Merge branch 'master' of /home/davem/src/GIT/linux-2.6/
[deliverable/linux.git] / drivers / net / s2io.c
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
4
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
12 *
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
26 *
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
29 *
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 * multiq: This parameter used to enable/disable MULTIQUEUE support.
54 * Possible values '1' for enable and '0' for disable. Default is '0'
55 ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
78
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
84
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
88
89 #define DRV_VERSION "2.0.26.25"
90
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
94
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
97
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
99 {
100 int ret;
101
102 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105 return ret;
106 }
107
108 /*
109 * Cards with following subsystem_id have a link state indication
110 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111 * macro below identifies these cards given the subsystem_id.
112 */
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114 (dev_type == XFRAME_I_DEVICE) ? \
115 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
117
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
122 {
123 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128 "Register test\t(offline)",
129 "Eeprom test\t(offline)",
130 "Link test\t(online)",
131 "RLDRAM test\t(offline)",
132 "BIST Test\t(offline)"
133 };
134
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
136 {"tmac_frms"},
137 {"tmac_data_octets"},
138 {"tmac_drop_frms"},
139 {"tmac_mcst_frms"},
140 {"tmac_bcst_frms"},
141 {"tmac_pause_ctrl_frms"},
142 {"tmac_ttl_octets"},
143 {"tmac_ucst_frms"},
144 {"tmac_nucst_frms"},
145 {"tmac_any_err_frms"},
146 {"tmac_ttl_less_fb_octets"},
147 {"tmac_vld_ip_octets"},
148 {"tmac_vld_ip"},
149 {"tmac_drop_ip"},
150 {"tmac_icmp"},
151 {"tmac_rst_tcp"},
152 {"tmac_tcp"},
153 {"tmac_udp"},
154 {"rmac_vld_frms"},
155 {"rmac_data_octets"},
156 {"rmac_fcs_err_frms"},
157 {"rmac_drop_frms"},
158 {"rmac_vld_mcst_frms"},
159 {"rmac_vld_bcst_frms"},
160 {"rmac_in_rng_len_err_frms"},
161 {"rmac_out_rng_len_err_frms"},
162 {"rmac_long_frms"},
163 {"rmac_pause_ctrl_frms"},
164 {"rmac_unsup_ctrl_frms"},
165 {"rmac_ttl_octets"},
166 {"rmac_accepted_ucst_frms"},
167 {"rmac_accepted_nucst_frms"},
168 {"rmac_discarded_frms"},
169 {"rmac_drop_events"},
170 {"rmac_ttl_less_fb_octets"},
171 {"rmac_ttl_frms"},
172 {"rmac_usized_frms"},
173 {"rmac_osized_frms"},
174 {"rmac_frag_frms"},
175 {"rmac_jabber_frms"},
176 {"rmac_ttl_64_frms"},
177 {"rmac_ttl_65_127_frms"},
178 {"rmac_ttl_128_255_frms"},
179 {"rmac_ttl_256_511_frms"},
180 {"rmac_ttl_512_1023_frms"},
181 {"rmac_ttl_1024_1518_frms"},
182 {"rmac_ip"},
183 {"rmac_ip_octets"},
184 {"rmac_hdr_err_ip"},
185 {"rmac_drop_ip"},
186 {"rmac_icmp"},
187 {"rmac_tcp"},
188 {"rmac_udp"},
189 {"rmac_err_drp_udp"},
190 {"rmac_xgmii_err_sym"},
191 {"rmac_frms_q0"},
192 {"rmac_frms_q1"},
193 {"rmac_frms_q2"},
194 {"rmac_frms_q3"},
195 {"rmac_frms_q4"},
196 {"rmac_frms_q5"},
197 {"rmac_frms_q6"},
198 {"rmac_frms_q7"},
199 {"rmac_full_q0"},
200 {"rmac_full_q1"},
201 {"rmac_full_q2"},
202 {"rmac_full_q3"},
203 {"rmac_full_q4"},
204 {"rmac_full_q5"},
205 {"rmac_full_q6"},
206 {"rmac_full_q7"},
207 {"rmac_pause_cnt"},
208 {"rmac_xgmii_data_err_cnt"},
209 {"rmac_xgmii_ctrl_err_cnt"},
210 {"rmac_accepted_ip"},
211 {"rmac_err_tcp"},
212 {"rd_req_cnt"},
213 {"new_rd_req_cnt"},
214 {"new_rd_req_rtry_cnt"},
215 {"rd_rtry_cnt"},
216 {"wr_rtry_rd_ack_cnt"},
217 {"wr_req_cnt"},
218 {"new_wr_req_cnt"},
219 {"new_wr_req_rtry_cnt"},
220 {"wr_rtry_cnt"},
221 {"wr_disc_cnt"},
222 {"rd_rtry_wr_ack_cnt"},
223 {"txp_wr_cnt"},
224 {"txd_rd_cnt"},
225 {"txd_wr_cnt"},
226 {"rxd_rd_cnt"},
227 {"rxd_wr_cnt"},
228 {"txf_rd_cnt"},
229 {"rxf_wr_cnt"}
230 };
231
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233 {"rmac_ttl_1519_4095_frms"},
234 {"rmac_ttl_4096_8191_frms"},
235 {"rmac_ttl_8192_max_frms"},
236 {"rmac_ttl_gt_max_frms"},
237 {"rmac_osized_alt_frms"},
238 {"rmac_jabber_alt_frms"},
239 {"rmac_gt_max_alt_frms"},
240 {"rmac_vlan_frms"},
241 {"rmac_len_discard"},
242 {"rmac_fcs_discard"},
243 {"rmac_pf_discard"},
244 {"rmac_da_discard"},
245 {"rmac_red_discard"},
246 {"rmac_rts_discard"},
247 {"rmac_ingm_full_discard"},
248 {"link_fault_cnt"}
249 };
250
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252 {"\n DRIVER STATISTICS"},
253 {"single_bit_ecc_errs"},
254 {"double_bit_ecc_errs"},
255 {"parity_err_cnt"},
256 {"serious_err_cnt"},
257 {"soft_reset_cnt"},
258 {"fifo_full_cnt"},
259 {"ring_0_full_cnt"},
260 {"ring_1_full_cnt"},
261 {"ring_2_full_cnt"},
262 {"ring_3_full_cnt"},
263 {"ring_4_full_cnt"},
264 {"ring_5_full_cnt"},
265 {"ring_6_full_cnt"},
266 {"ring_7_full_cnt"},
267 {"alarm_transceiver_temp_high"},
268 {"alarm_transceiver_temp_low"},
269 {"alarm_laser_bias_current_high"},
270 {"alarm_laser_bias_current_low"},
271 {"alarm_laser_output_power_high"},
272 {"alarm_laser_output_power_low"},
273 {"warn_transceiver_temp_high"},
274 {"warn_transceiver_temp_low"},
275 {"warn_laser_bias_current_high"},
276 {"warn_laser_bias_current_low"},
277 {"warn_laser_output_power_high"},
278 {"warn_laser_output_power_low"},
279 {"lro_aggregated_pkts"},
280 {"lro_flush_both_count"},
281 {"lro_out_of_sequence_pkts"},
282 {"lro_flush_due_to_max_pkts"},
283 {"lro_avg_aggr_pkts"},
284 {"mem_alloc_fail_cnt"},
285 {"pci_map_fail_cnt"},
286 {"watchdog_timer_cnt"},
287 {"mem_allocated"},
288 {"mem_freed"},
289 {"link_up_cnt"},
290 {"link_down_cnt"},
291 {"link_up_time"},
292 {"link_down_time"},
293 {"tx_tcode_buf_abort_cnt"},
294 {"tx_tcode_desc_abort_cnt"},
295 {"tx_tcode_parity_err_cnt"},
296 {"tx_tcode_link_loss_cnt"},
297 {"tx_tcode_list_proc_err_cnt"},
298 {"rx_tcode_parity_err_cnt"},
299 {"rx_tcode_abort_cnt"},
300 {"rx_tcode_parity_abort_cnt"},
301 {"rx_tcode_rda_fail_cnt"},
302 {"rx_tcode_unkn_prot_cnt"},
303 {"rx_tcode_fcs_err_cnt"},
304 {"rx_tcode_buf_size_err_cnt"},
305 {"rx_tcode_rxd_corrupt_cnt"},
306 {"rx_tcode_unkn_err_cnt"},
307 {"tda_err_cnt"},
308 {"pfc_err_cnt"},
309 {"pcc_err_cnt"},
310 {"tti_err_cnt"},
311 {"tpa_err_cnt"},
312 {"sm_err_cnt"},
313 {"lso_err_cnt"},
314 {"mac_tmac_err_cnt"},
315 {"mac_rmac_err_cnt"},
316 {"xgxs_txgxs_err_cnt"},
317 {"xgxs_rxgxs_err_cnt"},
318 {"rc_err_cnt"},
319 {"prc_pcix_err_cnt"},
320 {"rpa_err_cnt"},
321 {"rda_err_cnt"},
322 {"rti_err_cnt"},
323 {"mc_err_cnt"}
324 };
325
326 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
329
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
335
336 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
338
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
340 init_timer(&timer); \
341 timer.function = handle; \
342 timer.data = (unsigned long) arg; \
343 mod_timer(&timer, (jiffies + exp)) \
344
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347 {
348 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354 }
355
356 /* Add the vlan */
357 static void s2io_vlan_rx_register(struct net_device *dev,
358 struct vlan_group *grp)
359 {
360 int i;
361 struct s2io_nic *nic = netdev_priv(dev);
362 unsigned long flags[MAX_TX_FIFOS];
363 struct mac_info *mac_control = &nic->mac_control;
364 struct config_param *config = &nic->config;
365
366 for (i = 0; i < config->tx_fifo_num; i++)
367 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
368
369 nic->vlgrp = grp;
370 for (i = config->tx_fifo_num - 1; i >= 0; i--)
371 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
372 flags[i]);
373 }
374
375 /* Unregister the vlan */
376 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
377 {
378 int i;
379 struct s2io_nic *nic = netdev_priv(dev);
380 unsigned long flags[MAX_TX_FIFOS];
381 struct mac_info *mac_control = &nic->mac_control;
382 struct config_param *config = &nic->config;
383
384 for (i = 0; i < config->tx_fifo_num; i++)
385 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
386
387 if (nic->vlgrp)
388 vlan_group_set_device(nic->vlgrp, vid, NULL);
389
390 for (i = config->tx_fifo_num - 1; i >= 0; i--)
391 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
392 flags[i]);
393 }
394
395 /*
396 * Constants to be programmed into the Xena's registers, to configure
397 * the XAUI.
398 */
399
400 #define END_SIGN 0x0
401 static const u64 herc_act_dtx_cfg[] = {
402 /* Set address */
403 0x8000051536750000ULL, 0x80000515367500E0ULL,
404 /* Write data */
405 0x8000051536750004ULL, 0x80000515367500E4ULL,
406 /* Set address */
407 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
408 /* Write data */
409 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
410 /* Set address */
411 0x801205150D440000ULL, 0x801205150D4400E0ULL,
412 /* Write data */
413 0x801205150D440004ULL, 0x801205150D4400E4ULL,
414 /* Set address */
415 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
416 /* Write data */
417 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
418 /* Done */
419 END_SIGN
420 };
421
422 static const u64 xena_dtx_cfg[] = {
423 /* Set address */
424 0x8000051500000000ULL, 0x80000515000000E0ULL,
425 /* Write data */
426 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
427 /* Set address */
428 0x8001051500000000ULL, 0x80010515000000E0ULL,
429 /* Write data */
430 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
431 /* Set address */
432 0x8002051500000000ULL, 0x80020515000000E0ULL,
433 /* Write data */
434 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
435 END_SIGN
436 };
437
438 /*
439 * Constants for Fixing the MacAddress problem seen mostly on
440 * Alpha machines.
441 */
442 static const u64 fix_mac[] = {
443 0x0060000000000000ULL, 0x0060600000000000ULL,
444 0x0040600000000000ULL, 0x0000600000000000ULL,
445 0x0020600000000000ULL, 0x0060600000000000ULL,
446 0x0020600000000000ULL, 0x0060600000000000ULL,
447 0x0020600000000000ULL, 0x0060600000000000ULL,
448 0x0020600000000000ULL, 0x0060600000000000ULL,
449 0x0020600000000000ULL, 0x0060600000000000ULL,
450 0x0020600000000000ULL, 0x0060600000000000ULL,
451 0x0020600000000000ULL, 0x0060600000000000ULL,
452 0x0020600000000000ULL, 0x0060600000000000ULL,
453 0x0020600000000000ULL, 0x0060600000000000ULL,
454 0x0020600000000000ULL, 0x0060600000000000ULL,
455 0x0020600000000000ULL, 0x0000600000000000ULL,
456 0x0040600000000000ULL, 0x0060600000000000ULL,
457 END_SIGN
458 };
459
460 MODULE_LICENSE("GPL");
461 MODULE_VERSION(DRV_VERSION);
462
463
464 /* Module Loadable parameters. */
465 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
466 S2IO_PARM_INT(rx_ring_num, 1);
467 S2IO_PARM_INT(multiq, 0);
468 S2IO_PARM_INT(rx_ring_mode, 1);
469 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
470 S2IO_PARM_INT(rmac_pause_time, 0x100);
471 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
472 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
473 S2IO_PARM_INT(shared_splits, 0);
474 S2IO_PARM_INT(tmac_util_period, 5);
475 S2IO_PARM_INT(rmac_util_period, 5);
476 S2IO_PARM_INT(l3l4hdr_size, 128);
477 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
478 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
479 /* Frequency of Rx desc syncs expressed as power of 2 */
480 S2IO_PARM_INT(rxsync_frequency, 3);
481 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
482 S2IO_PARM_INT(intr_type, 2);
483 /* Large receive offload feature */
484 static unsigned int lro_enable;
485 module_param_named(lro, lro_enable, uint, 0);
486
487 /* Max pkts to be aggregated by LRO at one time. If not specified,
488 * aggregation happens until we hit max IP pkt size(64K)
489 */
490 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
491 S2IO_PARM_INT(indicate_max_pkts, 0);
492
493 S2IO_PARM_INT(napi, 1);
494 S2IO_PARM_INT(ufo, 0);
495 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
496
497 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
498 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
499 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
500 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
501 static unsigned int rts_frm_len[MAX_RX_RINGS] =
502 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
503
504 module_param_array(tx_fifo_len, uint, NULL, 0);
505 module_param_array(rx_ring_sz, uint, NULL, 0);
506 module_param_array(rts_frm_len, uint, NULL, 0);
507
508 /*
509 * S2IO device table.
510 * This table lists all the devices that this driver supports.
511 */
512 static struct pci_device_id s2io_tbl[] __devinitdata = {
513 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
514 PCI_ANY_ID, PCI_ANY_ID},
515 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
516 PCI_ANY_ID, PCI_ANY_ID},
517 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
518 PCI_ANY_ID, PCI_ANY_ID},
519 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
520 PCI_ANY_ID, PCI_ANY_ID},
521 {0,}
522 };
523
524 MODULE_DEVICE_TABLE(pci, s2io_tbl);
525
526 static struct pci_error_handlers s2io_err_handler = {
527 .error_detected = s2io_io_error_detected,
528 .slot_reset = s2io_io_slot_reset,
529 .resume = s2io_io_resume,
530 };
531
532 static struct pci_driver s2io_driver = {
533 .name = "S2IO",
534 .id_table = s2io_tbl,
535 .probe = s2io_init_nic,
536 .remove = __devexit_p(s2io_rem_nic),
537 .err_handler = &s2io_err_handler,
538 };
539
540 /* A simplifier macro used both by init and free shared_mem Fns(). */
541 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
542
543 /* netqueue manipulation helper functions */
544 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
545 {
546 if (!sp->config.multiq) {
547 int i;
548
549 for (i = 0; i < sp->config.tx_fifo_num; i++)
550 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
551 }
552 netif_tx_stop_all_queues(sp->dev);
553 }
554
555 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
556 {
557 if (!sp->config.multiq)
558 sp->mac_control.fifos[fifo_no].queue_state =
559 FIFO_QUEUE_STOP;
560
561 netif_tx_stop_all_queues(sp->dev);
562 }
563
564 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
565 {
566 if (!sp->config.multiq) {
567 int i;
568
569 for (i = 0; i < sp->config.tx_fifo_num; i++)
570 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
571 }
572 netif_tx_start_all_queues(sp->dev);
573 }
574
575 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
576 {
577 if (!sp->config.multiq)
578 sp->mac_control.fifos[fifo_no].queue_state =
579 FIFO_QUEUE_START;
580
581 netif_tx_start_all_queues(sp->dev);
582 }
583
584 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
585 {
586 if (!sp->config.multiq) {
587 int i;
588
589 for (i = 0; i < sp->config.tx_fifo_num; i++)
590 sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
591 }
592 netif_tx_wake_all_queues(sp->dev);
593 }
594
595 static inline void s2io_wake_tx_queue(
596 struct fifo_info *fifo, int cnt, u8 multiq)
597 {
598
599 if (multiq) {
600 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
601 netif_wake_subqueue(fifo->dev, fifo->fifo_no);
602 } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
603 if (netif_queue_stopped(fifo->dev)) {
604 fifo->queue_state = FIFO_QUEUE_START;
605 netif_wake_queue(fifo->dev);
606 }
607 }
608 }
609
610 /**
611 * init_shared_mem - Allocation and Initialization of Memory
612 * @nic: Device private variable.
613 * Description: The function allocates all the memory areas shared
614 * between the NIC and the driver. This includes Tx descriptors,
615 * Rx descriptors and the statistics block.
616 */
617
618 static int init_shared_mem(struct s2io_nic *nic)
619 {
620 u32 size;
621 void *tmp_v_addr, *tmp_v_addr_next;
622 dma_addr_t tmp_p_addr, tmp_p_addr_next;
623 struct RxD_block *pre_rxd_blk = NULL;
624 int i, j, blk_cnt;
625 int lst_size, lst_per_page;
626 struct net_device *dev = nic->dev;
627 unsigned long tmp;
628 struct buffAdd *ba;
629
630 struct mac_info *mac_control;
631 struct config_param *config;
632 unsigned long long mem_allocated = 0;
633
634 mac_control = &nic->mac_control;
635 config = &nic->config;
636
637
638 /* Allocation and initialization of TXDLs in FIOFs */
639 size = 0;
640 for (i = 0; i < config->tx_fifo_num; i++) {
641 size += config->tx_cfg[i].fifo_len;
642 }
643 if (size > MAX_AVAILABLE_TXDS) {
644 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
645 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
646 return -EINVAL;
647 }
648
649 size = 0;
650 for (i = 0; i < config->tx_fifo_num; i++) {
651 size = config->tx_cfg[i].fifo_len;
652 /*
653 * Legal values are from 2 to 8192
654 */
655 if (size < 2) {
656 DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
657 DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
658 DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
659 "are 2 to 8192\n");
660 return -EINVAL;
661 }
662 }
663
664 lst_size = (sizeof(struct TxD) * config->max_txds);
665 lst_per_page = PAGE_SIZE / lst_size;
666
667 for (i = 0; i < config->tx_fifo_num; i++) {
668 int fifo_len = config->tx_cfg[i].fifo_len;
669 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
670 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
671 GFP_KERNEL);
672 if (!mac_control->fifos[i].list_info) {
673 DBG_PRINT(INFO_DBG,
674 "Malloc failed for list_info\n");
675 return -ENOMEM;
676 }
677 mem_allocated += list_holder_size;
678 }
679 for (i = 0; i < config->tx_fifo_num; i++) {
680 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
681 lst_per_page);
682 mac_control->fifos[i].tx_curr_put_info.offset = 0;
683 mac_control->fifos[i].tx_curr_put_info.fifo_len =
684 config->tx_cfg[i].fifo_len - 1;
685 mac_control->fifos[i].tx_curr_get_info.offset = 0;
686 mac_control->fifos[i].tx_curr_get_info.fifo_len =
687 config->tx_cfg[i].fifo_len - 1;
688 mac_control->fifos[i].fifo_no = i;
689 mac_control->fifos[i].nic = nic;
690 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
691 mac_control->fifos[i].dev = dev;
692
693 for (j = 0; j < page_num; j++) {
694 int k = 0;
695 dma_addr_t tmp_p;
696 void *tmp_v;
697 tmp_v = pci_alloc_consistent(nic->pdev,
698 PAGE_SIZE, &tmp_p);
699 if (!tmp_v) {
700 DBG_PRINT(INFO_DBG,
701 "pci_alloc_consistent ");
702 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
703 return -ENOMEM;
704 }
705 /* If we got a zero DMA address(can happen on
706 * certain platforms like PPC), reallocate.
707 * Store virtual address of page we don't want,
708 * to be freed later.
709 */
710 if (!tmp_p) {
711 mac_control->zerodma_virt_addr = tmp_v;
712 DBG_PRINT(INIT_DBG,
713 "%s: Zero DMA address for TxDL. ", dev->name);
714 DBG_PRINT(INIT_DBG,
715 "Virtual address %p\n", tmp_v);
716 tmp_v = pci_alloc_consistent(nic->pdev,
717 PAGE_SIZE, &tmp_p);
718 if (!tmp_v) {
719 DBG_PRINT(INFO_DBG,
720 "pci_alloc_consistent ");
721 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
722 return -ENOMEM;
723 }
724 mem_allocated += PAGE_SIZE;
725 }
726 while (k < lst_per_page) {
727 int l = (j * lst_per_page) + k;
728 if (l == config->tx_cfg[i].fifo_len)
729 break;
730 mac_control->fifos[i].list_info[l].list_virt_addr =
731 tmp_v + (k * lst_size);
732 mac_control->fifos[i].list_info[l].list_phy_addr =
733 tmp_p + (k * lst_size);
734 k++;
735 }
736 }
737 }
738
739 for (i = 0; i < config->tx_fifo_num; i++) {
740 size = config->tx_cfg[i].fifo_len;
741 mac_control->fifos[i].ufo_in_band_v
742 = kcalloc(size, sizeof(u64), GFP_KERNEL);
743 if (!mac_control->fifos[i].ufo_in_band_v)
744 return -ENOMEM;
745 mem_allocated += (size * sizeof(u64));
746 }
747
748 /* Allocation and initialization of RXDs in Rings */
749 size = 0;
750 for (i = 0; i < config->rx_ring_num; i++) {
751 if (config->rx_cfg[i].num_rxd %
752 (rxd_count[nic->rxd_mode] + 1)) {
753 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
754 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
755 i);
756 DBG_PRINT(ERR_DBG, "RxDs per Block");
757 return FAILURE;
758 }
759 size += config->rx_cfg[i].num_rxd;
760 mac_control->rings[i].block_count =
761 config->rx_cfg[i].num_rxd /
762 (rxd_count[nic->rxd_mode] + 1 );
763 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
764 mac_control->rings[i].block_count;
765 }
766 if (nic->rxd_mode == RXD_MODE_1)
767 size = (size * (sizeof(struct RxD1)));
768 else
769 size = (size * (sizeof(struct RxD3)));
770
771 for (i = 0; i < config->rx_ring_num; i++) {
772 mac_control->rings[i].rx_curr_get_info.block_index = 0;
773 mac_control->rings[i].rx_curr_get_info.offset = 0;
774 mac_control->rings[i].rx_curr_get_info.ring_len =
775 config->rx_cfg[i].num_rxd - 1;
776 mac_control->rings[i].rx_curr_put_info.block_index = 0;
777 mac_control->rings[i].rx_curr_put_info.offset = 0;
778 mac_control->rings[i].rx_curr_put_info.ring_len =
779 config->rx_cfg[i].num_rxd - 1;
780 mac_control->rings[i].nic = nic;
781 mac_control->rings[i].ring_no = i;
782 mac_control->rings[i].lro = lro_enable;
783
784 blk_cnt = config->rx_cfg[i].num_rxd /
785 (rxd_count[nic->rxd_mode] + 1);
786 /* Allocating all the Rx blocks */
787 for (j = 0; j < blk_cnt; j++) {
788 struct rx_block_info *rx_blocks;
789 int l;
790
791 rx_blocks = &mac_control->rings[i].rx_blocks[j];
792 size = SIZE_OF_BLOCK; //size is always page size
793 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
794 &tmp_p_addr);
795 if (tmp_v_addr == NULL) {
796 /*
797 * In case of failure, free_shared_mem()
798 * is called, which should free any
799 * memory that was alloced till the
800 * failure happened.
801 */
802 rx_blocks->block_virt_addr = tmp_v_addr;
803 return -ENOMEM;
804 }
805 mem_allocated += size;
806 memset(tmp_v_addr, 0, size);
807 rx_blocks->block_virt_addr = tmp_v_addr;
808 rx_blocks->block_dma_addr = tmp_p_addr;
809 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
810 rxd_count[nic->rxd_mode],
811 GFP_KERNEL);
812 if (!rx_blocks->rxds)
813 return -ENOMEM;
814 mem_allocated +=
815 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
816 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
817 rx_blocks->rxds[l].virt_addr =
818 rx_blocks->block_virt_addr +
819 (rxd_size[nic->rxd_mode] * l);
820 rx_blocks->rxds[l].dma_addr =
821 rx_blocks->block_dma_addr +
822 (rxd_size[nic->rxd_mode] * l);
823 }
824 }
825 /* Interlinking all Rx Blocks */
826 for (j = 0; j < blk_cnt; j++) {
827 tmp_v_addr =
828 mac_control->rings[i].rx_blocks[j].block_virt_addr;
829 tmp_v_addr_next =
830 mac_control->rings[i].rx_blocks[(j + 1) %
831 blk_cnt].block_virt_addr;
832 tmp_p_addr =
833 mac_control->rings[i].rx_blocks[j].block_dma_addr;
834 tmp_p_addr_next =
835 mac_control->rings[i].rx_blocks[(j + 1) %
836 blk_cnt].block_dma_addr;
837
838 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
839 pre_rxd_blk->reserved_2_pNext_RxD_block =
840 (unsigned long) tmp_v_addr_next;
841 pre_rxd_blk->pNext_RxD_Blk_physical =
842 (u64) tmp_p_addr_next;
843 }
844 }
845 if (nic->rxd_mode == RXD_MODE_3B) {
846 /*
847 * Allocation of Storages for buffer addresses in 2BUFF mode
848 * and the buffers as well.
849 */
850 for (i = 0; i < config->rx_ring_num; i++) {
851 blk_cnt = config->rx_cfg[i].num_rxd /
852 (rxd_count[nic->rxd_mode]+ 1);
853 mac_control->rings[i].ba =
854 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
855 GFP_KERNEL);
856 if (!mac_control->rings[i].ba)
857 return -ENOMEM;
858 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
859 for (j = 0; j < blk_cnt; j++) {
860 int k = 0;
861 mac_control->rings[i].ba[j] =
862 kmalloc((sizeof(struct buffAdd) *
863 (rxd_count[nic->rxd_mode] + 1)),
864 GFP_KERNEL);
865 if (!mac_control->rings[i].ba[j])
866 return -ENOMEM;
867 mem_allocated += (sizeof(struct buffAdd) * \
868 (rxd_count[nic->rxd_mode] + 1));
869 while (k != rxd_count[nic->rxd_mode]) {
870 ba = &mac_control->rings[i].ba[j][k];
871
872 ba->ba_0_org = (void *) kmalloc
873 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
874 if (!ba->ba_0_org)
875 return -ENOMEM;
876 mem_allocated +=
877 (BUF0_LEN + ALIGN_SIZE);
878 tmp = (unsigned long)ba->ba_0_org;
879 tmp += ALIGN_SIZE;
880 tmp &= ~((unsigned long) ALIGN_SIZE);
881 ba->ba_0 = (void *) tmp;
882
883 ba->ba_1_org = (void *) kmalloc
884 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
885 if (!ba->ba_1_org)
886 return -ENOMEM;
887 mem_allocated
888 += (BUF1_LEN + ALIGN_SIZE);
889 tmp = (unsigned long) ba->ba_1_org;
890 tmp += ALIGN_SIZE;
891 tmp &= ~((unsigned long) ALIGN_SIZE);
892 ba->ba_1 = (void *) tmp;
893 k++;
894 }
895 }
896 }
897 }
898
899 /* Allocation and initialization of Statistics block */
900 size = sizeof(struct stat_block);
901 mac_control->stats_mem = pci_alloc_consistent
902 (nic->pdev, size, &mac_control->stats_mem_phy);
903
904 if (!mac_control->stats_mem) {
905 /*
906 * In case of failure, free_shared_mem() is called, which
907 * should free any memory that was alloced till the
908 * failure happened.
909 */
910 return -ENOMEM;
911 }
912 mem_allocated += size;
913 mac_control->stats_mem_sz = size;
914
915 tmp_v_addr = mac_control->stats_mem;
916 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
917 memset(tmp_v_addr, 0, size);
918 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
919 (unsigned long long) tmp_p_addr);
920 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
921 return SUCCESS;
922 }
923
924 /**
925 * free_shared_mem - Free the allocated Memory
926 * @nic: Device private variable.
927 * Description: This function is to free all memory locations allocated by
928 * the init_shared_mem() function and return it to the kernel.
929 */
930
931 static void free_shared_mem(struct s2io_nic *nic)
932 {
933 int i, j, blk_cnt, size;
934 void *tmp_v_addr;
935 dma_addr_t tmp_p_addr;
936 struct mac_info *mac_control;
937 struct config_param *config;
938 int lst_size, lst_per_page;
939 struct net_device *dev;
940 int page_num = 0;
941
942 if (!nic)
943 return;
944
945 dev = nic->dev;
946
947 mac_control = &nic->mac_control;
948 config = &nic->config;
949
950 lst_size = (sizeof(struct TxD) * config->max_txds);
951 lst_per_page = PAGE_SIZE / lst_size;
952
953 for (i = 0; i < config->tx_fifo_num; i++) {
954 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
955 lst_per_page);
956 for (j = 0; j < page_num; j++) {
957 int mem_blks = (j * lst_per_page);
958 if (!mac_control->fifos[i].list_info)
959 return;
960 if (!mac_control->fifos[i].list_info[mem_blks].
961 list_virt_addr)
962 break;
963 pci_free_consistent(nic->pdev, PAGE_SIZE,
964 mac_control->fifos[i].
965 list_info[mem_blks].
966 list_virt_addr,
967 mac_control->fifos[i].
968 list_info[mem_blks].
