Merge tag 'sound-4.7-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34 {
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45 * i40e_program_fdir_filter - Program a Flow Director filter
46 * @fdir_data: Packet data that will be filter parameters
47 * @raw_packet: the pre-allocated packet buffer for FDir
48 * @pf: The PF pointer
49 * @add: True for add/update, False for remove
50 **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52 struct i40e_pf *pf, bool add)
53 {
54 struct i40e_filter_program_desc *fdir_desc;
55 struct i40e_tx_buffer *tx_buf, *first;
56 struct i40e_tx_desc *tx_desc;
57 struct i40e_ring *tx_ring;
58 unsigned int fpt, dcc;
59 struct i40e_vsi *vsi;
60 struct device *dev;
61 dma_addr_t dma;
62 u32 td_cmd = 0;
63 u16 delay = 0;
64 u16 i;
65
66 /* find existing FDIR VSI */
67 vsi = NULL;
68 for (i = 0; i < pf->num_alloc_vsi; i++)
69 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70 vsi = pf->vsi[i];
71 if (!vsi)
72 return -ENOENT;
73
74 tx_ring = vsi->tx_rings[0];
75 dev = tx_ring->dev;
76
77 /* we need two descriptors to add/del a filter and we can wait */
78 do {
79 if (I40E_DESC_UNUSED(tx_ring) > 1)
80 break;
81 msleep_interruptible(1);
82 delay++;
83 } while (delay < I40E_FD_CLEAN_DELAY);
84
85 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86 return -EAGAIN;
87
88 dma = dma_map_single(dev, raw_packet,
89 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90 if (dma_mapping_error(dev, dma))
91 goto dma_fail;
92
93 /* grab the next descriptor */
94 i = tx_ring->next_to_use;
95 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96 first = &tx_ring->tx_bi[i];
97 memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102 I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110 /* Use LAN VSI Id if not programmed by user */
111 if (fdir_data->dest_vsi == 0)
112 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114 else
115 fpt |= ((u32)fdir_data->dest_vsi <<
116 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121 if (add)
122 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124 else
125 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129 I40E_TXD_FLTR_QW1_DEST_MASK;
130
131 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134 if (fdir_data->cnt_index != 0) {
135 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136 dcc |= ((u32)fdir_data->cnt_index <<
137 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139 }
140
141 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142 fdir_desc->rsvd = cpu_to_le32(0);
143 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146 /* Now program a dummy descriptor */
147 i = tx_ring->next_to_use;
148 tx_desc = I40E_TX_DESC(tx_ring, i);
149 tx_buf = &tx_ring->tx_bi[i];
150
151 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155 /* record length, and DMA address */
156 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157 dma_unmap_addr_set(tx_buf, dma, dma);
158
159 tx_desc->buffer_addr = cpu_to_le64(dma);
160 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163 tx_buf->raw_buf = (void *)raw_packet;
164
165 tx_desc->cmd_type_offset_bsz =
166 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168 /* Force memory writes to complete before letting h/w
169 * know there are new descriptors to fetch.
170 */
171 wmb();
172
173 /* Mark the data descriptor to be watched */
174 first->next_to_watch = tx_desc;
175
176 writel(tx_ring->next_to_use, tx_ring->tail);
177 return 0;
178
179 dma_fail:
180 return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187 * @vsi: pointer to the targeted VSI
188 * @fd_data: the flow director data required for the FDir descriptor
189 * @add: true adds a filter, false removes it
190 *
191 * Returns 0 if the filters were successfully added or removed
192 **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194 struct i40e_fdir_filter *fd_data,
195 bool add)
196 {
197 struct i40e_pf *pf = vsi->back;
198 struct udphdr *udp;
199 struct iphdr *ip;
200 bool err = false;
201 u8 *raw_packet;
202 int ret;
203 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208 if (!raw_packet)
209 return -ENOMEM;
210 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214 + sizeof(struct iphdr));
215
216 ip->daddr = fd_data->dst_ip[0];
217 udp->dest = fd_data->dst_port;
218 ip->saddr = fd_data->src_ip[0];
219 udp->source = fd_data->src_port;
220
221 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223 if (ret) {
224 dev_info(&pf->pdev->dev,
225 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226 fd_data->pctype, fd_data->fd_id, ret);
227 err = true;
228 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229 if (add)
230 dev_info(&pf->pdev->dev,
231 "Filter OK for PCTYPE %d loc = %d\n",
232 fd_data->pctype, fd_data->fd_id);
233 else
234 dev_info(&pf->pdev->dev,
235 "Filter deleted for PCTYPE %d loc = %d\n",
236 fd_data->pctype, fd_data->fd_id);
237 }
238 if (err)
239 kfree(raw_packet);
240
241 return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247 * @vsi: pointer to the targeted VSI
248 * @fd_data: the flow director data required for the FDir descriptor
249 * @add: true adds a filter, false removes it
250 *
251 * Returns 0 if the filters were successfully added or removed
252 **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254 struct i40e_fdir_filter *fd_data,
255 bool add)
256 {
257 struct i40e_pf *pf = vsi->back;
258 struct tcphdr *tcp;
259 struct iphdr *ip;
260 bool err = false;
261 u8 *raw_packet;
262 int ret;
263 /* Dummy packet */
264 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267 0x0, 0x72, 0, 0, 0, 0};
268
269 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270 if (!raw_packet)
271 return -ENOMEM;
272 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276 + sizeof(struct iphdr));
277
278 ip->daddr = fd_data->dst_ip[0];
279 tcp->dest = fd_data->dst_port;
280 ip->saddr = fd_data->src_ip[0];
281 tcp->source = fd_data->src_port;
282
283 if (add) {
284 pf->fd_tcp_rule++;
285 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286 if (I40E_DEBUG_FD & pf->hw.debug_mask)
287 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
288 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289 }
290 } else {
291 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
292 (pf->fd_tcp_rule - 1) : 0;
293 if (pf->fd_tcp_rule == 0) {
294 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
295 if (I40E_DEBUG_FD & pf->hw.debug_mask)
296 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297 }
298 }
299
300 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
301 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
302
303 if (ret) {
304 dev_info(&pf->pdev->dev,
305 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
306 fd_data->pctype, fd_data->fd_id, ret);
307 err = true;
308 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
309 if (add)
310 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
311 fd_data->pctype, fd_data->fd_id);
312 else
313 dev_info(&pf->pdev->dev,
314 "Filter deleted for PCTYPE %d loc = %d\n",
315 fd_data->pctype, fd_data->fd_id);
316 }
317
318 if (err)
319 kfree(raw_packet);
320
321 return err ? -EOPNOTSUPP : 0;
322 }
323
324 /**
325 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
326 * a specific flow spec
327 * @vsi: pointer to the targeted VSI
328 * @fd_data: the flow director data required for the FDir descriptor
329 * @add: true adds a filter, false removes it
330 *
331 * Returns 0 if the filters were successfully added or removed
332 **/
333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
334 struct i40e_fdir_filter *fd_data,
335 bool add)
336 {
337 return -EOPNOTSUPP;
338 }
339
340 #define I40E_IP_DUMMY_PACKET_LEN 34
341 /**
342 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
343 * a specific flow spec
344 * @vsi: pointer to the targeted VSI
345 * @fd_data: the flow director data required for the FDir descriptor
346 * @add: true adds a filter, false removes it
347 *
348 * Returns 0 if the filters were successfully added or removed
349 **/
350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
351 struct i40e_fdir_filter *fd_data,
352 bool add)
353 {
354 struct i40e_pf *pf = vsi->back;
355 struct iphdr *ip;
356 bool err = false;
357 u8 *raw_packet;
358 int ret;
359 int i;
360 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
361 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
362 0, 0, 0, 0};
363
364 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
365 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
366 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
367 if (!raw_packet)
368 return -ENOMEM;
369 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
370 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
371
372 ip->saddr = fd_data->src_ip[0];
373 ip->daddr = fd_data->dst_ip[0];
374 ip->protocol = 0;
375
376 fd_data->pctype = i;
377 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
378
379 if (ret) {
380 dev_info(&pf->pdev->dev,
381 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
382 fd_data->pctype, fd_data->fd_id, ret);
383 err = true;
384 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
385 if (add)
386 dev_info(&pf->pdev->dev,
387 "Filter OK for PCTYPE %d loc = %d\n",
388 fd_data->pctype, fd_data->fd_id);
389 else
390 dev_info(&pf->pdev->dev,
391 "Filter deleted for PCTYPE %d loc = %d\n",
392 fd_data->pctype, fd_data->fd_id);
393 }
394 }
395
396 if (err)
397 kfree(raw_packet);
398
399 return err ? -EOPNOTSUPP : 0;
400 }
401
402 /**
403 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
404 * @vsi: pointer to the targeted VSI
405 * @cmd: command to get or set RX flow classification rules
406 * @add: true adds a filter, false removes it
407 *
408 **/
409 int i40e_add_del_fdir(struct i40e_vsi *vsi,
410 struct i40e_fdir_filter *input, bool add)
411 {
412 struct i40e_pf *pf = vsi->back;
413 int ret;
414
415 switch (input->flow_type & ~FLOW_EXT) {
416 case TCP_V4_FLOW:
417 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
418 break;
419 case UDP_V4_FLOW:
420 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
421 break;
422 case SCTP_V4_FLOW:
423 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
424 break;
425 case IPV4_FLOW:
426 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
427 break;
428 case IP_USER_FLOW:
429 switch (input->ip4_proto) {
430 case IPPROTO_TCP:
431 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
432 break;
433 case IPPROTO_UDP:
434 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
435 break;
436 case IPPROTO_SCTP:
437 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
438 break;
439 default:
440 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
441 break;
442 }
443 break;
444 default:
445 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
446 input->flow_type);
447 ret = -EINVAL;
448 }
449
450 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
451 return ret;
452 }
453
454 /**
455 * i40e_fd_handle_status - check the Programming Status for FD
456 * @rx_ring: the Rx ring for this descriptor
457 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
458 * @prog_id: the id originally used for programming
459 *
460 * This is used to verify if the FD programming or invalidation
461 * requested by SW to the HW is successful or not and take actions accordingly.
462 **/
463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
464 union i40e_rx_desc *rx_desc, u8 prog_id)
465 {
466 struct i40e_pf *pf = rx_ring->vsi->back;
467 struct pci_dev *pdev = pf->pdev;
468 u32 fcnt_prog, fcnt_avail;
469 u32 error;
470 u64 qw;
471
472 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
473 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
474 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
475
476 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
477 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
478 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
479 (I40E_DEBUG_FD & pf->hw.debug_mask))
480 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
481 pf->fd_inv);
482
483 /* Check if the programming error is for ATR.
