Merge branch 'drm-next' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[deliverable/linux.git] / drivers / net / via-rhine.c
1 /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */
2 /*
3 Written 1998-2001 by Donald Becker.
4
5 Current Maintainer: Roger Luethi <rl@hellgate.ch>
6
7 This software may be used and distributed according to the terms of
8 the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on or derived from this code fall under the GPL and must
10 retain the authorship, copyright and license notice. This file is not
11 a complete program and may only be used when the entire operating
12 system is licensed under the GPL.
13
14 This driver is designed for the VIA VT86C100A Rhine-I.
15 It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM
16 and management NIC 6105M).
17
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
22
23
24 This driver contains some changes from the original Donald Becker
25 version. He may or may not be interested in bug reports on this
26 code. You can find his versions at:
27 http://www.scyld.com/network/via-rhine.html
28 [link no longer provides useful info -jgarzik]
29
30 */
31
32 #define DRV_NAME "via-rhine"
33 #define DRV_VERSION "1.4.3"
34 #define DRV_RELDATE "2007-03-06"
35
36
37 /* A few user-configurable values.
38 These may be modified when a driver module is loaded. */
39
40 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
41 static int max_interrupt_work = 20;
42
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44 Setting to > 1518 effectively disables this feature. */
45 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) \
46 || defined(CONFIG_SPARC) || defined(__ia64__) \
47 || defined(__sh__) || defined(__mips__)
48 static int rx_copybreak = 1518;
49 #else
50 static int rx_copybreak;
51 #endif
52
53 /* Work-around for broken BIOSes: they are unable to get the chip back out of
54 power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */
55 static int avoid_D3;
56
57 /*
58 * In case you are looking for 'options[]' or 'full_duplex[]', they
59 * are gone. Use ethtool(8) instead.
60 */
61
62 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
63 The Rhine has a 64 element 8390-like hash table. */
64 static const int multicast_filter_limit = 32;
65
66
67 /* Operational parameters that are set at compile time. */
68
69 /* Keep the ring sizes a power of two for compile efficiency.
70 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
71 Making the Tx ring too large decreases the effectiveness of channel
72 bonding and packet priority.
73 There are no ill effects from too-large receive rings. */
74 #define TX_RING_SIZE 16
75 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */
76 #define RX_RING_SIZE 64
77
78 /* Operational parameters that usually are not changed. */
79
80 /* Time in jiffies before concluding the transmitter is hung. */
81 #define TX_TIMEOUT (2*HZ)
82
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
84
85 #include <linux/module.h>
86 #include <linux/moduleparam.h>
87 #include <linux/kernel.h>
88 #include <linux/string.h>
89 #include <linux/timer.h>
90 #include <linux/errno.h>
91 #include <linux/ioport.h>
92 #include <linux/slab.h>
93 #include <linux/interrupt.h>
94 #include <linux/pci.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/netdevice.h>
97 #include <linux/etherdevice.h>
98 #include <linux/skbuff.h>
99 #include <linux/init.h>
100 #include <linux/delay.h>
101 #include <linux/mii.h>
102 #include <linux/ethtool.h>
103 #include <linux/crc32.h>
104 #include <linux/bitops.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/io.h>
107 #include <asm/irq.h>
108 #include <asm/uaccess.h>
109 #include <linux/dmi.h>
110
111 /* These identify the driver base version and may not be removed. */
112 static char version[] __devinitdata =
113 KERN_INFO DRV_NAME ".c:v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker\n";
114
115 /* This driver was written to use PCI memory space. Some early versions
116 of the Rhine may only work correctly with I/O space accesses. */
117 #ifdef CONFIG_VIA_RHINE_MMIO
118 #define USE_MMIO
119 #else
120 #endif
121
122 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
123 MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver");
124 MODULE_LICENSE("GPL");
125
126 module_param(max_interrupt_work, int, 0);
127 module_param(debug, int, 0);
128 module_param(rx_copybreak, int, 0);
129 module_param(avoid_D3, bool, 0);
130 MODULE_PARM_DESC(max_interrupt_work, "VIA Rhine maximum events handled per interrupt");
131 MODULE_PARM_DESC(debug, "VIA Rhine debug level (0-7)");
132 MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames");
133 MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)");
134
135 /*
136 Theory of Operation
137
138 I. Board Compatibility
139
140 This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet
141 controller.
142
143 II. Board-specific settings
144
145 Boards with this chip are functional only in a bus-master PCI slot.
146
147 Many operational settings are loaded from the EEPROM to the Config word at
148 offset 0x78. For most of these settings, this driver assumes that they are
149 correct.
150 If this driver is compiled to use PCI memory space operations the EEPROM
151 must be configured to enable memory ops.
152
153 III. Driver operation
154
155 IIIa. Ring buffers
156
157 This driver uses two statically allocated fixed-size descriptor lists
158 formed into rings by a branch from the final descriptor to the beginning of
159 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160
161 IIIb/c. Transmit/Receive Structure
162
163 This driver attempts to use a zero-copy receive and transmit scheme.
164
165 Alas, all data buffers are required to start on a 32 bit boundary, so
166 the driver must often copy transmit packets into bounce buffers.
167
168 The driver allocates full frame size skbuffs for the Rx ring buffers at
169 open() time and passes the skb->data field to the chip as receive data
170 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
171 a fresh skbuff is allocated and the frame is copied to the new skbuff.
172 When the incoming frame is larger, the skbuff is passed directly up the
173 protocol stack. Buffers consumed this way are replaced by newly allocated
174 skbuffs in the last phase of rhine_rx().
175
176 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
177 using a full-sized skbuff for small frames vs. the copying costs of larger
178 frames. New boards are typically used in generously configured machines
179 and the underfilled buffers have negligible impact compared to the benefit of
180 a single allocation size, so the default value of zero results in never
181 copying packets. When copying is done, the cost is usually mitigated by using
182 a combined copy/checksum routine. Copying also preloads the cache, which is
183 most useful with small frames.
184
185 Since the VIA chips are only able to transfer data to buffers on 32 bit
186 boundaries, the IP header at offset 14 in an ethernet frame isn't
187 longword aligned for further processing. Copying these unaligned buffers
188 has the beneficial effect of 16-byte aligning the IP header.
189
190 IIId. Synchronization
191
192 The driver runs as two independent, single-threaded flows of control. One
193 is the send-packet routine, which enforces single-threaded use by the
194 netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler,
195 which is single threaded by the hardware and interrupt handling software.
196
197 The send packet thread has partial control over the Tx ring. It locks the
198 netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in
199 the ring is not available it stops the transmit queue by
200 calling netif_stop_queue.
201
202 The interrupt handler has exclusive control over the Rx ring and records stats
203 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
204 empty by incrementing the dirty_tx mark. If at least half of the entries in
205 the Rx ring are available the transmit queue is woken up if it was stopped.
206
207 IV. Notes
208
209 IVb. References
210
211 Preliminary VT86C100A manual from http://www.via.com.tw/
212 http://www.scyld.com/expert/100mbps.html
213 http://www.scyld.com/expert/NWay.html
214 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf
215 ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF
216
217
218 IVc. Errata
219
220 The VT86C100A manual is not reliable information.
221 The 3043 chip does not handle unaligned transmit or receive buffers, resulting
222 in significant performance degradation for bounce buffer copies on transmit
223 and unaligned IP headers on receive.
224 The chip does not pad to minimum transmit length.
225
226 */
227
228
229 /* This table drives the PCI probe routines. It's mostly boilerplate in all
230 of the drivers, and will likely be provided by some future kernel.
231 Note the matching code -- the first table entry matchs all 56** cards but
232 second only the 1234 card.
233 */
234
235 enum rhine_revs {
236 VT86C100A = 0x00,
237 VTunknown0 = 0x20,
238 VT6102 = 0x40,
239 VT8231 = 0x50, /* Integrated MAC */
240 VT8233 = 0x60, /* Integrated MAC */
241 VT8235 = 0x74, /* Integrated MAC */
242 VT8237 = 0x78, /* Integrated MAC */
243 VTunknown1 = 0x7C,
244 VT6105 = 0x80,
245 VT6105_B0 = 0x83,
246 VT6105L = 0x8A,
247 VT6107 = 0x8C,
248 VTunknown2 = 0x8E,
249 VT6105M = 0x90, /* Management adapter */
250 };
251
252 enum rhine_quirks {
253 rqWOL = 0x0001, /* Wake-On-LAN support */
254 rqForceReset = 0x0002,
255 rq6patterns = 0x0040, /* 6 instead of 4 patterns for WOL */
256 rqStatusWBRace = 0x0080, /* Tx Status Writeback Error possible */
257 rqRhineI = 0x0100, /* See comment below */
258 };
259 /*
260 * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable
261 * MMIO as well as for the collision counter and the Tx FIFO underflow
262 * indicator. In addition, Tx and Rx buffers need to 4 byte aligned.