969 list_phy_addr);
970 nic->mac_control.stats_info->sw_stat.mem_freed
971 += PAGE_SIZE;
972 }
973 /* If we got a zero DMA address during allocation,
974 * free the page now
975 */
976 if (mac_control->zerodma_virt_addr) {
977 pci_free_consistent(nic->pdev, PAGE_SIZE,
978 mac_control->zerodma_virt_addr,
979 (dma_addr_t)0);
980 DBG_PRINT(INIT_DBG,
981 "%s: Freeing TxDL with zero DMA addr. ",
982 dev->name);
983 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
984 mac_control->zerodma_virt_addr);
985 nic->mac_control.stats_info->sw_stat.mem_freed
986 += PAGE_SIZE;
987 }
988 kfree(mac_control->fifos[i].list_info);
989 nic->mac_control.stats_info->sw_stat.mem_freed +=
990 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
991 }
992
993 size = SIZE_OF_BLOCK;
994 for (i = 0; i < config->rx_ring_num; i++) {
995 blk_cnt = mac_control->rings[i].block_count;
996 for (j = 0; j < blk_cnt; j++) {
997 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
998 block_virt_addr;
999 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1000 block_dma_addr;
1001 if (tmp_v_addr == NULL)
1002 break;
1003 pci_free_consistent(nic->pdev, size,
1004 tmp_v_addr, tmp_p_addr);
1005 nic->mac_control.stats_info->sw_stat.mem_freed += size;
1006 kfree(mac_control->rings[i].rx_blocks[j].rxds);
1007 nic->mac_control.stats_info->sw_stat.mem_freed +=
1008 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1009 }
1010 }
1011
1012 if (nic->rxd_mode == RXD_MODE_3B) {
1013 /* Freeing buffer storage addresses in 2BUFF mode. */
1014 for (i = 0; i < config->rx_ring_num; i++) {
1015 blk_cnt = config->rx_cfg[i].num_rxd /
1016 (rxd_count[nic->rxd_mode] + 1);
1017 for (j = 0; j < blk_cnt; j++) {
1018 int k = 0;
1019 if (!mac_control->rings[i].ba[j])
1020 continue;
1021 while (k != rxd_count[nic->rxd_mode]) {
1022 struct buffAdd *ba =
1023 &mac_control->rings[i].ba[j][k];
1024 kfree(ba->ba_0_org);
1025 nic->mac_control.stats_info->sw_stat.\
1026 mem_freed += (BUF0_LEN + ALIGN_SIZE);
1027 kfree(ba->ba_1_org);
1028 nic->mac_control.stats_info->sw_stat.\
1029 mem_freed += (BUF1_LEN + ALIGN_SIZE);
1030 k++;
1031 }
1032 kfree(mac_control->rings[i].ba[j]);
1033 nic->mac_control.stats_info->sw_stat.mem_freed +=
1034 (sizeof(struct buffAdd) *
1035 (rxd_count[nic->rxd_mode] + 1));
1036 }
1037 kfree(mac_control->rings[i].ba);
1038 nic->mac_control.stats_info->sw_stat.mem_freed +=
1039 (sizeof(struct buffAdd *) * blk_cnt);
1040 }
1041 }
1042
1043 for (i = 0; i < nic->config.tx_fifo_num; i++) {
1044 if (mac_control->fifos[i].ufo_in_band_v) {
1045 nic->mac_control.stats_info->sw_stat.mem_freed
1046 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1047 kfree(mac_control->fifos[i].ufo_in_band_v);
1048 }
1049 }
1050
1051 if (mac_control->stats_mem) {
1052 nic->mac_control.stats_info->sw_stat.mem_freed +=
1053 mac_control->stats_mem_sz;
1054 pci_free_consistent(nic->pdev,
1055 mac_control->stats_mem_sz,
1056 mac_control->stats_mem,
1057 mac_control->stats_mem_phy);
1058 }
1059 }
1060
1061 /**
1062 * s2io_verify_pci_mode -
1063 */
1064
1065 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1066 {
1067 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1068 register u64 val64 = 0;
1069 int mode;
1070
1071 val64 = readq(&bar0->pci_mode);
1072 mode = (u8)GET_PCI_MODE(val64);
1073
1074 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1075 return -1; /* Unknown PCI mode */
1076 return mode;
1077 }
1078
1079 #define NEC_VENID 0x1033
1080 #define NEC_DEVID 0x0125
1081 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1082 {
1083 struct pci_dev *tdev = NULL;
1084 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1085 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1086 if (tdev->bus == s2io_pdev->bus->parent) {
1087 pci_dev_put(tdev);
1088 return 1;
1089 }
1090 }
1091 }
1092 return 0;
1093 }
1094
1095 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1096 /**
1097 * s2io_print_pci_mode -
1098 */
1099 static int s2io_print_pci_mode(struct s2io_nic *nic)
1100 {
1101 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1102 register u64 val64 = 0;
1103 int mode;
1104 struct config_param *config = &nic->config;
1105
1106 val64 = readq(&bar0->pci_mode);
1107 mode = (u8)GET_PCI_MODE(val64);
1108
1109 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1110 return -1; /* Unknown PCI mode */
1111
1112 config->bus_speed = bus_speed[mode];
1113
1114 if (s2io_on_nec_bridge(nic->pdev)) {
1115 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1116 nic->dev->name);
1117 return mode;
1118 }
1119
1120 if (val64 & PCI_MODE_32_BITS) {
1121 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1122 } else {
1123 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1124 }
1125
1126 switch(mode) {
1127 case PCI_MODE_PCI_33:
1128 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1129 break;
1130 case PCI_MODE_PCI_66:
1131 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1132 break;
1133 case PCI_MODE_PCIX_M1_66:
1134 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1135 break;
1136 case PCI_MODE_PCIX_M1_100:
1137 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1138 break;
1139 case PCI_MODE_PCIX_M1_133:
1140 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1141 break;
1142 case PCI_MODE_PCIX_M2_66:
1143 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1144 break;
1145 case PCI_MODE_PCIX_M2_100:
1146 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1147 break;
1148 case PCI_MODE_PCIX_M2_133:
1149 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1150 break;
1151 default:
1152 return -1; /* Unsupported bus speed */
1153 }
1154
1155 return mode;
1156 }
1157
1158 /**
1159 * init_tti - Initialization transmit traffic interrupt scheme
1160 * @nic: device private variable
1161 * @link: link status (UP/DOWN) used to enable/disable continuous
1162 * transmit interrupts
1163 * Description: The function configures transmit traffic interrupts
1164 * Return Value: SUCCESS on success and
1165 * '-1' on failure
1166 */
1167
1168 static int init_tti(struct s2io_nic *nic, int link)
1169 {
1170 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1171 register u64 val64 = 0;
1172 int i;
1173 struct config_param *config;
1174
1175 config = &nic->config;
1176
1177 for (i = 0; i < config->tx_fifo_num; i++) {
1178 /*
1179 * TTI Initialization. Default Tx timer gets us about
1180 * 250 interrupts per sec. Continuous interrupts are enabled
1181 * by default.
1182 */
1183 if (nic->device_type == XFRAME_II_DEVICE) {
1184 int count = (nic->config.bus_speed * 125)/2;
1185 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1186 } else
1187 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1188
1189 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1190 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1191 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1192 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1193 if (i == 0)
1194 if (use_continuous_tx_intrs && (link == LINK_UP))
1195 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1196 writeq(val64, &bar0->tti_data1_mem);
1197
1198 if (nic->config.intr_type == MSI_X) {
1199 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1200 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1201 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1202 TTI_DATA2_MEM_TX_UFC_D(0x300);
1203 } else {
1204 if ((nic->config.tx_steering_type ==
1205 TX_DEFAULT_STEERING) &&
1206 (config->tx_fifo_num > 1) &&
1207 (i >= nic->udp_fifo_idx) &&
1208 (i < (nic->udp_fifo_idx +
1209 nic->total_udp_fifos)))
1210 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1211 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1212 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1213 TTI_DATA2_MEM_TX_UFC_D(0x120);
1214 else
1215 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1216 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1217 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1218 TTI_DATA2_MEM_TX_UFC_D(0x80);
1219 }
1220
1221 writeq(val64, &bar0->tti_data2_mem);
1222
1223 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1224 TTI_CMD_MEM_OFFSET(i);
1225 writeq(val64, &bar0->tti_command_mem);
1226
1227 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1228 TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1229 return FAILURE;
1230 }
1231
1232 return SUCCESS;
1233 }
1234
1235 /**
1236 * init_nic - Initialization of hardware
1237 * @nic: device private variable
1238 * Description: The function sequentially configures every block
1239 * of the H/W from their reset values.
1240 * Return Value: SUCCESS on success and
1241 * '-1' on failure (endian settings incorrect).
1242 */
1243
1244 static int init_nic(struct s2io_nic *nic)
1245 {
1246 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1247 struct net_device *dev = nic->dev;
1248 register u64 val64 = 0;
1249 void __iomem *add;
1250 u32 time;
1251 int i, j;
1252 struct mac_info *mac_control;
1253 struct config_param *config;
1254 int dtx_cnt = 0;
1255 unsigned long long mem_share;
1256 int mem_size;
1257
1258 mac_control = &nic->mac_control;
1259 config = &nic->config;
1260
1261 /* to set the swapper controle on the card */
1262 if(s2io_set_swapper(nic)) {
1263 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1264 return -EIO;
1265 }
1266
1267 /*
1268 * Herc requires EOI to be removed from reset before XGXS, so..
1269 */
1270 if (nic->device_type & XFRAME_II_DEVICE) {
1271 val64 = 0xA500000000ULL;
1272 writeq(val64, &bar0->sw_reset);
1273 msleep(500);
1274 val64 = readq(&bar0->sw_reset);
1275 }
1276
1277 /* Remove XGXS from reset state */
1278 val64 = 0;
1279 writeq(val64, &bar0->sw_reset);
1280 msleep(500);
1281 val64 = readq(&bar0->sw_reset);
1282
1283 /* Ensure that it's safe to access registers by checking
1284 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1285 */
1286 if (nic->device_type == XFRAME_II_DEVICE) {
1287 for (i = 0; i < 50; i++) {
1288 val64 = readq(&bar0->adapter_status);
1289 if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1290 break;
1291 msleep(10);
1292 }
1293 if (i == 50)
1294 return -ENODEV;
1295 }
1296
1297 /* Enable Receiving broadcasts */
1298 add = &bar0->mac_cfg;
1299 val64 = readq(&bar0->mac_cfg);
1300 val64 |= MAC_RMAC_BCAST_ENABLE;
1301 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1302 writel((u32) val64, add);
1303 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1304 writel((u32) (val64 >> 32), (add + 4));
1305
1306 /* Read registers in all blocks */
1307 val64 = readq(&bar0->mac_int_mask);
1308 val64 = readq(&bar0->mc_int_mask);
1309 val64 = readq(&bar0->xgxs_int_mask);
1310
1311 /* Set MTU */
1312 val64 = dev->mtu;
1313 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1314
1315 if (nic->device_type & XFRAME_II_DEVICE) {
1316 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1317 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1318 &bar0->dtx_control, UF);
1319 if (dtx_cnt & 0x1)
1320 msleep(1); /* Necessary!! */
1321 dtx_cnt++;
1322 }
1323 } else {
1324 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1325 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1326 &bar0->dtx_control, UF);
1327 val64 = readq(&bar0->dtx_control);
1328 dtx_cnt++;
1329 }
1330 }
1331
1332 /* Tx DMA Initialization */
1333 val64 = 0;
1334 writeq(val64, &bar0->tx_fifo_partition_0);
1335 writeq(val64, &bar0->tx_fifo_partition_1);
1336 writeq(val64, &bar0->tx_fifo_partition_2);
1337 writeq(val64, &bar0->tx_fifo_partition_3);
1338
1339
1340 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1341 val64 |=
1342 vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1343 13) | vBIT(config->tx_cfg[i].fifo_priority,
1344 ((j * 32) + 5), 3);
1345
1346 if (i == (config->tx_fifo_num - 1)) {
1347 if (i % 2 == 0)
1348 i++;
1349 }
1350
1351 switch (i) {
1352 case 1:
1353 writeq(val64, &bar0->tx_fifo_partition_0);
1354 val64 = 0;
1355 j = 0;
1356 break;
1357 case 3:
1358 writeq(val64, &bar0->tx_fifo_partition_1);
1359 val64 = 0;
1360 j = 0;
1361 break;
1362 case 5:
1363 writeq(val64, &bar0->tx_fifo_partition_2);
1364 val64 = 0;
1365 j = 0;
1366 break;
1367 case 7:
1368 writeq(val64, &bar0->tx_fifo_partition_3);
1369 val64 = 0;
1370 j = 0;
1371 break;
1372 default:
1373 j++;
1374 break;
1375 }
1376 }
1377
1378 /*
1379 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1380 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1381 */
1382 if ((nic->device_type == XFRAME_I_DEVICE) &&
1383 (nic->pdev->revision < 4))
1384 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1385
1386 val64 = readq(&bar0->tx_fifo_partition_0);
1387 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1388 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1389
1390 /*
1391 * Initialization of Tx_PA_CONFIG register to ignore packet
1392 * integrity checking.
1393 */
1394 val64 = readq(&bar0->tx_pa_cfg);
1395 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1396 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1397 writeq(val64, &bar0->tx_pa_cfg);
1398
1399 /* Rx DMA intialization. */
1400 val64 = 0;
1401 for (i = 0; i < config->rx_ring_num; i++) {
1402 val64 |=
1403 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1404 3);
1405 }
1406 writeq(val64, &bar0->rx_queue_priority);
1407
1408 /*
1409 * Allocating equal share of memory to all the
1410 * configured Rings.
1411 */
1412 val64 = 0;
1413 if (nic->device_type & XFRAME_II_DEVICE)
1414 mem_size = 32;
1415 else
1416 mem_size = 64;
1417
1418 for (i = 0; i < config->rx_ring_num; i++) {
1419 switch (i) {
1420 case 0:
1421 mem_share = (mem_size / config->rx_ring_num +
1422 mem_size % config->rx_ring_num);
1423 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1424 continue;
1425 case 1:
1426 mem_share = (mem_size / config->rx_ring_num);
1427 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1428 continue;
1429 case 2:
1430 mem_share = (mem_size / config->rx_ring_num);
1431 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1432 continue;
1433 case 3:
1434 mem_share = (mem_size / config->rx_ring_num);
1435 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1436 continue;
1437 case 4:
1438 mem_share = (mem_size / config->rx_ring_num);
1439 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1440 continue;
1441 case 5:
1442 mem_share = (mem_size / config->rx_ring_num);
1443 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1444 continue;
1445 case 6:
1446 mem_share = (mem_size / config->rx_ring_num);
1447 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1448 continue;
1449 case 7:
1450 mem_share = (mem_size / config->rx_ring_num);
1451 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1452 continue;
1453 }
1454 }
1455 writeq(val64, &bar0->rx_queue_cfg);
1456
1457 /*
1458 * Filling Tx round robin registers
1459 * as per the number of FIFOs for equal scheduling priority
1460 */
1461 switch (config->tx_fifo_num) {
1462 case 1:
1463 val64 = 0x0;
1464 writeq(val64, &bar0->tx_w_round_robin_0);
1465 writeq(val64, &bar0->tx_w_round_robin_1);
1466 writeq(val64, &bar0->tx_w_round_robin_2);
1467 writeq(val64, &bar0->tx_w_round_robin_3);
1468 writeq(val64, &bar0->tx_w_round_robin_4);
1469 break;
1470 case 2:
1471 val64 = 0x0001000100010001ULL;
1472 writeq(val64, &bar0->tx_w_round_robin_0);
1473 writeq(val64, &bar0->tx_w_round_robin_1);
1474 writeq(val64, &bar0->tx_w_round_robin_2);
1475 writeq(val64, &bar0->tx_w_round_robin_3);
1476 val64 = 0x0001000100000000ULL;
1477 writeq(val64, &bar0->tx_w_round_robin_4);
1478 break;
1479 case 3:
1480 val64 = 0x0001020001020001ULL;
1481 writeq(val64, &bar0->tx_w_round_robin_0);
1482 val64 = 0x0200010200010200ULL;
1483 writeq(val64, &bar0->tx_w_round_robin_1);
1484 val64 = 0x0102000102000102ULL;
1485 writeq(val64, &bar0->tx_w_round_robin_2);
1486 val64 = 0x0001020001020001ULL;
1487 writeq(val64, &bar0->tx_w_round_robin_3);
1488 val64 = 0x0200010200000000ULL;
1489 writeq(val64, &bar0->tx_w_round_robin_4);
1490 break;
1491 case 4:
1492 val64 = 0x0001020300010203ULL;
1493 writeq(val64, &bar0->tx_w_round_robin_0);
1494 writeq(val64, &bar0->tx_w_round_robin_1);
1495 writeq(val64, &bar0->tx_w_round_robin_2);
1496 writeq(val64, &bar0->tx_w_round_robin_3);
1497 val64 = 0x0001020300000000ULL;
1498 writeq(val64, &bar0->tx_w_round_robin_4);
1499 break;
1500 case 5:
1501 val64 = 0x0001020304000102ULL;
1502 writeq(val64, &bar0->tx_w_round_robin_0);
1503 val64 = 0x0304000102030400ULL;
1504 writeq(val64, &bar0->tx_w_round_robin_1);
1505 val64 = 0x0102030400010203ULL;
1506 writeq(val64, &bar0->tx_w_round_robin_2);
1507 val64 = 0x0400010203040001ULL;
1508 writeq(val64, &bar0->tx_w_round_robin_3);
1509 val64 = 0x0203040000000000ULL;
1510 writeq(val64, &bar0->tx_w_round_robin_4);
1511 break;
1512 case 6:
1513 val64 = 0x0001020304050001ULL;
1514 writeq(val64, &bar0->tx_w_round_robin_0);
1515 val64 = 0x0203040500010203ULL;
1516 writeq(val64, &bar0->tx_w_round_robin_1);
1517 val64 = 0x0405000102030405ULL;
1518 writeq(val64, &bar0->tx_w_round_robin_2);
1519 val64 = 0x0001020304050001ULL;
1520 writeq(val64, &bar0->tx_w_round_robin_3);
1521 val64 = 0x0203040500000000ULL;
1522 writeq(val64, &bar0->tx_w_round_robin_4);
1523 break;
1524 case 7:
1525 val64 = 0x0001020304050600ULL;
1526 writeq(val64, &bar0->tx_w_round_robin_0);
1527 val64 = 0x0102030405060001ULL;
1528 writeq(val64, &bar0->tx_w_round_robin_1);
1529 val64 = 0x0203040506000102ULL;
1530 writeq(val64, &bar0->tx_w_round_robin_2);
1531 val64 = 0x0304050600010203ULL;
1532 writeq(val64, &bar0->tx_w_round_robin_3);
1533 val64 = 0x0405060000000000ULL;
1534 writeq(val64, &bar0->tx_w_round_robin_4);
1535 break;
1536 case 8:
1537 val64 = 0x0001020304050607ULL;
1538 writeq(val64, &bar0->tx_w_round_robin_0);
1539 writeq(val64, &bar0->tx_w_round_robin_1);
1540 writeq(val64, &bar0->tx_w_round_robin_2);
1541 writeq(val64, &bar0->tx_w_round_robin_3);
1542 val64 = 0x0001020300000000ULL;
1543 writeq(val64, &bar0->tx_w_round_robin_4);
1544 break;
1545 }
1546
1547 /* Enable all configured Tx FIFO partitions */
1548 val64 = readq(&bar0->tx_fifo_partition_0);
1549 val64 |= (TX_FIFO_PARTITION_EN);
1550 writeq(val64, &bar0->tx_fifo_partition_0);
1551
1552 /* Filling the Rx round robin registers as per the
1553 * number of Rings and steering based on QoS with
1554 * equal priority.
1555 */
1556 switch (config->rx_ring_num) {
1557 case 1:
1558 val64 = 0x0;
1559 writeq(val64, &bar0->rx_w_round_robin_0);
1560 writeq(val64, &bar0->rx_w_round_robin_1);
1561 writeq(val64, &bar0->rx_w_round_robin_2);
1562 writeq(val64, &bar0->rx_w_round_robin_3);
1563 writeq(val64, &bar0->rx_w_round_robin_4);
1564
1565 val64 = 0x8080808080808080ULL;
1566 writeq(val64, &bar0->rts_qos_steering);
1567 break;
1568 case 2:
1569 val64 = 0x0001000100010001ULL;
1570 writeq(val64, &bar0->rx_w_round_robin_0);
1571 writeq(val64, &bar0->rx_w_round_robin_1);
1572 writeq(val64, &bar0->rx_w_round_robin_2);
1573 writeq(val64, &bar0->rx_w_round_robin_3);
1574 val64 = 0x0001000100000000ULL;
1575 writeq(val64, &bar0->rx_w_round_robin_4);
1576
1577 val64 = 0x8080808040404040ULL;
1578 writeq(val64, &bar0->rts_qos_steering);
1579 break;
1580 case 3:
1581 val64 = 0x0001020001020001ULL;
1582 writeq(val64, &bar0->rx_w_round_robin_0);
1583 val64 = 0x0200010200010200ULL;
1584 writeq(val64, &bar0->rx_w_round_robin_1);
1585 val64 = 0x0102000102000102ULL;
1586 writeq(val64, &bar0->rx_w_round_robin_2);
1587 val64 = 0x0001020001020001ULL;
1588 writeq(val64, &bar0->rx_w_round_robin_3);
1589 val64 = 0x0200010200000000ULL;
1590 writeq(val64, &bar0->rx_w_round_robin_4);
1591
1592 val64 = 0x8080804040402020ULL;
1593 writeq(val64, &bar0->rts_qos_steering);
1594 break;
1595 case 4:
1596 val64 = 0x0001020300010203ULL;
1597 writeq(val64, &bar0->rx_w_round_robin_0);
1598 writeq(val64, &bar0->rx_w_round_robin_1);
1599 writeq(val64, &bar0->rx_w_round_robin_2);
1600 writeq(val64, &bar0->rx_w_round_robin_3);
1601 val64 = 0x0001020300000000ULL;
1602 writeq(val64, &bar0->rx_w_round_robin_4);
1603
1604 val64 = 0x8080404020201010ULL;
1605 writeq(val64, &bar0->rts_qos_steering);
1606 break;
1607 case 5:
1608 val64 = 0x0001020304000102ULL;
1609 writeq(val64, &bar0->rx_w_round_robin_0);
1610 val64 = 0x0304000102030400ULL;
1611 writeq(val64, &bar0->rx_w_round_robin_1);
1612 val64 = 0x0102030400010203ULL;
1613 writeq(val64, &bar0->rx_w_round_robin_2);
1614 val64 = 0x0400010203040001ULL;
1615 writeq(val64, &bar0->rx_w_round_robin_3);
1616 val64 = 0x0203040000000000ULL;
1617 writeq(val64, &bar0->rx_w_round_robin_4);
1618
1619 val64 = 0x8080404020201008ULL;
1620 writeq(val64, &bar0->rts_qos_steering);
1621 break;
1622 case 6:
1623 val64 = 0x0001020304050001ULL;
1624 writeq(val64, &bar0->rx_w_round_robin_0);
1625 val64 = 0x0203040500010203ULL;
1626 writeq(val64, &bar0->rx_w_round_robin_1);
1627 val64 = 0x0405000102030405ULL;
1628 writeq(val64, &bar0->rx_w_round_robin_2);
1629 val64 = 0x0001020304050001ULL;
1630 writeq(val64, &bar0->rx_w_round_robin_3);
1631 val64 = 0x0203040500000000ULL;
1632 writeq(val64, &bar0->rx_w_round_robin_4);
1633
1634 val64 = 0x8080404020100804ULL;
1635 writeq(val64, &bar0->rts_qos_steering);
1636 break;
1637 case 7:
1638 val64 = 0x0001020304050600ULL;
1639 writeq(val64, &bar0->rx_w_round_robin_0);
1640 val64 = 0x0102030405060001ULL;
1641 writeq(val64, &bar0->rx_w_round_robin_1);
1642 val64 = 0x0203040506000102ULL;
1643 writeq(val64, &bar0->rx_w_round_robin_2);
1644 val64 = 0x0304050600010203ULL;
1645 writeq(val64, &bar0->rx_w_round_robin_3);
1646 val64 = 0x0405060000000000ULL;
1647 writeq(val64, &bar0->rx_w_round_robin_4);
1648
1649 val64 = 0x8080402010080402ULL;
1650 writeq(val64, &bar0->rts_qos_steering);
1651 break;
1652 case 8:
1653 val64 = 0x0001020304050607ULL;
1654 writeq(val64, &bar0->rx_w_round_robin_0);
1655 writeq(val64, &bar0->rx_w_round_robin_1);
1656 writeq(val64, &bar0->rx_w_round_robin_2);
1657 writeq(val64, &bar0->rx_w_round_robin_3);
1658 val64 = 0x0001020300000000ULL;
1659 writeq(val64, &bar0->rx_w_round_robin_4);
1660
1661 val64 = 0x8040201008040201ULL;
1662 writeq(val64, &bar0->rts_qos_steering);
1663 break;
1664 }
1665
1666 /* UDP Fix */
1667 val64 = 0;
1668 for (i = 0; i < 8; i++)
1669 writeq(val64, &bar0->rts_frm_len_n[i]);
1670
1671 /* Set the default rts frame length for the rings configured */
1672 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1673 for (i = 0 ; i < config->rx_ring_num ; i++)
1674 writeq(val64, &bar0->rts_frm_len_n[i]);
1675
1676 /* Set the frame length for the configured rings
1677 * desired by the user
1678 */
1679 for (i = 0; i < config->rx_ring_num; i++) {
1680 /* If rts_frm_len[i] == 0 then it is assumed that user not
1681 * specified frame length steering.
1682 * If the user provides the frame length then program
1683 * the rts_frm_len register for those values or else
1684 * leave it as it is.
1685 */
1686 if (rts_frm_len[i] != 0) {
1687 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1688 &bar0->rts_frm_len_n[i]);
1689 }
1690 }
1691
1692 /* Disable differentiated services steering logic */
1693 for (i = 0; i < 64; i++) {
1694 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1695 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1696 dev->name);
1697 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1698 return -ENODEV;
1699 }
1700 }
1701
1702 /* Program statistics memory */
1703 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1704
1705 if (nic->device_type == XFRAME_II_DEVICE) {
1706 val64 = STAT_BC(0x320);
1707 writeq(val64, &bar0->stat_byte_cnt);
1708 }
1709
1710 /*
1711 * Initializing the sampling rate for the device to calculate the
1712 * bandwidth utilization.
1713 */
1714 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1715 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1716 writeq(val64, &bar0->mac_link_util);
1717
1718 /*
1719 * Initializing the Transmit and Receive Traffic Interrupt
1720 * Scheme.
1721 */
1722
1723 /* Initialize TTI */
1724 if (SUCCESS != init_tti(nic, nic->last_link_state))
1725 return -ENODEV;
1726
1727 /* RTI Initialization */
1728 if (nic->device_type == XFRAME_II_DEVICE) {
1729 /*
1730 * Programmed to generate Apprx 500 Intrs per
1731 * second
1732 */
1733 int count = (nic->config.bus_speed * 125)/4;
1734 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1735 } else
1736 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1737 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1738 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1739 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1740
1741 writeq(val64, &bar0->rti_data1_mem);
1742
1743 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1744 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1745 if (nic->config.intr_type == MSI_X)
1746 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1747 RTI_DATA2_MEM_RX_UFC_D(0x40));
1748 else
1749 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1750 RTI_DATA2_MEM_RX_UFC_D(0x80));
1751 writeq(val64, &bar0->rti_data2_mem);
1752
1753 for (i = 0; i < config->rx_ring_num; i++) {
1754 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1755 | RTI_CMD_MEM_OFFSET(i);
1756 writeq(val64, &bar0->rti_command_mem);
1757
1758 /*
1759 * Once the operation completes, the Strobe bit of the
1760 * command register will be reset. We poll for this
1761 * particular condition. We wait for a maximum of 500ms
1762 * for the operation to complete, if it's not complete
1763 * by then we return error.
1764 */
1765 time = 0;
1766 while (TRUE) {
1767 val64 = readq(&bar0->rti_command_mem);
1768 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1769 break;
1770
1771 if (time > 10) {
1772 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1773 dev->name);
1774 return -ENODEV;
1775 }
1776 time++;
1777 msleep(50);
1778 }
1779 }
1780
1781 /*
1782 * Initializing proper values as Pause threshold into all
1783 * the 8 Queues on Rx side.
1784 */
1785 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1786 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1787
1788 /* Disable RMAC PAD STRIPPING */
1789 add = &bar0->mac_cfg;
1790 val64 = readq(&bar0->mac_cfg);
1791 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1792 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1793 writel((u32) (val64), add);
1794 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1795 writel((u32) (val64 >> 32), (add + 4));
1796 val64 = readq(&bar0->mac_cfg);
1797
1798 /* Enable FCS stripping by adapter */
1799 add = &bar0->mac_cfg;
1800 val64 = readq(&bar0->mac_cfg);
1801 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1802 if (nic->device_type == XFRAME_II_DEVICE)
1803 writeq(val64, &bar0->mac_cfg);
1804 else {
1805 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806 writel((u32) (val64), add);
1807 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1808 writel((u32) (val64 >> 32), (add + 4));
1809 }
1810
1811 /*
1812 * Set the time value to be inserted in the pause frame
1813 * generated by xena.
1814 */
1815 val64 = readq(&bar0->rmac_pause_cfg);
1816 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1817 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1818 writeq(val64, &bar0->rmac_pause_cfg);
1819
1820 /*
1821 * Set the Threshold Limit for Generating the pause frame
1822 * If the amount of data in any Queue exceeds ratio of
1823 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1824 * pause frame is generated
1825 */
1826 val64 = 0;
1827 for (i = 0; i < 4; i++) {
1828 val64 |=
1829 (((u64) 0xFF00 | nic->mac_control.
1830 mc_pause_threshold_q0q3)
1831 << (i * 2 * 8));
1832 }
1833 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1834
1835 val64 = 0;
1836 for (i = 0; i < 4; i++) {
1837 val64 |=
1838 (((u64) 0xFF00 | nic->mac_control.
1839 mc_pause_threshold_q4q7)
1840 << (i * 2 * 8));
1841 }
1842 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1843
1844 /*
1845 * TxDMA will stop Read request if the number of read split has
1846 * exceeded the limit pointed by shared_splits
1847 */
1848 val64 = readq(&bar0->pic_control);
1849 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1850 writeq(val64, &bar0->pic_control);
1851
1852 if (nic->config.bus_speed == 266) {
1853 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1854 writeq(0x0, &bar0->read_retry_delay);
1855 writeq(0x0, &bar0->write_retry_delay);
1856 }
1857
1858 /*
1859 * Programming the Herc to split every write transaction
1860 * that does not start on an ADB to reduce disconnects.
1861 */
1862 if (nic->device_type == XFRAME_II_DEVICE) {
1863 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1864 MISC_LINK_STABILITY_PRD(3);
1865 writeq(val64, &bar0->misc_control);
1866 val64 = readq(&bar0->pic_control2);
1867 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1868 writeq(val64, &bar0->pic_control2);
1869 }
1870 if (strstr(nic->product_name, "CX4")) {
1871 val64 = TMAC_AVG_IPG(0x17);
1872 writeq(val64, &bar0->tmac_avg_ipg);
1873 }
1874
1875 return SUCCESS;
1876 }
1877 #define LINK_UP_DOWN_INTERRUPT 1
1878 #define MAC_RMAC_ERR_TIMER 2
1879
1880 static int s2io_link_fault_indication(struct s2io_nic *nic)
1881 {
1882 if (nic->device_type == XFRAME_II_DEVICE)
1883 return LINK_UP_DOWN_INTERRUPT;
1884 else
1885 return MAC_RMAC_ERR_TIMER;
1886 }
1887
1888 /**
1889 * do_s2io_write_bits - update alarm bits in alarm register
1890 * @value: alarm bits
1891 * @flag: interrupt status
1892 * @addr: address value
1893 * Description: update alarm bits in alarm register
1894 * Return Value:
1895 * NONE.
1896 */
1897 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1898 {
1899 u64 temp64;
1900
1901 temp64 = readq(addr);
1902
1903 if(flag == ENABLE_INTRS)
1904 temp64 &= ~((u64) value);
1905 else
1906 temp64 |= ((u64) value);
1907 writeq(temp64, addr);
1908 }
1909
1910 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1911 {
1912 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1913 register u64 gen_int_mask = 0;
1914 u64 interruptible;
1915
1916 writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1917 if (mask & TX_DMA_INTR) {
1918
1919 gen_int_mask |= TXDMA_INT_M;
1920
1921 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1922 TXDMA_PCC_INT | TXDMA_TTI_INT |
1923 TXDMA_LSO_INT | TXDMA_TPA_INT |
1924 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1925
1926 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1927 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1928 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1929 &bar0->pfc_err_mask);
1930
1931 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1932 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1933 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1934
1935 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1936 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1937 PCC_N_SERR | PCC_6_COF_OV_ERR |
1938 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1939 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1940 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1941
1942 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1943 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1944
1945 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1946 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1947 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1948 flag, &bar0->lso_err_mask);
1949
1950 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1951 flag, &bar0->tpa_err_mask);
1952
1953 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1954
1955 }
1956
1957 if (mask & TX_MAC_INTR) {
1958 gen_int_mask |= TXMAC_INT_M;
1959 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1960 &bar0->mac_int_mask);
1961 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1962 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1963 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1964 flag, &bar0->mac_tmac_err_mask);
1965 }
1966
1967 if (mask & TX_XGXS_INTR) {
1968 gen_int_mask |= TXXGXS_INT_M;
1969 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1970 &bar0->xgxs_int_mask);
1971 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1972 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1973 flag, &bar0->xgxs_txgxs_err_mask);
1974 }
1975
1976 if (mask & RX_DMA_INTR) {
1977 gen_int_mask |= RXDMA_INT_M;
1978 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1979 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1980 flag, &bar0->rxdma_int_mask);
1981 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1982 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1983 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1984 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1985 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1986 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1987 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1988 &bar0->prc_pcix_err_mask);
1989 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1990 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1991 &bar0->rpa_err_mask);
1992 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1993 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1994 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1995 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1996 flag, &bar0->rda_err_mask);
1997 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1998 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1999 flag, &bar0->rti_err_mask);
2000 }
2001
2002 if (mask & RX_MAC_INTR) {
2003 gen_int_mask |= RXMAC_INT_M;
2004 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2005 &bar0->mac_int_mask);
2006 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2007 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2008 RMAC_DOUBLE_ECC_ERR;
2009 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2010 interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2011 do_s2io_write_bits(interruptible,
2012 flag, &bar0->mac_rmac_err_mask);
2013 }
2014
2015 if (mask & RX_XGXS_INTR)
2016 {
2017 gen_int_mask |= RXXGXS_INT_M;
2018 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2019 &bar0->xgxs_int_mask);
2020 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2021 &bar0->xgxs_rxgxs_err_mask);
2022 }
2023
2024 if (mask & MC_INTR) {
2025 gen_int_mask |= MC_INT_M;
2026 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2027 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2028 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2029 &bar0->mc_err_mask);
2030 }
2031 nic->general_int_mask = gen_int_mask;
2032
2033 /* Remove this line when alarm interrupts are enabled */
2034 nic->general_int_mask = 0;
2035 }
2036 /**
2037 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2038 * @nic: device private variable,
2039 * @mask: A mask indicating which Intr block must be modified and,
2040 * @flag: A flag indicating whether to enable or disable the Intrs.
2041 * Description: This function will either disable or enable the interrupts
2042 * depending on the flag argument. The mask argument can be used to
2043 * enable/disable any Intr block.
2044 * Return Value: NONE.
2045 */
2046
2047 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2048 {
2049 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2050 register u64 temp64 = 0, intr_mask = 0;
2051
2052 intr_mask = nic->general_int_mask;
2053
2054 /* Top level interrupt classification */
2055 /* PIC Interrupts */
2056 if (mask & TX_PIC_INTR) {
2057 /* Enable PIC Intrs in the general intr mask register */
2058 intr_mask |= TXPIC_INT_M;
2059 if (flag == ENABLE_INTRS) {
2060 /*
2061 * If Hercules adapter enable GPIO otherwise
2062 * disable all PCIX, Flash, MDIO, IIC and GPIO
2063 * interrupts for now.
