Merge tag 'nfsd-4.7-3' of git://linux-nfs.org/~bfields/linux
[deliverable/linux.git] / drivers / net / wireless / ath / ath9k / eeprom_4k.c
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23 return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28 return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
36 int addr, eep_start_loc = 64;
37
38 for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
39 if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
40 return false;
41 eep_data++;
42 }
43
44 return true;
45 }
46
47 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
48 {
49 u16 *eep_data = (u16 *)&ah->eeprom.map4k;
50
51 ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
52
53 return true;
54 }
55
56 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
57 {
58 struct ath_common *common = ath9k_hw_common(ah);
59
60 if (!ath9k_hw_use_flash(ah)) {
61 ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
62 }
63
64 if (common->bus_ops->ath_bus_type == ATH_USB)
65 return __ath9k_hw_usb_4k_fill_eeprom(ah);
66 else
67 return __ath9k_hw_4k_fill_eeprom(ah);
68 }
69
70 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
71 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
72 struct modal_eep_4k_header *modal_hdr)
73 {
74 PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
75 PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
76 PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
77 PR_EEP("Switch Settle", modal_hdr->switchSettling);
78 PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
79 PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
80 PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
81 PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
82 PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
83 PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
84 PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
85 PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
86 PR_EEP("CCA Threshold)", modal_hdr->thresh62);
87 PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
88 PR_EEP("xpdGain", modal_hdr->xpdGain);
89 PR_EEP("External PD", modal_hdr->xpd);
90 PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
91 PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
92 PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
93 PR_EEP("O/D Bias Version", modal_hdr->version);
94 PR_EEP("CCK OutputBias", modal_hdr->ob_0);
95 PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
96 PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
97 PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
98 PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
99 PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
100 PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
101 PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
102 PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
103 PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
104 PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
105 PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
106 PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
107 PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
108 PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
109 PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
110 PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
111 PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
112 PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
113 PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
114 PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
115 PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
116 PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
117 PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
118 PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
119 PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
120 PR_EEP("TX Diversity", modal_hdr->tx_diversity);
121
122 return len;
123 }
124
125 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
126 u8 *buf, u32 len, u32 size)
127 {
128 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
129 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
130
131 if (!dump_base_hdr) {
132 len += scnprintf(buf + len, size - len,
133 "%20s :\n", "2GHz modal Header");
134 len = ath9k_dump_4k_modal_eeprom(buf, len, size,
135 &eep->modalHeader);
136 goto out;
137 }
138
139 PR_EEP("Major Version", pBase->version >> 12);
140 PR_EEP("Minor Version", pBase->version & 0xFFF);
141 PR_EEP("Checksum", pBase->checksum);
