iwlwifi: change the Intel Wireless email address
[deliverable/linux.git] / drivers / net / wireless / intel / iwlwifi / dvm / commands.h
1 /******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 * Intel Linux Wireless <linuxwifi@intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63 /*
64 * Please use this file (commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use dev.h for driver implementation definitions.
67 */
68
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
71
72 #include <linux/ieee80211.h>
73 #include <linux/types.h>
74
75
76 enum {
77 REPLY_ALIVE = 0x1,
78 REPLY_ERROR = 0x2,
79 REPLY_ECHO = 0x3, /* test command */
80
81 /* RXON and QOS commands */
82 REPLY_RXON = 0x10,
83 REPLY_RXON_ASSOC = 0x11,
84 REPLY_QOS_PARAM = 0x13,
85 REPLY_RXON_TIMING = 0x14,
86
87 /* Multi-Station support */
88 REPLY_ADD_STA = 0x18,
89 REPLY_REMOVE_STA = 0x19,
90 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
91 REPLY_TXFIFO_FLUSH = 0x1e,
92
93 /* Security */
94 REPLY_WEPKEY = 0x20,
95
96 /* RX, TX, LEDs */
97 REPLY_TX = 0x1c,
98 REPLY_LEDS_CMD = 0x48,
99 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100
101 /* WiMAX coexistence */
102 COEX_PRIORITY_TABLE_CMD = 0x5a,
103 COEX_MEDIUM_NOTIFICATION = 0x5b,
104 COEX_EVENT_CMD = 0x5c,
105
106 /* Calibration */
107 TEMPERATURE_NOTIFICATION = 0x62,
108 CALIBRATION_CFG_CMD = 0x65,
109 CALIBRATION_RES_NOTIFICATION = 0x66,
110 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111
112 /* 802.11h related */
113 REPLY_QUIET_CMD = 0x71, /* not used */
114 REPLY_CHANNEL_SWITCH = 0x72,
115 CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118
119 /* Power Management */
120 POWER_TABLE_CMD = 0x77,
121 PM_SLEEP_NOTIFICATION = 0x7A,
122 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123
124 /* Scan commands and notifications */
125 REPLY_SCAN_CMD = 0x80,
126 REPLY_SCAN_ABORT_CMD = 0x81,
127 SCAN_START_NOTIFICATION = 0x82,
128 SCAN_RESULTS_NOTIFICATION = 0x83,
129 SCAN_COMPLETE_NOTIFICATION = 0x84,
130
131 /* IBSS/AP commands */
132 BEACON_NOTIFICATION = 0x90,
133 REPLY_TX_BEACON = 0x91,
134 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
135
136 /* Miscellaneous commands */
137 REPLY_TX_POWER_DBM_CMD = 0x95,
138 QUIET_NOTIFICATION = 0x96, /* not used */
139 REPLY_TX_PWR_TABLE_CMD = 0x97,
140 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
141 TX_ANT_CONFIGURATION_CMD = 0x98,
142 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
143
144 /* Bluetooth device coexistence config command */
145 REPLY_BT_CONFIG = 0x9b,
146
147 /* Statistics */
148 REPLY_STATISTICS_CMD = 0x9c,
149 STATISTICS_NOTIFICATION = 0x9d,
150
151 /* RF-KILL commands and notifications */
152 REPLY_CARD_STATE_CMD = 0xa0,
153 CARD_STATE_NOTIFICATION = 0xa1,
154
155 /* Missed beacons notification */
156 MISSED_BEACONS_NOTIFICATION = 0xa2,
157
158 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 SENSITIVITY_CMD = 0xa8,
160 REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 REPLY_RX_PHY_CMD = 0xc0,
162 REPLY_RX_MPDU_CMD = 0xc1,
163 REPLY_RX = 0xc3,
164 REPLY_COMPRESSED_BA = 0xc5,
165
166 /* BT Coex */
167 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 REPLY_BT_COEX_PROT_ENV = 0xcd,
169 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170
171 /* PAN commands */
172 REPLY_WIPAN_PARAMS = 0xb2,
173 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
174 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
175 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
176 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
177 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
178 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181
182 REPLY_WOWLAN_PATTERNS = 0xe0,
183 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 REPLY_WOWLAN_GET_STATUS = 0xe5,
188 REPLY_D3_CONFIG = 0xd3,
189
190 REPLY_MAX = 0xff
191 };
192
193 /*
194 * Minimum number of queues. MAX_NUM is defined in hw specific files.
195 * Set the minimum to accommodate
196 * - 4 standard TX queues
197 * - the command queue
198 * - 4 PAN TX queues
199 * - the PAN multicast queue, and
200 * - the AUX (TX during scan dwell) queue.
201 */
202 #define IWL_MIN_NUM_QUEUES 11
203
204 /*
205 * Command queue depends on iPAN support.