263 */
264
265 /* Beware of PCI posted writes */
266 #define IOSYNC do { ioread8(ioaddr + StationAddr); } while (0)
267
268 static const struct pci_device_id rhine_pci_tbl[] = {
269 { 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, }, /* VT86C100A */
270 { 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6102 */
271 { 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, }, /* 6105{,L,LOM} */
272 { 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, }, /* VT6105M */
273 { } /* terminate list */
274 };
275 MODULE_DEVICE_TABLE(pci, rhine_pci_tbl);
276
277
278 /* Offsets to the device registers. */
279 enum register_offsets {
280 StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08,
281 ChipCmd1=0x09,
282 IntrStatus=0x0C, IntrEnable=0x0E,
283 MulticastFilter0=0x10, MulticastFilter1=0x14,
284 RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54,
285 MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E,
286 MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74,
287 ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B,
288 RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81,
289 StickyHW=0x83, IntrStatus2=0x84,
290 WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4,
291 WOLcrClr1=0xA6, WOLcgClr=0xA7,
292 PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD,
293 };
294
295 /* Bits in ConfigD */
296 enum backoff_bits {
297 BackOptional=0x01, BackModify=0x02,
298 BackCaptureEffect=0x04, BackRandom=0x08
299 };
300
301 #ifdef USE_MMIO
302 /* Registers we check that mmio and reg are the same. */
303 static const int mmio_verify_registers[] = {
304 RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD,
305 0
306 };
307 #endif
308
309 /* Bits in the interrupt status/mask registers. */
310 enum intr_status_bits {
311 IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020,
312 IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210,
313 IntrPCIErr=0x0040,
314 IntrStatsMax=0x0080, IntrRxEarly=0x0100,
315 IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000,
316 IntrTxAborted=0x2000, IntrLinkChange=0x4000,
317 IntrRxWakeUp=0x8000,
318 IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260,
319 IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */
320 IntrTxErrSummary=0x082218,
321 };
322
323 /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */
324 enum wol_bits {
325 WOLucast = 0x10,
326 WOLmagic = 0x20,
327 WOLbmcast = 0x30,
328 WOLlnkon = 0x40,
329 WOLlnkoff = 0x80,
330 };
331
332 /* The Rx and Tx buffer descriptors. */
333 struct rx_desc {
334 __le32 rx_status;
335 __le32 desc_length; /* Chain flag, Buffer/frame length */
336 __le32 addr;
337 __le32 next_desc;
338 };
339 struct tx_desc {
340 __le32 tx_status;
341 __le32 desc_length; /* Chain flag, Tx Config, Frame length */
342 __le32 addr;
343 __le32 next_desc;
344 };
345
346 /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */
347 #define TXDESC 0x00e08000
348
349 enum rx_status_bits {
350 RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F
351 };
352
353 /* Bits in *_desc.*_status */
354 enum desc_status_bits {
355 DescOwn=0x80000000
356 };
357
358 /* Bits in ChipCmd. */
359 enum chip_cmd_bits {
360 CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08,
361 CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40,
362 Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04,
363 Cmd1NoTxPoll=0x08, Cmd1Reset=0x80,
364 };
365
366 struct rhine_private {
367 /* Descriptor rings */
368 struct rx_desc *rx_ring;
369 struct tx_desc *tx_ring;
370 dma_addr_t rx_ring_dma;
371 dma_addr_t tx_ring_dma;
372
373 /* The addresses of receive-in-place skbuffs. */
374 struct sk_buff *rx_skbuff[RX_RING_SIZE];
375 dma_addr_t rx_skbuff_dma[RX_RING_SIZE];
376
377 /* The saved address of a sent-in-place packet/buffer, for later free(). */
378 struct sk_buff *tx_skbuff[TX_RING_SIZE];
379 dma_addr_t tx_skbuff_dma[TX_RING_SIZE];
380
381 /* Tx bounce buffers (Rhine-I only) */
382 unsigned char *tx_buf[TX_RING_SIZE];
383 unsigned char *tx_bufs;
384 dma_addr_t tx_bufs_dma;
385
386 struct pci_dev *pdev;
387 long pioaddr;
388 struct net_device *dev;
389 struct napi_struct napi;
390 struct net_device_stats stats;
391 spinlock_t lock;
392
393 /* Frequently used values: keep some adjacent for cache effect. */
394 u32 quirks;
395 struct rx_desc *rx_head_desc;
396 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
397 unsigned int cur_tx, dirty_tx;
398 unsigned int rx_buf_sz; /* Based on MTU+slack. */
399 u8 wolopts;
400
401 u8 tx_thresh, rx_thresh;
402
403 struct mii_if_info mii_if;
404 void __iomem *base;
405 };
406
407 static int mdio_read(struct net_device *dev, int phy_id, int location);
408 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
409 static int rhine_open(struct net_device *dev);
410 static void rhine_tx_timeout(struct net_device *dev);
411 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev);
412 static irqreturn_t rhine_interrupt(int irq, void *dev_instance);
413 static void rhine_tx(struct net_device *dev);
414 static int rhine_rx(struct net_device *dev, int limit);
415 static void rhine_error(struct net_device *dev, int intr_status);
416 static void rhine_set_rx_mode(struct net_device *dev);
417 static struct net_device_stats *rhine_get_stats(struct net_device *dev);
418 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
419 static const struct ethtool_ops netdev_ethtool_ops;
420 static int rhine_close(struct net_device *dev);
421 static void rhine_shutdown (struct pci_dev *pdev);
422
423 #define RHINE_WAIT_FOR(condition) do { \
424 int i=1024; \
425 while (!(condition) && --i) \
426 ; \
427 if (debug > 1 && i < 512) \
428 printk(KERN_INFO "%s: %4d cycles used @ %s:%d\n", \
429 DRV_NAME, 1024-i, __func__, __LINE__); \
430 } while(0)
431
432 static inline u32 get_intr_status(struct net_device *dev)
433 {
434 struct rhine_private *rp = netdev_priv(dev);
435 void __iomem *ioaddr = rp->base;
436 u32 intr_status;
437
438 intr_status = ioread16(ioaddr + IntrStatus);
439 /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */
440 if (rp->quirks & rqStatusWBRace)
441 intr_status |= ioread8(ioaddr + IntrStatus2) << 16;
442 return intr_status;
443 }
444
445 /*
446 * Get power related registers into sane state.
447 * Notify user about past WOL event.
448 */
449 static void rhine_power_init(struct net_device *dev)
450 {
451 struct rhine_private *rp = netdev_priv(dev);
452 void __iomem *ioaddr = rp->base;
453 u16 wolstat;
454
455 if (rp->quirks & rqWOL) {
456 /* Make sure chip is in power state D0 */
457 iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW);
458
459 /* Disable "force PME-enable" */
460 iowrite8(0x80, ioaddr + WOLcgClr);
461
462 /* Clear power-event config bits (WOL) */
463 iowrite8(0xFF, ioaddr + WOLcrClr);
464 /* More recent cards can manage two additional patterns */
465 if (rp->quirks & rq6patterns)
466 iowrite8(0x03, ioaddr + WOLcrClr1);
467
468 /* Save power-event status bits */
469 wolstat = ioread8(ioaddr + PwrcsrSet);
470 if (rp->quirks & rq6patterns)
471 wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8;
472
473 /* Clear power-event status bits */
474 iowrite8(0xFF, ioaddr + PwrcsrClr);
475 if (rp->quirks & rq6patterns)
476 iowrite8(0x03, ioaddr + PwrcsrClr1);
477
478 if (wolstat) {
479 char *reason;
480 switch (wolstat) {
481 case WOLmagic:
482 reason = "Magic packet";
483 break;
484 case WOLlnkon:
485 reason = "Link went up";
486 break;
487 case WOLlnkoff:
488 reason = "Link went down";
489 break;
490 case WOLucast:
491 reason = "Unicast packet";
492 break;
493 case WOLbmcast:
494 reason = "Multicast/broadcast packet";
495 break;
496 default:
497 reason = "Unknown";
498 }
499 printk(KERN_INFO "%s: Woke system up. Reason: %s.\n",
500 DRV_NAME, reason);
501 }
502 }
503 }
504
505 static void rhine_chip_reset(struct net_device *dev)
506 {
507 struct rhine_private *rp = netdev_priv(dev);
508 void __iomem *ioaddr = rp->base;
509
510 iowrite8(Cmd1Reset, ioaddr + ChipCmd1);
511 IOSYNC;
512
513 if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) {
514 printk(KERN_INFO "%s: Reset not complete yet. "
515 "Trying harder.\n", DRV_NAME);
516
517 /* Force reset */
518 if (rp->quirks & rqForceReset)
519 iowrite8(0x40, ioaddr + MiscCmd);
520
521 /* Reset can take somewhat longer (rare) */
522 RHINE_WAIT_FOR(!(ioread8(ioaddr + ChipCmd1) & Cmd1Reset));
523 }
524
525 if (debug > 1)
526 printk(KERN_INFO "%s: Reset %s.\n", dev->name,
527 (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) ?
