net: fec: fix potential use after free
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58
59 #include <asm/cacheflush.h>
60
61 #include "fec.h"
62
63 static void set_multicast_list(struct net_device *ndev);
64
65 #if defined(CONFIG_ARM)
66 #define FEC_ALIGNMENT 0xf
67 #else
68 #define FEC_ALIGNMENT 0x3
69 #endif
70
71 #define DRIVER_NAME "fec"
72
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE (1 << 5)
75 #define FEC_ENET_RSEM_V 0x84
76 #define FEC_ENET_RSFL_V 16
77 #define FEC_ENET_RAEM_V 0x8
78 #define FEC_ENET_RAFL_V 0x8
79 #define FEC_ENET_OPD_V 0xFFF0
80
81 /* Controller is ENET-MAC */
82 #define FEC_QUIRK_ENET_MAC (1 << 0)
83 /* Controller needs driver to swap frame */
84 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
85 /* Controller uses gasket */
86 #define FEC_QUIRK_USE_GASKET (1 << 2)
87 /* Controller has GBIT support */
88 #define FEC_QUIRK_HAS_GBIT (1 << 3)
89 /* Controller has extend desc buffer */
90 #define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4)
91 /* Controller has hardware checksum support */
92 #define FEC_QUIRK_HAS_CSUM (1 << 5)
93 /* Controller has hardware vlan support */
94 #define FEC_QUIRK_HAS_VLAN (1 << 6)
95 /* ENET IP errata ERR006358
96 *
97 * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
98 * detected as not set during a prior frame transmission, then the
99 * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
100 * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
101 * frames not being transmitted until there is a 0-to-1 transition on
102 * ENET_TDAR[TDAR].
103 */
104 #define FEC_QUIRK_ERR006358 (1 << 7)
105
106 static struct platform_device_id fec_devtype[] = {
107 {
108 /* keep it for coldfire */
109 .name = DRIVER_NAME,
110 .driver_data = 0,
111 }, {
112 .name = "imx25-fec",
113 .driver_data = FEC_QUIRK_USE_GASKET,
114 }, {
115 .name = "imx27-fec",
116 .driver_data = 0,
117 }, {
118 .name = "imx28-fec",
119 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
120 }, {
121 .name = "imx6q-fec",
122 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
125 }, {
126 .name = "mvf600-fec",
127 .driver_data = FEC_QUIRK_ENET_MAC,
128 }, {
129 /* sentinel */
130 }
131 };
132 MODULE_DEVICE_TABLE(platform, fec_devtype);
133
134 enum imx_fec_type {
135 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
136 IMX27_FEC, /* runs on i.mx27/35/51 */
137 IMX28_FEC,
138 IMX6Q_FEC,
139 MVF600_FEC,
140 };
141
142 static const struct of_device_id fec_dt_ids[] = {
143 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
144 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
145 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
146 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
147 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
148 { /* sentinel */ }
149 };
150 MODULE_DEVICE_TABLE(of, fec_dt_ids);
151
152 static unsigned char macaddr[ETH_ALEN];
153 module_param_array(macaddr, byte, NULL, 0);
154 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
155
156 #if defined(CONFIG_M5272)
157 /*
158 * Some hardware gets it MAC address out of local flash memory.
159 * if this is non-zero then assume it is the address to get MAC from.
160 */
161 #if defined(CONFIG_NETtel)
162 #define FEC_FLASHMAC 0xf0006006
163 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
164 #define FEC_FLASHMAC 0xf0006000
165 #elif defined(CONFIG_CANCam)
166 #define FEC_FLASHMAC 0xf0020000
167 #elif defined (CONFIG_M5272C3)
168 #define FEC_FLASHMAC (0xffe04000 + 4)
169 #elif defined(CONFIG_MOD5272)
170 #define FEC_FLASHMAC 0xffc0406b
171 #else
172 #define FEC_FLASHMAC 0
173 #endif
174 #endif /* CONFIG_M5272 */
175
176 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
177 #error "FEC: descriptor ring size constants too large"
178 #endif
179
180 /* Interrupt events/masks. */
181 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
182 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
183 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
184 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
185 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
186 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
187 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
188 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
189 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
190 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
191
192 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
193 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
194
195 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
196 */
197 #define PKT_MAXBUF_SIZE 1522
198 #define PKT_MINBUF_SIZE 64
199 #define PKT_MAXBLR_SIZE 1536
200
201 /* FEC receive acceleration */
202 #define FEC_RACC_IPDIS (1 << 1)
203 #define FEC_RACC_PRODIS (1 << 2)
204 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
205
206 /*
207 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
208 * size bits. Other FEC hardware does not, so we need to take that into
209 * account when setting it.
210 */
211 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
212 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
213 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
214 #else
215 #define OPT_FRAME_SIZE 0
216 #endif
217
218 /* FEC MII MMFR bits definition */
219 #define FEC_MMFR_ST (1 << 30)
220 #define FEC_MMFR_OP_READ (2 << 28)
221 #define FEC_MMFR_OP_WRITE (1 << 28)
222 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
223 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
224 #define FEC_MMFR_TA (2 << 16)
225 #define FEC_MMFR_DATA(v) (v & 0xffff)
226
227 #define FEC_MII_TIMEOUT 30000 /* us */
228
229 /* Transmitter timeout */
230 #define TX_TIMEOUT (2 * HZ)
231
232 #define FEC_PAUSE_FLAG_AUTONEG 0x1
233 #define FEC_PAUSE_FLAG_ENABLE 0x2
234
235 static int mii_cnt;
236
237 static inline
238 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
239 {
240 struct bufdesc *new_bd = bdp + 1;
241 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
242 struct bufdesc_ex *ex_base;
243 struct bufdesc *base;
244 int ring_size;
245
246 if (bdp >= fep->tx_bd_base) {
247 base = fep->tx_bd_base;
248 ring_size = fep->tx_ring_size;
249 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
250 } else {
251 base = fep->rx_bd_base;
252 ring_size = fep->rx_ring_size;
253 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
254 }
255
256 if (fep->bufdesc_ex)
257 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
258 ex_base : ex_new_bd);
259 else
260 return (new_bd >= (base + ring_size)) ?
261 base : new_bd;
262 }
263
264 static inline
265 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
266 {
267 struct bufdesc *new_bd = bdp - 1;
268 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
269 struct bufdesc_ex *ex_base;
270 struct bufdesc *base;
271 int ring_size;
272
273 if (bdp >= fep->tx_bd_base) {
274 base = fep->tx_bd_base;
275 ring_size = fep->tx_ring_size;
276 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
277 } else {
278 base = fep->rx_bd_base;
279 ring_size = fep->rx_ring_size;
280 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
281 }
282
283 if (fep->bufdesc_ex)
284 return (struct bufdesc *)((ex_new_bd < ex_base) ?
285 (ex_new_bd + ring_size) : ex_new_bd);
286 else
287 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
288 }
289
290 static void *swap_buffer(void *bufaddr, int len)
291 {
292 int i;
293 unsigned int *buf = bufaddr;
294
295 for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
296 *buf = cpu_to_be32(*buf);
297
298 return bufaddr;
299 }
300
301 static int
302 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
303 {
304 /* Only run for packets requiring a checksum. */
305 if (skb->ip_summed != CHECKSUM_PARTIAL)
306 return 0;
307
308 if (unlikely(skb_cow_head(skb, 0)))
309 return -1;
310
311 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
312
313 return 0;
314 }
315
316 static netdev_tx_t
317 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
318 {
319 struct fec_enet_private *fep = netdev_priv(ndev);
320 const struct platform_device_id *id_entry =
321 platform_get_device_id(fep->pdev);
322 struct bufdesc *bdp, *bdp_pre;
323 void *bufaddr;
324 unsigned short status;
325 unsigned int index;
326
327 /* Fill in a Tx ring entry */
328 bdp = fep->cur_tx;
329
330 status = bdp->cbd_sc;
331
332 if (status & BD_ENET_TX_READY) {
333 /* Ooops. All transmit buffers are full. Bail out.
334 * This should not happen, since ndev->tbusy should be set.
335 */
336 netdev_err(ndev, "tx queue full!\n");
337 return NETDEV_TX_BUSY;
338 }
339
340 /* Protocol checksum off-load for TCP and UDP. */
341 if (fec_enet_clear_csum(skb, ndev)) {
342 kfree_skb(skb);
343 return NETDEV_TX_OK;
344 }
345
346 /* Clear all of the status flags */
347 status &= ~BD_ENET_TX_STATS;
348
349 /* Set buffer length and buffer pointer */
350 bufaddr = skb->data;
351 bdp->cbd_datlen = skb->len;
352
353 /*
354 * On some FEC implementations data must be aligned on
355 * 4-byte boundaries. Use bounce buffers to copy data
356 * and get it aligned. Ugh.
357 */
358 if (fep->bufdesc_ex)
359 index = (struct bufdesc_ex *)bdp -
360 (struct bufdesc_ex *)fep->tx_bd_base;
361 else
362 index = bdp - fep->tx_bd_base;
363
364 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
365 memcpy(fep->tx_bounce[index], skb->data, skb->len);
366 bufaddr = fep->tx_bounce[index];
367 }
368
369 /*
370 * Some design made an incorrect assumption on endian mode of
371 * the system that it's running on. As the result, driver has to
372 * swap every frame going to and coming from the controller.