484 * If so, auto disable ATR and set a state for
485 * flush in progress. Next time we come here if flush is in
486 * progress do nothing, once flush is complete the state will
487 * be cleared.
488 */
489 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
490 return;
491
492 pf->fd_add_err++;
493 /* store the current atr filter count */
494 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
495
496 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
497 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
498 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
499 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
500 }
501
502 /* filter programming failed most likely due to table full */
503 fcnt_prog = i40e_get_global_fd_count(pf);
504 fcnt_avail = pf->fdir_pf_filter_count;
505 /* If ATR is running fcnt_prog can quickly change,
506 * if we are very close to full, it makes sense to disable
507 * FD ATR/SB and then re-enable it when there is room.
508 */
509 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
510 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
511 !(pf->auto_disable_flags &
512 I40E_FLAG_FD_SB_ENABLED)) {
513 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
515 pf->auto_disable_flags |=
516 I40E_FLAG_FD_SB_ENABLED;
517 }
518 }
519 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
520 if (I40E_DEBUG_FD & pf->hw.debug_mask)
521 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
522 rx_desc->wb.qword0.hi_dword.fd_id);
523 }
524 }
525
526 /**
527 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
528 * @ring: the ring that owns the buffer
529 * @tx_buffer: the buffer to free
530 **/
531 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
532 struct i40e_tx_buffer *tx_buffer)
533 {
534 if (tx_buffer->skb) {
535 dev_kfree_skb_any(tx_buffer->skb);
536 if (dma_unmap_len(tx_buffer, len))
537 dma_unmap_single(ring->dev,
538 dma_unmap_addr(tx_buffer, dma),
539 dma_unmap_len(tx_buffer, len),
540 DMA_TO_DEVICE);
541 } else if (dma_unmap_len(tx_buffer, len)) {
542 dma_unmap_page(ring->dev,
543 dma_unmap_addr(tx_buffer, dma),
544 dma_unmap_len(tx_buffer, len),
545 DMA_TO_DEVICE);
546 }
547
548 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
549 kfree(tx_buffer->raw_buf);
550
551 tx_buffer->next_to_watch = NULL;
552 tx_buffer->skb = NULL;
553 dma_unmap_len_set(tx_buffer, len, 0);
554 /* tx_buffer must be completely set up in the transmit path */
555 }
556
557 /**
558 * i40e_clean_tx_ring - Free any empty Tx buffers
559 * @tx_ring: ring to be cleaned
560 **/
561 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
562 {
563 unsigned long bi_size;
564 u16 i;
565
566 /* ring already cleared, nothing to do */
567 if (!tx_ring->tx_bi)
568 return;
569
570 /* Free all the Tx ring sk_buffs */
571 for (i = 0; i < tx_ring->count; i++)
572 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
573
574 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
575 memset(tx_ring->tx_bi, 0, bi_size);
576
577 /* Zero out the descriptor ring */
578 memset(tx_ring->desc, 0, tx_ring->size);
579
580 tx_ring->next_to_use = 0;
581 tx_ring->next_to_clean = 0;
582
583 if (!tx_ring->netdev)
584 return;
585
586 /* cleanup Tx queue statistics */
587 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
588 tx_ring->queue_index));
589 }
590
591 /**
592 * i40e_free_tx_resources - Free Tx resources per queue
593 * @tx_ring: Tx descriptor ring for a specific queue
594 *
595 * Free all transmit software resources
596 **/
597 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
598 {
599 i40e_clean_tx_ring(tx_ring);
600 kfree(tx_ring->tx_bi);
601 tx_ring->tx_bi = NULL;
602
603 if (tx_ring->desc) {
604 dma_free_coherent(tx_ring->dev, tx_ring->size,
605 tx_ring->desc, tx_ring->dma);
606 tx_ring->desc = NULL;
607 }
608 }
609
610 /**
611 * i40e_get_tx_pending - how many tx descriptors not processed
612 * @tx_ring: the ring of descriptors
613 * @in_sw: is tx_pending being checked in SW or HW
614 *
615 * Since there is no access to the ring head register
616 * in XL710, we need to use our local copies
617 **/
618 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
619 {
620 u32 head, tail;
621
622 if (!in_sw)
623 head = i40e_get_head(ring);
624 else
625 head = ring->next_to_clean;
626 tail = readl(ring->tail);
627
628 if (head != tail)
629 return (head < tail) ?
630 tail - head : (tail + ring->count - head);
631
632 return 0;
633 }
634
635 #define WB_STRIDE 0x3
636
637 /**
638 * i40e_clean_tx_irq - Reclaim resources after transmit completes
639 * @vsi: the VSI we care about
640 * @tx_ring: Tx ring to clean
641 * @napi_budget: Used to determine if we are in netpoll
642 *
643 * Returns true if there's any budget left (e.g. the clean is finished)
644 **/
645 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
646 struct i40e_ring *tx_ring, int napi_budget)
647 {
648 u16 i = tx_ring->next_to_clean;
649 struct i40e_tx_buffer *tx_buf;
650 struct i40e_tx_desc *tx_head;
651 struct i40e_tx_desc *tx_desc;
652 unsigned int total_bytes = 0, total_packets = 0;
653 unsigned int budget = vsi->work_limit;
654
655 tx_buf = &tx_ring->tx_bi[i];
656 tx_desc = I40E_TX_DESC(tx_ring, i);
657 i -= tx_ring->count;
658
659 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
660
661 do {
662 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
663
664 /* if next_to_watch is not set then there is no work pending */
665 if (!eop_desc)
666 break;
667
668 /* prevent any other reads prior to eop_desc */
669 read_barrier_depends();
670
671 /* we have caught up to head, no work left to do */
672 if (tx_head == tx_desc)
673 break;
674
675 /* clear next_to_watch to prevent false hangs */
676 tx_buf->next_to_watch = NULL;
677
678 /* update the statistics for this packet */
679 total_bytes += tx_buf->bytecount;
680 total_packets += tx_buf->gso_segs;
681
682 /* free the skb */
683 napi_consume_skb(tx_buf->skb, napi_budget);
684
685 /* unmap skb header data */
686 dma_unmap_single(tx_ring->dev,
687 dma_unmap_addr(tx_buf, dma),
688 dma_unmap_len(tx_buf, len),
689 DMA_TO_DEVICE);
690
691 /* clear tx_buffer data */
692 tx_buf->skb = NULL;
693 dma_unmap_len_set(tx_buf, len, 0);
694
695 /* unmap remaining buffers */
696 while (tx_desc != eop_desc) {
697
698 tx_buf++;
699 tx_desc++;
700 i++;
701 if (unlikely(!i)) {
702 i -= tx_ring->count;
703 tx_buf = tx_ring->tx_bi;
704 tx_desc = I40E_TX_DESC(tx_ring, 0);
705 }
706
707 /* unmap any remaining paged data */
708 if (dma_unmap_len(tx_buf, len)) {
709 dma_unmap_page(tx_ring->dev,
710 dma_unmap_addr(tx_buf, dma),
711 dma_unmap_len(tx_buf, len),
712 DMA_TO_DEVICE);
713 dma_unmap_len_set(tx_buf, len, 0);
714 }
715 }
716
717 /* move us one more past the eop_desc for start of next pkt */
718 tx_buf++;
719 tx_desc++;
720 i++;
721 if (unlikely(!i)) {
722 i -= tx_ring->count;
723 tx_buf = tx_ring->tx_bi;
724 tx_desc = I40E_TX_DESC(tx_ring, 0);
725 }
726
727 prefetch(tx_desc);
728
729 /* update budget accounting */
730 budget--;
731 } while (likely(budget));
732
733 i += tx_ring->count;
734 tx_ring->next_to_clean = i;
735 u64_stats_update_begin(&tx_ring->syncp);
736 tx_ring->stats.bytes += total_bytes;
737 tx_ring->stats.packets += total_packets;
738 u64_stats_update_end(&tx_ring->syncp);
739 tx_ring->q_vector->tx.total_bytes += total_bytes;
740 tx_ring->q_vector->tx.total_packets += total_packets;
741
742 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
743 unsigned int j = 0;
744
745 /* check to see if there are < 4 descriptors
746 * waiting to be written back, then kick the hardware to force
747 * them to be written back in case we stay in NAPI.
748 * In this mode on X722 we do not enable Interrupt.
749 */
750 j = i40e_get_tx_pending(tx_ring, false);
751
752 if (budget &&
753 ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
754 !test_bit(__I40E_DOWN, &vsi->state) &&
755 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
756 tx_ring->arm_wb = true;
757 }
758
759 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
760 tx_ring->queue_index),
761 total_packets, total_bytes);
762
763 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
764 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
765 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
766 /* Make sure that anybody stopping the queue after this
767 * sees the new next_to_clean.
768 */
769 smp_mb();
770 if (__netif_subqueue_stopped(tx_ring->netdev,
771 tx_ring->queue_index) &&
772 !test_bit(__I40E_DOWN, &vsi->state)) {
773 netif_wake_subqueue(tx_ring->netdev,
774 tx_ring->queue_index);
775 ++tx_ring->tx_stats.restart_queue;
776 }
777 }
778
779 return !!budget;
780 }
781
782 /**
783 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
784 * @vsi: the VSI we care about
785 * @q_vector: the vector on which to enable writeback
786 *
787 **/
788 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
789 struct i40e_q_vector *q_vector)
790 {
791 u16 flags = q_vector->tx.ring[0].flags;
792 u32 val;
793
794 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
795 return;
796
797 if (q_vector->arm_wb_state)
798 return;
799
800 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
801 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
802 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
803
804 wr32(&vsi->back->hw,
805 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
806 val);
807 } else {
808 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
809 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
810
811 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
812 }
813 q_vector->arm_wb_state = true;
814 }
815
816 /**
817 * i40e_force_wb - Issue SW Interrupt so HW does a wb
818 * @vsi: the VSI we care about
819 * @q_vector: the vector on which to force writeback
820 *
821 **/
822 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
823 {
824 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
825 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
826 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
827 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
828 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
829 /* allow 00 to be written to the index */
830
831 wr32(&vsi->back->hw,
832 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
833 vsi->base_vector - 1), val);
834 } else {
835 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
836 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
837 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
838 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
839 /* allow 00 to be written to the index */
840
841 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
842 }
843 }
844
845 /**
846 * i40e_set_new_dynamic_itr - Find new ITR level
847 * @rc: structure containing ring performance data
848 *
849 * Returns true if ITR changed, false if not
850 *
851 * Stores a new ITR value based on packets and byte counts during
852 * the last interrupt. The advantage of per interrupt computation
853 * is faster updates and more accurate ITR for the current traffic
854 * pattern. Constants in this function were computed based on
855 * theoretical maximum wire speed and thresholds were set based on
856 * testing data as well as attempting to minimize response time
857 * while increasing bulk throughput.
