adapter->netdev;
2335 struct e1000_tx_ring *txdr = adapter->tx_ring;
2336 uint32_t link, tctl;
2337 int32_t ret_val;
2338
2339 ret_val = e1000_check_for_link(&adapter->hw);
2340 if ((ret_val == E1000_ERR_PHY) &&
2341 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2342 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2343 /* See e1000_kumeran_lock_loss_workaround() */
2344 DPRINTK(LINK, INFO,
2345 "Gigabit has been disabled, downgrading speed\n");
2346 }
2347 if (adapter->hw.mac_type == e1000_82573) {
2348 e1000_enable_tx_pkt_filtering(&adapter->hw);
2349 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2350 e1000_update_mng_vlan(adapter);
2351 }
2352
2353 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2354 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2355 link = !adapter->hw.serdes_link_down;
2356 else
2357 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2358
2359 if (link) {
2360 if (!netif_carrier_ok(netdev)) {
2361 boolean_t txb2b = 1;
2362 e1000_get_speed_and_duplex(&adapter->hw,
2363 &adapter->link_speed,
2364 &adapter->link_duplex);
2365
2366 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2367 adapter->link_speed,
2368 adapter->link_duplex == FULL_DUPLEX ?
2369 "Full Duplex" : "Half Duplex");
2370
2371 /* tweak tx_queue_len according to speed/duplex
2372 * and adjust the timeout factor */
2373 netdev->tx_queue_len = adapter->tx_queue_len;
2374 adapter->tx_timeout_factor = 1;
2375 switch (adapter->link_speed) {
2376 case SPEED_10:
2377 txb2b = 0;
2378 netdev->tx_queue_len = 10;
2379 adapter->tx_timeout_factor = 8;
2380 break;
2381 case SPEED_100:
2382 txb2b = 0;
2383 netdev->tx_queue_len = 100;
2384 /* maybe add some timeout factor ? */
2385 break;
2386 }
2387
2388 if ((adapter->hw.mac_type == e1000_82571 ||
2389 adapter->hw.mac_type == e1000_82572) &&
2390 txb2b == 0) {
2391 #define SPEED_MODE_BIT (1 << 21)
2392 uint32_t tarc0;
2393 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2394 tarc0 &= ~SPEED_MODE_BIT;
2395 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2396 }
2397
2398 #ifdef NETIF_F_TSO
2399 /* disable TSO for pcie and 10/100 speeds, to avoid
2400 * some hardware issues */
2401 if (!adapter->tso_force &&
2402 adapter->hw.bus_type == e1000_bus_type_pci_express){
2403 switch (adapter->link_speed) {
2404 case SPEED_10:
2405 case SPEED_100:
2406 DPRINTK(PROBE,INFO,
2407 "10/100 speed: disabling TSO\n");
2408 netdev->features &= ~NETIF_F_TSO;
2409 break;
2410 case SPEED_1000:
2411 netdev->features |= NETIF_F_TSO;
2412 break;
2413 default:
2414 /* oops */
2415 break;
2416 }
2417 }
2418 #endif
2419
2420 /* enable transmits in the hardware, need to do this
2421 * after setting TARC0 */
2422 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2423 tctl |= E1000_TCTL_EN;
2424 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2425
2426 netif_carrier_on(netdev);
2427 netif_wake_queue(netdev);
2428 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2429 adapter->smartspeed = 0;
2430 }
2431 } else {
2432 if (netif_carrier_ok(netdev)) {
2433 adapter->link_speed = 0;
2434 adapter->link_duplex = 0;
2435 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2436 netif_carrier_off(netdev);
2437 netif_stop_queue(netdev);
2438 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2439
2440 /* 80003ES2LAN workaround--
2441 * For packet buffer work-around on link down event;
2442 * disable receives in the ISR and
2443 * reset device here in the watchdog
2444 */
2445 if (adapter->hw.mac_type == e1000_80003es2lan) {
2446 /* reset device */
2447 schedule_work(&adapter->reset_task);
2448 }
2449 }
2450
2451 e1000_smartspeed(adapter);
2452 }
2453
2454 e1000_update_stats(adapter);
2455
2456 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2457 adapter->tpt_old = adapter->stats.tpt;
2458 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2459 adapter->colc_old = adapter->stats.colc;
2460
2461 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2462 adapter->gorcl_old = adapter->stats.gorcl;
2463 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2464 adapter->gotcl_old = adapter->stats.gotcl;
2465
2466 e1000_update_adaptive(&adapter->hw);
2467
2468 if (!netif_carrier_ok(netdev)) {
2469 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2470 /* We've lost link, so the controller stops DMA,
2471 * but we've got queued Tx work that's never going
2472 * to get done, so reset controller to flush Tx.
2473 * (Do the reset outside of interrupt context). */
2474 adapter->tx_timeout_count++;
2475 schedule_work(&adapter->reset_task);
2476 }
2477 }
2478
2479 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2480 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2481 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2482 * asymmetrical Tx or Rx gets ITR=8000; everyone
2483 * else is between 2000-8000. */
2484 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2485 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2486 adapter->gotcl - adapter->gorcl :
2487 adapter->gorcl - adapter->gotcl) / 10000;
2488 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2489 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2490 }
2491
2492 /* Cause software interrupt to ensure rx ring is cleaned */
2493 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2494
2495 /* Force detection of hung controller every watchdog period */
2496 adapter->detect_tx_hung = TRUE;
2497
2498 /* With 82571 controllers, LAA may be overwritten due to controller
2499 * reset from the other port. Set the appropriate LAA in RAR[0] */
2500 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2501 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2502
2503 /* Reset the timer */
2504 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2505 }
2506
2507 #define E1000_TX_FLAGS_CSUM 0x00000001
2508 #define E1000_TX_FLAGS_VLAN 0x00000002
2509 #define E1000_TX_FLAGS_TSO 0x00000004
2510 #define E1000_TX_FLAGS_IPV4 0x00000008
2511 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2512 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2513
2514 static int
2515 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2516 struct sk_buff *skb)
2517 {
2518 #ifdef NETIF_F_TSO
2519 struct e1000_context_desc *context_desc;
2520 struct e1000_buffer *buffer_info;
2521 unsigned int i;
2522 uint32_t cmd_length = 0;
2523 uint16_t ipcse = 0, tucse, mss;
2524 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2525 int err;
2526
2527 if (skb_is_gso(skb)) {
2528 if (skb_header_cloned(skb)) {
2529 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2530 if (err)
2531 return err;
2532 }
2533
2534 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2535 mss = skb_shinfo(skb)->gso_size;
2536 if (skb->protocol == htons(ETH_P_IP)) {
2537 skb->nh.iph->tot_len = 0;
2538 skb->nh.iph->check = 0;
2539 skb->h.th->check =
2540 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2541 skb->nh.iph->daddr,
2542 0,
2543 IPPROTO_TCP,
2544 0);
2545 cmd_length = E1000_TXD_CMD_IP;
2546 ipcse = skb->h.raw - skb->data - 1;
2547 #ifdef NETIF_F_TSO_IPV6
2548 } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
2549 skb->nh.ipv6h->payload_len = 0;
2550 skb->h.th->check =
2551 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2552 &skb->nh.ipv6h->daddr,
2553 0,
2554 IPPROTO_TCP,
2555 0);
2556 ipcse = 0;
2557 #endif
2558 }
2559 ipcss = skb->nh.raw - skb->data;
2560 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2561 tucss = skb->h.raw - skb->data;
2562 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2563 tucse = 0;
2564
2565 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2566 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2567
2568 i = tx_ring->next_to_use;
2569 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2570 buffer_info = &tx_ring->buffer_info[i];
2571
2572 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2573 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2574 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2575 context_desc->upper_setup.tcp_fields.tucss = tucss;
2576 context_desc->upper_setup.tcp_fields.tucso = tucso;
2577 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2578 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2579 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2580 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2581
2582 buffer_info->time_stamp = jiffies;
2583
2584 if (++i == tx_ring->count) i = 0;
2585 tx_ring->next_to_use = i;
2586
2587 return TRUE;
2588 }
2589 #endif
2590
2591 return FALSE;
2592 }
2593
2594 static boolean_t
2595 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2596 struct sk_buff *skb)
2597 {
2598 struct e1000_context_desc *context_desc;
2599 struct e1000_buffer *buffer_info;
2600 unsigned int i;
2601 uint8_t css;
2602
2603 if (likely(skb->ip_summed == CHECKSUM_HW)) {
2604 css = skb->h.raw - skb->data;
2605
2606 i = tx_ring->next_to_use;
2607 buffer_info = &tx_ring->buffer_info[i];
2608 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2609
2610 context_desc->upper_setup.tcp_fields.tucss = css;
2611 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2612 context_desc->upper_setup.tcp_fields.tucse = 0;
2613 context_desc->tcp_seg_setup.data = 0;
2614 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2615
2616 buffer_info->time_stamp = jiffies;
2617
2618 if (unlikely(++i == tx_ring->count)) i = 0;
2619 tx_ring->next_to_use = i;
2620
2621 return TRUE;
2622 }
2623
2624 return FALSE;
2625 }
2626
2627 #define E1000_MAX_TXD_PWR 12
2628 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2629
2630 static int
2631 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2632 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2633 unsigned int nr_frags, unsigned int mss)
2634 {
2635 struct e1000_buffer *buffer_info;
2636 unsigned int len = skb->len;
2637 unsigned int offset = 0, size, count = 0, i;
2638 unsigned int f;
2639 len -= skb->data_len;
2640
2641 i = tx_ring->next_to_use;
2642
2643 while (len) {
2644 buffer_info = &tx_ring->buffer_info[i];
2645 size = min(len, max_per_txd);
2646 #ifdef NETIF_F_TSO
2647 /* Workaround for Controller erratum --
2648 * descriptor for non-tso packet in a linear SKB that follows a
2649 * tso gets written back prematurely before the data is fully
2650 * DMA'd to the controller */
2651 if (!skb->data_len && tx_ring->last_tx_tso &&
2652 !skb_is_gso(skb)) {
2653 tx_ring->last_tx_tso = 0;
2654 size -= 4;
2655 }
2656
2657 /* Workaround for premature desc write-backs
2658 * in TSO mode. Append 4-byte sentinel desc */
2659 if (unlikely(mss && !nr_frags && size == len && size > 8))
2660 size -= 4;
2661 #endif
2662 /* work-around for errata 10 and it applies
2663 * to all controllers in PCI-X mode
2664 * The fix is to make sure that the first descriptor of a
2665 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2666 */
2667 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2668 (size > 2015) && count == 0))
2669 size = 2015;
2670
2671 /* Workaround for potential 82544 hang in PCI-X. Avoid
2672 * terminating buffers within evenly-aligned dwords. */
2673 if (unlikely(adapter->pcix_82544 &&
2674 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2675 size > 4))
2676 size -= 4;
2677
2678 buffer_info->length = size;
2679 buffer_info->dma =
2680 pci_map_single(adapter->pdev,
2681 skb->data + offset,
2682 size,
2683 PCI_DMA_TODEVICE);
2684 buffer_info->time_stamp = jiffies;
2685
2686 len -= size;
2687 offset += size;
2688 count++;
2689 if (unlikely(++i == tx_ring->count)) i = 0;
2690 }
2691
2692 for (f = 0; f < nr_frags; f++) {
2693 struct skb_frag_struct *frag;
2694
2695 frag = &skb_shinfo(skb)->frags[f];
2696 len = frag->size;
2697 offset = frag->page_offset;
2698
2699 while (len) {
2700 buffer_info = &tx_ring->buffer_info[i];
2701 size = min(len, max_per_txd);
2702 #ifdef NETIF_F_TSO
2703 /* Workaround for premature desc write-backs
2704 * in TSO mode. Append 4-byte sentinel desc */
2705 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2706 size -= 4;
2707 #endif
2708 /* Workaround for potential 82544 hang in PCI-X.