373 */
374 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
375 swap_buffer(bufaddr, skb->len);
376
377 /* Save skb pointer */
378 fep->tx_skbuff[index] = skb;
379
380 /* Push the data cache so the CPM does not get stale memory
381 * data.
382 */
383 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
384 skb->len, DMA_TO_DEVICE);
385 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
386 bdp->cbd_bufaddr = 0;
387 fep->tx_skbuff[index] = NULL;
388 dev_kfree_skb_any(skb);
389 if (net_ratelimit())
390 netdev_err(ndev, "Tx DMA memory map failed\n");
391 return NETDEV_TX_OK;
392 }
393 /* Send it on its way. Tell FEC it's ready, interrupt when done,
394 * it's the last BD of the frame, and to put the CRC on the end.
395 */
396 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
397 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
398 bdp->cbd_sc = status;
399
400 if (fep->bufdesc_ex) {
401
402 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
403 ebdp->cbd_bdu = 0;
404 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
405 fep->hwts_tx_en)) {
406 ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
407 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
408 } else {
409 ebdp->cbd_esc = BD_ENET_TX_INT;
410
411 /* Enable protocol checksum flags
412 * We do not bother with the IP Checksum bits as they
413 * are done by the kernel
414 */
415 if (skb->ip_summed == CHECKSUM_PARTIAL)
416 ebdp->cbd_esc |= BD_ENET_TX_PINS;
417 }
418 }
419
420 bdp_pre = fec_enet_get_prevdesc(bdp, fep);
421 if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
422 !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
423 fep->delay_work.trig_tx = true;
424 schedule_delayed_work(&(fep->delay_work.delay_work),
425 msecs_to_jiffies(1));
426 }
427
428 /* If this was the last BD in the ring, start at the beginning again. */
429 bdp = fec_enet_get_nextdesc(bdp, fep);
430
431 skb_tx_timestamp(skb);
432
433 fep->cur_tx = bdp;
434
435 if (fep->cur_tx == fep->dirty_tx)
436 netif_stop_queue(ndev);
437
438 /* Trigger transmission start */
439 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
440
441 return NETDEV_TX_OK;
442 }
443
444 /* Init RX & TX buffer descriptors
445 */
446 static void fec_enet_bd_init(struct net_device *dev)
447 {
448 struct fec_enet_private *fep = netdev_priv(dev);
449 struct bufdesc *bdp;
450 unsigned int i;
451
452 /* Initialize the receive buffer descriptors. */
453 bdp = fep->rx_bd_base;
454 for (i = 0; i < fep->rx_ring_size; i++) {
455
456 /* Initialize the BD for every fragment in the page. */
457 if (bdp->cbd_bufaddr)
458 bdp->cbd_sc = BD_ENET_RX_EMPTY;
459 else
460 bdp->cbd_sc = 0;
461 bdp = fec_enet_get_nextdesc(bdp, fep);
462 }
463
464 /* Set the last buffer to wrap */
465 bdp = fec_enet_get_prevdesc(bdp, fep);
466 bdp->cbd_sc |= BD_SC_WRAP;
467
468 fep->cur_rx = fep->rx_bd_base;
469
470 /* ...and the same for transmit */
471 bdp = fep->tx_bd_base;
472 fep->cur_tx = bdp;
473 for (i = 0; i < fep->tx_ring_size; i++) {
474
475 /* Initialize the BD for every fragment in the page. */
476 bdp->cbd_sc = 0;
477 if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
478 dev_kfree_skb_any(fep->tx_skbuff[i]);
479 fep->tx_skbuff[i] = NULL;
480 }
481 bdp->cbd_bufaddr = 0;
482 bdp = fec_enet_get_nextdesc(bdp, fep);
483 }
484
485 /* Set the last buffer to wrap */
486 bdp = fec_enet_get_prevdesc(bdp, fep);
487 bdp->cbd_sc |= BD_SC_WRAP;
488 fep->dirty_tx = bdp;
489 }
490
491 /* This function is called to start or restart the FEC during a link
492 * change. This only happens when switching between half and full
493 * duplex.
494 */
495 static void
496 fec_restart(struct net_device *ndev, int duplex)
497 {
498 struct fec_enet_private *fep = netdev_priv(ndev);
499 const struct platform_device_id *id_entry =
500 platform_get_device_id(fep->pdev);
501 int i;
502 u32 val;
503 u32 temp_mac[2];
504 u32 rcntl = OPT_FRAME_SIZE | 0x04;
505 u32 ecntl = 0x2; /* ETHEREN */
506
507 if (netif_running(ndev)) {
508 netif_device_detach(ndev);
509 napi_disable(&fep->napi);
510 netif_stop_queue(ndev);
511 netif_tx_lock_bh(ndev);
512 }
513
514 /* Whack a reset. We should wait for this. */
515 writel(1, fep->hwp + FEC_ECNTRL);
516 udelay(10);
517
518 /*
519 * enet-mac reset will reset mac address registers too,
520 * so need to reconfigure it.
521 */
522 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
523 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
524 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
525 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
526 }
527
528 /* Clear any outstanding interrupt. */
529 writel(0xffc00000, fep->hwp + FEC_IEVENT);
530
531 /* Setup multicast filter. */
532 set_multicast_list(ndev);
533 #ifndef CONFIG_M5272
534 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
535 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
536 #endif
537
538 /* Set maximum receive buffer size. */
539 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
540
541 fec_enet_bd_init(ndev);
542
543 /* Set receive and transmit descriptor base. */
544 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
545 if (fep->bufdesc_ex)
546 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
547 * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
548 else
549 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
550 * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
551
552
553 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
554 if (fep->tx_skbuff[i]) {
555 dev_kfree_skb_any(fep->tx_skbuff[i]);
556 fep->tx_skbuff[i] = NULL;
557 }
558 }
559
560 /* Enable MII mode */
561 if (duplex) {
562 /* FD enable */
563 writel(0x04, fep->hwp + FEC_X_CNTRL);
564 } else {
565 /* No Rcv on Xmit */
566 rcntl |= 0x02;
567 writel(0x0, fep->hwp + FEC_X_CNTRL);
568 }
569
570 fep->full_duplex = duplex;
571
572 /* Set MII speed */
573 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
574
575 #if !defined(CONFIG_M5272)
576 /* set RX checksum */
577 val = readl(fep->hwp + FEC_RACC);
578 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
579 val |= FEC_RACC_OPTIONS;
580 else
581 val &= ~FEC_RACC_OPTIONS;
582 writel(val, fep->hwp + FEC_RACC);
583 #endif
584
585 /*
586 * The phy interface and speed need to get configured
587 * differently on enet-mac.