142 PR_EEP("Length", pBase->length);
143 PR_EEP("RegDomain1", pBase->regDmn[0]);
144 PR_EEP("RegDomain2", pBase->regDmn[1]);
145 PR_EEP("TX Mask", pBase->txMask);
146 PR_EEP("RX Mask", pBase->rxMask);
147 PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
148 PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
149 PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
150 AR5416_OPFLAGS_N_2G_HT20));
151 PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
152 AR5416_OPFLAGS_N_2G_HT40));
153 PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
154 AR5416_OPFLAGS_N_5G_HT20));
155 PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
156 AR5416_OPFLAGS_N_5G_HT40));
157 PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
158 PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
159 PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
160 PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
161 PR_EEP("TX Gain type", pBase->txGainType);
162
163 len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
164 pBase->macAddr);
165
166 out:
167 if (len > size)
168 len = size;
169
170 return len;
171 }
172 #else
173 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
174 u8 *buf, u32 len, u32 size)
175 {
176 return 0;
177 }
178 #endif
179
180 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
181 {
182 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
183 u32 el;
184 bool need_swap;
185 int i, err;
186
187 err = ath9k_hw_nvram_swap_data(ah, &need_swap, SIZE_EEPROM_4K);
188 if (err)
189 return err;
190
191 if (need_swap)
192 el = swab16(eep->baseEepHeader.length);
193 else
194 el = eep->baseEepHeader.length;
195
196 el = min(el / sizeof(u16), SIZE_EEPROM_4K);
197 if (!ath9k_hw_nvram_validate_checksum(ah, el))
198 return -EINVAL;
199
200 if (need_swap) {
201 u32 integer;
202 u16 word;
203
204 word = swab16(eep->baseEepHeader.length);
205 eep->baseEepHeader.length = word;
206
207 word = swab16(eep->baseEepHeader.checksum);
208 eep->baseEepHeader.checksum = word;
209
210 word = swab16(eep->baseEepHeader.version);
211 eep->baseEepHeader.version = word;
212
213 word = swab16(eep->baseEepHeader.regDmn[0]);
214 eep->baseEepHeader.regDmn[0] = word;
215
216 word = swab16(eep->baseEepHeader.regDmn[1]);
217 eep->baseEepHeader.regDmn[1] = word;
218
219 word = swab16(eep->baseEepHeader.rfSilent);
220 eep->baseEepHeader.rfSilent = word;
221
222 word = swab16(eep->baseEepHeader.blueToothOptions);
223 eep->baseEepHeader.blueToothOptions = word;
224
225 word = swab16(eep->baseEepHeader.deviceCap);
226 eep->baseEepHeader.deviceCap = word;
227
228 integer = swab32(eep->modalHeader.antCtrlCommon);
229 eep->modalHeader.antCtrlCommon = integer;
230
231 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
232 integer = swab32(eep->modalHeader.antCtrlChain[i]);
233 eep->modalHeader.antCtrlChain[i] = integer;
234 }
235
236 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
237 word = swab16(eep->modalHeader.spurChans[i].spurChan);
238 eep->modalHeader.spurChans[i].spurChan = word;
239 }
240 }
241
242 if (!ath9k_hw_nvram_check_version(ah, AR5416_EEP_VER,
243 AR5416_EEP_NO_BACK_VER))
244 return -EINVAL;
245
246 return 0;
247 }
248
249 #undef SIZE_EEPROM_4K
250
251 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
252 enum eeprom_param param)
253 {
254 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
255 struct modal_eep_4k_header *pModal = &eep->modalHeader;
256 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
257 u16 ver_minor;
258
259 ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
260
261 switch (param) {
262 case EEP_NFTHRESH_2:
263 return pModal->noiseFloorThreshCh[0];
264 case EEP_MAC_LSW:
265 return get_unaligned_be16(pBase->macAddr);
266 case EEP_MAC_MID:
267 return get_unaligned_be16(pBase->macAddr + 2);
268 case EEP_MAC_MSW:
269 return get_unaligned_be16(pBase->macAddr + 4);
270 case EEP_REG_0:
271 return pBase->regDmn[0];
272 case EEP_OP_CAP:
273 return pBase->deviceCap;
274 case EEP_OP_MODE:
275 return pBase->opCapFlags;
276 case EEP_RF_SILENT:
277 return pBase->rfSilent;
278 case EEP_OB_2:
279 return pModal->ob_0;
280 case EEP_DB_2:
281 return pModal->db1_1;
282 case EEP_MINOR_REV:
283 return ver_minor;
284 case EEP_TX_MASK:
285 return pBase->txMask;
286 case EEP_RX_MASK:
287 return pBase->rxMask;
288 case EEP_FRAC_N_5G:
289 return 0;
290 case EEP_PWR_TABLE_OFFSET:
291 return AR5416_PWR_TABLE_OFFSET_DB;
292 case EEP_MODAL_VER:
293 return pModal->version;
294 case EEP_ANT_DIV_CTL1:
295 return pModal->antdiv_ctl1;