2709 * Avoid terminating buffers within evenly-aligned
2710 * dwords. */
2711 if (unlikely(adapter->pcix_82544 &&
2712 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2713 size > 4))
2714 size -= 4;
2715
2716 buffer_info->length = size;
2717 buffer_info->dma =
2718 pci_map_page(adapter->pdev,
2719 frag->page,
2720 offset,
2721 size,
2722 PCI_DMA_TODEVICE);
2723 buffer_info->time_stamp = jiffies;
2724
2725 len -= size;
2726 offset += size;
2727 count++;
2728 if (unlikely(++i == tx_ring->count)) i = 0;
2729 }
2730 }
2731
2732 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2733 tx_ring->buffer_info[i].skb = skb;
2734 tx_ring->buffer_info[first].next_to_watch = i;
2735
2736 return count;
2737 }
2738
2739 static void
2740 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2741 int tx_flags, int count)
2742 {
2743 struct e1000_tx_desc *tx_desc = NULL;
2744 struct e1000_buffer *buffer_info;
2745 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2746 unsigned int i;
2747
2748 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2749 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2750 E1000_TXD_CMD_TSE;
2751 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2752
2753 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2754 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2755 }
2756
2757 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2758 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2759 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2760 }
2761
2762 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2763 txd_lower |= E1000_TXD_CMD_VLE;
2764 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2765 }
2766
2767 i = tx_ring->next_to_use;
2768
2769 while (count--) {
2770 buffer_info = &tx_ring->buffer_info[i];
2771 tx_desc = E1000_TX_DESC(*tx_ring, i);
2772 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2773 tx_desc->lower.data =
2774 cpu_to_le32(txd_lower | buffer_info->length);
2775 tx_desc->upper.data = cpu_to_le32(txd_upper);
2776 if (unlikely(++i == tx_ring->count)) i = 0;
2777 }
2778
2779 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2780
2781 /* Force memory writes to complete before letting h/w
2782 * know there are new descriptors to fetch. (Only
2783 * applicable for weak-ordered memory model archs,
2784 * such as IA-64). */
2785 wmb();
2786
2787 tx_ring->next_to_use = i;
2788 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2789 }
2790
2791 /**
2792 * 82547 workaround to avoid controller hang in half-duplex environment.
2793 * The workaround is to avoid queuing a large packet that would span
2794 * the internal Tx FIFO ring boundary by notifying the stack to resend
2795 * the packet at a later time. This gives the Tx FIFO an opportunity to
2796 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2797 * to the beginning of the Tx FIFO.
2798 **/
2799
2800 #define E1000_FIFO_HDR 0x10
2801 #define E1000_82547_PAD_LEN 0x3E0
2802
2803 static int
2804 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2805 {
2806 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2807 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2808
2809 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2810
2811 if (adapter->link_duplex != HALF_DUPLEX)
2812 goto no_fifo_stall_required;
2813
2814 if (atomic_read(&adapter->tx_fifo_stall))
2815 return 1;
2816
2817 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2818 atomic_set(&adapter->tx_fifo_stall, 1);
2819 return 1;
2820 }
2821
2822 no_fifo_stall_required:
2823 adapter->tx_fifo_head += skb_fifo_len;
2824 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2825 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2826 return 0;
2827 }
2828
2829 #define MINIMUM_DHCP_PACKET_SIZE 282
2830 static int
2831 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2832 {
2833 struct e1000_hw *hw = &adapter->hw;
2834 uint16_t length, offset;
2835 if (vlan_tx_tag_present(skb)) {
2836 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2837 ( adapter->hw.mng_cookie.status &
2838 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2839 return 0;
2840 }
2841 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2842 struct ethhdr *eth = (struct ethhdr *) skb->data;
2843 if ((htons(ETH_P_IP) == eth->h_proto)) {
2844 const struct iphdr *ip =
2845 (struct iphdr *)((uint8_t *)skb->data+14);
2846 if (IPPROTO_UDP == ip->protocol) {
2847 struct udphdr *udp =
2848 (struct udphdr *)((uint8_t *)ip +
2849 (ip->ihl << 2));
2850 if (ntohs(udp->dest) == 67) {
2851 offset = (uint8_t *)udp + 8 - skb->data;
2852 length = skb->len - offset;
2853
2854 return e1000_mng_write_dhcp_info(hw,
2855 (uint8_t *)udp + 8,
2856 length);
2857 }
2858 }
2859 }
2860 }
2861 return 0;
2862 }
2863
2864 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2865 static int
2866 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2867 {
2868 struct e1000_adapter *adapter = netdev_priv(netdev);
2869 struct e1000_tx_ring *tx_ring;
2870 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2871 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2872 unsigned int tx_flags = 0;
2873 unsigned int len = skb->len;
2874 unsigned long flags;
2875 unsigned int nr_frags = 0;
2876 unsigned int mss = 0;
2877 int count = 0;
2878 int tso;
2879 unsigned int f;
2880 len -= skb->data_len;
2881
2882 tx_ring = adapter->tx_ring;
2883
2884 if (unlikely(skb->len <= 0)) {
2885 dev_kfree_skb_any(skb);
2886 return NETDEV_TX_OK;
2887 }
2888
2889 #ifdef NETIF_F_TSO
2890 mss = skb_shinfo(skb)->gso_size;
2891 /* The controller does a simple calculation to
2892 * make sure there is enough room in the FIFO before
2893 * initiating the DMA for each buffer. The calc is:
2894 * 4 = ceil(buffer len/mss). To make sure we don't
2895 * overrun the FIFO, adjust the max buffer len if mss
2896 * drops. */
2897 if (mss) {
2898 uint8_t hdr_len;
2899 max_per_txd = min(mss << 2, max_per_txd);
2900 max_txd_pwr = fls(max_per_txd) - 1;
2901
2902 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2903 * points to just header, pull a few bytes of payload from
2904 * frags into skb->data */
2905 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2906 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
2907 switch (adapter->hw.mac_type) {
2908 unsigned int pull_size;
2909 case e1000_82571:
2910 case e1000_82572:
2911 case e1000_82573:
2912 case e1000_ich8lan:
2913 pull_size = min((unsigned int)4, skb->data_len);
2914 if (!__pskb_pull_tail(skb, pull_size)) {
2915 DPRINTK(DRV, ERR,
2916 "__pskb_pull_tail failed.\n");
2917 dev_kfree_skb_any(skb);
2918 return NETDEV_TX_OK;
2919 }
2920 len = skb->len - skb->data_len;
2921 break;
2922 default:
2923 /* do nothing */
2924 break;
2925 }
2926 }
2927 }
2928
2929 /* reserve a descriptor for the offload context */
2930 if ((mss) || (skb->ip_summed == CHECKSUM_HW))
2931 count++;
2932 count++;
2933 #else
2934 if (skb->ip_summed == CHECKSUM_HW)
2935 count++;
2936 #endif
2937
2938 #ifdef NETIF_F_TSO
2939 /* Controller Erratum workaround */
2940 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
2941 count++;
2942 #endif
2943
2944 count += TXD_USE_COUNT(len, max_txd_pwr);
2945
2946 if (adapter->pcix_82544)
2947 count++;
2948
2949 /* work-around for errata 10 and it applies to all controllers
2950 * in PCI-X mode, so add one more descriptor to the count
2951 */
2952 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2953 (len > 2015)))
2954 count++;
2955
2956 nr_frags = skb_shinfo(skb)->nr_frags;
2957 for (f = 0; f < nr_frags; f++)
2958 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2959 max_txd_pwr);
2960 if (adapter->pcix_82544)
2961 count += nr_frags;
2962
2963
2964 if (adapter->hw.tx_pkt_filtering &&
2965 (adapter->hw.mac_type == e1000_82573))
2966 e1000_transfer_dhcp_info(adapter, skb);
2967
2968 local_irq_save(flags);
2969 if (!spin_trylock(&tx_ring->tx_lock)) {
2970 /* Collision - tell upper layer to requeue */
2971 local_irq_restore(flags);
2972 return NETDEV_TX_LOCKED;
2973 }
2974
2975 /* need: count + 2 desc gap to keep tail from touching
2976 * head, otherwise try next time */
2977 if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2978 netif_stop_queue(netdev);
2979 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2980 return NETDEV_TX_BUSY;
2981 }
2982
2983 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
2984 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2985 netif_stop_queue(netdev);
2986 mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2987 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2988 return NETDEV_TX_BUSY;
2989 }
2990 }
2991
2992 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2993 tx_flags |= E1000_TX_FLAGS_VLAN;
2994 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2995 }
2996
2997 first = tx_ring->next_to_use;
2998
2999 tso = e1000_tso(adapter, tx_ring, skb);
3000 if (tso < 0) {
3001 dev_kfree_skb_any(skb);
3002 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3003 return NETDEV_TX_OK;
3004 }
3005
3006 if (likely(tso)) {
3007 tx_ring->last_tx_tso = 1;
3008 tx_flags |= E1000_TX_FLAGS_TSO;
3009 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3010 tx_flags |= E1000_TX_FLAGS_CSUM;
3011
3012 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3013 * 82571 hardware supports TSO capabilities for IPv6 as well...