2064 * TODO
2065 */
2066 if (s2io_link_fault_indication(nic) ==
2067 LINK_UP_DOWN_INTERRUPT ) {
2068 do_s2io_write_bits(PIC_INT_GPIO, flag,
2069 &bar0->pic_int_mask);
2070 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2071 &bar0->gpio_int_mask);
2072 } else
2073 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2074 } else if (flag == DISABLE_INTRS) {
2075 /*
2076 * Disable PIC Intrs in the general
2077 * intr mask register
2078 */
2079 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2080 }
2081 }
2082
2083 /* Tx traffic interrupts */
2084 if (mask & TX_TRAFFIC_INTR) {
2085 intr_mask |= TXTRAFFIC_INT_M;
2086 if (flag == ENABLE_INTRS) {
2087 /*
2088 * Enable all the Tx side interrupts
2089 * writing 0 Enables all 64 TX interrupt levels
2090 */
2091 writeq(0x0, &bar0->tx_traffic_mask);
2092 } else if (flag == DISABLE_INTRS) {
2093 /*
2094 * Disable Tx Traffic Intrs in the general intr mask
2095 * register.
2096 */
2097 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2098 }
2099 }
2100
2101 /* Rx traffic interrupts */
2102 if (mask & RX_TRAFFIC_INTR) {
2103 intr_mask |= RXTRAFFIC_INT_M;
2104 if (flag == ENABLE_INTRS) {
2105 /* writing 0 Enables all 8 RX interrupt levels */
2106 writeq(0x0, &bar0->rx_traffic_mask);
2107 } else if (flag == DISABLE_INTRS) {
2108 /*
2109 * Disable Rx Traffic Intrs in the general intr mask
2110 * register.
2111 */
2112 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2113 }
2114 }
2115
2116 temp64 = readq(&bar0->general_int_mask);
2117 if (flag == ENABLE_INTRS)
2118 temp64 &= ~((u64) intr_mask);
2119 else
2120 temp64 = DISABLE_ALL_INTRS;
2121 writeq(temp64, &bar0->general_int_mask);
2122
2123 nic->general_int_mask = readq(&bar0->general_int_mask);
2124 }
2125
2126 /**
2127 * verify_pcc_quiescent- Checks for PCC quiescent state
2128 * Return: 1 If PCC is quiescence
2129 * 0 If PCC is not quiescence
2130 */
2131 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2132 {
2133 int ret = 0, herc;
2134 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2135 u64 val64 = readq(&bar0->adapter_status);
2136
2137 herc = (sp->device_type == XFRAME_II_DEVICE);
2138
2139 if (flag == FALSE) {
2140 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2141 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2142 ret = 1;
2143 } else {
2144 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2145 ret = 1;
2146 }
2147 } else {
2148 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2149 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2150 ADAPTER_STATUS_RMAC_PCC_IDLE))
2151 ret = 1;
2152 } else {
2153 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2154 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2155 ret = 1;
2156 }
2157 }
2158
2159 return ret;
2160 }
2161 /**
2162 * verify_xena_quiescence - Checks whether the H/W is ready
2163 * Description: Returns whether the H/W is ready to go or not. Depending
2164 * on whether adapter enable bit was written or not the comparison
2165 * differs and the calling function passes the input argument flag to
2166 * indicate this.
2167 * Return: 1 If xena is quiescence
2168 * 0 If Xena is not quiescence
2169 */
2170
2171 static int verify_xena_quiescence(struct s2io_nic *sp)
2172 {
2173 int mode;
2174 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2175 u64 val64 = readq(&bar0->adapter_status);
2176 mode = s2io_verify_pci_mode(sp);
2177
2178 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2179 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2180 return 0;
2181 }
2182 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2183 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2184 return 0;
2185 }
2186 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2187 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2188 return 0;
2189 }
2190 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2191 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2192 return 0;
2193 }
2194 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2195 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2196 return 0;
2197 }
2198 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2199 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2200 return 0;
2201 }
2202 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2203 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2204 return 0;
2205 }
2206 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2207 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2208 return 0;
2209 }
2210
2211 /*
2212 * In PCI 33 mode, the P_PLL is not used, and therefore,
2213 * the the P_PLL_LOCK bit in the adapter_status register will
2214 * not be asserted.
2215 */
2216 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2217 sp->device_type == XFRAME_II_DEVICE && mode !=
2218 PCI_MODE_PCI_33) {
2219 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2220 return 0;
2221 }
2222 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2223 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2224 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2225 return 0;
2226 }
2227 return 1;
2228 }
2229
2230 /**
2231 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2232 * @sp: Pointer to device specifc structure
2233 * Description :
2234 * New procedure to clear mac address reading problems on Alpha platforms
2235 *
2236 */
2237
2238 static void fix_mac_address(struct s2io_nic * sp)
2239 {
2240 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2241 u64 val64;
2242 int i = 0;
2243
2244 while (fix_mac[i] != END_SIGN) {
2245 writeq(fix_mac[i++], &bar0->gpio_control);
2246 udelay(10);
2247 val64 = readq(&bar0->gpio_control);
2248 }
2249 }
2250
2251 /**
2252 * start_nic - Turns the device on
2253 * @nic : device private variable.
2254 * Description:
2255 * This function actually turns the device on. Before this function is
2256 * called,all Registers are configured from their reset states
2257 * and shared memory is allocated but the NIC is still quiescent. On
2258 * calling this function, the device interrupts are cleared and the NIC is
2259 * literally switched on by writing into the adapter control register.
2260 * Return Value:
2261 * SUCCESS on success and -1 on failure.
2262 */
2263
2264 static int start_nic(struct s2io_nic *nic)
2265 {
2266 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2267 struct net_device *dev = nic->dev;
2268 register u64 val64 = 0;
2269 u16 subid, i;
2270 struct mac_info *mac_control;
2271 struct config_param *config;
2272
2273 mac_control = &nic->mac_control;
2274 config = &nic->config;
2275
2276 /* PRC Initialization and configuration */
2277 for (i = 0; i < config->rx_ring_num; i++) {
2278 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2279 &bar0->prc_rxd0_n[i]);
2280
2281 val64 = readq(&bar0->prc_ctrl_n[i]);
2282 if (nic->rxd_mode == RXD_MODE_1)
2283 val64 |= PRC_CTRL_RC_ENABLED;
2284 else
2285 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2286 if (nic->device_type == XFRAME_II_DEVICE)
2287 val64 |= PRC_CTRL_GROUP_READS;
2288 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2289 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2290 writeq(val64, &bar0->prc_ctrl_n[i]);
2291 }
2292
2293 if (nic->rxd_mode == RXD_MODE_3B) {
2294 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2295 val64 = readq(&bar0->rx_pa_cfg);
2296 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2297 writeq(val64, &bar0->rx_pa_cfg);
2298 }
2299
2300 if (vlan_tag_strip == 0) {
2301 val64 = readq(&bar0->rx_pa_cfg);
2302 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2303 writeq(val64, &bar0->rx_pa_cfg);
2304 nic->vlan_strip_flag = 0;
2305 }
2306
2307 /*
2308 * Enabling MC-RLDRAM. After enabling the device, we timeout
2309 * for around 100ms, which is approximately the time required
2310 * for the device to be ready for operation.
2311 */
2312 val64 = readq(&bar0->mc_rldram_mrs);
2313 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2314 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2315 val64 = readq(&bar0->mc_rldram_mrs);
2316
2317 msleep(100); /* Delay by around 100 ms. */
2318
2319 /* Enabling ECC Protection. */
2320 val64 = readq(&bar0->adapter_control);
2321 val64 &= ~ADAPTER_ECC_EN;
2322 writeq(val64, &bar0->adapter_control);
2323
2324 /*
2325 * Verify if the device is ready to be enabled, if so enable
2326 * it.
2327 */
2328 val64 = readq(&bar0->adapter_status);
2329 if (!verify_xena_quiescence(nic)) {
2330 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2331 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2332 (unsigned long long) val64);
2333 return FAILURE;
2334 }
2335
2336 /*
2337 * With some switches, link might be already up at this point.
2338 * Because of this weird behavior, when we enable laser,
2339 * we may not get link. We need to handle this. We cannot
2340 * figure out which switch is misbehaving. So we are forced to
2341 * make a global change.
2342 */
2343
2344 /* Enabling Laser. */
2345 val64 = readq(&bar0->adapter_control);
2346 val64 |= ADAPTER_EOI_TX_ON;
2347 writeq(val64, &bar0->adapter_control);
2348
2349 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2350 /*
2351 * Dont see link state interrupts initally on some switches,
2352 * so directly scheduling the link state task here.
2353 */
2354 schedule_work(&nic->set_link_task);
2355 }
2356 /* SXE-002: Initialize link and activity LED */
2357 subid = nic->pdev->subsystem_device;
2358 if (((subid & 0xFF) >= 0x07) &&
2359 (nic->device_type == XFRAME_I_DEVICE)) {
2360 val64 = readq(&bar0->gpio_control);
2361 val64 |= 0x0000800000000000ULL;
2362 writeq(val64, &bar0->gpio_control);
2363 val64 = 0x0411040400000000ULL;
2364 writeq(val64, (void __iomem *)bar0 + 0x2700);
2365 }
2366
2367 return SUCCESS;
2368 }
2369 /**
2370 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2371 */
2372 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2373 TxD *txdlp, int get_off)
2374 {
2375 struct s2io_nic *nic = fifo_data->nic;
2376 struct sk_buff *skb;
2377 struct TxD *txds;
2378 u16 j, frg_cnt;
2379
2380 txds = txdlp;
2381 if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2382 pci_unmap_single(nic->pdev, (dma_addr_t)
2383 txds->Buffer_Pointer, sizeof(u64),
2384 PCI_DMA_TODEVICE);
2385 txds++;
2386 }
2387
2388 skb = (struct sk_buff *) ((unsigned long)
2389 txds->Host_Control);
2390 if (!skb) {
2391 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2392 return NULL;
2393 }
2394 pci_unmap_single(nic->pdev, (dma_addr_t)
2395 txds->Buffer_Pointer,
2396 skb->len - skb->data_len,
2397 PCI_DMA_TODEVICE);
2398 frg_cnt = skb_shinfo(skb)->nr_frags;
2399 if (frg_cnt) {
2400 txds++;
2401 for (j = 0; j < frg_cnt; j++, txds++) {
2402 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2403 if (!txds->Buffer_Pointer)
2404 break;
2405 pci_unmap_page(nic->pdev, (dma_addr_t)
2406 txds->Buffer_Pointer,
2407 frag->size, PCI_DMA_TODEVICE);
2408 }
2409 }
2410 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2411 return(skb);
2412 }
2413
2414 /**
2415 * free_tx_buffers - Free all queued Tx buffers
2416 * @nic : device private variable.
2417 * Description:
2418 * Free all queued Tx buffers.
2419 * Return Value: void
2420 */
2421
2422 static void free_tx_buffers(struct s2io_nic *nic)
2423 {
2424 struct net_device *dev = nic->dev;
2425 struct sk_buff *skb;
2426 struct TxD *txdp;
2427 int i, j;
2428 struct mac_info *mac_control;
2429 struct config_param *config;
2430 int cnt = 0;
2431
2432 mac_control = &nic->mac_control;
2433 config = &nic->config;
2434
2435 for (i = 0; i < config->tx_fifo_num; i++) {
2436 unsigned long flags;
2437 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2438 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2439 txdp = (struct TxD *) \
2440 mac_control->fifos[i].list_info[j].list_virt_addr;
2441 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2442 if (skb) {
2443 nic->mac_control.stats_info->sw_stat.mem_freed
2444 += skb->truesize;
2445 dev_kfree_skb(skb);
2446 cnt++;
2447 }
2448 }
2449 DBG_PRINT(INTR_DBG,
2450 "%s:forcibly freeing %d skbs on FIFO%d\n",
2451 dev->name, cnt, i);
2452 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2453 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2454 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2455 }
2456 }
2457
2458 /**
2459 * stop_nic - To stop the nic
2460 * @nic ; device private variable.
2461 * Description:
2462 * This function does exactly the opposite of what the start_nic()
2463 * function does. This function is called to stop the device.
2464 * Return Value:
2465 * void.
2466 */
2467
2468 static void stop_nic(struct s2io_nic *nic)
2469 {
2470 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2471 register u64 val64 = 0;
2472 u16 interruptible;
2473 struct mac_info *mac_control;
2474 struct config_param *config;
2475
2476 mac_control = &nic->mac_control;
2477 config = &nic->config;
2478
2479 /* Disable all interrupts */
2480 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2481 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2482 interruptible |= TX_PIC_INTR;
2483 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
2485 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486 val64 = readq(&bar0->adapter_control);
2487 val64 &= ~(ADAPTER_CNTL_EN);
2488 writeq(val64, &bar0->adapter_control);
2489 }
2490
2491 /**
2492 * fill_rx_buffers - Allocates the Rx side skbs
2493 * @ring_info: per ring structure
2494 * @from_card_up: If this is true, we will map the buffer to get
2495 * the dma address for buf0 and buf1 to give it to the card.
2496 * Else we will sync the already mapped buffer to give it to the card.
2497 * Description:
2498 * The function allocates Rx side skbs and puts the physical
2499 * address of these buffers into the RxD buffer pointers, so that the NIC
2500 * can DMA the received frame into these locations.
2501 * The NIC supports 3 receive modes, viz
2502 * 1. single buffer,
2503 * 2. three buffer and
2504 * 3. Five buffer modes.
2505 * Each mode defines how many fragments the received frame will be split
2506 * up into by the NIC. The frame is split into L3 header, L4 Header,
2507 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508 * is split into 3 fragments. As of now only single buffer mode is
2509 * supported.
2510 * Return Value:
2511 * SUCCESS on success or an appropriate -ve value on failure.
2512 */
2513 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514 int from_card_up)
2515 {
2516 struct sk_buff *skb;
2517 struct RxD_t *rxdp;
2518 int off, size, block_no, block_no1;
2519 u32 alloc_tab = 0;
2520 u32 alloc_cnt;
2521 u64 tmp;
2522 struct buffAdd *ba;
2523 struct RxD_t *first_rxdp = NULL;
2524 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2525 int rxd_index = 0;
2526 struct RxD1 *rxdp1;
2527 struct RxD3 *rxdp3;
2528 struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2529
2530 alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531
2532 block_no1 = ring->rx_curr_get_info.block_index;
2533 while (alloc_tab < alloc_cnt) {
2534 block_no = ring->rx_curr_put_info.block_index;
2535
2536 off = ring->rx_curr_put_info.offset;
2537
2538 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540 rxd_index = off + 1;
2541 if (block_no)
2542 rxd_index += (block_no * ring->rxd_count);
2543
2544 if ((block_no == block_no1) &&
2545 (off == ring->rx_curr_get_info.offset) &&
2546 (rxdp->Host_Control)) {
2547 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2548 ring->dev->name);
2549 DBG_PRINT(INTR_DBG, " info equated\n");
2550 goto end;
2551 }
2552 if (off && (off == ring->rxd_count)) {
2553 ring->rx_curr_put_info.block_index++;
2554 if (ring->rx_curr_put_info.block_index ==
2555 ring->block_count)
2556 ring->rx_curr_put_info.block_index = 0;
2557 block_no = ring->rx_curr_put_info.block_index;
2558 off = 0;
2559 ring->rx_curr_put_info.offset = off;
2560 rxdp = ring->rx_blocks[block_no].block_virt_addr;
2561 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2562 ring->dev->name, rxdp);
2563
2564 }
2565
2566 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2567 ((ring->rxd_mode == RXD_MODE_3B) &&
2568 (rxdp->Control_2 & s2BIT(0)))) {
2569 ring->rx_curr_put_info.offset = off;
2570 goto end;
2571 }
2572 /* calculate size of skb based on ring mode */
2573 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2574 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2575 if (ring->rxd_mode == RXD_MODE_1)
2576 size += NET_IP_ALIGN;
2577 else
2578 size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579
2580 /* allocate skb */
2581 skb = dev_alloc_skb(size);
2582 if(!skb) {
2583 DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2584 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2585 if (first_rxdp) {
2586 wmb();
2587 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588 }
2589 stats->mem_alloc_fail_cnt++;
2590
2591 return -ENOMEM ;
2592 }
2593 stats->mem_allocated += skb->truesize;
2594
2595 if (ring->rxd_mode == RXD_MODE_1) {
2596 /* 1 buffer mode - normal operation mode */
2597 rxdp1 = (struct RxD1*)rxdp;
2598 memset(rxdp, 0, sizeof(struct RxD1));
2599 skb_reserve(skb, NET_IP_ALIGN);
2600 rxdp1->Buffer0_ptr = pci_map_single
2601 (ring->pdev, skb->data, size - NET_IP_ALIGN,
2602 PCI_DMA_FROMDEVICE);
2603 if (pci_dma_mapping_error(nic->pdev,
2604 rxdp1->Buffer0_ptr))
2605 goto pci_map_failed;
2606
2607 rxdp->Control_2 =
2608 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2609 rxdp->Host_Control = (unsigned long) (skb);
2610 } else if (ring->rxd_mode == RXD_MODE_3B) {
2611 /*
2612 * 2 buffer mode -
2613 * 2 buffer mode provides 128
2614 * byte aligned receive buffers.
2615 */
2616
2617 rxdp3 = (struct RxD3*)rxdp;
2618 /* save buffer pointers to avoid frequent dma mapping */
2619 Buffer0_ptr = rxdp3->Buffer0_ptr;
2620 Buffer1_ptr = rxdp3->Buffer1_ptr;
2621 memset(rxdp, 0, sizeof(struct RxD3));
2622 /* restore the buffer pointers for dma sync*/
2623 rxdp3->Buffer0_ptr = Buffer0_ptr;
2624 rxdp3->Buffer1_ptr = Buffer1_ptr;
2625
2626 ba = &ring->ba[block_no][off];
2627 skb_reserve(skb, BUF0_LEN);
2628 tmp = (u64)(unsigned long) skb->data;
2629 tmp += ALIGN_SIZE;
2630 tmp &= ~ALIGN_SIZE;
2631 skb->data = (void *) (unsigned long)tmp;
2632 skb_reset_tail_pointer(skb);
2633
2634 if (from_card_up) {
2635 rxdp3->Buffer0_ptr =
2636 pci_map_single(ring->pdev, ba->ba_0,
2637 BUF0_LEN, PCI_DMA_FROMDEVICE);
2638 if (pci_dma_mapping_error(nic->pdev,
2639 rxdp3->Buffer0_ptr))
2640 goto pci_map_failed;
2641 } else
2642 pci_dma_sync_single_for_device(ring->pdev,
2643 (dma_addr_t) rxdp3->Buffer0_ptr,
2644 BUF0_LEN, PCI_DMA_FROMDEVICE);
2645
2646 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2647 if (ring->rxd_mode == RXD_MODE_3B) {
2648 /* Two buffer mode */
2649
2650 /*
2651 * Buffer2 will have L3/L4 header plus
2652 * L4 payload
2653 */
2654 rxdp3->Buffer2_ptr = pci_map_single
2655 (ring->pdev, skb->data, ring->mtu + 4,
2656 PCI_DMA_FROMDEVICE);
2657
2658 if (pci_dma_mapping_error(nic->pdev,
2659 rxdp3->Buffer2_ptr))
2660 goto pci_map_failed;
2661
2662 if (from_card_up) {
2663 rxdp3->Buffer1_ptr =
2664 pci_map_single(ring->pdev,
2665 ba->ba_1, BUF1_LEN,
2666 PCI_DMA_FROMDEVICE);
2667
2668 if (pci_dma_mapping_error(nic->pdev,
2669 rxdp3->Buffer1_ptr)) {
2670 pci_unmap_single
2671 (ring->pdev,
2672 (dma_addr_t)(unsigned long)
2673 skb->data,
2674 ring->mtu + 4,
2675 PCI_DMA_FROMDEVICE);
2676 goto pci_map_failed;
2677 }
2678 }
2679 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681 (ring->mtu + 4);
2682 }
2683 rxdp->Control_2 |= s2BIT(0);
2684 rxdp->Host_Control = (unsigned long) (skb);
2685 }
2686 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687 rxdp->Control_1 |= RXD_OWN_XENA;
2688 off++;
2689 if (off == (ring->rxd_count + 1))
2690 off = 0;
2691 ring->rx_curr_put_info.offset = off;
2692
2693 rxdp->Control_2 |= SET_RXD_MARKER;
2694 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695 if (first_rxdp) {
2696 wmb();
2697 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698 }
2699 first_rxdp = rxdp;
2700 }
2701 ring->rx_bufs_left += 1;
2702 alloc_tab++;
2703 }
2704
2705 end:
2706 /* Transfer ownership of first descriptor to adapter just before
2707 * exiting. Before that, use memory barrier so that ownership
2708 * and other fields are seen by adapter correctly.
2709 */
2710 if (first_rxdp) {
2711 wmb();
2712 first_rxdp->Control_1 |= RXD_OWN_XENA;
2713 }
2714
2715 return SUCCESS;
2716 pci_map_failed:
2717 stats->pci_map_fail_cnt++;
2718 stats->mem_freed += skb->truesize;
2719 dev_kfree_skb_irq(skb);
2720 return -ENOMEM;
2721 }
2722
2723 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2724 {
2725 struct net_device *dev = sp->dev;
2726 int j;
2727 struct sk_buff *skb;
2728 struct RxD_t *rxdp;
2729 struct mac_info *mac_control;
2730 struct buffAdd *ba;
2731 struct RxD1 *rxdp1;
2732 struct RxD3 *rxdp3;
2733
2734 mac_control = &sp->mac_control;
2735 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2736 rxdp = mac_control->rings[ring_no].
2737 rx_blocks[blk].rxds[j].virt_addr;
2738 skb = (struct sk_buff *)
2739 ((unsigned long) rxdp->Host_Control);
2740 if (!skb) {
2741 continue;
2742 }
2743 if (sp->rxd_mode == RXD_MODE_1) {
2744 rxdp1 = (struct RxD1*)rxdp;
2745 pci_unmap_single(sp->pdev, (dma_addr_t)
2746 rxdp1->Buffer0_ptr,
2747 dev->mtu +
2748 HEADER_ETHERNET_II_802_3_SIZE
2749 + HEADER_802_2_SIZE +
2750 HEADER_SNAP_SIZE,
2751 PCI_DMA_FROMDEVICE);
2752 memset(rxdp, 0, sizeof(struct RxD1));
2753 } else if(sp->rxd_mode == RXD_MODE_3B) {
2754 rxdp3 = (struct RxD3*)rxdp;
2755 ba = &mac_control->rings[ring_no].
2756 ba[blk][j];
2757 pci_unmap_single(sp->pdev, (dma_addr_t)
2758 rxdp3->Buffer0_ptr,
2759 BUF0_LEN,
2760 PCI_DMA_FROMDEVICE);
2761 pci_unmap_single(sp->pdev, (dma_addr_t)
2762 rxdp3->Buffer1_ptr,
2763 BUF1_LEN,
2764 PCI_DMA_FROMDEVICE);
2765 pci_unmap_single(sp->pdev, (dma_addr_t)
2766 rxdp3->Buffer2_ptr,
2767 dev->mtu + 4,
2768 PCI_DMA_FROMDEVICE);
2769 memset(rxdp, 0, sizeof(struct RxD3));
2770 }
2771 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2772 dev_kfree_skb(skb);
2773 mac_control->rings[ring_no].rx_bufs_left -= 1;
2774 }
2775 }
2776
2777 /**
2778 * free_rx_buffers - Frees all Rx buffers
2779 * @sp: device private variable.
2780 * Description:
2781 * This function will free all Rx buffers allocated by host.
2782 * Return Value:
2783 * NONE.
2784 */
2785
2786 static void free_rx_buffers(struct s2io_nic *sp)
2787 {
2788 struct net_device *dev = sp->dev;
2789 int i, blk = 0, buf_cnt = 0;
2790 struct mac_info *mac_control;
2791 struct config_param *config;
2792
2793 mac_control = &sp->mac_control;
2794 config = &sp->config;
2795
2796 for (i = 0; i < config->rx_ring_num; i++) {
2797 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2798 free_rxd_blk(sp,i,blk);
2799
2800 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2801 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2802 mac_control->rings[i].rx_curr_put_info.offset = 0;
2803 mac_control->rings[i].rx_curr_get_info.offset = 0;
2804 mac_control->rings[i].rx_bufs_left = 0;
2805 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2806 dev->name, buf_cnt, i);
2807 }
2808 }
2809
2810 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2811 {
2812 if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2813 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2814 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2815 }
2816 return 0;
2817 }
2818
2819 /**
2820 * s2io_poll - Rx interrupt handler for NAPI support
2821 * @napi : pointer to the napi structure.
2822 * @budget : The number of packets that were budgeted to be processed
2823 * during one pass through the 'Poll" function.
2824 * Description:
2825 * Comes into picture only if NAPI support has been incorporated. It does
2826 * the same thing that rx_intr_handler does, but not in a interrupt context
2827 * also It will process only a given number of packets.
2828 * Return value:
2829 * 0 on success and 1 if there are No Rx packets to be processed.
2830 */
2831
2832 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2833 {
2834 struct ring_info *ring = container_of(napi, struct ring_info, napi);
2835 struct net_device *dev = ring->dev;
2836 struct config_param *config;
2837 struct mac_info *mac_control;
2838 int pkts_processed = 0;
2839 u8 __iomem *addr = NULL;
2840 u8 val8 = 0;
2841 struct s2io_nic *nic = netdev_priv(dev);
2842 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843 int budget_org = budget;
2844
2845 config = &nic->config;
2846 mac_control = &nic->mac_control;
2847
2848 if (unlikely(!is_s2io_card_up(nic)))
2849 return 0;
2850
2851 pkts_processed = rx_intr_handler(ring, budget);
2852 s2io_chk_rx_buffers(nic, ring);
2853
2854 if (pkts_processed < budget_org) {
2855 napi_complete(napi);
2856 /*Re Enable MSI-Rx Vector*/
2857 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2858 addr += 7 - ring->ring_no;
2859 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2860 writeb(val8, addr);
2861 val8 = readb(addr);
2862 }
2863 return pkts_processed;
2864 }
2865 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2866 {
2867 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2868 struct ring_info *ring;
2869 struct config_param *config;
2870 struct mac_info *mac_control;
2871 int pkts_processed = 0;
2872 int ring_pkts_processed, i;
2873 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2874 int budget_org = budget;
2875
2876 config = &nic->config;
2877 mac_control = &nic->mac_control;
2878
2879 if (unlikely(!is_s2io_card_up(nic)))
2880 return 0;
2881
2882 for (i = 0; i < config->rx_ring_num; i++) {
2883 ring = &mac_control->rings[i];
2884 ring_pkts_processed = rx_intr_handler(ring, budget);
2885 s2io_chk_rx_buffers(nic, ring);
2886 pkts_processed += ring_pkts_processed;
2887 budget -= ring_pkts_processed;
2888 if (budget <= 0)
2889 break;
2890 }
2891 if (pkts_processed < budget_org) {
2892 napi_complete(napi);
2893 /* Re enable the Rx interrupts for the ring */
2894 writeq(0, &bar0->rx_traffic_mask);
2895 readl(&bar0->rx_traffic_mask);
2896 }
2897 return pkts_processed;
2898 }
2899
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2901 /**
2902 * s2io_netpoll - netpoll event handler entry point
2903 * @dev : pointer to the device structure.
2904 * Description:
2905 * This function will be called by upper layer to check for events on the
2906 * interface in situations where interrupts are disabled. It is used for
2907 * specific in-kernel networking tasks, such as remote consoles and kernel
2908 * debugging over the network (example netdump in RedHat).
2909 */
2910 static void s2io_netpoll(struct net_device *dev)
2911 {
2912 struct s2io_nic *nic = netdev_priv(dev);
2913 struct mac_info *mac_control;
2914 struct config_param *config;
2915 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2916 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2917 int i;
2918
2919 if (pci_channel_offline(nic->pdev))
2920 return;
2921
2922 disable_irq(dev->irq);
2923
2924 mac_control = &nic->mac_control;
2925 config = &nic->config;
2926
2927 writeq(val64, &bar0->rx_traffic_int);
2928 writeq(val64, &bar0->tx_traffic_int);
2929
2930 /* we need to free up the transmitted skbufs or else netpoll will
2931 * run out of skbs and will fail and eventually netpoll application such
2932 * as netdump will fail.
2933 */
2934 for (i = 0; i < config->tx_fifo_num; i++)
2935 tx_intr_handler(&mac_control->fifos[i]);
2936
2937 /* check for received packet and indicate up to network */
2938 for (i = 0; i < config->rx_ring_num; i++)
2939 rx_intr_handler(&mac_control->rings[i], 0);
2940
2941 for (i = 0; i < config->rx_ring_num; i++) {
2942 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2943 -ENOMEM) {
2944 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2945 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2946 break;
2947 }
2948 }
2949 enable_irq(dev->irq);
2950 return;
2951 }
2952 #endif
2953
2954 /**
2955 * rx_intr_handler - Rx interrupt handler
2956 * @ring_info: per ring structure.
2957 * @budget: budget for napi processing.
2958 * Description:
2959 * If the interrupt is because of a received frame or if the
2960 * receive ring contains fresh as yet un-processed frames,this function is
2961 * called. It picks out the RxD at which place the last Rx processing had
2962 * stopped and sends the skb to the OSM's Rx handler and then increments
2963 * the offset.
2964 * Return Value:
2965 * No. of napi packets processed.
2966 */
2967 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2968 {
2969 int get_block, put_block;
2970 struct rx_curr_get_info get_info, put_info;
2971 struct RxD_t *rxdp;
2972 struct sk_buff *skb;
2973 int pkt_cnt = 0, napi_pkts = 0;
2974 int i;
2975 struct RxD1* rxdp1;
2976 struct RxD3* rxdp3;
2977
2978 get_info = ring_data->rx_curr_get_info;
2979 get_block = get_info.block_index;
2980 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2981 put_block = put_info.block_index;
2982 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2983
2984 while (RXD_IS_UP2DT(rxdp)) {
2985 /*
2986 * If your are next to put index then it's
2987 * FIFO full condition
2988 */
2989 if ((get_block == put_block) &&
2990 (get_info.offset + 1) == put_info.offset) {
2991 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2992 ring_data->dev->name);
2993 break;
2994 }
2995 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2996 if (skb == NULL) {
2997 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2998 ring_data->dev->name);
2999 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3000 return 0;
3001 }
3002 if (ring_data->rxd_mode == RXD_MODE_1) {
3003 rxdp1 = (struct RxD1*)rxdp;
3004 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3005 rxdp1->Buffer0_ptr,
3006 ring_data->mtu +
3007 HEADER_ETHERNET_II_802_3_SIZE +
3008 HEADER_802_2_SIZE +
3009 HEADER_SNAP_SIZE,
3010 PCI_DMA_FROMDEVICE);
3011 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3012 rxdp3 = (struct RxD3*)rxdp;
3013 pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3014 rxdp3->Buffer0_ptr,
3015 BUF0_LEN, PCI_DMA_FROMDEVICE);
3016 pci_unmap_single(ring_data->pdev, (dma_addr_t)
3017 rxdp3->Buffer2_ptr,
3018 ring_data->mtu + 4,
3019 PCI_DMA_FROMDEVICE);
3020 }
3021 prefetch(skb->data);
3022 rx_osm_handler(ring_data, rxdp);
3023 get_info.offset++;
3024 ring_data->rx_curr_get_info.offset = get_info.offset;
3025 rxdp = ring_data->rx_blocks[get_block].
3026 rxds[get_info.offset].virt_addr;
3027 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3028 get_info.offset = 0;
3029 ring_data->rx_curr_get_info.offset = get_info.offset;
3030 get_block++;
3031 if (get_block == ring_data->block_count)
3032 get_block = 0;
3033 ring_data->rx_curr_get_info.block_index = get_block;
3034 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3035 }
3036
3037 if (ring_data->nic->config.napi) {
3038 budget--;
3039 napi_pkts++;
3040 if (!budget)
3041 break;
3042 }
3043 pkt_cnt++;
3044 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3045 break;
3046 }
3047 if (ring_data->lro) {
3048 /* Clear all LRO sessions before exiting */
3049 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3050 struct lro *lro = &ring_data->lro0_n[i];
3051 if (lro->in_use) {
3052 update_L3L4_header(ring_data->nic, lro);
3053 queue_rx_frame(lro->parent, lro->vlan_tag);
3054 clear_lro_session(lro);
3055 }
3056 }
3057 }
3058 return(napi_pkts);
3059 }
3060
3061 /**
3062 * tx_intr_handler - Transmit interrupt handler
3063 * @nic : device private variable
3064 * Description:
3065 * If an interrupt was raised to indicate DMA complete of the
3066 * Tx packet, this function is called. It identifies the last TxD
3067 * whose buffer was freed and frees all skbs whose data have already
3068 * DMA'ed into the NICs internal memory.
3069 * Return Value:
3070 * NONE
3071 */
3072
3073 static void tx_intr_handler(struct fifo_info *fifo_data)
3074 {
3075 struct s2io_nic *nic = fifo_data->nic;
3076 struct tx_curr_get_info get_info, put_info;
3077 struct sk_buff *skb = NULL;
3078 struct TxD *txdlp;
3079 int pkt_cnt = 0;
3080 unsigned long flags = 0;
3081 u8 err_mask;
3082
3083 if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3084 return;
3085
3086 get_info = fifo_data->tx_curr_get_info;
3087 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3088 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3089 list_virt_addr;
3090 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3091 (get_info.offset != put_info.offset) &&
3092 (txdlp->Host_Control)) {
3093 /* Check for TxD errors */
3094 if (txdlp->Control_1 & TXD_T_CODE) {
3095 unsigned long long err;
3096 err = txdlp->Control_1 & TXD_T_CODE;
3097 if (err & 0x1) {
3098 nic->mac_control.stats_info->sw_stat.
3099 parity_err_cnt++;
3100 }
3101
3102 /* update t_code statistics */
3103 err_mask = err >> 48;
3104 switch(err_mask) {
3105 case 2:
3106 nic->mac_control.stats_info->sw_stat.