296 case EEP_TXGAIN_TYPE:
297 return pBase->txGainType;
298 case EEP_ANTENNA_GAIN_2G:
299 return pModal->antennaGainCh[0];
300 default:
301 return 0;
302 }
303 }
304
305 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
306 struct ath9k_channel *chan)
307 {
308 struct ath_common *common = ath9k_hw_common(ah);
309 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
310 struct cal_data_per_freq_4k *pRawDataset;
311 u8 *pCalBChans = NULL;
312 u16 pdGainOverlap_t2;
313 static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
314 u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
315 u16 numPiers, i, j;
316 u16 numXpdGain, xpdMask;
317 u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
318 u32 reg32, regOffset, regChainOffset;
319
320 xpdMask = pEepData->modalHeader.xpdGain;
321
322 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
323 AR5416_EEP_MINOR_VER_2) {
324 pdGainOverlap_t2 =
325 pEepData->modalHeader.pdGainOverlap;
326 } else {
327 pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
328 AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
329 }
330
331 pCalBChans = pEepData->calFreqPier2G;
332 numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
333
334 numXpdGain = 0;
335
336 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
337 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
338 if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
339 break;
340 xpdGainValues[numXpdGain] =
341 (u16)(AR5416_PD_GAINS_IN_MASK - i);
342 numXpdGain++;
343 }
344 }
345
346 ENABLE_REG_RMW_BUFFER(ah);
347 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
348 (numXpdGain - 1) & 0x3);
349 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
350 xpdGainValues[0]);
351 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
352 xpdGainValues[1]);
353 REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
354 REG_RMW_BUFFER_FLUSH(ah);
355
356 for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
357 regChainOffset = i * 0x1000;
358
359 if (pEepData->baseEepHeader.txMask & (1 << i)) {
360 pRawDataset = pEepData->calPierData2G[i];
361
362 ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
363 pRawDataset, pCalBChans,
364 numPiers, pdGainOverlap_t2,
365 gainBoundaries,
366 pdadcValues, numXpdGain);
367
368 ENABLE_REGWRITE_BUFFER(ah);
369
370 REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
371 SM(pdGainOverlap_t2,
372 AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
373 | SM(gainBoundaries[0],
374 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
375 | SM(gainBoundaries[1],
376 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
377 | SM(gainBoundaries[2],
378 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
379 | SM(gainBoundaries[3],
380 AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
381
382 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
383 for (j = 0; j < 32; j++) {
384 reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
385 REG_WRITE(ah, regOffset, reg32);
386
387 ath_dbg(common, EEPROM,
388 "PDADC (%d,%4x): %4.4x %8.8x\n",
389 i, regChainOffset, regOffset,
390 reg32);
391 ath_dbg(common, EEPROM,
392 "PDADC: Chain %d | "
393 "PDADC %3d Value %3d | "
394 "PDADC %3d Value %3d | "
395 "PDADC %3d Value %3d | "
396 "PDADC %3d Value %3d |\n",
397 i, 4 * j, pdadcValues[4 * j],
398 4 * j + 1, pdadcValues[4 * j + 1],
399 4 * j + 2, pdadcValues[4 * j + 2],
400 4 * j + 3, pdadcValues[4 * j + 3]);
401
402 regOffset += 4;
403 }
404
405 REGWRITE_BUFFER_FLUSH(ah);
406 }
407 }
408 }
409
410 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
411 struct ath9k_channel *chan,
412 int16_t *ratesArray,
413 u16 cfgCtl,
414 u16 antenna_reduction,
415 u16 powerLimit)
416 {
417 #define CMP_TEST_GRP \
418 (((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) == \
419 pEepData->ctlIndex[i]) \
420 || (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
421 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
422
423 int i;
424 u16 twiceMinEdgePower;
425 u16 twiceMaxEdgePower;
426 u16 scaledPower = 0, minCtlPower;
427 u16 numCtlModes;
428 const u16 *pCtlMode;
429 u16 ctlMode, freq;
430 struct chan_centers centers;
431 struct cal_ctl_data_4k *rep;
432 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
433 struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
434 0, { 0, 0, 0, 0}
435 };
436 struct cal_target_power_leg targetPowerOfdmExt = {
437 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
438 0, { 0, 0, 0, 0 }
439 };
440 struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