528 "failed" : "succeeded");
529 }
530
531 #ifdef USE_MMIO
532 static void enable_mmio(long pioaddr, u32 quirks)
533 {
534 int n;
535 if (quirks & rqRhineI) {
536 /* More recent docs say that this bit is reserved ... */
537 n = inb(pioaddr + ConfigA) | 0x20;
538 outb(n, pioaddr + ConfigA);
539 } else {
540 n = inb(pioaddr + ConfigD) | 0x80;
541 outb(n, pioaddr + ConfigD);
542 }
543 }
544 #endif
545
546 /*
547 * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM
548 * (plus 0x6C for Rhine-I/II)
549 */
550 static void __devinit rhine_reload_eeprom(long pioaddr, struct net_device *dev)
551 {
552 struct rhine_private *rp = netdev_priv(dev);
553 void __iomem *ioaddr = rp->base;
554
555 outb(0x20, pioaddr + MACRegEEcsr);
556 RHINE_WAIT_FOR(!(inb(pioaddr + MACRegEEcsr) & 0x20));
557
558 #ifdef USE_MMIO
559 /*
560 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable
561 * MMIO. If reloading EEPROM was done first this could be avoided, but
562 * it is not known if that still works with the "win98-reboot" problem.
563 */
564 enable_mmio(pioaddr, rp->quirks);
565 #endif
566
567 /* Turn off EEPROM-controlled wake-up (magic packet) */
568 if (rp->quirks & rqWOL)
569 iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA);
570
571 }
572
573 #ifdef CONFIG_NET_POLL_CONTROLLER
574 static void rhine_poll(struct net_device *dev)
575 {
576 disable_irq(dev->irq);
577 rhine_interrupt(dev->irq, (void *)dev);
578 enable_irq(dev->irq);
579 }
580 #endif
581
582 static int rhine_napipoll(struct napi_struct *napi, int budget)
583 {
584 struct rhine_private *rp = container_of(napi, struct rhine_private, napi);
585 struct net_device *dev = rp->dev;
586 void __iomem *ioaddr = rp->base;
587 int work_done;
588
589 work_done = rhine_rx(dev, budget);
590
591 if (work_done < budget) {
592 netif_rx_complete(napi);
593
594 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
595 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
596 IntrTxDone | IntrTxError | IntrTxUnderrun |
597 IntrPCIErr | IntrStatsMax | IntrLinkChange,
598 ioaddr + IntrEnable);
599 }
600 return work_done;
601 }
602
603 static void __devinit rhine_hw_init(struct net_device *dev, long pioaddr)
604 {
605 struct rhine_private *rp = netdev_priv(dev);
606
607 /* Reset the chip to erase previous misconfiguration. */
608 rhine_chip_reset(dev);
609
610 /* Rhine-I needs extra time to recuperate before EEPROM reload */
611 if (rp->quirks & rqRhineI)
612 msleep(5);
613
614 /* Reload EEPROM controlled bytes cleared by soft reset */
615 rhine_reload_eeprom(pioaddr, dev);
616 }
617
618 static const struct net_device_ops rhine_netdev_ops = {
619 .ndo_open = rhine_open,
620 .ndo_stop = rhine_close,
621 .ndo_start_xmit = rhine_start_tx,
622 .ndo_get_stats = rhine_get_stats,
623 .ndo_set_multicast_list = rhine_set_rx_mode,
624 .ndo_validate_addr = eth_validate_addr,
625 .ndo_do_ioctl = netdev_ioctl,
626 .ndo_tx_timeout = rhine_tx_timeout,
627 #ifdef CONFIG_NET_POLL_CONTROLLER
628 .ndo_poll_controller = rhine_poll,
629 #endif
630 };
631
632 static int __devinit rhine_init_one(struct pci_dev *pdev,
633 const struct pci_device_id *ent)
634 {
635 struct net_device *dev;
636 struct rhine_private *rp;
637 int i, rc;
638 u32 quirks;
639 long pioaddr;
640 long memaddr;
641 void __iomem *ioaddr;
642 int io_size, phy_id;
643 const char *name;
644 #ifdef USE_MMIO
645 int bar = 1;
646 #else
647 int bar = 0;
648 #endif
649
650 /* when built into the kernel, we only print version if device is found */
651 #ifndef MODULE
652 static int printed_version;
653 if (!printed_version++)
654 printk(version);
655 #endif
656
657 io_size = 256;
658 phy_id = 0;
659 quirks = 0;
660 name = "Rhine";
661 if (pdev->revision < VTunknown0) {
662 quirks = rqRhineI;
663 io_size = 128;
664 }
665 else if (pdev->revision >= VT6102) {
666 quirks = rqWOL | rqForceReset;
667 if (pdev->revision < VT6105) {
668 name = "Rhine II";
669 quirks |= rqStatusWBRace; /* Rhine-II exclusive */
670 }
671 else {
672 phy_id = 1; /* Integrated PHY, phy_id fixed to 1 */
673 if (pdev->revision >= VT6105_B0)
674 quirks |= rq6patterns;
675 if (pdev->revision < VT6105M)
676 name = "Rhine III";
677 else
678 name = "Rhine III (Management Adapter)";
679 }
680 }
681
682 rc = pci_enable_device(pdev);
683 if (rc)
684 goto err_out;
685
686 /* this should always be supported */
687 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
688 if (rc) {
689 printk(KERN_ERR "32-bit PCI DMA addresses not supported by "
690 "the card!?\n");
691 goto err_out;
692 }
693
694 /* sanity check */
695 if ((pci_resource_len(pdev, 0) < io_size) ||
696 (pci_resource_len(pdev, 1) < io_size)) {
697 rc = -EIO;
698 printk(KERN_ERR "Insufficient PCI resources, aborting\n");
699 goto err_out;
700 }
701
702 pioaddr = pci_resource_start(pdev, 0);
703 memaddr = pci_resource_start(pdev, 1);
704
705 pci_set_master(pdev);
706
707 dev = alloc_etherdev(sizeof(struct rhine_private));
708 if (!dev) {
709 rc = -ENOMEM;
710 printk(KERN_ERR "alloc_etherdev failed\n");
711 goto err_out;
712 }
713 SET_NETDEV_DEV(dev, &pdev->dev);
714
715 rp = netdev_priv(dev);
716 rp->dev = dev;
717 rp->quirks = quirks;
718 rp->pioaddr = pioaddr;
719 rp->pdev = pdev;
720
721 rc = pci_request_regions(pdev, DRV_NAME);
722 if (rc)
723 goto err_out_free_netdev;
724
725 ioaddr = pci_iomap(pdev, bar, io_size);
726 if (!ioaddr) {
727 rc = -EIO;
728 printk(KERN_ERR "ioremap failed for device %s, region 0x%X "
729 "@ 0x%lX\n", pci_name(pdev), io_size, memaddr);
730 goto err_out_free_res;
731 }
732
733 #ifdef USE_MMIO
734 enable_mmio(pioaddr, quirks);
735
736 /* Check that selected MMIO registers match the PIO ones */
737 i = 0;
738 while (mmio_verify_registers[i]) {
739 int reg = mmio_verify_registers[i++];
740 unsigned char a = inb(pioaddr+reg);
741 unsigned char b = readb(ioaddr+reg);
742 if (a != b) {
743 rc = -EIO;
744 printk(KERN_ERR "MMIO do not match PIO [%02x] "
745 "(%02x != %02x)\n", reg, a, b);
746 goto err_out_unmap;
747 }
748 }
749 #endif /* USE_MMIO */
750
751 dev->base_addr = (unsigned long)ioaddr;
752 rp->base = ioaddr;
753
754 /* Get chip registers into a sane state */
755 rhine_power_init(dev);
756 rhine_hw_init(dev, pioaddr);
757
758 for (i = 0; i < 6; i++)
759 dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i);
760 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
761
762 if (!is_valid_ether_addr(dev->perm_addr)) {
763 rc = -EIO;
764 printk(KERN_ERR "Invalid MAC address\n");
765 goto err_out_unmap;
766 }
767
768 /* For Rhine-I/II, phy_id is loaded from EEPROM */
769 if (!phy_id)
770 phy_id = ioread8(ioaddr + 0x6C);
771
772 dev->irq = pdev->irq;
773
774 spin_lock_init(&rp->lock);
775 rp->mii_if.dev = dev;
776 rp->mii_if.mdio_read = mdio_read;
777 rp->mii_if.mdio_write = mdio_write;
778 rp->mii_if.phy_id_mask = 0x1f;
779 rp->mii_if.reg_num_mask = 0x1f;
780
781 /* The chip-specific entries in the device structure. */
782 dev->netdev_ops = &rhine_netdev_ops;
783 dev->ethtool_ops = &netdev_ethtool_ops,
784 dev->watchdog_timeo = TX_TIMEOUT;
785
786 netif_napi_add(dev, &rp->napi, rhine_napipoll, 64);
787
788 if (rp->quirks & rqRhineI)
789 dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM;
790
791 /* dev->name not defined before register_netdev()! */
792 rc = register_netdev(dev);
793 if (rc)
794 goto err_out_unmap;
795
796 printk(KERN_INFO "%s: VIA %s at 0x%lx, %pM, IRQ %d.\n",
797 dev->name, name,
798 #ifdef USE_MMIO
799 memaddr,
800 #else
801 (long)ioaddr,
802 #endif
803 dev->dev_addr, pdev->irq);
804
805 pci_set_drvdata(pdev, dev);
806
807 {
808 u16 mii_cmd;