206 */
207 #define IWL_DEFAULT_CMD_QUEUE_NUM 4
208 #define IWL_IPAN_CMD_QUEUE_NUM 9
209
210 #define IWL_TX_FIFO_BK 0 /* shared */
211 #define IWL_TX_FIFO_BE 1
212 #define IWL_TX_FIFO_VI 2 /* shared */
213 #define IWL_TX_FIFO_VO 3
214 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
215 #define IWL_TX_FIFO_BE_IPAN 4
216 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
217 #define IWL_TX_FIFO_VO_IPAN 5
218 /* re-uses the VO FIFO, uCode will properly flush/schedule */
219 #define IWL_TX_FIFO_AUX 5
220 #define IWL_TX_FIFO_UNUSED 255
221
222 #define IWLAGN_CMD_FIFO_NUM 7
223
224 /*
225 * This queue number is required for proper operation
226 * because the ucode will stop/start the scheduler as
227 * required.
228 */
229 #define IWL_IPAN_MCAST_QUEUE 8
230
231 /******************************************************************************
232 * (0)
233 * Commonly used structures and definitions:
234 * Command header, rate_n_flags, txpower
235 *
236 *****************************************************************************/
237
238 /**
239 * iwlagn rate_n_flags bit fields
240 *
241 * rate_n_flags format is used in following iwlagn commands:
242 * REPLY_RX (response only)
243 * REPLY_RX_MPDU (response only)
244 * REPLY_TX (both command and response)
245 * REPLY_TX_LINK_QUALITY_CMD
246 *
247 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248 * 2-0: 0) 6 Mbps
249 * 1) 12 Mbps
250 * 2) 18 Mbps
251 * 3) 24 Mbps
252 * 4) 36 Mbps
253 * 5) 48 Mbps
254 * 6) 54 Mbps
255 * 7) 60 Mbps
256 *
257 * 4-3: 0) Single stream (SISO)
258 * 1) Dual stream (MIMO)
259 * 2) Triple stream (MIMO)
260 *
261 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
262 *
263 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264 * 3-0: 0xD) 6 Mbps
265 * 0xF) 9 Mbps
266 * 0x5) 12 Mbps
267 * 0x7) 18 Mbps
268 * 0x9) 24 Mbps
269 * 0xB) 36 Mbps
270 * 0x1) 48 Mbps
271 * 0x3) 54 Mbps
272 *
273 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274 * 6-0: 10) 1 Mbps
275 * 20) 2 Mbps
276 * 55) 5.5 Mbps
277 * 110) 11 Mbps
278 */
279 #define RATE_MCS_CODE_MSK 0x7
280 #define RATE_MCS_SPATIAL_POS 3
281 #define RATE_MCS_SPATIAL_MSK 0x18
282 #define RATE_MCS_HT_DUP_POS 5
283 #define RATE_MCS_HT_DUP_MSK 0x20
284 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285 #define RATE_MCS_RATE_MSK 0xff
286
287 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288 #define RATE_MCS_FLAGS_POS 8
289 #define RATE_MCS_HT_POS 8
290 #define RATE_MCS_HT_MSK 0x100
291
292 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
293 #define RATE_MCS_CCK_POS 9
294 #define RATE_MCS_CCK_MSK 0x200
295
296 /* Bit 10: (1) Use Green Field preamble */
297 #define RATE_MCS_GF_POS 10
298 #define RATE_MCS_GF_MSK 0x400
299
300 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301 #define RATE_MCS_HT40_POS 11
302 #define RATE_MCS_HT40_MSK 0x800
303
304 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305 #define RATE_MCS_DUP_POS 12
306 #define RATE_MCS_DUP_MSK 0x1000
307
308 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309 #define RATE_MCS_SGI_POS 13
310 #define RATE_MCS_SGI_MSK 0x2000
311
312 /**
313 * rate_n_flags Tx antenna masks
314 * 4965 has 2 transmitters
315 * 5100 has 1 transmitter B
316 * 5150 has 1 transmitter A
317 * 5300 has 3 transmitters
318 * 5350 has 3 transmitters
319 * bit14:16
320 */
321 #define RATE_MCS_ANT_POS 14
322 #define RATE_MCS_ANT_A_MSK 0x04000
323 #define RATE_MCS_ANT_B_MSK 0x08000
324 #define RATE_MCS_ANT_C_MSK 0x10000
325 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
326 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
327 #define RATE_ANT_NUM 3
328
329 #define POWER_TABLE_NUM_ENTRIES 33
330 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
331 #define POWER_TABLE_CCK_ENTRY 32
332
333 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
334 #define IWL_PWR_CCK_ENTRIES 2
335
336 /**
337 * struct tx_power_dual_stream
338 *
339 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
340 *
341 * Same format as iwl_tx_power_dual_stream, but __le32
342 */
343 struct tx_power_dual_stream {
344 __le32 dw;
345 } __packed;
346
347 /**
348 * Command REPLY_TX_POWER_DBM_CMD = 0x98
349 * struct iwlagn_tx_power_dbm_cmd
350 */
351 #define IWLAGN_TX_POWER_AUTO 0x7f
352 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
353
354 struct iwlagn_tx_power_dbm_cmd {
355 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
356 u8 flags;
357 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
358 u8 reserved;
359 } __packed;
360
361 /**
362 * Command TX_ANT_CONFIGURATION_CMD = 0x98
363 * This command is used to configure valid Tx antenna.
364 * By default uCode concludes the valid antenna according to the radio flavor.