858 **/
859 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
860 {
861 enum i40e_latency_range new_latency_range = rc->latency_range;
862 struct i40e_q_vector *qv = rc->ring->q_vector;
863 u32 new_itr = rc->itr;
864 int bytes_per_int;
865 int usecs;
866
867 if (rc->total_packets == 0 || !rc->itr)
868 return false;
869
870 /* simple throttlerate management
871 * 0-10MB/s lowest (50000 ints/s)
872 * 10-20MB/s low (20000 ints/s)
873 * 20-1249MB/s bulk (18000 ints/s)
874 * > 40000 Rx packets per second (8000 ints/s)
875 *
876 * The math works out because the divisor is in 10^(-6) which
877 * turns the bytes/us input value into MB/s values, but
878 * make sure to use usecs, as the register values written
879 * are in 2 usec increments in the ITR registers, and make sure
880 * to use the smoothed values that the countdown timer gives us.
881 */
882 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
883 bytes_per_int = rc->total_bytes / usecs;
884
885 switch (new_latency_range) {
886 case I40E_LOWEST_LATENCY:
887 if (bytes_per_int > 10)
888 new_latency_range = I40E_LOW_LATENCY;
889 break;
890 case I40E_LOW_LATENCY:
891 if (bytes_per_int > 20)
892 new_latency_range = I40E_BULK_LATENCY;
893 else if (bytes_per_int <= 10)
894 new_latency_range = I40E_LOWEST_LATENCY;
895 break;
896 case I40E_BULK_LATENCY:
897 case I40E_ULTRA_LATENCY:
898 default:
899 if (bytes_per_int <= 20)
900 new_latency_range = I40E_LOW_LATENCY;
901 break;
902 }
903
904 /* this is to adjust RX more aggressively when streaming small
905 * packets. The value of 40000 was picked as it is just beyond
906 * what the hardware can receive per second if in low latency
907 * mode.
908 */
909 #define RX_ULTRA_PACKET_RATE 40000
910
911 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
912 (&qv->rx == rc))
913 new_latency_range = I40E_ULTRA_LATENCY;
914
915 rc->latency_range = new_latency_range;
916
917 switch (new_latency_range) {
918 case I40E_LOWEST_LATENCY:
919 new_itr = I40E_ITR_50K;
920 break;
921 case I40E_LOW_LATENCY:
922 new_itr = I40E_ITR_20K;
923 break;
924 case I40E_BULK_LATENCY:
925 new_itr = I40E_ITR_18K;
926 break;
927 case I40E_ULTRA_LATENCY:
928 new_itr = I40E_ITR_8K;
929 break;
930 default:
931 break;
932 }
933
934 rc->total_bytes = 0;
935 rc->total_packets = 0;
936
937 if (new_itr != rc->itr) {
938 rc->itr = new_itr;
939 return true;
940 }
941
942 return false;
943 }
944
945 /**
946 * i40e_clean_programming_status - clean the programming status descriptor
947 * @rx_ring: the rx ring that has this descriptor
948 * @rx_desc: the rx descriptor written back by HW
949 *
950 * Flow director should handle FD_FILTER_STATUS to check its filter programming
951 * status being successful or not and take actions accordingly. FCoE should
952 * handle its context/filter programming/invalidation status and take actions.
953 *
954 **/
955 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
956 union i40e_rx_desc *rx_desc)
957 {
958 u64 qw;
959 u8 id;
960
961 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
962 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
963 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
964
965 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
966 i40e_fd_handle_status(rx_ring, rx_desc, id);
967 #ifdef I40E_FCOE
968 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
969 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
970 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
971 #endif
972 }
973
974 /**
975 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
976 * @tx_ring: the tx ring to set up
977 *
978 * Return 0 on success, negative on error
979 **/
980 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
981 {
982 struct device *dev = tx_ring->dev;
983 int bi_size;
984
985 if (!dev)
986 return -ENOMEM;
987
988 /* warn if we are about to overwrite the pointer */
989 WARN_ON(tx_ring->tx_bi);
990 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
991 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
992 if (!tx_ring->tx_bi)
993 goto err;
994
995 /* round up to nearest 4K */
996 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
997 /* add u32 for head writeback, align after this takes care of
998 * guaranteeing this is at least one cache line in size
999 */
1000 tx_ring->size += sizeof(u32);
1001 tx_ring->size = ALIGN(tx_ring->size, 4096);
1002 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1003 &tx_ring->dma, GFP_KERNEL);
1004 if (!tx_ring->desc) {
1005 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1006 tx_ring->size);
1007 goto err;
1008 }
1009
1010 tx_ring->next_to_use = 0;
1011 tx_ring->next_to_clean = 0;
1012 return 0;
1013
1014 err:
1015 kfree(tx_ring->tx_bi);
1016 tx_ring->tx_bi = NULL;
1017 return -ENOMEM;
1018 }
1019
1020 /**
1021 * i40e_clean_rx_ring - Free Rx buffers
1022 * @rx_ring: ring to be cleaned
1023 **/
1024 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1025 {
1026 struct device *dev = rx_ring->dev;
1027 unsigned long bi_size;
1028 u16 i;
1029
1030 /* ring already cleared, nothing to do */
1031 if (!rx_ring->rx_bi)
1032 return;
1033
1034 /* Free all the Rx ring sk_buffs */
1035 for (i = 0; i < rx_ring->count; i++) {
1036 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1037
1038 if (rx_bi->skb) {
1039 dev_kfree_skb(rx_bi->skb);
1040 rx_bi->skb = NULL;
1041 }
1042 if (!rx_bi->page)
1043 continue;
1044
1045 dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
1046 __free_pages(rx_bi->page, 0);
1047
1048 rx_bi->page = NULL;
1049 rx_bi->page_offset = 0;
1050 }
1051
1052 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1053 memset(rx_ring->rx_bi, 0, bi_size);
1054
1055 /* Zero out the descriptor ring */
1056 memset(rx_ring->desc, 0, rx_ring->size);
1057
1058 rx_ring->next_to_alloc = 0;
1059 rx_ring->next_to_clean = 0;
1060 rx_ring->next_to_use = 0;
1061 }
1062
1063 /**
1064 * i40e_free_rx_resources - Free Rx resources
1065 * @rx_ring: ring to clean the resources from
1066 *
1067 * Free all receive software resources
1068 **/
1069 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1070 {
1071 i40e_clean_rx_ring(rx_ring);
1072 kfree(rx_ring->rx_bi);
1073 rx_ring->rx_bi = NULL;
1074
1075 if (rx_ring->desc) {
1076 dma_free_coherent(rx_ring->dev, rx_ring->size,
1077 rx_ring->desc, rx_ring->dma);
1078 rx_ring->desc = NULL;
1079 }
1080 }
1081
1082 /**
1083 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1084 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1085 *
1086 * Returns 0 on success, negative on failure
1087 **/
1088 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1089 {
1090 struct device *dev = rx_ring->dev;
1091 int bi_size;
1092
1093 /* warn if we are about to overwrite the pointer */
1094 WARN_ON(rx_ring->rx_bi);
1095 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1096 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1097 if (!rx_ring->rx_bi)
1098 goto err;
1099
1100 u64_stats_init(&rx_ring->syncp);
1101
1102 /* Round up to nearest 4K */
1103 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1104 rx_ring->size = ALIGN(rx_ring->size, 4096);
1105 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1106 &rx_ring->dma, GFP_KERNEL);
1107
1108 if (!rx_ring->desc) {
1109 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1110 rx_ring->size);
1111 goto err;
1112 }
1113
1114 rx_ring->next_to_alloc = 0;
1115 rx_ring->next_to_clean = 0;
1116 rx_ring->next_to_use = 0;
1117
1118 return 0;
1119 err:
1120 kfree(rx_ring->rx_bi);
1121 rx_ring->rx_bi = NULL;
1122 return -ENOMEM;
1123 }
1124
1125 /**
1126 * i40e_release_rx_desc - Store the new tail and head values
1127 * @rx_ring: ring to bump
1128 * @val: new head index
1129 **/
1130 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1131 {
1132 rx_ring->next_to_use = val;
1133
1134 /* update next to alloc since we have filled the ring */
1135 rx_ring->next_to_alloc = val;
1136
1137 /* Force memory writes to complete before letting h/w
1138 * know there are new descriptors to fetch. (Only
1139 * applicable for weak-ordered memory model archs,
1140 * such as IA-64).
1141 */
1142 wmb();
1143 writel(val, rx_ring->tail);
1144 }
1145
1146 /**
1147 * i40e_alloc_mapped_page - recycle or make a new page
1148 * @rx_ring: ring to use
1149 * @bi: rx_buffer struct to modify
1150 *
1151 * Returns true if the page was successfully allocated or
1152 * reused.
1153 **/
1154 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1155 struct i40e_rx_buffer *bi)
1156 {
1157 struct page *page = bi->page;
1158 dma_addr_t dma;
1159
1160 /* since we are recycling buffers we should seldom need to alloc */
1161 if (likely(page)) {
1162 rx_ring->rx_stats.page_reuse_count++;
1163 return true;
1164 }
1165
1166 /* alloc new page for storage */
1167 page = dev_alloc_page();
1168 if (unlikely(!page)) {
1169 rx_ring->rx_stats.alloc_page_failed++;
1170 return false;
1171 }
1172
1173 /* map page for use */
1174 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1175
1176 /* if mapping failed free memory back to system since
1177 * there isn't much point in holding memory we can't use
1178 */
1179 if (dma_mapping_error(rx_ring->dev, dma)) {
1180 __free_pages(page, 0);
1181 rx_ring->rx_stats.alloc_page_failed++;
1182 return false;
1183 }
1184
1185 bi->dma = dma;
1186 bi->page = page;
1187 bi->page_offset = 0;
1188
1189 return true;
1190 }
1191
1192 /**
1193 * i40e_receive_skb - Send a completed packet up the stack
1194 * @rx_ring: rx ring in play
1195 * @skb: packet to send up
1196 * @vlan_tag: vlan tag for packet
1197 **/
1198 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1199 struct sk_buff *skb, u16 vlan_tag)
1200 {
1201 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1202
1203 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1204 (vlan_tag & VLAN_VID_MASK))
1205 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1206
1207 napi_gro_receive(&q_vector->napi, skb);
1208 }
1209
1210 /**
1211 * i40e_alloc_rx_buffers - Replace used receive buffers
1212 * @rx_ring: ring to place buffers on
1213 * @cleaned_count: number of buffers to replace
1214 *
1215 * Returns false if all allocations were successful, true if any fail
1216 **/
1217 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1218 {
1219 u16 ntu = rx_ring->next_to_use;
1220 union i40e_rx_desc *rx_desc;
1221 struct i40e_rx_buffer *bi;
1222
1223 /* do nothing if no valid netdev defined */
1224 if (!rx_ring->netdev || !cleaned_count)
1225 return false;
1226
1227 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1228 bi = &rx_ring->rx_bi[ntu];
1229
1230 do {
1231 if (!i40e_alloc_mapped_page(rx_ring, bi))
1232 goto no_buffers;
1233
1234 /* Refresh the desc even if buffer_addrs didn't change
1235 * because each write-back erases this info.