809 int mii_status = mdio_read(dev, phy_id, 1);
810 mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE;
811 mdio_write(dev, phy_id, MII_BMCR, mii_cmd);
812 if (mii_status != 0xffff && mii_status != 0x0000) {
813 rp->mii_if.advertising = mdio_read(dev, phy_id, 4);
814 printk(KERN_INFO "%s: MII PHY found at address "
815 "%d, status 0x%4.4x advertising %4.4x "
816 "Link %4.4x.\n", dev->name, phy_id,
817 mii_status, rp->mii_if.advertising,
818 mdio_read(dev, phy_id, 5));
819
820 /* set IFF_RUNNING */
821 if (mii_status & BMSR_LSTATUS)
822 netif_carrier_on(dev);
823 else
824 netif_carrier_off(dev);
825
826 }
827 }
828 rp->mii_if.phy_id = phy_id;
829 if (debug > 1 && avoid_D3)
830 printk(KERN_INFO "%s: No D3 power state at shutdown.\n",
831 dev->name);
832
833 return 0;
834
835 err_out_unmap:
836 pci_iounmap(pdev, ioaddr);
837 err_out_free_res:
838 pci_release_regions(pdev);
839 err_out_free_netdev:
840 free_netdev(dev);
841 err_out:
842 return rc;
843 }
844
845 static int alloc_ring(struct net_device* dev)
846 {
847 struct rhine_private *rp = netdev_priv(dev);
848 void *ring;
849 dma_addr_t ring_dma;
850
851 ring = pci_alloc_consistent(rp->pdev,
852 RX_RING_SIZE * sizeof(struct rx_desc) +
853 TX_RING_SIZE * sizeof(struct tx_desc),
854 &ring_dma);
855 if (!ring) {
856 printk(KERN_ERR "Could not allocate DMA memory.\n");
857 return -ENOMEM;
858 }
859 if (rp->quirks & rqRhineI) {
860 rp->tx_bufs = pci_alloc_consistent(rp->pdev,
861 PKT_BUF_SZ * TX_RING_SIZE,
862 &rp->tx_bufs_dma);
863 if (rp->tx_bufs == NULL) {
864 pci_free_consistent(rp->pdev,
865 RX_RING_SIZE * sizeof(struct rx_desc) +
866 TX_RING_SIZE * sizeof(struct tx_desc),
867 ring, ring_dma);
868 return -ENOMEM;
869 }
870 }
871
872 rp->rx_ring = ring;
873 rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc);
874 rp->rx_ring_dma = ring_dma;
875 rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc);
876
877 return 0;
878 }
879
880 static void free_ring(struct net_device* dev)
881 {
882 struct rhine_private *rp = netdev_priv(dev);
883
884 pci_free_consistent(rp->pdev,
885 RX_RING_SIZE * sizeof(struct rx_desc) +
886 TX_RING_SIZE * sizeof(struct tx_desc),
887 rp->rx_ring, rp->rx_ring_dma);
888 rp->tx_ring = NULL;
889
890 if (rp->tx_bufs)
891 pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE,
892 rp->tx_bufs, rp->tx_bufs_dma);
893
894 rp->tx_bufs = NULL;
895
896 }
897
898 static void alloc_rbufs(struct net_device *dev)
899 {
900 struct rhine_private *rp = netdev_priv(dev);
901 dma_addr_t next;
902 int i;
903
904 rp->dirty_rx = rp->cur_rx = 0;
905
906 rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
907 rp->rx_head_desc = &rp->rx_ring[0];
908 next = rp->rx_ring_dma;
909
910 /* Init the ring entries */
911 for (i = 0; i < RX_RING_SIZE; i++) {
912 rp->rx_ring[i].rx_status = 0;
913 rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz);
914 next += sizeof(struct rx_desc);
915 rp->rx_ring[i].next_desc = cpu_to_le32(next);
916 rp->rx_skbuff[i] = NULL;
917 }
918 /* Mark the last entry as wrapping the ring. */
919 rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma);
920
921 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
922 for (i = 0; i < RX_RING_SIZE; i++) {
923 struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
924 rp->rx_skbuff[i] = skb;
925 if (skb == NULL)
926 break;
927 skb->dev = dev; /* Mark as being used by this device. */
928
929 rp->rx_skbuff_dma[i] =
930 pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz,
931 PCI_DMA_FROMDEVICE);
932
933 rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]);
934 rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn);
935 }
936 rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
937 }
938
939 static void free_rbufs(struct net_device* dev)
940 {
941 struct rhine_private *rp = netdev_priv(dev);
942 int i;
943
944 /* Free all the skbuffs in the Rx queue. */
945 for (i = 0; i < RX_RING_SIZE; i++) {
946 rp->rx_ring[i].rx_status = 0;
947 rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
948 if (rp->rx_skbuff[i]) {
949 pci_unmap_single(rp->pdev,
950 rp->rx_skbuff_dma[i],
951 rp->rx_buf_sz, PCI_DMA_FROMDEVICE);
952 dev_kfree_skb(rp->rx_skbuff[i]);
953 }
954 rp->rx_skbuff[i] = NULL;
955 }
956 }
957
958 static void alloc_tbufs(struct net_device* dev)
959 {
960 struct rhine_private *rp = netdev_priv(dev);
961 dma_addr_t next;
962 int i;
963
964 rp->dirty_tx = rp->cur_tx = 0;
965 next = rp->tx_ring_dma;
966 for (i = 0; i < TX_RING_SIZE; i++) {
967 rp->tx_skbuff[i] = NULL;
968 rp->tx_ring[i].tx_status = 0;
969 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
970 next += sizeof(struct tx_desc);
971 rp->tx_ring[i].next_desc = cpu_to_le32(next);
972 if (rp->quirks & rqRhineI)
973 rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ];
974 }
975 rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma);
976
977 }
978
979 static void free_tbufs(struct net_device* dev)
980 {
981 struct rhine_private *rp = netdev_priv(dev);
982 int i;
983
984 for (i = 0; i < TX_RING_SIZE; i++) {
985 rp->tx_ring[i].tx_status = 0;
986 rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC);
987 rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
988 if (rp->tx_skbuff[i]) {
989 if (rp->tx_skbuff_dma[i]) {
990 pci_unmap_single(rp->pdev,
991 rp->tx_skbuff_dma[i],
992 rp->tx_skbuff[i]->len,
993 PCI_DMA_TODEVICE);
994 }
995 dev_kfree_skb(rp->tx_skbuff[i]);
996 }
997 rp->tx_skbuff[i] = NULL;
998 rp->tx_buf[i] = NULL;
999 }
1000 }
1001
1002 static void rhine_check_media(struct net_device *dev, unsigned int init_media)
1003 {
1004 struct rhine_private *rp = netdev_priv(dev);
1005 void __iomem *ioaddr = rp->base;
1006
1007 mii_check_media(&rp->mii_if, debug, init_media);
1008
1009 if (rp->mii_if.full_duplex)
1010 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex,
1011 ioaddr + ChipCmd1);
1012 else
1013 iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex,
1014 ioaddr + ChipCmd1);
1015 if (debug > 1)
1016 printk(KERN_INFO "%s: force_media %d, carrier %d\n", dev->name,
1017 rp->mii_if.force_media, netif_carrier_ok(dev));
1018 }
1019
1020 /* Called after status of force_media possibly changed */
1021 static void rhine_set_carrier(struct mii_if_info *mii)
1022 {
1023 if (mii->force_media) {
1024 /* autoneg is off: Link is always assumed to be up */
1025 if (!netif_carrier_ok(mii->dev))
1026 netif_carrier_on(mii->dev);
1027 }
1028 else /* Let MMI library update carrier status */
1029 rhine_check_media(mii->dev, 0);
1030 if (debug > 1)
1031 printk(KERN_INFO "%s: force_media %d, carrier %d\n",
1032 mii->dev->name, mii->force_media,
1033 netif_carrier_ok(mii->dev));
1034 }
1035
1036 static void init_registers(struct net_device *dev)
1037 {
1038 struct rhine_private *rp = netdev_priv(dev);
1039 void __iomem *ioaddr = rp->base;
1040 int i;
1041
1042 for (i = 0; i < 6; i++)
1043 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
1044
1045 /* Initialize other registers. */
1046 iowrite16(0x0006, ioaddr + PCIBusConfig); /* Tune configuration??? */
1047 /* Configure initial FIFO thresholds. */
1048 iowrite8(0x20, ioaddr + TxConfig);
1049 rp->tx_thresh = 0x20;
1050 rp->rx_thresh = 0x60; /* Written in rhine_set_rx_mode(). */
1051
1052 iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr);
1053 iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr);
1054
1055 rhine_set_rx_mode(dev);
1056
1057 napi_enable(&rp->napi);
1058
1059 /* Enable interrupts by setting the interrupt mask. */
1060 iowrite16(IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow |
