Merge branch 'pm-devfreq'
[deliverable/linux.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34 {
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45 * i40e_program_fdir_filter - Program a Flow Director filter
46 * @fdir_data: Packet data that will be filter parameters
47 * @raw_packet: the pre-allocated packet buffer for FDir
48 * @pf: The PF pointer
49 * @add: True for add/update, False for remove
50 **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52 struct i40e_pf *pf, bool add)
53 {
54 struct i40e_filter_program_desc *fdir_desc;
55 struct i40e_tx_buffer *tx_buf, *first;
56 struct i40e_tx_desc *tx_desc;
57 struct i40e_ring *tx_ring;
58 unsigned int fpt, dcc;
59 struct i40e_vsi *vsi;
60 struct device *dev;
61 dma_addr_t dma;
62 u32 td_cmd = 0;
63 u16 delay = 0;
64 u16 i;
65
66 /* find existing FDIR VSI */
67 vsi = NULL;
68 for (i = 0; i < pf->num_alloc_vsi; i++)
69 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70 vsi = pf->vsi[i];
71 if (!vsi)
72 return -ENOENT;
73
74 tx_ring = vsi->tx_rings[0];
75 dev = tx_ring->dev;
76
77 /* we need two descriptors to add/del a filter and we can wait */
78 do {
79 if (I40E_DESC_UNUSED(tx_ring) > 1)
80 break;
81 msleep_interruptible(1);
82 delay++;
83 } while (delay < I40E_FD_CLEAN_DELAY);
84
85 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86 return -EAGAIN;
87
88 dma = dma_map_single(dev, raw_packet,
89 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90 if (dma_mapping_error(dev, dma))
91 goto dma_fail;
92
93 /* grab the next descriptor */
94 i = tx_ring->next_to_use;
95 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96 first = &tx_ring->tx_bi[i];
97 memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102 I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110 /* Use LAN VSI Id if not programmed by user */
111 if (fdir_data->dest_vsi == 0)
112 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114 else
115 fpt |= ((u32)fdir_data->dest_vsi <<
116 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121 if (add)
122 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124 else
125 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129 I40E_TXD_FLTR_QW1_DEST_MASK;
130
131 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134 if (fdir_data->cnt_index != 0) {
135 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136 dcc |= ((u32)fdir_data->cnt_index <<
137 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139 }
140
141 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142 fdir_desc->rsvd = cpu_to_le32(0);
143 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146 /* Now program a dummy descriptor */
147 i = tx_ring->next_to_use;
148 tx_desc = I40E_TX_DESC(tx_ring, i);
149 tx_buf = &tx_ring->tx_bi[i];
150
151 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155 /* record length, and DMA address */
156 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157 dma_unmap_addr_set(tx_buf, dma, dma);
158
159 tx_desc->buffer_addr = cpu_to_le64(dma);
160 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163 tx_buf->raw_buf = (void *)raw_packet;
164
165 tx_desc->cmd_type_offset_bsz =
166 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168 /* Force memory writes to complete before letting h/w
169 * know there are new descriptors to fetch.
170 */
171 wmb();
172
173 /* Mark the data descriptor to be watched */
174 first->next_to_watch = tx_desc;
175
176 writel(tx_ring->next_to_use, tx_ring->tail);
177 return 0;
178
179 dma_fail:
180 return -1;
181 }
182
183 #define IP_HEADER_OFFSET 14
184 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
185 /**
186 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
187 * @vsi: pointer to the targeted VSI
188 * @fd_data: the flow director data required for the FDir descriptor
189 * @add: true adds a filter, false removes it
190 *
191 * Returns 0 if the filters were successfully added or removed
192 **/
193 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
194 struct i40e_fdir_filter *fd_data,
195 bool add)
196 {
197 struct i40e_pf *pf = vsi->back;
198 struct udphdr *udp;
199 struct iphdr *ip;
200 bool err = false;
201 u8 *raw_packet;
202 int ret;
203 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
204 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
205 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
206
207 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
208 if (!raw_packet)
209 return -ENOMEM;
210 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
211
212 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
213 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
214 + sizeof(struct iphdr));
215
216 ip->daddr = fd_data->dst_ip[0];
217 udp->dest = fd_data->dst_port;
218 ip->saddr = fd_data->src_ip[0];
219 udp->source = fd_data->src_port;
220
221 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
222 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
223 if (ret) {
224 dev_info(&pf->pdev->dev,
225 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
226 fd_data->pctype, fd_data->fd_id, ret);
227 err = true;
228 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
229 if (add)
230 dev_info(&pf->pdev->dev,
231 "Filter OK for PCTYPE %d loc = %d\n",
232 fd_data->pctype, fd_data->fd_id);
233 else
234 dev_info(&pf->pdev->dev,
235 "Filter deleted for PCTYPE %d loc = %d\n",
236 fd_data->pctype, fd_data->fd_id);
237 }
238 if (err)
239 kfree(raw_packet);
240
241 return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247 * @vsi: pointer to the targeted VSI
248 * @fd_data: the flow director data required for the FDir descriptor
249 * @add: true adds a filter, false removes it
250 *
251 * Returns 0 if the filters were successfully added or removed
252 **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254 struct i40e_fdir_filter *fd_data,
255 bool add)
256 {
257 struct i40e_pf *pf = vsi->back;
258 struct tcphdr *tcp;
259 struct iphdr *ip;
260 bool err = false;
261 u8 *raw_packet;
262 int ret;
263 /* Dummy packet */
264 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267 0x0, 0x72, 0, 0, 0, 0};
268
269 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270 if (!raw_packet)
271 return -ENOMEM;
272 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276 + sizeof(struct iphdr));
277
278 ip->daddr = fd_data->dst_ip[0];
279 tcp->dest = fd_data->dst_port;
280 ip->saddr = fd_data->src_ip[0];
281 tcp->source = fd_data->src_port;
282
283 if (add) {
284 pf->fd_tcp_rule++;
285 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286 if (I40E_DEBUG_FD & pf->hw.debug_mask)
287 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
288 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
289 }
290 } else {
291 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
292 (pf->fd_tcp_rule - 1) : 0;
293 if (pf->fd_tcp_rule == 0) {
294 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
295 if (I40E_DEBUG_FD & pf->hw.debug_mask)
296 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
297 }
298 }
299
300 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
301 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
302
303 if (ret) {
304 dev_info(&pf->pdev->dev,
305 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
306 fd_data->pctype, fd_data->fd_id, ret);
307 err = true;
308 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
309 if (add)
310 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
311 fd_data->pctype, fd_data->fd_id);
312 else
313 dev_info(&pf->pdev->dev,
314 "Filter deleted for PCTYPE %d loc = %d\n",
315 fd_data->pctype, fd_data->fd_id);
316 }
317
318 if (err)
319 kfree(raw_packet);
320
321 return err ? -EOPNOTSUPP : 0;
322 }
323
324 /**
325 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
326 * a specific flow spec
327 * @vsi: pointer to the targeted VSI
328 * @fd_data: the flow director data required for the FDir descriptor
329 * @add: true adds a filter, false removes it
330 *
331 * Returns 0 if the filters were successfully added or removed
332 **/
333 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
334 struct i40e_fdir_filter *fd_data,
335 bool add)
336 {
337 return -EOPNOTSUPP;
338 }
339
340 #define I40E_IP_DUMMY_PACKET_LEN 34
341 /**
342 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
343 * a specific flow spec
344 * @vsi: pointer to the targeted VSI
345 * @fd_data: the flow director data required for the FDir descriptor
346 * @add: true adds a filter, false removes it
347 *
348 * Returns 0 if the filters were successfully added or removed
349 **/
350 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
351 struct i40e_fdir_filter *fd_data,
352 bool add)
353 {
354 struct i40e_pf *pf = vsi->back;
355 struct iphdr *ip;
356 bool err = false;
357 u8 *raw_packet;
358 int ret;
359 int i;
360 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
361 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
362 0, 0, 0, 0};
363
364 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
365 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
366 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
367 if (!raw_packet)
368 return -ENOMEM;
369 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
370 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
371
372 ip->saddr = fd_data->src_ip[0];
373 ip->daddr = fd_data->dst_ip[0];
374 ip->protocol = 0;
375
376 fd_data->pctype = i;
377 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
378
379 if (ret) {
380 dev_info(&pf->pdev->dev,
381 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
382 fd_data->pctype, fd_data->fd_id, ret);
383 err = true;
384 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
385 if (add)
386 dev_info(&pf->pdev->dev,
387 "Filter OK for PCTYPE %d loc = %d\n",
388 fd_data->pctype, fd_data->fd_id);
389 else
390 dev_info(&pf->pdev->dev,
391 "Filter deleted for PCTYPE %d loc = %d\n",
392 fd_data->pctype, fd_data->fd_id);
393 }
394 }
395
396 if (err)
397 kfree(raw_packet);
398
399 return err ? -EOPNOTSUPP : 0;
400 }
401
402 /**
403 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
404 * @vsi: pointer to the targeted VSI
405 * @cmd: command to get or set RX flow classification rules
406 * @add: true adds a filter, false removes it
407 *
408 **/
409 int i40e_add_del_fdir(struct i40e_vsi *vsi,
410 struct i40e_fdir_filter *input, bool add)
411 {
412 struct i40e_pf *pf = vsi->back;
413 int ret;
414
415 switch (input->flow_type & ~FLOW_EXT) {
416 case TCP_V4_FLOW:
417 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
418 break;
419 case UDP_V4_FLOW:
420 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
421 break;
422 case SCTP_V4_FLOW:
423 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
424 break;
425 case IPV4_FLOW:
426 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
427 break;
428 case IP_USER_FLOW:
429 switch (input->ip4_proto) {
430 case IPPROTO_TCP:
431 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
432 break;
433 case IPPROTO_UDP:
434 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
435 break;
436 case IPPROTO_SCTP:
437 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
438 break;
439 default:
440 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
441 break;
442 }
443 break;
444 default:
445 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
446 input->flow_type);
447 ret = -EINVAL;
448 }
449
450 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
451 return ret;
452 }
453
454 /**
455 * i40e_fd_handle_status - check the Programming Status for FD
456 * @rx_ring: the Rx ring for this descriptor
457 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
458 * @prog_id: the id originally used for programming
459 *
460 * This is used to verify if the FD programming or invalidation
461 * requested by SW to the HW is successful or not and take actions accordingly.
462 **/
463 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
464 union i40e_rx_desc *rx_desc, u8 prog_id)
465 {
466 struct i40e_pf *pf = rx_ring->vsi->back;
467 struct pci_dev *pdev = pf->pdev;
468 u32 fcnt_prog, fcnt_avail;
469 u32 error;
470 u64 qw;
471
472 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
473 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
474 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
475
476 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
477 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
478 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
479 (I40E_DEBUG_FD & pf->hw.debug_mask))
480 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
481 pf->fd_inv);
482
483 /* Check if the programming error is for ATR.