1236 */
1237 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1238 rx_desc->read.hdr_addr = 0;
1239
1240 rx_desc++;
1241 bi++;
1242 ntu++;
1243 if (unlikely(ntu == rx_ring->count)) {
1244 rx_desc = I40E_RX_DESC(rx_ring, 0);
1245 bi = rx_ring->rx_bi;
1246 ntu = 0;
1247 }
1248
1249 /* clear the status bits for the next_to_use descriptor */
1250 rx_desc->wb.qword1.status_error_len = 0;
1251
1252 cleaned_count--;
1253 } while (cleaned_count);
1254
1255 if (rx_ring->next_to_use != ntu)
1256 i40e_release_rx_desc(rx_ring, ntu);
1257
1258 return false;
1259
1260 no_buffers:
1261 if (rx_ring->next_to_use != ntu)
1262 i40e_release_rx_desc(rx_ring, ntu);
1263
1264 /* make sure to come back via polling to try again after
1265 * allocation failure
1266 */
1267 return true;
1268 }
1269
1270 /**
1271 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1272 * @vsi: the VSI we care about
1273 * @skb: skb currently being received and modified
1274 * @rx_desc: the receive descriptor
1275 *
1276 * skb->protocol must be set before this function is called
1277 **/
1278 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1279 struct sk_buff *skb,
1280 union i40e_rx_desc *rx_desc)
1281 {
1282 struct i40e_rx_ptype_decoded decoded;
1283 bool ipv4, ipv6, tunnel = false;
1284 u32 rx_error, rx_status;
1285 u8 ptype;
1286 u64 qword;
1287
1288 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1289 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1290 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1291 I40E_RXD_QW1_ERROR_SHIFT;
1292 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1293 I40E_RXD_QW1_STATUS_SHIFT;
1294 decoded = decode_rx_desc_ptype(ptype);
1295
1296 skb->ip_summed = CHECKSUM_NONE;
1297
1298 skb_checksum_none_assert(skb);
1299
1300 /* Rx csum enabled and ip headers found? */
1301 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1302 return;
1303
1304 /* did the hardware decode the packet and checksum? */
1305 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1306 return;
1307
1308 /* both known and outer_ip must be set for the below code to work */
1309 if (!(decoded.known && decoded.outer_ip))
1310 return;
1311
1312 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1313 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1314 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1315 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1316
1317 if (ipv4 &&
1318 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1319 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1320 goto checksum_fail;
1321
1322 /* likely incorrect csum if alternate IP extension headers found */
1323 if (ipv6 &&
1324 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1325 /* don't increment checksum err here, non-fatal err */
1326 return;
1327
1328 /* there was some L4 error, count error and punt packet to the stack */
1329 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1330 goto checksum_fail;
1331
1332 /* handle packets that were not able to be checksummed due
1333 * to arrival speed, in this case the stack can compute
1334 * the csum.
1335 */
1336 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1337 return;
1338
1339 /* The hardware supported by this driver does not validate outer
1340 * checksums for tunneled VXLAN or GENEVE frames. I don't agree
1341 * with it but the specification states that you "MAY validate", it
1342 * doesn't make it a hard requirement so if we have validated the
1343 * inner checksum report CHECKSUM_UNNECESSARY.
1344 */
1345 if (decoded.inner_prot & (I40E_RX_PTYPE_INNER_PROT_TCP |
1346 I40E_RX_PTYPE_INNER_PROT_UDP |
1347 I40E_RX_PTYPE_INNER_PROT_SCTP))
1348 tunnel = true;
1349
1350 skb->ip_summed = CHECKSUM_UNNECESSARY;
1351 skb->csum_level = tunnel ? 1 : 0;
1352
1353 return;
1354
1355 checksum_fail:
1356 vsi->back->hw_csum_rx_error++;
1357 }
1358
1359 /**
1360 * i40e_ptype_to_htype - get a hash type
1361 * @ptype: the ptype value from the descriptor
1362 *
1363 * Returns a hash type to be used by skb_set_hash
1364 **/
1365 static inline int i40e_ptype_to_htype(u8 ptype)
1366 {
1367 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1368
1369 if (!decoded.known)
1370 return PKT_HASH_TYPE_NONE;
1371
1372 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1373 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1374 return PKT_HASH_TYPE_L4;
1375 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1376 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1377 return PKT_HASH_TYPE_L3;
1378 else
1379 return PKT_HASH_TYPE_L2;
1380 }
1381
1382 /**
1383 * i40e_rx_hash - set the hash value in the skb
1384 * @ring: descriptor ring
1385 * @rx_desc: specific descriptor
1386 **/
1387 static inline void i40e_rx_hash(struct i40e_ring *ring,
1388 union i40e_rx_desc *rx_desc,
1389 struct sk_buff *skb,
1390 u8 rx_ptype)
1391 {
1392 u32 hash;
1393 const __le64 rss_mask =
1394 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1395 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1396
1397 if (!(ring->netdev->features & NETIF_F_RXHASH))
1398 return;
1399
1400 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1401 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1402 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1403 }
1404 }
1405
1406 /**
1407 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1408 * @rx_ring: rx descriptor ring packet is being transacted on
1409 * @rx_desc: pointer to the EOP Rx descriptor
1410 * @skb: pointer to current skb being populated
1411 * @rx_ptype: the packet type decoded by hardware
1412 *
1413 * This function checks the ring, descriptor, and packet information in
1414 * order to populate the hash, checksum, VLAN, protocol, and
1415 * other fields within the skb.
1416 **/
1417 static inline
1418 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1419 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1420 u8 rx_ptype)
1421 {
1422 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1423 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1424 I40E_RXD_QW1_STATUS_SHIFT;
1425 u32 rsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1426 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1427
1428 if (unlikely(rsyn)) {
1429 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, rsyn);
1430 rx_ring->last_rx_timestamp = jiffies;
1431 }
1432
1433 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1434
1435 /* modifies the skb - consumes the enet header */
1436 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1437
1438 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1439
1440 skb_record_rx_queue(skb, rx_ring->queue_index);
1441 }
1442
1443 /**
1444 * i40e_pull_tail - i40e specific version of skb_pull_tail
1445 * @rx_ring: rx descriptor ring packet is being transacted on
1446 * @skb: pointer to current skb being adjusted
1447 *
1448 * This function is an i40e specific version of __pskb_pull_tail. The
1449 * main difference between this version and the original function is that
1450 * this function can make several assumptions about the state of things
1451 * that allow for significant optimizations versus the standard function.
1452 * As a result we can do things like drop a frag and maintain an accurate
1453 * truesize for the skb.
1454 */
1455 static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
1456 {
1457 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1458 unsigned char *va;
1459 unsigned int pull_len;
1460
1461 /* it is valid to use page_address instead of kmap since we are
1462 * working with pages allocated out of the lomem pool per
1463 * alloc_page(GFP_ATOMIC)
1464 */
1465 va = skb_frag_address(frag);
1466
1467 /* we need the header to contain the greater of either ETH_HLEN or
1468 * 60 bytes if the skb->len is less than 60 for skb_pad.
1469 */
1470 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1471
1472 /* align pull length to size of long to optimize memcpy performance */
1473 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
1474
1475 /* update all of the pointers */
1476 skb_frag_size_sub(frag, pull_len);
1477 frag->page_offset += pull_len;
1478 skb->data_len -= pull_len;
1479 skb->tail += pull_len;
1480 }
1481
1482 /**
1483 * i40e_cleanup_headers - Correct empty headers
1484 * @rx_ring: rx descriptor ring packet is being transacted on
1485 * @skb: pointer to current skb being fixed
1486 *
1487 * Also address the case where we are pulling data in on pages only
1488 * and as such no data is present in the skb header.
1489 *
1490 * In addition if skb is not at least 60 bytes we need to pad it so that
1491 * it is large enough to qualify as a valid Ethernet frame.
1492 *
1493 * Returns true if an error was encountered and skb was freed.
1494 **/
1495 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
1496 {
1497 /* place header in linear portion of buffer */
1498 if (skb_is_nonlinear(skb))
1499 i40e_pull_tail(rx_ring, skb);
1500
1501 /* if eth_skb_pad returns an error the skb was freed */
1502 if (eth_skb_pad(skb))
1503 return true;
1504
1505 return false;
1506 }
1507
1508 /**
1509 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1510 * @rx_ring: rx descriptor ring to store buffers on
1511 * @old_buff: donor buffer to have page reused
1512 *
1513 * Synchronizes page for reuse by the adapter
1514 **/
1515 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1516 struct i40e_rx_buffer *old_buff)
1517 {
1518 struct i40e_rx_buffer *new_buff;
1519 u16 nta = rx_ring->next_to_alloc;
1520
1521 new_buff = &rx_ring->rx_bi[nta];
1522
1523 /* update, and store next to alloc */
1524 nta++;
1525 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1526
1527 /* transfer page from old buffer to new buffer */
1528 *new_buff = *old_buff;
1529 }
1530
1531 /**
1532 * i40e_page_is_reserved - check if reuse is possible
1533 * @page: page struct to check
1534 */
1535 static inline bool i40e_page_is_reserved(struct page *page)
1536 {
1537 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1538 }
1539
1540 /**
1541 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1542 * @rx_ring: rx descriptor ring to transact packets on
1543 * @rx_buffer: buffer containing page to add
1544 * @rx_desc: descriptor containing length of buffer written by hardware
1545 * @skb: sk_buff to place the data into
1546 *
1547 * This function will add the data contained in rx_buffer->page to the skb.
1548 * This is done either through a direct copy if the data in the buffer is
1549 * less than the skb header size, otherwise it will just attach the page as
1550 * a frag to the skb.
1551 *
1552 * The function will then update the page offset if necessary and return
1553 * true if the buffer can be reused by the adapter.
