PM / clk: Add support for adding a specific clock from device-tree
[deliverable/linux.git] / drivers / net / ethernet / ezchip / nps_enet.c
1 /*
2 * Copyright(c) 2015 EZchip Technologies.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 */
16
17 #include <linux/module.h>
18 #include <linux/etherdevice.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_net.h>
22 #include <linux/of_platform.h>
23 #include "nps_enet.h"
24
25 #define DRV_NAME "nps_mgt_enet"
26
27 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
28 {
29 struct nps_enet_priv *priv = netdev_priv(ndev);
30 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
31
32 /* Empty Rx FIFO buffer by reading all words */
33 for (i = 0; i < len; i++)
34 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
35 }
36
37 static void nps_enet_read_rx_fifo(struct net_device *ndev,
38 unsigned char *dst, u32 length)
39 {
40 struct nps_enet_priv *priv = netdev_priv(ndev);
41 s32 i, last = length & (sizeof(u32) - 1);
42 u32 *reg = (u32 *)dst, len = length / sizeof(u32);
43 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
44
45 /* In case dst is not aligned we need an intermediate buffer */
46 if (dst_is_aligned) {
47 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
48 reg += len;
49 }
50 else { /* !dst_is_aligned */
51 for (i = 0; i < len; i++, reg++) {
52 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
53 put_unaligned_be32(buf, reg);
54 }
55 }
56 /* copy last bytes (if any) */
57 if (last) {
58 u32 buf;
59 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
60 memcpy((u8 *)reg, &buf, last);
61 }
62 }
63
64 static u32 nps_enet_rx_handler(struct net_device *ndev)
65 {
66 u32 frame_len, err = 0;
67 u32 work_done = 0;
68 struct nps_enet_priv *priv = netdev_priv(ndev);
69 struct sk_buff *skb;
70 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
71 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
72 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
73 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
74
75 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
76
77 /* Check if we got RX */
78 if (!rx_ctrl_cr)
79 return work_done;
80
81 /* If we got here there is a work for us */
82 work_done++;
83
84 /* Check Rx error */
85 if (rx_ctrl_er) {
86 ndev->stats.rx_errors++;
87 err = 1;
88 }
89
90 /* Check Rx CRC error */
91 if (rx_ctrl_crc) {
92 ndev->stats.rx_crc_errors++;
93 ndev->stats.rx_dropped++;
94 err = 1;
95 }
96
97 /* Check Frame length Min 64b */
98 if (unlikely(frame_len < ETH_ZLEN)) {
99 ndev->stats.rx_length_errors++;
100 ndev->stats.rx_dropped++;
101 err = 1;
102 }
103
104 if (err)
105 goto rx_irq_clean;
106
107 /* Skb allocation */
108 skb = netdev_alloc_skb_ip_align(ndev, frame_len);
109 if (unlikely(!skb)) {
110 ndev->stats.rx_errors++;
111 ndev->stats.rx_dropped++;
112 goto rx_irq_clean;
113 }
114
115 /* Copy frame from Rx fifo into the skb */
116 nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
117
118 skb_put(skb, frame_len);
119 skb->protocol = eth_type_trans(skb, ndev);
120 skb->ip_summed = CHECKSUM_UNNECESSARY;
121
122 ndev->stats.rx_packets++;
123 ndev->stats.rx_bytes += frame_len;
124 netif_receive_skb(skb);
125
126 goto rx_irq_frame_done;
127
128 rx_irq_clean:
129 /* Clean Rx fifo */
130 nps_enet_clean_rx_fifo(ndev, frame_len);
131
132 rx_irq_frame_done:
133 /* Ack Rx ctrl register */
134 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
135
136 return work_done;
137 }
138
139 static void nps_enet_tx_handler(struct net_device *ndev)
140 {
141 struct nps_enet_priv *priv = netdev_priv(ndev);
142 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
143 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
144 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
145 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
146
147 /* Check if we got TX */
148 if (!priv->tx_skb || tx_ctrl_ct)
149 return;
150
151 /* Ack Tx ctrl register */
152 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
153
154 /* Check Tx transmit error */
155 if (unlikely(tx_ctrl_et)) {
156 ndev->stats.tx_errors++;
157 } else {
158 ndev->stats.tx_packets++;
159 ndev->stats.tx_bytes += tx_ctrl_nt;
160 }
161
162 dev_kfree_skb(priv->tx_skb);
163 priv->tx_skb = NULL;
164
165 if (netif_queue_stopped(ndev))
166 netif_wake_queue(ndev);
167 }
168
169 /**
170 * nps_enet_poll - NAPI poll handler.
171 * @napi: Pointer to napi_struct structure.
172 * @budget: How many frames to process on one call.