588 */
589 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
590 /* Enable flow control and length check */
591 rcntl |= 0x40000000 | 0x00000020;
592
593 /* RGMII, RMII or MII */
594 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
595 rcntl |= (1 << 6);
596 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
597 rcntl |= (1 << 8);
598 else
599 rcntl &= ~(1 << 8);
600
601 /* 1G, 100M or 10M */
602 if (fep->phy_dev) {
603 if (fep->phy_dev->speed == SPEED_1000)
604 ecntl |= (1 << 5);
605 else if (fep->phy_dev->speed == SPEED_100)
606 rcntl &= ~(1 << 9);
607 else
608 rcntl |= (1 << 9);
609 }
610 } else {
611 #ifdef FEC_MIIGSK_ENR
612 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
613 u32 cfgr;
614 /* disable the gasket and wait */
615 writel(0, fep->hwp + FEC_MIIGSK_ENR);
616 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
617 udelay(1);
618
619 /*
620 * configure the gasket:
621 * RMII, 50 MHz, no loopback, no echo
622 * MII, 25 MHz, no loopback, no echo
623 */
624 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
625 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
626 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
627 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
628 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
629
630 /* re-enable the gasket */
631 writel(2, fep->hwp + FEC_MIIGSK_ENR);
632 }
633 #endif
634 }
635
636 #if !defined(CONFIG_M5272)
637 /* enable pause frame*/
638 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
639 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
640 fep->phy_dev && fep->phy_dev->pause)) {
641 rcntl |= FEC_ENET_FCE;
642
643 /* set FIFO threshold parameter to reduce overrun */
644 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
645 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
646 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
647 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
648
649 /* OPD */
650 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
651 } else {
652 rcntl &= ~FEC_ENET_FCE;
653 }
654 #endif /* !defined(CONFIG_M5272) */
655
656 writel(rcntl, fep->hwp + FEC_R_CNTRL);
657
658 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
659 /* enable ENET endian swap */
660 ecntl |= (1 << 8);
661 /* enable ENET store and forward mode */
662 writel(1 << 8, fep->hwp + FEC_X_WMRK);
663 }
664
665 if (fep->bufdesc_ex)
666 ecntl |= (1 << 4);
667
668 #ifndef CONFIG_M5272
669 /* Enable the MIB statistic event counters */
670 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
671 #endif
672
673 /* And last, enable the transmit and receive processing */
674 writel(ecntl, fep->hwp + FEC_ECNTRL);
675 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
676
677 if (fep->bufdesc_ex)
678 fec_ptp_start_cyclecounter(ndev);
679
680 /* Enable interrupts we wish to service */
681 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
682
683 if (netif_running(ndev)) {
684 netif_tx_unlock_bh(ndev);
685 netif_wake_queue(ndev);
686 napi_enable(&fep->napi);
687 netif_device_attach(ndev);
688 }
689 }
690
691 static void
692 fec_stop(struct net_device *ndev)
693 {
694 struct fec_enet_private *fep = netdev_priv(ndev);
695 const struct platform_device_id *id_entry =
696 platform_get_device_id(fep->pdev);
697 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
698
699 /* We cannot expect a graceful transmit stop without link !!! */
700 if (fep->link) {
701 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
702 udelay(10);
703 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
704 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
705 }
706
707 /* Whack a reset. We should wait for this. */
708 writel(1, fep->hwp + FEC_ECNTRL);
709 udelay(10);
710 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
711 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
712
713 /* We have to keep ENET enabled to have MII interrupt stay working */
714 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
715 writel(2, fep->hwp + FEC_ECNTRL);
716 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
717 }
718 }
719
720
721 static void
722 fec_timeout(struct net_device *ndev)
723 {
724 struct fec_enet_private *fep = netdev_priv(ndev);
725
726 ndev->stats.tx_errors++;
727
728 fep->delay_work.timeout = true;
729 schedule_delayed_work(&(fep->delay_work.delay_work), 0);
730 }
731
732 static void fec_enet_work(struct work_struct *work)
733 {
734 struct fec_enet_private *fep =
735 container_of(work,
736 struct fec_enet_private,
737 delay_work.delay_work.work);
738
739 if (fep->delay_work.timeout) {
740 fep->delay_work.timeout = false;
741 fec_restart(fep->netdev, fep->full_duplex);
742 netif_wake_queue(fep->netdev);
743 }
744
745 if (fep->delay_work.trig_tx) {
746 fep->delay_work.trig_tx = false;
747 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
748 }
749 }
750
751 static void
752 fec_enet_tx(struct net_device *ndev)
753 {
754 struct fec_enet_private *fep;
755 struct bufdesc *bdp;
756 unsigned short status;
757 struct sk_buff *skb;
758 int index = 0;
759
760 fep = netdev_priv(ndev);
761 bdp = fep->dirty_tx;
762
763 /* get next bdp of dirty_tx */
764 bdp = fec_enet_get_nextdesc(bdp, fep);
765
766 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
767
768 /* current queue is empty */
769 if (bdp == fep->cur_tx)
770 break;
771
772 if (fep->bufdesc_ex)
773 index = (struct bufdesc_ex *)bdp -
774 (struct bufdesc_ex *)fep->tx_bd_base;
775 else
776 index = bdp - fep->tx_bd_base;
777
778 skb = fep->tx_skbuff[index];
779 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
780 DMA_TO_DEVICE);
781 bdp->cbd_bufaddr = 0;
782
783 /* Check for errors. */
784 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
785 BD_ENET_TX_RL | BD_ENET_TX_UN |
786 BD_ENET_TX_CSL)) {
787 ndev->stats.tx_errors++;
788 if (status & BD_ENET_TX_HB) /* No heartbeat */
789 ndev->stats.tx_heartbeat_errors++;
790 if (status & BD_ENET_TX_LC) /* Late collision */
791 ndev->stats.tx_window_errors++;
792 if (status & BD_ENET_TX_RL) /* Retrans limit */
793 ndev->stats.tx_aborted_errors++;
794 if (status & BD_ENET_TX_UN) /* Underrun */
795 ndev->stats.tx_fifo_errors++;
796 if (status & BD_ENET_TX_CSL) /* Carrier lost */
797 ndev->stats.tx_carrier_errors++;
798 } else {
799 ndev->stats.tx_packets++;
800 ndev->stats.tx_bytes += bdp->cbd_datlen;
801 }
802
803 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
804 fep->bufdesc_ex) {
805 struct skb_shared_hwtstamps shhwtstamps;
806 unsigned long flags;
807 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
808
809 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
810 spin_lock_irqsave(&fep->tmreg_lock, flags);
811 shhwtstamps.hwtstamp = ns_to_ktime(
812 timecounter_cyc2time(&fep->tc, ebdp->ts));
813 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
814 skb_tstamp_tx(skb, &shhwtstamps);
815 }
816
817 if (status & BD_ENET_TX_READY)
818 netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
819
820 /* Deferred means some collisions occurred during transmit,
821 * but we eventually sent the packet OK.
822 */
823 if (status & BD_ENET_TX_DEF)
824 ndev->stats.collisions++;
825
826 /* Free the sk buffer associated with this last transmit */
827 dev_kfree_skb_any(skb);
828 fep->tx_skbuff[index] = NULL;
829
830 fep->dirty_tx = bdp;
831
832 /* Update pointer to next buffer descriptor to be transmitted */
833 bdp = fec_enet_get_nextdesc(bdp, fep);
834
835 /* Since we have freed up a buffer, the ring is no longer full
836 */
837 if (fep->dirty_tx != fep->cur_tx) {
838 if (netif_queue_stopped(ndev))
839 netif_wake_queue(ndev);
840 }
841 }
842 return;
843 }
844
845
846 /* During a receive, the cur_rx points to the current incoming buffer.
847 * When we update through the ring, if the next incoming buffer has
848 * not been given to the system, we just set the empty indicator,
849 * effectively tossing the packet.
850 */
851 static int
852 fec_enet_rx(struct net_device *ndev, int budget)
853 {
854 struct fec_enet_private *fep = netdev_priv(ndev);
855 const struct platform_device_id *id_entry =
856 platform_get_device_id(fep->pdev);
857 struct bufdesc *bdp;
858 unsigned short status;
859 struct sk_buff *skb;
860 ushort pkt_len;
861 __u8 *data;
862 int pkt_received = 0;
863 struct bufdesc_ex *ebdp = NULL;
864 bool vlan_packet_rcvd = false;
865 u16 vlan_tag;
866 int index = 0;
867
868 #ifdef CONFIG_M532x
869 flush_cache_all();
870 #endif
871
872 /* First, grab all of the stats for the incoming packet.
873 * These get messed up if we get called due to a busy condition.
874 */
875 bdp = fep->cur_rx;
876
877 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
878
879 if (pkt_received >= budget)
880 break;
881 pkt_received++;
882
883 /* Since we have allocated space to hold a complete frame,
884 * the last indicator should be set.
885 */
886 if ((status & BD_ENET_RX_LAST) == 0)
887 netdev_err(ndev, "rcv is not +last\n");
888
889 if (!fep->opened)
890 goto rx_processing_done;
891
892 /* Check for errors. */
893 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
894 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
895 ndev->stats.rx_errors++;
896 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
897 /* Frame too long or too short. */
898 ndev->stats.rx_length_errors++;
899 }
900 if (status & BD_ENET_RX_NO) /* Frame alignment */
901 ndev->stats.rx_frame_errors++;
902 if (status & BD_ENET_RX_CR) /* CRC Error */
903 ndev->stats.rx_crc_errors++;
904 if (status & BD_ENET_RX_OV) /* FIFO overrun */
905 ndev->stats.rx_fifo_errors++;
906 }
907
908 /* Report late collisions as a frame error.
909 * On this error, the BD is closed, but we don't know what we
910 * have in the buffer. So, just drop this frame on the floor.
911 */
912 if (status & BD_ENET_RX_CL) {
913 ndev->stats.rx_errors++;
914 ndev->stats.rx_frame_errors++;
915 goto rx_processing_done;
916 }
917
918 /* Process the incoming frame. */
919 ndev->stats.rx_packets++;
920 pkt_len = bdp->cbd_datlen;
921 ndev->stats.rx_bytes += pkt_len;
922
923 if (fep->bufdesc_ex)
924 index = (struct bufdesc_ex *)bdp -
925 (struct bufdesc_ex *)fep->rx_bd_base;
926 else
927 index = bdp - fep->rx_bd_base;
928 data = fep->rx_skbuff[index]->data;
929 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
930 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
931
932 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
933 swap_buffer(data, pkt_len);
934
935 /* Extract the enhanced buffer descriptor */
936 ebdp = NULL;
937 if (fep->bufdesc_ex)
938 ebdp = (struct bufdesc_ex *)bdp;
939
940 /* If this is a VLAN packet remove the VLAN Tag */
941 vlan_packet_rcvd = false;
942 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
943 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
944 /* Push and remove the vlan tag */
945 struct vlan_hdr *vlan_header =
946 (struct vlan_hdr *) (data + ETH_HLEN);
947 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
948 pkt_len -= VLAN_HLEN;
949
950 vlan_packet_rcvd = true;
951 }
952
953 /* This does 16 byte alignment, exactly what we need.
954 * The packet length includes FCS, but we don't want to
955 * include that when passing upstream as it messes up
956 * bridging applications.