1061 IntrRxDropped | IntrRxNoBuf | IntrTxAborted |
1062 IntrTxDone | IntrTxError | IntrTxUnderrun |
1063 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1064 ioaddr + IntrEnable);
1065
1066 iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8),
1067 ioaddr + ChipCmd);
1068 rhine_check_media(dev, 1);
1069 }
1070
1071 /* Enable MII link status auto-polling (required for IntrLinkChange) */
1072 static void rhine_enable_linkmon(void __iomem *ioaddr)
1073 {
1074 iowrite8(0, ioaddr + MIICmd);
1075 iowrite8(MII_BMSR, ioaddr + MIIRegAddr);
1076 iowrite8(0x80, ioaddr + MIICmd);
1077
1078 RHINE_WAIT_FOR((ioread8(ioaddr + MIIRegAddr) & 0x20));
1079
1080 iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr);
1081 }
1082
1083 /* Disable MII link status auto-polling (required for MDIO access) */
1084 static void rhine_disable_linkmon(void __iomem *ioaddr, u32 quirks)
1085 {
1086 iowrite8(0, ioaddr + MIICmd);
1087
1088 if (quirks & rqRhineI) {
1089 iowrite8(0x01, ioaddr + MIIRegAddr); // MII_BMSR
1090
1091 /* Can be called from ISR. Evil. */
1092 mdelay(1);
1093
1094 /* 0x80 must be set immediately before turning it off */
1095 iowrite8(0x80, ioaddr + MIICmd);
1096
1097 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x20);
1098
1099 /* Heh. Now clear 0x80 again. */
1100 iowrite8(0, ioaddr + MIICmd);
1101 }
1102 else
1103 RHINE_WAIT_FOR(ioread8(ioaddr + MIIRegAddr) & 0x80);
1104 }
1105
1106 /* Read and write over the MII Management Data I/O (MDIO) interface. */
1107
1108 static int mdio_read(struct net_device *dev, int phy_id, int regnum)
1109 {
1110 struct rhine_private *rp = netdev_priv(dev);
1111 void __iomem *ioaddr = rp->base;
1112 int result;
1113
1114 rhine_disable_linkmon(ioaddr, rp->quirks);
1115
1116 /* rhine_disable_linkmon already cleared MIICmd */
1117 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1118 iowrite8(regnum, ioaddr + MIIRegAddr);
1119 iowrite8(0x40, ioaddr + MIICmd); /* Trigger read */
1120 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x40));
1121 result = ioread16(ioaddr + MIIData);
1122
1123 rhine_enable_linkmon(ioaddr);
1124 return result;
1125 }
1126
1127 static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value)
1128 {
1129 struct rhine_private *rp = netdev_priv(dev);
1130 void __iomem *ioaddr = rp->base;
1131
1132 rhine_disable_linkmon(ioaddr, rp->quirks);
1133
1134 /* rhine_disable_linkmon already cleared MIICmd */
1135 iowrite8(phy_id, ioaddr + MIIPhyAddr);
1136 iowrite8(regnum, ioaddr + MIIRegAddr);
1137 iowrite16(value, ioaddr + MIIData);
1138 iowrite8(0x20, ioaddr + MIICmd); /* Trigger write */
1139 RHINE_WAIT_FOR(!(ioread8(ioaddr + MIICmd) & 0x20));
1140
1141 rhine_enable_linkmon(ioaddr);
1142 }
1143
1144 static int rhine_open(struct net_device *dev)
1145 {
1146 struct rhine_private *rp = netdev_priv(dev);
1147 void __iomem *ioaddr = rp->base;
1148 int rc;
1149
1150 rc = request_irq(rp->pdev->irq, &rhine_interrupt, IRQF_SHARED, dev->name,
1151 dev);
1152 if (rc)
1153 return rc;
1154
1155 if (debug > 1)
1156 printk(KERN_DEBUG "%s: rhine_open() irq %d.\n",
1157 dev->name, rp->pdev->irq);
1158
1159 rc = alloc_ring(dev);
1160 if (rc) {
1161 free_irq(rp->pdev->irq, dev);
1162 return rc;
1163 }
1164 alloc_rbufs(dev);
1165 alloc_tbufs(dev);
1166 rhine_chip_reset(dev);
1167 init_registers(dev);
1168 if (debug > 2)
1169 printk(KERN_DEBUG "%s: Done rhine_open(), status %4.4x "
1170 "MII status: %4.4x.\n",
1171 dev->name, ioread16(ioaddr + ChipCmd),
1172 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1173
1174 netif_start_queue(dev);
1175
1176 return 0;
1177 }
1178
1179 static void rhine_tx_timeout(struct net_device *dev)
1180 {
1181 struct rhine_private *rp = netdev_priv(dev);
1182 void __iomem *ioaddr = rp->base;
1183
1184 printk(KERN_WARNING "%s: Transmit timed out, status %4.4x, PHY status "
1185 "%4.4x, resetting...\n",
1186 dev->name, ioread16(ioaddr + IntrStatus),
1187 mdio_read(dev, rp->mii_if.phy_id, MII_BMSR));
1188
1189 /* protect against concurrent rx interrupts */
1190 disable_irq(rp->pdev->irq);
1191
1192 napi_disable(&rp->napi);
1193
1194 spin_lock(&rp->lock);
1195
1196 /* clear all descriptors */
1197 free_tbufs(dev);
1198 free_rbufs(dev);
1199 alloc_tbufs(dev);
1200 alloc_rbufs(dev);
1201
1202 /* Reinitialize the hardware. */
1203 rhine_chip_reset(dev);
1204 init_registers(dev);
1205
1206 spin_unlock(&rp->lock);
1207 enable_irq(rp->pdev->irq);
1208
1209 dev->trans_start = jiffies;
1210 rp->stats.tx_errors++;
1211 netif_wake_queue(dev);
1212 }
1213
1214 static int rhine_start_tx(struct sk_buff *skb, struct net_device *dev)
1215 {
1216 struct rhine_private *rp = netdev_priv(dev);
1217 void __iomem *ioaddr = rp->base;
1218 unsigned entry;
1219
1220 /* Caution: the write order is important here, set the field
1221 with the "ownership" bits last. */
1222
1223 /* Calculate the next Tx descriptor entry. */
1224 entry = rp->cur_tx % TX_RING_SIZE;
1225
1226 if (skb_padto(skb, ETH_ZLEN))
1227 return 0;
1228
1229 rp->tx_skbuff[entry] = skb;
1230
1231 if ((rp->quirks & rqRhineI) &&
1232 (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) {
1233 /* Must use alignment buffer. */
1234 if (skb->len > PKT_BUF_SZ) {
1235 /* packet too long, drop it */
1236 dev_kfree_skb(skb);
1237 rp->tx_skbuff[entry] = NULL;
1238 rp->stats.tx_dropped++;
1239 return 0;
1240 }
1241
1242 /* Padding is not copied and so must be redone. */
1243 skb_copy_and_csum_dev(skb, rp->tx_buf[entry]);
1244 if (skb->len < ETH_ZLEN)
1245 memset(rp->tx_buf[entry] + skb->len, 0,
1246 ETH_ZLEN - skb->len);
1247 rp->tx_skbuff_dma[entry] = 0;
1248 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma +
1249 (rp->tx_buf[entry] -
1250 rp->tx_bufs));
1251 } else {
1252 rp->tx_skbuff_dma[entry] =
1253 pci_map_single(rp->pdev, skb->data, skb->len,
1254 PCI_DMA_TODEVICE);
1255 rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]);
1256 }
1257
1258 rp->tx_ring[entry].desc_length =
1259 cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN));
1260
1261 /* lock eth irq */
1262 spin_lock_irq(&rp->lock);
1263 wmb();
1264 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1265 wmb();
1266
1267 rp->cur_tx++;
1268
1269 /* Non-x86 Todo: explicitly flush cache lines here. */
1270
1271 /* Wake the potentially-idle transmit channel */
1272 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1273 ioaddr + ChipCmd1);
1274 IOSYNC;
1275
1276 if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN)
1277 netif_stop_queue(dev);
1278
1279 dev->trans_start = jiffies;
1280
1281 spin_unlock_irq(&rp->lock);
1282
1283 if (debug > 4) {
1284 printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
1285 dev->name, rp->cur_tx-1, entry);
1286 }
1287 return 0;
1288 }
1289
1290 /* The interrupt handler does all of the Rx thread work and cleans up
1291 after the Tx thread. */
1292 static irqreturn_t rhine_interrupt(int irq, void *dev_instance)
1293 {
1294 struct net_device *dev = dev_instance;
1295 struct rhine_private *rp = netdev_priv(dev);
1296 void __iomem *ioaddr = rp->base;
1297 u32 intr_status;
1298 int boguscnt = max_interrupt_work;
1299 int handled = 0;
1300
1301 while ((intr_status = get_intr_status(dev))) {
1302 handled = 1;
1303
1304 /* Acknowledge all of the current interrupt sources ASAP. */
1305 if (intr_status & IntrTxDescRace)
1306 iowrite8(0x08, ioaddr + IntrStatus2);
1307 iowrite16(intr_status & 0xffff, ioaddr + IntrStatus);
1308 IOSYNC;
1309
1310 if (debug > 4)
1311 printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
1312 dev->name, intr_status);
1313