484 * If so, auto disable ATR and set a state for
485 * flush in progress. Next time we come here if flush is in
486 * progress do nothing, once flush is complete the state will
487 * be cleared.
488 */
489 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
490 return;
491
492 pf->fd_add_err++;
493 /* store the current atr filter count */
494 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
495
496 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
497 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
498 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
499 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
500 }
501
502 /* filter programming failed most likely due to table full */
503 fcnt_prog = i40e_get_global_fd_count(pf);
504 fcnt_avail = pf->fdir_pf_filter_count;
505 /* If ATR is running fcnt_prog can quickly change,
506 * if we are very close to full, it makes sense to disable
507 * FD ATR/SB and then re-enable it when there is room.
508 */
509 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
510 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
511 !(pf->auto_disable_flags &
512 I40E_FLAG_FD_SB_ENABLED)) {
513 if (I40E_DEBUG_FD & pf->hw.debug_mask)
514 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
515 pf->auto_disable_flags |=
516 I40E_FLAG_FD_SB_ENABLED;
517 }
518 }
519 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
520 if (I40E_DEBUG_FD & pf->hw.debug_mask)
521 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
522 rx_desc->wb.qword0.hi_dword.fd_id);
523 }
524 }
525
526 /**
527 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
528 * @ring: the ring that owns the buffer
529 * @tx_buffer: the buffer to free
530 **/
531 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
532 struct i40e_tx_buffer *tx_buffer)
533 {
534 if (tx_buffer->skb) {
535 dev_kfree_skb_any(tx_buffer->skb);
536 if (dma_unmap_len(tx_buffer, len))
537 dma_unmap_single(ring->dev,
538 dma_unmap_addr(tx_buffer, dma),
539 dma_unmap_len(tx_buffer, len),
540 DMA_TO_DEVICE);
541 } else if (dma_unmap_len(tx_buffer, len)) {
542 dma_unmap_page(ring->dev,
543 dma_unmap_addr(tx_buffer, dma),
544 dma_unmap_len(tx_buffer, len),
545 DMA_TO_DEVICE);
546 }
547
548 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
549 kfree(tx_buffer->raw_buf);
550
551 tx_buffer->next_to_watch = NULL;
552 tx_buffer->skb = NULL;
553 dma_unmap_len_set(tx_buffer, len, 0);
554 /* tx_buffer must be completely set up in the transmit path */
555 }
556
557 /**
558 * i40e_clean_tx_ring - Free any empty Tx buffers
559 * @tx_ring: ring to be cleaned
560 **/
561 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
562 {
563 unsigned long bi_size;
564 u16 i;
565
566 /* ring already cleared, nothing to do */
567 if (!tx_ring->tx_bi)
568 return;
569
570 /* Free all the Tx ring sk_buffs */
571 for (i = 0; i < tx_ring->count; i++)
572 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
573
574 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
575 memset(tx_ring->tx_bi, 0, bi_size);
576
577 /* Zero out the descriptor ring */
578 memset(tx_ring->desc, 0, tx_ring->size);
579
580 tx_ring->next_to_use = 0;
581 tx_ring->next_to_clean = 0;
582
583 if (!tx_ring->netdev)
584 return;
585
586 /* cleanup Tx queue statistics */
587 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
588 tx_ring->queue_index));
589 }
590
591 /**
592 * i40e_free_tx_resources - Free Tx resources per queue
593 * @tx_ring: Tx descriptor ring for a specific queue
594 *
595 * Free all transmit software resources
596 **/
597 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
598 {
599 i40e_clean_tx_ring(tx_ring);
600 kfree(tx_ring->tx_bi);
601 tx_ring->tx_bi = NULL;
602
603 if (tx_ring->desc) {
604 dma_free_coherent(tx_ring->dev, tx_ring->size,
605 tx_ring->desc, tx_ring->dma);
606 tx_ring->desc = NULL;
607 }
608 }
609
610 /**
611 * i40e_get_tx_pending - how many tx descriptors not processed
612 * @tx_ring: the ring of descriptors
613 * @in_sw: is tx_pending being checked in SW or HW
614 *
615 * Since there is no access to the ring head register
616 * in XL710, we need to use our local copies
617 **/
618 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
619 {
620 u32 head, tail;
621
622 if (!in_sw)
623 head = i40e_get_head(ring);
624 else
625 head = ring->next_to_clean;
626 tail = readl(ring->tail);
627
628 if (head != tail)
629 return (head < tail) ?
630 tail - head : (tail + ring->count - head);
631
632 return 0;
633 }
634
635 #define WB_STRIDE 0x3
636
637 /**
638 * i40e_clean_tx_irq - Reclaim resources after transmit completes
639 * @vsi: the VSI we care about
640 * @tx_ring: Tx ring to clean
641 * @napi_budget: Used to determine if we are in netpoll
642 *
643 * Returns true if there's any budget left (e.g. the clean is finished)
644 **/
645 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
646 struct i40e_ring *tx_ring, int napi_budget)
647 {
648 u16 i = tx_ring->next_to_clean;
649 struct i40e_tx_buffer *tx_buf;
650 struct i40e_tx_desc *tx_head;
651 struct i40e_tx_desc *tx_desc;
652 unsigned int total_bytes = 0, total_packets = 0;
653 unsigned int budget = vsi->work_limit;
654
655 tx_buf = &tx_ring->tx_bi[i];
656 tx_desc = I40E_TX_DESC(tx_ring, i);
657 i -= tx_ring->count;
658
659 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
660
661 do {
662 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
663
664 /* if next_to_watch is not set then there is no work pending */
665 if (!eop_desc)
666 break;
667
668 /* prevent any other reads prior to eop_desc */
669 read_barrier_depends();
670
671 /* we have caught up to head, no work left to do */
672 if (tx_head == tx_desc)
673 break;
674
675 /* clear next_to_watch to prevent false hangs */
676 tx_buf->next_to_watch = NULL;
677
678 /* update the statistics for this packet */
679 total_bytes += tx_buf->bytecount;
680 total_packets += tx_buf->gso_segs;
681
682 /* free the skb */
683 napi_consume_skb(tx_buf->skb, napi_budget);
684
685 /* unmap skb header data */
686 dma_unmap_single(tx_ring->dev,
687 dma_unmap_addr(tx_buf, dma),
688 dma_unmap_len(tx_buf, len),
689 DMA_TO_DEVICE);
690
691 /* clear tx_buffer data */
692 tx_buf->skb = NULL;
693 dma_unmap_len_set(tx_buf, len, 0);
694
695 /* unmap remaining buffers */
696 while (tx_desc != eop_desc) {
697
698 tx_buf++;
699 tx_desc++;
700 i++;
701 if (unlikely(!i)) {
702 i -= tx_ring->count;
703 tx_buf = tx_ring->tx_bi;
704 tx_desc = I40E_TX_DESC(tx_ring, 0);
705 }
706
707 /* unmap any remaining paged data */
708 if (dma_unmap_len(tx_buf, len)) {
709 dma_unmap_page(tx_ring->dev,
710 dma_unmap_addr(tx_buf, dma),
711 dma_unmap_len(tx_buf, len),
712 DMA_TO_DEVICE);
713 dma_unmap_len_set(tx_buf, len, 0);
714 }
715 }
716
717 /* move us one more past the eop_desc for start of next pkt */
718 tx_buf++;
719 tx_desc++;
720 i++;
721 if (unlikely(!i)) {
722 i -= tx_ring->count;
723 tx_buf = tx_ring->tx_bi;
724 tx_desc = I40E_TX_DESC(tx_ring, 0);
725 }
726
727 prefetch(tx_desc);
728
729 /* update budget accounting */
730 budget--;
731 } while (likely(budget));
732
733 i += tx_ring->count;
734 tx_ring->next_to_clean = i;
735 u64_stats_update_begin(&tx_ring->syncp);
736 tx_ring->stats.bytes += total_bytes;
737 tx_ring->stats.packets += total_packets;
738 u64_stats_update_end(&tx_ring->syncp);
739 tx_ring->q_vector->tx.total_bytes += total_bytes;
740 tx_ring->q_vector->tx.total_packets += total_packets;
741
742 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
743 unsigned int j = 0;
744
745 /* check to see if there are < 4 descriptors
746 * waiting to be written back, then kick the hardware to force
747 * them to be written back in case we stay in NAPI.
748 * In this mode on X722 we do not enable Interrupt.
749 */
750 j = i40e_get_tx_pending(tx_ring, false);
751
752 if (budget &&
753 ((j / (WB_STRIDE + 1)) == 0) && (j != 0) &&
754 !test_bit(__I40E_DOWN, &vsi->state) &&
755 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
756 tx_ring->arm_wb = true;
757 }
758
759 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
760 tx_ring->queue_index),
761 total_packets, total_bytes);
762
763 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
764 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
765 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
766 /* Make sure that anybody stopping the queue after this
767 * sees the new next_to_clean.
768 */
769 smp_mb();
770 if (__netif_subqueue_stopped(tx_ring->netdev,
771 tx_ring->queue_index) &&
772 !test_bit(__I40E_DOWN, &vsi->state)) {
773 netif_wake_subqueue(tx_ring->netdev,
774 tx_ring->queue_index);
775 ++tx_ring->tx_stats.restart_queue;
776 }
777 }
778
779 return !!budget;
780 }
781
782 /**
783 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
784 * @vsi: the VSI we care about
785 * @q_vector: the vector on which to enable writeback
786 *
787 **/
788 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
789 struct i40e_q_vector *q_vector)
790 {
791 u16 flags = q_vector->tx.ring[0].flags;
792 u32 val;
793
794 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
795 return;
796
797 if (q_vector->arm_wb_state)
798 return;
799
800 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
801 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
802 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
803
804 wr32(&vsi->back->hw,
805 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
806 val);
807 } else {
808 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
809 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
810
811 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
812 }
813 q_vector->arm_wb_state = true;
814 }
815
816 /**
817 * i40e_force_wb - Issue SW Interrupt so HW does a wb
818 * @vsi: the VSI we care about
819 * @q_vector: the vector on which to force writeback
820 *
821 **/
822 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
823 {
824 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
825 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
826 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
827 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
828 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
829 /* allow 00 to be written to the index */
830
831 wr32(&vsi->back->hw,
832 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
833 vsi->base_vector - 1), val);
834 } else {
835 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
836 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
837 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
838 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
839 /* allow 00 to be written to the index */
840
841 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
842 }
843 }
844
845 /**
846 * i40e_set_new_dynamic_itr - Find new ITR level
847 * @rc: structure containing ring performance data
848 *
849 * Returns true if ITR changed, false if not
850 *
851 * Stores a new ITR value based on packets and byte counts during
852 * the last interrupt. The advantage of per interrupt computation
853 * is faster updates and more accurate ITR for the current traffic
854 * pattern. Constants in this function were computed based on
855 * theoretical maximum wire speed and thresholds were set based on
856 * testing data as well as attempting to minimize response time
857 * while increasing bulk throughput.