365 * This command enables the driver to override/modify this conclusion.
366 */
367 struct iwl_tx_ant_config_cmd {
368 __le32 valid;
369 } __packed;
370
371 /******************************************************************************
372 * (0a)
373 * Alive and Error Commands & Responses:
374 *
375 *****************************************************************************/
376
377 #define UCODE_VALID_OK cpu_to_le32(0x1)
378
379 /**
380 * REPLY_ALIVE = 0x1 (response only, not a command)
381 *
382 * uCode issues this "alive" notification once the runtime image is ready
383 * to receive commands from the driver. This is the *second* "alive"
384 * notification that the driver will receive after rebooting uCode;
385 * this "alive" is indicated by subtype field != 9.
386 *
387 * See comments documenting "BSM" (bootstrap state machine).
388 *
389 * This response includes two pointers to structures within the device's
390 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
391 *
392 * 1) log_event_table_ptr indicates base of the event log. This traces
393 * a 256-entry history of uCode execution within a circular buffer.
394 * Its header format is:
395 *
396 * __le32 log_size; log capacity (in number of entries)
397 * __le32 type; (1) timestamp with each entry, (0) no timestamp
398 * __le32 wraps; # times uCode has wrapped to top of circular buffer
399 * __le32 write_index; next circular buffer entry that uCode would fill
400 *
401 * The header is followed by the circular buffer of log entries. Entries
402 * with timestamps have the following format:
403 *
404 * __le32 event_id; range 0 - 1500
405 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
406 * __le32 data; event_id-specific data value
407 *
408 * Entries without timestamps contain only event_id and data.
409 *
410 *
411 * 2) error_event_table_ptr indicates base of the error log. This contains
412 * information about any uCode error that occurs. For agn, the format
413 * of the error log is defined by struct iwl_error_event_table.
414 *
415 * The Linux driver can print both logs to the system log when a uCode error
416 * occurs.
417 */
418
419 /*
420 * Note: This structure is read from the device with IO accesses,
421 * and the reading already does the endian conversion. As it is
422 * read with u32-sized accesses, any members with a different size
423 * need to be ordered correctly though!
424 */
425 struct iwl_error_event_table {
426 u32 valid; /* (nonzero) valid, (0) log is empty */
427 u32 error_id; /* type of error */
428 u32 pc; /* program counter */
429 u32 blink1; /* branch link */
430 u32 blink2; /* branch link */
431 u32 ilink1; /* interrupt link */
432 u32 ilink2; /* interrupt link */
433 u32 data1; /* error-specific data */
434 u32 data2; /* error-specific data */
435 u32 line; /* source code line of error */
436 u32 bcon_time; /* beacon timer */
437 u32 tsf_low; /* network timestamp function timer */
438 u32 tsf_hi; /* network timestamp function timer */
439 u32 gp1; /* GP1 timer register */
440 u32 gp2; /* GP2 timer register */
441 u32 gp3; /* GP3 timer register */
442 u32 ucode_ver; /* uCode version */
443 u32 hw_ver; /* HW Silicon version */
444 u32 brd_ver; /* HW board version */
445 u32 log_pc; /* log program counter */
446 u32 frame_ptr; /* frame pointer */
447 u32 stack_ptr; /* stack pointer */
448 u32 hcmd; /* last host command header */
449 u32 isr0; /* isr status register LMPM_NIC_ISR0:
450 * rxtx_flag */
451 u32 isr1; /* isr status register LMPM_NIC_ISR1:
452 * host_flag */
453 u32 isr2; /* isr status register LMPM_NIC_ISR2:
454 * enc_flag */
455 u32 isr3; /* isr status register LMPM_NIC_ISR3:
456 * time_flag */
457 u32 isr4; /* isr status register LMPM_NIC_ISR4:
458 * wico interrupt */
459 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
460 u32 wait_event; /* wait event() caller address */
461 u32 l2p_control; /* L2pControlField */
462 u32 l2p_duration; /* L2pDurationField */
463 u32 l2p_mhvalid; /* L2pMhValidBits */
464 u32 l2p_addr_match; /* L2pAddrMatchStat */
465 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
466 * (LMPM_PMG_SEL) */
467 u32 u_timestamp; /* indicate when the date and time of the
468 * compilation */
469 u32 flow_handler; /* FH read/write pointers, RX credit */
470 } __packed;
471
472 struct iwl_alive_resp {
473 u8 ucode_minor;
474 u8 ucode_major;
475 __le16 reserved1;
476 u8 sw_rev[8];
477 u8 ver_type;
478 u8 ver_subtype; /* not "9" for runtime alive */
479 __le16 reserved2;
480 __le32 log_event_table_ptr; /* SRAM address for event log */
481 __le32 error_event_table_ptr; /* SRAM address for error log */
482 __le32 timestamp;
483 __le32 is_valid;
484 } __packed;
485
486 /*
487 * REPLY_ERROR = 0x2 (response only, not a command)
488 */
489 struct iwl_error_resp {
490 __le32 error_type;
491 u8 cmd_id;
492 u8 reserved1;
493 __le16 bad_cmd_seq_num;
494 __le32 error_info;
495 __le64 timestamp;
496 } __packed;
497
498 /******************************************************************************
499 * (1)
500 * RXON Commands & Responses:
501 *
502 *****************************************************************************/
503
504 /*
505 * Rx config defines & structure
506 */
507 /* rx_config device types */
508 enum {
509 RXON_DEV_TYPE_AP = 1,
510 RXON_DEV_TYPE_ESS = 3,
511 RXON_DEV_TYPE_IBSS = 4,
512 RXON_DEV_TYPE_SNIFFER = 6,
513 RXON_DEV_TYPE_CP = 7,
514 RXON_DEV_TYPE_2STA = 8,
515 RXON_DEV_TYPE_P2P = 9,
516 };
517
518
519 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
520 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
521 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
522 #define RXON_RX_CHAIN_VALID_POS (1)
523 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
524 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
525 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
526 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