441 0, {0, 0, 0, 0}
442 };
443 static const u16 ctlModesFor11g[] = {
444 CTL_11B, CTL_11G, CTL_2GHT20,
445 CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
446 };
447
448 ath9k_hw_get_channel_centers(ah, chan, &centers);
449
450 scaledPower = powerLimit - antenna_reduction;
451 numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
452 pCtlMode = ctlModesFor11g;
453
454 ath9k_hw_get_legacy_target_powers(ah, chan,
455 pEepData->calTargetPowerCck,
456 AR5416_NUM_2G_CCK_TARGET_POWERS,
457 &targetPowerCck, 4, false);
458 ath9k_hw_get_legacy_target_powers(ah, chan,
459 pEepData->calTargetPower2G,
460 AR5416_NUM_2G_20_TARGET_POWERS,
461 &targetPowerOfdm, 4, false);
462 ath9k_hw_get_target_powers(ah, chan,
463 pEepData->calTargetPower2GHT20,
464 AR5416_NUM_2G_20_TARGET_POWERS,
465 &targetPowerHt20, 8, false);
466
467 if (IS_CHAN_HT40(chan)) {
468 numCtlModes = ARRAY_SIZE(ctlModesFor11g);
469 ath9k_hw_get_target_powers(ah, chan,
470 pEepData->calTargetPower2GHT40,
471 AR5416_NUM_2G_40_TARGET_POWERS,
472 &targetPowerHt40, 8, true);
473 ath9k_hw_get_legacy_target_powers(ah, chan,
474 pEepData->calTargetPowerCck,
475 AR5416_NUM_2G_CCK_TARGET_POWERS,
476 &targetPowerCckExt, 4, true);
477 ath9k_hw_get_legacy_target_powers(ah, chan,
478 pEepData->calTargetPower2G,
479 AR5416_NUM_2G_20_TARGET_POWERS,
480 &targetPowerOfdmExt, 4, true);
481 }
482
483 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
484 bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
485 (pCtlMode[ctlMode] == CTL_2GHT40);
486
487 if (isHt40CtlMode)
488 freq = centers.synth_center;
489 else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
490 freq = centers.ext_center;
491 else
492 freq = centers.ctl_center;
493
494 twiceMaxEdgePower = MAX_RATE_POWER;
495
496 for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
497 pEepData->ctlIndex[i]; i++) {
498
499 if (CMP_TEST_GRP) {
500 rep = &(pEepData->ctlData[i]);
501
502 twiceMinEdgePower = ath9k_hw_get_max_edge_power(
503 freq,
504 rep->ctlEdges[
505 ar5416_get_ntxchains(ah->txchainmask) - 1],
506 IS_CHAN_2GHZ(chan),
507 AR5416_EEP4K_NUM_BAND_EDGES);
508
509 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
510 twiceMaxEdgePower =
511 min(twiceMaxEdgePower,
512 twiceMinEdgePower);
513 } else {
514 twiceMaxEdgePower = twiceMinEdgePower;
515 break;
516 }
517 }
518 }
519
520 minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
521
522 switch (pCtlMode[ctlMode]) {
523 case CTL_11B:
524 for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
525 targetPowerCck.tPow2x[i] =
526 min((u16)targetPowerCck.tPow2x[i],
527 minCtlPower);
528 }
529 break;
530 case CTL_11G:
531 for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
532 targetPowerOfdm.tPow2x[i] =
533 min((u16)targetPowerOfdm.tPow2x[i],
534 minCtlPower);
535 }
536 break;
537 case CTL_2GHT20:
538 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
539 targetPowerHt20.tPow2x[i] =
540 min((u16)targetPowerHt20.tPow2x[i],
541 minCtlPower);
542 }
543 break;
544 case CTL_11B_EXT:
545 targetPowerCckExt.tPow2x[0] =
546 min((u16)targetPowerCckExt.tPow2x[0],
547 minCtlPower);
548 break;
549 case CTL_11G_EXT:
550 targetPowerOfdmExt.tPow2x[0] =
551 min((u16)targetPowerOfdmExt.tPow2x[0],
552 minCtlPower);
553 break;
554 case CTL_2GHT40:
555 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
556 targetPowerHt40.tPow2x[i] =
557 min((u16)targetPowerHt40.tPow2x[i],
558 minCtlPower);
559 }
560 break;
561 default:
562 break;
563 }
564 }
565
566 ratesArray[rate6mb] =
567 ratesArray[rate9mb] =
568 ratesArray[rate12mb] =
569 ratesArray[rate18mb] =
570 ratesArray[rate24mb] =
571 targetPowerOfdm.tPow2x[0];
572
573 ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
574 ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
575 ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
576 ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
577
578 for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
579 ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
580
581 ratesArray[rate1l] = targetPowerCck.tPow2x[0];
582 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
583 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
584 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
585
586 if (IS_CHAN_HT40(chan)) {
587 for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
588 ratesArray[rateHt40_0 + i] =
589 targetPowerHt40.tPow2x[i];
590 }
591 ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
592 ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