3014 * no longer assume, we must. */
3015 if (likely(skb->protocol == htons(ETH_P_IP)))
3016 tx_flags |= E1000_TX_FLAGS_IPV4;
3017
3018 e1000_tx_queue(adapter, tx_ring, tx_flags,
3019 e1000_tx_map(adapter, tx_ring, skb, first,
3020 max_per_txd, nr_frags, mss));
3021
3022 netdev->trans_start = jiffies;
3023
3024 /* Make sure there is space in the ring for the next send. */
3025 if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
3026 netif_stop_queue(netdev);
3027
3028 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3029 return NETDEV_TX_OK;
3030 }
3031
3032 /**
3033 * e1000_tx_timeout - Respond to a Tx Hang
3034 * @netdev: network interface device structure
3035 **/
3036
3037 static void
3038 e1000_tx_timeout(struct net_device *netdev)
3039 {
3040 struct e1000_adapter *adapter = netdev_priv(netdev);
3041
3042 /* Do the reset outside of interrupt context */
3043 adapter->tx_timeout_count++;
3044 schedule_work(&adapter->reset_task);
3045 }
3046
3047 static void
3048 e1000_reset_task(struct net_device *netdev)
3049 {
3050 struct e1000_adapter *adapter = netdev_priv(netdev);
3051
3052 e1000_reinit_locked(adapter);
3053 }
3054
3055 /**
3056 * e1000_get_stats - Get System Network Statistics
3057 * @netdev: network interface device structure
3058 *
3059 * Returns the address of the device statistics structure.
3060 * The statistics are actually updated from the timer callback.
3061 **/
3062
3063 static struct net_device_stats *
3064 e1000_get_stats(struct net_device *netdev)
3065 {
3066 struct e1000_adapter *adapter = netdev_priv(netdev);
3067
3068 /* only return the current stats */
3069 return &adapter->net_stats;
3070 }
3071
3072 /**
3073 * e1000_change_mtu - Change the Maximum Transfer Unit
3074 * @netdev: network interface device structure
3075 * @new_mtu: new value for maximum frame size
3076 *
3077 * Returns 0 on success, negative on failure
3078 **/
3079
3080 static int
3081 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3082 {
3083 struct e1000_adapter *adapter = netdev_priv(netdev);
3084 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3085 uint16_t eeprom_data = 0;
3086
3087 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3088 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3089 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3090 return -EINVAL;
3091 }
3092
3093 /* Adapter-specific max frame size limits. */
3094 switch (adapter->hw.mac_type) {
3095 case e1000_undefined ... e1000_82542_rev2_1:
3096 case e1000_ich8lan:
3097 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3098 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3099 return -EINVAL;
3100 }
3101 break;
3102 case e1000_82573:
3103 /* only enable jumbo frames if ASPM is disabled completely
3104 * this means both bits must be zero in 0x1A bits 3:2 */
3105 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3106 &eeprom_data);
3107 if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
3108 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3109 DPRINTK(PROBE, ERR,
3110 "Jumbo Frames not supported.\n");
3111 return -EINVAL;
3112 }
3113 break;
3114 }
3115 /* fall through to get support */
3116 case e1000_82571:
3117 case e1000_82572:
3118 case e1000_80003es2lan:
3119 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3120 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3121 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3122 return -EINVAL;
3123 }
3124 break;
3125 default:
3126 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3127 break;
3128 }
3129
3130 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3131 * means we reserve 2 more, this pushes us to allocate from the next
3132 * larger slab size
3133 * i.e. RXBUFFER_2048 --> size-4096 slab */
3134
3135 if (max_frame <= E1000_RXBUFFER_256)
3136 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3137 else if (max_frame <= E1000_RXBUFFER_512)
3138 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3139 else if (max_frame <= E1000_RXBUFFER_1024)
3140 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3141 else if (max_frame <= E1000_RXBUFFER_2048)
3142 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3143 else if (max_frame <= E1000_RXBUFFER_4096)
3144 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3145 else if (max_frame <= E1000_RXBUFFER_8192)
3146 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3147 else if (max_frame <= E1000_RXBUFFER_16384)
3148 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3149
3150 /* adjust allocation if LPE protects us, and we aren't using SBP */
3151 if (!adapter->hw.tbi_compatibility_on &&
3152 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3153 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3154 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3155
3156 netdev->mtu = new_mtu;
3157
3158 if (netif_running(netdev))
3159 e1000_reinit_locked(adapter);
3160
3161 adapter->hw.max_frame_size = max_frame;
3162
3163 return 0;
3164 }
3165
3166 /**
3167 * e1000_update_stats - Update the board statistics counters
3168 * @adapter: board private structure
3169 **/
3170
3171 void
3172 e1000_update_stats(struct e1000_adapter *adapter)
3173 {
3174 struct e1000_hw *hw = &adapter->hw;
3175 struct pci_dev *pdev = adapter->pdev;
3176 unsigned long flags;
3177 uint16_t phy_tmp;
3178
3179 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3180
3181 /*
3182 * Prevent stats update while adapter is being reset, or if the pci
3183 * connection is down.
3184 */
3185 if (adapter->link_speed == 0)
3186 return;
3187 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3188 return;
3189
3190 spin_lock_irqsave(&adapter->stats_lock, flags);
3191
3192 /* these counters are modified from e1000_adjust_tbi_stats,
3193 * called from the interrupt context, so they must only
3194 * be written while holding adapter->stats_lock
3195 */
3196
3197 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3198 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3199 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3200 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3201 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3202 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3203 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3204
3205 if (adapter->hw.mac_type != e1000_ich8lan) {
3206 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3207 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3208 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3209 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3210 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3211 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3212 }
3213
3214 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3215 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3216 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3217 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3218 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3219 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3220 adapter->stats.dc += E1000_READ_REG(hw, DC);
3221 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3222 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3223 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3224 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3225 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3226 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3227 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3228 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3229 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3230 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3231 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3232 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3233 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3234 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3235 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3236 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3237 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3238 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3239 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3240
3241 if (adapter->hw.mac_type != e1000_ich8lan) {
3242 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3243 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3244 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3245 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3246 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3247 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3248 }
3249
3250 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3251 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3252
3253 /* used for adaptive IFS */
3254
3255 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3256 adapter->stats.tpt += hw->tx_packet_delta;
3257 hw->collision_delta = E1000_READ_REG(hw, COLC);
3258 adapter->stats.colc += hw->collision_delta;
3259
3260 if (hw->mac_type >= e1000_82543) {
3261 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3262 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3263 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3264 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3265 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3266 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3267 }
3268 if (hw->mac_type > e1000_82547_rev_2) {
3269 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3270 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3271
3272 if (adapter->hw.mac_type != e1000_ich8lan) {
3273 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3274 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3275 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3276 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3277 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3278 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3279 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3280 }
3281 }
3282
3283 /* Fill out the OS statistics structure */
3284
3285 adapter->net_stats.rx_packets = adapter->stats.gprc;
3286 adapter->net_stats.tx_packets = adapter->stats.gptc;
3287 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3288 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3289 adapter->net_stats.multicast = adapter->stats.mprc;
3290 adapter->net_stats.collisions = adapter->stats.colc;
3291
3292 /* Rx Errors */
3293
3294 /* RLEC on some newer hardware can be incorrect so build
3295 * our own version based on RUC and ROC */
3296 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3297 adapter->stats.crcerrs + adapter->stats.algnerrc +
3298 adapter->stats.ruc + adapter->stats.roc +
3299 adapter->stats.cexterr;
3300 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3301 adapter->stats.roc;
3302 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3303 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3304 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3305
3306 /* Tx Errors */
3307
3308 adapter->net_stats.tx_errors = adapter->stats.ecol +
3309 adapter->stats.latecol;
3310 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3311 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3312 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3313
3314 /* Tx Dropped needs to be maintained elsewhere */
3315
3316 /* Phy Stats */
3317
3318 if (hw->media_type == e1000_media_type_copper) {
3319 if ((adapter->link_speed == SPEED_1000) &&
3320 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3321 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3322 adapter->phy_stats.idle_errors += phy_tmp;
3323 }
3324
3325 if ((hw->mac_type <= e1000_82546) &&
3326 (hw->phy_type == e1000_phy_m88) &&
3327 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3328 adapter->phy_stats.receive_errors += phy_tmp;
3329 }
3330
3331 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3332 }
3333
3334 /**
3335 * e1000_intr - Interrupt Handler
3336 * @irq: interrupt number
3337 * @data: pointer to a network interface device structure
3338 * @pt_regs: CPU registers structure
3339 **/
3340
3341 static irqreturn_t
3342 e1000_intr(int irq, void *data, struct pt_regs *regs)
3343 {
3344 struct net_device *netdev = data;
3345 struct e1000_adapter *adapter = netdev_priv(netdev);
3346 struct e1000_hw *hw = &adapter->hw;
3347 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3348 #ifndef CONFIG_E1000_NAPI
3349 int i;
3350 #else
3351 /* Interrupt Auto-Mask...upon reading ICR,
3352 * interrupts are masked. No need for the
3353 * IMC write, but it does mean we should
3354 * account for it ASAP. */
3355 if (likely(hw->mac_type >= e1000_82571))
3356 atomic_inc(&adapter->irq_sem);
3357 #endif
3358
3359 if (unlikely(!icr)) {
3360 #ifdef CONFIG_E1000_NAPI
3361 if (hw->mac_type >= e1000_82571)
3362 e1000_irq_enable(adapter);
3363 #endif
3364 return IRQ_NONE; /* Not our interrupt */
3365 }
3366
3367 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3368 hw->get_link_status = 1;
3369 /* 80003ES2LAN workaround--
3370 * For packet buffer work-around on link down event;
3371 * disable receives here in the ISR and
3372 * reset adapter in watchdog
3373 */
3374 if (netif_carrier_ok(netdev) &&
3375 (adapter->hw.mac_type == e1000_80003es2lan)) {
3376 /* disable receives */
3377 rctl = E1000_READ_REG(hw, RCTL);
3378 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3379 }
3380 mod_timer(&adapter->watchdog_timer, jiffies);
3381 }
3382
3383 #ifdef CONFIG_E1000_NAPI
3384 if (unlikely(hw->mac_type < e1000_82571)) {
3385 atomic_inc(&adapter->irq_sem);
3386 E1000_WRITE_REG(hw, IMC, ~0);
3387 E1000_WRITE_FLUSH(hw);
3388 }
3389 if (likely(netif_rx_schedule_prep(netdev)))
3390 __netif_rx_schedule(netdev);
3391 else
3392 e1000_irq_enable(adapter);
3393 #else
3394 /* Writing IMC and IMS is needed for 82547.