527 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
528 #define RXON_RX_CHAIN_CNT_POS (10)
529 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
530 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
531 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
532 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
533
534 /* rx_config flags */
535 /* band & modulation selection */
536 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
537 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
538 /* auto detection enable */
539 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
540 /* TGg protection when tx */
541 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
542 /* cck short slot & preamble */
543 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
544 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
545 /* antenna selection */
546 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
547 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
548 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
549 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
550 /* radar detection enable */
551 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
552 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
553 /* rx response to host with 8-byte TSF
554 * (according to ON_AIR deassertion) */
555 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
556
557
558 /* HT flags */
559 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
560 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
561
562 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
563
564 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
565 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
566
567 #define RXON_FLG_CHANNEL_MODE_POS (25)
568 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
569
570 /* channel mode */
571 enum {
572 CHANNEL_MODE_LEGACY = 0,
573 CHANNEL_MODE_PURE_40 = 1,
574 CHANNEL_MODE_MIXED = 2,
575 CHANNEL_MODE_RESERVED = 3,
576 };
577 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
578 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
579 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
580
581 /* CTS to self (if spec allows) flag */
582 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
583
584 /* rx_config filter flags */
585 /* accept all data frames */
586 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
587 /* pass control & management to host */
588 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
589 /* accept multi-cast */
590 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
591 /* don't decrypt uni-cast frames */
592 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
593 /* don't decrypt multi-cast frames */
594 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
595 /* STA is associated */
596 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
597 /* transfer to host non bssid beacons in associated state */
598 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
599
600 /**
601 * REPLY_RXON = 0x10 (command, has simple generic response)
602 *
603 * RXON tunes the radio tuner to a service channel, and sets up a number
604 * of parameters that are used primarily for Rx, but also for Tx operations.
605 *
606 * NOTE: When tuning to a new channel, driver must set the
607 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
608 * info within the device, including the station tables, tx retry
609 * rate tables, and txpower tables. Driver must build a new station
610 * table and txpower table before transmitting anything on the RXON
611 * channel.
612 *
613 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
614 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
615 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
616 */
617
618 struct iwl_rxon_cmd {
619 u8 node_addr[6];
620 __le16 reserved1;
621 u8 bssid_addr[6];
622 __le16 reserved2;
623 u8 wlap_bssid_addr[6];
624 __le16 reserved3;
625 u8 dev_type;
626 u8 air_propagation;
627 __le16 rx_chain;
628 u8 ofdm_basic_rates;
629 u8 cck_basic_rates;
630 __le16 assoc_id;
631 __le32 flags;
632 __le32 filter_flags;
633 __le16 channel;
634 u8 ofdm_ht_single_stream_basic_rates;
635 u8 ofdm_ht_dual_stream_basic_rates;
636 u8 ofdm_ht_triple_stream_basic_rates;
637 u8 reserved5;
638 __le16 acquisition_data;
639 __le16 reserved6;
640 } __packed;
641
642 /*
643 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
644 */
645 struct iwl_rxon_assoc_cmd {
646 __le32 flags;
647 __le32 filter_flags;
648 u8 ofdm_basic_rates;
649 u8 cck_basic_rates;
650 __le16 reserved1;
651 u8 ofdm_ht_single_stream_basic_rates;
652 u8 ofdm_ht_dual_stream_basic_rates;
653 u8 ofdm_ht_triple_stream_basic_rates;
654 u8 reserved2;
655 __le16 rx_chain_select_flags;
656 __le16 acquisition_data;
657 __le32 reserved3;
658 } __packed;
659
660 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
661 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
662
663 /*
664 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
665 */
666 struct iwl_rxon_time_cmd {
667 __le64 timestamp;
668 __le16 beacon_interval;
669 __le16 atim_window;
670 __le32 beacon_init_val;
671 __le16 listen_interval;
672 u8 dtim_period;
673 u8 delta_cp_bss_tbtts;
674 } __packed;
675
676 /*
677 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
678 */
679 /**
680 * struct iwl5000_channel_switch_cmd
681 * @band: 0- 5.2GHz, 1- 2.4GHz
682 * @expect_beacon: 0- resume transmits after channel switch
683 * 1- wait for beacon to resume transmits
684 * @channel: new channel number
685 * @rxon_flags: Rx on flags
686 * @rxon_filter_flags: filtering parameters
687 * @switch_time: switch time in extended beacon format
688 * @reserved: reserved bytes
689 */
690 struct iwl5000_channel_switch_cmd {
691 u8 band;
692 u8 expect_beacon;
693 __le16 channel;
694 __le32 rxon_flags;
695 __le32 rxon_filter_flags;
696 __le32 switch_time;
697 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