957 */
958 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
959
960 if (unlikely(!skb)) {
961 ndev->stats.rx_dropped++;
962 } else {
963 int payload_offset = (2 * ETH_ALEN);
964 skb_reserve(skb, NET_IP_ALIGN);
965 skb_put(skb, pkt_len - 4); /* Make room */
966
967 /* Extract the frame data without the VLAN header. */
968 skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
969 if (vlan_packet_rcvd)
970 payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
971 skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
972 data + payload_offset,
973 pkt_len - 4 - (2 * ETH_ALEN));
974
975 skb->protocol = eth_type_trans(skb, ndev);
976
977 /* Get receive timestamp from the skb */
978 if (fep->hwts_rx_en && fep->bufdesc_ex) {
979 struct skb_shared_hwtstamps *shhwtstamps =
980 skb_hwtstamps(skb);
981 unsigned long flags;
982
983 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
984
985 spin_lock_irqsave(&fep->tmreg_lock, flags);
986 shhwtstamps->hwtstamp = ns_to_ktime(
987 timecounter_cyc2time(&fep->tc, ebdp->ts));
988 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
989 }
990
991 if (fep->bufdesc_ex &&
992 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
993 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
994 /* don't check it */
995 skb->ip_summed = CHECKSUM_UNNECESSARY;
996 } else {
997 skb_checksum_none_assert(skb);
998 }
999 }
1000
1001 /* Handle received VLAN packets */
1002 if (vlan_packet_rcvd)
1003 __vlan_hwaccel_put_tag(skb,
1004 htons(ETH_P_8021Q),
1005 vlan_tag);
1006
1007 napi_gro_receive(&fep->napi, skb);
1008 }
1009
1010 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1011 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1012 rx_processing_done:
1013 /* Clear the status flags for this buffer */
1014 status &= ~BD_ENET_RX_STATS;
1015
1016 /* Mark the buffer empty */
1017 status |= BD_ENET_RX_EMPTY;
1018 bdp->cbd_sc = status;
1019
1020 if (fep->bufdesc_ex) {
1021 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1022
1023 ebdp->cbd_esc = BD_ENET_RX_INT;
1024 ebdp->cbd_prot = 0;
1025 ebdp->cbd_bdu = 0;
1026 }
1027
1028 /* Update BD pointer to next entry */
1029 bdp = fec_enet_get_nextdesc(bdp, fep);
1030
1031 /* Doing this here will keep the FEC running while we process
1032 * incoming frames. On a heavily loaded network, we should be
1033 * able to keep up at the expense of system resources.
1034 */
1035 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1036 }
1037 fep->cur_rx = bdp;
1038
1039 return pkt_received;
1040 }
1041
1042 static irqreturn_t
1043 fec_enet_interrupt(int irq, void *dev_id)
1044 {
1045 struct net_device *ndev = dev_id;
1046 struct fec_enet_private *fep = netdev_priv(ndev);
1047 uint int_events;
1048 irqreturn_t ret = IRQ_NONE;
1049
1050 do {
1051 int_events = readl(fep->hwp + FEC_IEVENT);
1052 writel(int_events, fep->hwp + FEC_IEVENT);
1053
1054 if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1055 ret = IRQ_HANDLED;
1056
1057 /* Disable the RX interrupt */
1058 if (napi_schedule_prep(&fep->napi)) {
1059 writel(FEC_RX_DISABLED_IMASK,
1060 fep->hwp + FEC_IMASK);
1061 __napi_schedule(&fep->napi);
1062 }
1063 }
1064
1065 if (int_events & FEC_ENET_MII) {
1066 ret = IRQ_HANDLED;
1067 complete(&fep->mdio_done);
1068 }
1069 } while (int_events);
1070
1071 return ret;
1072 }
1073
1074 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1075 {
1076 struct net_device *ndev = napi->dev;
1077 int pkts = fec_enet_rx(ndev, budget);
1078 struct fec_enet_private *fep = netdev_priv(ndev);
1079
1080 fec_enet_tx(ndev);
1081
1082 if (pkts < budget) {
1083 napi_complete(napi);
1084 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085 }
1086 return pkts;
1087 }
1088
1089 /* ------------------------------------------------------------------------- */
1090 static void fec_get_mac(struct net_device *ndev)
1091 {
1092 struct fec_enet_private *fep = netdev_priv(ndev);
1093 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1094 unsigned char *iap, tmpaddr[ETH_ALEN];
1095
1096 /*
1097 * try to get mac address in following order:
1098 *
1099 * 1) module parameter via kernel command line in form
1100 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1101 */
1102 iap = macaddr;
1103
1104 /*
1105 * 2) from device tree data
1106 */
1107 if (!is_valid_ether_addr(iap)) {
1108 struct device_node *np = fep->pdev->dev.of_node;
1109 if (np) {
1110 const char *mac = of_get_mac_address(np);
1111 if (mac)
1112 iap = (unsigned char *) mac;
1113 }
1114 }
1115
1116 /*
1117 * 3) from flash or fuse (via platform data)
1118 */
1119 if (!is_valid_ether_addr(iap)) {
1120 #ifdef CONFIG_M5272
1121 if (FEC_FLASHMAC)
1122 iap = (unsigned char *)FEC_FLASHMAC;
1123 #else
1124 if (pdata)
1125 iap = (unsigned char *)&pdata->mac;
1126 #endif
1127 }
1128
1129 /*
1130 * 4) FEC mac registers set by bootloader
1131 */
1132 if (!is_valid_ether_addr(iap)) {
1133 *((__be32 *) &tmpaddr[0]) =
1134 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1135 *((__be16 *) &tmpaddr[4]) =
1136 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1137 iap = &tmpaddr[0];
1138 }
1139
1140 /*
1141 * 5) random mac address
1142 */
1143 if (!is_valid_ether_addr(iap)) {
1144 /* Report it and use a random ethernet address instead */
1145 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1146 eth_hw_addr_random(ndev);
1147 netdev_info(ndev, "Using random MAC address: %pM\n",
1148 ndev->dev_addr);
1149 return;
1150 }
1151
1152 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1153
1154 /* Adjust MAC if using macaddr */
1155 if (iap == macaddr)
1156 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1157 }
1158
1159 /* ------------------------------------------------------------------------- */
1160
1161 /*
1162 * Phy section
1163 */
1164 static void fec_enet_adjust_link(struct net_device *ndev)
1165 {
1166 struct fec_enet_private *fep = netdev_priv(ndev);
1167 struct phy_device *phy_dev = fep->phy_dev;
1168 int status_change = 0;
1169
1170 /* Prevent a state halted on mii error */
1171 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1172 phy_dev->state = PHY_RESUMING;
1173 return;
1174 }
1175
1176 if (phy_dev->link) {
1177 if (!fep->link) {
1178 fep->link = phy_dev->link;
1179 status_change = 1;
1180 }
1181
1182 if (fep->full_duplex != phy_dev->duplex)
1183 status_change = 1;
1184
1185 if (phy_dev->speed != fep->speed) {
1186 fep->speed = phy_dev->speed;
1187 status_change = 1;
1188 }
1189
1190 /* if any of the above changed restart the FEC */
1191 if (status_change)
1192 fec_restart(ndev, phy_dev->duplex);
1193 } else {
1194 if (fep->link) {
1195 fec_stop(ndev);
1196 fep->link = phy_dev->link;
1197 status_change = 1;
1198 }
1199 }
1200
1201 if (status_change)
1202 phy_print_status(phy_dev);
1203 }
1204
1205 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1206 {
1207 struct fec_enet_private *fep = bus->priv;
1208 unsigned long time_left;
1209
1210 fep->mii_timeout = 0;
1211 init_completion(&fep->mdio_done);
1212
1213 /* start a read op */
1214 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1215 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1216 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1217
1218 /* wait for end of transfer */
1219 time_left = wait_for_completion_timeout(&fep->mdio_done,
1220 usecs_to_jiffies(FEC_MII_TIMEOUT));
1221 if (time_left == 0) {
1222 fep->mii_timeout = 1;
1223 netdev_err(fep->netdev, "MDIO read timeout\n");
1224 return -ETIMEDOUT;
1225 }
1226
1227 /* return value */
1228 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1229 }
1230
1231 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1232 u16 value)
1233 {
1234 struct fec_enet_private *fep = bus->priv;
1235 unsigned long time_left;
1236
1237 fep->mii_timeout = 0;
1238 init_completion(&fep->mdio_done);
1239
1240 /* start a write op */
1241 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1242 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1243 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1244 fep->hwp + FEC_MII_DATA);
1245
1246 /* wait for end of transfer */
1247 time_left = wait_for_completion_timeout(&fep->mdio_done,
1248 usecs_to_jiffies(FEC_MII_TIMEOUT));
1249 if (time_left == 0) {
1250 fep->mii_timeout = 1;
1251 netdev_err(fep->netdev, "MDIO write timeout\n");
1252 return -ETIMEDOUT;
1253 }
1254
1255 return 0;
1256 }
1257
1258 static int fec_enet_mdio_reset(struct mii_bus *bus)
1259 {
1260 return 0;
1261 }
1262
1263 static int fec_enet_mii_probe(struct net_device *ndev)
1264 {
1265 struct fec_enet_private *fep = netdev_priv(ndev);
1266 const struct platform_device_id *id_entry =
1267 platform_get_device_id(fep->pdev);
1268 struct phy_device *phy_dev = NULL;
1269 char mdio_bus_id[MII_BUS_ID_SIZE];
1270 char phy_name[MII_BUS_ID_SIZE + 3];
1271 int phy_id;
1272 int dev_id = fep->dev_id;
1273
1274 fep->phy_dev = NULL;
1275
1276 /* check for attached phy */
1277 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1278 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1279 continue;
1280 if (fep->mii_bus->phy_map[phy_id] == NULL)
1281 continue;
1282 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1283 continue;
1284 if (dev_id--)
1285 continue;
1286 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1287 break;
1288 }
1289
1290 if (phy_id >= PHY_MAX_ADDR) {
1291 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1292 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1293 phy_id = 0;
1294 }
1295
1296 snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1297 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1298 fep->phy_interface);
1299 if (IS_ERR(phy_dev)) {
1300 netdev_err(ndev, "could not attach to PHY\n");
1301 return PTR_ERR(phy_dev);
1302 }
1303
1304 /* mask with MAC supported features */
1305 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1306 phy_dev->supported &= PHY_GBIT_FEATURES;
1307 #if !defined(CONFIG_M5272)
1308 phy_dev->supported |= SUPPORTED_Pause;
1309 #endif
1310 }
1311 else
1312 phy_dev->supported &= PHY_BASIC_FEATURES;
1313
1314 phy_dev->advertising = phy_dev->supported;
1315
1316 fep->phy_dev = phy_dev;
1317 fep->link = 0;
1318 fep->full_duplex = 0;
1319
1320 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1321 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1322 fep->phy_dev->irq);
1323
1324 return 0;
1325 }
1326
1327 static int fec_enet_mii_init(struct platform_device *pdev)
1328 {
1329 static struct mii_bus *fec0_mii_bus;
1330 struct net_device *ndev = platform_get_drvdata(pdev);
1331 struct fec_enet_private *fep = netdev_priv(ndev);
1332 const struct platform_device_id *id_entry =
1333 platform_get_device_id(fep->pdev);
1334 int err = -ENXIO, i;
1335
1336 /*
1337 * The dual fec interfaces are not equivalent with enet-mac.