3107 tx_buf_abort_cnt++;
3108 break;
3109
3110 case 3:
3111 nic->mac_control.stats_info->sw_stat.
3112 tx_desc_abort_cnt++;
3113 break;
3114
3115 case 7:
3116 nic->mac_control.stats_info->sw_stat.
3117 tx_parity_err_cnt++;
3118 break;
3119
3120 case 10:
3121 nic->mac_control.stats_info->sw_stat.
3122 tx_link_loss_cnt++;
3123 break;
3124
3125 case 15:
3126 nic->mac_control.stats_info->sw_stat.
3127 tx_list_proc_err_cnt++;
3128 break;
3129 }
3130 }
3131
3132 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3133 if (skb == NULL) {
3134 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3135 DBG_PRINT(ERR_DBG, "%s: Null skb ",
3136 __func__);
3137 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3138 return;
3139 }
3140 pkt_cnt++;
3141
3142 /* Updating the statistics block */
3143 nic->dev->stats.tx_bytes += skb->len;
3144 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3145 dev_kfree_skb_irq(skb);
3146
3147 get_info.offset++;
3148 if (get_info.offset == get_info.fifo_len + 1)
3149 get_info.offset = 0;
3150 txdlp = (struct TxD *) fifo_data->list_info
3151 [get_info.offset].list_virt_addr;
3152 fifo_data->tx_curr_get_info.offset =
3153 get_info.offset;
3154 }
3155
3156 s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3157
3158 spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3159 }
3160
3161 /**
3162 * s2io_mdio_write - Function to write in to MDIO registers
3163 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3164 * @addr : address value
3165 * @value : data value
3166 * @dev : pointer to net_device structure
3167 * Description:
3168 * This function is used to write values to the MDIO registers
3169 * NONE
3170 */
3171 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3172 {
3173 u64 val64 = 0x0;
3174 struct s2io_nic *sp = netdev_priv(dev);
3175 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3176
3177 //address transaction
3178 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3179 | MDIO_MMD_DEV_ADDR(mmd_type)
3180 | MDIO_MMS_PRT_ADDR(0x0);
3181 writeq(val64, &bar0->mdio_control);
3182 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183 writeq(val64, &bar0->mdio_control);
3184 udelay(100);
3185
3186 //Data transaction
3187 val64 = 0x0;
3188 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3189 | MDIO_MMD_DEV_ADDR(mmd_type)
3190 | MDIO_MMS_PRT_ADDR(0x0)
3191 | MDIO_MDIO_DATA(value)
3192 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3193 writeq(val64, &bar0->mdio_control);
3194 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3195 writeq(val64, &bar0->mdio_control);
3196 udelay(100);
3197
3198 val64 = 0x0;
3199 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3200 | MDIO_MMD_DEV_ADDR(mmd_type)
3201 | MDIO_MMS_PRT_ADDR(0x0)
3202 | MDIO_OP(MDIO_OP_READ_TRANS);
3203 writeq(val64, &bar0->mdio_control);
3204 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3205 writeq(val64, &bar0->mdio_control);
3206 udelay(100);
3207
3208 }
3209
3210 /**
3211 * s2io_mdio_read - Function to write in to MDIO registers
3212 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3213 * @addr : address value
3214 * @dev : pointer to net_device structure
3215 * Description:
3216 * This function is used to read values to the MDIO registers
3217 * NONE
3218 */
3219 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3220 {
3221 u64 val64 = 0x0;
3222 u64 rval64 = 0x0;
3223 struct s2io_nic *sp = netdev_priv(dev);
3224 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3225
3226 /* address transaction */
3227 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3228 | MDIO_MMD_DEV_ADDR(mmd_type)
3229 | MDIO_MMS_PRT_ADDR(0x0);
3230 writeq(val64, &bar0->mdio_control);
3231 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3232 writeq(val64, &bar0->mdio_control);
3233 udelay(100);
3234
3235 /* Data transaction */
3236 val64 = 0x0;
3237 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3238 | MDIO_MMD_DEV_ADDR(mmd_type)
3239 | MDIO_MMS_PRT_ADDR(0x0)
3240 | MDIO_OP(MDIO_OP_READ_TRANS);
3241 writeq(val64, &bar0->mdio_control);
3242 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3243 writeq(val64, &bar0->mdio_control);
3244 udelay(100);
3245
3246 /* Read the value from regs */
3247 rval64 = readq(&bar0->mdio_control);
3248 rval64 = rval64 & 0xFFFF0000;
3249 rval64 = rval64 >> 16;
3250 return rval64;
3251 }
3252 /**
3253 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3254 * @counter : couter value to be updated
3255 * @flag : flag to indicate the status
3256 * @type : counter type
3257 * Description:
3258 * This function is to check the status of the xpak counters value
3259 * NONE
3260 */
3261
3262 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3263 {
3264 u64 mask = 0x3;
3265 u64 val64;
3266 int i;
3267 for(i = 0; i <index; i++)
3268 mask = mask << 0x2;
3269
3270 if(flag > 0)
3271 {
3272 *counter = *counter + 1;
3273 val64 = *regs_stat & mask;
3274 val64 = val64 >> (index * 0x2);
3275 val64 = val64 + 1;
3276 if(val64 == 3)
3277 {
3278 switch(type)
3279 {
3280 case 1:
3281 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3282 "service. Excessive temperatures may "
3283 "result in premature transceiver "
3284 "failure \n");
3285 break;
3286 case 2:
3287 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3288 "service Excessive bias currents may "
3289 "indicate imminent laser diode "
3290 "failure \n");
3291 break;
3292 case 3:
3293 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3294 "service Excessive laser output "
3295 "power may saturate far-end "
3296 "receiver\n");
3297 break;
3298 default:
3299 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3300 "type \n");
3301 }
3302 val64 = 0x0;
3303 }
3304 val64 = val64 << (index * 0x2);
3305 *regs_stat = (*regs_stat & (~mask)) | (val64);
3306
3307 } else {
3308 *regs_stat = *regs_stat & (~mask);
3309 }
3310 }
3311
3312 /**
3313 * s2io_updt_xpak_counter - Function to update the xpak counters
3314 * @dev : pointer to net_device struct
3315 * Description:
3316 * This function is to upate the status of the xpak counters value
3317 * NONE
3318 */
3319 static void s2io_updt_xpak_counter(struct net_device *dev)
3320 {
3321 u16 flag = 0x0;
3322 u16 type = 0x0;
3323 u16 val16 = 0x0;
3324 u64 val64 = 0x0;
3325 u64 addr = 0x0;
3326
3327 struct s2io_nic *sp = netdev_priv(dev);
3328 struct stat_block *stat_info = sp->mac_control.stats_info;
3329
3330 /* Check the communication with the MDIO slave */
3331 addr = 0x0000;
3332 val64 = 0x0;
3333 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3334 if((val64 == 0xFFFF) || (val64 == 0x0000))
3335 {
3336 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3337 "Returned %llx\n", (unsigned long long)val64);
3338 return;
3339 }
3340
3341 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3342 if(val64 != 0x2040)
3343 {
3344 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3345 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3346 (unsigned long long)val64);
3347 return;
3348 }
3349
3350 /* Loading the DOM register to MDIO register */
3351 addr = 0xA100;
3352 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3353 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3354
3355 /* Reading the Alarm flags */
3356 addr = 0xA070;
3357 val64 = 0x0;
3358 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3359
3360 flag = CHECKBIT(val64, 0x7);
3361 type = 1;
3362 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3363 &stat_info->xpak_stat.xpak_regs_stat,
3364 0x0, flag, type);
3365
3366 if(CHECKBIT(val64, 0x6))
3367 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3368
3369 flag = CHECKBIT(val64, 0x3);
3370 type = 2;
3371 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3372 &stat_info->xpak_stat.xpak_regs_stat,
3373 0x2, flag, type);
3374
3375 if(CHECKBIT(val64, 0x2))
3376 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3377
3378 flag = CHECKBIT(val64, 0x1);
3379 type = 3;
3380 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3381 &stat_info->xpak_stat.xpak_regs_stat,
3382 0x4, flag, type);
3383
3384 if(CHECKBIT(val64, 0x0))
3385 stat_info->xpak_stat.alarm_laser_output_power_low++;
3386
3387 /* Reading the Warning flags */
3388 addr = 0xA074;
3389 val64 = 0x0;
3390 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3391
3392 if(CHECKBIT(val64, 0x7))
3393 stat_info->xpak_stat.warn_transceiver_temp_high++;
3394
3395 if(CHECKBIT(val64, 0x6))
3396 stat_info->xpak_stat.warn_transceiver_temp_low++;
3397
3398 if(CHECKBIT(val64, 0x3))
3399 stat_info->xpak_stat.warn_laser_bias_current_high++;
3400
3401 if(CHECKBIT(val64, 0x2))
3402 stat_info->xpak_stat.warn_laser_bias_current_low++;
3403
3404 if(CHECKBIT(val64, 0x1))
3405 stat_info->xpak_stat.warn_laser_output_power_high++;
3406
3407 if(CHECKBIT(val64, 0x0))
3408 stat_info->xpak_stat.warn_laser_output_power_low++;
3409 }
3410
3411 /**
3412 * wait_for_cmd_complete - waits for a command to complete.
3413 * @sp : private member of the device structure, which is a pointer to the
3414 * s2io_nic structure.
3415 * Description: Function that waits for a command to Write into RMAC
3416 * ADDR DATA registers to be completed and returns either success or
3417 * error depending on whether the command was complete or not.
3418 * Return value:
3419 * SUCCESS on success and FAILURE on failure.
3420 */
3421
3422 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3423 int bit_state)
3424 {
3425 int ret = FAILURE, cnt = 0, delay = 1;
3426 u64 val64;
3427
3428 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3429 return FAILURE;
3430
3431 do {
3432 val64 = readq(addr);
3433 if (bit_state == S2IO_BIT_RESET) {
3434 if (!(val64 & busy_bit)) {
3435 ret = SUCCESS;
3436 break;
3437 }
3438 } else {
3439 if (!(val64 & busy_bit)) {
3440 ret = SUCCESS;
3441 break;
3442 }
3443 }
3444
3445 if(in_interrupt())
3446 mdelay(delay);
3447 else
3448 msleep(delay);
3449
3450 if (++cnt >= 10)
3451 delay = 50;
3452 } while (cnt < 20);
3453 return ret;
3454 }
3455 /*
3456 * check_pci_device_id - Checks if the device id is supported
3457 * @id : device id
3458 * Description: Function to check if the pci device id is supported by driver.
3459 * Return value: Actual device id if supported else PCI_ANY_ID
3460 */
3461 static u16 check_pci_device_id(u16 id)
3462 {
3463 switch (id) {
3464 case PCI_DEVICE_ID_HERC_WIN:
3465 case PCI_DEVICE_ID_HERC_UNI:
3466 return XFRAME_II_DEVICE;
3467 case PCI_DEVICE_ID_S2IO_UNI:
3468 case PCI_DEVICE_ID_S2IO_WIN:
3469 return XFRAME_I_DEVICE;
3470 default:
3471 return PCI_ANY_ID;
3472 }
3473 }
3474
3475 /**
3476 * s2io_reset - Resets the card.
3477 * @sp : private member of the device structure.
3478 * Description: Function to Reset the card. This function then also
3479 * restores the previously saved PCI configuration space registers as
3480 * the card reset also resets the configuration space.
3481 * Return value:
3482 * void.
3483 */
3484
3485 static void s2io_reset(struct s2io_nic * sp)
3486 {
3487 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3488 u64 val64;
3489 u16 subid, pci_cmd;
3490 int i;
3491 u16 val16;
3492 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3493 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3494
3495 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3496 __func__, sp->dev->name);
3497
3498 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3499 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3500
3501 val64 = SW_RESET_ALL;
3502 writeq(val64, &bar0->sw_reset);
3503 if (strstr(sp->product_name, "CX4")) {
3504 msleep(750);
3505 }
3506 msleep(250);
3507 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3508
3509 /* Restore the PCI state saved during initialization. */
3510 pci_restore_state(sp->pdev);
3511 pci_read_config_word(sp->pdev, 0x2, &val16);
3512 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3513 break;
3514 msleep(200);
3515 }
3516
3517 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3518 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3519 }
3520
3521 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3522
3523 s2io_init_pci(sp);
3524
3525 /* Set swapper to enable I/O register access */
3526 s2io_set_swapper(sp);
3527
3528 /* restore mac_addr entries */
3529 do_s2io_restore_unicast_mc(sp);
3530
3531 /* Restore the MSIX table entries from local variables */
3532 restore_xmsi_data(sp);
3533
3534 /* Clear certain PCI/PCI-X fields after reset */
3535 if (sp->device_type == XFRAME_II_DEVICE) {
3536 /* Clear "detected parity error" bit */
3537 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3538
3539 /* Clearing PCIX Ecc status register */
3540 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3541
3542 /* Clearing PCI_STATUS error reflected here */
3543 writeq(s2BIT(62), &bar0->txpic_int_reg);
3544 }
3545
3546 /* Reset device statistics maintained by OS */
3547 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3548
3549 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3550 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3551 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3552 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3553 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3554 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3555 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3556 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3557 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3558 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3559 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3560 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3561 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3562 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3563 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3564 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3565 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3566 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3567 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3568
3569 /* SXE-002: Configure link and activity LED to turn it off */
3570 subid = sp->pdev->subsystem_device;
3571 if (((subid & 0xFF) >= 0x07) &&
3572 (sp->device_type == XFRAME_I_DEVICE)) {
3573 val64 = readq(&bar0->gpio_control);
3574 val64 |= 0x0000800000000000ULL;
3575 writeq(val64, &bar0->gpio_control);
3576 val64 = 0x0411040400000000ULL;
3577 writeq(val64, (void __iomem *)bar0 + 0x2700);
3578 }
3579
3580 /*
3581 * Clear spurious ECC interrupts that would have occured on
3582 * XFRAME II cards after reset.
3583 */
3584 if (sp->device_type == XFRAME_II_DEVICE) {
3585 val64 = readq(&bar0->pcc_err_reg);
3586 writeq(val64, &bar0->pcc_err_reg);
3587 }
3588
3589 sp->device_enabled_once = FALSE;
3590 }
3591
3592 /**
3593 * s2io_set_swapper - to set the swapper controle on the card
3594 * @sp : private member of the device structure,
3595 * pointer to the s2io_nic structure.
3596 * Description: Function to set the swapper control on the card
3597 * correctly depending on the 'endianness' of the system.
3598 * Return value:
3599 * SUCCESS on success and FAILURE on failure.
3600 */
3601
3602 static int s2io_set_swapper(struct s2io_nic * sp)
3603 {
3604 struct net_device *dev = sp->dev;
3605 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3606 u64 val64, valt, valr;
3607
3608 /*
3609 * Set proper endian settings and verify the same by reading
3610 * the PIF Feed-back register.
3611 */
3612
3613 val64 = readq(&bar0->pif_rd_swapper_fb);
3614 if (val64 != 0x0123456789ABCDEFULL) {
3615 int i = 0;
3616 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3617 0x8100008181000081ULL, /* FE=1, SE=0 */
3618 0x4200004242000042ULL, /* FE=0, SE=1 */
3619 0}; /* FE=0, SE=0 */
3620
3621 while(i<4) {
3622 writeq(value[i], &bar0->swapper_ctrl);
3623 val64 = readq(&bar0->pif_rd_swapper_fb);
3624 if (val64 == 0x0123456789ABCDEFULL)
3625 break;
3626 i++;
3627 }
3628 if (i == 4) {
3629 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3630 dev->name);
3631 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3632 (unsigned long long) val64);
3633 return FAILURE;
3634 }
3635 valr = value[i];
3636 } else {
3637 valr = readq(&bar0->swapper_ctrl);
3638 }
3639
3640 valt = 0x0123456789ABCDEFULL;
3641 writeq(valt, &bar0->xmsi_address);
3642 val64 = readq(&bar0->xmsi_address);
3643
3644 if(val64 != valt) {
3645 int i = 0;
3646 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3647 0x0081810000818100ULL, /* FE=1, SE=0 */
3648 0x0042420000424200ULL, /* FE=0, SE=1 */
3649 0}; /* FE=0, SE=0 */
3650
3651 while(i<4) {
3652 writeq((value[i] | valr), &bar0->swapper_ctrl);
3653 writeq(valt, &bar0->xmsi_address);
3654 val64 = readq(&bar0->xmsi_address);
3655 if(val64 == valt)
3656 break;
3657 i++;
3658 }
3659 if(i == 4) {
3660 unsigned long long x = val64;
3661 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3662 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3663 return FAILURE;
3664 }
3665 }
3666 val64 = readq(&bar0->swapper_ctrl);
3667 val64 &= 0xFFFF000000000000ULL;
3668
3669 #ifdef __BIG_ENDIAN
3670 /*
3671 * The device by default set to a big endian format, so a
3672 * big endian driver need not set anything.
3673 */
3674 val64 |= (SWAPPER_CTRL_TXP_FE |
3675 SWAPPER_CTRL_TXP_SE |
3676 SWAPPER_CTRL_TXD_R_FE |
3677 SWAPPER_CTRL_TXD_W_FE |
3678 SWAPPER_CTRL_TXF_R_FE |
3679 SWAPPER_CTRL_RXD_R_FE |
3680 SWAPPER_CTRL_RXD_W_FE |
3681 SWAPPER_CTRL_RXF_W_FE |
3682 SWAPPER_CTRL_XMSI_FE |
3683 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3684 if (sp->config.intr_type == INTA)
3685 val64 |= SWAPPER_CTRL_XMSI_SE;
3686 writeq(val64, &bar0->swapper_ctrl);
3687 #else
3688 /*
3689 * Initially we enable all bits to make it accessible by the
3690 * driver, then we selectively enable only those bits that
3691 * we want to set.
3692 */
3693 val64 |= (SWAPPER_CTRL_TXP_FE |
3694 SWAPPER_CTRL_TXP_SE |
3695 SWAPPER_CTRL_TXD_R_FE |
3696 SWAPPER_CTRL_TXD_R_SE |
3697 SWAPPER_CTRL_TXD_W_FE |
3698 SWAPPER_CTRL_TXD_W_SE |
3699 SWAPPER_CTRL_TXF_R_FE |
3700 SWAPPER_CTRL_RXD_R_FE |
3701 SWAPPER_CTRL_RXD_R_SE |
3702 SWAPPER_CTRL_RXD_W_FE |
3703 SWAPPER_CTRL_RXD_W_SE |
3704 SWAPPER_CTRL_RXF_W_FE |
3705 SWAPPER_CTRL_XMSI_FE |
3706 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3707 if (sp->config.intr_type == INTA)
3708 val64 |= SWAPPER_CTRL_XMSI_SE;
3709 writeq(val64, &bar0->swapper_ctrl);
3710 #endif
3711 val64 = readq(&bar0->swapper_ctrl);
3712
3713 /*
3714 * Verifying if endian settings are accurate by reading a
3715 * feedback register.
3716 */
3717 val64 = readq(&bar0->pif_rd_swapper_fb);
3718 if (val64 != 0x0123456789ABCDEFULL) {
3719 /* Endian settings are incorrect, calls for another dekko. */
3720 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3721 dev->name);
3722 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3723 (unsigned long long) val64);
3724 return FAILURE;
3725 }
3726
3727 return SUCCESS;
3728 }
3729
3730 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3731 {
3732 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3733 u64 val64;
3734 int ret = 0, cnt = 0;
3735
3736 do {
3737 val64 = readq(&bar0->xmsi_access);
3738 if (!(val64 & s2BIT(15)))
3739 break;
3740 mdelay(1);
3741 cnt++;
3742 } while(cnt < 5);
3743 if (cnt == 5) {
3744 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3745 ret = 1;
3746 }
3747
3748 return ret;
3749 }
3750
3751 static void restore_xmsi_data(struct s2io_nic *nic)
3752 {
3753 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3754 u64 val64;
3755 int i, msix_index;
3756
3757
3758 if (nic->device_type == XFRAME_I_DEVICE)
3759 return;
3760
3761 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3762 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3763 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3764 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3765 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3766 writeq(val64, &bar0->xmsi_access);
3767 if (wait_for_msix_trans(nic, msix_index)) {
3768 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3769 continue;
3770 }
3771 }
3772 }
3773
3774 static void store_xmsi_data(struct s2io_nic *nic)
3775 {
3776 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3777 u64 val64, addr, data;
3778 int i, msix_index;
3779
3780 if (nic->device_type == XFRAME_I_DEVICE)
3781 return;
3782
3783 /* Store and display */
3784 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3785 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3786 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3787 writeq(val64, &bar0->xmsi_access);
3788 if (wait_for_msix_trans(nic, msix_index)) {
3789 DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3790 continue;
3791 }
3792 addr = readq(&bar0->xmsi_address);
3793 data = readq(&bar0->xmsi_data);
3794 if (addr && data) {
3795 nic->msix_info[i].addr = addr;
3796 nic->msix_info[i].data = data;
3797 }
3798 }
3799 }
3800
3801 static int s2io_enable_msi_x(struct s2io_nic *nic)
3802 {
3803 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3804 u64 rx_mat;
3805 u16 msi_control; /* Temp variable */
3806 int ret, i, j, msix_indx = 1;
3807
3808 nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3809 GFP_KERNEL);
3810 if (!nic->entries) {
3811 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3812 __func__);
3813 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3814 return -ENOMEM;
3815 }
3816 nic->mac_control.stats_info->sw_stat.mem_allocated
3817 += (nic->num_entries * sizeof(struct msix_entry));
3818
3819 memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3820
3821 nic->s2io_entries =
3822 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3823 GFP_KERNEL);
3824 if (!nic->s2io_entries) {
3825 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3826 __func__);
3827 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3828 kfree(nic->entries);
3829 nic->mac_control.stats_info->sw_stat.mem_freed
3830 += (nic->num_entries * sizeof(struct msix_entry));
3831 return -ENOMEM;
3832 }
3833 nic->mac_control.stats_info->sw_stat.mem_allocated
3834 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3835 memset(nic->s2io_entries, 0,
3836 nic->num_entries * sizeof(struct s2io_msix_entry));
3837
3838 nic->entries[0].entry = 0;
3839 nic->s2io_entries[0].entry = 0;
3840 nic->s2io_entries[0].in_use = MSIX_FLG;
3841 nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3842 nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3843
3844 for (i = 1; i < nic->num_entries; i++) {
3845 nic->entries[i].entry = ((i - 1) * 8) + 1;
3846 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3847 nic->s2io_entries[i].arg = NULL;
3848 nic->s2io_entries[i].in_use = 0;
3849 }
3850
3851 rx_mat = readq(&bar0->rx_mat);
3852 for (j = 0; j < nic->config.rx_ring_num; j++) {
3853 rx_mat |= RX_MAT_SET(j, msix_indx);
3854 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3855 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3856 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3857 msix_indx += 8;
3858 }
3859 writeq(rx_mat, &bar0->rx_mat);
3860 readq(&bar0->rx_mat);
3861
3862 ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3863 /* We fail init if error or we get less vectors than min required */
3864 if (ret) {
3865 DBG_PRINT(ERR_DBG, "s2io: Enabling MSI-X failed\n");
3866 kfree(nic->entries);
3867 nic->mac_control.stats_info->sw_stat.mem_freed
3868 += (nic->num_entries * sizeof(struct msix_entry));
3869 kfree(nic->s2io_entries);
3870 nic->mac_control.stats_info->sw_stat.mem_freed
3871 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3872 nic->entries = NULL;
3873 nic->s2io_entries = NULL;
3874 return -ENOMEM;
3875 }
3876
3877 /*
3878 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3879 * in the herc NIC. (Temp change, needs to be removed later)
3880 */
3881 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3882 msi_control |= 0x1; /* Enable MSI */
3883 pci_write_config_word(nic->pdev, 0x42, msi_control);
3884
3885 return 0;
3886 }
3887
3888 /* Handle software interrupt used during MSI(X) test */
3889 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3890 {
3891 struct s2io_nic *sp = dev_id;
3892
3893 sp->msi_detected = 1;
3894 wake_up(&sp->msi_wait);
3895
3896 return IRQ_HANDLED;
3897 }
3898
3899 /* Test interrupt path by forcing a a software IRQ */
3900 static int s2io_test_msi(struct s2io_nic *sp)
3901 {
3902 struct pci_dev *pdev = sp->pdev;
3903 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3904 int err;
3905 u64 val64, saved64;
3906
3907 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3908 sp->name, sp);
3909 if (err) {
3910 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3911 sp->dev->name, pci_name(pdev), pdev->irq);
3912 return err;
3913 }
3914
3915 init_waitqueue_head (&sp->msi_wait);
3916 sp->msi_detected = 0;
3917
3918 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3919 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3920 val64 |= SCHED_INT_CTRL_TIMER_EN;
3921 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3922 writeq(val64, &bar0->scheduled_int_ctrl);
3923
3924 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3925
3926 if (!sp->msi_detected) {
3927 /* MSI(X) test failed, go back to INTx mode */
3928 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3929 "using MSI(X) during test\n", sp->dev->name,
3930 pci_name(pdev));
3931
3932 err = -EOPNOTSUPP;
3933 }
3934
3935 free_irq(sp->entries[1].vector, sp);
3936
3937 writeq(saved64, &bar0->scheduled_int_ctrl);
3938
3939 return err;
3940 }
3941
3942 static void remove_msix_isr(struct s2io_nic *sp)
3943 {
3944 int i;
3945 u16 msi_control;
3946
3947 for (i = 0; i < sp->num_entries; i++) {
3948 if (sp->s2io_entries[i].in_use ==
3949 MSIX_REGISTERED_SUCCESS) {
3950 int vector = sp->entries[i].vector;
3951 void *arg = sp->s2io_entries[i].arg;
3952 free_irq(vector, arg);
3953 }
3954 }
3955
3956 kfree(sp->entries);
3957 kfree(sp->s2io_entries);
3958 sp->entries = NULL;
3959 sp->s2io_entries = NULL;
3960
3961 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3962 msi_control &= 0xFFFE; /* Disable MSI */
3963 pci_write_config_word(sp->pdev, 0x42, msi_control);
3964
3965 pci_disable_msix(sp->pdev);
3966 }
3967
3968 static void remove_inta_isr(struct s2io_nic *sp)
3969 {
3970 struct net_device *dev = sp->dev;
3971
3972 free_irq(sp->pdev->irq, dev);
3973 }
3974
3975 /* ********************************************************* *
3976 * Functions defined below concern the OS part of the driver *
3977 * ********************************************************* */
3978
3979 /**
3980 * s2io_open - open entry point of the driver
3981 * @dev : pointer to the device structure.
3982 * Description:
3983 * This function is the open entry point of the driver. It mainly calls a
3984 * function to allocate Rx buffers and inserts them into the buffer
3985 * descriptors and then enables the Rx part of the NIC.
3986 * Return value:
3987 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3988 * file on failure.
3989 */
3990
3991 static int s2io_open(struct net_device *dev)
3992 {
3993 struct s2io_nic *sp = netdev_priv(dev);
3994 int err = 0;
3995
3996 /*
3997 * Make sure you have link off by default every time
3998 * Nic is initialized
3999 */
4000 netif_carrier_off(dev);
4001 sp->last_link_state = 0;
4002
4003 /* Initialize H/W and enable interrupts */
4004 err = s2io_card_up(sp);
4005 if (err) {
4006 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4007 dev->name);
4008 goto hw_init_failed;
4009 }
4010
4011 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4012 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4013 s2io_card_down(sp);
4014 err = -ENODEV;
4015 goto hw_init_failed;
4016 }
4017 s2io_start_all_tx_queue(sp);
4018 return 0;
4019
4020 hw_init_failed:
4021 if (sp->config.intr_type == MSI_X) {
4022 if (sp->entries) {
4023 kfree(sp->entries);
4024 sp->mac_control.stats_info->sw_stat.mem_freed
4025 += (sp->num_entries * sizeof(struct msix_entry));
4026 }
4027 if (sp->s2io_entries) {
4028 kfree(sp->s2io_entries);
4029 sp->mac_control.stats_info->sw_stat.mem_freed
4030 += (sp->num_entries * sizeof(struct s2io_msix_entry));
4031 }
4032 }
4033 return err;
4034 }
4035
4036 /**
4037 * s2io_close -close entry point of the driver
4038 * @dev : device pointer.
4039 * Description:
4040 * This is the stop entry point of the driver. It needs to undo exactly
4041 * whatever was done by the open entry point,thus it's usually referred to
4042 * as the close function.Among other things this function mainly stops the
4043 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4044 * Return value:
4045 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4046 * file on failure.
4047 */
4048
4049 static int s2io_close(struct net_device *dev)
4050 {
4051 struct s2io_nic *sp = netdev_priv(dev);
4052 struct config_param *config = &sp->config;
4053 u64 tmp64;
4054 int offset;
4055
4056 /* Return if the device is already closed *
4057 * Can happen when s2io_card_up failed in change_mtu *
4058 */
4059 if (!is_s2io_card_up(sp))
4060 return 0;
4061
4062 s2io_stop_all_tx_queue(sp);
4063 /* delete all populated mac entries */
4064 for (offset = 1; offset < config->max_mc_addr; offset++) {
4065 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4066 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4067 do_s2io_delete_unicast_mc(sp, tmp64);
4068 }
4069
4070 s2io_card_down(sp);
4071
4072 return 0;
4073 }
4074
4075 /**
4076 * s2io_xmit - Tx entry point of te driver
4077 * @skb : the socket buffer containing the Tx data.
4078 * @dev : device pointer.
4079 * Description :
4080 * This function is the Tx entry point of the driver. S2IO NIC supports
4081 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4082 * NOTE: when device cant queue the pkt,just the trans_start variable will
4083 * not be upadted.
4084 * Return value:
4085 * 0 on success & 1 on failure.