858 **/
859 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
860 {
861 enum i40e_latency_range new_latency_range = rc->latency_range;
862 struct i40e_q_vector *qv = rc->ring->q_vector;
863 u32 new_itr = rc->itr;
864 int bytes_per_int;
865 int usecs;
866
867 if (rc->total_packets == 0 || !rc->itr)
868 return false;
869
870 /* simple throttlerate management
871 * 0-10MB/s lowest (50000 ints/s)
872 * 10-20MB/s low (20000 ints/s)
873 * 20-1249MB/s bulk (18000 ints/s)
874 * > 40000 Rx packets per second (8000 ints/s)
875 *
876 * The math works out because the divisor is in 10^(-6) which
877 * turns the bytes/us input value into MB/s values, but
878 * make sure to use usecs, as the register values written
879 * are in 2 usec increments in the ITR registers, and make sure
880 * to use the smoothed values that the countdown timer gives us.
881 */
882 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
883 bytes_per_int = rc->total_bytes / usecs;
884
885 switch (new_latency_range) {
886 case I40E_LOWEST_LATENCY:
887 if (bytes_per_int > 10)
888 new_latency_range = I40E_LOW_LATENCY;
889 break;
890 case I40E_LOW_LATENCY:
891 if (bytes_per_int > 20)
892 new_latency_range = I40E_BULK_LATENCY;
893 else if (bytes_per_int <= 10)
894 new_latency_range = I40E_LOWEST_LATENCY;
895 break;
896 case I40E_BULK_LATENCY:
897 case I40E_ULTRA_LATENCY:
898 default:
899 if (bytes_per_int <= 20)
900 new_latency_range = I40E_LOW_LATENCY;
901 break;
902 }
903
904 /* this is to adjust RX more aggressively when streaming small
905 * packets. The value of 40000 was picked as it is just beyond
906 * what the hardware can receive per second if in low latency
907 * mode.
908 */
909 #define RX_ULTRA_PACKET_RATE 40000
910
911 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
912 (&qv->rx == rc))
913 new_latency_range = I40E_ULTRA_LATENCY;
914
915 rc->latency_range = new_latency_range;
916
917 switch (new_latency_range) {
918 case I40E_LOWEST_LATENCY:
919 new_itr = I40E_ITR_50K;
920 break;
921 case I40E_LOW_LATENCY:
922 new_itr = I40E_ITR_20K;
923 break;
924 case I40E_BULK_LATENCY:
925 new_itr = I40E_ITR_18K;
926 break;
927 case I40E_ULTRA_LATENCY:
928 new_itr = I40E_ITR_8K;
929 break;
930 default:
931 break;
932 }
933
934 rc->total_bytes = 0;
935 rc->total_packets = 0;
936
937 if (new_itr != rc->itr) {
938 rc->itr = new_itr;
939 return true;
940 }
941
942 return false;
943 }
944
945 /**
946 * i40e_clean_programming_status - clean the programming status descriptor
947 * @rx_ring: the rx ring that has this descriptor
948 * @rx_desc: the rx descriptor written back by HW
949 *
950 * Flow director should handle FD_FILTER_STATUS to check its filter programming
951 * status being successful or not and take actions accordingly. FCoE should
952 * handle its context/filter programming/invalidation status and take actions.
953 *
954 **/
955 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
956 union i40e_rx_desc *rx_desc)
957 {
958 u64 qw;
959 u8 id;
960
961 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
962 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
963 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
964
965 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
966 i40e_fd_handle_status(rx_ring, rx_desc, id);
967 #ifdef I40E_FCOE
968 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
969 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
970 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
971 #endif
972 }
973
974 /**
975 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
976 * @tx_ring: the tx ring to set up
977 *
978 * Return 0 on success, negative on error
979 **/
980 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
981 {
982 struct device *dev = tx_ring->dev;
983 int bi_size;
984
985 if (!dev)
986 return -ENOMEM;
987
988 /* warn if we are about to overwrite the pointer */
989 WARN_ON(tx_ring->tx_bi);
990 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
991 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
992 if (!tx_ring->tx_bi)
993 goto err;
994
995 /* round up to nearest 4K */
996 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
997 /* add u32 for head writeback, align after this takes care of
998 * guaranteeing this is at least one cache line in size
999 */
1000 tx_ring->size += sizeof(u32);
1001 tx_ring->size = ALIGN(tx_ring->size, 4096);
1002 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1003 &tx_ring->dma, GFP_KERNEL);
1004 if (!tx_ring->desc) {
1005 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1006 tx_ring->size);
1007 goto err;
1008 }
1009
1010 tx_ring->next_to_use = 0;
1011 tx_ring->next_to_clean = 0;
1012 return 0;
1013
1014 err:
1015 kfree(tx_ring->tx_bi);
1016 tx_ring->tx_bi = NULL;
1017 return -ENOMEM;
1018 }
1019
1020 /**
1021 * i40e_clean_rx_ring - Free Rx buffers
1022 * @rx_ring: ring to be cleaned
1023 **/
1024 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1025 {
1026 struct device *dev = rx_ring->dev;
1027 unsigned long bi_size;
1028 u16 i;
1029
1030 /* ring already cleared, nothing to do */
1031 if (!rx_ring->rx_bi)
1032 return;
1033
1034 /* Free all the Rx ring sk_buffs */
1035 for (i = 0; i < rx_ring->count; i++) {
1036 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1037
1038 if (rx_bi->skb) {
1039 dev_kfree_skb(rx_bi->skb);
1040 rx_bi->skb = NULL;
1041 }
1042 if (!rx_bi->page)
1043 continue;
1044
1045 dma_unmap_page(dev, rx_bi->dma, PAGE_SIZE, DMA_FROM_DEVICE);
1046 __free_pages(rx_bi->page, 0);
1047
1048 rx_bi->page = NULL;
1049 rx_bi->page_offset = 0;
1050 }
1051
1052 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1053 memset(rx_ring->rx_bi, 0, bi_size);
1054
1055 /* Zero out the descriptor ring */
1056 memset(rx_ring->desc, 0, rx_ring->size);
1057
1058 rx_ring->next_to_alloc = 0;
1059 rx_ring->next_to_clean = 0;
1060 rx_ring->next_to_use = 0;
1061 }
1062
1063 /**
1064 * i40e_free_rx_resources - Free Rx resources
1065 * @rx_ring: ring to clean the resources from
1066 *
1067 * Free all receive software resources
1068 **/
1069 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1070 {
1071 i40e_clean_rx_ring(rx_ring);
1072 kfree(rx_ring->rx_bi);
1073 rx_ring->rx_bi = NULL;
1074
1075 if (rx_ring->desc) {
1076 dma_free_coherent(rx_ring->dev, rx_ring->size,
1077 rx_ring->desc, rx_ring->dma);
1078 rx_ring->desc = NULL;
1079 }
1080 }
1081
1082 /**
1083 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1084 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1085 *
1086 * Returns 0 on success, negative on failure
1087 **/
1088 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1089 {
1090 struct device *dev = rx_ring->dev;
1091 int bi_size;
1092
1093 /* warn if we are about to overwrite the pointer */
1094 WARN_ON(rx_ring->rx_bi);
1095 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1096 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1097 if (!rx_ring->rx_bi)
1098 goto err;
1099
1100 u64_stats_init(&rx_ring->syncp);
1101
1102 /* Round up to nearest 4K */
1103 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1104 rx_ring->size = ALIGN(rx_ring->size, 4096);
1105 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1106 &rx_ring->dma, GFP_KERNEL);
1107
1108 if (!rx_ring->desc) {
1109 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1110 rx_ring->size);
1111 goto err;
1112 }
1113
1114 rx_ring->next_to_alloc = 0;
1115 rx_ring->next_to_clean = 0;
1116 rx_ring->next_to_use = 0;
1117
1118 return 0;
1119 err:
1120 kfree(rx_ring->rx_bi);
1121 rx_ring->rx_bi = NULL;
1122 return -ENOMEM;
1123 }
1124
1125 /**
1126 * i40e_release_rx_desc - Store the new tail and head values
1127 * @rx_ring: ring to bump
1128 * @val: new head index
1129 **/
1130 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1131 {
1132 rx_ring->next_to_use = val;
1133
1134 /* update next to alloc since we have filled the ring */
1135 rx_ring->next_to_alloc = val;
1136
1137 /* Force memory writes to complete before letting h/w
1138 * know there are new descriptors to fetch. (Only
1139 * applicable for weak-ordered memory model archs,
1140 * such as IA-64).
1141 */
1142 wmb();
1143 writel(val, rx_ring->tail);
1144 }
1145
1146 /**
1147 * i40e_alloc_mapped_page - recycle or make a new page
1148 * @rx_ring: ring to use
1149 * @bi: rx_buffer struct to modify
1150 *
1151 * Returns true if the page was successfully allocated or
1152 * reused.
1153 **/
1154 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1155 struct i40e_rx_buffer *bi)
1156 {
1157 struct page *page = bi->page;
1158 dma_addr_t dma;
1159
1160 /* since we are recycling buffers we should seldom need to alloc */
1161 if (likely(page)) {
1162 rx_ring->rx_stats.page_reuse_count++;
1163 return true;
1164 }
1165
1166 /* alloc new page for storage */
1167 page = dev_alloc_page();
1168 if (unlikely(!page)) {
1169 rx_ring->rx_stats.alloc_page_failed++;
1170 return false;
1171 }
1172
1173 /* map page for use */
1174 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1175
1176 /* if mapping failed free memory back to system since
1177 * there isn't much point in holding memory we can't use
1178 */
1179 if (dma_mapping_error(rx_ring->dev, dma)) {
1180 __free_pages(page, 0);
1181 rx_ring->rx_stats.alloc_page_failed++;
1182 return false;
1183 }
1184
1185 bi->dma = dma;
1186 bi->page = page;
1187 bi->page_offset = 0;
1188
1189 return true;
1190 }
1191
1192 /**
1193 * i40e_receive_skb - Send a completed packet up the stack
1194 * @rx_ring: rx ring in play
1195 * @skb: packet to send up
1196 * @vlan_tag: vlan tag for packet
1197 **/
1198 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1199 struct sk_buff *skb, u16 vlan_tag)
1200 {
1201 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1202
1203 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1204 (vlan_tag & VLAN_VID_MASK))
1205 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1206
1207 napi_gro_receive(&q_vector->napi, skb);
1208 }
1209
1210 /**
1211 * i40e_alloc_rx_buffers - Replace used receive buffers
1212 * @rx_ring: ring to place buffers on
1213 * @cleaned_count: number of buffers to replace
1214 *
1215 * Returns false if all allocations were successful, true if any fail
1216 **/
1217 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1218 {
1219 u16 ntu = rx_ring->next_to_use;
1220 union i40e_rx_desc *rx_desc;
1221 struct i40e_rx_buffer *bi;
1222
1223 /* do nothing if no valid netdev defined */
1224 if (!rx_ring->netdev || !cleaned_count)
1225 return false;
1226
1227 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1228 bi = &rx_ring->rx_bi[ntu];
1229
1230 do {
1231 if (!i40e_alloc_mapped_page(rx_ring, bi))
1232 goto no_buffers;
1233
1234 /* Refresh the desc even if buffer_addrs didn't change
1235 * because each write-back erases this info.