1338 * Here are the differences:
1339 *
1340 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1341 * - fec0 acts as the 1588 time master while fec1 is slave
1342 * - external phys can only be configured by fec0
1343 *
1344 * That is to say fec1 can not work independently. It only works
1345 * when fec0 is working. The reason behind this design is that the
1346 * second interface is added primarily for Switch mode.
1347 *
1348 * Because of the last point above, both phys are attached on fec0
1349 * mdio interface in board design, and need to be configured by
1350 * fec0 mii_bus.
1351 */
1352 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1353 /* fec1 uses fec0 mii_bus */
1354 if (mii_cnt && fec0_mii_bus) {
1355 fep->mii_bus = fec0_mii_bus;
1356 mii_cnt++;
1357 return 0;
1358 }
1359 return -ENOENT;
1360 }
1361
1362 fep->mii_timeout = 0;
1363
1364 /*
1365 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1366 *
1367 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1368 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1369 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1370 * document.
1371 */
1372 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1373 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1374 fep->phy_speed--;
1375 fep->phy_speed <<= 1;
1376 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1377
1378 fep->mii_bus = mdiobus_alloc();
1379 if (fep->mii_bus == NULL) {
1380 err = -ENOMEM;
1381 goto err_out;
1382 }
1383
1384 fep->mii_bus->name = "fec_enet_mii_bus";
1385 fep->mii_bus->read = fec_enet_mdio_read;
1386 fep->mii_bus->write = fec_enet_mdio_write;
1387 fep->mii_bus->reset = fec_enet_mdio_reset;
1388 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1389 pdev->name, fep->dev_id + 1);
1390 fep->mii_bus->priv = fep;
1391 fep->mii_bus->parent = &pdev->dev;
1392
1393 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1394 if (!fep->mii_bus->irq) {
1395 err = -ENOMEM;
1396 goto err_out_free_mdiobus;
1397 }
1398
1399 for (i = 0; i < PHY_MAX_ADDR; i++)
1400 fep->mii_bus->irq[i] = PHY_POLL;
1401
1402 if (mdiobus_register(fep->mii_bus))
1403 goto err_out_free_mdio_irq;
1404
1405 mii_cnt++;
1406
1407 /* save fec0 mii_bus */
1408 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1409 fec0_mii_bus = fep->mii_bus;
1410
1411 return 0;
1412
1413 err_out_free_mdio_irq:
1414 kfree(fep->mii_bus->irq);
1415 err_out_free_mdiobus:
1416 mdiobus_free(fep->mii_bus);
1417 err_out:
1418 return err;
1419 }
1420
1421 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1422 {
1423 if (--mii_cnt == 0) {
1424 mdiobus_unregister(fep->mii_bus);
1425 kfree(fep->mii_bus->irq);
1426 mdiobus_free(fep->mii_bus);
1427 }
1428 }
1429
1430 static int fec_enet_get_settings(struct net_device *ndev,
1431 struct ethtool_cmd *cmd)
1432 {
1433 struct fec_enet_private *fep = netdev_priv(ndev);
1434 struct phy_device *phydev = fep->phy_dev;
1435
1436 if (!phydev)
1437 return -ENODEV;
1438
1439 return phy_ethtool_gset(phydev, cmd);
1440 }
1441
1442 static int fec_enet_set_settings(struct net_device *ndev,
1443 struct ethtool_cmd *cmd)
1444 {
1445 struct fec_enet_private *fep = netdev_priv(ndev);
1446 struct phy_device *phydev = fep->phy_dev;
1447
1448 if (!phydev)
1449 return -ENODEV;
1450
1451 return phy_ethtool_sset(phydev, cmd);
1452 }
1453
1454 static void fec_enet_get_drvinfo(struct net_device *ndev,
1455 struct ethtool_drvinfo *info)
1456 {
1457 struct fec_enet_private *fep = netdev_priv(ndev);
1458
1459 strlcpy(info->driver, fep->pdev->dev.driver->name,
1460 sizeof(info->driver));
1461 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1462 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1463 }
1464
1465 static int fec_enet_get_ts_info(struct net_device *ndev,
1466 struct ethtool_ts_info *info)
1467 {
1468 struct fec_enet_private *fep = netdev_priv(ndev);
1469
1470 if (fep->bufdesc_ex) {
1471
1472 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1473 SOF_TIMESTAMPING_RX_SOFTWARE |
1474 SOF_TIMESTAMPING_SOFTWARE |
1475 SOF_TIMESTAMPING_TX_HARDWARE |
1476 SOF_TIMESTAMPING_RX_HARDWARE |
1477 SOF_TIMESTAMPING_RAW_HARDWARE;
1478 if (fep->ptp_clock)
1479 info->phc_index = ptp_clock_index(fep->ptp_clock);
1480 else
1481 info->phc_index = -1;
1482
1483 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1484 (1 << HWTSTAMP_TX_ON);
1485
1486 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1487 (1 << HWTSTAMP_FILTER_ALL);
1488 return 0;
1489 } else {
1490 return ethtool_op_get_ts_info(ndev, info);
1491 }
1492 }
1493
1494 #if !defined(CONFIG_M5272)
1495
1496 static void fec_enet_get_pauseparam(struct net_device *ndev,
1497 struct ethtool_pauseparam *pause)
1498 {
1499 struct fec_enet_private *fep = netdev_priv(ndev);
1500
1501 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1502 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1503 pause->rx_pause = pause->tx_pause;
1504 }
1505
1506 static int fec_enet_set_pauseparam(struct net_device *ndev,
1507 struct ethtool_pauseparam *pause)
1508 {
1509 struct fec_enet_private *fep = netdev_priv(ndev);
1510
1511 if (pause->tx_pause != pause->rx_pause) {
1512 netdev_info(ndev,
1513 "hardware only support enable/disable both tx and rx");
1514 return -EINVAL;
1515 }
1516
1517 fep->pause_flag = 0;
1518
1519 /* tx pause must be same as rx pause */
1520 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1521 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1522
1523 if (pause->rx_pause || pause->autoneg) {
1524 fep->phy_dev->supported |= ADVERTISED_Pause;
1525 fep->phy_dev->advertising |= ADVERTISED_Pause;
1526 } else {
1527 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1528 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1529 }
1530
1531 if (pause->autoneg) {
1532 if (netif_running(ndev))
1533 fec_stop(ndev);
1534 phy_start_aneg(fep->phy_dev);
1535 }
1536 if (netif_running(ndev))
1537 fec_restart(ndev, 0);
1538
1539 return 0;
1540 }
1541
1542 static const struct fec_stat {
1543 char name[ETH_GSTRING_LEN];
1544 u16 offset;
1545 } fec_stats[] = {
1546 /* RMON TX */
1547 { "tx_dropped", RMON_T_DROP },
1548 { "tx_packets", RMON_T_PACKETS },
1549 { "tx_broadcast", RMON_T_BC_PKT },
1550 { "tx_multicast", RMON_T_MC_PKT },
1551 { "tx_crc_errors", RMON_T_CRC_ALIGN },
1552 { "tx_undersize", RMON_T_UNDERSIZE },
1553 { "tx_oversize", RMON_T_OVERSIZE },
1554 { "tx_fragment", RMON_T_FRAG },
1555 { "tx_jabber", RMON_T_JAB },
1556 { "tx_collision", RMON_T_COL },
1557 { "tx_64byte", RMON_T_P64 },
1558 { "tx_65to127byte", RMON_T_P65TO127 },
1559 { "tx_128to255byte", RMON_T_P128TO255 },
1560 { "tx_256to511byte", RMON_T_P256TO511 },
1561 { "tx_512to1023byte", RMON_T_P512TO1023 },
1562 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
1563 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
1564 { "tx_octets", RMON_T_OCTETS },
1565
1566 /* IEEE TX */
1567 { "IEEE_tx_drop", IEEE_T_DROP },
1568 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1569 { "IEEE_tx_1col", IEEE_T_1COL },
1570 { "IEEE_tx_mcol", IEEE_T_MCOL },
1571 { "IEEE_tx_def", IEEE_T_DEF },
1572 { "IEEE_tx_lcol", IEEE_T_LCOL },