3395 * Due to Hub Link bus being occupied, an interrupt
3396 * de-assertion message is not able to be sent.
3397 * When an interrupt assertion message is generated later,
3398 * two messages are re-ordered and sent out.
3399 * That causes APIC to think 82547 is in de-assertion
3400 * state, while 82547 is in assertion state, resulting
3401 * in dead lock. Writing IMC forces 82547 into
3402 * de-assertion state.
3403 */
3404 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3405 atomic_inc(&adapter->irq_sem);
3406 E1000_WRITE_REG(hw, IMC, ~0);
3407 }
3408
3409 for (i = 0; i < E1000_MAX_INTR; i++)
3410 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3411 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3412 break;
3413
3414 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3415 e1000_irq_enable(adapter);
3416
3417 #endif
3418
3419 return IRQ_HANDLED;
3420 }
3421
3422 #ifdef CONFIG_E1000_NAPI
3423 /**
3424 * e1000_clean - NAPI Rx polling callback
3425 * @adapter: board private structure
3426 **/
3427
3428 static int
3429 e1000_clean(struct net_device *poll_dev, int *budget)
3430 {
3431 struct e1000_adapter *adapter;
3432 int work_to_do = min(*budget, poll_dev->quota);
3433 int tx_cleaned = 0, work_done = 0;
3434
3435 /* Must NOT use netdev_priv macro here. */
3436 adapter = poll_dev->priv;
3437
3438 /* Keep link state information with original netdev */
3439 if (!netif_carrier_ok(poll_dev))
3440 goto quit_polling;
3441
3442 /* e1000_clean is called per-cpu. This lock protects
3443 * tx_ring[0] from being cleaned by multiple cpus
3444 * simultaneously. A failure obtaining the lock means
3445 * tx_ring[0] is currently being cleaned anyway. */
3446 if (spin_trylock(&adapter->tx_queue_lock)) {
3447 tx_cleaned = e1000_clean_tx_irq(adapter,
3448 &adapter->tx_ring[0]);
3449 spin_unlock(&adapter->tx_queue_lock);
3450 }
3451
3452 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3453 &work_done, work_to_do);
3454
3455 *budget -= work_done;
3456 poll_dev->quota -= work_done;
3457
3458 /* If no Tx and not enough Rx work done, exit the polling mode */
3459 if ((!tx_cleaned && (work_done == 0)) ||
3460 !netif_running(poll_dev)) {
3461 quit_polling:
3462 netif_rx_complete(poll_dev);
3463 e1000_irq_enable(adapter);
3464 return 0;
3465 }
3466
3467 return 1;
3468 }
3469
3470 #endif
3471 /**
3472 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3473 * @adapter: board private structure
3474 **/
3475
3476 static boolean_t
3477 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3478 struct e1000_tx_ring *tx_ring)
3479 {
3480 struct net_device *netdev = adapter->netdev;
3481 struct e1000_tx_desc *tx_desc, *eop_desc;
3482 struct e1000_buffer *buffer_info;
3483 unsigned int i, eop;
3484 #ifdef CONFIG_E1000_NAPI
3485 unsigned int count = 0;
3486 #endif
3487 boolean_t cleaned = FALSE;
3488
3489 i = tx_ring->next_to_clean;
3490 eop = tx_ring->buffer_info[i].next_to_watch;
3491 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3492
3493 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3494 for (cleaned = FALSE; !cleaned; ) {
3495 tx_desc = E1000_TX_DESC(*tx_ring, i);
3496 buffer_info = &tx_ring->buffer_info[i];
3497 cleaned = (i == eop);
3498
3499 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3500 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3501
3502 if (unlikely(++i == tx_ring->count)) i = 0;
3503 }
3504
3505
3506 eop = tx_ring->buffer_info[i].next_to_watch;
3507 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3508 #ifdef CONFIG_E1000_NAPI
3509 #define E1000_TX_WEIGHT 64
3510 /* weight of a sort for tx, to avoid endless transmit cleanup */
3511 if (count++ == E1000_TX_WEIGHT) break;
3512 #endif
3513 }
3514
3515 tx_ring->next_to_clean = i;
3516
3517 #define TX_WAKE_THRESHOLD 32
3518 if (unlikely(cleaned && netif_queue_stopped(netdev) &&
3519 netif_carrier_ok(netdev))) {
3520 spin_lock(&tx_ring->tx_lock);
3521 if (netif_queue_stopped(netdev) &&
3522 (E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))
3523 netif_wake_queue(netdev);
3524 spin_unlock(&tx_ring->tx_lock);
3525 }
3526
3527 if (adapter->detect_tx_hung) {
3528 /* Detect a transmit hang in hardware, this serializes the
3529 * check with the clearing of time_stamp and movement of i */
3530 adapter->detect_tx_hung = FALSE;
3531 if (tx_ring->buffer_info[eop].dma &&
3532 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3533 (adapter->tx_timeout_factor * HZ))
3534 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3535 E1000_STATUS_TXOFF)) {
3536
3537 /* detected Tx unit hang */
3538 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3539 " Tx Queue <%lu>\n"
3540 " TDH <%x>\n"
3541 " TDT <%x>\n"
3542 " next_to_use <%x>\n"
3543 " next_to_clean <%x>\n"
3544 "buffer_info[next_to_clean]\n"
3545 " time_stamp <%lx>\n"
3546 " next_to_watch <%x>\n"
3547 " jiffies <%lx>\n"
3548 " next_to_watch.status <%x>\n",
3549 (unsigned long)((tx_ring - adapter->tx_ring) /
3550 sizeof(struct e1000_tx_ring)),
3551 readl(adapter->hw.hw_addr + tx_ring->tdh),
3552 readl(adapter->hw.hw_addr + tx_ring->tdt),
3553 tx_ring->next_to_use,
3554 tx_ring->next_to_clean,
3555 tx_ring->buffer_info[eop].time_stamp,
3556 eop,
3557 jiffies,
3558 eop_desc->upper.fields.status);
3559 netif_stop_queue(netdev);
3560 }
3561 }
3562 return cleaned;
3563 }
3564
3565 /**
3566 * e1000_rx_checksum - Receive Checksum Offload for 82543
3567 * @adapter: board private structure
3568 * @status_err: receive descriptor status and error fields
3569 * @csum: receive descriptor csum field
3570 * @sk_buff: socket buffer with received data
3571 **/
3572
3573 static void
3574 e1000_rx_checksum(struct e1000_adapter *adapter,
3575 uint32_t status_err, uint32_t csum,
3576 struct sk_buff *skb)
3577 {
3578 uint16_t status = (uint16_t)status_err;
3579 uint8_t errors = (uint8_t)(status_err >> 24);
3580 skb->ip_summed = CHECKSUM_NONE;
3581
3582 /* 82543 or newer only */
3583 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3584 /* Ignore Checksum bit is set */
3585 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3586 /* TCP/UDP checksum error bit is set */
3587 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3588 /* let the stack verify checksum errors */
3589 adapter->hw_csum_err++;
3590 return;
3591 }
3592 /* TCP/UDP Checksum has not been calculated */
3593 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3594 if (!(status & E1000_RXD_STAT_TCPCS))
3595 return;
3596 } else {
3597 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3598 return;
3599 }
3600 /* It must be a TCP or UDP packet with a valid checksum */
3601 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3602 /* TCP checksum is good */
3603 skb->ip_summed = CHECKSUM_UNNECESSARY;
3604 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3605 /* IP fragment with UDP payload */
3606 /* Hardware complements the payload checksum, so we undo it
3607 * and then put the value in host order for further stack use.