1236 */
1237 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1238 rx_desc->read.hdr_addr = 0;
1239
1240 rx_desc++;
1241 bi++;
1242 ntu++;
1243 if (unlikely(ntu == rx_ring->count)) {
1244 rx_desc = I40E_RX_DESC(rx_ring, 0);
1245 bi = rx_ring->rx_bi;
1246 ntu = 0;
1247 }
1248
1249 /* clear the status bits for the next_to_use descriptor */
1250 rx_desc->wb.qword1.status_error_len = 0;
1251
1252 cleaned_count--;
1253 } while (cleaned_count);
1254
1255 if (rx_ring->next_to_use != ntu)
1256 i40e_release_rx_desc(rx_ring, ntu);
1257
1258 return false;
1259
1260 no_buffers:
1261 if (rx_ring->next_to_use != ntu)
1262 i40e_release_rx_desc(rx_ring, ntu);
1263
1264 /* make sure to come back via polling to try again after
1265 * allocation failure
1266 */
1267 return true;
1268 }
1269
1270 /**
1271 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1272 * @vsi: the VSI we care about
1273 * @skb: skb currently being received and modified
1274 * @rx_desc: the receive descriptor
1275 *
1276 * skb->protocol must be set before this function is called
1277 **/
1278 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1279 struct sk_buff *skb,
1280 union i40e_rx_desc *rx_desc)
1281 {
1282 struct i40e_rx_ptype_decoded decoded;
1283 u32 rx_error, rx_status;
1284 bool ipv4, ipv6;
1285 u8 ptype;
1286 u64 qword;
1287
1288 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1289 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1290 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1291 I40E_RXD_QW1_ERROR_SHIFT;
1292 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1293 I40E_RXD_QW1_STATUS_SHIFT;
1294 decoded = decode_rx_desc_ptype(ptype);
1295
1296 skb->ip_summed = CHECKSUM_NONE;
1297
1298 skb_checksum_none_assert(skb);
1299
1300 /* Rx csum enabled and ip headers found? */
1301 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1302 return;
1303
1304 /* did the hardware decode the packet and checksum? */
1305 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1306 return;
1307
1308 /* both known and outer_ip must be set for the below code to work */
1309 if (!(decoded.known && decoded.outer_ip))
1310 return;
1311
1312 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1313 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1314 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1315 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1316
1317 if (ipv4 &&
1318 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1319 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1320 goto checksum_fail;
1321
1322 /* likely incorrect csum if alternate IP extension headers found */
1323 if (ipv6 &&
1324 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1325 /* don't increment checksum err here, non-fatal err */
1326 return;
1327
1328 /* there was some L4 error, count error and punt packet to the stack */
1329 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1330 goto checksum_fail;
1331
1332 /* handle packets that were not able to be checksummed due
1333 * to arrival speed, in this case the stack can compute
1334 * the csum.
1335 */
1336 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1337 return;
1338
1339 /* If there is an outer header present that might contain a checksum
1340 * we need to bump the checksum level by 1 to reflect the fact that
1341 * we are indicating we validated the inner checksum.
1342 */
1343 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1344 skb->csum_level = 1;
1345
1346 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1347 switch (decoded.inner_prot) {
1348 case I40E_RX_PTYPE_INNER_PROT_TCP:
1349 case I40E_RX_PTYPE_INNER_PROT_UDP:
1350 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1351 skb->ip_summed = CHECKSUM_UNNECESSARY;
1352 /* fall though */
1353 default:
1354 break;
1355 }
1356
1357 return;
1358
1359 checksum_fail:
1360 vsi->back->hw_csum_rx_error++;
1361 }
1362
1363 /**
1364 * i40e_ptype_to_htype - get a hash type
1365 * @ptype: the ptype value from the descriptor
1366 *
1367 * Returns a hash type to be used by skb_set_hash
1368 **/
1369 static inline int i40e_ptype_to_htype(u8 ptype)
1370 {
1371 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1372
1373 if (!decoded.known)
1374 return PKT_HASH_TYPE_NONE;
1375
1376 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1377 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1378 return PKT_HASH_TYPE_L4;
1379 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1380 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1381 return PKT_HASH_TYPE_L3;
1382 else
1383 return PKT_HASH_TYPE_L2;
1384 }
1385
1386 /**
1387 * i40e_rx_hash - set the hash value in the skb
1388 * @ring: descriptor ring
1389 * @rx_desc: specific descriptor
1390 **/
1391 static inline void i40e_rx_hash(struct i40e_ring *ring,
1392 union i40e_rx_desc *rx_desc,
1393 struct sk_buff *skb,
1394 u8 rx_ptype)
1395 {
1396 u32 hash;
1397 const __le64 rss_mask =
1398 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1399 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1400
1401 if (!(ring->netdev->features & NETIF_F_RXHASH))
1402 return;
1403
1404 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1405 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1406 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1407 }
1408 }
1409
1410 /**
1411 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1412 * @rx_ring: rx descriptor ring packet is being transacted on
1413 * @rx_desc: pointer to the EOP Rx descriptor
1414 * @skb: pointer to current skb being populated
1415 * @rx_ptype: the packet type decoded by hardware
1416 *
1417 * This function checks the ring, descriptor, and packet information in
1418 * order to populate the hash, checksum, VLAN, protocol, and
1419 * other fields within the skb.
1420 **/
1421 static inline
1422 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1423 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1424 u8 rx_ptype)
1425 {
1426 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1427 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1428 I40E_RXD_QW1_STATUS_SHIFT;
1429 u32 rsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1430 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1431
1432 if (unlikely(rsyn)) {
1433 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, rsyn);
1434 rx_ring->last_rx_timestamp = jiffies;
1435 }
1436
1437 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1438
1439 /* modifies the skb - consumes the enet header */
1440 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1441
1442 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1443
1444 skb_record_rx_queue(skb, rx_ring->queue_index);
1445 }
1446
1447 /**
1448 * i40e_pull_tail - i40e specific version of skb_pull_tail
1449 * @rx_ring: rx descriptor ring packet is being transacted on
1450 * @skb: pointer to current skb being adjusted
1451 *
1452 * This function is an i40e specific version of __pskb_pull_tail. The
1453 * main difference between this version and the original function is that
1454 * this function can make several assumptions about the state of things
1455 * that allow for significant optimizations versus the standard function.
1456 * As a result we can do things like drop a frag and maintain an accurate
1457 * truesize for the skb.
1458 */
1459 static void i40e_pull_tail(struct i40e_ring *rx_ring, struct sk_buff *skb)
1460 {
1461 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1462 unsigned char *va;
1463 unsigned int pull_len;
1464
1465 /* it is valid to use page_address instead of kmap since we are
1466 * working with pages allocated out of the lomem pool per
1467 * alloc_page(GFP_ATOMIC)
1468 */
1469 va = skb_frag_address(frag);
1470
1471 /* we need the header to contain the greater of either ETH_HLEN or
1472 * 60 bytes if the skb->len is less than 60 for skb_pad.
1473 */
1474 pull_len = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1475
1476 /* align pull length to size of long to optimize memcpy performance */
1477 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
1478
1479 /* update all of the pointers */
1480 skb_frag_size_sub(frag, pull_len);
1481 frag->page_offset += pull_len;
1482 skb->data_len -= pull_len;
1483 skb->tail += pull_len;
1484 }
1485
1486 /**
1487 * i40e_cleanup_headers - Correct empty headers
1488 * @rx_ring: rx descriptor ring packet is being transacted on
1489 * @skb: pointer to current skb being fixed
1490 *
1491 * Also address the case where we are pulling data in on pages only
1492 * and as such no data is present in the skb header.
1493 *
1494 * In addition if skb is not at least 60 bytes we need to pad it so that
1495 * it is large enough to qualify as a valid Ethernet frame.
1496 *
1497 * Returns true if an error was encountered and skb was freed.
1498 **/
1499 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
1500 {
1501 /* place header in linear portion of buffer */
1502 if (skb_is_nonlinear(skb))
1503 i40e_pull_tail(rx_ring, skb);
1504
1505 /* if eth_skb_pad returns an error the skb was freed */
1506 if (eth_skb_pad(skb))
1507 return true;
1508
1509 return false;
1510 }
1511
1512 /**
1513 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1514 * @rx_ring: rx descriptor ring to store buffers on
1515 * @old_buff: donor buffer to have page reused
1516 *
1517 * Synchronizes page for reuse by the adapter
1518 **/
1519 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1520 struct i40e_rx_buffer *old_buff)
1521 {
1522 struct i40e_rx_buffer *new_buff;
1523 u16 nta = rx_ring->next_to_alloc;
1524
1525 new_buff = &rx_ring->rx_bi[nta];
1526
1527 /* update, and store next to alloc */
1528 nta++;
1529 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1530
1531 /* transfer page from old buffer to new buffer */
1532 *new_buff = *old_buff;
1533 }
1534
1535 /**
1536 * i40e_page_is_reserved - check if reuse is possible
1537 * @page: page struct to check
1538 */
1539 static inline bool i40e_page_is_reserved(struct page *page)
1540 {
1541 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1542 }
1543
1544 /**
1545 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1546 * @rx_ring: rx descriptor ring to transact packets on
1547 * @rx_buffer: buffer containing page to add
1548 * @rx_desc: descriptor containing length of buffer written by hardware
1549 * @skb: sk_buff to place the data into
1550 *
1551 * This function will add the data contained in rx_buffer->page to the skb.
1552 * This is done either through a direct copy if the data in the buffer is
1553 * less than the skb header size, otherwise it will just attach the page as
1554 * a frag to the skb.
1555 *
1556 * The function will then update the page offset if necessary and return
1557 * true if the buffer can be reused by the adapter.