1573 { "IEEE_tx_excol", IEEE_T_EXCOL },
1574 { "IEEE_tx_macerr", IEEE_T_MACERR },
1575 { "IEEE_tx_cserr", IEEE_T_CSERR },
1576 { "IEEE_tx_sqe", IEEE_T_SQE },
1577 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1578 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1579
1580 /* RMON RX */
1581 { "rx_packets", RMON_R_PACKETS },
1582 { "rx_broadcast", RMON_R_BC_PKT },
1583 { "rx_multicast", RMON_R_MC_PKT },
1584 { "rx_crc_errors", RMON_R_CRC_ALIGN },
1585 { "rx_undersize", RMON_R_UNDERSIZE },
1586 { "rx_oversize", RMON_R_OVERSIZE },
1587 { "rx_fragment", RMON_R_FRAG },
1588 { "rx_jabber", RMON_R_JAB },
1589 { "rx_64byte", RMON_R_P64 },
1590 { "rx_65to127byte", RMON_R_P65TO127 },
1591 { "rx_128to255byte", RMON_R_P128TO255 },
1592 { "rx_256to511byte", RMON_R_P256TO511 },
1593 { "rx_512to1023byte", RMON_R_P512TO1023 },
1594 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
1595 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
1596 { "rx_octets", RMON_R_OCTETS },
1597
1598 /* IEEE RX */
1599 { "IEEE_rx_drop", IEEE_R_DROP },
1600 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1601 { "IEEE_rx_crc", IEEE_R_CRC },
1602 { "IEEE_rx_align", IEEE_R_ALIGN },
1603 { "IEEE_rx_macerr", IEEE_R_MACERR },
1604 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1605 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1606 };
1607
1608 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1609 struct ethtool_stats *stats, u64 *data)
1610 {
1611 struct fec_enet_private *fep = netdev_priv(dev);
1612 int i;
1613
1614 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1615 data[i] = readl(fep->hwp + fec_stats[i].offset);
1616 }
1617
1618 static void fec_enet_get_strings(struct net_device *netdev,
1619 u32 stringset, u8 *data)
1620 {
1621 int i;
1622 switch (stringset) {
1623 case ETH_SS_STATS:
1624 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1625 memcpy(data + i * ETH_GSTRING_LEN,
1626 fec_stats[i].name, ETH_GSTRING_LEN);
1627 break;
1628 }
1629 }
1630
1631 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1632 {
1633 switch (sset) {
1634 case ETH_SS_STATS:
1635 return ARRAY_SIZE(fec_stats);
1636 default:
1637 return -EOPNOTSUPP;
1638 }
1639 }
1640 #endif /* !defined(CONFIG_M5272) */
1641
1642 static int fec_enet_nway_reset(struct net_device *dev)
1643 {
1644 struct fec_enet_private *fep = netdev_priv(dev);
1645 struct phy_device *phydev = fep->phy_dev;
1646
1647 if (!phydev)
1648 return -ENODEV;
1649
1650 return genphy_restart_aneg(phydev);
1651 }
1652
1653 static const struct ethtool_ops fec_enet_ethtool_ops = {
1654 #if !defined(CONFIG_M5272)
1655 .get_pauseparam = fec_enet_get_pauseparam,
1656 .set_pauseparam = fec_enet_set_pauseparam,
1657 #endif
1658 .get_settings = fec_enet_get_settings,
1659 .set_settings = fec_enet_set_settings,
1660 .get_drvinfo = fec_enet_get_drvinfo,
1661 .get_link = ethtool_op_get_link,
1662 .get_ts_info = fec_enet_get_ts_info,
1663 .nway_reset = fec_enet_nway_reset,
1664 #ifndef CONFIG_M5272
1665 .get_ethtool_stats = fec_enet_get_ethtool_stats,
1666 .get_strings = fec_enet_get_strings,
1667 .get_sset_count = fec_enet_get_sset_count,
1668 #endif
1669 };
1670
1671 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1672 {
1673 struct fec_enet_private *fep = netdev_priv(ndev);
1674 struct phy_device *phydev = fep->phy_dev;
1675
1676 if (!netif_running(ndev))
1677 return -EINVAL;
1678
1679 if (!phydev)
1680 return -ENODEV;
1681
1682 if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1683 return fec_ptp_ioctl(ndev, rq, cmd);
1684
1685 return phy_mii_ioctl(phydev, rq, cmd);
1686 }
1687
1688 static void fec_enet_free_buffers(struct net_device *ndev)
1689 {
1690 struct fec_enet_private *fep = netdev_priv(ndev);
1691 unsigned int i;
1692 struct sk_buff *skb;
1693 struct bufdesc *bdp;
1694
1695 bdp = fep->rx_bd_base;
1696 for (i = 0; i < fep->rx_ring_size; i++) {
1697 skb = fep->rx_skbuff[i];
1698
1699 if (bdp->cbd_bufaddr)
1700 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1701 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1702 if (skb)
1703 dev_kfree_skb(skb);
1704 bdp = fec_enet_get_nextdesc(bdp, fep);
1705 }
1706
1707 bdp = fep->tx_bd_base;
1708 for (i = 0; i < fep->tx_ring_size; i++)
1709 kfree(fep->tx_bounce[i]);
1710 }
1711
1712 static int fec_enet_alloc_buffers(struct net_device *ndev)
1713 {
1714 struct fec_enet_private *fep = netdev_priv(ndev);
1715 unsigned int i;
1716 struct sk_buff *skb;
1717 struct bufdesc *bdp;
1718
1719 bdp = fep->rx_bd_base;
1720 for (i = 0; i < fep->rx_ring_size; i++) {
1721 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1722 if (!skb) {
1723 fec_enet_free_buffers(ndev);
1724 return -ENOMEM;
1725 }
1726 fep->rx_skbuff[i] = skb;
1727
1728 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1729 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1730 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1731 fec_enet_free_buffers(ndev);
1732 if (net_ratelimit())
1733 netdev_err(ndev, "Rx DMA memory map failed\n");
1734 return -ENOMEM;
1735 }
1736 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1737
1738 if (fep->bufdesc_ex) {
1739 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1740 ebdp->cbd_esc = BD_ENET_RX_INT;
1741 }
1742
1743 bdp = fec_enet_get_nextdesc(bdp, fep);
1744 }
1745
1746 /* Set the last buffer to wrap. */
1747 bdp = fec_enet_get_prevdesc(bdp, fep);
1748 bdp->cbd_sc |= BD_SC_WRAP;
1749
1750 bdp = fep->tx_bd_base;
1751 for (i = 0; i < fep->tx_ring_size; i++) {
1752 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1753
1754 bdp->cbd_sc = 0;
1755 bdp->cbd_bufaddr = 0;
1756
1757 if (fep->bufdesc_ex) {
1758 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1759 ebdp->cbd_esc = BD_ENET_TX_INT;
1760 }
1761
1762 bdp = fec_enet_get_nextdesc(bdp, fep);
1763 }
1764
1765 /* Set the last buffer to wrap. */
1766 bdp = fec_enet_get_prevdesc(bdp, fep);
1767 bdp->cbd_sc |= BD_SC_WRAP;
1768
1769 return 0;
1770 }
1771
1772 static int
1773 fec_enet_open(struct net_device *ndev)
1774 {
1775 struct fec_enet_private *fep = netdev_priv(ndev);
1776 int ret;
1777
1778 napi_enable(&fep->napi);
1779
1780 /* I should reset the ring buffers here, but I don't yet know
1781 * a simple way to do that.
1782 */
1783
1784 ret = fec_enet_alloc_buffers(ndev);
1785 if (ret)
1786 return ret;
1787
1788 /* Probe and connect to PHY when open the interface */
1789 ret = fec_enet_mii_probe(ndev);
1790 if (ret) {
1791 fec_enet_free_buffers(ndev);
1792 return ret;
1793 }
1794 phy_start(fep->phy_dev);
1795 netif_start_queue(ndev);
1796 fep->opened = 1;
1797 return 0;
1798 }
1799
1800 static int
1801 fec_enet_close(struct net_device *ndev)
1802 {
1803 struct fec_enet_private *fep = netdev_priv(ndev);
1804
1805 /* Don't know what to do yet. */
1806 napi_disable(&fep->napi);
1807 fep->opened = 0;
1808 netif_stop_queue(ndev);
1809 fec_stop(ndev);
1810
1811 if (fep->phy_dev) {
1812 phy_stop(fep->phy_dev);
1813 phy_disconnect(fep->phy_dev);
1814 }
1815
1816 fec_enet_free_buffers(ndev);
1817
1818 return 0;
1819 }
1820
1821 /* Set or clear the multicast filter for this adaptor.