698 } __packed;
699
700 /**
701 * struct iwl6000_channel_switch_cmd
702 * @band: 0- 5.2GHz, 1- 2.4GHz
703 * @expect_beacon: 0- resume transmits after channel switch
704 * 1- wait for beacon to resume transmits
705 * @channel: new channel number
706 * @rxon_flags: Rx on flags
707 * @rxon_filter_flags: filtering parameters
708 * @switch_time: switch time in extended beacon format
709 * @reserved: reserved bytes
710 */
711 struct iwl6000_channel_switch_cmd {
712 u8 band;
713 u8 expect_beacon;
714 __le16 channel;
715 __le32 rxon_flags;
716 __le32 rxon_filter_flags;
717 __le32 switch_time;
718 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
719 } __packed;
720
721 /*
722 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
723 */
724 struct iwl_csa_notification {
725 __le16 band;
726 __le16 channel;
727 __le32 status; /* 0 - OK, 1 - fail */
728 } __packed;
729
730 /******************************************************************************
731 * (2)
732 * Quality-of-Service (QOS) Commands & Responses:
733 *
734 *****************************************************************************/
735
736 /**
737 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
738 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
739 *
740 * @cw_min: Contention window, start value in numbers of slots.
741 * Should be a power-of-2, minus 1. Device's default is 0x0f.
742 * @cw_max: Contention window, max value in numbers of slots.
743 * Should be a power-of-2, minus 1. Device's default is 0x3f.
744 * @aifsn: Number of slots in Arbitration Interframe Space (before
745 * performing random backoff timing prior to Tx). Device default 1.
746 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
747 *
748 * Device will automatically increase contention window by (2*CW) + 1 for each
749 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
750 * value, to cap the CW value.
751 */
752 struct iwl_ac_qos {
753 __le16 cw_min;
754 __le16 cw_max;
755 u8 aifsn;
756 u8 reserved1;
757 __le16 edca_txop;
758 } __packed;
759
760 /* QoS flags defines */
761 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
762 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
763 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
764
765 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
766 #define AC_NUM 4
767
768 /*
769 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
770 *
771 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
772 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
773 */
774 struct iwl_qosparam_cmd {
775 __le32 qos_flags;
776 struct iwl_ac_qos ac[AC_NUM];
777 } __packed;
778
779 /******************************************************************************
780 * (3)
781 * Add/Modify Stations Commands & Responses:
782 *
783 *****************************************************************************/
784 /*
785 * Multi station support
786 */
787
788 /* Special, dedicated locations within device's station table */
789 #define IWL_AP_ID 0
790 #define IWL_AP_ID_PAN 1
791 #define IWL_STA_ID 2
792 #define IWLAGN_PAN_BCAST_ID 14
793 #define IWLAGN_BROADCAST_ID 15
794 #define IWLAGN_STATION_COUNT 16
795
796 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
797
798 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
799 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
800 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
801 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
802 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
803 #define STA_FLG_MAX_AGG_SIZE_POS (19)
804 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
805 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
806 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
807 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
808 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
809
810 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
811 #define STA_CONTROL_MODIFY_MSK 0x01
812
813 /* key flags __le16*/
814 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
815 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
816 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
817 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
818 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
819
820 #define STA_KEY_FLG_KEYID_POS 8
821 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
822 /* wep key is either from global key (0) or from station info array (1) */
823 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
824
825 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
826 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
827 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
828 #define STA_KEY_MAX_NUM 8
829 #define STA_KEY_MAX_NUM_PAN 16
830 /* must not match WEP_INVALID_OFFSET */
831 #define IWLAGN_HW_KEY_DEFAULT 0xfe
832
833 /* Flags indicate whether to modify vs. don't change various station params */
834 #define STA_MODIFY_KEY_MASK 0x01
835 #define STA_MODIFY_TID_DISABLE_TX 0x02
836 #define STA_MODIFY_TX_RATE_MSK 0x04
837 #define STA_MODIFY_ADDBA_TID_MSK 0x08
838 #define STA_MODIFY_DELBA_TID_MSK 0x10
839 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
840
841 /* agn */
842 struct iwl_keyinfo {
843 __le16 key_flags;
844 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
845 u8 reserved1;
846 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
847 u8 key_offset;
848 u8 reserved2;
849 u8 key[16]; /* 16-byte unicast decryption key */
850 __le64 tx_secur_seq_cnt;
851 __le64 hw_tkip_mic_rx_key;
852 __le64 hw_tkip_mic_tx_key;
853 } __packed;
854
855 /**
856 * struct sta_id_modify
857 * @addr[ETH_ALEN]: station's MAC address
858 * @sta_id: index of station in uCode's station table
859 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
860 *
861 * Driver selects unused table index when adding new station,
862 * or the index to a pre-existing station entry when modifying that station.