1558 **/
1559 static bool i40e_add_rx_frag(struct i40e_ring *rx_ring,
1560 struct i40e_rx_buffer *rx_buffer,
1561 union i40e_rx_desc *rx_desc,
1562 struct sk_buff *skb)
1563 {
1564 struct page *page = rx_buffer->page;
1565 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1566 unsigned int size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1567 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1568 #if (PAGE_SIZE < 8192)
1569 unsigned int truesize = I40E_RXBUFFER_2048;
1570 #else
1571 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
1572 unsigned int last_offset = PAGE_SIZE - I40E_RXBUFFER_2048;
1573 #endif
1574
1575 /* will the data fit in the skb we allocated? if so, just
1576 * copy it as it is pretty small anyway
1577 */
1578 if ((size <= I40E_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
1579 unsigned char *va = page_address(page) + rx_buffer->page_offset;
1580
1581 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
1582
1583 /* page is not reserved, we can reuse buffer as-is */
1584 if (likely(!i40e_page_is_reserved(page)))
1585 return true;
1586
1587 /* this page cannot be reused so discard it */
1588 __free_pages(page, 0);
1589 return false;
1590 }
1591
1592 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
1593 rx_buffer->page_offset, size, truesize);
1594
1595 /* avoid re-using remote pages */
1596 if (unlikely(i40e_page_is_reserved(page)))
1597 return false;
1598
1599 #if (PAGE_SIZE < 8192)
1600 /* if we are only owner of page we can reuse it */
1601 if (unlikely(page_count(page) != 1))
1602 return false;
1603
1604 /* flip page offset to other buffer */
1605 rx_buffer->page_offset ^= truesize;
1606 #else
1607 /* move offset up to the next cache line */
1608 rx_buffer->page_offset += truesize;
1609
1610 if (rx_buffer->page_offset > last_offset)
1611 return false;
1612 #endif
1613
1614 /* Even if we own the page, we are not allowed to use atomic_set()
1615 * This would break get_page_unless_zero() users.
1616 */
1617 get_page(rx_buffer->page);
1618
1619 return true;
1620 }
1621
1622 /**
1623 * i40e_fetch_rx_buffer - Allocate skb and populate it
1624 * @rx_ring: rx descriptor ring to transact packets on
1625 * @rx_desc: descriptor containing info written by hardware
1626 *
1627 * This function allocates an skb on the fly, and populates it with the page
1628 * data from the current receive descriptor, taking care to set up the skb
1629 * correctly, as well as handling calling the page recycle function if
1630 * necessary.
1631 */
1632 static inline
1633 struct sk_buff *i40e_fetch_rx_buffer(struct i40e_ring *rx_ring,
1634 union i40e_rx_desc *rx_desc)
1635 {
1636 struct i40e_rx_buffer *rx_buffer;
1637 struct sk_buff *skb;
1638 struct page *page;
1639
1640 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1641 page = rx_buffer->page;
1642 prefetchw(page);
1643
1644 skb = rx_buffer->skb;
1645
1646 if (likely(!skb)) {
1647 void *page_addr = page_address(page) + rx_buffer->page_offset;
1648
1649 /* prefetch first cache line of first page */
1650 prefetch(page_addr);
1651 #if L1_CACHE_BYTES < 128
1652 prefetch(page_addr + L1_CACHE_BYTES);
1653 #endif
1654
1655 /* allocate a skb to store the frags */
1656 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1657 I40E_RX_HDR_SIZE,
1658 GFP_ATOMIC | __GFP_NOWARN);
1659 if (unlikely(!skb)) {
1660 rx_ring->rx_stats.alloc_buff_failed++;
1661 return NULL;
1662 }
1663
1664 /* we will be copying header into skb->data in
1665 * pskb_may_pull so it is in our interest to prefetch
1666 * it now to avoid a possible cache miss
1667 */
1668 prefetchw(skb->data);
1669 } else {
1670 rx_buffer->skb = NULL;
1671 }
1672
1673 /* we are reusing so sync this buffer for CPU use */
1674 dma_sync_single_range_for_cpu(rx_ring->dev,
1675 rx_buffer->dma,
1676 rx_buffer->page_offset,
1677 I40E_RXBUFFER_2048,
1678 DMA_FROM_DEVICE);
1679
1680 /* pull page into skb */
1681 if (i40e_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
1682 /* hand second half of page back to the ring */
1683 i40e_reuse_rx_page(rx_ring, rx_buffer);
1684 rx_ring->rx_stats.page_reuse_count++;
1685 } else {
1686 /* we are not reusing the buffer so unmap it */
1687 dma_unmap_page(rx_ring->dev, rx_buffer->dma, PAGE_SIZE,
1688 DMA_FROM_DEVICE);
1689 }
1690
1691 /* clear contents of buffer_info */
1692 rx_buffer->page = NULL;
1693
1694 return skb;
1695 }
1696
1697 /**
1698 * i40e_is_non_eop - process handling of non-EOP buffers
1699 * @rx_ring: Rx ring being processed
1700 * @rx_desc: Rx descriptor for current buffer
1701 * @skb: Current socket buffer containing buffer in progress
1702 *
1703 * This function updates next to clean. If the buffer is an EOP buffer
1704 * this function exits returning false, otherwise it will place the
1705 * sk_buff in the next buffer to be chained and return true indicating
1706 * that this is in fact a non-EOP buffer.
1707 **/
1708 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1709 union i40e_rx_desc *rx_desc,
1710 struct sk_buff *skb)
1711 {
1712 u32 ntc = rx_ring->next_to_clean + 1;
1713
1714 /* fetch, update, and store next to clean */
1715 ntc = (ntc < rx_ring->count) ? ntc : 0;
1716 rx_ring->next_to_clean = ntc;
1717
1718 prefetch(I40E_RX_DESC(rx_ring, ntc));
1719
1720 #define staterrlen rx_desc->wb.qword1.status_error_len
1721 if (unlikely(i40e_rx_is_programming_status(le64_to_cpu(staterrlen)))) {
1722 i40e_clean_programming_status(rx_ring, rx_desc);
1723 rx_ring->rx_bi[ntc].skb = skb;
1724 return true;
1725 }
1726 /* if we are the last buffer then there is nothing else to do */
1727 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1728 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1729 return false;
1730
1731 /* place skb in next buffer to be received */
1732 rx_ring->rx_bi[ntc].skb = skb;
1733 rx_ring->rx_stats.non_eop_descs++;
1734
1735 return true;
1736 }
1737
1738 /**
1739 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1740 * @rx_ring: rx descriptor ring to transact packets on
1741 * @budget: Total limit on number of packets to process
1742 *
1743 * This function provides a "bounce buffer" approach to Rx interrupt
1744 * processing. The advantage to this is that on systems that have
1745 * expensive overhead for IOMMU access this provides a means of avoiding
1746 * it by maintaining the mapping of the page to the system.
1747 *
1748 * Returns amount of work completed
1749 **/
1750 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1751 {
1752 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1753 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1754 bool failure = false;
1755
1756 while (likely(total_rx_packets < budget)) {
1757 union i40e_rx_desc *rx_desc;
1758 struct sk_buff *skb;
1759 u32 rx_status;
1760 u16 vlan_tag;
1761 u8 rx_ptype;
1762 u64 qword;
1763
1764 /* return some buffers to hardware, one at a time is too slow */
1765 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1766 failure = failure ||
1767 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1768 cleaned_count = 0;
1769 }
1770
1771 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1772
1773 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1774 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1775 I40E_RXD_QW1_PTYPE_SHIFT;
1776 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1777 I40E_RXD_QW1_STATUS_SHIFT;
1778
1779 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_DD_SHIFT)))
1780 break;
1781
1782 /* status_error_len will always be zero for unused descriptors
1783 * because it's cleared in cleanup, and overlaps with hdr_addr
1784 * which is always zero because packet split isn't used, if the
1785 * hardware wrote DD then it will be non-zero
1786 */
1787 if (!rx_desc->wb.qword1.status_error_len)
1788 break;
1789
1790 /* This memory barrier is needed to keep us from reading
1791 * any other fields out of the rx_desc until we know the
1792 * DD bit is set.
1793 */
1794 dma_rmb();
1795
1796 skb = i40e_fetch_rx_buffer(rx_ring, rx_desc);
1797 if (!skb)
1798 break;
1799
1800 cleaned_count++;
1801
1802 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1803 continue;
1804
1805 /* ERR_MASK will only have valid bits if EOP set, and
1806 * what we are doing here is actually checking
1807 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1808 * the error field
1809 */
1810 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1811 dev_kfree_skb_any(skb);
1812 continue;
1813 }
1814
1815 if (i40e_cleanup_headers(rx_ring, skb))
1816 continue;
1817
1818 /* probably a little skewed due to removing CRC */
1819 total_rx_bytes += skb->len;
1820
1821 /* populate checksum, VLAN, and protocol */
1822 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1823
1824 #ifdef I40E_FCOE
1825 if (unlikely(
1826 i40e_rx_is_fcoe(rx_ptype) &&
1827 !i40e_fcoe_handle_offload(rx_ring, rx_desc, skb))) {
1828 dev_kfree_skb_any(skb);
1829 continue;
1830 }
1831 #endif
1832
1833 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1834 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1835
1836 i40e_receive_skb(rx_ring, skb, vlan_tag);
1837
1838 /* update budget accounting */
1839 total_rx_packets++;
1840 }
1841
1842 u64_stats_update_begin(&rx_ring->syncp);
1843 rx_ring->stats.packets += total_rx_packets;
1844 rx_ring->stats.bytes += total_rx_bytes;
1845 u64_stats_update_end(&rx_ring->syncp);
1846 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1847 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1848
1849 /* guarantee a trip back through this routine if there was a failure */
1850 return failure ? budget : total_rx_packets;
1851 }
1852
1853 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1854 {
1855 u32 val;
1856
1857 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1858 /* Don't clear PBA because that can cause lost interrupts that
1859 * came in while we were cleaning/polling
1860 */
1861 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
1862 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
1863
1864 return val;
1865 }
1866
1867 /* a small macro to shorten up some long lines */
1868 #define INTREG I40E_PFINT_DYN_CTLN
1869
1870 /**
1871 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1872 * @vsi: the VSI we care about
1873 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1874 *
1875 **/
1876 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1877 struct i40e_q_vector *q_vector)
1878 {
1879 struct i40e_hw *hw = &vsi->back->hw;
1880 bool rx = false, tx = false;
1881 u32 rxval, txval;
1882 int vector;
1883 int idx = q_vector->v_idx;
1884
1885 vector = (q_vector->v_idx + vsi->base_vector);
1886
1887 /* avoid dynamic calculation if in countdown mode OR if
1888 * all dynamic is disabled
1889 */
1890 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1891
1892 if (q_vector->itr_countdown > 0 ||
1893 (!ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting) &&
1894 !ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting))) {
1895 goto enable_int;
1896 }
1897
1898 if (ITR_IS_DYNAMIC(vsi->rx_rings[idx]->rx_itr_setting)) {
1899 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1900 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1901 }
1902
1903 if (ITR_IS_DYNAMIC(vsi->tx_rings[idx]->tx_itr_setting)) {
1904 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1905 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1906 }
1907
1908 if (rx || tx) {
1909 /* get the higher of the two ITR adjustments and
1910 * use the same value for both ITR registers
1911 * when in adaptive mode (Rx and/or Tx)
1912 */
1913 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1914
1915 q_vector->tx.itr = q_vector->rx.itr = itr;
1916 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1917 tx = true;
1918 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1919 rx = true;
1920 }
1921
1922 /* only need to enable the interrupt once, but need
1923 * to possibly update both ITR values
1924 */
1925 if (rx) {
1926 /* set the INTENA_MSK_MASK so that this first write
1927 * won't actually enable the interrupt, instead just
1928 * updating the ITR (it's bit 31 PF and VF)
1929 */
1930 rxval |= BIT(31);
1931 /* don't check _DOWN because interrupt isn't being enabled */
1932 wr32(hw, INTREG(vector - 1), rxval);
1933 }
1934
1935 enable_int:
1936 if (!test_bit(__I40E_DOWN, &vsi->state))
1937 wr32(hw, INTREG(vector - 1), txval);
1938
1939 if (q_vector->itr_countdown)
1940 q_vector->itr_countdown--;
1941 else
1942 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1943 }
1944
1945 /**
1946 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1947 * @napi: napi struct with our devices info in it
1948 * @budget: amount of work driver is allowed to do this pass, in packets
1949 *
1950 * This function will clean all queues associated with a q_vector.