3608 */
3609 csum = ntohl(csum ^ 0xFFFF);
3610 skb->csum = csum;
3611 skb->ip_summed = CHECKSUM_HW;
3612 }
3613 adapter->hw_csum_good++;
3614 }
3615
3616 /**
3617 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3618 * @adapter: board private structure
3619 **/
3620
3621 static boolean_t
3622 #ifdef CONFIG_E1000_NAPI
3623 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3624 struct e1000_rx_ring *rx_ring,
3625 int *work_done, int work_to_do)
3626 #else
3627 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3628 struct e1000_rx_ring *rx_ring)
3629 #endif
3630 {
3631 struct net_device *netdev = adapter->netdev;
3632 struct pci_dev *pdev = adapter->pdev;
3633 struct e1000_rx_desc *rx_desc, *next_rxd;
3634 struct e1000_buffer *buffer_info, *next_buffer;
3635 unsigned long flags;
3636 uint32_t length;
3637 uint8_t last_byte;
3638 unsigned int i;
3639 int cleaned_count = 0;
3640 boolean_t cleaned = FALSE;
3641
3642 i = rx_ring->next_to_clean;
3643 rx_desc = E1000_RX_DESC(*rx_ring, i);
3644 buffer_info = &rx_ring->buffer_info[i];
3645
3646 while (rx_desc->status & E1000_RXD_STAT_DD) {
3647 struct sk_buff *skb;
3648 u8 status;
3649 #ifdef CONFIG_E1000_NAPI
3650 if (*work_done >= work_to_do)
3651 break;
3652 (*work_done)++;
3653 #endif
3654 status = rx_desc->status;
3655 skb = buffer_info->skb;
3656 buffer_info->skb = NULL;
3657
3658 prefetch(skb->data - NET_IP_ALIGN);
3659
3660 if (++i == rx_ring->count) i = 0;
3661 next_rxd = E1000_RX_DESC(*rx_ring, i);
3662 prefetch(next_rxd);
3663
3664 next_buffer = &rx_ring->buffer_info[i];
3665
3666 cleaned = TRUE;
3667 cleaned_count++;
3668 pci_unmap_single(pdev,
3669 buffer_info->dma,
3670 buffer_info->length,
3671 PCI_DMA_FROMDEVICE);
3672
3673 length = le16_to_cpu(rx_desc->length);
3674
3675 /* adjust length to remove Ethernet CRC */
3676 length -= 4;
3677
3678 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3679 /* All receives must fit into a single buffer */
3680 E1000_DBG("%s: Receive packet consumed multiple"
3681 " buffers\n", netdev->name);
3682 /* recycle */
3683 buffer_info-> skb = skb;
3684 goto next_desc;
3685 }
3686
3687 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3688 last_byte = *(skb->data + length - 1);
3689 if (TBI_ACCEPT(&adapter->hw, status,
3690 rx_desc->errors, length, last_byte)) {
3691 spin_lock_irqsave(&adapter->stats_lock, flags);
3692 e1000_tbi_adjust_stats(&adapter->hw,
3693 &adapter->stats,
3694 length, skb->data);
3695 spin_unlock_irqrestore(&adapter->stats_lock,
3696 flags);
3697 length--;
3698 } else {
3699 /* recycle */
3700 buffer_info->skb = skb;
3701 goto next_desc;
3702 }
3703 }
3704
3705 /* code added for copybreak, this should improve
3706 * performance for small packets with large amounts
3707 * of reassembly being done in the stack */
3708 #define E1000_CB_LENGTH 256
3709 if (length < E1000_CB_LENGTH) {
3710 struct sk_buff *new_skb =
3711 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3712 if (new_skb) {
3713 skb_reserve(new_skb, NET_IP_ALIGN);
3714 new_skb->dev = netdev;
3715 memcpy(new_skb->data - NET_IP_ALIGN,
3716 skb->data - NET_IP_ALIGN,
3717 length + NET_IP_ALIGN);
3718 /* save the skb in buffer_info as good */
3719 buffer_info->skb = skb;
3720 skb = new_skb;
3721 skb_put(skb, length);
3722 }
3723 } else
3724 skb_put(skb, length);
3725
3726 /* end copybreak code */
3727
3728 /* Receive Checksum Offload */
3729 e1000_rx_checksum(adapter,
3730 (uint32_t)(status) |
3731 ((uint32_t)(rx_desc->errors) << 24),
3732 le16_to_cpu(rx_desc->csum), skb);
3733
3734 skb->protocol = eth_type_trans(skb, netdev);
3735 #ifdef CONFIG_E1000_NAPI
3736 if (unlikely(adapter->vlgrp &&
3737 (status & E1000_RXD_STAT_VP))) {
3738 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3739 le16_to_cpu(rx_desc->special) &
3740 E1000_RXD_SPC_VLAN_MASK);
3741 } else {
3742 netif_receive_skb(skb);
3743 }
3744 #else /* CONFIG_E1000_NAPI */
3745 if (unlikely(adapter->vlgrp &&
3746 (status & E1000_RXD_STAT_VP))) {
3747 vlan_hwaccel_rx(skb, adapter->vlgrp,
3748 le16_to_cpu(rx_desc->special) &
3749 E1000_RXD_SPC_VLAN_MASK);
3750 } else {
3751 netif_rx(skb);
3752 }
3753 #endif /* CONFIG_E1000_NAPI */
3754 netdev->last_rx = jiffies;
3755
3756 next_desc:
3757 rx_desc->status = 0;
3758
3759 /* return some buffers to hardware, one at a time is too slow */
3760 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3761 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3762 cleaned_count = 0;
3763 }
3764
3765 /* use prefetched values */
3766 rx_desc = next_rxd;
3767 buffer_info = next_buffer;
3768 }
3769 rx_ring->next_to_clean = i;
3770
3771 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3772 if (cleaned_count)
3773 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3774
3775 return cleaned;
3776 }
3777
3778 /**
3779 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3780 * @adapter: board private structure
3781 **/
3782
3783 static boolean_t
3784 #ifdef CONFIG_E1000_NAPI
3785 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3786 struct e1000_rx_ring *rx_ring,
3787 int *work_done, int work_to_do)
3788 #else
3789 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3790 struct e1000_rx_ring *rx_ring)
3791 #endif
3792 {
3793 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3794 struct net_device *netdev = adapter->netdev;
3795 struct pci_dev *pdev = adapter->pdev;
3796 struct e1000_buffer *buffer_info, *next_buffer;
3797 struct e1000_ps_page *ps_page;
3798 struct e1000_ps_page_dma *ps_page_dma;
3799 struct sk_buff *skb;
3800 unsigned int i, j;
3801 uint32_t length, staterr;
3802 int cleaned_count = 0;
3803 boolean_t cleaned = FALSE;
3804
3805 i = rx_ring->next_to_clean;
3806 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3807 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3808 buffer_info = &rx_ring->buffer_info[i];
3809
3810 while (staterr & E1000_RXD_STAT_DD) {
3811 ps_page = &rx_ring->ps_page[i];
3812 ps_page_dma = &rx_ring->ps_page_dma[i];
3813 #ifdef CONFIG_E1000_NAPI
3814 if (unlikely(*work_done >= work_to_do))
3815 break;
3816 (*work_done)++;
3817 #endif
3818 skb = buffer_info->skb;
3819
3820 /* in the packet split case this is header only */
3821 prefetch(skb->data - NET_IP_ALIGN);
3822
3823 if (++i == rx_ring->count) i = 0;
3824 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3825 prefetch(next_rxd);
3826
3827 next_buffer = &rx_ring->buffer_info[i];
3828
3829 cleaned = TRUE;
3830 cleaned_count++;
3831 pci_unmap_single(pdev, buffer_info->dma,
3832 buffer_info->length,
3833 PCI_DMA_FROMDEVICE);
3834
3835 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3836 E1000_DBG("%s: Packet Split buffers didn't pick up"
3837 " the full packet\n", netdev->name);
3838 dev_kfree_skb_irq(skb);
3839 goto next_desc;
3840 }
3841
3842 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3843 dev_kfree_skb_irq(skb);
3844 goto next_desc;
3845 }
3846
3847 length = le16_to_cpu(rx_desc->wb.middle.length0);
3848
3849 if (unlikely(!length)) {
3850 E1000_DBG("%s: Last part of the packet spanning"
3851 " multiple descriptors\n", netdev->name);
3852 dev_kfree_skb_irq(skb);
3853 goto next_desc;
3854 }
3855
3856 /* Good Receive */
3857 skb_put(skb, length);
3858
3859 {
3860 /* this looks ugly, but it seems compiler issues make it
3861 more efficient than reusing j */
3862 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3863
3864 /* page alloc/put takes too long and effects small packet
3865 * throughput, so unsplit small packets and save the alloc/put*/
3866 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3867 u8 *vaddr;
3868 /* there is no documentation about how to call
3869 * kmap_atomic, so we can't hold the mapping
3870 * very long */
3871 pci_dma_sync_single_for_cpu(pdev,
3872 ps_page_dma->ps_page_dma[0],
3873 PAGE_SIZE,
3874 PCI_DMA_FROMDEVICE);
3875 vaddr = kmap_atomic(ps_page->ps_page[0],
3876 KM_SKB_DATA_SOFTIRQ);
3877 memcpy(skb->tail, vaddr, l1);
3878 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3879 pci_dma_sync_single_for_device(pdev,
3880 ps_page_dma->ps_page_dma[0],
3881 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3882 /* remove the CRC */
3883 l1 -= 4;
3884 skb_put(skb, l1);
3885 goto copydone;
3886 } /* if */
3887 }
3888
3889 for (j = 0; j < adapter->rx_ps_pages; j++) {
3890 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3891 break;