863 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
864 *
865 * modify_mask flags select which parameters to modify vs. leave alone.
866 */
867 struct sta_id_modify {
868 u8 addr[ETH_ALEN];
869 __le16 reserved1;
870 u8 sta_id;
871 u8 modify_mask;
872 __le16 reserved2;
873 } __packed;
874
875 /*
876 * REPLY_ADD_STA = 0x18 (command)
877 *
878 * The device contains an internal table of per-station information,
879 * with info on security keys, aggregation parameters, and Tx rates for
880 * initial Tx attempt and any retries (agn devices uses
881 * REPLY_TX_LINK_QUALITY_CMD,
882 *
883 * REPLY_ADD_STA sets up the table entry for one station, either creating
884 * a new entry, or modifying a pre-existing one.
885 *
886 * NOTE: RXON command (without "associated" bit set) wipes the station table
887 * clean. Moving into RF_KILL state does this also. Driver must set up
888 * new station table before transmitting anything on the RXON channel
889 * (except active scans or active measurements; those commands carry
890 * their own txpower/rate setup data).
891 *
892 * When getting started on a new channel, driver must set up the
893 * IWL_BROADCAST_ID entry (last entry in the table). For a client
894 * station in a BSS, once an AP is selected, driver sets up the AP STA
895 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
896 * are all that are needed for a BSS client station. If the device is
897 * used as AP, or in an IBSS network, driver must set up station table
898 * entries for all STAs in network, starting with index IWL_STA_ID.
899 */
900
901 struct iwl_addsta_cmd {
902 u8 mode; /* 1: modify existing, 0: add new station */
903 u8 reserved[3];
904 struct sta_id_modify sta;
905 struct iwl_keyinfo key;
906 __le32 station_flags; /* STA_FLG_* */
907 __le32 station_flags_msk; /* STA_FLG_* */
908
909 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
910 * corresponding to bit (e.g. bit 5 controls TID 5).
911 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
912 __le16 tid_disable_tx;
913 __le16 legacy_reserved;
914
915 /* TID for which to add block-ack support.
916 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
917 u8 add_immediate_ba_tid;
918
919 /* TID for which to remove block-ack support.
920 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
921 u8 remove_immediate_ba_tid;
922
923 /* Starting Sequence Number for added block-ack support.
924 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
925 __le16 add_immediate_ba_ssn;
926
927 /*
928 * Number of packets OK to transmit to station even though
929 * it is asleep -- used to synchronise PS-poll and u-APSD
930 * responses while ucode keeps track of STA sleep state.
931 */
932 __le16 sleep_tx_count;
933
934 __le16 reserved2;
935 } __packed;
936
937
938 #define ADD_STA_SUCCESS_MSK 0x1
939 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
940 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
941 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
942 /*
943 * REPLY_ADD_STA = 0x18 (response)
944 */
945 struct iwl_add_sta_resp {
946 u8 status; /* ADD_STA_* */
947 } __packed;
948
949 #define REM_STA_SUCCESS_MSK 0x1
950 /*
951 * REPLY_REM_STA = 0x19 (response)
952 */
953 struct iwl_rem_sta_resp {
954 u8 status;
955 } __packed;
956
957 /*
958 * REPLY_REM_STA = 0x19 (command)
959 */
960 struct iwl_rem_sta_cmd {
961 u8 num_sta; /* number of removed stations */
962 u8 reserved[3];
963 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
964 u8 reserved2[2];
965 } __packed;
966
967
968 /* WiFi queues mask */
969 #define IWL_SCD_BK_MSK BIT(0)
970 #define IWL_SCD_BE_MSK BIT(1)
971 #define IWL_SCD_VI_MSK BIT(2)
972 #define IWL_SCD_VO_MSK BIT(3)
973 #define IWL_SCD_MGMT_MSK BIT(3)
974
975 /* PAN queues mask */
976 #define IWL_PAN_SCD_BK_MSK BIT(4)
977 #define IWL_PAN_SCD_BE_MSK BIT(5)
978 #define IWL_PAN_SCD_VI_MSK BIT(6)
979 #define IWL_PAN_SCD_VO_MSK BIT(7)
980 #define IWL_PAN_SCD_MGMT_MSK BIT(7)
981 #define IWL_PAN_SCD_MULTICAST_MSK BIT(8)
982
983 #define IWL_AGG_TX_QUEUE_MSK 0xffc00
984
985 #define IWL_DROP_ALL BIT(1)
986
987 /*
988 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
989 *
990 * When using full FIFO flush this command checks the scheduler HW block WR/RD
991 * pointers to check if all the frames were transferred by DMA into the
992 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
993 * empty the command can finish.
994 * This command is used to flush the TXFIFO from transmit commands, it may
995 * operate on single or multiple queues, the command queue can't be flushed by
996 * this command. The command response is returned when all the queue flush
997 * operations are done. Each TX command flushed return response with the FLUSH
998 * status set in the TX response status. When FIFO flush operation is used,
999 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1000 * are set.