1822 * Skeleton taken from sunlance driver.
1823 * The CPM Ethernet implementation allows Multicast as well as individual
1824 * MAC address filtering. Some of the drivers check to make sure it is
1825 * a group multicast address, and discard those that are not. I guess I
1826 * will do the same for now, but just remove the test if you want
1827 * individual filtering as well (do the upper net layers want or support
1828 * this kind of feature?).
1829 */
1830
1831 #define HASH_BITS 6 /* #bits in hash */
1832 #define CRC32_POLY 0xEDB88320
1833
1834 static void set_multicast_list(struct net_device *ndev)
1835 {
1836 struct fec_enet_private *fep = netdev_priv(ndev);
1837 struct netdev_hw_addr *ha;
1838 unsigned int i, bit, data, crc, tmp;
1839 unsigned char hash;
1840
1841 if (ndev->flags & IFF_PROMISC) {
1842 tmp = readl(fep->hwp + FEC_R_CNTRL);
1843 tmp |= 0x8;
1844 writel(tmp, fep->hwp + FEC_R_CNTRL);
1845 return;
1846 }
1847
1848 tmp = readl(fep->hwp + FEC_R_CNTRL);
1849 tmp &= ~0x8;
1850 writel(tmp, fep->hwp + FEC_R_CNTRL);
1851
1852 if (ndev->flags & IFF_ALLMULTI) {
1853 /* Catch all multicast addresses, so set the
1854 * filter to all 1's
1855 */
1856 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1857 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1858
1859 return;
1860 }
1861
1862 /* Clear filter and add the addresses in hash register
1863 */
1864 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1865 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1866
1867 netdev_for_each_mc_addr(ha, ndev) {
1868 /* calculate crc32 value of mac address */
1869 crc = 0xffffffff;
1870
1871 for (i = 0; i < ndev->addr_len; i++) {
1872 data = ha->addr[i];
1873 for (bit = 0; bit < 8; bit++, data >>= 1) {
1874 crc = (crc >> 1) ^
1875 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1876 }
1877 }
1878
1879 /* only upper 6 bits (HASH_BITS) are used
1880 * which point to specific bit in he hash registers
1881 */
1882 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1883
1884 if (hash > 31) {
1885 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1886 tmp |= 1 << (hash - 32);
1887 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1888 } else {
1889 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1890 tmp |= 1 << hash;
1891 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1892 }
1893 }
1894 }
1895
1896 /* Set a MAC change in hardware. */
1897 static int
1898 fec_set_mac_address(struct net_device *ndev, void *p)
1899 {
1900 struct fec_enet_private *fep = netdev_priv(ndev);
1901 struct sockaddr *addr = p;
1902
1903 if (!is_valid_ether_addr(addr->sa_data))
1904 return -EADDRNOTAVAIL;
1905
1906 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1907
1908 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1909 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1910 fep->hwp + FEC_ADDR_LOW);
1911 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1912 fep->hwp + FEC_ADDR_HIGH);
1913 return 0;
1914 }
1915
1916 #ifdef CONFIG_NET_POLL_CONTROLLER
1917 /**
1918 * fec_poll_controller - FEC Poll controller function
1919 * @dev: The FEC network adapter
1920 *
1921 * Polled functionality used by netconsole and others in non interrupt mode
1922 *
1923 */
1924 static void fec_poll_controller(struct net_device *dev)
1925 {
1926 int i;
1927 struct fec_enet_private *fep = netdev_priv(dev);
1928
1929 for (i = 0; i < FEC_IRQ_NUM; i++) {
1930 if (fep->irq[i] > 0) {
1931 disable_irq(fep->irq[i]);
1932 fec_enet_interrupt(fep->irq[i], dev);
1933 enable_irq(fep->irq[i]);
1934 }
1935 }
1936 }
1937 #endif
1938
1939 static int fec_set_features(struct net_device *netdev,
1940 netdev_features_t features)
1941 {
1942 struct fec_enet_private *fep = netdev_priv(netdev);
1943 netdev_features_t changed = features ^ netdev->features;
1944
1945 netdev->features = features;
1946
1947 /* Receive checksum has been changed */
1948 if (changed & NETIF_F_RXCSUM) {
1949 if (features & NETIF_F_RXCSUM)
1950 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1951 else
1952 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1953
1954 if (netif_running(netdev)) {
1955 fec_stop(netdev);
1956 fec_restart(netdev, fep->phy_dev->duplex);
1957 netif_wake_queue(netdev);
1958 } else {
1959 fec_restart(netdev, fep->phy_dev->duplex);
1960 }
1961 }
1962
1963 return 0;
1964 }
1965
1966 static const struct net_device_ops fec_netdev_ops = {
1967 .ndo_open = fec_enet_open,
1968 .ndo_stop = fec_enet_close,
1969 .ndo_start_xmit = fec_enet_start_xmit,
1970 .ndo_set_rx_mode = set_multicast_list,
1971 .ndo_change_mtu = eth_change_mtu,
1972 .ndo_validate_addr = eth_validate_addr,
1973 .ndo_tx_timeout = fec_timeout,
1974 .ndo_set_mac_address = fec_set_mac_address,
1975 .ndo_do_ioctl = fec_enet_ioctl,
1976 #ifdef CONFIG_NET_POLL_CONTROLLER
1977 .ndo_poll_controller = fec_poll_controller,
1978 #endif
1979 .ndo_set_features = fec_set_features,
1980 };
1981
1982 /*
1983 * XXX: We need to clean up on failure exits here.
1984 *
1985 */
1986 static int fec_enet_init(struct net_device *ndev)
1987 {
1988 struct fec_enet_private *fep = netdev_priv(ndev);
1989 const struct platform_device_id *id_entry =
1990 platform_get_device_id(fep->pdev);
1991 struct bufdesc *cbd_base;
1992
1993 /* Allocate memory for buffer descriptors. */
1994 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1995 GFP_KERNEL);
1996 if (!cbd_base)
1997 return -ENOMEM;
1998
1999 memset(cbd_base, 0, PAGE_SIZE);
2000
2001 fep->netdev = ndev;
2002
2003 /* Get the Ethernet address */
2004 fec_get_mac(ndev);
2005
2006 /* init the tx & rx ring size */
2007 fep->tx_ring_size = TX_RING_SIZE;
2008 fep->rx_ring_size = RX_RING_SIZE;
2009
2010 /* Set receive and transmit descriptor base. */
2011 fep->rx_bd_base = cbd_base;
2012 if (fep->bufdesc_ex)
2013 fep->tx_bd_base = (struct bufdesc *)
2014 (((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2015 else
2016 fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2017
2018 /* The FEC Ethernet specific entries in the device structure */
2019 ndev->watchdog_timeo = TX_TIMEOUT;
2020 ndev->netdev_ops = &fec_netdev_ops;
2021 ndev->ethtool_ops = &fec_enet_ethtool_ops;
2022
2023 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2024 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2025
2026 if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2027 /* enable hw VLAN support */
2028 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2029 ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2030 }
2031
2032 if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2033 /* enable hw accelerator */
2034 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2035 | NETIF_F_RXCSUM);
2036 ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2037 | NETIF_F_RXCSUM);
2038 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2039 }
2040
2041 fec_restart(ndev, 0);
2042
2043 return 0;
2044 }
2045
2046 #ifdef CONFIG_OF
2047 static void fec_reset_phy(struct platform_device *pdev)
2048 {
2049 int err, phy_reset;
2050 int msec = 1;
2051 struct device_node *np = pdev->dev.of_node;
2052
2053 if (!np)
2054 return;
2055
2056 of_property_read_u32(np, "phy-reset-duration", &msec);
2057 /* A sane reset duration should not be longer than 1s */
2058 if (msec > 1000)
2059 msec = 1;
2060
2061 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2062 if (!gpio_is_valid(phy_reset))
2063 return;
2064
2065 err = devm_gpio_request_one(&pdev->dev, phy_reset,
2066 GPIOF_OUT_INIT_LOW, "phy-reset");
2067 if (err) {
2068 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2069 return;
2070 }
2071 msleep(msec);
2072 gpio_set_value(phy_reset, 1);
2073 }
2074 #else /* CONFIG_OF */
2075 static void fec_reset_phy(struct platform_device *pdev)
2076 {
2077 /*
2078 * In case of platform probe, the reset has been done
2079 * by machine code.