1554 **/
1555 static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1556 struct i40e_rx_buffer *rx_buffer,
1557 union i40e_rx_desc *rx_desc,
1558 struct sk_buff *skb)
1559 {
1560 struct page *page = rx_buffer->page;
1561 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1562 unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1563 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1564 #if (PAGE_SIZE < 8192)
1565 unsigned int truesize = I40E_RXBUFFER_2048;
1566 #else
1567 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1568 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1569 #endif
1570
1571 /* will the data fit in the skb we allocated? if so, just
1572 * copy it as it is pretty small anyway
1573 */
1574 if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1575 unsigned char *va = page_address(page) + rx_buffer->page_offset;
1576
1577 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1578
1579 /* page is not reserved, we can reuse buffer as-is */
1580 if (likely(!i40e_page_is_reserved(page)))
1581 return true;
1582
1583 /* this page cannot be reused so discard it */
1584 __free_pages(page, 0);
1585 return false;
1586 }
1587
1588 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1589 rx_buffer->page_offset, size, truesize);
1590
1591 /* avoid re-using remote pages */
1592 if (unlikely(i40e_page_is_reserved(page)))
1593 return false;
1594
1595 #if (PAGE_SIZE < 8192)
1596 /* if we are only owner of page we can reuse it */
1597 if (unlikely(page_count(page) != 1))
1598 return false;
1599
1600 /* flip page offset to other buffer */
1601 rx_buffer->page_offset ^= truesize;
1602 #else
1603 /* move offset up to the next cache line */
1604 rx_buffer->page_offset += truesize;
1605
1606 if (rx_buffer->page_offset > last_offset)
1607 return false;
1608 #endif
1609
1610 /* Even if we own the page, we are not allowed to use atomic_set()
1611 * This would break get_page_unless_zero() users.
1612 */
1613 get_page(rx_buffer->page);
1614
1615 return true;
1616 }
1617
1618 /**
1619 * i40e_fetch_rx_buffer - Allocate skb and populate it
1620 * @rx_ring: rx descriptor ring to transact packets on
1621 * @rx_desc: descriptor containing info written by hardware
1622 *
1623 * This function allocates an skb on the fly, and populates it with the page
1624 * data from the current receive descriptor, taking care to set up the skb
1625 * correctly, as well as handling calling the page recycle function if
1626 * necessary.
1627 */
1628 static inline
1629 struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1630 union i40e_rx_desc *rx_desc)
1631 {
1632 struct i40e_rx_buffer *rx_buffer;
1633 struct sk_buff *skb;
1634 struct page *page;
1635
1636 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1637 page = rx_buffer->page;
1638 prefetchw(page);
1639
1640 skb = rx_buffer->skb;
1641
1642 if (likely(!skb)) {
1643 void *page_addr = page_address(page) + rx_buffer->page_offset;
1644
1645 /* prefetch first cache line of first page */
1646 prefetch(page_addr);
1647 #if L1_CACHE_BYTES < 128
1648 prefetch(page_addr + L1_CACHE_BYTES);
1649 #endif
1650
1651 /* allocate a skb to store the frags */
1652 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1653 I40E_RX_HDR_SIZE,
1654 GFP_ATOMIC | __GFP_NOWARN);
1655 if (unlikely(!skb)) {
1656 rx_ring->rx_stats.alloc_buff_failed++;
1657 return NULL;
1658 }
1659
1660 /* we will be copying header into skb->data in
1661 * pskb_may_pull so it is in our interest to prefetch
1662 * it now to avoid a possible cache miss
1663 */
1664 prefetchw(skb->data);
1665 } else {
1666 rx_buffer->skb = NULL;
1667 }
1668
1669 /* we are reusing so sync this buffer for CPU use */
1670 dma_sync_single_range_for_cpu(rx_ring->dev,
1671 rx_buffer->dma,
1672 rx_buffer->page_offset,
1673 I40E_RXBUFFER_2048,
1674 DMA_FROM_DEVICE);
1675
1676 /* pull page into skb */
1677 if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1678 /* hand second half of page back to the ring */
1679 i40e_reuse_rx_page(rx_ring, rx_buffer);
1680 rx_ring->rx_stats.page_reuse_count++;
1681 } else {
1682 /* we are not reusing the buffer so unmap it */
1683 dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1684 DMA_FROM_DEVICE);
1685 }
1686
1687 /* clear contents of buffer_info */
1688 rx_buffer->page = NULL;
1689
1690 return skb;
1691 }
1692
1693 /**
1694 * i40e_is_non_eop - process handling of non-EOP buffers
1695 * @rx_ring: Rx ring being processed
1696 * @rx_desc: Rx descriptor for current buffer
1697 * @skb: Current socket buffer containing buffer in progress
1698 *
1699 * This function updates next to clean. If the buffer is an EOP buffer
1700 * this function exits returning false, otherwise it will place the
1701 * sk_buff in the next buffer to be chained and return true indicating
1702 * that this is in fact a non-EOP buffer.
1703 **/
1704 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1705 union i40e_rx_desc *rx_desc,
1706 struct sk_buff *skb)
1707 {
1708 u32 ntc = rx_ring->next_to_clean + 1;
1709
1710 /* fetch, update, and store next to clean */
1711 ntc = (ntc < rx_ring->count) ? ntc : 0;
1712 rx_ring->next_to_clean = ntc;
1713
1714 prefetch(I40E_RX_DESC(rx_ring, ntc));
1715
1716 #define staterrlen rx_desc->wb.qword1.status_error_len
1717 if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1718 i40e_clean_programming_status(rx_ring, rx_desc);
1719 rx_ring->rx_bi[ntc].skb = skb;
1720 return true;
1721 }
1722 /* if we are the last buffer then there is nothing else to do */
1723 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1724 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1725 return false;
1726
1727 /* place skb in next buffer to be received */
1728 rx_ring->rx_bi[ntc].skb = skb;
1729 rx_ring->rx_stats.non_eop_descs++;
1730
1731 return true;
1732 }
1733
1734 /**
1735 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1736 * @rx_ring: rx descriptor ring to transact packets on
1737 * @budget: Total limit on number of packets to process
1738 *
1739 * This function provides a "bounce buffer" approach to Rx interrupt
1740 * processing. The advantage to this is that on systems that have
1741 * expensive overhead for IOMMU access this provides a means of avoiding
1742 * it by maintaining the mapping of the page to the system.
1743 *
1744 * Returns amount of work completed
1745 **/
1746 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1747 {
1748 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1749 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1750 bool failure = false;
1751
1752 while (likely(total_rx_packets < budget)) {
1753 union i40e_rx_desc *rx_desc;
1754 struct sk_buff *skb;
1755 u32 rx_status;
1756 u16 vlan_tag;
1757 u8 rx_ptype;
1758 u64 qword;
1759
1760 /* return some buffers to hardware, one at a time is too slow */
1761 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1762 failure = failure ||
1763 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1764 cleaned_count = 0;
1765 }
1766
1767 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1768
1769 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1770 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1771 I40E_RXD_QW1_PTYPE_SHIFT;
1772 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1773 I40E_RXD_QW1_STATUS_SHIFT;
1774
1775 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1776 break;
1777
1778 /* status_error_len will always be zero for unused descriptors
1779 * because it's cleared in cleanup, and overlaps with hdr_addr
1780 * which is always zero because packet split isn't used, if the
1781 * hardware wrote DD then it will be non-zero
1782 */
1783 if (!rx_desc->wb.qword1.status_error_len)
1784 break;
1785
1786 /* This memory barrier is needed to keep us from reading
1787 * any other fields out of the rx_desc until we know the
1788 * DD bit is set.
1789 */
1790 dma_rmb();
1791
1792 skb = i40e_fetch_rx_buffer(rx_ring, rx_desc);
1793 if (!skb)
1794 break;
1795
1796 cleaned_count++;
1797
1798 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1799 continue;
1800
1801 /* ERR_MASK will only have valid bits if EOP set, and
1802 * what we are doing here is actually checking
1803 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1804 * the error field
1805 */
1806 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1807 dev_kfree_skb_any(skb);
1808 continue;
1809 }
1810
1811 if (i40e_cleanup_headers(rx_ring, skb))
1812 continue;
1813
1814 /* probably a little skewed due to removing CRC */
1815 total_rx_bytes += skb->len;
1816
1817 /* populate checksum, VLAN, and protocol */
1818 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1819
1820 #ifdef I40E_FCOE
1821 if (unlikely(
1822 i40e_rx_is_fcoe(rx_ptype) &&
1823 !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1824 dev_kfree_skb_any(skb);
1825 continue;
1826 }
1827 #endif
1828
1829 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1830 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1831
1832 i40e_receive_skb(rx_ring, skb, vlan_tag);
1833
1834 /* update budget accounting */
1835 total_rx_packets++;
1836 }
1837
1838 u64_stats_update_begin(&rx_ring->syncp);
1839 rx_ring->stats.packets += total_rx_packets;
1840 rx_ring->stats.bytes += total_rx_bytes;
1841 u64_stats_update_end(&rx_ring->syncp);
1842 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1843 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1844
1845 /* guarantee a trip back through this routine if there was a failure */
1846 return failure ? budget : total_rx_packets;
1847 }
1848
1849 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1850 {
1851 u32 val;
1852
1853 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1854 /* Don't clear PBA because that can cause lost interrupts that
1855 * came in while we were cleaning/polling
1856 */
1857 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1858 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1859
1860 return val;
1861 }
1862
1863 /* a small macro to shorten up some long lines */
1864 #define INTREG I40E_PFINT_DYN_CTLN
1865
1866 /**
1867 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1868 * @vsi: the VSI we care about
1869 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1870 *
1871 **/
1872 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1873 struct i40e_q_vector *q_vector)
1874 {
1875 struct i40e_hw *hw = &vsi->back->hw;
1876 bool rx = false, tx = false;
1877 u32 rxval, txval;
1878 int vector;
1879 int idx = q_vector->v_idx;
1880
1881 vector = (q_vector->v_idx + vsi->base_vector);
1882
1883 /* avoid dynamic calculation if in countdown mode OR if
1884 * all dynamic is disabled
1885 */
1886 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1887
1888 if (q_vector->itr_countdown > 0 ||
1889 (!ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting) &&
1890 !ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting))) {
1891 goto enable_int;
1892 }
1893
1894 if (ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting)) {
1895 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1896 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1897 }
1898
1899 if (ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting)) {
1900 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1901 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1902 }
1903
1904 if (rx || tx) {
1905 /* get the higher of the two ITR adjustments and
1906 * use the same value for both ITR registers
1907 * when in adaptive mode (Rx and/or Tx)
1908 */
1909 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1910
1911 q_vector->tx.itr = q_vector->rx.itr = itr;
1912 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1913 tx = true;
1914 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1915 rx = true;
1916 }
1917
1918 /* only need to enable the interrupt once, but need
1919 * to possibly update both ITR values
1920 */
1921 if (rx) {
1922 /* set the INTENA_MSK_MASK so that this first write
1923 * won't actually enable the interrupt, instead just
1924 * updating the ITR (it's bit 31 PF and VF)
1925 */
1926 rxval |= BIT(31);
1927 /* don't check _DOWN because interrupt isn't being enabled */
1928 wr32(hw, INTREG(vector - 1), rxval);
1929 }
1930
1931 enable_int:
1932 if (!test_bit(__I40E_DOWN, &vsi->state))
1933 wr32(hw, INTREG(vector - 1), txval);
1934
1935 if (q_vector->itr_countdown)
1936 q_vector->itr_countdown--;
1937 else
1938 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1939 }
1940
1941 /**
1942 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1943 * @napi: napi struct with our devices info in it
1944 * @budget: amount of work driver is allowed to do this pass, in packets
1945 *
1946 * This function will clean all queues associated with a q_vector.