1951 *
1952 * Returns the amount of work done
1953 **/
1954 int i40e_napi_poll(struct napi_struct *napi, int budget)
1955 {
1956 struct i40e_q_vector *q_vector =
1957 container_of(napi, struct i40e_q_vector, napi);
1958 struct i40e_vsi *vsi = q_vector->vsi;
1959 struct i40e_ring *ring;
1960 bool clean_complete = true;
1961 bool arm_wb = false;
1962 int budget_per_ring;
1963 int work_done = 0;
1964
1965 if (test_bit(__I40E_DOWN, &vsi->state)) {
1966 napi_complete(napi);
1967 return 0;
1968 }
1969
1970 /* Clear hung_detected bit */
1971 clear_bit(I40E_Q_VECTOR_HUNG_DETECT, &q_vector->hung_detected);
1972 /* Since the actual Tx work is minimal, we can give the Tx a larger
1973 * budget and be more aggressive about cleaning up the Tx descriptors.
1974 */
1975 i40e_for_each_ring(ring, q_vector->tx) {
1976 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1977 clean_complete = false;
1978 continue;
1979 }
1980 arm_wb |= ring->arm_wb;
1981 ring->arm_wb = false;
1982 }
1983
1984 /* Handle case where we are called by netpoll with a budget of 0 */
1985 if (budget <= 0)
1986 goto tx_only;
1987
1988 /* We attempt to distribute budget to each Rx queue fairly, but don't
1989 * allow the budget to go below 1 because that would exit polling early.
1990 */
1991 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1992
1993 i40e_for_each_ring(ring, q_vector->rx) {
1994 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1995
1996 work_done += cleaned;
1997 /* if we clean as many as budgeted, we must not be done */
1998 if (cleaned >= budget_per_ring)
1999 clean_complete = false;
2000 }
2001
2002 /* If work not completed, return budget and polling will return */
2003 if (!clean_complete) {
2004 tx_only:
2005 if (arm_wb) {
2006 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2007 i40e_enable_wb_on_itr(vsi, q_vector);
2008 }
2009 return budget;
2010 }
2011
2012 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2013 q_vector->arm_wb_state = false;
2014
2015 /* Work is done so exit the polling mode and re-enable the interrupt */
2016 napi_complete_done(napi, work_done);
2017 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
2018 i40e_update_enable_itr(vsi, q_vector);
2019 } else { /* Legacy mode */
2020 i40e_irq_dynamic_enable_icr0(vsi->back, false);
2021 }
2022 return 0;
2023 }
2024
2025 /**
2026 * i40e_atr - Add a Flow Director ATR filter
2027 * @tx_ring: ring to add programming descriptor to
2028 * @skb: send buffer
2029 * @tx_flags: send tx flags
2030 **/
2031 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2032 u32 tx_flags)
2033 {
2034 struct i40e_filter_program_desc *fdir_desc;
2035 struct i40e_pf *pf = tx_ring->vsi->back;
2036 union {
2037 unsigned char *network;
2038 struct iphdr *ipv4;
2039 struct ipv6hdr *ipv6;
2040 } hdr;
2041 struct tcphdr *th;
2042 unsigned int hlen;
2043 u32 flex_ptype, dtype_cmd;
2044 int l4_proto;
2045 u16 i;
2046
2047 /* make sure ATR is enabled */
2048 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2049 return;
2050
2051 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2052 return;
2053
2054 /* if sampling is disabled do nothing */
2055 if (!tx_ring->atr_sample_rate)
2056 return;
2057
2058 /* Currently only IPv4/IPv6 with TCP is supported */
2059 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2060 return;
2061
2062 /* snag network header to get L4 type and address */
2063 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2064 skb_inner_network_header(skb) : skb_network_header(skb);
2065
2066 /* Note: tx_flags gets modified to reflect inner protocols in
2067 * tx_enable_csum function if encap is enabled.
2068 */
2069 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2070 /* access ihl as u8 to avoid unaligned access on ia64 */
2071 hlen = (hdr.network[0] & 0x0F) << 2;
2072 l4_proto = hdr.ipv4->protocol;
2073 } else {
2074 hlen = hdr.network - skb->data;
2075 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2076 hlen -= hdr.network - skb->data;
2077 }
2078
2079 if (l4_proto != IPPROTO_TCP)
2080 return;
2081
2082 th = (struct tcphdr *)(hdr.network + hlen);
2083
2084 /* Due to lack of space, no more new filters can be programmed */
2085 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
2086 return;
2087 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2088 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE))) {
2089 /* HW ATR eviction will take care of removing filters on FIN
2090 * and RST packets.
2091 */
2092 if (th->fin || th->rst)
2093 return;
2094 }
2095
2096 tx_ring->atr_count++;
2097
2098 /* sample on all syn/fin/rst packets or once every atr sample rate */
2099 if (!th->fin &&
2100 !th->syn &&
2101 !th->rst &&
2102 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2103 return;
2104
2105 tx_ring->atr_count = 0;
2106
2107 /* grab the next descriptor */
2108 i = tx_ring->next_to_use;
2109 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2110
2111 i++;
2112 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2113
2114 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2115 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2116 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2117 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2118 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2119 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2120 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2121
2122 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2123
2124 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2125
2126 dtype_cmd |= (th->fin || th->rst) ?
2127 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2128 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2129 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2130 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2131
2132 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2133 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2134
2135 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2136 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2137
2138 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2139 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2140 dtype_cmd |=
2141 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2142 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2143 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2144 else
2145 dtype_cmd |=
2146 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2147 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2148 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2149
2150 if ((pf->flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE) &&
2151 (!(pf->auto_disable_flags & I40E_FLAG_HW_ATR_EVICT_CAPABLE)))
2152 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2153
2154 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2155 fdir_desc->rsvd = cpu_to_le32(0);
2156 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2157 fdir_desc->fd_id = cpu_to_le32(0);
2158 }
2159
2160 /**
2161 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2162 * @skb: send buffer
2163 * @tx_ring: ring to send buffer on
2164 * @flags: the tx flags to be set
2165 *
2166 * Checks the skb and set up correspondingly several generic transmit flags
2167 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2168 *
2169 * Returns error code indicate the frame should be dropped upon error and the
2170 * otherwise returns 0 to indicate the flags has been set properly.
2171 **/
2172 #ifdef I40E_FCOE
2173 inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2174 struct i40e_ring *tx_ring,
2175 u32 *flags)
2176 #else
2177 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2178 struct i40e_ring *tx_ring,
2179 u32 *flags)
2180 #endif
2181 {
2182 __be16 protocol = skb->protocol;
2183 u32 tx_flags = 0;
2184
2185 if (protocol == htons(ETH_P_8021Q) &&
2186 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2187 /* When HW VLAN acceleration is turned off by the user the
2188 * stack sets the protocol to 8021q so that the driver
2189 * can take any steps required to support the SW only
2190 * VLAN handling. In our case the driver doesn't need
2191 * to take any further steps so just set the protocol
2192 * to the encapsulated ethertype.