2080 */
2081 }
2082 #endif /* CONFIG_OF */
2083
2084 static int
2085 fec_probe(struct platform_device *pdev)
2086 {
2087 struct fec_enet_private *fep;
2088 struct fec_platform_data *pdata;
2089 struct net_device *ndev;
2090 int i, irq, ret = 0;
2091 struct resource *r;
2092 const struct of_device_id *of_id;
2093 static int dev_id;
2094
2095 of_id = of_match_device(fec_dt_ids, &pdev->dev);
2096 if (of_id)
2097 pdev->id_entry = of_id->data;
2098
2099 /* Init network device */
2100 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2101 if (!ndev)
2102 return -ENOMEM;
2103
2104 SET_NETDEV_DEV(ndev, &pdev->dev);
2105
2106 /* setup board info structure */
2107 fep = netdev_priv(ndev);
2108
2109 #if !defined(CONFIG_M5272)
2110 /* default enable pause frame auto negotiation */
2111 if (pdev->id_entry &&
2112 (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2113 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2114 #endif
2115
2116 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2117 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2118 if (IS_ERR(fep->hwp)) {
2119 ret = PTR_ERR(fep->hwp);
2120 goto failed_ioremap;
2121 }
2122
2123 fep->pdev = pdev;
2124 fep->dev_id = dev_id++;
2125
2126 fep->bufdesc_ex = 0;
2127
2128 platform_set_drvdata(pdev, ndev);
2129
2130 ret = of_get_phy_mode(pdev->dev.of_node);
2131 if (ret < 0) {
2132 pdata = dev_get_platdata(&pdev->dev);
2133 if (pdata)
2134 fep->phy_interface = pdata->phy;
2135 else
2136 fep->phy_interface = PHY_INTERFACE_MODE_MII;
2137 } else {
2138 fep->phy_interface = ret;
2139 }
2140
2141 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2142 if (IS_ERR(fep->clk_ipg)) {
2143 ret = PTR_ERR(fep->clk_ipg);
2144 goto failed_clk;
2145 }
2146
2147 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2148 if (IS_ERR(fep->clk_ahb)) {
2149 ret = PTR_ERR(fep->clk_ahb);
2150 goto failed_clk;
2151 }
2152
2153 /* enet_out is optional, depends on board */
2154 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2155 if (IS_ERR(fep->clk_enet_out))
2156 fep->clk_enet_out = NULL;
2157
2158 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2159 fep->bufdesc_ex =
2160 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2161 if (IS_ERR(fep->clk_ptp)) {
2162 fep->clk_ptp = NULL;
2163 fep->bufdesc_ex = 0;
2164 }
2165
2166 ret = clk_prepare_enable(fep->clk_ahb);
2167 if (ret)
2168 goto failed_clk;
2169
2170 ret = clk_prepare_enable(fep->clk_ipg);
2171 if (ret)
2172 goto failed_clk_ipg;
2173
2174 if (fep->clk_enet_out) {
2175 ret = clk_prepare_enable(fep->clk_enet_out);
2176 if (ret)
2177 goto failed_clk_enet_out;
2178 }
2179
2180 if (fep->clk_ptp) {
2181 ret = clk_prepare_enable(fep->clk_ptp);
2182 if (ret)
2183 goto failed_clk_ptp;
2184 }
2185
2186 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2187 if (!IS_ERR(fep->reg_phy)) {
2188 ret = regulator_enable(fep->reg_phy);
2189 if (ret) {
2190 dev_err(&pdev->dev,
2191 "Failed to enable phy regulator: %d\n", ret);
2192 goto failed_regulator;
2193 }
2194 } else {
2195 fep->reg_phy = NULL;
2196 }
2197
2198 fec_reset_phy(pdev);
2199
2200 if (fep->bufdesc_ex)
2201 fec_ptp_init(pdev);
2202
2203 ret = fec_enet_init(ndev);
2204 if (ret)
2205 goto failed_init;
2206
2207 for (i = 0; i < FEC_IRQ_NUM; i++) {
2208 irq = platform_get_irq(pdev, i);
2209 if (irq < 0) {
2210 if (i)
2211 break;
2212 ret = irq;
2213 goto failed_irq;
2214 }
2215 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2216 0, pdev->name, ndev);
2217 if (ret)
2218 goto failed_irq;
2219 }
2220
2221 ret = fec_enet_mii_init(pdev);
2222 if (ret)
2223 goto failed_mii_init;
2224
2225 /* Carrier starts down, phylib will bring it up */
2226 netif_carrier_off(ndev);
2227
2228 ret = register_netdev(ndev);
2229 if (ret)
2230 goto failed_register;
2231
2232 if (fep->bufdesc_ex && fep->ptp_clock)
2233 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2234
2235 INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2236 return 0;
2237
2238 failed_register:
2239 fec_enet_mii_remove(fep);
2240 failed_mii_init:
2241 failed_irq:
2242 failed_init:
2243 if (fep->reg_phy)
2244 regulator_disable(fep->reg_phy);
2245 failed_regulator:
2246 if (fep->clk_ptp)
2247 clk_disable_unprepare(fep->clk_ptp);
2248 failed_clk_ptp:
2249 if (fep->clk_enet_out)
2250 clk_disable_unprepare(fep->clk_enet_out);
2251 failed_clk_enet_out:
2252 clk_disable_unprepare(fep->clk_ipg);
2253 failed_clk_ipg:
2254 clk_disable_unprepare(fep->clk_ahb);
2255 failed_clk:
2256 failed_ioremap:
2257 free_netdev(ndev);
2258
2259 return ret;
2260 }
2261
2262 static int
2263 fec_drv_remove(struct platform_device *pdev)
2264 {
2265 struct net_device *ndev = platform_get_drvdata(pdev);
2266 struct fec_enet_private *fep = netdev_priv(ndev);
2267
2268 cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2269 unregister_netdev(ndev);
2270 fec_enet_mii_remove(fep);
2271 del_timer_sync(&fep->time_keep);
2272 if (fep->reg_phy)
2273 regulator_disable(fep->reg_phy);
2274 if (fep->clk_ptp)
2275 clk_disable_unprepare(fep->clk_ptp);
2276 if (fep->ptp_clock)
2277 ptp_clock_unregister(fep->ptp_clock);
2278 if (fep->clk_enet_out)
2279 clk_disable_unprepare(fep->clk_enet_out);
2280 clk_disable_unprepare(fep->clk_ipg);
2281 clk_disable_unprepare(fep->clk_ahb);
2282 free_netdev(ndev);
2283
2284 return 0;
2285 }
2286
2287 #ifdef CONFIG_PM_SLEEP
2288 static int
2289 fec_suspend(struct device *dev)
2290 {
2291 struct net_device *ndev = dev_get_drvdata(dev);
2292 struct fec_enet_private *fep = netdev_priv(ndev);
2293
2294 if (netif_running(ndev)) {
2295 fec_stop(ndev);
2296 netif_device_detach(ndev);
2297 }
2298 if (fep->clk_ptp)
2299 clk_disable_unprepare(fep->clk_ptp);
2300 if (fep->clk_enet_out)
2301 clk_disable_unprepare(fep->clk_enet_out);
2302 clk_disable_unprepare(fep->clk_ipg);
2303 clk_disable_unprepare(fep->clk_ahb);
2304
2305 if (fep->reg_phy)
2306 regulator_disable(fep->reg_phy);
2307
2308 return 0;
2309 }
2310
2311 static int
2312 fec_resume(struct device *dev)
2313 {
2314 struct net_device *ndev = dev_get_drvdata(dev);
2315 struct fec_enet_private *fep = netdev_priv(ndev);
2316 int ret;
2317
2318 if (fep->reg_phy) {
2319 ret = regulator_enable(fep->reg_phy);
2320 if (ret)
2321 return ret;
2322 }
2323
2324 ret = clk_prepare_enable(fep->clk_ahb);
2325 if (ret)
2326 goto failed_clk_ahb;
2327
2328 ret = clk_prepare_enable(fep->clk_ipg);
2329 if (ret)
2330 goto failed_clk_ipg;
2331
2332 if (fep->clk_enet_out) {
2333 ret = clk_prepare_enable(fep->clk_enet_out);
2334 if (ret)
2335 goto failed_clk_enet_out;
2336 }
2337
2338 if (fep->clk_ptp) {
2339 ret = clk_prepare_enable(fep->clk_ptp);
2340 if (ret)
2341 goto failed_clk_ptp;
2342 }
2343
2344 if (netif_running(ndev)) {
2345 fec_restart(ndev, fep->full_duplex);
2346 netif_device_attach(ndev);
2347 }
2348
2349 return 0;
2350
2351 failed_clk_ptp:
2352 if (fep->clk_enet_out)
2353 clk_disable_unprepare(fep->clk_enet_out);
2354 failed_clk_enet_out:
2355 clk_disable_unprepare(fep->clk_ipg);
2356 failed_clk_ipg:
2357 clk_disable_unprepare(fep->clk_ahb);
2358 failed_clk_ahb:
2359 if (fep->reg_phy)
2360 regulator_disable(fep->reg_phy);
2361 return ret;
2362 }
2363 #endif /* CONFIG_PM_SLEEP */
2364
2365 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2366
2367 static struct platform_driver fec_driver = {
2368 .driver = {
2369 .name = DRIVER_NAME,
2370 .owner = THIS_MODULE,
2371 .pm = &fec_pm_ops,
2372 .of_match_table = fec_dt_ids,
2373 },
2374 .id_table = fec_devtype,
2375 .probe = fec_probe,
2376 .remove = fec_drv_remove,
2377 };
2378
2379 module_platform_driver(fec_driver);
2380
2381 MODULE_ALIAS("platform:"DRIVER_NAME);
2382 MODULE_LICENSE("GPL");
This page took 0.082345 seconds and 5 git commands to generate.