1947 *
1948 * Returns the amount of work done
1949 **/
1950 int i40e_napi_poll(struct napi_struct *napi, int budget)
1951 {
1952 struct i40e_q_vector *q_vector =
1953 container_of(napi, struct i40e_q_vector, napi);
1954 struct i40e_vsi *vsi = q_vector->vsi;
1955 struct i40e_ring *ring;
1956 bool clean_complete = true;
1957 bool arm_wb = false;
1958 int budget_per_ring;
1959 int work_done = 0;
1960
1961 if (test_bit(__I40E_DOWN, &vsi->state)) {
1962 napi_complete(napi);
1963 return 0;
1964 }
1965
1966 /* Clear hung_detected bit */
1967 clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1968 /* Since the actual Tx work is minimal, we can give the Tx a larger
1969 * budget and be more aggressive about cleaning up the Tx descriptors.
1970 */
1971 i40e_for_each_ring(ring, q_vector->tx) {
1972 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1973 clean_complete = false;
1974 continue;
1975 }
1976 arm_wb |= ring->arm_wb;
1977 ring->arm_wb = false;
1978 }
1979
1980 /* Handle case where we are called by netpoll with a budget of 0 */
1981 if (budget <= 0)
1982 goto tx_only;
1983
1984 /* We attempt to distribute budget to each Rx queue fairly, but don't
1985 * allow the budget to go below 1 because that would exit polling early.
1986 */
1987 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1988
1989 i40e_for_each_ring(ring, q_vector->rx) {
1990 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1991
1992 work_done += cleaned;
1993 /* if we clean as many as budgeted, we must not be done */
1994 if (cleaned >= budget_per_ring)
1995 clean_complete = false;
1996 }
1997
1998 /* If work not completed, return budget and polling will return */
1999 if (!clean_complete) {
2000 tx_only:
2001 if (arm_wb) {
2002 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2003 i40e_enable_wb_on_itr(vsi, q_vector);
2004 }
2005 return budget;
2006 }
2007
2008 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2009 q_vector->arm_wb_state = false;
2010
2011 /* Work is done so exit the polling mode and re-enable the interrupt */
2012 napi_complete_done(napi, work_done);
2013 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
2014 i40e_update_enable_itr(vsi, q_vector);
2015 } else { /* Legacy mode */
2016 i40e_irq_dynamic_enable_icr0(vsi->back, false);
2017 }
2018 return 0;
2019 }
2020
2021 /**
2022 * i40e_atr - Add a Flow Director ATR filter
2023 * @tx_ring: ring to add programming descriptor to
2024 * @skb: send buffer
2025 * @tx_flags: send tx flags
2026 **/
2027 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2028 u32 tx_flags)
2029 {
2030 struct i40e_filter_program_desc *fdir_desc;
2031 struct i40e_pf *pf = tx_ring->vsi->back;
2032 union {
2033 unsigned char *network;
2034 struct iphdr *ipv4;
2035 struct ipv6hdr *ipv6;
2036 } hdr;
2037 struct tcphdr *th;
2038 unsigned int hlen;
2039 u32 flex_ptype, dtype_cmd;
2040 int l4_proto;
2041 u16 i;
2042
2043 /* make sure ATR is enabled */
2044 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2045 return;
2046
2047 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2048 return;
2049
2050 /* if sampling is disabled do nothing */
2051 if (!tx_ring->atr_sample_rate)
2052 return;
2053
2054 /* Currently only IPv4/IPv6 with TCP is supported */
2055 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2056 return;
2057
2058 /* snag network header to get L4 type and address */
2059 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2060 skb_inner_network_header(skb) : skb_network_header(skb);
2061
2062 /* Note: tx_flags gets modified to reflect inner protocols in
2063 * tx_enable_csum function if encap is enabled.
2064 */
2065 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2066 /* access ihl as u8 to avoid unaligned access on ia64 */
2067 hlen = (hdr.network[0] & 0x0F) << 2;
2068 l4_proto = hdr.ipv4->protocol;
2069 } else {
2070 hlen = hdr.network - skb->data;
2071 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2072 hlen -= hdr.network - skb->data;
2073 }
2074
2075 if (l4_proto != IPPROTO_TCP)
2076 return;
2077
2078 th = (struct tcphdr *)(hdr.network + hlen);
2079
2080 /* Due to lack of space, no more new filters can be programmed */
2081 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2082 return;
2083 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2084 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2085 /* HW ATR eviction will take care of removing filters on FIN
2086 * and RST packets.
2087 */
2088 if (th->fin || th->rst)
2089 return;
2090 }
2091
2092 tx_ring->atr_count++;
2093
2094 /* sample on all syn/fin/rst packets or once every atr sample rate */
2095 if (!th->fin &&
2096 !th->syn &&
2097 !th->rst &&
2098 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2099 return;
2100
2101 tx_ring->atr_count = 0;
2102
2103 /* grab the next descriptor */
2104 i = tx_ring->next_to_use;
2105 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2106
2107 i++;
2108 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2109
2110 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2111 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2112 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2113 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2114 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2115 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2116 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2117
2118 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2119
2120 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2121
2122 dtype_cmd |= (th->fin || th->rst) ?
2123 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2124 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2125 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2126 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2127
2128 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2129 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2130
2131 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2132 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2133
2134 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2135 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2136 dtype_cmd |=
2137 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2138 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2139 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2140 else
2141 dtype_cmd |=
2142 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2143 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2144 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2145
2146 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2147 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2148 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2149
2150 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2151 fdir_desc->rsvd = cpu_to_le32(0);
2152 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2153 fdir_desc->fd_id = cpu_to_le32(0);
2154 }
2155
2156 /**
2157 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2158 * @skb: send buffer
2159 * @tx_ring: ring to send buffer on
2160 * @flags: the tx flags to be set
2161 *
2162 * Checks the skb and set up correspondingly several generic transmit flags
2163 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2164 *
2165 * Returns error code indicate the frame should be dropped upon error and the
2166 * otherwise returns 0 to indicate the flags has been set properly.
2167 **/
2168 #ifdef I40E_FCOE
2169 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2170 struct i40e_ring *tx_ring,
2171 u32 *flags)
2172 #else
2173 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2174 struct i40e_ring *tx_ring,
2175 u32 *flags)
2176 #endif
2177 {
2178 __be16 protocol = skb->protocol;
2179 u32 tx_flags = 0;
2180
2181 if (protocol == htons(ETH_P_8021Q) &&
2182 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2183 /* When HW VLAN acceleration is turned off by the user the
2184 * stack sets the protocol to 8021q so that the driver
2185 * can take any steps required to support the SW only
2186 * VLAN handling. In our case the driver doesn't need
2187 * to take any further steps so just set the protocol
2188 * to the encapsulated ethertype.