3892 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3893 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3894 ps_page_dma->ps_page_dma[j] = 0;
3895 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3896 length);
3897 ps_page->ps_page[j] = NULL;
3898 skb->len += length;
3899 skb->data_len += length;
3900 skb->truesize += length;
3901 }
3902
3903 /* strip the ethernet crc, problem is we're using pages now so
3904 * this whole operation can get a little cpu intensive */
3905 pskb_trim(skb, skb->len - 4);
3906
3907 copydone:
3908 e1000_rx_checksum(adapter, staterr,
3909 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
3910 skb->protocol = eth_type_trans(skb, netdev);
3911
3912 if (likely(rx_desc->wb.upper.header_status &
3913 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
3914 adapter->rx_hdr_split++;
3915 #ifdef CONFIG_E1000_NAPI
3916 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3917 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3918 le16_to_cpu(rx_desc->wb.middle.vlan) &
3919 E1000_RXD_SPC_VLAN_MASK);
3920 } else {
3921 netif_receive_skb(skb);
3922 }
3923 #else /* CONFIG_E1000_NAPI */
3924 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3925 vlan_hwaccel_rx(skb, adapter->vlgrp,
3926 le16_to_cpu(rx_desc->wb.middle.vlan) &
3927 E1000_RXD_SPC_VLAN_MASK);
3928 } else {
3929 netif_rx(skb);
3930 }
3931 #endif /* CONFIG_E1000_NAPI */
3932 netdev->last_rx = jiffies;
3933
3934 next_desc:
3935 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
3936 buffer_info->skb = NULL;
3937
3938 /* return some buffers to hardware, one at a time is too slow */
3939 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3940 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3941 cleaned_count = 0;
3942 }
3943
3944 /* use prefetched values */
3945 rx_desc = next_rxd;
3946 buffer_info = next_buffer;
3947
3948 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3949 }
3950 rx_ring->next_to_clean = i;
3951
3952 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3953 if (cleaned_count)
3954 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3955
3956 return cleaned;
3957 }
3958
3959 /**
3960 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3961 * @adapter: address of board private structure
3962 **/
3963
3964 static void
3965 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3966 struct e1000_rx_ring *rx_ring,
3967 int cleaned_count)
3968 {
3969 struct net_device *netdev = adapter->netdev;
3970 struct pci_dev *pdev = adapter->pdev;
3971 struct e1000_rx_desc *rx_desc;
3972 struct e1000_buffer *buffer_info;
3973 struct sk_buff *skb;
3974 unsigned int i;
3975 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3976
3977 i = rx_ring->next_to_use;
3978 buffer_info = &rx_ring->buffer_info[i];
3979
3980 while (cleaned_count--) {
3981 if (!(skb = buffer_info->skb))
3982 skb = netdev_alloc_skb(netdev, bufsz);
3983 else {
3984 skb_trim(skb, 0);
3985 goto map_skb;
3986 }
3987
3988 if (unlikely(!skb)) {
3989 /* Better luck next round */
3990 adapter->alloc_rx_buff_failed++;
3991 break;
3992 }
3993
3994 /* Fix for errata 23, can't cross 64kB boundary */
3995 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3996 struct sk_buff *oldskb = skb;
3997 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3998 "at %p\n", bufsz, skb->data);
3999 /* Try again, without freeing the previous */
4000 skb = netdev_alloc_skb(netdev, bufsz);
4001 /* Failed allocation, critical failure */
4002 if (!skb) {
4003 dev_kfree_skb(oldskb);
4004 break;
4005 }
4006
4007 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4008 /* give up */
4009 dev_kfree_skb(skb);
4010 dev_kfree_skb(oldskb);
4011 break; /* while !buffer_info->skb */
4012 } else {
4013 /* Use new allocation */
4014 dev_kfree_skb(oldskb);
4015 }
4016 }
4017 /* Make buffer alignment 2 beyond a 16 byte boundary
4018 * this will result in a 16 byte aligned IP header after
4019 * the 14 byte MAC header is removed
4020 */
4021 skb_reserve(skb, NET_IP_ALIGN);
4022
4023 skb->dev = netdev;
4024
4025 buffer_info->skb = skb;
4026 buffer_info->length = adapter->rx_buffer_len;
4027 map_skb:
4028 buffer_info->dma = pci_map_single(pdev,
4029 skb->data,
4030 adapter->rx_buffer_len,
4031 PCI_DMA_FROMDEVICE);
4032
4033 /* Fix for errata 23, can't cross 64kB boundary */
4034 if (!e1000_check_64k_bound(adapter,
4035 (void *)(unsigned long)buffer_info->dma,
4036 adapter->rx_buffer_len)) {
4037 DPRINTK(RX_ERR, ERR,
4038 "dma align check failed: %u bytes at %p\n",
4039 adapter->rx_buffer_len,
4040 (void *)(unsigned long)buffer_info->dma);
4041 dev_kfree_skb(skb);
4042 buffer_info->skb = NULL;
4043
4044 pci_unmap_single(pdev, buffer_info->dma,
4045 adapter->rx_buffer_len,
4046 PCI_DMA_FROMDEVICE);
4047
4048 break; /* while !buffer_info->skb */
4049 }
4050 rx_desc = E1000_RX_DESC(*rx_ring, i);
4051 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4052
4053 if (unlikely(++i == rx_ring->count))
4054 i = 0;
4055 buffer_info = &rx_ring->buffer_info[i];
4056 }
4057
4058 if (likely(rx_ring->next_to_use != i)) {
4059 rx_ring->next_to_use = i;
4060 if (unlikely(i-- == 0))
4061 i = (rx_ring->count - 1);
4062
4063 /* Force memory writes to complete before letting h/w
4064 * know there are new descriptors to fetch. (Only
4065 * applicable for weak-ordered memory model archs,
4066 * such as IA-64). */
4067 wmb();
4068 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4069 }
4070 }
4071
4072 /**
4073 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4074 * @adapter: address of board private structure
4075 **/
4076
4077 static void
4078 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4079 struct e1000_rx_ring *rx_ring,
4080 int cleaned_count)
4081 {
4082 struct net_device *netdev = adapter->netdev;
4083 struct pci_dev *pdev = adapter->pdev;
4084 union e1000_rx_desc_packet_split *rx_desc;
4085 struct e1000_buffer *buffer_info;
4086 struct e1000_ps_page *ps_page;
4087 struct e1000_ps_page_dma *ps_page_dma;
4088 struct sk_buff *skb;
4089 unsigned int i, j;
4090
4091 i = rx_ring->next_to_use;
4092 buffer_info = &rx_ring->buffer_info[i];
4093 ps_page = &rx_ring->ps_page[i];
4094 ps_page_dma = &rx_ring->ps_page_dma[i];
4095
4096 while (cleaned_count--) {
4097 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4098
4099 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4100 if (j < adapter->rx_ps_pages) {
4101 if (likely(!ps_page->ps_page[j])) {
4102 ps_page->ps_page[j] =
4103 alloc_page(GFP_ATOMIC);
4104 if (unlikely(!ps_page->ps_page[j])) {
4105 adapter->alloc_rx_buff_failed++;
4106 goto no_buffers;
4107 }
4108 ps_page_dma->ps_page_dma[j] =
4109 pci_map_page(pdev,
4110 ps_page->ps_page[j],
4111 0, PAGE_SIZE,
4112 PCI_DMA_FROMDEVICE);
4113 }
4114 /* Refresh the desc even if buffer_addrs didn't
4115 * change because each write-back erases
4116 * this info.
4117 */
4118 rx_desc->read.buffer_addr[j+1] =
4119 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4120 } else
4121 rx_desc->read.buffer_addr[j+1] = ~0;
4122 }
4123
4124 skb = netdev_alloc_skb(netdev,
4125 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4126
4127 if (unlikely(!skb)) {
4128 adapter->alloc_rx_buff_failed++;
4129 break;
4130 }
4131
4132 /* Make buffer alignment 2 beyond a 16 byte boundary
4133 * this will result in a 16 byte aligned IP header after
4134 * the 14 byte MAC header is removed
4135 */
4136 skb_reserve(skb, NET_IP_ALIGN);
4137
4138 skb->dev = netdev;
4139
4140 buffer_info->skb = skb;
4141 buffer_info->length = adapter->rx_ps_bsize0;
4142 buffer_info->dma = pci_map_single(pdev, skb->data,
4143 adapter->rx_ps_bsize0,
4144 PCI_DMA_FROMDEVICE);
4145
4146 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4147
4148 if (unlikely(++i == rx_ring->count)) i = 0;
4149 buffer_info = &rx_ring->buffer_info[i];
4150 ps_page = &rx_ring->ps_page[i];
4151 ps_page_dma = &rx_ring->ps_page_dma[i];
4152 }
4153
4154 no_buffers:
4155 if (likely(rx_ring->next_to_use != i)) {
4156 rx_ring->next_to_use = i;
4157 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4158
4159 /* Force memory writes to complete before letting h/w
4160 * know there are new descriptors to fetch. (Only
4161 * applicable for weak-ordered memory model archs,
4162 * such as IA-64). */
4163 wmb();
4164 /* Hardware increments by 16 bytes, but packet split
4165 * descriptors are 32 bytes...so we increment tail
4166 * twice as much.