1314 if (intr_status & (IntrRxDone | IntrRxErr | IntrRxDropped |
1315 IntrRxWakeUp | IntrRxEmpty | IntrRxNoBuf)) {
1316 iowrite16(IntrTxAborted |
1317 IntrTxDone | IntrTxError | IntrTxUnderrun |
1318 IntrPCIErr | IntrStatsMax | IntrLinkChange,
1319 ioaddr + IntrEnable);
1320
1321 netif_rx_schedule(&rp->napi);
1322 }
1323
1324 if (intr_status & (IntrTxErrSummary | IntrTxDone)) {
1325 if (intr_status & IntrTxErrSummary) {
1326 /* Avoid scavenging before Tx engine turned off */
1327 RHINE_WAIT_FOR(!(ioread8(ioaddr+ChipCmd) & CmdTxOn));
1328 if (debug > 2 &&
1329 ioread8(ioaddr+ChipCmd) & CmdTxOn)
1330 printk(KERN_WARNING "%s: "
1331 "rhine_interrupt() Tx engine "
1332 "still on.\n", dev->name);
1333 }
1334 rhine_tx(dev);
1335 }
1336
1337 /* Abnormal error summary/uncommon events handlers. */
1338 if (intr_status & (IntrPCIErr | IntrLinkChange |
1339 IntrStatsMax | IntrTxError | IntrTxAborted |
1340 IntrTxUnderrun | IntrTxDescRace))
1341 rhine_error(dev, intr_status);
1342
1343 if (--boguscnt < 0) {
1344 printk(KERN_WARNING "%s: Too much work at interrupt, "
1345 "status=%#8.8x.\n",
1346 dev->name, intr_status);
1347 break;
1348 }
1349 }
1350
1351 if (debug > 3)
1352 printk(KERN_DEBUG "%s: exiting interrupt, status=%8.8x.\n",
1353 dev->name, ioread16(ioaddr + IntrStatus));
1354 return IRQ_RETVAL(handled);
1355 }
1356
1357 /* This routine is logically part of the interrupt handler, but isolated
1358 for clarity. */
1359 static void rhine_tx(struct net_device *dev)
1360 {
1361 struct rhine_private *rp = netdev_priv(dev);
1362 int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE;
1363
1364 spin_lock(&rp->lock);
1365
1366 /* find and cleanup dirty tx descriptors */
1367 while (rp->dirty_tx != rp->cur_tx) {
1368 txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status);
1369 if (debug > 6)
1370 printk(KERN_DEBUG "Tx scavenge %d status %8.8x.\n",
1371 entry, txstatus);
1372 if (txstatus & DescOwn)
1373 break;
1374 if (txstatus & 0x8000) {
1375 if (debug > 1)
1376 printk(KERN_DEBUG "%s: Transmit error, "
1377 "Tx status %8.8x.\n",
1378 dev->name, txstatus);
1379 rp->stats.tx_errors++;
1380 if (txstatus & 0x0400) rp->stats.tx_carrier_errors++;
1381 if (txstatus & 0x0200) rp->stats.tx_window_errors++;
1382 if (txstatus & 0x0100) rp->stats.tx_aborted_errors++;
1383 if (txstatus & 0x0080) rp->stats.tx_heartbeat_errors++;
1384 if (((rp->quirks & rqRhineI) && txstatus & 0x0002) ||
1385 (txstatus & 0x0800) || (txstatus & 0x1000)) {
1386 rp->stats.tx_fifo_errors++;
1387 rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn);
1388 break; /* Keep the skb - we try again */
1389 }
1390 /* Transmitter restarted in 'abnormal' handler. */
1391 } else {
1392 if (rp->quirks & rqRhineI)
1393 rp->stats.collisions += (txstatus >> 3) & 0x0F;
1394 else
1395 rp->stats.collisions += txstatus & 0x0F;
1396 if (debug > 6)
1397 printk(KERN_DEBUG "collisions: %1.1x:%1.1x\n",
1398 (txstatus >> 3) & 0xF,
1399 txstatus & 0xF);
1400 rp->stats.tx_bytes += rp->tx_skbuff[entry]->len;
1401 rp->stats.tx_packets++;
1402 }
1403 /* Free the original skb. */
1404 if (rp->tx_skbuff_dma[entry]) {
1405 pci_unmap_single(rp->pdev,
1406 rp->tx_skbuff_dma[entry],
1407 rp->tx_skbuff[entry]->len,
1408 PCI_DMA_TODEVICE);
1409 }
1410 dev_kfree_skb_irq(rp->tx_skbuff[entry]);
1411 rp->tx_skbuff[entry] = NULL;
1412 entry = (++rp->dirty_tx) % TX_RING_SIZE;
1413 }
1414 if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4)
1415 netif_wake_queue(dev);
1416
1417 spin_unlock(&rp->lock);
1418 }
1419
1420 /* Process up to limit frames from receive ring */
1421 static int rhine_rx(struct net_device *dev, int limit)
1422 {
1423 struct rhine_private *rp = netdev_priv(dev);
1424 int count;
1425 int entry = rp->cur_rx % RX_RING_SIZE;
1426
1427 if (debug > 4) {
1428 printk(KERN_DEBUG "%s: rhine_rx(), entry %d status %8.8x.\n",
1429 dev->name, entry,
1430 le32_to_cpu(rp->rx_head_desc->rx_status));
1431 }
1432
1433 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1434 for (count = 0; count < limit; ++count) {
1435 struct rx_desc *desc = rp->rx_head_desc;
1436 u32 desc_status = le32_to_cpu(desc->rx_status);
1437 int data_size = desc_status >> 16;
1438
1439 if (desc_status & DescOwn)
1440 break;
1441
1442 if (debug > 4)
1443 printk(KERN_DEBUG "rhine_rx() status is %8.8x.\n",
1444 desc_status);
1445
1446 if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) {
1447 if ((desc_status & RxWholePkt) != RxWholePkt) {
1448 printk(KERN_WARNING "%s: Oversized Ethernet "
1449 "frame spanned multiple buffers, entry "
1450 "%#x length %d status %8.8x!\n",
1451 dev->name, entry, data_size,
1452 desc_status);
1453 printk(KERN_WARNING "%s: Oversized Ethernet "
1454 "frame %p vs %p.\n", dev->name,
1455 rp->rx_head_desc, &rp->rx_ring[entry]);
1456 rp->stats.rx_length_errors++;
1457 } else if (desc_status & RxErr) {
1458 /* There was a error. */
1459 if (debug > 2)
1460 printk(KERN_DEBUG "rhine_rx() Rx "
1461 "error was %8.8x.\n",
1462 desc_status);
1463 rp->stats.rx_errors++;
1464 if (desc_status & 0x0030) rp->stats.rx_length_errors++;
1465 if (desc_status & 0x0048) rp->stats.rx_fifo_errors++;
1466 if (desc_status & 0x0004) rp->stats.rx_frame_errors++;
1467 if (desc_status & 0x0002) {
1468 /* this can also be updated outside the interrupt handler */
1469 spin_lock(&rp->lock);
1470 rp->stats.rx_crc_errors++;
1471 spin_unlock(&rp->lock);
1472 }
1473 }
1474 } else {
1475 struct sk_buff *skb;
1476 /* Length should omit the CRC */
1477 int pkt_len = data_size - 4;
1478
1479 /* Check if the packet is long enough to accept without
1480 copying to a minimally-sized skbuff. */
1481 if (pkt_len < rx_copybreak &&
1482 (skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN)) != NULL) {
1483 skb_reserve(skb, NET_IP_ALIGN); /* 16 byte align the IP header */
1484 pci_dma_sync_single_for_cpu(rp->pdev,
1485 rp->rx_skbuff_dma[entry],
1486 rp->rx_buf_sz,
1487 PCI_DMA_FROMDEVICE);
1488
1489 skb_copy_to_linear_data(skb,
1490 rp->rx_skbuff[entry]->data,
1491 pkt_len);
1492 skb_put(skb, pkt_len);
1493 pci_dma_sync_single_for_device(rp->pdev,
1494 rp->rx_skbuff_dma[entry],
1495 rp->rx_buf_sz,
1496 PCI_DMA_FROMDEVICE);
1497 } else {
1498 skb = rp->rx_skbuff[entry];
1499 if (skb == NULL) {
1500 printk(KERN_ERR "%s: Inconsistent Rx "
1501 "descriptor chain.\n",
1502 dev->name);
1503 break;
1504 }
1505 rp->rx_skbuff[entry] = NULL;
1506 skb_put(skb, pkt_len);
1507 pci_unmap_single(rp->pdev,
1508 rp->rx_skbuff_dma[entry],
1509 rp->rx_buf_sz,
1510 PCI_DMA_FROMDEVICE);
1511 }
1512 skb->protocol = eth_type_trans(skb, dev);
1513 netif_receive_skb(skb);
1514 rp->stats.rx_bytes += pkt_len;
1515 rp->stats.rx_packets++;
1516 }
1517 entry = (++rp->cur_rx) % RX_RING_SIZE;
1518 rp->rx_head_desc = &rp->rx_ring[entry];
1519 }
1520
1521 /* Refill the Rx ring buffers. */
1522 for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) {
1523 struct sk_buff *skb;
1524 entry = rp->dirty_rx % RX_RING_SIZE;
1525 if (rp->rx_skbuff[entry] == NULL) {
1526 skb = netdev_alloc_skb(dev, rp->rx_buf_sz);
1527 rp->rx_skbuff[entry] = skb;
1528 if (skb == NULL)
1529 break; /* Better luck next round. */
1530 skb->dev = dev; /* Mark as being used by this device. */
1531 rp->rx_skbuff_dma[entry] =
1532 pci_map_single(rp->pdev, skb->data,
1533 rp->rx_buf_sz,
1534 PCI_DMA_FROMDEVICE);
1535 rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]);
1536 }
1537 rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn);
1538 }
1539
1540 return count;
1541 }
1542
1543 /*
1544 * Clears the "tally counters" for CRC errors and missed frames(?).