2189 */
2190 skb->protocol = vlan_get_protocol(skb);
2191 goto out;
2192 }
2193
2194 /* if we have a HW VLAN tag being added, default to the HW one */
2195 if (skb_vlan_tag_present(skb)) {
2196 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2197 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2198 /* else if it is a SW VLAN, check the next protocol and store the tag */
2199 } else if (protocol == htons(ETH_P_8021Q)) {
2200 struct vlan_hdr *vhdr, _vhdr;
2201
2202 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2203 if (!vhdr)
2204 return -EINVAL;
2205
2206 protocol = vhdr->h_vlan_encapsulated_proto;
2207 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2208 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2209 }
2210
2211 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2212 goto out;
2213
2214 /* Insert 802.1p priority into VLAN header */
2215 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2216 (skb->priority != TC_PRIO_CONTROL)) {
2217 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2218 tx_flags |= (skb->priority & 0x7) <<
2219 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2220 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2221 struct vlan_ethhdr *vhdr;
2222 int rc;
2223
2224 rc = skb_cow_head(skb, 0);
2225 if (rc < 0)
2226 return rc;
2227 vhdr = (struct vlan_ethhdr *)skb->data;
2228 vhdr->h_vlan_TCI = htons(tx_flags >>
2229 I40E_TX_FLAGS_VLAN_SHIFT);
2230 } else {
2231 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2232 }
2233 }
2234
2235 out:
2236 *flags = tx_flags;
2237 return 0;
2238 }
2239
2240 /**
2241 * i40e_tso - set up the tso context descriptor
2242 * @skb: ptr to the skb we're sending
2243 * @hdr_len: ptr to the size of the packet header
2244 * @cd_type_cmd_tso_mss: Quad Word 1
2245 *
2246 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2247 **/
2248 static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2249 {
2250 u64 cd_cmd, cd_tso_len, cd_mss;
2251 union {
2252 struct iphdr *v4;
2253 struct ipv6hdr *v6;
2254 unsigned char *hdr;
2255 } ip;
2256 union {
2257 struct tcphdr *tcp;
2258 struct udphdr *udp;
2259 unsigned char *hdr;
2260 } l4;
2261 u32 paylen, l4_offset;
2262 int err;
2263
2264 if (skb->ip_summed != CHECKSUM_PARTIAL)
2265 return 0;
2266
2267 if (!skb_is_gso(skb))
2268 return 0;
2269
2270 err = skb_cow_head(skb, 0);
2271 if (err < 0)
2272 return err;
2273
2274 ip.hdr = skb_network_header(skb);
2275 l4.hdr = skb_transport_header(skb);
2276
2277 /* initialize outer IP header fields */
2278 if (ip.v4->version == 4) {
2279 ip.v4->tot_len = 0;
2280 ip.v4->check = 0;
2281 } else {
2282 ip.v6->payload_len = 0;
2283 }
2284
2285 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2286 SKB_GSO_GRE_CSUM |
2287 SKB_GSO_IPXIP4 |
2288 SKB_GSO_IPXIP6 |
2289 SKB_GSO_UDP_TUNNEL |
2290 SKB_GSO_UDP_TUNNEL_CSUM)) {
2291 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2292 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2293 l4.udp->len = 0;
2294
2295 /* determine offset of outer transport header */
2296 l4_offset = l4.hdr - skb->data;
2297
2298 /* remove payload length from outer checksum */
2299 paylen = skb->len - l4_offset;
2300 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
2301 }
2302
2303 /* reset pointers to inner headers */
2304 ip.hdr = skb_inner_network_header(skb);
2305 l4.hdr = skb_inner_transport_header(skb);
2306
2307 /* initialize inner IP header fields */
2308 if (ip.v4->version == 4) {
2309 ip.v4->tot_len = 0;
2310 ip.v4->check = 0;
2311 } else {
2312 ip.v6->payload_len = 0;
2313 }
2314 }
2315
2316 /* determine offset of inner transport header */
2317 l4_offset = l4.hdr - skb->data;
2318
2319 /* remove payload length from inner checksum */
2320 paylen = skb->len - l4_offset;
2321 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2322
2323 /* compute length of segmentation header */
2324 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2325
2326 /* find the field values */
2327 cd_cmd = I40E_TX_CTX_DESC_TSO;
2328 cd_tso_len = skb->len - *hdr_len;
2329 cd_mss = skb_shinfo(skb)->gso_size;
2330 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2331 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2332 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2333 return 1;
2334 }
2335
2336 /**
2337 * i40e_tsyn - set up the tsyn context descriptor
2338 * @tx_ring: ptr to the ring to send
2339 * @skb: ptr to the skb we're sending
2340 * @tx_flags: the collected send information
2341 * @cd_type_cmd_tso_mss: Quad Word 1
2342 *
2343 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2344 **/
2345 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2346 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2347 {
2348 struct i40e_pf *pf;
2349
2350 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2351 return 0;
2352
2353 /* Tx timestamps cannot be sampled when doing TSO */
2354 if (tx_flags & I40E_TX_FLAGS_TSO)
2355 return 0;
2356
2357 /* only timestamp the outbound packet if the user has requested it and
2358 * we are not already transmitting a packet to be timestamped
2359 */
2360 pf = i40e_netdev_to_pf(tx_ring->netdev);
2361 if (!(pf->flags & I40E_FLAG_PTP))
2362 return 0;
2363
2364 if (pf->ptp_tx &&
2365 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2366 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2367 pf->ptp_tx_skb = skb_get(skb);
2368 } else {
2369 return 0;
2370 }
2371
2372 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2373 I40E_TXD_CTX_QW1_CMD_SHIFT;
2374
2375 return 1;
2376 }
2377
2378 /**
2379 * i40e_tx_enable_csum - Enable Tx checksum offloads
2380 * @skb: send buffer
2381 * @tx_flags: pointer to Tx flags currently set
2382 * @td_cmd: Tx descriptor command bits to set
2383 * @td_offset: Tx descriptor header offsets to set
2384 * @tx_ring: Tx descriptor ring
2385 * @cd_tunneling: ptr to context desc bits
2386 **/
2387 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2388 u32 *td_cmd, u32 *td_offset,
2389 struct i40e_ring *tx_ring,
2390 u32 *cd_tunneling)
2391 {
2392 union {
2393 struct iphdr *v4;
2394 struct ipv6hdr *v6;
2395 unsigned char *hdr;
2396 } ip;
2397 union {
2398 struct tcphdr *tcp;
2399 struct udphdr *udp;
2400 unsigned char *hdr;
2401 } l4;
2402 unsigned char *exthdr;
2403 u32 offset, cmd = 0;
2404 __be16 frag_off;
2405 u8 l4_proto = 0;
2406
2407 if (skb->ip_summed != CHECKSUM_PARTIAL)
2408 return 0;
2409
2410 ip.hdr = skb_network_header(skb);
2411 l4.hdr = skb_transport_header(skb);
2412
2413 /* compute outer L2 header size */
2414 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2415
2416 if (skb->encapsulation) {
2417 u32 tunnel = 0;
2418 /* define outer network header type */
2419 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2420 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2421 I40E_TX_CTX_EXT_IP_IPV4 :
2422 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2423
2424 l4_proto = ip.v4->protocol;
2425 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2426 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2427
2428 exthdr = ip.hdr + sizeof(*ip.v6);
2429 l4_proto = ip.v6->nexthdr;
2430 if (l4.hdr != exthdr)
2431 ipv6_skip_exthdr(skb, exthdr - skb->data,
2432 &l4_proto, &frag_off);
2433 }
2434
2435 /* define outer transport */
2436 switch (l4_proto) {
2437 case IPPROTO_UDP:
2438 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2439 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2440 break;
2441 case IPPROTO_GRE:
2442 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2443 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2444 break;
2445 case IPPROTO_IPIP:
2446 case IPPROTO_IPV6:
2447 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2448 l4.hdr = skb_inner_network_header(skb);
2449 break;
2450 default:
2451 if (*tx_flags & I40E_TX_FLAGS_TSO)
2452 return -1;
2453
2454 skb_checksum_help(skb);
2455 return 0;
2456 }
2457
2458 /* compute outer L3 header size */
2459 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2460 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2461
2462 /* switch IP header pointer from outer to inner header */
2463 ip.hdr = skb_inner_network_header(skb);
2464
2465 /* compute tunnel header size */
2466 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2467 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2468
2469 /* indicate if we need to offload outer UDP header */
2470 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2471 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2472 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2473 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2474
2475 /* record tunnel offload values */
2476 *cd_tunneling |= tunnel;
2477
2478 /* switch L4 header pointer from outer to inner */
2479 l4.hdr = skb_inner_transport_header(skb);
2480 l4_proto = 0;
2481
2482 /* reset type as we transition from outer to inner headers */
2483 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2484 if (ip.v4->version == 4)
2485 *tx_flags |= I40E_TX_FLAGS_IPV4;
2486 if (ip.v6->version == 6)
2487 *tx_flags |= I40E_TX_FLAGS_IPV6;
2488 }
2489
2490 /* Enable IP checksum offloads */
2491 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2492 l4_proto = ip.v4->protocol;
2493 /* the stack computes the IP header already, the only time we
2494 * need the hardware to recompute it is in the case of TSO.
2495 */
2496 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2497 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2498 I40E_TX_DESC_CMD_IIPT_IPV4;
2499 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2500 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2501
2502 exthdr = ip.hdr + sizeof(*ip.v6);
2503 l4_proto = ip.v6->nexthdr;
2504 if (l4.hdr != exthdr)
2505 ipv6_skip_exthdr(skb, exthdr - skb->data,
2506 &l4_proto, &frag_off);
2507 }
2508
2509 /* compute inner L3 header size */
2510 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2511
2512 /* Enable L4 checksum offloads */
2513 switch (l4_proto) {
2514 case IPPROTO_TCP:
2515 /* enable checksum offloads */
2516 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2517 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2518 break;
2519 case IPPROTO_SCTP:
2520 /* enable SCTP checksum offload */
2521 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2522 offset |= (sizeof(struct sctphdr) >> 2) <<
2523 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2524 break;
2525 case IPPROTO_UDP:
2526 /* enable UDP checksum offload */
2527 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2528 offset |= (sizeof(struct udphdr) >> 2) <<
2529 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2530 break;
2531 default:
2532 if (*tx_flags & I40E_TX_FLAGS_TSO)
2533 return -1;
2534 skb_checksum_help(skb);
2535 return 0;
2536 }
2537
2538 *td_cmd |= cmd;
2539 *td_offset |= offset;
2540
2541 return 1;
2542 }
2543
2544 /**
2545 * i40e_create_tx_ctx Build the Tx context descriptor
2546 * @tx_ring: ring to create the descriptor on
2547 * @cd_type_cmd_tso_mss: Quad Word 1
2548 * @cd_tunneling: Quad Word 0 - bits 0-31
2549 * @cd_l2tag2: Quad Word 0 - bits 32-63
2550 **/
2551 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2552 const u64 cd_type_cmd_tso_mss,
2553 const u32 cd_tunneling, const u32 cd_l2tag2)
2554 {
2555 struct i40e_tx_context_desc *context_desc;
2556 int i = tx_ring->next_to_use;
2557
2558 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2559 !cd_tunneling && !cd_l2tag2)
2560 return;
2561
2562 /* grab the next descriptor */
2563 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2564
2565 i++;
2566 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2567
2568 /* cpu_to_le32 and assign to struct fields */
2569 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2570 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2571 context_desc->rsvd = cpu_to_le16(0);
2572 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2573 }
2574
2575 /**
2576 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2577 * @tx_ring: the ring to be checked
2578 * @size: the size buffer we want to assure is available
2579 *
2580 * Returns -EBUSY if a stop is needed, else 0
2581 **/
2582 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2583 {
2584 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2585 /* Memory barrier before checking head and tail */
2586 smp_mb();
2587
2588 /* Check again in a case another CPU has just made room available. */
2589 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2590 return -EBUSY;
2591
2592 /* A reprieve! - use start_queue because it doesn't call schedule */
2593 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2594 ++tx_ring->tx_stats.restart_queue;
2595 return 0;
2596 }
2597
2598 /**
2599 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2600 * @skb: send buffer
2601 *
2602 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2603 * and so we need to figure out the cases where we need to linearize the skb.
2604 *
2605 * For TSO we need to count the TSO header and segment payload separately.
2606 * As such we need to check cases where we have 7 fragments or more as we
2607 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2608 * the segment payload in the first descriptor, and another 7 for the
2609 * fragments.
2610 **/
2611 bool __i40e_chk_linearize(struct sk_buff *skb)
2612 {
2613 const struct skb_frag_struct *frag, *stale;
2614 int nr_frags, sum;
2615
2616 /* no need to check if number of frags is less than 7 */
2617 nr_frags = skb_shinfo(skb)->nr_frags;
2618 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2619 return false;
2620
2621 /* We need to walk through the list and validate that each group
2622 * of 6 fragments totals at least gso_size. However we don't need
2623 * to perform such validation on the last 6 since the last 6 cannot
2624 * inherit any data from a descriptor after them.
2625 */
2626 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2627 frag = &skb_shinfo(skb)->frags[0];
2628
2629 /* Initialize size to the negative value of gso_size minus 1. We
2630 * use this as the worst case scenerio in which the frag ahead
2631 * of us only provides one byte which is why we are limited to 6
2632 * descriptors for a single transmit as the header and previous
2633 * fragment are already consuming 2 descriptors.