4167 */
4168 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4169 }
4170 }
4171
4172 /**
4173 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4174 * @adapter:
4175 **/
4176
4177 static void
4178 e1000_smartspeed(struct e1000_adapter *adapter)
4179 {
4180 uint16_t phy_status;
4181 uint16_t phy_ctrl;
4182
4183 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4184 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4185 return;
4186
4187 if (adapter->smartspeed == 0) {
4188 /* If Master/Slave config fault is asserted twice,
4189 * we assume back-to-back */
4190 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4191 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4192 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4193 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4194 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4195 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4196 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4197 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4198 phy_ctrl);
4199 adapter->smartspeed++;
4200 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4201 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4202 &phy_ctrl)) {
4203 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4204 MII_CR_RESTART_AUTO_NEG);
4205 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4206 phy_ctrl);
4207 }
4208 }
4209 return;
4210 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4211 /* If still no link, perhaps using 2/3 pair cable */
4212 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4213 phy_ctrl |= CR_1000T_MS_ENABLE;
4214 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4215 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4216 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4217 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4218 MII_CR_RESTART_AUTO_NEG);
4219 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4220 }
4221 }
4222 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4223 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4224 adapter->smartspeed = 0;
4225 }
4226
4227 /**
4228 * e1000_ioctl -
4229 * @netdev:
4230 * @ifreq:
4231 * @cmd:
4232 **/
4233
4234 static int
4235 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4236 {
4237 switch (cmd) {
4238 case SIOCGMIIPHY:
4239 case SIOCGMIIREG:
4240 case SIOCSMIIREG:
4241 return e1000_mii_ioctl(netdev, ifr, cmd);
4242 default:
4243 return -EOPNOTSUPP;
4244 }
4245 }
4246
4247 /**
4248 * e1000_mii_ioctl -
4249 * @netdev:
4250 * @ifreq:
4251 * @cmd:
4252 **/
4253
4254 static int
4255 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4256 {
4257 struct e1000_adapter *adapter = netdev_priv(netdev);
4258 struct mii_ioctl_data *data = if_mii(ifr);
4259 int retval;
4260 uint16_t mii_reg;
4261 uint16_t spddplx;
4262 unsigned long flags;
4263
4264 if (adapter->hw.media_type != e1000_media_type_copper)
4265 return -EOPNOTSUPP;
4266
4267 switch (cmd) {
4268 case SIOCGMIIPHY:
4269 data->phy_id = adapter->hw.phy_addr;
4270 break;
4271 case SIOCGMIIREG:
4272 if (!capable(CAP_NET_ADMIN))
4273 return -EPERM;
4274 spin_lock_irqsave(&adapter->stats_lock, flags);
4275 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4276 &data->val_out)) {
4277 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4278 return -EIO;
4279 }
4280 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4281 break;
4282 case SIOCSMIIREG:
4283 if (!capable(CAP_NET_ADMIN))
4284 return -EPERM;
4285 if (data->reg_num & ~(0x1F))
4286 return -EFAULT;
4287 mii_reg = data->val_in;
4288 spin_lock_irqsave(&adapter->stats_lock, flags);
4289 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4290 mii_reg)) {
4291 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4292 return -EIO;
4293 }
4294 if (adapter->hw.media_type == e1000_media_type_copper) {
4295 switch (data->reg_num) {
4296 case PHY_CTRL:
4297 if (mii_reg & MII_CR_POWER_DOWN)
4298 break;
4299 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4300 adapter->hw.autoneg = 1;
4301 adapter->hw.autoneg_advertised = 0x2F;
4302 } else {
4303 if (mii_reg & 0x40)
4304 spddplx = SPEED_1000;
4305 else if (mii_reg & 0x2000)
4306 spddplx = SPEED_100;
4307 else
4308 spddplx = SPEED_10;
4309 spddplx += (mii_reg & 0x100)
4310 ? DUPLEX_FULL :
4311 DUPLEX_HALF;
4312 retval = e1000_set_spd_dplx(adapter,
4313 spddplx);
4314 if (retval) {
4315 spin_unlock_irqrestore(
4316 &adapter->stats_lock,
4317 flags);
4318 return retval;
4319 }
4320 }
4321 if (netif_running(adapter->netdev))
4322 e1000_reinit_locked(adapter);
4323 else
4324 e1000_reset(adapter);
4325 break;
4326 case M88E1000_PHY_SPEC_CTRL:
4327 case M88E1000_EXT_PHY_SPEC_CTRL:
4328 if (e1000_phy_reset(&adapter->hw)) {
4329 spin_unlock_irqrestore(
4330 &adapter->stats_lock, flags);
4331 return -EIO;
4332 }
4333 break;
4334 }
4335 } else {
4336 switch (data->reg_num) {
4337 case PHY_CTRL:
4338 if (mii_reg & MII_CR_POWER_DOWN)
4339 break;
4340 if (netif_running(adapter->netdev))
4341 e1000_reinit_locked(adapter);
4342 else
4343 e1000_reset(adapter);
4344 break;
4345 }
4346 }
4347 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4348 break;
4349 default:
4350 return -EOPNOTSUPP;
4351 }
4352 return E1000_SUCCESS;
4353 }
4354
4355 void
4356 e1000_pci_set_mwi(struct e1000_hw *hw)
4357 {
4358 struct e1000_adapter *adapter = hw->back;
4359 int ret_val = pci_set_mwi(adapter->pdev);
4360
4361 if (ret_val)
4362 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4363 }
4364
4365 void
4366 e1000_pci_clear_mwi(struct e1000_hw *hw)
4367 {
4368 struct e1000_adapter *adapter = hw->back;
4369
4370 pci_clear_mwi(adapter->pdev);
4371 }
4372
4373 void
4374 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4375 {
4376 struct e1000_adapter *adapter = hw->back;
4377
4378 pci_read_config_word(adapter->pdev, reg, value);
4379 }
4380
4381 void
4382 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4383 {
4384 struct e1000_adapter *adapter = hw->back;
4385
4386 pci_write_config_word(adapter->pdev, reg, *value);
4387 }
4388
4389 #if 0
4390 uint32_t
4391 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4392 {
4393 return inl(port);
4394 }
4395 #endif /* 0 */
4396
4397 void
4398 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4399 {
4400 outl(value, port);
4401 }
4402
4403 static void
4404 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4405 {
4406 struct e1000_adapter *adapter = netdev_priv(netdev);
4407 uint32_t ctrl, rctl;
4408
4409 e1000_irq_disable(adapter);
4410 adapter->vlgrp = grp;
4411
4412 if (grp) {
4413 /* enable VLAN tag insert/strip */
4414 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4415 ctrl |= E1000_CTRL_VME;
4416 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4417
4418 if (adapter->hw.mac_type != e1000_ich8lan) {
4419 /* enable VLAN receive filtering */
4420 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4421 rctl |= E1000_RCTL_VFE;
4422 rctl &= ~E1000_RCTL_CFIEN;
4423 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4424 e1000_update_mng_vlan(adapter);
4425 }
4426 } else {
4427 /* disable VLAN tag insert/strip */
4428 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4429 ctrl &= ~E1000_CTRL_VME;
4430 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4431
4432 if (adapter->hw.mac_type != e1000_ich8lan) {
4433 /* disable VLAN filtering */
4434 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4435 rctl &= ~E1000_RCTL_VFE;
4436 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4437 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4438 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4439 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4440 }
4441 }
4442 }
4443
4444 e1000_irq_enable(adapter);
4445 }
4446
4447 static void
4448 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4449 {
4450 struct e1000_adapter *adapter = netdev_priv(netdev);
4451 uint32_t vfta, index;
4452
4453 if ((adapter->hw.mng_cookie.status &
4454 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4455 (vid == adapter->mng_vlan_id))
4456 return;
4457 /* add VID to filter table */
4458 index = (vid >> 5) & 0x7F;
4459 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4460 vfta |= (1 << (vid & 0x1F));
4461 e1000_write_vfta(&adapter->hw, index, vfta);
4462 }
4463
4464 static void
4465 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4466 {
4467 struct e1000_adapter *adapter = netdev_priv(netdev);
4468 uint32_t vfta, index;
4469
4470 e1000_irq_disable(adapter);
4471
4472 if (adapter->vlgrp)
4473 adapter->vlgrp->vlan_devices[vid] = NULL;
4474
4475 e1000_irq_enable(adapter);
4476
4477 if ((adapter->hw.mng_cookie.status &
4478 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4479 (vid == adapter->mng_vlan_id)) {
4480 /* release control to f/w */
4481 e1000_release_hw_control(adapter);
4482 return;
4483 }
4484
4485 /* remove VID from filter table */
4486 index = (vid >> 5) & 0x7F;
4487 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4488 vfta &= ~(1 << (vid & 0x1F));
4489 e1000_write_vfta(&adapter->hw, index, vfta);
4490 }
4491
4492 static void
4493 e1000_restore_vlan(struct e1000_adapter *adapter)
4494 {
4495 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4496
4497 if (adapter->vlgrp) {
4498 uint16_t vid;
4499 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4500 if (!adapter->vlgrp->vlan_devices[vid])
4501 continue;
4502 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4503 }
4504 }
4505 }
4506
4507 int
4508 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4509 {
4510 adapter->hw.autoneg = 0;
4511
4512 /* Fiber NICs only allow 1000 gbps Full duplex */
4513 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4514 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4515 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4516 return -EINVAL;
4517 }
4518
4519 switch (spddplx) {
4520 case SPEED_10 + DUPLEX_HALF:
4521 adapter->hw.forced_speed_duplex = e1000_10_half;
4522 break;
4523 case SPEED_10 + DUPLEX_FULL:
4524 adapter->hw.forced_speed_duplex = e1000_10_full;
4525 break;
4526 case SPEED_100 + DUPLEX_HALF:
4527 adapter->hw.forced_speed_duplex = e1000_100_half;
4528 break;
4529 case SPEED_100 + DUPLEX_FULL:
4530 adapter->hw.forced_speed_duplex = e1000_100_full;
4531 break;
4532 case SPEED_1000 + DUPLEX_FULL:
4533 adapter->hw.autoneg = 1;