4086 */
4087
4088 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4089 {
4090 struct s2io_nic *sp = netdev_priv(dev);
4091 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4092 register u64 val64;
4093 struct TxD *txdp;
4094 struct TxFIFO_element __iomem *tx_fifo;
4095 unsigned long flags = 0;
4096 u16 vlan_tag = 0;
4097 struct fifo_info *fifo = NULL;
4098 struct mac_info *mac_control;
4099 struct config_param *config;
4100 int do_spin_lock = 1;
4101 int offload_type;
4102 int enable_per_list_interrupt = 0;
4103 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4104
4105 mac_control = &sp->mac_control;
4106 config = &sp->config;
4107
4108 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4109
4110 if (unlikely(skb->len <= 0)) {
4111 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4112 dev_kfree_skb_any(skb);
4113 return 0;
4114 }
4115
4116 if (!is_s2io_card_up(sp)) {
4117 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4118 dev->name);
4119 dev_kfree_skb(skb);
4120 return 0;
4121 }
4122
4123 queue = 0;
4124 if (sp->vlgrp && vlan_tx_tag_present(skb))
4125 vlan_tag = vlan_tx_tag_get(skb);
4126 if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4127 if (skb->protocol == htons(ETH_P_IP)) {
4128 struct iphdr *ip;
4129 struct tcphdr *th;
4130 ip = ip_hdr(skb);
4131
4132 if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4133 th = (struct tcphdr *)(((unsigned char *)ip) +
4134 ip->ihl*4);
4135
4136 if (ip->protocol == IPPROTO_TCP) {
4137 queue_len = sp->total_tcp_fifos;
4138 queue = (ntohs(th->source) +
4139 ntohs(th->dest)) &
4140 sp->fifo_selector[queue_len - 1];
4141 if (queue >= queue_len)
4142 queue = queue_len - 1;
4143 } else if (ip->protocol == IPPROTO_UDP) {
4144 queue_len = sp->total_udp_fifos;
4145 queue = (ntohs(th->source) +
4146 ntohs(th->dest)) &
4147 sp->fifo_selector[queue_len - 1];
4148 if (queue >= queue_len)
4149 queue = queue_len - 1;
4150 queue += sp->udp_fifo_idx;
4151 if (skb->len > 1024)
4152 enable_per_list_interrupt = 1;
4153 do_spin_lock = 0;
4154 }
4155 }
4156 }
4157 } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4158 /* get fifo number based on skb->priority value */
4159 queue = config->fifo_mapping
4160 [skb->priority & (MAX_TX_FIFOS - 1)];
4161 fifo = &mac_control->fifos[queue];
4162
4163 if (do_spin_lock)
4164 spin_lock_irqsave(&fifo->tx_lock, flags);
4165 else {
4166 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4167 return NETDEV_TX_LOCKED;
4168 }
4169
4170 if (sp->config.multiq) {
4171 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4172 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4173 return NETDEV_TX_BUSY;
4174 }
4175 } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4176 if (netif_queue_stopped(dev)) {
4177 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178 return NETDEV_TX_BUSY;
4179 }
4180 }
4181
4182 put_off = (u16) fifo->tx_curr_put_info.offset;
4183 get_off = (u16) fifo->tx_curr_get_info.offset;
4184 txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4185
4186 queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4187 /* Avoid "put" pointer going beyond "get" pointer */
4188 if (txdp->Host_Control ||
4189 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4190 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4191 s2io_stop_tx_queue(sp, fifo->fifo_no);
4192 dev_kfree_skb(skb);
4193 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4194 return 0;
4195 }
4196
4197 offload_type = s2io_offload_type(skb);
4198 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4199 txdp->Control_1 |= TXD_TCP_LSO_EN;
4200 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4201 }
4202 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4203 txdp->Control_2 |=
4204 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4205 TXD_TX_CKO_UDP_EN);
4206 }
4207 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4208 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4209 txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4210 if (enable_per_list_interrupt)
4211 if (put_off & (queue_len >> 5))
4212 txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4213 if (vlan_tag) {
4214 txdp->Control_2 |= TXD_VLAN_ENABLE;
4215 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4216 }
4217
4218 frg_len = skb->len - skb->data_len;
4219 if (offload_type == SKB_GSO_UDP) {
4220 int ufo_size;
4221
4222 ufo_size = s2io_udp_mss(skb);
4223 ufo_size &= ~7;
4224 txdp->Control_1 |= TXD_UFO_EN;
4225 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4226 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4227 #ifdef __BIG_ENDIAN
4228 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4229 fifo->ufo_in_band_v[put_off] =
4230 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4231 #else
4232 fifo->ufo_in_band_v[put_off] =
4233 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4234 #endif
4235 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4236 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4237 fifo->ufo_in_band_v,
4238 sizeof(u64), PCI_DMA_TODEVICE);
4239 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4240 goto pci_map_failed;
4241 txdp++;
4242 }
4243
4244 txdp->Buffer_Pointer = pci_map_single
4245 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4246 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4247 goto pci_map_failed;
4248
4249 txdp->Host_Control = (unsigned long) skb;
4250 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4251 if (offload_type == SKB_GSO_UDP)
4252 txdp->Control_1 |= TXD_UFO_EN;
4253
4254 frg_cnt = skb_shinfo(skb)->nr_frags;
4255 /* For fragmented SKB. */
4256 for (i = 0; i < frg_cnt; i++) {
4257 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4258 /* A '0' length fragment will be ignored */
4259 if (!frag->size)
4260 continue;
4261 txdp++;
4262 txdp->Buffer_Pointer = (u64) pci_map_page
4263 (sp->pdev, frag->page, frag->page_offset,
4264 frag->size, PCI_DMA_TODEVICE);
4265 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4266 if (offload_type == SKB_GSO_UDP)
4267 txdp->Control_1 |= TXD_UFO_EN;
4268 }
4269 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4270
4271 if (offload_type == SKB_GSO_UDP)
4272 frg_cnt++; /* as Txd0 was used for inband header */
4273
4274 tx_fifo = mac_control->tx_FIFO_start[queue];
4275 val64 = fifo->list_info[put_off].list_phy_addr;
4276 writeq(val64, &tx_fifo->TxDL_Pointer);
4277
4278 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4279 TX_FIFO_LAST_LIST);
4280 if (offload_type)
4281 val64 |= TX_FIFO_SPECIAL_FUNC;
4282
4283 writeq(val64, &tx_fifo->List_Control);
4284
4285 mmiowb();
4286
4287 put_off++;
4288 if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4289 put_off = 0;
4290 fifo->tx_curr_put_info.offset = put_off;
4291
4292 /* Avoid "put" pointer going beyond "get" pointer */
4293 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4294 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4295 DBG_PRINT(TX_DBG,
4296 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4297 put_off, get_off);
4298 s2io_stop_tx_queue(sp, fifo->fifo_no);
4299 }
4300 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4301 dev->trans_start = jiffies;
4302 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4303
4304 if (sp->config.intr_type == MSI_X)
4305 tx_intr_handler(fifo);
4306
4307 return 0;
4308 pci_map_failed:
4309 stats->pci_map_fail_cnt++;
4310 s2io_stop_tx_queue(sp, fifo->fifo_no);
4311 stats->mem_freed += skb->truesize;
4312 dev_kfree_skb(skb);
4313 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4314 return 0;
4315 }
4316
4317 static void
4318 s2io_alarm_handle(unsigned long data)
4319 {
4320 struct s2io_nic *sp = (struct s2io_nic *)data;
4321 struct net_device *dev = sp->dev;
4322
4323 s2io_handle_errors(dev);
4324 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4325 }
4326
4327 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4328 {
4329 struct ring_info *ring = (struct ring_info *)dev_id;
4330 struct s2io_nic *sp = ring->nic;
4331 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4332
4333 if (unlikely(!is_s2io_card_up(sp)))
4334 return IRQ_HANDLED;
4335
4336 if (sp->config.napi) {
4337 u8 __iomem *addr = NULL;
4338 u8 val8 = 0;
4339
4340 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4341 addr += (7 - ring->ring_no);
4342 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4343 writeb(val8, addr);
4344 val8 = readb(addr);
4345 napi_schedule(&ring->napi);
4346 } else {
4347 rx_intr_handler(ring, 0);
4348 s2io_chk_rx_buffers(sp, ring);
4349 }
4350
4351 return IRQ_HANDLED;
4352 }
4353
4354 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4355 {
4356 int i;
4357 struct fifo_info *fifos = (struct fifo_info *)dev_id;
4358 struct s2io_nic *sp = fifos->nic;
4359 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4360 struct config_param *config = &sp->config;
4361 u64 reason;
4362
4363 if (unlikely(!is_s2io_card_up(sp)))
4364 return IRQ_NONE;
4365
4366 reason = readq(&bar0->general_int_status);
4367 if (unlikely(reason == S2IO_MINUS_ONE))
4368 /* Nothing much can be done. Get out */
4369 return IRQ_HANDLED;
4370
4371 if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4372 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4373
4374 if (reason & GEN_INTR_TXPIC)
4375 s2io_txpic_intr_handle(sp);
4376
4377 if (reason & GEN_INTR_TXTRAFFIC)
4378 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4379
4380 for (i = 0; i < config->tx_fifo_num; i++)
4381 tx_intr_handler(&fifos[i]);
4382
4383 writeq(sp->general_int_mask, &bar0->general_int_mask);
4384 readl(&bar0->general_int_status);
4385 return IRQ_HANDLED;
4386 }
4387 /* The interrupt was not raised by us */
4388 return IRQ_NONE;
4389 }
4390
4391 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4392 {
4393 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4394 u64 val64;
4395
4396 val64 = readq(&bar0->pic_int_status);
4397 if (val64 & PIC_INT_GPIO) {
4398 val64 = readq(&bar0->gpio_int_reg);
4399 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4400 (val64 & GPIO_INT_REG_LINK_UP)) {
4401 /*
4402 * This is unstable state so clear both up/down
4403 * interrupt and adapter to re-evaluate the link state.
4404 */
4405 val64 |= GPIO_INT_REG_LINK_DOWN;
4406 val64 |= GPIO_INT_REG_LINK_UP;
4407 writeq(val64, &bar0->gpio_int_reg);
4408 val64 = readq(&bar0->gpio_int_mask);
4409 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4410 GPIO_INT_MASK_LINK_DOWN);
4411 writeq(val64, &bar0->gpio_int_mask);
4412 }
4413 else if (val64 & GPIO_INT_REG_LINK_UP) {
4414 val64 = readq(&bar0->adapter_status);
4415 /* Enable Adapter */
4416 val64 = readq(&bar0->adapter_control);
4417 val64 |= ADAPTER_CNTL_EN;
4418 writeq(val64, &bar0->adapter_control);
4419 val64 |= ADAPTER_LED_ON;
4420 writeq(val64, &bar0->adapter_control);
4421 if (!sp->device_enabled_once)
4422 sp->device_enabled_once = 1;
4423
4424 s2io_link(sp, LINK_UP);
4425 /*
4426 * unmask link down interrupt and mask link-up
4427 * intr
4428 */
4429 val64 = readq(&bar0->gpio_int_mask);
4430 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4431 val64 |= GPIO_INT_MASK_LINK_UP;
4432 writeq(val64, &bar0->gpio_int_mask);
4433
4434 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4435 val64 = readq(&bar0->adapter_status);
4436 s2io_link(sp, LINK_DOWN);
4437 /* Link is down so unmaks link up interrupt */
4438 val64 = readq(&bar0->gpio_int_mask);
4439 val64 &= ~GPIO_INT_MASK_LINK_UP;
4440 val64 |= GPIO_INT_MASK_LINK_DOWN;
4441 writeq(val64, &bar0->gpio_int_mask);
4442
4443 /* turn off LED */
4444 val64 = readq(&bar0->adapter_control);
4445 val64 = val64 &(~ADAPTER_LED_ON);
4446 writeq(val64, &bar0->adapter_control);
4447 }
4448 }
4449 val64 = readq(&bar0->gpio_int_mask);
4450 }
4451
4452 /**
4453 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4454 * @value: alarm bits
4455 * @addr: address value
4456 * @cnt: counter variable
4457 * Description: Check for alarm and increment the counter
4458 * Return Value:
4459 * 1 - if alarm bit set
4460 * 0 - if alarm bit is not set
4461 */
4462 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4463 unsigned long long *cnt)
4464 {
4465 u64 val64;
4466 val64 = readq(addr);
4467 if ( val64 & value ) {
4468 writeq(val64, addr);
4469 (*cnt)++;
4470 return 1;
4471 }
4472 return 0;
4473
4474 }
4475
4476 /**
4477 * s2io_handle_errors - Xframe error indication handler
4478 * @nic: device private variable
4479 * Description: Handle alarms such as loss of link, single or
4480 * double ECC errors, critical and serious errors.
4481 * Return Value:
4482 * NONE
4483 */
4484 static void s2io_handle_errors(void * dev_id)
4485 {
4486 struct net_device *dev = (struct net_device *) dev_id;
4487 struct s2io_nic *sp = netdev_priv(dev);
4488 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4489 u64 temp64 = 0,val64=0;
4490 int i = 0;
4491
4492 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4493 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4494
4495 if (!is_s2io_card_up(sp))
4496 return;
4497
4498 if (pci_channel_offline(sp->pdev))
4499 return;
4500
4501 memset(&sw_stat->ring_full_cnt, 0,
4502 sizeof(sw_stat->ring_full_cnt));
4503
4504 /* Handling the XPAK counters update */
4505 if(stats->xpak_timer_count < 72000) {
4506 /* waiting for an hour */
4507 stats->xpak_timer_count++;
4508 } else {
4509 s2io_updt_xpak_counter(dev);
4510 /* reset the count to zero */
4511 stats->xpak_timer_count = 0;
4512 }
4513
4514 /* Handling link status change error Intr */
4515 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4516 val64 = readq(&bar0->mac_rmac_err_reg);
4517 writeq(val64, &bar0->mac_rmac_err_reg);
4518 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4519 schedule_work(&sp->set_link_task);
4520 }
4521
4522 /* In case of a serious error, the device will be Reset. */
4523 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4524 &sw_stat->serious_err_cnt))
4525 goto reset;
4526
4527 /* Check for data parity error */
4528 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4529 &sw_stat->parity_err_cnt))
4530 goto reset;
4531
4532 /* Check for ring full counter */
4533 if (sp->device_type == XFRAME_II_DEVICE) {
4534 val64 = readq(&bar0->ring_bump_counter1);
4535 for (i=0; i<4; i++) {
4536 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4537 temp64 >>= 64 - ((i+1)*16);
4538 sw_stat->ring_full_cnt[i] += temp64;
4539 }
4540
4541 val64 = readq(&bar0->ring_bump_counter2);
4542 for (i=0; i<4; i++) {
4543 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4544 temp64 >>= 64 - ((i+1)*16);
4545 sw_stat->ring_full_cnt[i+4] += temp64;
4546 }
4547 }
4548
4549 val64 = readq(&bar0->txdma_int_status);
4550 /*check for pfc_err*/
4551 if (val64 & TXDMA_PFC_INT) {
4552 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4553 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4554 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4555 &sw_stat->pfc_err_cnt))
4556 goto reset;
4557 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4558 &sw_stat->pfc_err_cnt);
4559 }
4560
4561 /*check for tda_err*/
4562 if (val64 & TXDMA_TDA_INT) {
4563 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4564 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4565 &sw_stat->tda_err_cnt))
4566 goto reset;
4567 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4568 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4569 }
4570 /*check for pcc_err*/
4571 if (val64 & TXDMA_PCC_INT) {
4572 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4573 | PCC_N_SERR | PCC_6_COF_OV_ERR
4574 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4575 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4576 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4577 &sw_stat->pcc_err_cnt))
4578 goto reset;
4579 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4580 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4581 }
4582
4583 /*check for tti_err*/
4584 if (val64 & TXDMA_TTI_INT) {
4585 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4586 &sw_stat->tti_err_cnt))
4587 goto reset;
4588 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4589 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4590 }
4591
4592 /*check for lso_err*/
4593 if (val64 & TXDMA_LSO_INT) {
4594 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4595 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4596 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4597 goto reset;
4598 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4599 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4600 }
4601
4602 /*check for tpa_err*/
4603 if (val64 & TXDMA_TPA_INT) {
4604 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4605 &sw_stat->tpa_err_cnt))
4606 goto reset;
4607 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4608 &sw_stat->tpa_err_cnt);
4609 }
4610
4611 /*check for sm_err*/
4612 if (val64 & TXDMA_SM_INT) {
4613 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4614 &sw_stat->sm_err_cnt))
4615 goto reset;
4616 }
4617
4618 val64 = readq(&bar0->mac_int_status);
4619 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621 &bar0->mac_tmac_err_reg,
4622 &sw_stat->mac_tmac_err_cnt))
4623 goto reset;
4624 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4625 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4626 &bar0->mac_tmac_err_reg,
4627 &sw_stat->mac_tmac_err_cnt);
4628 }
4629
4630 val64 = readq(&bar0->xgxs_int_status);
4631 if (val64 & XGXS_INT_STATUS_TXGXS) {
4632 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633 &bar0->xgxs_txgxs_err_reg,
4634 &sw_stat->xgxs_txgxs_err_cnt))
4635 goto reset;
4636 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637 &bar0->xgxs_txgxs_err_reg,
4638 &sw_stat->xgxs_txgxs_err_cnt);
4639 }
4640
4641 val64 = readq(&bar0->rxdma_int_status);
4642 if (val64 & RXDMA_INT_RC_INT_M) {
4643 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4644 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4645 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4646 goto reset;
4647 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4648 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4649 &sw_stat->rc_err_cnt);
4650 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4651 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4652 &sw_stat->prc_pcix_err_cnt))
4653 goto reset;
4654 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4655 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4656 &sw_stat->prc_pcix_err_cnt);
4657 }
4658
4659 if (val64 & RXDMA_INT_RPA_INT_M) {
4660 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4661 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4662 goto reset;
4663 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4664 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4665 }
4666
4667 if (val64 & RXDMA_INT_RDA_INT_M) {
4668 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4669 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4670 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4671 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4672 goto reset;
4673 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4674 | RDA_MISC_ERR | RDA_PCIX_ERR,
4675 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4676 }
4677
4678 if (val64 & RXDMA_INT_RTI_INT_M) {
4679 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4680 &sw_stat->rti_err_cnt))
4681 goto reset;
4682 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4683 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4684 }
4685
4686 val64 = readq(&bar0->mac_int_status);
4687 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4688 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4689 &bar0->mac_rmac_err_reg,
4690 &sw_stat->mac_rmac_err_cnt))
4691 goto reset;
4692 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4693 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4694 &sw_stat->mac_rmac_err_cnt);
4695 }
4696
4697 val64 = readq(&bar0->xgxs_int_status);
4698 if (val64 & XGXS_INT_STATUS_RXGXS) {
4699 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4700 &bar0->xgxs_rxgxs_err_reg,
4701 &sw_stat->xgxs_rxgxs_err_cnt))
4702 goto reset;
4703 }
4704
4705 val64 = readq(&bar0->mc_int_status);
4706 if(val64 & MC_INT_STATUS_MC_INT) {
4707 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4708 &sw_stat->mc_err_cnt))
4709 goto reset;
4710
4711 /* Handling Ecc errors */
4712 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4713 writeq(val64, &bar0->mc_err_reg);
4714 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4715 sw_stat->double_ecc_errs++;
4716 if (sp->device_type != XFRAME_II_DEVICE) {
4717 /*
4718 * Reset XframeI only if critical error
4719 */
4720 if (val64 &
4721 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4722 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4723 goto reset;
4724 }
4725 } else
4726 sw_stat->single_ecc_errs++;
4727 }
4728 }
4729 return;
4730
4731 reset:
4732 s2io_stop_all_tx_queue(sp);
4733 schedule_work(&sp->rst_timer_task);
4734 sw_stat->soft_reset_cnt++;
4735 return;
4736 }
4737
4738 /**
4739 * s2io_isr - ISR handler of the device .
4740 * @irq: the irq of the device.
4741 * @dev_id: a void pointer to the dev structure of the NIC.
4742 * Description: This function is the ISR handler of the device. It
4743 * identifies the reason for the interrupt and calls the relevant
4744 * service routines. As a contongency measure, this ISR allocates the
4745 * recv buffers, if their numbers are below the panic value which is
4746 * presently set to 25% of the original number of rcv buffers allocated.
4747 * Return value:
4748 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4749 * IRQ_NONE: will be returned if interrupt is not from our device
4750 */
4751 static irqreturn_t s2io_isr(int irq, void *dev_id)
4752 {
4753 struct net_device *dev = (struct net_device *) dev_id;
4754 struct s2io_nic *sp = netdev_priv(dev);
4755 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4756 int i;
4757 u64 reason = 0;
4758 struct mac_info *mac_control;
4759 struct config_param *config;
4760
4761 /* Pretend we handled any irq's from a disconnected card */
4762 if (pci_channel_offline(sp->pdev))
4763 return IRQ_NONE;
4764
4765 if (!is_s2io_card_up(sp))
4766 return IRQ_NONE;
4767
4768 mac_control = &sp->mac_control;
4769 config = &sp->config;
4770
4771 /*
4772 * Identify the cause for interrupt and call the appropriate
4773 * interrupt handler. Causes for the interrupt could be;
4774 * 1. Rx of packet.
4775 * 2. Tx complete.
4776 * 3. Link down.
4777 */
4778 reason = readq(&bar0->general_int_status);
4779
4780 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4781 /* Nothing much can be done. Get out */
4782 return IRQ_HANDLED;
4783 }
4784
4785 if (reason & (GEN_INTR_RXTRAFFIC |
4786 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4787 {
4788 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4789
4790 if (config->napi) {
4791 if (reason & GEN_INTR_RXTRAFFIC) {
4792 napi_schedule(&sp->napi);
4793 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4794 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4795 readl(&bar0->rx_traffic_int);
4796 }
4797 } else {
4798 /*
4799 * rx_traffic_int reg is an R1 register, writing all 1's
4800 * will ensure that the actual interrupt causing bit
4801 * get's cleared and hence a read can be avoided.
4802 */
4803 if (reason & GEN_INTR_RXTRAFFIC)
4804 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4805
4806 for (i = 0; i < config->rx_ring_num; i++)
4807 rx_intr_handler(&mac_control->rings[i], 0);
4808 }
4809
4810 /*
4811 * tx_traffic_int reg is an R1 register, writing all 1's
4812 * will ensure that the actual interrupt causing bit get's
4813 * cleared and hence a read can be avoided.
4814 */
4815 if (reason & GEN_INTR_TXTRAFFIC)
4816 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4817
4818 for (i = 0; i < config->tx_fifo_num; i++)
4819 tx_intr_handler(&mac_control->fifos[i]);
4820
4821 if (reason & GEN_INTR_TXPIC)
4822 s2io_txpic_intr_handle(sp);
4823
4824 /*
4825 * Reallocate the buffers from the interrupt handler itself.
4826 */
4827 if (!config->napi) {
4828 for (i = 0; i < config->rx_ring_num; i++)
4829 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4830 }
4831 writeq(sp->general_int_mask, &bar0->general_int_mask);
4832 readl(&bar0->general_int_status);
4833
4834 return IRQ_HANDLED;
4835
4836 }
4837 else if (!reason) {
4838 /* The interrupt was not raised by us */
4839 return IRQ_NONE;
4840 }
4841
4842 return IRQ_HANDLED;
4843 }
4844
4845 /**
4846 * s2io_updt_stats -
4847 */
4848 static void s2io_updt_stats(struct s2io_nic *sp)
4849 {
4850 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4851 u64 val64;
4852 int cnt = 0;
4853
4854 if (is_s2io_card_up(sp)) {
4855 /* Apprx 30us on a 133 MHz bus */
4856 val64 = SET_UPDT_CLICKS(10) |
4857 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4858 writeq(val64, &bar0->stat_cfg);
4859 do {
4860 udelay(100);
4861 val64 = readq(&bar0->stat_cfg);
4862 if (!(val64 & s2BIT(0)))
4863 break;
4864 cnt++;
4865 if (cnt == 5)
4866 break; /* Updt failed */
4867 } while(1);
4868 }
4869 }
4870
4871 /**
4872 * s2io_get_stats - Updates the device statistics structure.
4873 * @dev : pointer to the device structure.
4874 * Description:
4875 * This function updates the device statistics structure in the s2io_nic
4876 * structure and returns a pointer to the same.
4877 * Return value:
4878 * pointer to the updated net_device_stats structure.
4879 */
4880
4881 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4882 {
4883 struct s2io_nic *sp = netdev_priv(dev);
4884 struct mac_info *mac_control;
4885 struct config_param *config;
4886 int i;
4887
4888
4889 mac_control = &sp->mac_control;
4890 config = &sp->config;
4891
4892 /* Configure Stats for immediate updt */
4893 s2io_updt_stats(sp);
4894
4895 /* Using sp->stats as a staging area, because reset (due to mtu
4896 change, for example) will clear some hardware counters */
4897 dev->stats.tx_packets +=
4898 le32_to_cpu(mac_control->stats_info->tmac_frms) -
4899 sp->stats.tx_packets;
4900 sp->stats.tx_packets =
4901 le32_to_cpu(mac_control->stats_info->tmac_frms);
4902 dev->stats.tx_errors +=
4903 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4904 sp->stats.tx_errors;
4905 sp->stats.tx_errors =
4906 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4907 dev->stats.rx_errors +=
4908 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4909 sp->stats.rx_errors;
4910 sp->stats.rx_errors =
4911 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4912 dev->stats.multicast =
4913 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) -
4914 sp->stats.multicast;
4915 sp->stats.multicast =
4916 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4917 dev->stats.rx_length_errors =
4918 le64_to_cpu(mac_control->stats_info->rmac_long_frms) -
4919 sp->stats.rx_length_errors;
4920 sp->stats.rx_length_errors =
4921 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4922
4923 /* collect per-ring rx_packets and rx_bytes */
4924 dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4925 for (i = 0; i < config->rx_ring_num; i++) {
4926 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4927 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4928 }
4929
4930 return (&dev->stats);
4931 }
4932
4933 /**
4934 * s2io_set_multicast - entry point for multicast address enable/disable.
4935 * @dev : pointer to the device structure
4936 * Description:
4937 * This function is a driver entry point which gets called by the kernel
4938 * whenever multicast addresses must be enabled/disabled. This also gets
4939 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4940 * determine, if multicast address must be enabled or if promiscuous mode
4941 * is to be disabled etc.
4942 * Return value:
4943 * void.
4944 */
4945
4946 static void s2io_set_multicast(struct net_device *dev)
4947 {
4948 int i, j, prev_cnt;
4949 struct dev_mc_list *mclist;
4950 struct s2io_nic *sp = netdev_priv(dev);
4951 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4952 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4953 0xfeffffffffffULL;
4954 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4955 void __iomem *add;
4956 struct config_param *config = &sp->config;
4957
4958 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4959 /* Enable all Multicast addresses */
4960 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4961 &bar0->rmac_addr_data0_mem);
4962 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4963 &bar0->rmac_addr_data1_mem);
4964 val64 = RMAC_ADDR_CMD_MEM_WE |
4965 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4966 RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4967 writeq(val64, &bar0->rmac_addr_cmd_mem);
4968 /* Wait till command completes */
4969 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4970 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4971 S2IO_BIT_RESET);
4972
4973 sp->m_cast_flg = 1;
4974 sp->all_multi_pos = config->max_mc_addr - 1;
4975 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4976 /* Disable all Multicast addresses */
4977 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4978 &bar0->rmac_addr_data0_mem);
4979 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4980 &bar0->rmac_addr_data1_mem);
4981 val64 = RMAC_ADDR_CMD_MEM_WE |
4982 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4983 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4984 writeq(val64, &bar0->rmac_addr_cmd_mem);
4985 /* Wait till command completes */
4986 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4987 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4988 S2IO_BIT_RESET);
4989
4990 sp->m_cast_flg = 0;
4991 sp->all_multi_pos = 0;
4992 }
4993
4994 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4995 /* Put the NIC into promiscuous mode */
4996 add = &bar0->mac_cfg;
4997 val64 = readq(&bar0->mac_cfg);
4998 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4999
5000 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5001 writel((u32) val64, add);
5002 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5003 writel((u32) (val64 >> 32), (add + 4));
5004
5005 if (vlan_tag_strip != 1) {
5006 val64 = readq(&bar0->rx_pa_cfg);
5007 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5008 writeq(val64, &bar0->rx_pa_cfg);
5009 sp->vlan_strip_flag = 0;
5010 }
5011
5012 val64 = readq(&bar0->mac_cfg);
5013 sp->promisc_flg = 1;
5014 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5015 dev->name);
5016 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5017 /* Remove the NIC from promiscuous mode */
5018 add = &bar0->mac_cfg;
5019 val64 = readq(&bar0->mac_cfg);
5020 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5021
5022 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5023 writel((u32) val64, add);
5024 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5025 writel((u32) (val64 >> 32), (add + 4));
5026
5027 if (vlan_tag_strip != 0) {
5028 val64 = readq(&bar0->rx_pa_cfg);
5029 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5030 writeq(val64, &bar0->rx_pa_cfg);
5031 sp->vlan_strip_flag = 1;
5032 }
5033
5034 val64 = readq(&bar0->mac_cfg);
5035 sp->promisc_flg = 0;
5036 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5037 dev->name);
5038 }
5039
5040 /* Update individual M_CAST address list */
5041 if ((!sp->m_cast_flg) && dev->mc_count) {
5042 if (dev->mc_count >
5043 (config->max_mc_addr - config->max_mac_addr)) {
5044 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5045 dev->name);
5046 DBG_PRINT(ERR_DBG, "can be added, please enable ");
5047 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5048 return;
5049 }
5050
5051 prev_cnt = sp->mc_addr_count;
5052 sp->mc_addr_count = dev->mc_count;
5053
5054 /* Clear out the previous list of Mc in the H/W. */
5055 for (i = 0; i < prev_cnt; i++) {
5056 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5057 &bar0->rmac_addr_data0_mem);
5058 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5059 &bar0->rmac_addr_data1_mem);
5060 val64 = RMAC_ADDR_CMD_MEM_WE |
5061 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5062 RMAC_ADDR_CMD_MEM_OFFSET
5063 (config->mc_start_offset + i);
5064 writeq(val64, &bar0->rmac_addr_cmd_mem);
5065
5066 /* Wait for command completes */
5067 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5068 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5069 S2IO_BIT_RESET)) {
5070 DBG_PRINT(ERR_DBG, "%s: Adding ",
5071 dev->name);
5072 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5073 return;
5074 }
5075 }
5076
5077 /* Create the new Rx filter list and update the same in H/W. */
5078 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5079 i++, mclist = mclist->next) {
5080 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5081 ETH_ALEN);
5082 mac_addr = 0;
5083 for (j = 0; j < ETH_ALEN; j++) {
5084 mac_addr |= mclist->dmi_addr[j];
5085 mac_addr <<= 8;
5086 }
5087 mac_addr >>= 8;
5088 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5089 &bar0->rmac_addr_data0_mem);
5090 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5091 &bar0->rmac_addr_data1_mem);
5092 val64 = RMAC_ADDR_CMD_MEM_WE |
5093 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5094 RMAC_ADDR_CMD_MEM_OFFSET
5095 (i + config->mc_start_offset);
5096 writeq(val64, &bar0->rmac_addr_cmd_mem);
5097
5098 /* Wait for command completes */
5099 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5100 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5101 S2IO_BIT_RESET)) {
5102 DBG_PRINT(ERR_DBG, "%s: Adding ",
5103 dev->name);
5104 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5105 return;
5106 }
5107 }
5108 }
5109 }
5110
5111 /* read from CAM unicast & multicast addresses and store it in
5112 * def_mac_addr structure
5113 */
5114 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5115 {
5116 int offset;
5117 u64 mac_addr = 0x0;
5118 struct config_param *config = &sp->config;
5119
5120 /* store unicast & multicast mac addresses */
5121 for (offset = 0; offset < config->max_mc_addr; offset++) {
5122 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5123 /* if read fails disable the entry */
5124 if (mac_addr == FAILURE)
5125 mac_addr = S2IO_DISABLE_MAC_ENTRY;
5126 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5127 }
5128 }
5129
5130 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5131 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5132 {
5133 int offset;
5134 struct config_param *config = &sp->config;
5135 /* restore unicast mac address */
5136 for (offset = 0; offset < config->max_mac_addr; offset++)
5137 do_s2io_prog_unicast(sp->dev,
5138 sp->def_mac_addr[offset].mac_addr);
5139
5140 /* restore multicast mac address */
5141 for (offset = config->mc_start_offset;
5142 offset < config->max_mc_addr; offset++)
5143 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5144 }
5145
5146 /* add a multicast MAC address to CAM */
5147 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5148 {
5149 int i;
5150 u64 mac_addr = 0;
5151 struct config_param *config = &sp->config;
5152
5153 for (i = 0; i < ETH_ALEN; i++) {
5154 mac_addr <<= 8;
5155 mac_addr |= addr[i];
5156 }
5157 if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5158 return SUCCESS;
5159
5160 /* check if the multicast mac already preset in CAM */
5161 for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5162 u64 tmp64;
5163 tmp64 = do_s2io_read_unicast_mc(sp, i);
5164 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5165 break;
5166
5167 if (tmp64 == mac_addr)
5168 return SUCCESS;
5169 }
5170 if (i == config->max_mc_addr) {
5171 DBG_PRINT(ERR_DBG,
5172 "CAM full no space left for multicast MAC\n");
5173 return FAILURE;
5174 }
5175 /* Update the internal structure with this new mac address */
5176 do_s2io_copy_mac_addr(sp, i, mac_addr);
5177
5178 return (do_s2io_add_mac(sp, mac_addr, i));
5179 }
5180
5181 /* add MAC address to CAM */
5182 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5183 {
5184 u64 val64;
5185 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5186
5187 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5188 &bar0->rmac_addr_data0_mem);
5189
5190 val64 =
5191 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5192 RMAC_ADDR_CMD_MEM_OFFSET(off);
5193 writeq(val64, &bar0->rmac_addr_cmd_mem);
5194
5195 /* Wait till command completes */
5196 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5197 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5198 S2IO_BIT_RESET)) {
5199 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5200 return FAILURE;
5201 }
5202 return SUCCESS;
5203 }
5204 /* deletes a specified unicast/multicast mac entry from CAM */
5205 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5206 {
5207 int offset;
5208 u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5209 struct config_param *config = &sp->config;
5210
5211 for (offset = 1;
5212 offset < config->max_mc_addr; offset++) {
5213 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5214 if (tmp64 == addr) {
5215 /* disable the entry by writing 0xffffffffffffULL */
5216 if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
5217 return FAILURE;
5218 /* store the new mac list from CAM */
5219 do_s2io_store_unicast_mc(sp);
5220 return SUCCESS;
5221 }
5222 }
5223 DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5224 (unsigned long long)addr);
5225 return FAILURE;
5226 }
5227
5228 /* read mac entries from CAM */
5229 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5230 {
5231 u64 tmp64 = 0xffffffffffff0000ULL, val64;
5232 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5233
5234 /* read mac addr */
5235 val64 =
5236 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5237 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5238 writeq(val64, &bar0->rmac_addr_cmd_mem);
5239
5240 /* Wait till command completes */
5241 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5242 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243 S2IO_BIT_RESET)) {
5244 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5245 return FAILURE;
5246 }
5247 tmp64 = readq(&bar0->rmac_addr_data0_mem);
5248 return (tmp64 >> 16);
5249 }
5250
5251 /**
5252 * s2io_set_mac_addr driver entry point
5253 */
5254
5255 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5256 {
5257 struct sockaddr *addr = p;
5258
5259 if (!is_valid_ether_addr(addr->sa_data))
5260 return -EINVAL;
5261
5262 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5263
5264 /* store the MAC address in CAM */
5265 return (do_s2io_prog_unicast(dev, dev->dev_addr));
5266 }
5267 /**
5268 * do_s2io_prog_unicast - Programs the Xframe mac address
5269 * @dev : pointer to the device structure.
5270 * @addr: a uchar pointer to the new mac address which is to be set.
5271 * Description : This procedure will program the Xframe to receive
5272 * frames with new Mac Address
5273 * Return value: SUCCESS on success and an appropriate (-)ve integer
5274 * as defined in errno.h file on failure.
5275 */
5276
5277 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5278 {
5279 struct s2io_nic *sp = netdev_priv(dev);
5280 register u64 mac_addr = 0, perm_addr = 0;
5281 int i;
5282 u64 tmp64;
5283 struct config_param *config = &sp->config;
5284
5285 /*
5286 * Set the new MAC address as the new unicast filter and reflect this
5287 * change on the device address registered with the OS. It will be
5288 * at offset 0.
5289 */
5290 for (i = 0; i < ETH_ALEN; i++) {
5291 mac_addr <<= 8;
5292 mac_addr |= addr[i];
5293 perm_addr <<= 8;
5294 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5295 }
5296
5297 /* check if the dev_addr is different than perm_addr */
5298 if (mac_addr == perm_addr)
5299 return SUCCESS;
5300
5301 /* check if the mac already preset in CAM */
5302 for (i = 1; i < config->max_mac_addr; i++) {
5303 tmp64 = do_s2io_read_unicast_mc(sp, i);
5304 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5305 break;
5306
5307 if (tmp64 == mac_addr) {
5308 DBG_PRINT(INFO_DBG,
5309 "MAC addr:0x%llx already present in CAM\n",
5310 (unsigned long long)mac_addr);
5311 return SUCCESS;
5312 }
5313 }
5314 if (i == config->max_mac_addr) {
5315 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5316 return FAILURE;
5317 }
5318 /* Update the internal structure with this new mac address */
5319 do_s2io_copy_mac_addr(sp, i, mac_addr);
5320 return (do_s2io_add_mac(sp, mac_addr, i));
5321 }
5322
5323 /**
5324 * s2io_ethtool_sset - Sets different link parameters.