593 ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
594 ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
595 }
596
597 #undef CMP_TEST_GRP
598 }
599
600 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
601 struct ath9k_channel *chan,
602 u16 cfgCtl,
603 u8 twiceAntennaReduction,
604 u8 powerLimit, bool test)
605 {
606 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
607 struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
608 struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
609 int16_t ratesArray[Ar5416RateSize];
610 u8 ht40PowerIncForPdadc = 2;
611 int i;
612
613 memset(ratesArray, 0, sizeof(ratesArray));
614
615 if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
616 AR5416_EEP_MINOR_VER_2) {
617 ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
618 }
619
620 ath9k_hw_set_4k_power_per_rate_table(ah, chan,
621 &ratesArray[0], cfgCtl,
622 twiceAntennaReduction,
623 powerLimit);
624
625 ath9k_hw_set_4k_power_cal_table(ah, chan);
626
627 regulatory->max_power_level = 0;
628 for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
629 if (ratesArray[i] > MAX_RATE_POWER)
630 ratesArray[i] = MAX_RATE_POWER;
631
632 if (ratesArray[i] > regulatory->max_power_level)
633 regulatory->max_power_level = ratesArray[i];
634 }
635
636 if (test)
637 return;
638
639 for (i = 0; i < Ar5416RateSize; i++)
640 ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
641
642 ENABLE_REGWRITE_BUFFER(ah);
643
644 /* OFDM power per rate */
645 REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
646 ATH9K_POW_SM(ratesArray[rate18mb], 24)
647 | ATH9K_POW_SM(ratesArray[rate12mb], 16)
648 | ATH9K_POW_SM(ratesArray[rate9mb], 8)
649 | ATH9K_POW_SM(ratesArray[rate6mb], 0));
650 REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
651 ATH9K_POW_SM(ratesArray[rate54mb], 24)
652 | ATH9K_POW_SM(ratesArray[rate48mb], 16)
653 | ATH9K_POW_SM(ratesArray[rate36mb], 8)
654 | ATH9K_POW_SM(ratesArray[rate24mb], 0));
655
656 /* CCK power per rate */
657 REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
658 ATH9K_POW_SM(ratesArray[rate2s], 24)
659 | ATH9K_POW_SM(ratesArray[rate2l], 16)
660 | ATH9K_POW_SM(ratesArray[rateXr], 8)
661 | ATH9K_POW_SM(ratesArray[rate1l], 0));
662 REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
663 ATH9K_POW_SM(ratesArray[rate11s], 24)
664 | ATH9K_POW_SM(ratesArray[rate11l], 16)
665 | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
666 | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
667
668 /* HT20 power per rate */
669 REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
670 ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
671 | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
672 | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
673 | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
674 REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
675 ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
676 | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
677 | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
678 | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
679
680 /* HT40 power per rate */
681 if (IS_CHAN_HT40(chan)) {
682 REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
683 ATH9K_POW_SM(ratesArray[rateHt40_3] +
684 ht40PowerIncForPdadc, 24)
685 | ATH9K_POW_SM(ratesArray[rateHt40_2] +
686 ht40PowerIncForPdadc, 16)
687 | ATH9K_POW_SM(ratesArray[rateHt40_1] +
688 ht40PowerIncForPdadc, 8)
689 | ATH9K_POW_SM(ratesArray[rateHt40_0] +
690 ht40PowerIncForPdadc, 0));
691 REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
692 ATH9K_POW_SM(ratesArray[rateHt40_7] +
693 ht40PowerIncForPdadc, 24)
694 | ATH9K_POW_SM(ratesArray[rateHt40_6] +
695 ht40PowerIncForPdadc, 16)
696 | ATH9K_POW_SM(ratesArray[rateHt40_5] +
697 ht40PowerIncForPdadc, 8)
698 | ATH9K_POW_SM(ratesArray[rateHt40_4] +
699 ht40PowerIncForPdadc, 0));
700 REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
701 ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
702 | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
703 | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
704 | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
705 }
706
707 /* TPC initializations */
708 if (ah->tpc_enabled) {
709 int ht40_delta;
710
711 ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
712 ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
713 /* Enable TPC */
714 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
715 MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
716 } else {
717 /* Disable TPC */