173 *
174 * returns: Number of processed frames
175 */
176 static int nps_enet_poll(struct napi_struct *napi, int budget)
177 {
178 struct net_device *ndev = napi->dev;
179 struct nps_enet_priv *priv = netdev_priv(ndev);
180 u32 work_done;
181
182 nps_enet_tx_handler(ndev);
183 work_done = nps_enet_rx_handler(ndev);
184 if (work_done < budget) {
185 u32 buf_int_enable_value = 0;
186 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
187 u32 tx_ctrl_ct =
188 (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
189
190 napi_complete(napi);
191
192 /* set tx_done and rx_rdy bits */
193 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
194 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
195
196 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
197 buf_int_enable_value);
198
199 /* in case we will get a tx interrupt while interrupts
200 * are masked, we will lose it since the tx is edge interrupt.
201 * specifically, while executing the code section above,
202 * between nps_enet_tx_handler and the interrupts enable, all
203 * tx requests will be stuck until we will get an rx interrupt.
204 * the two code lines below will solve this situation by
205 * re-adding ourselves to the poll list.
206 */
207
208 if (priv->tx_skb && !tx_ctrl_ct) {
209 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
210 napi_reschedule(napi);
211 }
212 }
213
214 return work_done;
215 }
216
217 /**
218 * nps_enet_irq_handler - Global interrupt handler for ENET.
219 * @irq: irq number.
220 * @dev_instance: device instance.
221 *
222 * returns: IRQ_HANDLED for all cases.
223 *
224 * EZchip ENET has 2 interrupt causes, and depending on bits raised in
225 * CTRL registers we may tell what is a reason for interrupt to fire up.
226 * We got one for RX and the other for TX (completion).
227 */
228 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
229 {
230 struct net_device *ndev = dev_instance;
231 struct nps_enet_priv *priv = netdev_priv(ndev);
232 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
233 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
234 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
235 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
236
237 if ((!tx_ctrl_ct && priv->tx_skb) || rx_ctrl_cr)
238 if (likely(napi_schedule_prep(&priv->napi))) {
239 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
240 __napi_schedule(&priv->napi);
241 }
242
243 return IRQ_HANDLED;
244 }
245
246 static void nps_enet_set_hw_mac_address(struct net_device *ndev)
247 {
248 struct nps_enet_priv *priv = netdev_priv(ndev);
249 u32 ge_mac_cfg_1_value = 0;
250 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
251
252 /* set MAC address in HW */
253 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
254 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
255 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
256 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
257 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
258 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
259 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
260 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
261
262 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
263 ge_mac_cfg_1_value);
264
265 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
266 *ge_mac_cfg_2_value);
267 }
268
269 /**
270 * nps_enet_hw_reset - Reset the network device.
271 * @ndev: Pointer to the network device.
272 *
273 * This function reset the PCS and TX fifo.
274 * The programming model is to set the relevant reset bits
275 * wait for some time for this to propagate and then unset
276 * the reset bits. This way we ensure that reset procedure
277 * is done successfully by device.
278 */
279 static void nps_enet_hw_reset(struct net_device *ndev)
280 {
281 struct nps_enet_priv *priv = netdev_priv(ndev);
282 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
283
284 /* Pcs reset sequence*/
285 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
286 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
287 usleep_range(10, 20);
288 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
289
290 /* Tx fifo reset sequence */
291 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
292 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
293 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
294 phase_fifo_ctl_value);
295 usleep_range(10, 20);
296 phase_fifo_ctl_value = 0;
297 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
298 phase_fifo_ctl_value);
299 }
300
301 static void nps_enet_hw_enable_control(struct net_device *ndev)
302 {
303 struct nps_enet_priv *priv = netdev_priv(ndev);
304 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
305 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
306 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
307 s32 max_frame_length;
308
309 /* Enable Rx and Tx statistics */
310 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
311 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
312
313 /* Discard packets with different MAC address */
314 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
315 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
316
317 /* Discard multicast packets */
318 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
319 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
320
321 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
322 *ge_mac_cfg_2_value);
323
324 /* Discard Packets bigger than max frame length */
325 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
326 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
327 *ge_mac_cfg_3_value =
328 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
329 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
330 }
331
332 /* Enable interrupts */
333 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
334 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
335 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
336 buf_int_enable_value);
337
338 /* Write device MAC address to HW */
339 nps_enet_set_hw_mac_address(ndev);
340
341 /* Rx and Tx HW features */
342 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
343 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
344 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
345
346 /* IFG configuration */
347 ge_mac_cfg_0_value |=
348 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
349 ge_mac_cfg_0_value |=
350 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
351
352 /* preamble configuration */
353 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
354 ge_mac_cfg_0_value |=
355 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
356
357 /* enable flow control frames */
358 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
359 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
360 ge_mac_cfg_0_value |=
361 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
362 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
363 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
364
365 /* Enable Rx and Tx */
366 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
367 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
368
369 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
370 *ge_mac_cfg_3_value);
371 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
372 ge_mac_cfg_0_value);
373 }
374
375 static void nps_enet_hw_disable_control(struct net_device *ndev)
376 {
377 struct nps_enet_priv *priv = netdev_priv(ndev);
378
379 /* Disable interrupts */
380 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
381
382 /* Disable Rx and Tx */
383 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
384 }
385
386 static void nps_enet_send_frame(struct net_device *ndev,
387 struct sk_buff *skb)
388 {
389 struct nps_enet_priv *priv = netdev_priv(ndev);
390 u32 tx_ctrl_value = 0;
391 short length = skb->len;
392 u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
393 u32 *src = (void *)skb->data;
394 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
395
396 /* In case src is not aligned we need an intermediate buffer */
397 if (src_is_aligned)
398 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
399 else /* !src_is_aligned */
400 for (i = 0; i < len; i++, src++)
401 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
402 get_unaligned_be32(src));
403
404 /* Write the length of the Frame */
405 tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
406
407 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
408 /* Send Frame */
409 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
410 }
411
412 /**
413 * nps_enet_set_mac_address - Set the MAC address for this device.