5325 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5326 * @info: pointer to the structure with parameters given by ethtool to set
5327 * link information.
5328 * Description:
5329 * The function sets different link parameters provided by the user onto
5330 * the NIC.
5331 * Return value:
5332 * 0 on success.
5333 */
5334
5335 static int s2io_ethtool_sset(struct net_device *dev,
5336 struct ethtool_cmd *info)
5337 {
5338 struct s2io_nic *sp = netdev_priv(dev);
5339 if ((info->autoneg == AUTONEG_ENABLE) ||
5340 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5341 return -EINVAL;
5342 else {
5343 s2io_close(sp->dev);
5344 s2io_open(sp->dev);
5345 }
5346
5347 return 0;
5348 }
5349
5350 /**
5351 * s2io_ethtol_gset - Return link specific information.
5352 * @sp : private member of the device structure, pointer to the
5353 * s2io_nic structure.
5354 * @info : pointer to the structure with parameters given by ethtool
5355 * to return link information.
5356 * Description:
5357 * Returns link specific information like speed, duplex etc.. to ethtool.
5358 * Return value :
5359 * return 0 on success.
5360 */
5361
5362 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5363 {
5364 struct s2io_nic *sp = netdev_priv(dev);
5365 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5366 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367 info->port = PORT_FIBRE;
5368
5369 /* info->transceiver */
5370 info->transceiver = XCVR_EXTERNAL;
5371
5372 if (netif_carrier_ok(sp->dev)) {
5373 info->speed = 10000;
5374 info->duplex = DUPLEX_FULL;
5375 } else {
5376 info->speed = -1;
5377 info->duplex = -1;
5378 }
5379
5380 info->autoneg = AUTONEG_DISABLE;
5381 return 0;
5382 }
5383
5384 /**
5385 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5386 * @sp : private member of the device structure, which is a pointer to the
5387 * s2io_nic structure.
5388 * @info : pointer to the structure with parameters given by ethtool to
5389 * return driver information.
5390 * Description:
5391 * Returns driver specefic information like name, version etc.. to ethtool.
5392 * Return value:
5393 * void
5394 */
5395
5396 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5397 struct ethtool_drvinfo *info)
5398 {
5399 struct s2io_nic *sp = netdev_priv(dev);
5400
5401 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5402 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5403 strncpy(info->fw_version, "", sizeof(info->fw_version));
5404 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5405 info->regdump_len = XENA_REG_SPACE;
5406 info->eedump_len = XENA_EEPROM_SPACE;
5407 }
5408
5409 /**
5410 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5411 * @sp: private member of the device structure, which is a pointer to the
5412 * s2io_nic structure.
5413 * @regs : pointer to the structure with parameters given by ethtool for
5414 * dumping the registers.
5415 * @reg_space: The input argumnet into which all the registers are dumped.
5416 * Description:
5417 * Dumps the entire register space of xFrame NIC into the user given
5418 * buffer area.
5419 * Return value :
5420 * void .
5421 */
5422
5423 static void s2io_ethtool_gregs(struct net_device *dev,
5424 struct ethtool_regs *regs, void *space)
5425 {
5426 int i;
5427 u64 reg;
5428 u8 *reg_space = (u8 *) space;
5429 struct s2io_nic *sp = netdev_priv(dev);
5430
5431 regs->len = XENA_REG_SPACE;
5432 regs->version = sp->pdev->subsystem_device;
5433
5434 for (i = 0; i < regs->len; i += 8) {
5435 reg = readq(sp->bar0 + i);
5436 memcpy((reg_space + i), &reg, 8);
5437 }
5438 }
5439
5440 /**
5441 * s2io_phy_id - timer function that alternates adapter LED.
5442 * @data : address of the private member of the device structure, which
5443 * is a pointer to the s2io_nic structure, provided as an u32.
5444 * Description: This is actually the timer function that alternates the
5445 * adapter LED bit of the adapter control bit to set/reset every time on
5446 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5447 * once every second.
5448 */
5449 static void s2io_phy_id(unsigned long data)
5450 {
5451 struct s2io_nic *sp = (struct s2io_nic *) data;
5452 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5453 u64 val64 = 0;
5454 u16 subid;
5455
5456 subid = sp->pdev->subsystem_device;
5457 if ((sp->device_type == XFRAME_II_DEVICE) ||
5458 ((subid & 0xFF) >= 0x07)) {
5459 val64 = readq(&bar0->gpio_control);
5460 val64 ^= GPIO_CTRL_GPIO_0;
5461 writeq(val64, &bar0->gpio_control);
5462 } else {
5463 val64 = readq(&bar0->adapter_control);
5464 val64 ^= ADAPTER_LED_ON;
5465 writeq(val64, &bar0->adapter_control);
5466 }
5467
5468 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5469 }
5470
5471 /**
5472 * s2io_ethtool_idnic - To physically identify the nic on the system.
5473 * @sp : private member of the device structure, which is a pointer to the
5474 * s2io_nic structure.
5475 * @id : pointer to the structure with identification parameters given by
5476 * ethtool.
5477 * Description: Used to physically identify the NIC on the system.
5478 * The Link LED will blink for a time specified by the user for
5479 * identification.
5480 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5481 * identification is possible only if it's link is up.
5482 * Return value:
5483 * int , returns 0 on success
5484 */
5485
5486 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5487 {
5488 u64 val64 = 0, last_gpio_ctrl_val;
5489 struct s2io_nic *sp = netdev_priv(dev);
5490 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5491 u16 subid;
5492
5493 subid = sp->pdev->subsystem_device;
5494 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5495 if ((sp->device_type == XFRAME_I_DEVICE) &&
5496 ((subid & 0xFF) < 0x07)) {
5497 val64 = readq(&bar0->adapter_control);
5498 if (!(val64 & ADAPTER_CNTL_EN)) {
5499 printk(KERN_ERR
5500 "Adapter Link down, cannot blink LED\n");
5501 return -EFAULT;
5502 }
5503 }
5504 if (sp->id_timer.function == NULL) {
5505 init_timer(&sp->id_timer);
5506 sp->id_timer.function = s2io_phy_id;
5507 sp->id_timer.data = (unsigned long) sp;
5508 }
5509 mod_timer(&sp->id_timer, jiffies);
5510 if (data)
5511 msleep_interruptible(data * HZ);
5512 else
5513 msleep_interruptible(MAX_FLICKER_TIME);
5514 del_timer_sync(&sp->id_timer);
5515
5516 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5517 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5518 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5519 }
5520
5521 return 0;
5522 }
5523
5524 static void s2io_ethtool_gringparam(struct net_device *dev,
5525 struct ethtool_ringparam *ering)
5526 {
5527 struct s2io_nic *sp = netdev_priv(dev);
5528 int i,tx_desc_count=0,rx_desc_count=0;
5529
5530 if (sp->rxd_mode == RXD_MODE_1)
5531 ering->rx_max_pending = MAX_RX_DESC_1;
5532 else if (sp->rxd_mode == RXD_MODE_3B)
5533 ering->rx_max_pending = MAX_RX_DESC_2;
5534
5535 ering->tx_max_pending = MAX_TX_DESC;
5536 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5537 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5538
5539 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5540 ering->tx_pending = tx_desc_count;
5541 rx_desc_count = 0;
5542 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5543 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5544
5545 ering->rx_pending = rx_desc_count;
5546
5547 ering->rx_mini_max_pending = 0;
5548 ering->rx_mini_pending = 0;
5549 if(sp->rxd_mode == RXD_MODE_1)
5550 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5551 else if (sp->rxd_mode == RXD_MODE_3B)
5552 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5553 ering->rx_jumbo_pending = rx_desc_count;
5554 }
5555
5556 /**
5557 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5558 * @sp : private member of the device structure, which is a pointer to the
5559 * s2io_nic structure.
5560 * @ep : pointer to the structure with pause parameters given by ethtool.
5561 * Description:
5562 * Returns the Pause frame generation and reception capability of the NIC.
5563 * Return value:
5564 * void
5565 */
5566 static void s2io_ethtool_getpause_data(struct net_device *dev,
5567 struct ethtool_pauseparam *ep)
5568 {
5569 u64 val64;
5570 struct s2io_nic *sp = netdev_priv(dev);
5571 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5572
5573 val64 = readq(&bar0->rmac_pause_cfg);
5574 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5575 ep->tx_pause = TRUE;
5576 if (val64 & RMAC_PAUSE_RX_ENABLE)
5577 ep->rx_pause = TRUE;
5578 ep->autoneg = FALSE;
5579 }
5580
5581 /**
5582 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5583 * @sp : private member of the device structure, which is a pointer to the
5584 * s2io_nic structure.
5585 * @ep : pointer to the structure with pause parameters given by ethtool.
5586 * Description:
5587 * It can be used to set or reset Pause frame generation or reception
5588 * support of the NIC.
5589 * Return value:
5590 * int, returns 0 on Success
5591 */
5592
5593 static int s2io_ethtool_setpause_data(struct net_device *dev,
5594 struct ethtool_pauseparam *ep)
5595 {
5596 u64 val64;
5597 struct s2io_nic *sp = netdev_priv(dev);
5598 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5599
5600 val64 = readq(&bar0->rmac_pause_cfg);
5601 if (ep->tx_pause)
5602 val64 |= RMAC_PAUSE_GEN_ENABLE;
5603 else
5604 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5605 if (ep->rx_pause)
5606 val64 |= RMAC_PAUSE_RX_ENABLE;
5607 else
5608 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5609 writeq(val64, &bar0->rmac_pause_cfg);
5610 return 0;
5611 }
5612
5613 /**
5614 * read_eeprom - reads 4 bytes of data from user given offset.
5615 * @sp : private member of the device structure, which is a pointer to the
5616 * s2io_nic structure.
5617 * @off : offset at which the data must be written
5618 * @data : Its an output parameter where the data read at the given
5619 * offset is stored.
5620 * Description:
5621 * Will read 4 bytes of data from the user given offset and return the
5622 * read data.
5623 * NOTE: Will allow to read only part of the EEPROM visible through the
5624 * I2C bus.
5625 * Return value:
5626 * -1 on failure and 0 on success.
5627 */
5628
5629 #define S2IO_DEV_ID 5
5630 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5631 {
5632 int ret = -1;
5633 u32 exit_cnt = 0;
5634 u64 val64;
5635 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5636
5637 if (sp->device_type == XFRAME_I_DEVICE) {
5638 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5639 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5640 I2C_CONTROL_CNTL_START;
5641 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5642
5643 while (exit_cnt < 5) {
5644 val64 = readq(&bar0->i2c_control);
5645 if (I2C_CONTROL_CNTL_END(val64)) {
5646 *data = I2C_CONTROL_GET_DATA(val64);
5647 ret = 0;
5648 break;
5649 }
5650 msleep(50);
5651 exit_cnt++;
5652 }
5653 }
5654
5655 if (sp->device_type == XFRAME_II_DEVICE) {
5656 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5657 SPI_CONTROL_BYTECNT(0x3) |
5658 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5659 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5660 val64 |= SPI_CONTROL_REQ;
5661 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5662 while (exit_cnt < 5) {
5663 val64 = readq(&bar0->spi_control);
5664 if (val64 & SPI_CONTROL_NACK) {
5665 ret = 1;
5666 break;
5667 } else if (val64 & SPI_CONTROL_DONE) {
5668 *data = readq(&bar0->spi_data);
5669 *data &= 0xffffff;
5670 ret = 0;
5671 break;
5672 }
5673 msleep(50);
5674 exit_cnt++;
5675 }
5676 }
5677 return ret;
5678 }
5679
5680 /**
5681 * write_eeprom - actually writes the relevant part of the data value.
5682 * @sp : private member of the device structure, which is a pointer to the
5683 * s2io_nic structure.
5684 * @off : offset at which the data must be written
5685 * @data : The data that is to be written
5686 * @cnt : Number of bytes of the data that are actually to be written into
5687 * the Eeprom. (max of 3)
5688 * Description:
5689 * Actually writes the relevant part of the data value into the Eeprom
5690 * through the I2C bus.
5691 * Return value:
5692 * 0 on success, -1 on failure.
5693 */
5694
5695 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5696 {
5697 int exit_cnt = 0, ret = -1;
5698 u64 val64;
5699 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5700
5701 if (sp->device_type == XFRAME_I_DEVICE) {
5702 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5703 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5704 I2C_CONTROL_CNTL_START;
5705 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5706
5707 while (exit_cnt < 5) {
5708 val64 = readq(&bar0->i2c_control);
5709 if (I2C_CONTROL_CNTL_END(val64)) {
5710 if (!(val64 & I2C_CONTROL_NACK))
5711 ret = 0;
5712 break;
5713 }
5714 msleep(50);
5715 exit_cnt++;
5716 }
5717 }
5718
5719 if (sp->device_type == XFRAME_II_DEVICE) {
5720 int write_cnt = (cnt == 8) ? 0 : cnt;
5721 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5722
5723 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5724 SPI_CONTROL_BYTECNT(write_cnt) |
5725 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5726 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5727 val64 |= SPI_CONTROL_REQ;
5728 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5729 while (exit_cnt < 5) {
5730 val64 = readq(&bar0->spi_control);
5731 if (val64 & SPI_CONTROL_NACK) {
5732 ret = 1;
5733 break;
5734 } else if (val64 & SPI_CONTROL_DONE) {
5735 ret = 0;
5736 break;
5737 }
5738 msleep(50);
5739 exit_cnt++;
5740 }
5741 }
5742 return ret;
5743 }
5744 static void s2io_vpd_read(struct s2io_nic *nic)
5745 {
5746 u8 *vpd_data;
5747 u8 data;
5748 int i=0, cnt, fail = 0;
5749 int vpd_addr = 0x80;
5750
5751 if (nic->device_type == XFRAME_II_DEVICE) {
5752 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5753 vpd_addr = 0x80;
5754 }
5755 else {
5756 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5757 vpd_addr = 0x50;
5758 }
5759 strcpy(nic->serial_num, "NOT AVAILABLE");
5760
5761 vpd_data = kmalloc(256, GFP_KERNEL);
5762 if (!vpd_data) {
5763 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5764 return;
5765 }
5766 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5767
5768 for (i = 0; i < 256; i +=4 ) {
5769 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5770 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5771 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5772 for (cnt = 0; cnt <5; cnt++) {
5773 msleep(2);
5774 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5775 if (data == 0x80)
5776 break;
5777 }
5778 if (cnt >= 5) {
5779 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5780 fail = 1;
5781 break;
5782 }
5783 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5784 (u32 *)&vpd_data[i]);
5785 }
5786
5787 if(!fail) {
5788 /* read serial number of adapter */
5789 for (cnt = 0; cnt < 256; cnt++) {
5790 if ((vpd_data[cnt] == 'S') &&
5791 (vpd_data[cnt+1] == 'N') &&
5792 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5793 memset(nic->serial_num, 0, VPD_STRING_LEN);
5794 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5795 vpd_data[cnt+2]);
5796 break;
5797 }
5798 }
5799 }
5800
5801 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5802 memset(nic->product_name, 0, vpd_data[1]);
5803 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5804 }
5805 kfree(vpd_data);
5806 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5807 }
5808
5809 /**
5810 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5811 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5812 * @eeprom : pointer to the user level structure provided by ethtool,
5813 * containing all relevant information.
5814 * @data_buf : user defined value to be written into Eeprom.
5815 * Description: Reads the values stored in the Eeprom at given offset
5816 * for a given length. Stores these values int the input argument data
5817 * buffer 'data_buf' and returns these to the caller (ethtool.)
5818 * Return value:
5819 * int 0 on success
5820 */
5821
5822 static int s2io_ethtool_geeprom(struct net_device *dev,
5823 struct ethtool_eeprom *eeprom, u8 * data_buf)
5824 {
5825 u32 i, valid;
5826 u64 data;
5827 struct s2io_nic *sp = netdev_priv(dev);
5828
5829 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5830
5831 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5832 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5833
5834 for (i = 0; i < eeprom->len; i += 4) {
5835 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5836 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5837 return -EFAULT;
5838 }
5839 valid = INV(data);
5840 memcpy((data_buf + i), &valid, 4);
5841 }
5842 return 0;
5843 }
5844
5845 /**
5846 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5847 * @sp : private member of the device structure, which is a pointer to the
5848 * s2io_nic structure.
5849 * @eeprom : pointer to the user level structure provided by ethtool,
5850 * containing all relevant information.
5851 * @data_buf ; user defined value to be written into Eeprom.
5852 * Description:
5853 * Tries to write the user provided value in the Eeprom, at the offset
5854 * given by the user.
5855 * Return value:
5856 * 0 on success, -EFAULT on failure.
5857 */
5858
5859 static int s2io_ethtool_seeprom(struct net_device *dev,
5860 struct ethtool_eeprom *eeprom,
5861 u8 * data_buf)
5862 {
5863 int len = eeprom->len, cnt = 0;
5864 u64 valid = 0, data;
5865 struct s2io_nic *sp = netdev_priv(dev);
5866
5867 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5868 DBG_PRINT(ERR_DBG,
5869 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5870 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5871 eeprom->magic);
5872 return -EFAULT;
5873 }
5874
5875 while (len) {
5876 data = (u32) data_buf[cnt] & 0x000000FF;
5877 if (data) {
5878 valid = (u32) (data << 24);
5879 } else
5880 valid = data;
5881
5882 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5883 DBG_PRINT(ERR_DBG,
5884 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5885 DBG_PRINT(ERR_DBG,
5886 "write into the specified offset\n");
5887 return -EFAULT;
5888 }
5889 cnt++;
5890 len--;
5891 }
5892
5893 return 0;
5894 }
5895
5896 /**
5897 * s2io_register_test - reads and writes into all clock domains.
5898 * @sp : private member of the device structure, which is a pointer to the
5899 * s2io_nic structure.
5900 * @data : variable that returns the result of each of the test conducted b
5901 * by the driver.
5902 * Description:
5903 * Read and write into all clock domains. The NIC has 3 clock domains,
5904 * see that registers in all the three regions are accessible.
5905 * Return value:
5906 * 0 on success.
5907 */
5908
5909 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5910 {
5911 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5912 u64 val64 = 0, exp_val;
5913 int fail = 0;
5914
5915 val64 = readq(&bar0->pif_rd_swapper_fb);
5916 if (val64 != 0x123456789abcdefULL) {
5917 fail = 1;
5918 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5919 }
5920
5921 val64 = readq(&bar0->rmac_pause_cfg);
5922 if (val64 != 0xc000ffff00000000ULL) {
5923 fail = 1;
5924 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5925 }
5926
5927 val64 = readq(&bar0->rx_queue_cfg);
5928 if (sp->device_type == XFRAME_II_DEVICE)
5929 exp_val = 0x0404040404040404ULL;
5930 else
5931 exp_val = 0x0808080808080808ULL;
5932 if (val64 != exp_val) {
5933 fail = 1;
5934 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5935 }
5936
5937 val64 = readq(&bar0->xgxs_efifo_cfg);
5938 if (val64 != 0x000000001923141EULL) {
5939 fail = 1;
5940 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5941 }
5942
5943 val64 = 0x5A5A5A5A5A5A5A5AULL;
5944 writeq(val64, &bar0->xmsi_data);
5945 val64 = readq(&bar0->xmsi_data);
5946 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5947 fail = 1;
5948 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5949 }
5950
5951 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5952 writeq(val64, &bar0->xmsi_data);
5953 val64 = readq(&bar0->xmsi_data);
5954 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5955 fail = 1;
5956 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5957 }
5958
5959 *data = fail;
5960 return fail;
5961 }
5962
5963 /**
5964 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5965 * @sp : private member of the device structure, which is a pointer to the
5966 * s2io_nic structure.
5967 * @data:variable that returns the result of each of the test conducted by
5968 * the driver.
5969 * Description:
5970 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5971 * register.
5972 * Return value:
5973 * 0 on success.
5974 */
5975
5976 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5977 {
5978 int fail = 0;
5979 u64 ret_data, org_4F0, org_7F0;
5980 u8 saved_4F0 = 0, saved_7F0 = 0;
5981 struct net_device *dev = sp->dev;
5982
5983 /* Test Write Error at offset 0 */
5984 /* Note that SPI interface allows write access to all areas
5985 * of EEPROM. Hence doing all negative testing only for Xframe I.
5986 */
5987 if (sp->device_type == XFRAME_I_DEVICE)
5988 if (!write_eeprom(sp, 0, 0, 3))
5989 fail = 1;
5990
5991 /* Save current values at offsets 0x4F0 and 0x7F0 */
5992 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5993 saved_4F0 = 1;
5994 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5995 saved_7F0 = 1;
5996
5997 /* Test Write at offset 4f0 */
5998 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5999 fail = 1;
6000 if (read_eeprom(sp, 0x4F0, &ret_data))
6001 fail = 1;
6002
6003 if (ret_data != 0x012345) {
6004 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6005 "Data written %llx Data read %llx\n",
6006 dev->name, (unsigned long long)0x12345,
6007 (unsigned long long)ret_data);
6008 fail = 1;
6009 }
6010
6011 /* Reset the EEPROM data go FFFF */
6012 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6013
6014 /* Test Write Request Error at offset 0x7c */
6015 if (sp->device_type == XFRAME_I_DEVICE)
6016 if (!write_eeprom(sp, 0x07C, 0, 3))
6017 fail = 1;
6018
6019 /* Test Write Request at offset 0x7f0 */
6020 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6021 fail = 1;
6022 if (read_eeprom(sp, 0x7F0, &ret_data))
6023 fail = 1;
6024
6025 if (ret_data != 0x012345) {
6026 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6027 "Data written %llx Data read %llx\n",
6028 dev->name, (unsigned long long)0x12345,
6029 (unsigned long long)ret_data);
6030 fail = 1;
6031 }
6032
6033 /* Reset the EEPROM data go FFFF */
6034 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6035
6036 if (sp->device_type == XFRAME_I_DEVICE) {
6037 /* Test Write Error at offset 0x80 */
6038 if (!write_eeprom(sp, 0x080, 0, 3))
6039 fail = 1;
6040
6041 /* Test Write Error at offset 0xfc */
6042 if (!write_eeprom(sp, 0x0FC, 0, 3))
6043 fail = 1;
6044
6045 /* Test Write Error at offset 0x100 */
6046 if (!write_eeprom(sp, 0x100, 0, 3))
6047 fail = 1;
6048
6049 /* Test Write Error at offset 4ec */
6050 if (!write_eeprom(sp, 0x4EC, 0, 3))
6051 fail = 1;
6052 }
6053
6054 /* Restore values at offsets 0x4F0 and 0x7F0 */
6055 if (saved_4F0)
6056 write_eeprom(sp, 0x4F0, org_4F0, 3);
6057 if (saved_7F0)
6058 write_eeprom(sp, 0x7F0, org_7F0, 3);
6059
6060 *data = fail;
6061 return fail;
6062 }
6063
6064 /**
6065 * s2io_bist_test - invokes the MemBist test of the card .
6066 * @sp : private member of the device structure, which is a pointer to the
6067 * s2io_nic structure.
6068 * @data:variable that returns the result of each of the test conducted by
6069 * the driver.
6070 * Description:
6071 * This invokes the MemBist test of the card. We give around
6072 * 2 secs time for the Test to complete. If it's still not complete
6073 * within this peiod, we consider that the test failed.
6074 * Return value:
6075 * 0 on success and -1 on failure.
6076 */
6077
6078 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6079 {
6080 u8 bist = 0;
6081 int cnt = 0, ret = -1;
6082
6083 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6084 bist |= PCI_BIST_START;
6085 pci_write_config_word(sp->pdev, PCI_BIST, bist);
6086
6087 while (cnt < 20) {
6088 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6089 if (!(bist & PCI_BIST_START)) {
6090 *data = (bist & PCI_BIST_CODE_MASK);
6091 ret = 0;
6092 break;
6093 }
6094 msleep(100);
6095 cnt++;
6096 }
6097
6098 return ret;
6099 }
6100
6101 /**
6102 * s2io-link_test - verifies the link state of the nic
6103 * @sp ; private member of the device structure, which is a pointer to the
6104 * s2io_nic structure.
6105 * @data: variable that returns the result of each of the test conducted by
6106 * the driver.
6107 * Description:
6108 * The function verifies the link state of the NIC and updates the input
6109 * argument 'data' appropriately.
6110 * Return value:
6111 * 0 on success.
6112 */
6113
6114 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6115 {
6116 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6117 u64 val64;
6118
6119 val64 = readq(&bar0->adapter_status);
6120 if(!(LINK_IS_UP(val64)))
6121 *data = 1;
6122 else
6123 *data = 0;
6124
6125 return *data;
6126 }
6127
6128 /**
6129 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6130 * @sp - private member of the device structure, which is a pointer to the
6131 * s2io_nic structure.
6132 * @data - variable that returns the result of each of the test
6133 * conducted by the driver.
6134 * Description:
6135 * This is one of the offline test that tests the read and write
6136 * access to the RldRam chip on the NIC.
6137 * Return value:
6138 * 0 on success.
6139 */
6140
6141 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6142 {
6143 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6144 u64 val64;
6145 int cnt, iteration = 0, test_fail = 0;
6146
6147 val64 = readq(&bar0->adapter_control);
6148 val64 &= ~ADAPTER_ECC_EN;
6149 writeq(val64, &bar0->adapter_control);
6150
6151 val64 = readq(&bar0->mc_rldram_test_ctrl);
6152 val64 |= MC_RLDRAM_TEST_MODE;
6153 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6154
6155 val64 = readq(&bar0->mc_rldram_mrs);
6156 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6157 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6158
6159 val64 |= MC_RLDRAM_MRS_ENABLE;
6160 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6161
6162 while (iteration < 2) {
6163 val64 = 0x55555555aaaa0000ULL;
6164 if (iteration == 1) {
6165 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6166 }
6167 writeq(val64, &bar0->mc_rldram_test_d0);
6168
6169 val64 = 0xaaaa5a5555550000ULL;
6170 if (iteration == 1) {
6171 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6172 }
6173 writeq(val64, &bar0->mc_rldram_test_d1);
6174
6175 val64 = 0x55aaaaaaaa5a0000ULL;
6176 if (iteration == 1) {
6177 val64 ^= 0xFFFFFFFFFFFF0000ULL;
6178 }
6179 writeq(val64, &bar0->mc_rldram_test_d2);
6180
6181 val64 = (u64) (0x0000003ffffe0100ULL);
6182 writeq(val64, &bar0->mc_rldram_test_add);
6183
6184 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6185 MC_RLDRAM_TEST_GO;
6186 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6187
6188 for (cnt = 0; cnt < 5; cnt++) {
6189 val64 = readq(&bar0->mc_rldram_test_ctrl);
6190 if (val64 & MC_RLDRAM_TEST_DONE)
6191 break;
6192 msleep(200);
6193 }
6194
6195 if (cnt == 5)
6196 break;
6197
6198 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6199 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6200
6201 for (cnt = 0; cnt < 5; cnt++) {
6202 val64 = readq(&bar0->mc_rldram_test_ctrl);
6203 if (val64 & MC_RLDRAM_TEST_DONE)
6204 break;
6205 msleep(500);
6206 }
6207
6208 if (cnt == 5)
6209 break;
6210
6211 val64 = readq(&bar0->mc_rldram_test_ctrl);
6212 if (!(val64 & MC_RLDRAM_TEST_PASS))
6213 test_fail = 1;
6214
6215 iteration++;
6216 }
6217
6218 *data = test_fail;
6219
6220 /* Bring the adapter out of test mode */
6221 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6222
6223 return test_fail;
6224 }
6225
6226 /**
6227 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6228 * @sp : private member of the device structure, which is a pointer to the
6229 * s2io_nic structure.
6230 * @ethtest : pointer to a ethtool command specific structure that will be
6231 * returned to the user.
6232 * @data : variable that returns the result of each of the test
6233 * conducted by the driver.
6234 * Description:
6235 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6236 * the health of the card.
6237 * Return value:
6238 * void
6239 */
6240
6241 static void s2io_ethtool_test(struct net_device *dev,
6242 struct ethtool_test *ethtest,
6243 uint64_t * data)
6244 {
6245 struct s2io_nic *sp = netdev_priv(dev);
6246 int orig_state = netif_running(sp->dev);
6247
6248 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6249 /* Offline Tests. */
6250 if (orig_state)
6251 s2io_close(sp->dev);
6252
6253 if (s2io_register_test(sp, &data[0]))
6254 ethtest->flags |= ETH_TEST_FL_FAILED;
6255
6256 s2io_reset(sp);
6257
6258 if (s2io_rldram_test(sp, &data[3]))
6259 ethtest->flags |= ETH_TEST_FL_FAILED;
6260
6261 s2io_reset(sp);
6262
6263 if (s2io_eeprom_test(sp, &data[1]))
6264 ethtest->flags |= ETH_TEST_FL_FAILED;
6265
6266 if (s2io_bist_test(sp, &data[4]))
6267 ethtest->flags |= ETH_TEST_FL_FAILED;
6268
6269 if (orig_state)
6270 s2io_open(sp->dev);
6271
6272 data[2] = 0;
6273 } else {
6274 /* Online Tests. */
6275 if (!orig_state) {
6276 DBG_PRINT(ERR_DBG,
6277 "%s: is not up, cannot run test\n",
6278 dev->name);
6279 data[0] = -1;
6280 data[1] = -1;
6281 data[2] = -1;
6282 data[3] = -1;
6283 data[4] = -1;
6284 }
6285
6286 if (s2io_link_test(sp, &data[2]))
6287 ethtest->flags |= ETH_TEST_FL_FAILED;
6288
6289 data[0] = 0;
6290 data[1] = 0;
6291 data[3] = 0;
6292 data[4] = 0;
6293 }
6294 }
6295
6296 static void s2io_get_ethtool_stats(struct net_device *dev,
6297 struct ethtool_stats *estats,
6298 u64 * tmp_stats)
6299 {
6300 int i = 0, k;
6301 struct s2io_nic *sp = netdev_priv(dev);
6302 struct stat_block *stat_info = sp->mac_control.stats_info;
6303
6304 s2io_updt_stats(sp);
6305 tmp_stats[i++] =
6306 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
6307 le32_to_cpu(stat_info->tmac_frms);
6308 tmp_stats[i++] =
6309 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6310 le32_to_cpu(stat_info->tmac_data_octets);
6311 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6312 tmp_stats[i++] =
6313 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6314 le32_to_cpu(stat_info->tmac_mcst_frms);
6315 tmp_stats[i++] =
6316 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6317 le32_to_cpu(stat_info->tmac_bcst_frms);
6318 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6319 tmp_stats[i++] =
6320 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6321 le32_to_cpu(stat_info->tmac_ttl_octets);
6322 tmp_stats[i++] =
6323 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6324 le32_to_cpu(stat_info->tmac_ucst_frms);
6325 tmp_stats[i++] =
6326 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6327 le32_to_cpu(stat_info->tmac_nucst_frms);
6328 tmp_stats[i++] =
6329 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6330 le32_to_cpu(stat_info->tmac_any_err_frms);
6331 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6332 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6333 tmp_stats[i++] =
6334 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6335 le32_to_cpu(stat_info->tmac_vld_ip);
6336 tmp_stats[i++] =
6337 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6338 le32_to_cpu(stat_info->tmac_drop_ip);
6339 tmp_stats[i++] =
6340 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6341 le32_to_cpu(stat_info->tmac_icmp);
6342 tmp_stats[i++] =
6343 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6344 le32_to_cpu(stat_info->tmac_rst_tcp);
6345 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6346 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6347 le32_to_cpu(stat_info->tmac_udp);
6348 tmp_stats[i++] =
6349 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6350 le32_to_cpu(stat_info->rmac_vld_frms);
6351 tmp_stats[i++] =
6352 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6353 le32_to_cpu(stat_info->rmac_data_octets);
6354 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6355 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6356 tmp_stats[i++] =
6357 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6358 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6359 tmp_stats[i++] =
6360 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6361 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6362 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6363 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6364 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6365 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6366 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6367 tmp_stats[i++] =
6368 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6369 le32_to_cpu(stat_info->rmac_ttl_octets);
6370 tmp_stats[i++] =
6371 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6372 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6373 tmp_stats[i++] =
6374 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6375 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6376 tmp_stats[i++] =
6377 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6378 le32_to_cpu(stat_info->rmac_discarded_frms);
6379 tmp_stats[i++] =
6380 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6381 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6382 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6383 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6384 tmp_stats[i++] =
6385 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6386 le32_to_cpu(stat_info->rmac_usized_frms);
6387 tmp_stats[i++] =
6388 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6389 le32_to_cpu(stat_info->rmac_osized_frms);
6390 tmp_stats[i++] =
6391 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6392 le32_to_cpu(stat_info->rmac_frag_frms);
6393 tmp_stats[i++] =
6394 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6395 le32_to_cpu(stat_info->rmac_jabber_frms);
6396 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6397 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6398 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6399 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6400 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6401 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6402 tmp_stats[i++] =
6403 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6404 le32_to_cpu(stat_info->rmac_ip);
6405 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6406 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6407 tmp_stats[i++] =
6408 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6409 le32_to_cpu(stat_info->rmac_drop_ip);
6410 tmp_stats[i++] =
6411 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6412 le32_to_cpu(stat_info->rmac_icmp);
6413 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6414 tmp_stats[i++] =
6415 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6416 le32_to_cpu(stat_info->rmac_udp);
6417 tmp_stats[i++] =
6418 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6419 le32_to_cpu(stat_info->rmac_err_drp_udp);
6420 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6421 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6422 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6423 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6424 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6425 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6426 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6427 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6428 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6429 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6430 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6431 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6432 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6433 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6434 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6435 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6436 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6437 tmp_stats[i++] =
6438 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6439 le32_to_cpu(stat_info->rmac_pause_cnt);
6440 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6441 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6442 tmp_stats[i++] =
6443 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6444 le32_to_cpu(stat_info->rmac_accepted_ip);
6445 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6446 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6447 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6448 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6449 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6450 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6451 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6452 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6453 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6454 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6455 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6456 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6457 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6458 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6459 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6460 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6461 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6462 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6463 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6464
6465 /* Enhanced statistics exist only for Hercules */
6466 if(sp->device_type == XFRAME_II_DEVICE) {
6467 tmp_stats[i++] =
6468 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6469 tmp_stats[i++] =
6470 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6471 tmp_stats[i++] =
6472 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6473 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6474 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6475 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6476 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6477 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6478 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6479 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6480 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6481 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6482 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6483 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6484 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6485 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6486 }
6487
6488 tmp_stats[i++] = 0;
6489 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6490 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6491 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6492 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6493 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6494 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6495 for (k = 0; k < MAX_RX_RINGS; k++)
6496 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6497 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6498 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6499 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6500 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6501 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6502 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6503 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6504 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6505 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6506 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6507 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6508 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6509 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6510 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6511 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6512 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6513 if (stat_info->sw_stat.num_aggregations) {
6514 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6515 int count = 0;
6516 /*
6517 * Since 64-bit divide does not work on all platforms,
6518 * do repeated subtraction.