1545 * It has been reported that some chips need a write of 0 to clear
1546 * these, for others the counters are set to 1 when written to and
1547 * instead cleared when read. So we clear them both ways ...
1548 */
1549 static inline void clear_tally_counters(void __iomem *ioaddr)
1550 {
1551 iowrite32(0, ioaddr + RxMissed);
1552 ioread16(ioaddr + RxCRCErrs);
1553 ioread16(ioaddr + RxMissed);
1554 }
1555
1556 static void rhine_restart_tx(struct net_device *dev) {
1557 struct rhine_private *rp = netdev_priv(dev);
1558 void __iomem *ioaddr = rp->base;
1559 int entry = rp->dirty_tx % TX_RING_SIZE;
1560 u32 intr_status;
1561
1562 /*
1563 * If new errors occured, we need to sort them out before doing Tx.
1564 * In that case the ISR will be back here RSN anyway.
1565 */
1566 intr_status = get_intr_status(dev);
1567
1568 if ((intr_status & IntrTxErrSummary) == 0) {
1569
1570 /* We know better than the chip where it should continue. */
1571 iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc),
1572 ioaddr + TxRingPtr);
1573
1574 iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn,
1575 ioaddr + ChipCmd);
1576 iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand,
1577 ioaddr + ChipCmd1);
1578 IOSYNC;
1579 }
1580 else {
1581 /* This should never happen */
1582 if (debug > 1)
1583 printk(KERN_WARNING "%s: rhine_restart_tx() "
1584 "Another error occured %8.8x.\n",
1585 dev->name, intr_status);
1586 }
1587
1588 }
1589
1590 static void rhine_error(struct net_device *dev, int intr_status)
1591 {
1592 struct rhine_private *rp = netdev_priv(dev);
1593 void __iomem *ioaddr = rp->base;
1594
1595 spin_lock(&rp->lock);
1596
1597 if (intr_status & IntrLinkChange)
1598 rhine_check_media(dev, 0);
1599 if (intr_status & IntrStatsMax) {
1600 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1601 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1602 clear_tally_counters(ioaddr);
1603 }
1604 if (intr_status & IntrTxAborted) {
1605 if (debug > 1)
1606 printk(KERN_INFO "%s: Abort %8.8x, frame dropped.\n",
1607 dev->name, intr_status);
1608 }
1609 if (intr_status & IntrTxUnderrun) {
1610 if (rp->tx_thresh < 0xE0)
1611 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1612 if (debug > 1)
1613 printk(KERN_INFO "%s: Transmitter underrun, Tx "
1614 "threshold now %2.2x.\n",
1615 dev->name, rp->tx_thresh);
1616 }
1617 if (intr_status & IntrTxDescRace) {
1618 if (debug > 2)
1619 printk(KERN_INFO "%s: Tx descriptor write-back race.\n",
1620 dev->name);
1621 }
1622 if ((intr_status & IntrTxError) &&
1623 (intr_status & (IntrTxAborted |
1624 IntrTxUnderrun | IntrTxDescRace)) == 0) {
1625 if (rp->tx_thresh < 0xE0) {
1626 iowrite8(rp->tx_thresh += 0x20, ioaddr + TxConfig);
1627 }
1628 if (debug > 1)
1629 printk(KERN_INFO "%s: Unspecified error. Tx "
1630 "threshold now %2.2x.\n",
1631 dev->name, rp->tx_thresh);
1632 }
1633 if (intr_status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace |
1634 IntrTxError))
1635 rhine_restart_tx(dev);
1636
1637 if (intr_status & ~(IntrLinkChange | IntrStatsMax | IntrTxUnderrun |
1638 IntrTxError | IntrTxAborted | IntrNormalSummary |
1639 IntrTxDescRace)) {
1640 if (debug > 1)
1641 printk(KERN_ERR "%s: Something Wicked happened! "
1642 "%8.8x.\n", dev->name, intr_status);
1643 }
1644
1645 spin_unlock(&rp->lock);
1646 }
1647
1648 static struct net_device_stats *rhine_get_stats(struct net_device *dev)
1649 {
1650 struct rhine_private *rp = netdev_priv(dev);
1651 void __iomem *ioaddr = rp->base;
1652 unsigned long flags;
1653
1654 spin_lock_irqsave(&rp->lock, flags);
1655 rp->stats.rx_crc_errors += ioread16(ioaddr + RxCRCErrs);
1656 rp->stats.rx_missed_errors += ioread16(ioaddr + RxMissed);
1657 clear_tally_counters(ioaddr);
1658 spin_unlock_irqrestore(&rp->lock, flags);
1659
1660 return &rp->stats;
1661 }
1662
1663 static void rhine_set_rx_mode(struct net_device *dev)
1664 {
1665 struct rhine_private *rp = netdev_priv(dev);
1666 void __iomem *ioaddr = rp->base;
1667 u32 mc_filter[2]; /* Multicast hash filter */
1668 u8 rx_mode; /* Note: 0x02=accept runt, 0x01=accept errs */
1669
1670 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1671 rx_mode = 0x1C;
1672 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1673 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1674 } else if ((dev->mc_count > multicast_filter_limit)
1675 || (dev->flags & IFF_ALLMULTI)) {
1676 /* Too many to match, or accept all multicasts. */
1677 iowrite32(0xffffffff, ioaddr + MulticastFilter0);
1678 iowrite32(0xffffffff, ioaddr + MulticastFilter1);
1679 rx_mode = 0x0C;
1680 } else {
1681 struct dev_mc_list *mclist;
1682 int i;
1683 memset(mc_filter, 0, sizeof(mc_filter));
1684 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1685 i++, mclist = mclist->next) {
1686 int bit_nr = ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26;
1687
1688 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1689 }
1690 iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1691 iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1692 rx_mode = 0x0C;
1693 }
1694 iowrite8(rp->rx_thresh | rx_mode, ioaddr + RxConfig);
1695 }
1696
1697 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1698 {
1699 struct rhine_private *rp = netdev_priv(dev);
1700
1701 strcpy(info->driver, DRV_NAME);
1702 strcpy(info->version, DRV_VERSION);
1703 strcpy(info->bus_info, pci_name(rp->pdev));
1704 }
1705
1706 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1707 {
1708 struct rhine_private *rp = netdev_priv(dev);
1709 int rc;
1710
1711 spin_lock_irq(&rp->lock);
1712 rc = mii_ethtool_gset(&rp->mii_if, cmd);
1713 spin_unlock_irq(&rp->lock);
1714
1715 return rc;
1716 }
1717
1718 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1719 {
1720 struct rhine_private *rp = netdev_priv(dev);
1721 int rc;
1722
1723 spin_lock_irq(&rp->lock);
1724 rc = mii_ethtool_sset(&rp->mii_if, cmd);
1725 spin_unlock_irq(&rp->lock);
1726 rhine_set_carrier(&rp->mii_if);
1727
1728 return rc;
1729 }
1730
1731 static int netdev_nway_reset(struct net_device *dev)
1732 {
1733 struct rhine_private *rp = netdev_priv(dev);
1734
1735 return mii_nway_restart(&rp->mii_if);
1736 }
1737
1738 static u32 netdev_get_link(struct net_device *dev)
1739 {
1740 struct rhine_private *rp = netdev_priv(dev);
1741
1742 return mii_link_ok(&rp->mii_if);
1743 }
1744
1745 static u32 netdev_get_msglevel(struct net_device *dev)
1746 {
1747 return debug;
1748 }
1749
1750 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1751 {
1752 debug = value;
1753 }
1754
1755 static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1756 {
1757 struct rhine_private *rp = netdev_priv(dev);
1758
1759 if (!(rp->quirks & rqWOL))
1760 return;
1761
1762 spin_lock_irq(&rp->lock);
1763 wol->supported = WAKE_PHY | WAKE_MAGIC |
1764 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1765 wol->wolopts = rp->wolopts;
1766 spin_unlock_irq(&rp->lock);
1767 }
1768
1769 static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1770 {
1771 struct rhine_private *rp = netdev_priv(dev);
1772 u32 support = WAKE_PHY | WAKE_MAGIC |