718 REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
719 }
720
721 REGWRITE_BUFFER_FLUSH(ah);
722 }
723
724 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
725 struct modal_eep_4k_header *pModal,
726 struct ar5416_eeprom_4k *eep,
727 u8 txRxAttenLocal)
728 {
729 ENABLE_REG_RMW_BUFFER(ah);
730 REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0,
731 pModal->antCtrlChain[0], 0);
732
733 REG_RMW(ah, AR_PHY_TIMING_CTRL4(0),
734 SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
735 SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF),
736 AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF);
737
738 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
739 AR5416_EEP_MINOR_VER_3) {
740 txRxAttenLocal = pModal->txRxAttenCh[0];
741
742 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
743 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
744 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
745 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
746 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
747 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
748 pModal->xatten2Margin[0]);
749 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
750 AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
751
752 /* Set the block 1 value to block 0 value */
753 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
754 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
755 pModal->bswMargin[0]);
756 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
757 AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
758 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
759 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
760 pModal->xatten2Margin[0]);
761 REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
762 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
763 pModal->xatten2Db[0]);
764 }
765
766 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
767 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
768 REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
769 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
770
771 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
772 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
773 REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
774 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
775 REG_RMW_BUFFER_FLUSH(ah);
776 }
777
778 /*
779 * Read EEPROM header info and program the device for correct operation
780 * given the channel value.
781 */
782 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
783 struct ath9k_channel *chan)
784 {
785 struct ath9k_hw_capabilities *pCap = &ah->caps;
786 struct modal_eep_4k_header *pModal;
787 struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
788 struct base_eep_header_4k *pBase = &eep->baseEepHeader;
789 u8 txRxAttenLocal;
790 u8 ob[5], db1[5], db2[5];
791 u8 ant_div_control1, ant_div_control2;
792 u8 bb_desired_scale;
793 u32 regVal;
794
795 pModal = &eep->modalHeader;
796 txRxAttenLocal = 23;
797
798 REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
799
800 /* Single chain for 4K EEPROM*/
801 ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
802
803 /* Initialize Ant Diversity settings from EEPROM */
804 if (pModal->version >= 3) {
805 ant_div_control1 = pModal->antdiv_ctl1;
806 ant_div_control2 = pModal->antdiv_ctl2;
807
808 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
809 regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
810
811 regVal |= SM(ant_div_control1,
812 AR_PHY_9285_ANT_DIV_CTL);
813 regVal |= SM(ant_div_control2,
814 AR_PHY_9285_ANT_DIV_ALT_LNACONF);
815 regVal |= SM((ant_div_control2 >> 2),
816 AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
817 regVal |= SM((ant_div_control1 >> 1),
818 AR_PHY_9285_ANT_DIV_ALT_GAINTB);
819 regVal |= SM((ant_div_control1 >> 2),
820 AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
821
822
823 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
824 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
825 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
826 regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
827 regVal |= SM((ant_div_control1 >> 3),
828 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
829
830 REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
831 regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
832
833 if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
834 /*
835 * If diversity combining is enabled,
836 * set MAIN to LNA1 and ALT to LNA2 initially.