6519 */
6520 while (tmp >= stat_info->sw_stat.num_aggregations) {
6521 tmp -= stat_info->sw_stat.num_aggregations;
6522 count++;
6523 }
6524 tmp_stats[i++] = count;
6525 }
6526 else
6527 tmp_stats[i++] = 0;
6528 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6529 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6530 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6531 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6532 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6533 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6534 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6535 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6536 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6537
6538 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6539 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6540 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6541 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6542 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6543
6544 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6545 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6546 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6547 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6548 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6549 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6550 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6551 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6552 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6553 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6554 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6555 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6556 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6557 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6558 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6559 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6560 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6561 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6562 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6563 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6564 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6565 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6566 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6567 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6568 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6569 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6570 }
6571
6572 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6573 {
6574 return (XENA_REG_SPACE);
6575 }
6576
6577
6578 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6579 {
6580 struct s2io_nic *sp = netdev_priv(dev);
6581
6582 return (sp->rx_csum);
6583 }
6584
6585 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6586 {
6587 struct s2io_nic *sp = netdev_priv(dev);
6588
6589 if (data)
6590 sp->rx_csum = 1;
6591 else
6592 sp->rx_csum = 0;
6593
6594 return 0;
6595 }
6596
6597 static int s2io_get_eeprom_len(struct net_device *dev)
6598 {
6599 return (XENA_EEPROM_SPACE);
6600 }
6601
6602 static int s2io_get_sset_count(struct net_device *dev, int sset)
6603 {
6604 struct s2io_nic *sp = netdev_priv(dev);
6605
6606 switch (sset) {
6607 case ETH_SS_TEST:
6608 return S2IO_TEST_LEN;
6609 case ETH_SS_STATS:
6610 switch(sp->device_type) {
6611 case XFRAME_I_DEVICE:
6612 return XFRAME_I_STAT_LEN;
6613 case XFRAME_II_DEVICE:
6614 return XFRAME_II_STAT_LEN;
6615 default:
6616 return 0;
6617 }
6618 default:
6619 return -EOPNOTSUPP;
6620 }
6621 }
6622
6623 static void s2io_ethtool_get_strings(struct net_device *dev,
6624 u32 stringset, u8 * data)
6625 {
6626 int stat_size = 0;
6627 struct s2io_nic *sp = netdev_priv(dev);
6628
6629 switch (stringset) {
6630 case ETH_SS_TEST:
6631 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6632 break;
6633 case ETH_SS_STATS:
6634 stat_size = sizeof(ethtool_xena_stats_keys);
6635 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6636 if(sp->device_type == XFRAME_II_DEVICE) {
6637 memcpy(data + stat_size,
6638 &ethtool_enhanced_stats_keys,
6639 sizeof(ethtool_enhanced_stats_keys));
6640 stat_size += sizeof(ethtool_enhanced_stats_keys);
6641 }
6642
6643 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6644 sizeof(ethtool_driver_stats_keys));
6645 }
6646 }
6647
6648 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6649 {
6650 if (data)
6651 dev->features |= NETIF_F_IP_CSUM;
6652 else
6653 dev->features &= ~NETIF_F_IP_CSUM;
6654
6655 return 0;
6656 }
6657
6658 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6659 {
6660 return (dev->features & NETIF_F_TSO) != 0;
6661 }
6662 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6663 {
6664 if (data)
6665 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6666 else
6667 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6668
6669 return 0;
6670 }
6671
6672 static const struct ethtool_ops netdev_ethtool_ops = {
6673 .get_settings = s2io_ethtool_gset,
6674 .set_settings = s2io_ethtool_sset,
6675 .get_drvinfo = s2io_ethtool_gdrvinfo,
6676 .get_regs_len = s2io_ethtool_get_regs_len,
6677 .get_regs = s2io_ethtool_gregs,
6678 .get_link = ethtool_op_get_link,
6679 .get_eeprom_len = s2io_get_eeprom_len,
6680 .get_eeprom = s2io_ethtool_geeprom,
6681 .set_eeprom = s2io_ethtool_seeprom,
6682 .get_ringparam = s2io_ethtool_gringparam,
6683 .get_pauseparam = s2io_ethtool_getpause_data,
6684 .set_pauseparam = s2io_ethtool_setpause_data,
6685 .get_rx_csum = s2io_ethtool_get_rx_csum,
6686 .set_rx_csum = s2io_ethtool_set_rx_csum,
6687 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6688 .set_sg = ethtool_op_set_sg,
6689 .get_tso = s2io_ethtool_op_get_tso,
6690 .set_tso = s2io_ethtool_op_set_tso,
6691 .set_ufo = ethtool_op_set_ufo,
6692 .self_test = s2io_ethtool_test,
6693 .get_strings = s2io_ethtool_get_strings,
6694 .phys_id = s2io_ethtool_idnic,
6695 .get_ethtool_stats = s2io_get_ethtool_stats,
6696 .get_sset_count = s2io_get_sset_count,
6697 };
6698
6699 /**
6700 * s2io_ioctl - Entry point for the Ioctl
6701 * @dev : Device pointer.
6702 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6703 * a proprietary structure used to pass information to the driver.
6704 * @cmd : This is used to distinguish between the different commands that
6705 * can be passed to the IOCTL functions.
6706 * Description:
6707 * Currently there are no special functionality supported in IOCTL, hence
6708 * function always return EOPNOTSUPPORTED
6709 */
6710
6711 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6712 {
6713 return -EOPNOTSUPP;
6714 }
6715
6716 /**
6717 * s2io_change_mtu - entry point to change MTU size for the device.
6718 * @dev : device pointer.
6719 * @new_mtu : the new MTU size for the device.
6720 * Description: A driver entry point to change MTU size for the device.
6721 * Before changing the MTU the device must be stopped.
6722 * Return value:
6723 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6724 * file on failure.
6725 */
6726
6727 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6728 {
6729 struct s2io_nic *sp = netdev_priv(dev);
6730 int ret = 0;
6731
6732 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6733 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6734 dev->name);
6735 return -EPERM;
6736 }
6737
6738 dev->mtu = new_mtu;
6739 if (netif_running(dev)) {
6740 s2io_stop_all_tx_queue(sp);
6741 s2io_card_down(sp);
6742 ret = s2io_card_up(sp);
6743 if (ret) {
6744 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6745 __func__);
6746 return ret;
6747 }
6748 s2io_wake_all_tx_queue(sp);
6749 } else { /* Device is down */
6750 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6751 u64 val64 = new_mtu;
6752
6753 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6754 }
6755
6756 return ret;
6757 }
6758
6759 /**
6760 * s2io_set_link - Set the LInk status
6761 * @data: long pointer to device private structue
6762 * Description: Sets the link status for the adapter
6763 */
6764
6765 static void s2io_set_link(struct work_struct *work)
6766 {
6767 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6768 struct net_device *dev = nic->dev;
6769 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6770 register u64 val64;
6771 u16 subid;
6772
6773 rtnl_lock();
6774
6775 if (!netif_running(dev))
6776 goto out_unlock;
6777
6778 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6779 /* The card is being reset, no point doing anything */
6780 goto out_unlock;
6781 }
6782
6783 subid = nic->pdev->subsystem_device;
6784 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6785 /*
6786 * Allow a small delay for the NICs self initiated
6787 * cleanup to complete.
6788 */
6789 msleep(100);
6790 }
6791
6792 val64 = readq(&bar0->adapter_status);
6793 if (LINK_IS_UP(val64)) {
6794 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6795 if (verify_xena_quiescence(nic)) {
6796 val64 = readq(&bar0->adapter_control);
6797 val64 |= ADAPTER_CNTL_EN;
6798 writeq(val64, &bar0->adapter_control);
6799 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6800 nic->device_type, subid)) {
6801 val64 = readq(&bar0->gpio_control);
6802 val64 |= GPIO_CTRL_GPIO_0;
6803 writeq(val64, &bar0->gpio_control);
6804 val64 = readq(&bar0->gpio_control);
6805 } else {
6806 val64 |= ADAPTER_LED_ON;
6807 writeq(val64, &bar0->adapter_control);
6808 }
6809 nic->device_enabled_once = TRUE;
6810 } else {
6811 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6812 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6813 s2io_stop_all_tx_queue(nic);
6814 }
6815 }
6816 val64 = readq(&bar0->adapter_control);
6817 val64 |= ADAPTER_LED_ON;
6818 writeq(val64, &bar0->adapter_control);
6819 s2io_link(nic, LINK_UP);
6820 } else {
6821 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6822 subid)) {
6823 val64 = readq(&bar0->gpio_control);
6824 val64 &= ~GPIO_CTRL_GPIO_0;
6825 writeq(val64, &bar0->gpio_control);
6826 val64 = readq(&bar0->gpio_control);
6827 }
6828 /* turn off LED */
6829 val64 = readq(&bar0->adapter_control);
6830 val64 = val64 &(~ADAPTER_LED_ON);
6831 writeq(val64, &bar0->adapter_control);
6832 s2io_link(nic, LINK_DOWN);
6833 }
6834 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6835
6836 out_unlock:
6837 rtnl_unlock();
6838 }
6839
6840 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6841 struct buffAdd *ba,
6842 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6843 u64 *temp2, int size)
6844 {
6845 struct net_device *dev = sp->dev;
6846 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6847
6848 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6849 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6850 /* allocate skb */
6851 if (*skb) {
6852 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6853 /*
6854 * As Rx frame are not going to be processed,
6855 * using same mapped address for the Rxd
6856 * buffer pointer
6857 */
6858 rxdp1->Buffer0_ptr = *temp0;
6859 } else {
6860 *skb = dev_alloc_skb(size);
6861 if (!(*skb)) {
6862 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6863 DBG_PRINT(INFO_DBG, "memory to allocate ");
6864 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6865 sp->mac_control.stats_info->sw_stat. \
6866 mem_alloc_fail_cnt++;
6867 return -ENOMEM ;
6868 }
6869 sp->mac_control.stats_info->sw_stat.mem_allocated
6870 += (*skb)->truesize;
6871 /* storing the mapped addr in a temp variable
6872 * such it will be used for next rxd whose
6873 * Host Control is NULL
6874 */
6875 rxdp1->Buffer0_ptr = *temp0 =
6876 pci_map_single( sp->pdev, (*skb)->data,
6877 size - NET_IP_ALIGN,
6878 PCI_DMA_FROMDEVICE);
6879 if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6880 goto memalloc_failed;
6881 rxdp->Host_Control = (unsigned long) (*skb);
6882 }
6883 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6884 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6885 /* Two buffer Mode */
6886 if (*skb) {
6887 rxdp3->Buffer2_ptr = *temp2;
6888 rxdp3->Buffer0_ptr = *temp0;
6889 rxdp3->Buffer1_ptr = *temp1;
6890 } else {
6891 *skb = dev_alloc_skb(size);
6892 if (!(*skb)) {
6893 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6894 DBG_PRINT(INFO_DBG, "memory to allocate ");
6895 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6896 sp->mac_control.stats_info->sw_stat. \
6897 mem_alloc_fail_cnt++;
6898 return -ENOMEM;
6899 }
6900 sp->mac_control.stats_info->sw_stat.mem_allocated
6901 += (*skb)->truesize;
6902 rxdp3->Buffer2_ptr = *temp2 =
6903 pci_map_single(sp->pdev, (*skb)->data,
6904 dev->mtu + 4,
6905 PCI_DMA_FROMDEVICE);
6906 if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6907 goto memalloc_failed;
6908 rxdp3->Buffer0_ptr = *temp0 =
6909 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6910 PCI_DMA_FROMDEVICE);
6911 if (pci_dma_mapping_error(sp->pdev,
6912 rxdp3->Buffer0_ptr)) {
6913 pci_unmap_single (sp->pdev,
6914 (dma_addr_t)rxdp3->Buffer2_ptr,
6915 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6916 goto memalloc_failed;
6917 }
6918 rxdp->Host_Control = (unsigned long) (*skb);
6919
6920 /* Buffer-1 will be dummy buffer not used */
6921 rxdp3->Buffer1_ptr = *temp1 =
6922 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6923 PCI_DMA_FROMDEVICE);
6924 if (pci_dma_mapping_error(sp->pdev,
6925 rxdp3->Buffer1_ptr)) {
6926 pci_unmap_single (sp->pdev,
6927 (dma_addr_t)rxdp3->Buffer0_ptr,
6928 BUF0_LEN, PCI_DMA_FROMDEVICE);
6929 pci_unmap_single (sp->pdev,
6930 (dma_addr_t)rxdp3->Buffer2_ptr,
6931 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6932 goto memalloc_failed;
6933 }
6934 }
6935 }
6936 return 0;
6937 memalloc_failed:
6938 stats->pci_map_fail_cnt++;
6939 stats->mem_freed += (*skb)->truesize;
6940 dev_kfree_skb(*skb);
6941 return -ENOMEM;
6942 }
6943
6944 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6945 int size)
6946 {
6947 struct net_device *dev = sp->dev;
6948 if (sp->rxd_mode == RXD_MODE_1) {
6949 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6950 } else if (sp->rxd_mode == RXD_MODE_3B) {
6951 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6952 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6953 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6954 }
6955 }
6956
6957 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6958 {
6959 int i, j, k, blk_cnt = 0, size;
6960 struct mac_info * mac_control = &sp->mac_control;
6961 struct config_param *config = &sp->config;
6962 struct net_device *dev = sp->dev;
6963 struct RxD_t *rxdp = NULL;
6964 struct sk_buff *skb = NULL;
6965 struct buffAdd *ba = NULL;
6966 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6967
6968 /* Calculate the size based on ring mode */
6969 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6970 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6971 if (sp->rxd_mode == RXD_MODE_1)
6972 size += NET_IP_ALIGN;
6973 else if (sp->rxd_mode == RXD_MODE_3B)
6974 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6975
6976 for (i = 0; i < config->rx_ring_num; i++) {
6977 blk_cnt = config->rx_cfg[i].num_rxd /
6978 (rxd_count[sp->rxd_mode] +1);
6979
6980 for (j = 0; j < blk_cnt; j++) {
6981 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6982 rxdp = mac_control->rings[i].
6983 rx_blocks[j].rxds[k].virt_addr;
6984 if(sp->rxd_mode == RXD_MODE_3B)
6985 ba = &mac_control->rings[i].ba[j][k];
6986 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6987 &skb,(u64 *)&temp0_64,
6988 (u64 *)&temp1_64,
6989 (u64 *)&temp2_64,
6990 size) == -ENOMEM) {
6991 return 0;
6992 }
6993
6994 set_rxd_buffer_size(sp, rxdp, size);
6995 wmb();
6996 /* flip the Ownership bit to Hardware */
6997 rxdp->Control_1 |= RXD_OWN_XENA;
6998 }
6999 }
7000 }
7001 return 0;
7002
7003 }
7004
7005 static int s2io_add_isr(struct s2io_nic * sp)
7006 {
7007 int ret = 0;
7008 struct net_device *dev = sp->dev;
7009 int err = 0;
7010
7011 if (sp->config.intr_type == MSI_X)
7012 ret = s2io_enable_msi_x(sp);
7013 if (ret) {
7014 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7015 sp->config.intr_type = INTA;
7016 }
7017
7018 /* Store the values of the MSIX table in the struct s2io_nic structure */
7019 store_xmsi_data(sp);
7020
7021 /* After proper initialization of H/W, register ISR */
7022 if (sp->config.intr_type == MSI_X) {
7023 int i, msix_rx_cnt = 0;
7024
7025 for (i = 0; i < sp->num_entries; i++) {
7026 if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7027 if (sp->s2io_entries[i].type ==
7028 MSIX_RING_TYPE) {
7029 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7030 dev->name, i);
7031 err = request_irq(sp->entries[i].vector,
7032 s2io_msix_ring_handle, 0,
7033 sp->desc[i],
7034 sp->s2io_entries[i].arg);
7035 } else if (sp->s2io_entries[i].type ==
7036 MSIX_ALARM_TYPE) {
7037 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7038 dev->name, i);
7039 err = request_irq(sp->entries[i].vector,
7040 s2io_msix_fifo_handle, 0,
7041 sp->desc[i],
7042 sp->s2io_entries[i].arg);
7043
7044 }
7045 /* if either data or addr is zero print it. */
7046 if (!(sp->msix_info[i].addr &&
7047 sp->msix_info[i].data)) {
7048 DBG_PRINT(ERR_DBG,
7049 "%s @Addr:0x%llx Data:0x%llx\n",
7050 sp->desc[i],
7051 (unsigned long long)
7052 sp->msix_info[i].addr,
7053 (unsigned long long)
7054 ntohl(sp->msix_info[i].data));
7055 } else
7056 msix_rx_cnt++;
7057 if (err) {
7058 remove_msix_isr(sp);
7059
7060 DBG_PRINT(ERR_DBG,
7061 "%s:MSI-X-%d registration "
7062 "failed\n", dev->name, i);
7063
7064 DBG_PRINT(ERR_DBG,
7065 "%s: Defaulting to INTA\n",
7066 dev->name);
7067 sp->config.intr_type = INTA;
7068 break;
7069 }
7070 sp->s2io_entries[i].in_use =
7071 MSIX_REGISTERED_SUCCESS;
7072 }
7073 }
7074 if (!err) {
7075 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7076 --msix_rx_cnt);
7077 DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7078 " through alarm vector\n");
7079 }
7080 }
7081 if (sp->config.intr_type == INTA) {
7082 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7083 sp->name, dev);
7084 if (err) {
7085 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7086 dev->name);
7087 return -1;
7088 }
7089 }
7090 return 0;
7091 }
7092 static void s2io_rem_isr(struct s2io_nic * sp)
7093 {
7094 if (sp->config.intr_type == MSI_X)
7095 remove_msix_isr(sp);
7096 else
7097 remove_inta_isr(sp);
7098 }
7099
7100 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7101 {
7102 int cnt = 0;
7103 struct XENA_dev_config __iomem *bar0 = sp->bar0;
7104 register u64 val64 = 0;
7105 struct config_param *config;
7106 config = &sp->config;
7107
7108 if (!is_s2io_card_up(sp))
7109 return;
7110
7111 del_timer_sync(&sp->alarm_timer);
7112 /* If s2io_set_link task is executing, wait till it completes. */
7113 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7114 msleep(50);
7115 }
7116 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7117
7118 /* Disable napi */
7119 if (sp->config.napi) {
7120 int off = 0;
7121 if (config->intr_type == MSI_X) {
7122 for (; off < sp->config.rx_ring_num; off++)
7123 napi_disable(&sp->mac_control.rings[off].napi);
7124 }
7125 else
7126 napi_disable(&sp->napi);
7127 }
7128
7129 /* disable Tx and Rx traffic on the NIC */
7130 if (do_io)
7131 stop_nic(sp);
7132
7133 s2io_rem_isr(sp);
7134
7135 /* stop the tx queue, indicate link down */
7136 s2io_link(sp, LINK_DOWN);
7137
7138 /* Check if the device is Quiescent and then Reset the NIC */
7139 while(do_io) {
7140 /* As per the HW requirement we need to replenish the
7141 * receive buffer to avoid the ring bump. Since there is
7142 * no intention of processing the Rx frame at this pointwe are
7143 * just settting the ownership bit of rxd in Each Rx
7144 * ring to HW and set the appropriate buffer size
7145 * based on the ring mode
7146 */
7147 rxd_owner_bit_reset(sp);
7148
7149 val64 = readq(&bar0->adapter_status);
7150 if (verify_xena_quiescence(sp)) {
7151 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7152 break;
7153 }
7154
7155 msleep(50);
7156 cnt++;
7157 if (cnt == 10) {
7158 DBG_PRINT(ERR_DBG,
7159 "s2io_close:Device not Quiescent ");
7160 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7161 (unsigned long long) val64);
7162 break;
7163 }
7164 }
7165 if (do_io)
7166 s2io_reset(sp);
7167
7168 /* Free all Tx buffers */
7169 free_tx_buffers(sp);
7170
7171 /* Free all Rx buffers */
7172 free_rx_buffers(sp);
7173
7174 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7175 }
7176
7177 static void s2io_card_down(struct s2io_nic * sp)
7178 {
7179 do_s2io_card_down(sp, 1);
7180 }
7181
7182 static int s2io_card_up(struct s2io_nic * sp)
7183 {
7184 int i, ret = 0;
7185 struct mac_info *mac_control;
7186 struct config_param *config;
7187 struct net_device *dev = (struct net_device *) sp->dev;
7188 u16 interruptible;
7189
7190 /* Initialize the H/W I/O registers */
7191 ret = init_nic(sp);
7192 if (ret != 0) {
7193 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7194 dev->name);
7195 if (ret != -EIO)
7196 s2io_reset(sp);
7197 return ret;
7198 }
7199
7200 /*
7201 * Initializing the Rx buffers. For now we are considering only 1
7202 * Rx ring and initializing buffers into 30 Rx blocks
7203 */
7204 mac_control = &sp->mac_control;
7205 config = &sp->config;
7206
7207 for (i = 0; i < config->rx_ring_num; i++) {
7208 mac_control->rings[i].mtu = dev->mtu;
7209 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7210 if (ret) {
7211 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7212 dev->name);
7213 s2io_reset(sp);
7214 free_rx_buffers(sp);
7215 return -ENOMEM;
7216 }
7217 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7218 mac_control->rings[i].rx_bufs_left);
7219 }
7220
7221 /* Initialise napi */
7222 if (config->napi) {
7223 if (config->intr_type == MSI_X) {
7224 for (i = 0; i < sp->config.rx_ring_num; i++)
7225 napi_enable(&sp->mac_control.rings[i].napi);
7226 } else {
7227 napi_enable(&sp->napi);
7228 }
7229 }
7230
7231 /* Maintain the state prior to the open */
7232 if (sp->promisc_flg)
7233 sp->promisc_flg = 0;
7234 if (sp->m_cast_flg) {
7235 sp->m_cast_flg = 0;
7236 sp->all_multi_pos= 0;
7237 }
7238
7239 /* Setting its receive mode */
7240 s2io_set_multicast(dev);
7241
7242 if (sp->lro) {
7243 /* Initialize max aggregatable pkts per session based on MTU */
7244 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7245 /* Check if we can use(if specified) user provided value */
7246 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7247 sp->lro_max_aggr_per_sess = lro_max_pkts;
7248 }
7249
7250 /* Enable Rx Traffic and interrupts on the NIC */
7251 if (start_nic(sp)) {
7252 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7253 s2io_reset(sp);
7254 free_rx_buffers(sp);
7255 return -ENODEV;
7256 }
7257
7258 /* Add interrupt service routine */
7259 if (s2io_add_isr(sp) != 0) {
7260 if (sp->config.intr_type == MSI_X)
7261 s2io_rem_isr(sp);
7262 s2io_reset(sp);
7263 free_rx_buffers(sp);
7264 return -ENODEV;
7265 }
7266
7267 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7268
7269 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7270
7271 /* Enable select interrupts */
7272 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7273 if (sp->config.intr_type != INTA) {
7274 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7275 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7276 } else {
7277 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7278 interruptible |= TX_PIC_INTR;
7279 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7280 }
7281
7282 return 0;
7283 }
7284
7285 /**
7286 * s2io_restart_nic - Resets the NIC.
7287 * @data : long pointer to the device private structure
7288 * Description:
7289 * This function is scheduled to be run by the s2io_tx_watchdog
7290 * function after 0.5 secs to reset the NIC. The idea is to reduce
7291 * the run time of the watch dog routine which is run holding a
7292 * spin lock.
7293 */
7294
7295 static void s2io_restart_nic(struct work_struct *work)
7296 {
7297 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7298 struct net_device *dev = sp->dev;
7299
7300 rtnl_lock();
7301
7302 if (!netif_running(dev))
7303 goto out_unlock;
7304
7305 s2io_card_down(sp);
7306 if (s2io_card_up(sp)) {
7307 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7308 dev->name);
7309 }
7310 s2io_wake_all_tx_queue(sp);
7311 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7312 dev->name);
7313 out_unlock:
7314 rtnl_unlock();
7315 }
7316
7317 /**
7318 * s2io_tx_watchdog - Watchdog for transmit side.
7319 * @dev : Pointer to net device structure
7320 * Description:
7321 * This function is triggered if the Tx Queue is stopped
7322 * for a pre-defined amount of time when the Interface is still up.
7323 * If the Interface is jammed in such a situation, the hardware is
7324 * reset (by s2io_close) and restarted again (by s2io_open) to
7325 * overcome any problem that might have been caused in the hardware.
7326 * Return value:
7327 * void
7328 */
7329
7330 static void s2io_tx_watchdog(struct net_device *dev)
7331 {
7332 struct s2io_nic *sp = netdev_priv(dev);
7333
7334 if (netif_carrier_ok(dev)) {
7335 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7336 schedule_work(&sp->rst_timer_task);
7337 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7338 }
7339 }
7340
7341 /**
7342 * rx_osm_handler - To perform some OS related operations on SKB.
7343 * @sp: private member of the device structure,pointer to s2io_nic structure.
7344 * @skb : the socket buffer pointer.
7345 * @len : length of the packet
7346 * @cksum : FCS checksum of the frame.
7347 * @ring_no : the ring from which this RxD was extracted.
7348 * Description:
7349 * This function is called by the Rx interrupt serivce routine to perform
7350 * some OS related operations on the SKB before passing it to the upper
7351 * layers. It mainly checks if the checksum is OK, if so adds it to the
7352 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7353 * to the upper layer. If the checksum is wrong, it increments the Rx
7354 * packet error count, frees the SKB and returns error.
7355 * Return value:
7356 * SUCCESS on success and -1 on failure.
7357 */
7358 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7359 {
7360 struct s2io_nic *sp = ring_data->nic;
7361 struct net_device *dev = (struct net_device *) ring_data->dev;
7362 struct sk_buff *skb = (struct sk_buff *)
7363 ((unsigned long) rxdp->Host_Control);
7364 int ring_no = ring_data->ring_no;
7365 u16 l3_csum, l4_csum;
7366 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7367 struct lro *uninitialized_var(lro);
7368 u8 err_mask;
7369
7370 skb->dev = dev;
7371
7372 if (err) {
7373 /* Check for parity error */
7374 if (err & 0x1) {
7375 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7376 }
7377 err_mask = err >> 48;
7378 switch(err_mask) {
7379 case 1:
7380 sp->mac_control.stats_info->sw_stat.
7381 rx_parity_err_cnt++;
7382 break;
7383
7384 case 2:
7385 sp->mac_control.stats_info->sw_stat.
7386 rx_abort_cnt++;
7387 break;
7388
7389 case 3:
7390 sp->mac_control.stats_info->sw_stat.
7391 rx_parity_abort_cnt++;
7392 break;
7393
7394 case 4:
7395 sp->mac_control.stats_info->sw_stat.
7396 rx_rda_fail_cnt++;
7397 break;
7398
7399 case 5:
7400 sp->mac_control.stats_info->sw_stat.
7401 rx_unkn_prot_cnt++;
7402 break;
7403
7404 case 6:
7405 sp->mac_control.stats_info->sw_stat.
7406 rx_fcs_err_cnt++;
7407 break;
7408
7409 case 7:
7410 sp->mac_control.stats_info->sw_stat.
7411 rx_buf_size_err_cnt++;
7412 break;
7413
7414 case 8:
7415 sp->mac_control.stats_info->sw_stat.
7416 rx_rxd_corrupt_cnt++;
7417 break;
7418
7419 case 15:
7420 sp->mac_control.stats_info->sw_stat.
7421 rx_unkn_err_cnt++;
7422 break;
7423 }
7424 /*
7425 * Drop the packet if bad transfer code. Exception being
7426 * 0x5, which could be due to unsupported IPv6 extension header.
7427 * In this case, we let stack handle the packet.
7428 * Note that in this case, since checksum will be incorrect,
7429 * stack will validate the same.
7430 */
7431 if (err_mask != 0x5) {
7432 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7433 dev->name, err_mask);
7434 dev->stats.rx_crc_errors++;
7435 sp->mac_control.stats_info->sw_stat.mem_freed
7436 += skb->truesize;
7437 dev_kfree_skb(skb);
7438 ring_data->rx_bufs_left -= 1;
7439 rxdp->Host_Control = 0;
7440 return 0;
7441 }
7442 }
7443
7444 /* Updating statistics */
7445 ring_data->rx_packets++;
7446 rxdp->Host_Control = 0;
7447 if (sp->rxd_mode == RXD_MODE_1) {
7448 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7449
7450 ring_data->rx_bytes += len;
7451 skb_put(skb, len);
7452
7453 } else if (sp->rxd_mode == RXD_MODE_3B) {
7454 int get_block = ring_data->rx_curr_get_info.block_index;
7455 int get_off = ring_data->rx_curr_get_info.offset;
7456 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7457 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7458 unsigned char *buff = skb_push(skb, buf0_len);
7459
7460 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7461 ring_data->rx_bytes += buf0_len + buf2_len;
7462 memcpy(buff, ba->ba_0, buf0_len);
7463 skb_put(skb, buf2_len);
7464 }
7465
7466 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7467 (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7468 (sp->rx_csum)) {
7469 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7470 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7471 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7472 /*
7473 * NIC verifies if the Checksum of the received
7474 * frame is Ok or not and accordingly returns
7475 * a flag in the RxD.
7476 */
7477 skb->ip_summed = CHECKSUM_UNNECESSARY;
7478 if (ring_data->lro) {
7479 u32 tcp_len;
7480 u8 *tcp;
7481 int ret = 0;
7482
7483 ret = s2io_club_tcp_session(ring_data,
7484 skb->data, &tcp, &tcp_len, &lro,
7485 rxdp, sp);
7486 switch (ret) {
7487 case 3: /* Begin anew */
7488 lro->parent = skb;
7489 goto aggregate;
7490 case 1: /* Aggregate */
7491 {
7492 lro_append_pkt(sp, lro,
7493 skb, tcp_len);
7494 goto aggregate;
7495 }
7496 case 4: /* Flush session */
7497 {
7498 lro_append_pkt(sp, lro,
7499 skb, tcp_len);
7500 queue_rx_frame(lro->parent,
7501 lro->vlan_tag);
7502 clear_lro_session(lro);
7503 sp->mac_control.stats_info->
7504 sw_stat.flush_max_pkts++;
7505 goto aggregate;
7506 }
7507 case 2: /* Flush both */
7508 lro->parent->data_len =
7509 lro->frags_len;
7510 sp->mac_control.stats_info->
7511 sw_stat.sending_both++;
7512 queue_rx_frame(lro->parent,
7513 lro->vlan_tag);
7514 clear_lro_session(lro);
7515 goto send_up;
7516 case 0: /* sessions exceeded */
7517 case -1: /* non-TCP or not
7518 * L2 aggregatable
7519 */
7520 case 5: /*
7521 * First pkt in session not
7522 * L3/L4 aggregatable
7523 */
7524 break;
7525 default:
7526 DBG_PRINT(ERR_DBG,
7527 "%s: Samadhana!!\n",
7528 __func__);
7529 BUG();
7530 }
7531 }
7532 } else {
7533 /*
7534 * Packet with erroneous checksum, let the
7535 * upper layers deal with it.
7536 */
7537 skb->ip_summed = CHECKSUM_NONE;
7538 }
7539 } else
7540 skb->ip_summed = CHECKSUM_NONE;
7541
7542 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7543 send_up:
7544 skb_record_rx_queue(skb, ring_no);
7545 queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7546 aggregate:
7547 sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7548 return SUCCESS;
7549 }
7550
7551 /**
7552 * s2io_link - stops/starts the Tx queue.
7553 * @sp : private member of the device structure, which is a pointer to the
7554 * s2io_nic structure.
7555 * @link : inidicates whether link is UP/DOWN.
7556 * Description:
7557 * This function stops/starts the Tx queue depending on whether the link
7558 * status of the NIC is is down or up. This is called by the Alarm
7559 * interrupt handler whenever a link change interrupt comes up.
7560 * Return value:
7561 * void.