414 * @ndev: Pointer to net_device structure.
415 * @p: 6 byte Address to be written as MAC address.
416 *
417 * This function copies the HW address from the sockaddr structure to the
418 * net_device structure and updates the address in HW.
419 *
420 * returns: -EBUSY if the net device is busy or 0 if the address is set
421 * successfully.
422 */
423 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
424 {
425 struct sockaddr *addr = p;
426 s32 res;
427
428 if (netif_running(ndev))
429 return -EBUSY;
430
431 res = eth_mac_addr(ndev, p);
432 if (!res) {
433 ether_addr_copy(ndev->dev_addr, addr->sa_data);
434 nps_enet_set_hw_mac_address(ndev);
435 }
436
437 return res;
438 }
439
440 /**
441 * nps_enet_set_rx_mode - Change the receive filtering mode.
442 * @ndev: Pointer to the network device.
443 *
444 * This function enables/disables promiscuous mode
445 */
446 static void nps_enet_set_rx_mode(struct net_device *ndev)
447 {
448 struct nps_enet_priv *priv = netdev_priv(ndev);
449 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
450
451 if (ndev->flags & IFF_PROMISC) {
452 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
453 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
454 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
455 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
456
457 } else {
458 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
459 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
460 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
461 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
462
463 }
464
465 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
466 }
467
468 /**
469 * nps_enet_open - Open the network device.
470 * @ndev: Pointer to the network device.
471 *
472 * returns: 0, on success or non-zero error value on failure.
473 *
474 * This function sets the MAC address, requests and enables an IRQ
475 * for the ENET device and starts the Tx queue.
476 */
477 static s32 nps_enet_open(struct net_device *ndev)
478 {
479 struct nps_enet_priv *priv = netdev_priv(ndev);
480 s32 err;
481
482 /* Reset private variables */
483 priv->tx_skb = NULL;
484 priv->ge_mac_cfg_2_value = 0;
485 priv->ge_mac_cfg_3_value = 0;
486
487 /* ge_mac_cfg_3 default values */
488 priv->ge_mac_cfg_3_value |=
489 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
490
491 priv->ge_mac_cfg_3_value |=
492 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
493
494 /* Disable HW device */
495 nps_enet_hw_disable_control(ndev);
496
497 /* irq Rx allocation */
498 err = request_irq(priv->irq, nps_enet_irq_handler,
499 0, "enet-rx-tx", ndev);
500 if (err)
501 return err;
502
503 napi_enable(&priv->napi);
504
505 /* Enable HW device */
506 nps_enet_hw_reset(ndev);
507 nps_enet_hw_enable_control(ndev);
508
509 netif_start_queue(ndev);
510
511 return 0;
512 }
513
514 /**
515 * nps_enet_stop - Close the network device.
516 * @ndev: Pointer to the network device.
517 *
518 * This function stops the Tx queue, disables interrupts for the ENET device.
519 */
520 static s32 nps_enet_stop(struct net_device *ndev)
521 {
522 struct nps_enet_priv *priv = netdev_priv(ndev);
523
524 napi_disable(&priv->napi);
525 netif_stop_queue(ndev);
526 nps_enet_hw_disable_control(ndev);
527 free_irq(priv->irq, ndev);
528
529 return 0;
530 }
531
532 /**
533 * nps_enet_start_xmit - Starts the data transmission.
534 * @skb: sk_buff pointer that contains data to be Transmitted.
535 * @ndev: Pointer to net_device structure.
536 *
537 * returns: NETDEV_TX_OK, on success
538 * NETDEV_TX_BUSY, if any of the descriptors are not free.