2193 */
2194 skb->protocol = vlan_get_protocol(skb);
2195 goto out;
2196 }
2197
2198 /* if we have a HW VLAN tag being added, default to the HW one */
2199 if (skb_vlan_tag_present(skb)) {
2200 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2201 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2202 /* else if it is a SW VLAN, check the next protocol and store the tag */
2203 } else if (protocol == htons(ETH_P_8021Q)) {
2204 struct vlan_hdr *vhdr, _vhdr;
2205
2206 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2207 if (!vhdr)
2208 return -EINVAL;
2209
2210 protocol = vhdr->h_vlan_encapsulated_proto;
2211 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2212 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2213 }
2214
2215 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2216 goto out;
2217
2218 /* Insert 802.1p priority into VLAN header */
2219 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2220 (skb->priority != TC_PRIO_CONTROL)) {
2221 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2222 tx_flags |= (skb->priority & 0x7) <<
2223 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2224 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2225 struct vlan_ethhdr *vhdr;
2226 int rc;
2227
2228 rc = skb_cow_head(skb, 0);
2229 if (rc < 0)
2230 return rc;
2231 vhdr = (struct vlan_ethhdr *)skb->data;
2232 vhdr->h_vlan_TCI = htons(tx_flags >>
2233 I40E_TX_FLAGS_VLAN_SHIFT);
2234 } else {
2235 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2236 }
2237 }
2238
2239 out:
2240 *flags = tx_flags;
2241 return 0;
2242 }
2243
2244 /**
2245 * i40e_tso - set up the tso context descriptor
2246 * @skb: ptr to the skb we're sending
2247 * @hdr_len: ptr to the size of the packet header
2248 * @cd_type_cmd_tso_mss: Quad Word 1
2249 *
2250 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2251 **/
2252 static int i40e_tso(struct sk_buff *skb, u8 *hdr_len, u64 *cd_type_cmd_tso_mss)
2253 {
2254 u64 cd_cmd, cd_tso_len, cd_mss;
2255 union {
2256 struct iphdr *v4;
2257 struct ipv6hdr *v6;
2258 unsigned char *hdr;
2259 } ip;
2260 union {
2261 struct tcphdr *tcp;
2262 struct udphdr *udp;
2263 unsigned char *hdr;
2264 } l4;
2265 u32 paylen, l4_offset;
2266 int err;
2267
2268 if (skb->ip_summed != CHECKSUM_PARTIAL)
2269 return 0;
2270
2271 if (!skb_is_gso(skb))
2272 return 0;
2273
2274 err = skb_cow_head(skb, 0);
2275 if (err < 0)
2276 return err;
2277
2278 ip.hdr = skb_network_header(skb);
2279 l4.hdr = skb_transport_header(skb);
2280
2281 /* initialize outer IP header fields */
2282 if (ip.v4->version == 4) {
2283 ip.v4->tot_len = 0;
2284 ip.v4->check = 0;
2285 } else {
2286 ip.v6->payload_len = 0;
2287 }
2288
2289 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2290 SKB_GSO_GRE_CSUM |
2291 SKB_GSO_IPXIP4 |
2292 SKB_GSO_IPXIP6 |
2293 SKB_GSO_UDP_TUNNEL |
2294 SKB_GSO_UDP_TUNNEL_CSUM)) {
2295 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2296 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2297 l4.udp->len = 0;
2298
2299 /* determine offset of outer transport header */
2300 l4_offset = l4.hdr - skb->data;
2301
2302 /* remove payload length from outer checksum */
2303 paylen = skb->len - l4_offset;
2304 csum_replace_by_diff(&l4.udp->check, htonl(paylen));
2305 }
2306
2307 /* reset pointers to inner headers */
2308 ip.hdr = skb_inner_network_header(skb);
2309 l4.hdr = skb_inner_transport_header(skb);
2310
2311 /* initialize inner IP header fields */
2312 if (ip.v4->version == 4) {
2313 ip.v4->tot_len = 0;
2314 ip.v4->check = 0;
2315 } else {
2316 ip.v6->payload_len = 0;
2317 }
2318 }
2319
2320 /* determine offset of inner transport header */
2321 l4_offset = l4.hdr - skb->data;
2322
2323 /* remove payload length from inner checksum */
2324 paylen = skb->len - l4_offset;
2325 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
2326
2327 /* compute length of segmentation header */
2328 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2329
2330 /* find the field values */
2331 cd_cmd = I40E_TX_CTX_DESC_TSO;
2332 cd_tso_len = skb->len - *hdr_len;
2333 cd_mss = skb_shinfo(skb)->gso_size;
2334 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2335 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2336 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2337 return 1;
2338 }
2339
2340 /**
2341 * i40e_tsyn - set up the tsyn context descriptor
2342 * @tx_ring: ptr to the ring to send
2343 * @skb: ptr to the skb we're sending
2344 * @tx_flags: the collected send information
2345 * @cd_type_cmd_tso_mss: Quad Word 1
2346 *
2347 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2348 **/
2349 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2350 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2351 {
2352 struct i40e_pf *pf;
2353
2354 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2355 return 0;
2356
2357 /* Tx timestamps cannot be sampled when doing TSO */
2358 if (tx_flags & I40E_TX_FLAGS_TSO)
2359 return 0;
2360
2361 /* only timestamp the outbound packet if the user has requested it and
2362 * we are not already transmitting a packet to be timestamped
2363 */
2364 pf = i40e_netdev_to_pf(tx_ring->netdev);
2365 if (!(pf->flags & I40E_FLAG_PTP))
2366 return 0;
2367
2368 if (pf->ptp_tx &&
2369 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2370 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2371 pf->ptp_tx_skb = skb_get(skb);
2372 } else {
2373 return 0;
2374 }
2375
2376 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2377 I40E_TXD_CTX_QW1_CMD_SHIFT;
2378
2379 return 1;
2380 }
2381
2382 /**
2383 * i40e_tx_enable_csum - Enable Tx checksum offloads
2384 * @skb: send buffer
2385 * @tx_flags: pointer to Tx flags currently set
2386 * @td_cmd: Tx descriptor command bits to set
2387 * @td_offset: Tx descriptor header offsets to set
2388 * @tx_ring: Tx descriptor ring
2389 * @cd_tunneling: ptr to context desc bits
2390 **/
2391 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2392 u32 *td_cmd, u32 *td_offset,
2393 struct i40e_ring *tx_ring,
2394 u32 *cd_tunneling)
2395 {
2396 union {
2397 struct iphdr *v4;
2398 struct ipv6hdr *v6;
2399 unsigned char *hdr;
2400 } ip;
2401 union {
2402 struct tcphdr *tcp;
2403 struct udphdr *udp;
2404 unsigned char *hdr;
2405 } l4;
2406 unsigned char *exthdr;
2407 u32 offset, cmd = 0;
2408 __be16 frag_off;
2409 u8 l4_proto = 0;
2410
2411 if (skb->ip_summed != CHECKSUM_PARTIAL)
2412 return 0;
2413
2414 ip.hdr = skb_network_header(skb);
2415 l4.hdr = skb_transport_header(skb);
2416
2417 /* compute outer L2 header size */
2418 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2419
2420 if (skb->encapsulation) {
2421 u32 tunnel = 0;
2422 /* define outer network header type */
2423 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2424 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2425 I40E_TX_CTX_EXT_IP_IPV4 :
2426 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2427
2428 l4_proto = ip.v4->protocol;
2429 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2430 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2431
2432 exthdr = ip.hdr + sizeof(*ip.v6);
2433 l4_proto = ip.v6->nexthdr;
2434 if (l4.hdr != exthdr)
2435 ipv6_skip_exthdr(skb, exthdr - skb->data,
2436 &l4_proto, &frag_off);
2437 }
2438
2439 /* define outer transport */
2440 switch (l4_proto) {
2441 case IPPROTO_UDP:
2442 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2443 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2444 break;
2445 case IPPROTO_GRE:
2446 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2447 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2448 break;
2449 case IPPROTO_IPIP:
2450 case IPPROTO_IPV6:
2451 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2452 l4.hdr = skb_inner_network_header(skb);
2453 break;
2454 default:
2455 if (*tx_flags & I40E_TX_FLAGS_TSO)
2456 return -1;
2457
2458 skb_checksum_help(skb);
2459 return 0;
2460 }
2461
2462 /* compute outer L3 header size */
2463 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2464 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2465
2466 /* switch IP header pointer from outer to inner header */
2467 ip.hdr = skb_inner_network_header(skb);
2468
2469 /* compute tunnel header size */
2470 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2471 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2472
2473 /* indicate if we need to offload outer UDP header */
2474 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2475 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2476 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2477 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2478
2479 /* record tunnel offload values */
2480 *cd_tunneling |= tunnel;
2481
2482 /* switch L4 header pointer from outer to inner */
2483 l4.hdr = skb_inner_transport_header(skb);
2484 l4_proto = 0;
2485
2486 /* reset type as we transition from outer to inner headers */
2487 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2488 if (ip.v4->version == 4)
2489 *tx_flags |= I40E_TX_FLAGS_IPV4;
2490 if (ip.v6->version == 6)
2491 *tx_flags |= I40E_TX_FLAGS_IPV6;
2492 }
2493
2494 /* Enable IP checksum offloads */
2495 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2496 l4_proto = ip.v4->protocol;
2497 /* the stack computes the IP header already, the only time we
2498 * need the hardware to recompute it is in the case of TSO.
2499 */
2500 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2501 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2502 I40E_TX_DESC_CMD_IIPT_IPV4;
2503 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2504 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2505
2506 exthdr = ip.hdr + sizeof(*ip.v6);
2507 l4_proto = ip.v6->nexthdr;
2508 if (l4.hdr != exthdr)
2509 ipv6_skip_exthdr(skb, exthdr - skb->data,
2510 &l4_proto, &frag_off);
2511 }
2512
2513 /* compute inner L3 header size */
2514 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2515
2516 /* Enable L4 checksum offloads */
2517 switch (l4_proto) {
2518 case IPPROTO_TCP:
2519 /* enable checksum offloads */
2520 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2521 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2522 break;
2523 case IPPROTO_SCTP:
2524 /* enable SCTP checksum offload */
2525 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2526 offset |= (sizeof(struct sctphdr) >> 2) <<
2527 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2528 break;
2529 case IPPROTO_UDP:
2530 /* enable UDP checksum offload */
2531 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2532 offset |= (sizeof(struct udphdr) >> 2) <<
2533 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2534 break;
2535 default:
2536 if (*tx_flags & I40E_TX_FLAGS_TSO)
2537 return -1;
2538 skb_checksum_help(skb);
2539 return 0;
2540 }
2541
2542 *td_cmd |= cmd;
2543 *td_offset |= offset;
2544
2545 return 1;
2546 }
2547
2548 /**
2549 * i40e_create_tx_ctx Build the Tx context descriptor
2550 * @tx_ring: ring to create the descriptor on
2551 * @cd_type_cmd_tso_mss: Quad Word 1
2552 * @cd_tunneling: Quad Word 0 - bits 0-31
2553 * @cd_l2tag2: Quad Word 0 - bits 32-63
2554 **/
2555 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2556 const u64 cd_type_cmd_tso_mss,
2557 const u32 cd_tunneling, const u32 cd_l2tag2)
2558 {
2559 struct i40e_tx_context_desc *context_desc;
2560 int i = tx_ring->next_to_use;
2561
2562 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2563 !cd_tunneling && !cd_l2tag2)
2564 return;
2565
2566 /* grab the next descriptor */
2567 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2568
2569 i++;
2570 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2571
2572 /* cpu_to_le32 and assign to struct fields */
2573 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2574 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2575 context_desc->rsvd = cpu_to_le16(0);
2576 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2577 }
2578
2579 /**
2580 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2581 * @tx_ring: the ring to be checked
2582 * @size: the size buffer we want to assure is available
2583 *
2584 * Returns -EBUSY if a stop is needed, else 0
2585 **/
2586 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2587 {
2588 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2589 /* Memory barrier before checking head and tail */
2590 smp_mb();
2591
2592 /* Check again in a case another CPU has just made room available. */
2593 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2594 return -EBUSY;
2595
2596 /* A reprieve! - use start_queue because it doesn't call schedule */
2597 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2598 ++tx_ring->tx_stats.restart_queue;
2599 return 0;
2600 }
2601
2602 /**
2603 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2604 * @skb: send buffer
2605 *
2606 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2607 * and so we need to figure out the cases where we need to linearize the skb.
2608 *
2609 * For TSO we need to count the TSO header and segment payload separately.
2610 * As such we need to check cases where we have 7 fragments or more as we
2611 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2612 * the segment payload in the first descriptor, and another 7 for the
2613 * fragments.
2614 **/
2615 bool __i40e_chk_linearize(struct sk_buff *skb)
2616 {
2617 const struct skb_frag_struct *frag, *stale;
2618 int nr_frags, sum;
2619
2620 /* no need to check if number of frags is less than 7 */
2621 nr_frags = skb_shinfo(skb)->nr_frags;
2622 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2623 return false;
2624
2625 /* We need to walk through the list and validate that each group
2626 * of 6 fragments totals at least gso_size. However we don't need
2627 * to perform such validation on the last 6 since the last 6 cannot
2628 * inherit any data from a descriptor after them.
2629 */
2630 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2631 frag = &skb_shinfo(skb)->frags[0];
2632
2633 /* Initialize size to the negative value of gso_size minus 1. We
2634 * use this as the worst case scenerio in which the frag ahead
2635 * of us only provides one byte which is why we are limited to 6
2636 * descriptors for a single transmit as the header and previous
2637 * fragment are already consuming 2 descriptors.
2638 */
2639 sum = 1 - skb_shinfo(skb)->gso_size;
2640
2641 /* Add size of frags 0 through 4 to create our initial sum */
2642 sum += skb_frag_size(frag++);
2643 sum += skb_frag_size(frag++);
2644 sum += skb_frag_size(frag++);
2645 sum += skb_frag_size(frag++);
2646 sum += skb_frag_size(frag++);
2647
2648 /* Walk through fragments adding latest fragment, testing it, and
2649 * then removing stale fragments from the sum.