1001 *
1002 * @queue_control: bit mask for which queues to flush
1003 * @flush_control: flush controls
1004 * 0: Dump single MSDU
1005 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1006 * 2: Dump all FIFO
1007 */
1008 struct iwl_txfifo_flush_cmd_v3 {
1009 __le32 queue_control;
1010 __le16 flush_control;
1011 __le16 reserved;
1012 } __packed;
1013
1014 struct iwl_txfifo_flush_cmd_v2 {
1015 __le16 queue_control;
1016 __le16 flush_control;
1017 } __packed;
1018
1019 /*
1020 * REPLY_WEP_KEY = 0x20
1021 */
1022 struct iwl_wep_key {
1023 u8 key_index;
1024 u8 key_offset;
1025 u8 reserved1[2];
1026 u8 key_size;
1027 u8 reserved2[3];
1028 u8 key[16];
1029 } __packed;
1030
1031 struct iwl_wep_cmd {
1032 u8 num_keys;
1033 u8 global_key_type;
1034 u8 flags;
1035 u8 reserved;
1036 struct iwl_wep_key key[0];
1037 } __packed;
1038
1039 #define WEP_KEY_WEP_TYPE 1
1040 #define WEP_KEYS_MAX 4
1041 #define WEP_INVALID_OFFSET 0xff
1042 #define WEP_KEY_LEN_64 5
1043 #define WEP_KEY_LEN_128 13
1044
1045 /******************************************************************************
1046 * (4)
1047 * Rx Responses:
1048 *
1049 *****************************************************************************/
1050
1051 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1052 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1053
1054 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1055 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1056 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1057 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1058 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
1059 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1060 #define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
1061
1062 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1063 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1064 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1065 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1066 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1067 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1068
1069 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1070 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1071
1072 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1073 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1074 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1075 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1076 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1077
1078 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1079 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1080 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1081 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1082
1083
1084 #define IWLAGN_RX_RES_PHY_CNT 8
1085 #define IWLAGN_RX_RES_AGC_IDX 1
1086 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1087 #define IWLAGN_RX_RES_RSSI_C_IDX 3
1088 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1089 #define IWLAGN_OFDM_AGC_BIT_POS 9
1090 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1091 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1092 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1093 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1094 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1095 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1096 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1097 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1098 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1099
1100 struct iwlagn_non_cfg_phy {
1101 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1102 } __packed;
1103
1104
1105 /*
1106 * REPLY_RX = 0xc3 (response only, not a command)
1107 * Used only for legacy (non 11n) frames.
1108 */
1109 struct iwl_rx_phy_res {
1110 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1111 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1112 u8 stat_id; /* configurable DSP phy data set ID */
1113 u8 reserved1;
1114 __le64 timestamp; /* TSF at on air rise */
1115 __le32 beacon_time_stamp; /* beacon at on-air rise */
1116 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1117 __le16 channel; /* channel number */
1118 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1119 __le32 rate_n_flags; /* RATE_MCS_* */
1120 __le16 byte_count; /* frame's byte-count */
1121 __le16 frame_time; /* frame's time on the air */
1122 } __packed;
1123
1124 struct iwl_rx_mpdu_res_start {
1125 __le16 byte_count;
1126 __le16 reserved;
1127 } __packed;
1128
1129
1130 /******************************************************************************
1131 * (5)
1132 * Tx Commands & Responses:
1133 *
1134 * Driver must place each REPLY_TX command into one of the prioritized Tx
1135 * queues in host DRAM, shared between driver and device (see comments for
1136 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1137 * are preparing to transmit, the device pulls the Tx command over the PCI
1138 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1139 * from which data will be transmitted.
1140 *
1141 * uCode handles all timing and protocol related to control frames
1142 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1143 * handle reception of block-acks; uCode updates the host driver via
1144 * REPLY_COMPRESSED_BA.
1145 *
1146 * uCode handles retrying Tx when an ACK is expected but not received.
1147 * This includes trying lower data rates than the one requested in the Tx
1148 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1149 *
1150 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1151 * This command must be executed after every RXON command, before Tx can occur.
1152 *****************************************************************************/
1153
1154 /* REPLY_TX Tx flags field */
1155
1156 /*
1157 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1158 * before this frame. if CTS-to-self required check
1159 * RXON_FLG_SELF_CTS_EN status.
1160 */
1161 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1162
1163 /* 1: Expect ACK from receiving station
1164 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1165 * Set this for unicast frames, but not broadcast/multicast. */
1166 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1167
1168 /* For agn devices:
1169 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1170 * Tx command's initial_rate_index indicates first rate to try;
1171 * uCode walks through table for additional Tx attempts.
1172 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1173 * This rate will be used for all Tx attempts; it will not be scaled. */
1174 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1175
1176 /* 1: Expect immediate block-ack.
1177 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1178 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1179
1180 /* Tx antenna selection field; reserved (0) for agn devices. */
1181 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1182
1183 /* 1: Ignore Bluetooth priority for this frame.
1184 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1185 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1186
1187 /* 1: uCode overrides sequence control field in MAC header.
1188 * 0: Driver provides sequence control field in MAC header.
1189 * Set this for management frames, non-QOS data frames, non-unicast frames,
1190 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1191 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1192
1193 /* 1: This frame is non-last MPDU; more fragments are coming.