4534 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4535 break;
4536 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4537 default:
4538 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4539 return -EINVAL;
4540 }
4541 return 0;
4542 }
4543
4544 #ifdef CONFIG_PM
4545 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4546 * bus we're on (PCI(X) vs. PCI-E)
4547 */
4548 #define PCIE_CONFIG_SPACE_LEN 256
4549 #define PCI_CONFIG_SPACE_LEN 64
4550 static int
4551 e1000_pci_save_state(struct e1000_adapter *adapter)
4552 {
4553 struct pci_dev *dev = adapter->pdev;
4554 int size;
4555 int i;
4556
4557 if (adapter->hw.mac_type >= e1000_82571)
4558 size = PCIE_CONFIG_SPACE_LEN;
4559 else
4560 size = PCI_CONFIG_SPACE_LEN;
4561
4562 WARN_ON(adapter->config_space != NULL);
4563
4564 adapter->config_space = kmalloc(size, GFP_KERNEL);
4565 if (!adapter->config_space) {
4566 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4567 return -ENOMEM;
4568 }
4569 for (i = 0; i < (size / 4); i++)
4570 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4571 return 0;
4572 }
4573
4574 static void
4575 e1000_pci_restore_state(struct e1000_adapter *adapter)
4576 {
4577 struct pci_dev *dev = adapter->pdev;
4578 int size;
4579 int i;
4580
4581 if (adapter->config_space == NULL)
4582 return;
4583
4584 if (adapter->hw.mac_type >= e1000_82571)
4585 size = PCIE_CONFIG_SPACE_LEN;
4586 else
4587 size = PCI_CONFIG_SPACE_LEN;
4588 for (i = 0; i < (size / 4); i++)
4589 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4590 kfree(adapter->config_space);
4591 adapter->config_space = NULL;
4592 return;
4593 }
4594 #endif /* CONFIG_PM */
4595
4596 static int
4597 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4598 {
4599 struct net_device *netdev = pci_get_drvdata(pdev);
4600 struct e1000_adapter *adapter = netdev_priv(netdev);
4601 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4602 uint32_t wufc = adapter->wol;
4603 #ifdef CONFIG_PM
4604 int retval = 0;
4605 #endif
4606
4607 netif_device_detach(netdev);
4608
4609 if (netif_running(netdev)) {
4610 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4611 e1000_down(adapter);
4612 }
4613
4614 #ifdef CONFIG_PM
4615 /* Implement our own version of pci_save_state(pdev) because pci-
4616 * express adapters have 256-byte config spaces. */
4617 retval = e1000_pci_save_state(adapter);
4618 if (retval)
4619 return retval;
4620 #endif
4621
4622 status = E1000_READ_REG(&adapter->hw, STATUS);
4623 if (status & E1000_STATUS_LU)
4624 wufc &= ~E1000_WUFC_LNKC;
4625
4626 if (wufc) {
4627 e1000_setup_rctl(adapter);
4628 e1000_set_multi(netdev);
4629
4630 /* turn on all-multi mode if wake on multicast is enabled */
4631 if (adapter->wol & E1000_WUFC_MC) {
4632 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4633 rctl |= E1000_RCTL_MPE;
4634 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4635 }
4636
4637 if (adapter->hw.mac_type >= e1000_82540) {
4638 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4639 /* advertise wake from D3Cold */
4640 #define E1000_CTRL_ADVD3WUC 0x00100000
4641 /* phy power management enable */
4642 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4643 ctrl |= E1000_CTRL_ADVD3WUC |
4644 E1000_CTRL_EN_PHY_PWR_MGMT;
4645 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4646 }
4647
4648 if (adapter->hw.media_type == e1000_media_type_fiber ||
4649 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4650 /* keep the laser running in D3 */
4651 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4652 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4653 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4654 }
4655
4656 /* Allow time for pending master requests to run */
4657 e1000_disable_pciex_master(&adapter->hw);
4658
4659 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4660 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4661 pci_enable_wake(pdev, PCI_D3hot, 1);
4662 pci_enable_wake(pdev, PCI_D3cold, 1);
4663 } else {
4664 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4665 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4666 pci_enable_wake(pdev, PCI_D3hot, 0);
4667 pci_enable_wake(pdev, PCI_D3cold, 0);
4668 }
4669
4670 /* FIXME: this code is incorrect for PCI Express */
4671 if (adapter->hw.mac_type >= e1000_82540 &&
4672 adapter->hw.mac_type != e1000_ich8lan &&
4673 adapter->hw.media_type == e1000_media_type_copper) {
4674 manc = E1000_READ_REG(&adapter->hw, MANC);
4675 if (manc & E1000_MANC_SMBUS_EN) {
4676 manc |= E1000_MANC_ARP_EN;
4677 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4678 pci_enable_wake(pdev, PCI_D3hot, 1);
4679 pci_enable_wake(pdev, PCI_D3cold, 1);
4680 }
4681 }
4682
4683 if (adapter->hw.phy_type == e1000_phy_igp_3)
4684 e1000_phy_powerdown_workaround(&adapter->hw);
4685
4686 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4687 * would have already happened in close and is redundant. */
4688 e1000_release_hw_control(adapter);
4689
4690 pci_disable_device(pdev);
4691
4692 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4693
4694 return 0;
4695 }
4696
4697 #ifdef CONFIG_PM
4698 static int
4699 e1000_resume(struct pci_dev *pdev)
4700 {
4701 struct net_device *netdev = pci_get_drvdata(pdev);
4702 struct e1000_adapter *adapter = netdev_priv(netdev);
4703 uint32_t manc, ret_val;
4704
4705 pci_set_power_state(pdev, PCI_D0);
4706 e1000_pci_restore_state(adapter);
4707 ret_val = pci_enable_device(pdev);
4708 pci_set_master(pdev);
4709
4710 pci_enable_wake(pdev, PCI_D3hot, 0);
4711 pci_enable_wake(pdev, PCI_D3cold, 0);
4712
4713 e1000_reset(adapter);
4714 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4715
4716 if (netif_running(netdev))
4717 e1000_up(adapter);
4718
4719 netif_device_attach(netdev);
4720
4721 /* FIXME: this code is incorrect for PCI Express */
4722 if (adapter->hw.mac_type >= e1000_82540 &&
4723 adapter->hw.mac_type != e1000_ich8lan &&
4724 adapter->hw.media_type == e1000_media_type_copper) {
4725 manc = E1000_READ_REG(&adapter->hw, MANC);
4726 manc &= ~(E1000_MANC_ARP_EN);
4727 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4728 }
4729
4730 /* If the controller is 82573 and f/w is AMT, do not set
4731 * DRV_LOAD until the interface is up. For all other cases,
4732 * let the f/w know that the h/w is now under the control
4733 * of the driver. */
4734 if (adapter->hw.mac_type != e1000_82573 ||
4735 !e1000_check_mng_mode(&adapter->hw))
4736 e1000_get_hw_control(adapter);
4737
4738 return 0;
4739 }
4740 #endif
4741
4742 static void e1000_shutdown(struct pci_dev *pdev)
4743 {
4744 e1000_suspend(pdev, PMSG_SUSPEND);
4745 }
4746
4747 #ifdef CONFIG_NET_POLL_CONTROLLER
4748 /*
4749 * Polling 'interrupt' - used by things like netconsole to send skbs
4750 * without having to re-enable interrupts. It's not called while
4751 * the interrupt routine is executing.
4752 */
4753 static void
4754 e1000_netpoll(struct net_device *netdev)
4755 {
4756 struct e1000_adapter *adapter = netdev_priv(netdev);
4757
4758 disable_irq(adapter->pdev->irq);
4759 e1000_intr(adapter->pdev->irq, netdev, NULL);
4760 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4761 #ifndef CONFIG_E1000_NAPI
4762 adapter->clean_rx(adapter, adapter->rx_ring);
4763 #endif
4764 enable_irq(adapter->pdev->irq);
4765 }
4766 #endif
4767
4768 /**
4769 * e1000_io_error_detected - called when PCI error is detected
4770 * @pdev: Pointer to PCI device
4771 * @state: The current pci conneection state
4772 *
4773 * This function is called after a PCI bus error affecting
4774 * this device has been detected.
4775 */
4776 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4777 {
4778 struct net_device *netdev = pci_get_drvdata(pdev);
4779 struct e1000_adapter *adapter = netdev->priv;
4780
4781 netif_device_detach(netdev);
4782
4783 if (netif_running(netdev))
4784 e1000_down(adapter);
4785
4786 /* Request a slot slot reset. */
4787 return PCI_ERS_RESULT_NEED_RESET;
4788 }
4789
4790 /**
4791 * e1000_io_slot_reset - called after the pci bus has been reset.
4792 * @pdev: Pointer to PCI device
4793 *
4794 * Restart the card from scratch, as if from a cold-boot. Implementation
4795 * resembles the first-half of the e1000_resume routine.
4796 */
4797 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4798 {
4799 struct net_device *netdev = pci_get_drvdata(pdev);
4800 struct e1000_adapter *adapter = netdev->priv;
4801
4802 if (pci_enable_device(pdev)) {
4803 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4804 return PCI_ERS_RESULT_DISCONNECT;
4805 }
4806 pci_set_master(pdev);
4807
4808 pci_enable_wake(pdev, 3, 0);
4809 pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4810
4811 /* Perform card reset only on one instance of the card */
4812 if (PCI_FUNC (pdev->devfn) != 0)
4813 return PCI_ERS_RESULT_RECOVERED;
4814
4815 e1000_reset(adapter);
4816 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4817
4818 return PCI_ERS_RESULT_RECOVERED;
4819 }
4820
4821 /**
4822 * e1000_io_resume - called when traffic can start flowing again.
4823 * @pdev: Pointer to PCI device
4824 *
4825 * This callback is called when the error recovery driver tells us that
4826 * its OK to resume normal operation. Implementation resembles the
4827 * second-half of the e1000_resume routine.
4828 */
4829 static void e1000_io_resume(struct pci_dev *pdev)
4830 {
4831 struct net_device *netdev = pci_get_drvdata(pdev);
4832 struct e1000_adapter *adapter = netdev->priv;
4833 uint32_t manc, swsm;
4834
4835 if (netif_running(netdev)) {
4836 if (e1000_up(adapter)) {
4837 printk("e1000: can't bring device back up after reset\n");
4838 return;
4839 }
4840 }
4841
4842 netif_device_attach(netdev);
4843
4844 if (adapter->hw.mac_type >= e1000_82540 &&
4845 adapter->hw.media_type == e1000_media_type_copper) {
4846 manc = E1000_READ_REG(&adapter->hw, MANC);
4847 manc &= ~(E1000_MANC_ARP_EN);
4848 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4849 }
4850
4851 switch (adapter->hw.mac_type) {
4852 case e1000_82573:
4853 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4854 E1000_WRITE_REG(&adapter->hw, SWSM,
4855 swsm | E1000_SWSM_DRV_LOAD);
4856 break;
4857 default:
4858 break;
4859 }
4860
4861 if (netif_running(netdev))
4862 mod_timer(&adapter->watchdog_timer, jiffies);
4863 }
4864
4865 /* e1000_main.c */
This page took 0.132139 seconds and 6 git commands to generate.