837 */
838 regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
839 regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
840 AR_PHY_9285_ANT_DIV_ALT_LNACONF));
841
842 regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
843 AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
844 regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
845 AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
846 regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
847 regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
848 REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
849 }
850 }
851
852 if (pModal->version >= 2) {
853 ob[0] = pModal->ob_0;
854 ob[1] = pModal->ob_1;
855 ob[2] = pModal->ob_2;
856 ob[3] = pModal->ob_3;
857 ob[4] = pModal->ob_4;
858
859 db1[0] = pModal->db1_0;
860 db1[1] = pModal->db1_1;
861 db1[2] = pModal->db1_2;
862 db1[3] = pModal->db1_3;
863 db1[4] = pModal->db1_4;
864
865 db2[0] = pModal->db2_0;
866 db2[1] = pModal->db2_1;
867 db2[2] = pModal->db2_2;
868 db2[3] = pModal->db2_3;
869 db2[4] = pModal->db2_4;
870 } else if (pModal->version == 1) {
871 ob[0] = pModal->ob_0;
872 ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
873 db1[0] = pModal->db1_0;
874 db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
875 db2[0] = pModal->db2_0;
876 db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
877 } else {
878 int i;
879
880 for (i = 0; i < 5; i++) {
881 ob[i] = pModal->ob_0;
882 db1[i] = pModal->db1_0;
883 db2[i] = pModal->db1_0;
884 }
885 }
886
887 ENABLE_REG_RMW_BUFFER(ah);
888 if (AR_SREV_9271(ah)) {
889 ath9k_hw_analog_shift_rmw(ah,
890 AR9285_AN_RF2G3,
891 AR9271_AN_RF2G3_OB_cck,
892 AR9271_AN_RF2G3_OB_cck_S,
893 ob[0]);
894 ath9k_hw_analog_shift_rmw(ah,
895 AR9285_AN_RF2G3,
896 AR9271_AN_RF2G3_OB_psk,
897 AR9271_AN_RF2G3_OB_psk_S,
898 ob[1]);
899 ath9k_hw_analog_shift_rmw(ah,
900 AR9285_AN_RF2G3,
901 AR9271_AN_RF2G3_OB_qam,
902 AR9271_AN_RF2G3_OB_qam_S,
903 ob[2]);
904 ath9k_hw_analog_shift_rmw(ah,
905 AR9285_AN_RF2G3,
906 AR9271_AN_RF2G3_DB_1,
907 AR9271_AN_RF2G3_DB_1_S,
908 db1[0]);
909 ath9k_hw_analog_shift_rmw(ah,
910 AR9285_AN_RF2G4,
911 AR9271_AN_RF2G4_DB_2,
912 AR9271_AN_RF2G4_DB_2_S,
913 db2[0]);
914 } else {
915 ath9k_hw_analog_shift_rmw(ah,
916 AR9285_AN_RF2G3,
917 AR9285_AN_RF2G3_OB_0,
918 AR9285_AN_RF2G3_OB_0_S,
919 ob[0]);
920 ath9k_hw_analog_shift_rmw(ah,
921 AR9285_AN_RF2G3,
922 AR9285_AN_RF2G3_OB_1,
923 AR9285_AN_RF2G3_OB_1_S,
924 ob[1]);
925 ath9k_hw_analog_shift_rmw(ah,
926 AR9285_AN_RF2G3,
927 AR9285_AN_RF2G3_OB_2,
928 AR9285_AN_RF2G3_OB_2_S,
929 ob[2]);
930 ath9k_hw_analog_shift_rmw(ah,
931 AR9285_AN_RF2G3,
932 AR9285_AN_RF2G3_OB_3,
933 AR9285_AN_RF2G3_OB_3_S,
934 ob[3]);
935 ath9k_hw_analog_shift_rmw(ah,
936 AR9285_AN_RF2G3,
937 AR9285_AN_RF2G3_OB_4,
938 AR9285_AN_RF2G3_OB_4_S,
939 ob[4]);
940
941 ath9k_hw_analog_shift_rmw(ah,
942 AR9285_AN_RF2G3,
943 AR9285_AN_RF2G3_DB1_0,
944 AR9285_AN_RF2G3_DB1_0_S,
945 db1[0]);
946 ath9k_hw_analog_shift_rmw(ah,
947 AR9285_AN_RF2G3,
948 AR9285_AN_RF2G3_DB1_1,
949 AR9285_AN_RF2G3_DB1_1_S,
950 db1[1]);
951 ath9k_hw_analog_shift_rmw(ah,
952 AR9285_AN_RF2G3,
953 AR9285_AN_RF2G3_DB1_2,
954 AR9285_AN_RF2G3_DB1_2_S,
955 db1[2]);
956 ath9k_hw_analog_shift_rmw(ah,
957 AR9285_AN_RF2G4,
958 AR9285_AN_RF2G4_DB1_3,
959 AR9285_AN_RF2G4_DB1_3_S,
960 db1[3]);
961 ath9k_hw_analog_shift_rmw(ah,
962 AR9285_AN_RF2G4,
963 AR9285_AN_RF2G4_DB1_4,
964 AR9285_AN_RF2G4_DB1_4_S, db1[4]);
965
966 ath9k_hw_analog_shift_rmw(ah,
967 AR9285_AN_RF2G4,
968 AR9285_AN_RF2G4_DB2_0,
969 AR9285_AN_RF2G4_DB2_0_S,
970 db2[0]);
971 ath9k_hw_analog_shift_rmw(ah,