7562 */
7563
7564 static void s2io_link(struct s2io_nic * sp, int link)
7565 {
7566 struct net_device *dev = (struct net_device *) sp->dev;
7567
7568 if (link != sp->last_link_state) {
7569 init_tti(sp, link);
7570 if (link == LINK_DOWN) {
7571 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7572 s2io_stop_all_tx_queue(sp);
7573 netif_carrier_off(dev);
7574 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7575 sp->mac_control.stats_info->sw_stat.link_up_time =
7576 jiffies - sp->start_time;
7577 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7578 } else {
7579 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7580 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7581 sp->mac_control.stats_info->sw_stat.link_down_time =
7582 jiffies - sp->start_time;
7583 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7584 netif_carrier_on(dev);
7585 s2io_wake_all_tx_queue(sp);
7586 }
7587 }
7588 sp->last_link_state = link;
7589 sp->start_time = jiffies;
7590 }
7591
7592 /**
7593 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7594 * @sp : private member of the device structure, which is a pointer to the
7595 * s2io_nic structure.
7596 * Description:
7597 * This function initializes a few of the PCI and PCI-X configuration registers
7598 * with recommended values.
7599 * Return value:
7600 * void
7601 */
7602
7603 static void s2io_init_pci(struct s2io_nic * sp)
7604 {
7605 u16 pci_cmd = 0, pcix_cmd = 0;
7606
7607 /* Enable Data Parity Error Recovery in PCI-X command register. */
7608 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7609 &(pcix_cmd));
7610 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7611 (pcix_cmd | 1));
7612 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7613 &(pcix_cmd));
7614
7615 /* Set the PErr Response bit in PCI command register. */
7616 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7617 pci_write_config_word(sp->pdev, PCI_COMMAND,
7618 (pci_cmd | PCI_COMMAND_PARITY));
7619 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7620 }
7621
7622 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7623 u8 *dev_multiq)
7624 {
7625 if ((tx_fifo_num > MAX_TX_FIFOS) ||
7626 (tx_fifo_num < 1)) {
7627 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7628 "(%d) not supported\n", tx_fifo_num);
7629
7630 if (tx_fifo_num < 1)
7631 tx_fifo_num = 1;
7632 else
7633 tx_fifo_num = MAX_TX_FIFOS;
7634
7635 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7636 DBG_PRINT(ERR_DBG, "tx fifos\n");
7637 }
7638
7639 if (multiq)
7640 *dev_multiq = multiq;
7641
7642 if (tx_steering_type && (1 == tx_fifo_num)) {
7643 if (tx_steering_type != TX_DEFAULT_STEERING)
7644 DBG_PRINT(ERR_DBG,
7645 "s2io: Tx steering is not supported with "
7646 "one fifo. Disabling Tx steering.\n");
7647 tx_steering_type = NO_STEERING;
7648 }
7649
7650 if ((tx_steering_type < NO_STEERING) ||
7651 (tx_steering_type > TX_DEFAULT_STEERING)) {
7652 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7653 "supported\n");
7654 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7655 tx_steering_type = NO_STEERING;
7656 }
7657
7658 if (rx_ring_num > MAX_RX_RINGS) {
7659 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7660 "supported\n");
7661 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7662 MAX_RX_RINGS);
7663 rx_ring_num = MAX_RX_RINGS;
7664 }
7665
7666 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7667 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7668 "Defaulting to INTA\n");
7669 *dev_intr_type = INTA;
7670 }
7671
7672 if ((*dev_intr_type == MSI_X) &&
7673 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7674 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7675 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7676 "Defaulting to INTA\n");
7677 *dev_intr_type = INTA;
7678 }
7679
7680 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7681 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7682 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7683 rx_ring_mode = 1;
7684 }
7685 return SUCCESS;
7686 }
7687
7688 /**
7689 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7690 * or Traffic class respectively.
7691 * @nic: device private variable
7692 * Description: The function configures the receive steering to
7693 * desired receive ring.
7694 * Return Value: SUCCESS on success and
7695 * '-1' on failure (endian settings incorrect).
7696 */
7697 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7698 {
7699 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7700 register u64 val64 = 0;
7701
7702 if (ds_codepoint > 63)
7703 return FAILURE;
7704
7705 val64 = RTS_DS_MEM_DATA(ring);
7706 writeq(val64, &bar0->rts_ds_mem_data);
7707
7708 val64 = RTS_DS_MEM_CTRL_WE |
7709 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7710 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7711
7712 writeq(val64, &bar0->rts_ds_mem_ctrl);
7713
7714 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7715 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7716 S2IO_BIT_RESET);
7717 }
7718
7719 static const struct net_device_ops s2io_netdev_ops = {
7720 .ndo_open = s2io_open,
7721 .ndo_stop = s2io_close,
7722 .ndo_get_stats = s2io_get_stats,
7723 .ndo_start_xmit = s2io_xmit,
7724 .ndo_validate_addr = eth_validate_addr,
7725 .ndo_set_multicast_list = s2io_set_multicast,
7726 .ndo_do_ioctl = s2io_ioctl,
7727 .ndo_set_mac_address = s2io_set_mac_addr,
7728 .ndo_change_mtu = s2io_change_mtu,
7729 .ndo_vlan_rx_register = s2io_vlan_rx_register,
7730 .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
7731 .ndo_tx_timeout = s2io_tx_watchdog,
7732 #ifdef CONFIG_NET_POLL_CONTROLLER
7733 .ndo_poll_controller = s2io_netpoll,
7734 #endif
7735 };
7736
7737 /**
7738 * s2io_init_nic - Initialization of the adapter .
7739 * @pdev : structure containing the PCI related information of the device.
7740 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7741 * Description:
7742 * The function initializes an adapter identified by the pci_dec structure.
7743 * All OS related initialization including memory and device structure and
7744 * initlaization of the device private variable is done. Also the swapper
7745 * control register is initialized to enable read and write into the I/O
7746 * registers of the device.
7747 * Return value:
7748 * returns 0 on success and negative on failure.
7749 */
7750
7751 static int __devinit
7752 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7753 {
7754 struct s2io_nic *sp;
7755 struct net_device *dev;
7756 int i, j, ret;
7757 int dma_flag = FALSE;
7758 u32 mac_up, mac_down;
7759 u64 val64 = 0, tmp64 = 0;
7760 struct XENA_dev_config __iomem *bar0 = NULL;
7761 u16 subid;
7762 struct mac_info *mac_control;
7763 struct config_param *config;
7764 int mode;
7765 u8 dev_intr_type = intr_type;
7766 u8 dev_multiq = 0;
7767
7768 ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7769 if (ret)
7770 return ret;
7771
7772 if ((ret = pci_enable_device(pdev))) {
7773 DBG_PRINT(ERR_DBG,
7774 "s2io_init_nic: pci_enable_device failed\n");
7775 return ret;
7776 }
7777
7778 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7779 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7780 dma_flag = TRUE;
7781 if (pci_set_consistent_dma_mask
7782 (pdev, DMA_64BIT_MASK)) {
7783 DBG_PRINT(ERR_DBG,
7784 "Unable to obtain 64bit DMA for \
7785 consistent allocations\n");
7786 pci_disable_device(pdev);
7787 return -ENOMEM;
7788 }
7789 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7790 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7791 } else {
7792 pci_disable_device(pdev);
7793 return -ENOMEM;
7794 }
7795 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7796 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7797 pci_disable_device(pdev);
7798 return -ENODEV;
7799 }
7800 if (dev_multiq)
7801 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7802 else
7803 dev = alloc_etherdev(sizeof(struct s2io_nic));
7804 if (dev == NULL) {
7805 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7806 pci_disable_device(pdev);
7807 pci_release_regions(pdev);
7808 return -ENODEV;
7809 }
7810
7811 pci_set_master(pdev);
7812 pci_set_drvdata(pdev, dev);
7813 SET_NETDEV_DEV(dev, &pdev->dev);
7814
7815 /* Private member variable initialized to s2io NIC structure */
7816 sp = netdev_priv(dev);
7817 memset(sp, 0, sizeof(struct s2io_nic));
7818 sp->dev = dev;
7819 sp->pdev = pdev;
7820 sp->high_dma_flag = dma_flag;
7821 sp->device_enabled_once = FALSE;
7822 if (rx_ring_mode == 1)
7823 sp->rxd_mode = RXD_MODE_1;
7824 if (rx_ring_mode == 2)
7825 sp->rxd_mode = RXD_MODE_3B;
7826
7827 sp->config.intr_type = dev_intr_type;
7828
7829 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7830 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7831 sp->device_type = XFRAME_II_DEVICE;
7832 else
7833 sp->device_type = XFRAME_I_DEVICE;
7834
7835 sp->lro = lro_enable;
7836
7837 /* Initialize some PCI/PCI-X fields of the NIC. */
7838 s2io_init_pci(sp);
7839
7840 /*
7841 * Setting the device configuration parameters.
7842 * Most of these parameters can be specified by the user during
7843 * module insertion as they are module loadable parameters. If
7844 * these parameters are not not specified during load time, they
7845 * are initialized with default values.
7846 */
7847 mac_control = &sp->mac_control;
7848 config = &sp->config;
7849
7850 config->napi = napi;
7851 config->tx_steering_type = tx_steering_type;
7852
7853 /* Tx side parameters. */
7854 if (config->tx_steering_type == TX_PRIORITY_STEERING)
7855 config->tx_fifo_num = MAX_TX_FIFOS;
7856 else
7857 config->tx_fifo_num = tx_fifo_num;
7858
7859 /* Initialize the fifos used for tx steering */
7860 if (config->tx_fifo_num < 5) {
7861 if (config->tx_fifo_num == 1)
7862 sp->total_tcp_fifos = 1;
7863 else
7864 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7865 sp->udp_fifo_idx = config->tx_fifo_num - 1;
7866 sp->total_udp_fifos = 1;
7867 sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7868 } else {
7869 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7870 FIFO_OTHER_MAX_NUM);
7871 sp->udp_fifo_idx = sp->total_tcp_fifos;
7872 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7873 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7874 }
7875
7876 config->multiq = dev_multiq;
7877 for (i = 0; i < config->tx_fifo_num; i++) {
7878 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7879 config->tx_cfg[i].fifo_priority = i;
7880 }
7881
7882 /* mapping the QoS priority to the configured fifos */
7883 for (i = 0; i < MAX_TX_FIFOS; i++)
7884 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7885
7886 /* map the hashing selector table to the configured fifos */
7887 for (i = 0; i < config->tx_fifo_num; i++)
7888 sp->fifo_selector[i] = fifo_selector[i];
7889
7890
7891 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7892 for (i = 0; i < config->tx_fifo_num; i++) {
7893 config->tx_cfg[i].f_no_snoop =
7894 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7895 if (config->tx_cfg[i].fifo_len < 65) {
7896 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7897 break;
7898 }
7899 }
7900 /* + 2 because one Txd for skb->data and one Txd for UFO */
7901 config->max_txds = MAX_SKB_FRAGS + 2;
7902
7903 /* Rx side parameters. */
7904 config->rx_ring_num = rx_ring_num;
7905 for (i = 0; i < config->rx_ring_num; i++) {
7906 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7907 (rxd_count[sp->rxd_mode] + 1);
7908 config->rx_cfg[i].ring_priority = i;
7909 mac_control->rings[i].rx_bufs_left = 0;
7910 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7911 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7912 mac_control->rings[i].pdev = sp->pdev;
7913 mac_control->rings[i].dev = sp->dev;
7914 }
7915
7916 for (i = 0; i < rx_ring_num; i++) {
7917 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7918 config->rx_cfg[i].f_no_snoop =
7919 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7920 }
7921
7922 /* Setting Mac Control parameters */
7923 mac_control->rmac_pause_time = rmac_pause_time;
7924 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7925 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7926
7927
7928 /* initialize the shared memory used by the NIC and the host */
7929 if (init_shared_mem(sp)) {
7930 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7931 dev->name);
7932 ret = -ENOMEM;
7933 goto mem_alloc_failed;
7934 }
7935
7936 sp->bar0 = pci_ioremap_bar(pdev, 0);
7937 if (!sp->bar0) {
7938 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7939 dev->name);
7940 ret = -ENOMEM;
7941 goto bar0_remap_failed;
7942 }
7943
7944 sp->bar1 = pci_ioremap_bar(pdev, 2);
7945 if (!sp->bar1) {
7946 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7947 dev->name);
7948 ret = -ENOMEM;
7949 goto bar1_remap_failed;
7950 }
7951
7952 dev->irq = pdev->irq;
7953 dev->base_addr = (unsigned long) sp->bar0;
7954
7955 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7956 for (j = 0; j < MAX_TX_FIFOS; j++) {
7957 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7958 (sp->bar1 + (j * 0x00020000));
7959 }
7960
7961 /* Driver entry points */
7962 dev->netdev_ops = &s2io_netdev_ops;
7963 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7964 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7965
7966 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7967 if (sp->high_dma_flag == TRUE)
7968 dev->features |= NETIF_F_HIGHDMA;
7969 dev->features |= NETIF_F_TSO;
7970 dev->features |= NETIF_F_TSO6;
7971 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7972 dev->features |= NETIF_F_UFO;
7973 dev->features |= NETIF_F_HW_CSUM;
7974 }
7975 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7976 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7977 INIT_WORK(&sp->set_link_task, s2io_set_link);
7978
7979 pci_save_state(sp->pdev);
7980
7981 /* Setting swapper control on the NIC, for proper reset operation */
7982 if (s2io_set_swapper(sp)) {
7983 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7984 dev->name);
7985 ret = -EAGAIN;
7986 goto set_swap_failed;
7987 }
7988
7989 /* Verify if the Herc works on the slot its placed into */
7990 if (sp->device_type & XFRAME_II_DEVICE) {
7991 mode = s2io_verify_pci_mode(sp);
7992 if (mode < 0) {
7993 DBG_PRINT(ERR_DBG, "%s: ", __func__);
7994 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7995 ret = -EBADSLT;
7996 goto set_swap_failed;
7997 }
7998 }
7999
8000 if (sp->config.intr_type == MSI_X) {
8001 sp->num_entries = config->rx_ring_num + 1;
8002 ret = s2io_enable_msi_x(sp);
8003
8004 if (!ret) {
8005 ret = s2io_test_msi(sp);
8006 /* rollback MSI-X, will re-enable during add_isr() */
8007 remove_msix_isr(sp);
8008 }
8009 if (ret) {
8010
8011 DBG_PRINT(ERR_DBG,
8012 "s2io: MSI-X requested but failed to enable\n");
8013 sp->config.intr_type = INTA;
8014 }
8015 }
8016
8017 if (config->intr_type == MSI_X) {
8018 for (i = 0; i < config->rx_ring_num ; i++)
8019 netif_napi_add(dev, &mac_control->rings[i].napi,
8020 s2io_poll_msix, 64);
8021 } else {
8022 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8023 }
8024
8025 /* Not needed for Herc */
8026 if (sp->device_type & XFRAME_I_DEVICE) {
8027 /*
8028 * Fix for all "FFs" MAC address problems observed on
8029 * Alpha platforms
8030 */
8031 fix_mac_address(sp);
8032 s2io_reset(sp);
8033 }
8034
8035 /*
8036 * MAC address initialization.
8037 * For now only one mac address will be read and used.
8038 */
8039 bar0 = sp->bar0;
8040 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8041 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8042 writeq(val64, &bar0->rmac_addr_cmd_mem);
8043 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8044 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8045 tmp64 = readq(&bar0->rmac_addr_data0_mem);
8046 mac_down = (u32) tmp64;
8047 mac_up = (u32) (tmp64 >> 32);
8048
8049 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8050 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8051 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8052 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8053 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8054 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8055
8056 /* Set the factory defined MAC address initially */
8057 dev->addr_len = ETH_ALEN;
8058 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8059 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8060
8061 /* initialize number of multicast & unicast MAC entries variables */
8062 if (sp->device_type == XFRAME_I_DEVICE) {
8063 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8064 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8065 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8066 } else if (sp->device_type == XFRAME_II_DEVICE) {
8067 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8068 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8069 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8070 }
8071
8072 /* store mac addresses from CAM to s2io_nic structure */
8073 do_s2io_store_unicast_mc(sp);
8074
8075 /* Configure MSIX vector for number of rings configured plus one */
8076 if ((sp->device_type == XFRAME_II_DEVICE) &&
8077 (config->intr_type == MSI_X))
8078 sp->num_entries = config->rx_ring_num + 1;
8079
8080 /* Store the values of the MSIX table in the s2io_nic structure */
8081 store_xmsi_data(sp);
8082 /* reset Nic and bring it to known state */
8083 s2io_reset(sp);
8084
8085 /*
8086 * Initialize link state flags
8087 * and the card state parameter
8088 */
8089 sp->state = 0;
8090
8091 /* Initialize spinlocks */
8092 for (i = 0; i < sp->config.tx_fifo_num; i++)
8093 spin_lock_init(&mac_control->fifos[i].tx_lock);
8094
8095 /*
8096 * SXE-002: Configure link and activity LED to init state
8097 * on driver load.
8098 */
8099 subid = sp->pdev->subsystem_device;
8100 if ((subid & 0xFF) >= 0x07) {
8101 val64 = readq(&bar0->gpio_control);
8102 val64 |= 0x0000800000000000ULL;
8103 writeq(val64, &bar0->gpio_control);
8104 val64 = 0x0411040400000000ULL;
8105 writeq(val64, (void __iomem *) bar0 + 0x2700);
8106 val64 = readq(&bar0->gpio_control);
8107 }
8108
8109 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
8110
8111 if (register_netdev(dev)) {
8112 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8113 ret = -ENODEV;
8114 goto register_failed;
8115 }
8116 s2io_vpd_read(sp);
8117 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8118 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8119 sp->product_name, pdev->revision);
8120 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8121 s2io_driver_version);
8122 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8123 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8124 if (sp->device_type & XFRAME_II_DEVICE) {
8125 mode = s2io_print_pci_mode(sp);
8126 if (mode < 0) {
8127 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8128 ret = -EBADSLT;
8129 unregister_netdev(dev);
8130 goto set_swap_failed;
8131 }
8132 }
8133 switch(sp->rxd_mode) {
8134 case RXD_MODE_1:
8135 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8136 dev->name);
8137 break;
8138 case RXD_MODE_3B:
8139 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8140 dev->name);
8141 break;
8142 }
8143
8144 switch (sp->config.napi) {
8145 case 0:
8146 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8147 break;
8148 case 1:
8149 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8150 break;
8151 }
8152
8153 DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8154 sp->config.tx_fifo_num);
8155
8156 DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8157 sp->config.rx_ring_num);
8158
8159 switch(sp->config.intr_type) {
8160 case INTA:
8161 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8162 break;
8163 case MSI_X:
8164 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8165 break;
8166 }
8167 if (sp->config.multiq) {
8168 for (i = 0; i < sp->config.tx_fifo_num; i++)
8169 mac_control->fifos[i].multiq = config->multiq;
8170 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8171 dev->name);
8172 } else
8173 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8174 dev->name);
8175
8176 switch (sp->config.tx_steering_type) {
8177 case NO_STEERING:
8178 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8179 " transmit\n", dev->name);
8180 break;
8181 case TX_PRIORITY_STEERING:
8182 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8183 " transmit\n", dev->name);
8184 break;
8185 case TX_DEFAULT_STEERING:
8186 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8187 " transmit\n", dev->name);
8188 }
8189
8190 if (sp->lro)
8191 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8192 dev->name);
8193 if (ufo)
8194 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8195 " enabled\n", dev->name);
8196 /* Initialize device name */
8197 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8198
8199 if (vlan_tag_strip)
8200 sp->vlan_strip_flag = 1;
8201 else
8202 sp->vlan_strip_flag = 0;
8203
8204 /*
8205 * Make Link state as off at this point, when the Link change
8206 * interrupt comes the state will be automatically changed to
8207 * the right state.
8208 */
8209 netif_carrier_off(dev);
8210
8211 return 0;
8212
8213 register_failed:
8214 set_swap_failed:
8215 iounmap(sp->bar1);
8216 bar1_remap_failed:
8217 iounmap(sp->bar0);
8218 bar0_remap_failed:
8219 mem_alloc_failed:
8220 free_shared_mem(sp);
8221 pci_disable_device(pdev);
8222 pci_release_regions(pdev);
8223 pci_set_drvdata(pdev, NULL);
8224 free_netdev(dev);
8225
8226 return ret;
8227 }
8228
8229 /**
8230 * s2io_rem_nic - Free the PCI device
8231 * @pdev: structure containing the PCI related information of the device.
8232 * Description: This function is called by the Pci subsystem to release a
8233 * PCI device and free up all resource held up by the device. This could
8234 * be in response to a Hot plug event or when the driver is to be removed
8235 * from memory.
8236 */
8237
8238 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8239 {
8240 struct net_device *dev =
8241 (struct net_device *) pci_get_drvdata(pdev);
8242 struct s2io_nic *sp;
8243
8244 if (dev == NULL) {
8245 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8246 return;
8247 }
8248
8249 flush_scheduled_work();
8250
8251 sp = netdev_priv(dev);
8252 unregister_netdev(dev);
8253
8254 free_shared_mem(sp);
8255 iounmap(sp->bar0);
8256 iounmap(sp->bar1);
8257 pci_release_regions(pdev);
8258 pci_set_drvdata(pdev, NULL);
8259 free_netdev(dev);
8260 pci_disable_device(pdev);
8261 }
8262
8263 /**
8264 * s2io_starter - Entry point for the driver
8265 * Description: This function is the entry point for the driver. It verifies
8266 * the module loadable parameters and initializes PCI configuration space.
8267 */
8268
8269 static int __init s2io_starter(void)
8270 {
8271 return pci_register_driver(&s2io_driver);
8272 }
8273
8274 /**
8275 * s2io_closer - Cleanup routine for the driver
8276 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8277 */
8278
8279 static __exit void s2io_closer(void)
8280 {
8281 pci_unregister_driver(&s2io_driver);
8282 DBG_PRINT(INIT_DBG, "cleanup done\n");
8283 }
8284
8285 module_init(s2io_starter);
8286 module_exit(s2io_closer);
8287
8288 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8289 struct tcphdr **tcp, struct RxD_t *rxdp,
8290 struct s2io_nic *sp)
8291 {
8292 int ip_off;
8293 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8294
8295 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8296 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8297 __func__);
8298 return -1;
8299 }
8300
8301 /* Checking for DIX type or DIX type with VLAN */
8302 if ((l2_type == 0)
8303 || (l2_type == 4)) {
8304 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8305 /*
8306 * If vlan stripping is disabled and the frame is VLAN tagged,
8307 * shift the offset by the VLAN header size bytes.
8308 */
8309 if ((!sp->vlan_strip_flag) &&
8310 (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8311 ip_off += HEADER_VLAN_SIZE;
8312 } else {
8313 /* LLC, SNAP etc are considered non-mergeable */
8314 return -1;
8315 }
8316
8317 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8318 ip_len = (u8)((*ip)->ihl);
8319 ip_len <<= 2;
8320 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8321
8322 return 0;
8323 }
8324
8325 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8326 struct tcphdr *tcp)
8327 {
8328 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8329 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8330 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8331 return -1;
8332 return 0;
8333 }
8334
8335 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8336 {
8337 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8338 }
8339
8340 static void initiate_new_session(struct lro *lro, u8 *l2h,
8341 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8342 {
8343 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8344 lro->l2h = l2h;
8345 lro->iph = ip;
8346 lro->tcph = tcp;
8347 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8348 lro->tcp_ack = tcp->ack_seq;
8349 lro->sg_num = 1;
8350 lro->total_len = ntohs(ip->tot_len);
8351 lro->frags_len = 0;
8352 lro->vlan_tag = vlan_tag;
8353 /*
8354 * check if we saw TCP timestamp. Other consistency checks have
8355 * already been done.
8356 */
8357 if (tcp->doff == 8) {
8358 __be32 *ptr;
8359 ptr = (__be32 *)(tcp+1);
8360 lro->saw_ts = 1;
8361 lro->cur_tsval = ntohl(*(ptr+1));
8362 lro->cur_tsecr = *(ptr+2);
8363 }
8364 lro->in_use = 1;
8365 }
8366
8367 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8368 {
8369 struct iphdr *ip = lro->iph;
8370 struct tcphdr *tcp = lro->tcph;
8371 __sum16 nchk;
8372 struct stat_block *statinfo = sp->mac_control.stats_info;
8373 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8374
8375 /* Update L3 header */
8376 ip->tot_len = htons(lro->total_len);
8377 ip->check = 0;
8378 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8379 ip->check = nchk;
8380
8381 /* Update L4 header */
8382 tcp->ack_seq = lro->tcp_ack;
8383 tcp->window = lro->window;
8384
8385 /* Update tsecr field if this session has timestamps enabled */
8386 if (lro->saw_ts) {
8387 __be32 *ptr = (__be32 *)(tcp + 1);
8388 *(ptr+2) = lro->cur_tsecr;
8389 }
8390
8391 /* Update counters required for calculation of
8392 * average no. of packets aggregated.
8393 */
8394 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8395 statinfo->sw_stat.num_aggregations++;
8396 }
8397
8398 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8399 struct tcphdr *tcp, u32 l4_pyld)
8400 {
8401 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8402 lro->total_len += l4_pyld;
8403 lro->frags_len += l4_pyld;
8404 lro->tcp_next_seq += l4_pyld;
8405 lro->sg_num++;
8406
8407 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8408 lro->tcp_ack = tcp->ack_seq;
8409 lro->window = tcp->window;
8410
8411 if (lro->saw_ts) {
8412 __be32 *ptr;
8413 /* Update tsecr and tsval from this packet */
8414 ptr = (__be32 *)(tcp+1);
8415 lro->cur_tsval = ntohl(*(ptr+1));
8416 lro->cur_tsecr = *(ptr + 2);
8417 }
8418 }
8419
8420 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8421 struct tcphdr *tcp, u32 tcp_pyld_len)
8422 {
8423 u8 *ptr;
8424
8425 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8426
8427 if (!tcp_pyld_len) {
8428 /* Runt frame or a pure ack */
8429 return -1;
8430 }
8431
8432 if (ip->ihl != 5) /* IP has options */
8433 return -1;
8434
8435 /* If we see CE codepoint in IP header, packet is not mergeable */
8436 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8437 return -1;
8438
8439 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8440 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8441 tcp->ece || tcp->cwr || !tcp->ack) {
8442 /*
8443 * Currently recognize only the ack control word and
8444 * any other control field being set would result in
8445 * flushing the LRO session
8446 */
8447 return -1;
8448 }
8449
8450 /*
8451 * Allow only one TCP timestamp option. Don't aggregate if
8452 * any other options are detected.
8453 */
8454 if (tcp->doff != 5 && tcp->doff != 8)
8455 return -1;
8456
8457 if (tcp->doff == 8) {
8458 ptr = (u8 *)(tcp + 1);
8459 while (*ptr == TCPOPT_NOP)
8460 ptr++;
8461 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8462 return -1;
8463
8464 /* Ensure timestamp value increases monotonically */
8465 if (l_lro)
8466 if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8467 return -1;
8468
8469 /* timestamp echo reply should be non-zero */
8470 if (*((__be32 *)(ptr+6)) == 0)
8471 return -1;
8472 }
8473
8474 return 0;
8475 }
8476
8477 static int
8478 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8479 u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8480 struct s2io_nic *sp)
8481 {
8482 struct iphdr *ip;
8483 struct tcphdr *tcph;
8484 int ret = 0, i;
8485 u16 vlan_tag = 0;
8486
8487 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8488 rxdp, sp))) {
8489 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8490 ip->saddr, ip->daddr);
8491 } else
8492 return ret;
8493
8494 vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8495 tcph = (struct tcphdr *)*tcp;
8496 *tcp_len = get_l4_pyld_length(ip, tcph);
8497 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8498 struct lro *l_lro = &ring_data->lro0_n[i];
8499 if (l_lro->in_use) {
8500 if (check_for_socket_match(l_lro, ip, tcph))
8501 continue;
8502 /* Sock pair matched */
8503 *lro = l_lro;
8504
8505 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8506 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8507 "0x%x, actual 0x%x\n", __func__,
8508 (*lro)->tcp_next_seq,
8509 ntohl(tcph->seq));
8510
8511 sp->mac_control.stats_info->
8512 sw_stat.outof_sequence_pkts++;
8513 ret = 2;
8514 break;
8515 }
8516
8517 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8518 ret = 1; /* Aggregate */
8519 else
8520 ret = 2; /* Flush both */
8521 break;
8522 }
8523 }
8524
8525 if (ret == 0) {
8526 /* Before searching for available LRO objects,
8527 * check if the pkt is L3/L4 aggregatable. If not
8528 * don't create new LRO session. Just send this
8529 * packet up.
8530 */
8531 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8532 return 5;
8533 }
8534
8535 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8536 struct lro *l_lro = &ring_data->lro0_n[i];
8537 if (!(l_lro->in_use)) {
8538 *lro = l_lro;
8539 ret = 3; /* Begin anew */
8540 break;
8541 }
8542 }
8543 }
8544
8545 if (ret == 0) { /* sessions exceeded */
8546 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8547 __func__);
8548 *lro = NULL;
8549 return ret;
8550 }
8551
8552 switch (ret) {
8553 case 3:
8554 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8555 vlan_tag);
8556 break;
8557 case 2:
8558 update_L3L4_header(sp, *lro);
8559 break;
8560 case 1:
8561 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8562 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8563 update_L3L4_header(sp, *lro);
8564 ret = 4; /* Flush the LRO */
8565 }
8566 break;
8567 default:
8568 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8569 __func__);
8570 break;
8571 }
8572
8573 return ret;
8574 }
8575
8576 static void clear_lro_session(struct lro *lro)
8577 {
8578 static u16 lro_struct_size = sizeof(struct lro);
8579
8580 memset(lro, 0, lro_struct_size);
8581 }
8582
8583 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8584 {
8585 struct net_device *dev = skb->dev;
8586 struct s2io_nic *sp = netdev_priv(dev);
8587
8588 skb->protocol = eth_type_trans(skb, dev);
8589 if (sp->vlgrp && vlan_tag
8590 && (sp->vlan_strip_flag)) {
8591 /* Queueing the vlan frame to the upper layer */
8592 if (sp->config.napi)
8593 vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8594 else
8595 vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8596 } else {
8597 if (sp->config.napi)
8598 netif_receive_skb(skb);
8599 else
8600 netif_rx(skb);
8601 }
8602 }
8603
8604 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8605 struct sk_buff *skb,
8606 u32 tcp_len)
8607 {
8608 struct sk_buff *first = lro->parent;
8609
8610 first->len += tcp_len;
8611 first->data_len = lro->frags_len;
8612 skb_pull(skb, (skb->len - tcp_len));
8613 if (skb_shinfo(first)->frag_list)
8614 lro->last_frag->next = skb;
8615 else
8616 skb_shinfo(first)->frag_list = skb;
8617 first->truesize += skb->truesize;
8618 lro->last_frag = skb;
8619 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8620 return;
8621 }
8622
8623 /**
8624 * s2io_io_error_detected - called when PCI error is detected
8625 * @pdev: Pointer to PCI device
8626 * @state: The current pci connection state
8627 *
8628 * This function is called after a PCI bus error affecting
8629 * this device has been detected.
8630 */
8631 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8632 pci_channel_state_t state)
8633 {
8634 struct net_device *netdev = pci_get_drvdata(pdev);
8635 struct s2io_nic *sp = netdev_priv(netdev);
8636
8637 netif_device_detach(netdev);
8638
8639 if (netif_running(netdev)) {
8640 /* Bring down the card, while avoiding PCI I/O */
8641 do_s2io_card_down(sp, 0);
8642 }
8643 pci_disable_device(pdev);
8644
8645 return PCI_ERS_RESULT_NEED_RESET;
8646 }
8647
8648 /**
8649 * s2io_io_slot_reset - called after the pci bus has been reset.
8650 * @pdev: Pointer to PCI device
8651 *
8652 * Restart the card from scratch, as if from a cold-boot.
8653 * At this point, the card has exprienced a hard reset,
8654 * followed by fixups by BIOS, and has its config space
8655 * set up identically to what it was at cold boot.
8656 */
8657 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8658 {
8659 struct net_device *netdev = pci_get_drvdata(pdev);
8660 struct s2io_nic *sp = netdev_priv(netdev);
8661
8662 if (pci_enable_device(pdev)) {
8663 printk(KERN_ERR "s2io: "
8664 "Cannot re-enable PCI device after reset.\n");
8665 return PCI_ERS_RESULT_DISCONNECT;
8666 }
8667
8668 pci_set_master(pdev);
8669 s2io_reset(sp);
8670
8671 return PCI_ERS_RESULT_RECOVERED;
8672 }
8673
8674 /**
8675 * s2io_io_resume - called when traffic can start flowing again.
8676 * @pdev: Pointer to PCI device
8677 *
8678 * This callback is called when the error recovery driver tells
8679 * us that its OK to resume normal operation.
8680 */
8681 static void s2io_io_resume(struct pci_dev *pdev)
8682 {
8683 struct net_device *netdev = pci_get_drvdata(pdev);
8684 struct s2io_nic *sp = netdev_priv(netdev);
8685
8686 if (netif_running(netdev)) {
8687 if (s2io_card_up(sp)) {
8688 printk(KERN_ERR "s2io: "
8689 "Can't bring device back up after reset.\n");
8690 return;
8691 }
8692
8693 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8694 s2io_card_down(sp);
8695 printk(KERN_ERR "s2io: "
8696 "Can't resetore mac addr after reset.\n");
8697 return;
8698 }
8699 }
8700
8701 netif_device_attach(netdev);
8702 netif_tx_wake_all_queues(netdev);
8703 }
This page took 0.242372 seconds and 6 git commands to generate.