2650 */
2651 stale = &skb_shinfo(skb)->frags[0];
2652 for (;;) {
2653 sum += skb_frag_size(frag++);
2654
2655 /* if sum is negative we failed to make sufficient progress */
2656 if (sum < 0)
2657 return true;
2658
2659 /* use pre-decrement to avoid processing last fragment */
2660 if (!--nr_frags)
2661 break;
2662
2663 sum -= skb_frag_size(stale++);
2664 }
2665
2666 return false;
2667 }
2668
2669 /**
2670 * i40e_tx_map - Build the Tx descriptor
2671 * @tx_ring: ring to send buffer on
2672 * @skb: send buffer
2673 * @first: first buffer info buffer to use
2674 * @tx_flags: collected send information
2675 * @hdr_len: size of the packet header
2676 * @td_cmd: the command field in the descriptor
2677 * @td_offset: offset for checksum or crc
2678 **/
2679 #ifdef I40E_FCOE
2680 inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2681 struct i40e_tx_buffer *first, u32 tx_flags,
2682 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2683 #else
2684 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2685 struct i40e_tx_buffer *first, u32 tx_flags,
2686 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2687 #endif
2688 {
2689 unsigned int data_len = skb->data_len;
2690 unsigned int size = skb_headlen(skb);
2691 struct skb_frag_struct *frag;
2692 struct i40e_tx_buffer *tx_bi;
2693 struct i40e_tx_desc *tx_desc;
2694 u16 i = tx_ring->next_to_use;
2695 u32 td_tag = 0;
2696 dma_addr_t dma;
2697 u16 gso_segs;
2698 u16 desc_count = 0;
2699 bool tail_bump = true;
2700 bool do_rs = false;
2701
2702 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2703 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2704 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2705 I40E_TX_FLAGS_VLAN_SHIFT;
2706 }
2707
2708 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2709 gso_segs = skb_shinfo(skb)->gso_segs;
2710 else
2711 gso_segs = 1;
2712
2713 /* multiply data chunks by size of headers */
2714 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2715 first->gso_segs = gso_segs;
2716 first->skb = skb;
2717 first->tx_flags = tx_flags;
2718
2719 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2720
2721 tx_desc = I40E_TX_DESC(tx_ring, i);
2722 tx_bi = first;
2723
2724 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2725 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2726
2727 if (dma_mapping_error(tx_ring->dev, dma))
2728 goto dma_error;
2729
2730 /* record length, and DMA address */
2731 dma_unmap_len_set(tx_bi, len, size);
2732 dma_unmap_addr_set(tx_bi, dma, dma);
2733
2734 /* align size to end of page */
2735 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2736 tx_desc->buffer_addr = cpu_to_le64(dma);
2737
2738 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2739 tx_desc->cmd_type_offset_bsz =
2740 build_ctob(td_cmd, td_offset,
2741 max_data, td_tag);
2742
2743 tx_desc++;
2744 i++;
2745 desc_count++;
2746
2747 if (i == tx_ring->count) {
2748 tx_desc = I40E_TX_DESC(tx_ring, 0);
2749 i = 0;
2750 }
2751
2752 dma += max_data;
2753 size -= max_data;
2754
2755 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2756 tx_desc->buffer_addr = cpu_to_le64(dma);
2757 }
2758
2759 if (likely(!data_len))
2760 break;
2761
2762 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2763 size, td_tag);
2764
2765 tx_desc++;
2766 i++;
2767 desc_count++;
2768
2769 if (i == tx_ring->count) {
2770 tx_desc = I40E_TX_DESC(tx_ring, 0);
2771 i = 0;
2772 }
2773
2774 size = skb_frag_size(frag);
2775 data_len -= size;
2776
2777 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2778 DMA_TO_DEVICE);
2779
2780 tx_bi = &tx_ring->tx_bi[i];
2781 }
2782
2783 /* set next_to_watch value indicating a packet is present */
2784 first->next_to_watch = tx_desc;
2785
2786 i++;
2787 if (i == tx_ring->count)
2788 i = 0;
2789
2790 tx_ring->next_to_use = i;
2791
2792 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2793 tx_ring->queue_index),
2794 first->bytecount);
2795 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2796
2797 /* Algorithm to optimize tail and RS bit setting:
2798 * if xmit_more is supported
2799 * if xmit_more is true
2800 * do not update tail and do not mark RS bit.
2801 * if xmit_more is false and last xmit_more was false
2802 * if every packet spanned less than 4 desc
2803 * then set RS bit on 4th packet and update tail
2804 * on every packet
2805 * else
2806 * update tail and set RS bit on every packet.
2807 * if xmit_more is false and last_xmit_more was true
2808 * update tail and set RS bit.
2809 *
2810 * Optimization: wmb to be issued only in case of tail update.
2811 * Also optimize the Descriptor WB path for RS bit with the same
2812 * algorithm.
2813 *
2814 * Note: If there are less than 4 packets
2815 * pending and interrupts were disabled the service task will
2816 * trigger a force WB.
2817 */
2818 if (skb->xmit_more &&
2819 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2820 tx_ring->queue_index))) {
2821 tx_ring->flags |= I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2822 tail_bump = false;
2823 } else if (!skb->xmit_more &&
2824 !netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2825 tx_ring->queue_index)) &&
2826 (!(tx_ring->flags & I40E_TXR_FLAGS_LAST_XMIT_MORE_SET)) &&
2827 (tx_ring->packet_stride < WB_STRIDE) &&
2828 (desc_count < WB_STRIDE)) {
2829 tx_ring->packet_stride++;
2830 } else {
2831 tx_ring->packet_stride = 0;
2832 tx_ring->flags &= ~I40E_TXR_FLAGS_LAST_XMIT_MORE_SET;
2833 do_rs = true;
2834 }
2835 if (do_rs)
2836 tx_ring->packet_stride = 0;
2837
2838 tx_desc->cmd_type_offset_bsz =
2839 build_ctob(td_cmd, td_offset, size, td_tag) |
2840 cpu_to_le64((u64)(do_rs ? I40E_TXD_CMD :
2841 I40E_TX_DESC_CMD_EOP) <<
2842 I40E_TXD_QW1_CMD_SHIFT);
2843
2844 /* notify HW of packet */
2845 if (!tail_bump)
2846 prefetchw(tx_desc + 1);
2847
2848 if (tail_bump) {
2849 /* Force memory writes to complete before letting h/w
2850 * know there are new descriptors to fetch. (Only
2851 * applicable for weak-ordered memory model archs,
2852 * such as IA-64).
2853 */
2854 wmb();
2855 writel(i, tx_ring->tail);
2856 }
2857
2858 return;
2859
2860 dma_error:
2861 dev_info(tx_ring->dev, "TX DMA map failed\n");
2862
2863 /* clear dma mappings for failed tx_bi map */
2864 for (;;) {
2865 tx_bi = &tx_ring->tx_bi[i];
2866 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2867 if (tx_bi == first)
2868 break;
2869 if (i == 0)
2870 i = tx_ring->count;
2871 i--;
2872 }
2873
2874 tx_ring->next_to_use = i;
2875 }
2876
2877 /**
2878 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2879 * @skb: send buffer
2880 * @tx_ring: ring to send buffer on
2881 *
2882 * Returns NETDEV_TX_OK if sent, else an error code
2883 **/
2884 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2885 struct i40e_ring *tx_ring)
2886 {
2887 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2888 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2889 struct i40e_tx_buffer *first;
2890 u32 td_offset = 0;
2891 u32 tx_flags = 0;
2892 __be16 protocol;
2893 u32 td_cmd = 0;
2894 u8 hdr_len = 0;
2895 int tso, count;
2896 int tsyn;
2897
2898 /* prefetch the data, we'll need it later */
2899 prefetch(skb->data);
2900
2901 count = i40e_xmit_descriptor_count(skb);
2902 if (i40e_chk_linearize(skb, count)) {
2903 if (__skb_linearize(skb))
2904 goto out_drop;
2905 count = i40e_txd_use_count(skb->len);
2906 tx_ring->tx_stats.tx_linearize++;
2907 }
2908
2909 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2910 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2911 * + 4 desc gap to avoid the cache line where head is,
2912 * + 1 desc for context descriptor,
2913 * otherwise try next time
2914 */
2915 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2916 tx_ring->tx_stats.tx_busy++;
2917 return NETDEV_TX_BUSY;
2918 }
2919
2920 /* prepare the xmit flags */
2921 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2922 goto out_drop;
2923
2924 /* obtain protocol of skb */
2925 protocol = vlan_get_protocol(skb);
2926
2927 /* record the location of the first descriptor for this packet */
2928 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2929
2930 /* setup IPv4/IPv6 offloads */
2931 if (protocol == htons(ETH_P_IP))
2932 tx_flags |= I40E_TX_FLAGS_IPV4;
2933 else if (protocol == htons(ETH_P_IPV6))
2934 tx_flags |= I40E_TX_FLAGS_IPV6;
2935
2936 tso = i40e_tso(skb, &hdr_len, &cd_type_cmd_tso_mss);
2937
2938 if (tso < 0)
2939 goto out_drop;
2940 else if (tso)
2941 tx_flags |= I40E_TX_FLAGS_TSO;
2942
2943 /* Always offload the checksum, since it's in the data descriptor */
2944 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2945 tx_ring, &cd_tunneling);
2946 if (tso < 0)
2947 goto out_drop;
2948
2949 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2950
2951 if (tsyn)
2952 tx_flags |= I40E_TX_FLAGS_TSYN;
2953
2954 skb_tx_timestamp(skb);
2955
2956 /* always enable CRC insertion offload */
2957 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2958
2959 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2960 cd_tunneling, cd_l2tag2);
2961
2962 /* Add Flow Director ATR if it's enabled.
2963 *
2964 * NOTE: this must always be directly before the data descriptor.
2965 */
2966 i40e_atr(tx_ring, skb, tx_flags);
2967
2968 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2969 td_cmd, td_offset);
2970
2971 return NETDEV_TX_OK;
2972
2973 out_drop:
2974 dev_kfree_skb_any(skb);
2975 return NETDEV_TX_OK;
2976 }
2977
2978 /**
2979 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2980 * @skb: send buffer
2981 * @netdev: network interface device structure
2982 *
2983 * Returns NETDEV_TX_OK if sent, else an error code
2984 **/
2985 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2986 {
2987 struct i40e_netdev_priv *np = netdev_priv(netdev);
2988 struct i40e_vsi *vsi = np->vsi;
2989 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2990
2991 /* hardware can't handle really short frames, hardware padding works
2992 * beyond this point
2993 */
2994 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2995 return NETDEV_TX_OK;
2996
2997 return i40e_xmit_frame_ring(skb, tx_ring);
2998 }
This page took 0.300099 seconds and 6 git commands to generate.