1773 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; /* Untested */
1774
1775 if (!(rp->quirks & rqWOL))
1776 return -EINVAL;
1777
1778 if (wol->wolopts & ~support)
1779 return -EINVAL;
1780
1781 spin_lock_irq(&rp->lock);
1782 rp->wolopts = wol->wolopts;
1783 spin_unlock_irq(&rp->lock);
1784
1785 return 0;
1786 }
1787
1788 static const struct ethtool_ops netdev_ethtool_ops = {
1789 .get_drvinfo = netdev_get_drvinfo,
1790 .get_settings = netdev_get_settings,
1791 .set_settings = netdev_set_settings,
1792 .nway_reset = netdev_nway_reset,
1793 .get_link = netdev_get_link,
1794 .get_msglevel = netdev_get_msglevel,
1795 .set_msglevel = netdev_set_msglevel,
1796 .get_wol = rhine_get_wol,
1797 .set_wol = rhine_set_wol,
1798 };
1799
1800 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1801 {
1802 struct rhine_private *rp = netdev_priv(dev);
1803 int rc;
1804
1805 if (!netif_running(dev))
1806 return -EINVAL;
1807
1808 spin_lock_irq(&rp->lock);
1809 rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL);
1810 spin_unlock_irq(&rp->lock);
1811 rhine_set_carrier(&rp->mii_if);
1812
1813 return rc;
1814 }
1815
1816 static int rhine_close(struct net_device *dev)
1817 {
1818 struct rhine_private *rp = netdev_priv(dev);
1819 void __iomem *ioaddr = rp->base;
1820
1821 spin_lock_irq(&rp->lock);
1822
1823 netif_stop_queue(dev);
1824 napi_disable(&rp->napi);
1825
1826 if (debug > 1)
1827 printk(KERN_DEBUG "%s: Shutting down ethercard, "
1828 "status was %4.4x.\n",
1829 dev->name, ioread16(ioaddr + ChipCmd));
1830
1831 /* Switch to loopback mode to avoid hardware races. */
1832 iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig);
1833
1834 /* Disable interrupts by clearing the interrupt mask. */
1835 iowrite16(0x0000, ioaddr + IntrEnable);
1836
1837 /* Stop the chip's Tx and Rx processes. */
1838 iowrite16(CmdStop, ioaddr + ChipCmd);
1839
1840 spin_unlock_irq(&rp->lock);
1841
1842 free_irq(rp->pdev->irq, dev);
1843 free_rbufs(dev);
1844 free_tbufs(dev);
1845 free_ring(dev);
1846
1847 return 0;
1848 }
1849
1850
1851 static void __devexit rhine_remove_one(struct pci_dev *pdev)
1852 {
1853 struct net_device *dev = pci_get_drvdata(pdev);
1854 struct rhine_private *rp = netdev_priv(dev);
1855
1856 unregister_netdev(dev);
1857
1858 pci_iounmap(pdev, rp->base);
1859 pci_release_regions(pdev);
1860
1861 free_netdev(dev);
1862 pci_disable_device(pdev);
1863 pci_set_drvdata(pdev, NULL);
1864 }
1865
1866 static void rhine_shutdown (struct pci_dev *pdev)
1867 {
1868 struct net_device *dev = pci_get_drvdata(pdev);
1869 struct rhine_private *rp = netdev_priv(dev);
1870 void __iomem *ioaddr = rp->base;
1871
1872 if (!(rp->quirks & rqWOL))
1873 return; /* Nothing to do for non-WOL adapters */
1874
1875 rhine_power_init(dev);
1876
1877 /* Make sure we use pattern 0, 1 and not 4, 5 */
1878 if (rp->quirks & rq6patterns)
1879 iowrite8(0x04, ioaddr + WOLcgClr);
1880
1881 if (rp->wolopts & WAKE_MAGIC) {
1882 iowrite8(WOLmagic, ioaddr + WOLcrSet);
1883 /*
1884 * Turn EEPROM-controlled wake-up back on -- some hardware may
1885 * not cooperate otherwise.
1886 */
1887 iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA);
1888 }
1889
1890 if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST))
1891 iowrite8(WOLbmcast, ioaddr + WOLcgSet);
1892
1893 if (rp->wolopts & WAKE_PHY)
1894 iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet);
1895
1896 if (rp->wolopts & WAKE_UCAST)
1897 iowrite8(WOLucast, ioaddr + WOLcrSet);
1898
1899 if (rp->wolopts) {
1900 /* Enable legacy WOL (for old motherboards) */
1901 iowrite8(0x01, ioaddr + PwcfgSet);
1902 iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW);
1903 }
1904
1905 /* Hit power state D3 (sleep) */
1906 if (!avoid_D3)
1907 iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW);
1908
1909 /* TODO: Check use of pci_enable_wake() */
1910
1911 }
1912
1913 #ifdef CONFIG_PM
1914 static int rhine_suspend(struct pci_dev *pdev, pm_message_t state)
1915 {
1916 struct net_device *dev = pci_get_drvdata(pdev);
1917 struct rhine_private *rp = netdev_priv(dev);
1918 unsigned long flags;
1919
1920 if (!netif_running(dev))
1921 return 0;
1922
1923 napi_disable(&rp->napi);
1924
1925 netif_device_detach(dev);
1926 pci_save_state(pdev);
1927
1928 spin_lock_irqsave(&rp->lock, flags);
1929 rhine_shutdown(pdev);
1930 spin_unlock_irqrestore(&rp->lock, flags);
1931
1932 free_irq(dev->irq, dev);
1933 return 0;
1934 }
1935
1936 static int rhine_resume(struct pci_dev *pdev)
1937 {
1938 struct net_device *dev = pci_get_drvdata(pdev);
1939 struct rhine_private *rp = netdev_priv(dev);
1940 unsigned long flags;
1941 int ret;
1942
1943 if (!netif_running(dev))
1944 return 0;
1945
1946 if (request_irq(dev->irq, rhine_interrupt, IRQF_SHARED, dev->name, dev))
1947 printk(KERN_ERR "via-rhine %s: request_irq failed\n", dev->name);
1948
1949 ret = pci_set_power_state(pdev, PCI_D0);
1950 if (debug > 1)
1951 printk(KERN_INFO "%s: Entering power state D0 %s (%d).\n",
1952 dev->name, ret ? "failed" : "succeeded", ret);
1953
1954 pci_restore_state(pdev);
1955
1956 spin_lock_irqsave(&rp->lock, flags);
1957 #ifdef USE_MMIO
1958 enable_mmio(rp->pioaddr, rp->quirks);
1959 #endif
1960 rhine_power_init(dev);
1961 free_tbufs(dev);
1962 free_rbufs(dev);
1963 alloc_tbufs(dev);
1964 alloc_rbufs(dev);
1965 init_registers(dev);
1966 spin_unlock_irqrestore(&rp->lock, flags);
1967
1968 netif_device_attach(dev);
1969
1970 return 0;
1971 }
1972 #endif /* CONFIG_PM */
1973
1974 static struct pci_driver rhine_driver = {
1975 .name = DRV_NAME,
1976 .id_table = rhine_pci_tbl,
1977 .probe = rhine_init_one,
1978 .remove = __devexit_p(rhine_remove_one),
1979 #ifdef CONFIG_PM
1980 .suspend = rhine_suspend,
1981 .resume = rhine_resume,
1982 #endif /* CONFIG_PM */
1983 .shutdown = rhine_shutdown,
1984 };
1985
1986 static struct dmi_system_id __initdata rhine_dmi_table[] = {
1987 {
1988 .ident = "EPIA-M",
1989 .matches = {
1990 DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."),
1991 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1992 },
1993 },
1994 {
1995 .ident = "KV7",
1996 .matches = {
1997 DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"),
1998 DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"),
1999 },
2000 },
2001 { NULL }
2002 };
2003
2004 static int __init rhine_init(void)
2005 {
2006 /* when a module, this is printed whether or not devices are found in probe */
2007 #ifdef MODULE
2008 printk(version);
2009 #endif
2010 if (dmi_check_system(rhine_dmi_table)) {
2011 /* these BIOSes fail at PXE boot if chip is in D3 */
2012 avoid_D3 = 1;
2013 printk(KERN_WARNING "%s: Broken BIOS detected, avoid_D3 "
2014 "enabled.\n",
2015 DRV_NAME);
2016 }
2017 else if (avoid_D3)
2018 printk(KERN_INFO "%s: avoid_D3 set.\n", DRV_NAME);
2019
2020 return pci_register_driver(&rhine_driver);
2021 }
2022
2023
2024 static void __exit rhine_cleanup(void)
2025 {
2026 pci_unregister_driver(&rhine_driver);
2027 }
2028
2029
2030 module_init(rhine_init);
2031 module_exit(rhine_cleanup);
This page took 0.104676 seconds and 6 git commands to generate.