972 AR9285_AN_RF2G4,
973 AR9285_AN_RF2G4_DB2_1,
974 AR9285_AN_RF2G4_DB2_1_S,
975 db2[1]);
976 ath9k_hw_analog_shift_rmw(ah,
977 AR9285_AN_RF2G4,
978 AR9285_AN_RF2G4_DB2_2,
979 AR9285_AN_RF2G4_DB2_2_S,
980 db2[2]);
981 ath9k_hw_analog_shift_rmw(ah,
982 AR9285_AN_RF2G4,
983 AR9285_AN_RF2G4_DB2_3,
984 AR9285_AN_RF2G4_DB2_3_S,
985 db2[3]);
986 ath9k_hw_analog_shift_rmw(ah,
987 AR9285_AN_RF2G4,
988 AR9285_AN_RF2G4_DB2_4,
989 AR9285_AN_RF2G4_DB2_4_S,
990 db2[4]);
991 }
992 REG_RMW_BUFFER_FLUSH(ah);
993
994 ENABLE_REG_RMW_BUFFER(ah);
995 REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
996 pModal->switchSettling);
997 REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
998 pModal->adcDesiredSize);
999
1000 REG_RMW(ah, AR_PHY_RF_CTL4,
1001 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1002 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1003 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
1004 SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON), 0);
1005
1006 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1007 pModal->txEndToRxOn);
1008
1009 if (AR_SREV_9271_10(ah))
1010 REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1011 pModal->txEndToRxOn);
1012 REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1013 pModal->thresh62);
1014 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1015 pModal->thresh62);
1016
1017 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1018 AR5416_EEP_MINOR_VER_2) {
1019 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1020 pModal->txFrameToDataStart);
1021 REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1022 pModal->txFrameToPaOn);
1023 }
1024
1025 if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1026 AR5416_EEP_MINOR_VER_3) {
1027 if (IS_CHAN_HT40(chan))
1028 REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1029 AR_PHY_SETTLING_SWITCH,
1030 pModal->swSettleHt40);
1031 }
1032
1033 REG_RMW_BUFFER_FLUSH(ah);
1034
1035 bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1036 EEP_4K_BB_DESIRED_SCALE_MASK);
1037 if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1038 u32 pwrctrl, mask, clr;
1039
1040 mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1041 pwrctrl = mask * bb_desired_scale;
1042 clr = mask * 0x1f;
1043 ENABLE_REG_RMW_BUFFER(ah);
1044 REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1045 REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1046 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1047
1048 mask = BIT(0)|BIT(5)|BIT(15);
1049 pwrctrl = mask * bb_desired_scale;
1050 clr = mask * 0x1f;
1051 REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1052
1053 mask = BIT(0)|BIT(5);
1054 pwrctrl = mask * bb_desired_scale;
1055 clr = mask * 0x1f;
1056 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1057 REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1058 REG_RMW_BUFFER_FLUSH(ah);
1059 }
1060 }
1061
1062 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1063 {
1064 return ah->eeprom.map4k.modalHeader.spurChans[i].spurChan;
1065 }
1066
1067 const struct eeprom_ops eep_4k_ops = {
1068 .check_eeprom = ath9k_hw_4k_check_eeprom,
1069 .get_eeprom = ath9k_hw_4k_get_eeprom,
1070 .fill_eeprom = ath9k_hw_4k_fill_eeprom,
1071 .dump_eeprom = ath9k_hw_4k_dump_eeprom,
1072 .get_eeprom_ver = ath9k_hw_4k_get_eeprom_ver,
1073 .get_eeprom_rev = ath9k_hw_4k_get_eeprom_rev,
1074 .set_board_values = ath9k_hw_4k_set_board_values,
1075 .set_txpower = ath9k_hw_4k_set_txpower,
1076 .get_spur_channel = ath9k_hw_4k_get_spur_channel
1077 };
This page took 0.128093 seconds and 5 git commands to generate.