539 *
540 * This function is invoked from upper layers to initiate transmission.
541 */
542 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
543 struct net_device *ndev)
544 {
545 struct nps_enet_priv *priv = netdev_priv(ndev);
546
547 /* This driver handles one frame at a time */
548 netif_stop_queue(ndev);
549
550 priv->tx_skb = skb;
551
552 /* make sure tx_skb is actually written to the memory
553 * before the HW is informed and the IRQ is fired.
554 */
555 wmb();
556
557 nps_enet_send_frame(ndev, skb);
558
559 return NETDEV_TX_OK;
560 }
561
562 #ifdef CONFIG_NET_POLL_CONTROLLER
563 static void nps_enet_poll_controller(struct net_device *ndev)
564 {
565 disable_irq(ndev->irq);
566 nps_enet_irq_handler(ndev->irq, ndev);
567 enable_irq(ndev->irq);
568 }
569 #endif
570
571 static const struct net_device_ops nps_netdev_ops = {
572 .ndo_open = nps_enet_open,
573 .ndo_stop = nps_enet_stop,
574 .ndo_start_xmit = nps_enet_start_xmit,
575 .ndo_set_mac_address = nps_enet_set_mac_address,
576 .ndo_set_rx_mode = nps_enet_set_rx_mode,
577 #ifdef CONFIG_NET_POLL_CONTROLLER
578 .ndo_poll_controller = nps_enet_poll_controller,
579 #endif
580 };
581
582 static s32 nps_enet_probe(struct platform_device *pdev)
583 {
584 struct device *dev = &pdev->dev;
585 struct net_device *ndev;
586 struct nps_enet_priv *priv;
587 s32 err = 0;
588 const char *mac_addr;
589 struct resource *res_regs;
590
591 if (!dev->of_node)
592 return -ENODEV;
593
594 ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
595 if (!ndev)
596 return -ENOMEM;
597
598 platform_set_drvdata(pdev, ndev);
599 SET_NETDEV_DEV(ndev, dev);
600 priv = netdev_priv(ndev);
601
602 /* The EZ NET specific entries in the device structure. */
603 ndev->netdev_ops = &nps_netdev_ops;
604 ndev->watchdog_timeo = (400 * HZ / 1000);
605 /* FIXME :: no multicast support yet */
606 ndev->flags &= ~IFF_MULTICAST;
607
608 res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
609 priv->regs_base = devm_ioremap_resource(dev, res_regs);
610 if (IS_ERR(priv->regs_base)) {
611 err = PTR_ERR(priv->regs_base);
612 goto out_netdev;
613 }
614 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
615
616 /* set kernel MAC address to dev */
617 mac_addr = of_get_mac_address(dev->of_node);
618 if (mac_addr)
619 ether_addr_copy(ndev->dev_addr, mac_addr);
620 else
621 eth_hw_addr_random(ndev);
622
623 /* Get IRQ number */
624 priv->irq = platform_get_irq(pdev, 0);
625 if (!priv->irq) {
626 dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
627 err = -ENODEV;
628 goto out_netdev;
629 }
630
631 netif_napi_add(ndev, &priv->napi, nps_enet_poll,
632 NPS_ENET_NAPI_POLL_WEIGHT);
633
634 /* Register the driver. Should be the last thing in probe */
635 err = register_netdev(ndev);
636 if (err) {
637 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
638 ndev->name, (s32)err);
639 goto out_netif_api;
640 }
641
642 dev_info(dev, "(rx/tx=%d)\n", priv->irq);
643 return 0;
644
645 out_netif_api:
646 netif_napi_del(&priv->napi);
647 out_netdev:
648 if (err)
649 free_netdev(ndev);
650
651 return err;
652 }
653
654 static s32 nps_enet_remove(struct platform_device *pdev)
655 {
656 struct net_device *ndev = platform_get_drvdata(pdev);
657 struct nps_enet_priv *priv = netdev_priv(ndev);
658
659 unregister_netdev(ndev);
660 free_netdev(ndev);
661 netif_napi_del(&priv->napi);
662
663 return 0;
664 }
665
666 static const struct of_device_id nps_enet_dt_ids[] = {
667 { .compatible = "ezchip,nps-mgt-enet" },
668 { /* Sentinel */ }
669 };
670
671 static struct platform_driver nps_enet_driver = {
672 .probe = nps_enet_probe,
673 .remove = nps_enet_remove,
674 .driver = {
675 .name = DRV_NAME,
676 .of_match_table = nps_enet_dt_ids,
677 },
678 };
679
680 module_platform_driver(nps_enet_driver);
681
682 MODULE_AUTHOR("EZchip Semiconductor");
683 MODULE_LICENSE("GPL v2");
This page took 0.048546 seconds and 5 git commands to generate.