2634 */
2635 sum = 1 - skb_shinfo(skb)->gso_size;
2636
2637 /* Add size of frags 0 through 4 to create our initial sum */
2638 sum += skb_frag_size(frag++);
2639 sum += skb_frag_size(frag++);
2640 sum += skb_frag_size(frag++);
2641 sum += skb_frag_size(frag++);
2642 sum += skb_frag_size(frag++);
2643
2644 /* Walk through fragments adding latest fragment, testing it, and
2645 * then removing stale fragments from the sum.
2646 */
2647 stale = &skb_shinfo(skb)->frags[0];
2648 for (;;) {
2649 sum += skb_frag_size(frag++);
2650
2651 /* if sum is negative we failed to make sufficient progress */
2652 if (sum < 0)
2653 return true;
2654
2655 /* use pre-decrement to avoid processing last fragment */
2656 if (!--nr_frags)
2657 break;
2658
2659 sum -= skb_frag_size(stale++);
2660 }
2661
2662 return false;
2663 }
2664
2665 /**
2666 * i40e_tx_map - Build the Tx descriptor
2667 * @tx_ring: ring to send buffer on
2668 * @skb: send buffer
2669 * @first: first buffer info buffer to use
2670 * @tx_flags: collected send information
2671 * @hdr_len: size of the packet header
2672 * @td_cmd: the command field in the descriptor
2673 * @td_offset: offset for checksum or crc
2674 **/
2675 #ifdef I40E_FCOE
2676 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2677 struct i40e_tx_buffer *first, u32 tx_flags,
2678 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2679 #else
2680 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2681 struct i40e_tx_buffer *first, u32 tx_flags,
2682 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2683 #endif
2684 {
2685 unsigned int data_len = skb->data_len;
2686 unsigned int size = skb_headlen(skb);
2687 struct skb_frag_struct *frag;
2688 struct i40e_tx_buffer *tx_bi;
2689 struct i40e_tx_desc *tx_desc;
2690 u16 i = tx_ring->next_to_use;
2691 u32 td_tag = 0;
2692 dma_addr_t dma;
2693 u16 gso_segs;
2694 u16 desc_count = 0;
2695 bool tail_bump = true;
2696 bool do_rs = false;
2697
2698 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2699 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2700 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2701 I40E_TX_FLAGS_VLAN_SHIFT;
2702 }
2703
2704 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2705 gso_segs = skb_shinfo(skb)->gso_segs;
2706 else
2707 gso_segs = 1;
2708
2709 /* multiply data chunks by size of headers */
2710 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2711 first->gso_segs = gso_segs;
2712 first->skb = skb;
2713 first->tx_flags = tx_flags;
2714
2715 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2716
2717 tx_desc = I40E_TX_DESC(tx_ring, i);
2718 tx_bi = first;
2719
2720 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2721 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2722
2723 if (dma_mapping_error(tx_ring->dev, dma))
2724 goto dma_error;
2725
2726 /* record length, and DMA address */
2727 dma_unmap_len_set(tx_bi, len, size);
2728 dma_unmap_addr_set(tx_bi, dma, dma);
2729
2730 /* align size to end of page */
2731 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2732 tx_desc->buffer_addr = cpu_to_le64(dma);
2733
2734 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2735 tx_desc->cmd_type_offset_bsz =
2736 build_ctob(td_cmd, td_offset,
2737 max_data, td_tag);
2738
2739 tx_desc++;
2740 i++;
2741 desc_count++;
2742
2743 if (i == tx_ring->count) {
2744 tx_desc = I40E_TX_DESC(tx_ring, 0);
2745 i = 0;
2746 }
2747
2748 dma += max_data;
2749 size -= max_data;
2750
2751 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2752 tx_desc->buffer_addr = cpu_to_le64(dma);
2753 }
2754
2755 if (likely(!data_len))
2756 break;
2757
2758 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2759 size, td_tag);
2760
2761 tx_desc++;
2762 i++;
2763 desc_count++;
2764
2765 if (i == tx_ring->count) {
2766 tx_desc = I40E_TX_DESC(tx_ring, 0);
2767 i = 0;
2768 }
2769
2770 size = skb_frag_size(frag);
2771 data_len -= size;
2772
2773 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2774 DMA_TO_DEVICE);
2775
2776 tx_bi = &tx_ring->tx_bi[i];
2777 }
2778
2779 /* set next_to_watch value indicating a packet is present */
2780 first->next_to_watch = tx_desc;
2781
2782 i++;
2783 if (i == tx_ring->count)
2784 i = 0;
2785
2786 tx_ring->next_to_use = i;
2787
2788 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2789 tx_ring->queue_index),
2790 first->bytecount);
2791 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2792
2793 /* Algorithm to optimize tail and RS bit setting:
2794 * if xmit_more is supported
2795 * if xmit_more is true
2796 * do not update tail and do not mark RS bit.
2797 * if xmit_more is false and last xmit_more was false
2798 * if every packet spanned less than 4 desc
2799 * then set RS bit on 4th packet and update tail
2800 * on every packet
2801 * else
2802 * update tail and set RS bit on every packet.
2803 * if xmit_more is false and last_xmit_more was true
2804 * update tail and set RS bit.
2805 *
2806 * Optimization: wmb to be issued only in case of tail update.
2807 * Also optimize the Descriptor WB path for RS bit with the same
2808 * algorithm.
2809 *
2810 * Note: If there are less than 4 packets
2811 * pending and interrupts were disabled the service task will
2812 * trigger a force WB.
2813 */
2814 if (skb->xmit_more &&
2815 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2816 tx_ring->queue_index))) {
2817 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2818 tail_bump = false;
2819 } else if (!skb->xmit_more &&
2820 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2821 tx_ring->queue_index)) &&
2822 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2823 (tx_ring->packet_stride < WB_STRIDE) &&
2824 (desc_count < WB_STRIDE)) {
2825 tx_ring->packet_stride++;
2826 } else {
2827 tx_ring->packet_stride = 0;
2828 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2829 do_rs = true;
2830 }
2831 if (do_rs)
2832 tx_ring->packet_stride = 0;
2833
2834 tx_desc->cmd_type_offset_bsz =
2835 build_ctob(td_cmd, td_offset, size, td_tag) |
2836 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2837 I40E_TX_DESC_CMD_EOP) <<
2838 I40E_TXD_QW1_CMD_SHIFT);
2839
2840 /* notify HW of packet */
2841 if (!tail_bump)
2842 prefetchw(tx_desc + 1);
2843
2844 if (tail_bump) {
2845 /* Force memory writes to complete before letting h/w
2846 * know there are new descriptors to fetch. (Only
2847 * applicable for weak-ordered memory model archs,
2848 * such as IA-64).
2849 */
2850 wmb();
2851 writel(i, tx_ring->tail);
2852 }
2853
2854 return;
2855
2856 dma_error:
2857 dev_info(tx_ring->dev, "TX DMA map failed\n");
2858
2859 /* clear dma mappings for failed tx_bi map */
2860 for (;;) {
2861 tx_bi = &tx_ring->tx_bi[i];
2862 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2863 if (tx_bi == first)
2864 break;
2865 if (i == 0)
2866 i = tx_ring->count;
2867 i--;
2868 }
2869
2870 tx_ring->next_to_use = i;
2871 }
2872
2873 /**
2874 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2875 * @skb: send buffer
2876 * @tx_ring: ring to send buffer on
2877 *
2878 * Returns NETDEV_TX_OK if sent, else an error code
2879 **/
2880 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2881 struct i40e_ring *tx_ring)
2882 {
2883 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2884 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2885 struct i40e_tx_buffer *first;
2886 u32 td_offset = 0;
2887 u32 tx_flags = 0;
2888 __be16 protocol;
2889 u32 td_cmd = 0;
2890 u8 hdr_len = 0;
2891 int tso, count;
2892 int tsyn;
2893
2894 /* prefetch the data, we'll need it later */
2895 prefetch(skb->data);
2896
2897 count = i40e_xmit_descriptor_count(skb);
2898 if (i40e_chk_linearize(skb, count)) {
2899 if (__skb_linearize(skb))
2900 goto out_drop;
2901 count = i40e_txd_use_count(skb->len);
2902 tx_ring->tx_stats.tx_linearize++;
2903 }
2904
2905 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2906 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2907 * + 4 desc gap to avoid the cache line where head is,
2908 * + 1 desc for context descriptor,
2909 * otherwise try next time
2910 */
2911 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2912 tx_ring->tx_stats.tx_busy++;
2913 return NETDEV_TX_BUSY;
2914 }
2915
2916 /* prepare the xmit flags */
2917 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2918 goto out_drop;
2919
2920 /* obtain protocol of skb */
2921 protocol = vlan_get_protocol(skb);
2922
2923 /* record the location of the first descriptor for this packet */
2924 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2925
2926 /* setup IPv4/IPv6 offloads */
2927 if (protocol == htons(ETH_P_IP))
2928 tx_flags |= I40E_TX_FLAGS_IPV4;
2929 else if (protocol == htons(ETH_P_IPV6))
2930 tx_flags |= I40E_TX_FLAGS_IPV6;
2931
2932 tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2933
2934 if (tso < 0)
2935 goto out_drop;
2936 else if (tso)
2937 tx_flags |= I40E_TX_FLAGS_TSO;
2938
2939 /* Always offload the checksum, since it's in the data descriptor */
2940 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2941 tx_ring, &cd_tunneling);
2942 if (tso < 0)
2943 goto out_drop;
2944
2945 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2946
2947 if (tsyn)
2948 tx_flags |= I40E_TX_FLAGS_TSYN;
2949
2950 skb_tx_timestamp(skb);
2951
2952 /* always enable CRC insertion offload */
2953 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2954
2955 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2956 cd_tunneling, cd_l2tag2);
2957
2958 /* Add Flow Director ATR if it's enabled.
2959 *
2960 * NOTE: this must always be directly before the data descriptor.
2961 */
2962 i40e_atr(tx_ring, skb, tx_flags);
2963
2964 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2965 td_cmd, td_offset);
2966
2967 return NETDEV_TX_OK;
2968
2969 out_drop:
2970 dev_kfree_skb_any(skb);
2971 return NETDEV_TX_OK;
2972 }
2973
2974 /**
2975 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2976 * @skb: send buffer
2977 * @netdev: network interface device structure
2978 *
2979 * Returns NETDEV_TX_OK if sent, else an error code
2980 **/
2981 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2982 {
2983 struct i40e_netdev_priv *np = netdev_priv(netdev);
2984 struct i40e_vsi *vsi = np->vsi;
2985 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2986
2987 /* hardware can't handle really short frames, hardware padding works
2988 * beyond this point
2989 */
2990 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2991 return NETDEV_TX_OK;
2992
2993 return i40e_xmit_frame_ring(skb, tx_ring);
2994 }
This page took 0.149974 seconds and 6 git commands to generate.