1194 * 0: Last fragment, or not using fragmentation. */
1195 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1196
1197 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1198 * 0: No TSF required in outgoing frame.
1199 * Set this for transmitting beacons and probe responses. */
1200 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1201
1202 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1203 * alignment of frame's payload data field.
1204 * 0: No pad
1205 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1206 * field (but not both). Driver must align frame data (i.e. data following
1207 * MAC header) to DWORD boundary. */
1208 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1209
1210 /* accelerate aggregation support
1211 * 0 - no CCMP encryption; 1 - CCMP encryption */
1212 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1213
1214 /* HCCA-AP - disable duration overwriting. */
1215 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1216
1217
1218 /*
1219 * TX command security control
1220 */
1221 #define TX_CMD_SEC_WEP 0x01
1222 #define TX_CMD_SEC_CCM 0x02
1223 #define TX_CMD_SEC_TKIP 0x03
1224 #define TX_CMD_SEC_MSK 0x03
1225 #define TX_CMD_SEC_SHIFT 6
1226 #define TX_CMD_SEC_KEY128 0x08
1227
1228 /*
1229 * REPLY_TX = 0x1c (command)
1230 */
1231
1232 /*
1233 * 4965 uCode updates these Tx attempt count values in host DRAM.
1234 * Used for managing Tx retries when expecting block-acks.
1235 * Driver should set these fields to 0.
1236 */
1237 struct iwl_dram_scratch {
1238 u8 try_cnt; /* Tx attempts */
1239 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1240 __le16 reserved;
1241 } __packed;
1242
1243 struct iwl_tx_cmd {
1244 /*
1245 * MPDU byte count:
1246 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1247 * + 8 byte IV for CCM or TKIP (not used for WEP)
1248 * + Data payload
1249 * + 8-byte MIC (not used for CCM/WEP)
1250 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1251 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1252 * Range: 14-2342 bytes.
1253 */
1254 __le16 len;
1255
1256 /*
1257 * MPDU or MSDU byte count for next frame.
1258 * Used for fragmentation and bursting, but not 11n aggregation.
1259 * Same as "len", but for next frame. Set to 0 if not applicable.
1260 */
1261 __le16 next_frame_len;
1262
1263 __le32 tx_flags; /* TX_CMD_FLG_* */
1264
1265 /* uCode may modify this field of the Tx command (in host DRAM!).
1266 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1267 struct iwl_dram_scratch scratch;
1268
1269 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1270 __le32 rate_n_flags; /* RATE_MCS_* */
1271
1272 /* Index of destination station in uCode's station table */
1273 u8 sta_id;
1274
1275 /* Type of security encryption: CCM or TKIP */
1276 u8 sec_ctl; /* TX_CMD_SEC_* */
1277
1278 /*
1279 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1280 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1281 * data frames, this field may be used to selectively reduce initial
1282 * rate (via non-0 value) for special frames (e.g. management), while
1283 * still supporting rate scaling for all frames.
1284 */
1285 u8 initial_rate_index;
1286 u8 reserved;
1287 u8 key[16];
1288 __le16 next_frame_flags;
1289 __le16 reserved2;
1290 union {
1291 __le32 life_time;
1292 __le32 attempt;
1293 } stop_time;
1294
1295 /* Host DRAM physical address pointer to "scratch" in this command.
1296 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1297 __le32 dram_lsb_ptr;
1298 u8 dram_msb_ptr;
1299
1300 u8 rts_retry_limit; /*byte 50 */
1301 u8 data_retry_limit; /*byte 51 */
1302 u8 tid_tspec;
1303 union {
1304 __le16 pm_frame_timeout;
1305 __le16 attempt_duration;
1306 } timeout;
1307
1308 /*
1309 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1310 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1311 */
1312 __le16 driver_txop;
1313
1314 /*
1315 * MAC header goes here, followed by 2 bytes padding if MAC header
1316 * length is 26 or 30 bytes, followed by payload data
1317 */
1318 u8 payload[0];
1319 struct ieee80211_hdr hdr[0];
1320 } __packed;
1321
1322 /*
1323 * TX command response is sent after *agn* transmission attempts.
1324 *
1325 * both postpone and abort status are expected behavior from uCode. there is
1326 * no special operation required from driver; except for RFKILL_FLUSH,
1327 * which required tx flush host command to flush all the tx frames in queues
1328 */
1329 enum {
1330 TX_STATUS_SUCCESS = 0x01,
1331 TX_STATUS_DIRECT_DONE = 0x02,
1332 /* postpone TX */
1333 TX_STATUS_POSTPONE_DELAY = 0x40,
1334 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1335 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1336 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1337 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1338 /* abort TX */
1339 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1340 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1341 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1342 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1343 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1344 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1345 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1346 TX_STATUS_FAIL_DEST_PS = 0x88,
1347 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1348 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1349 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1350 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1351 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1352 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1353 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1354 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1355 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1356 };
1357
1358 #define TX_PACKET_MODE_REGULAR 0x0000
1359 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1360 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1361
1362 enum {
1363 TX_POWER_PA_NOT_ACTIVE = 0x0,
1364 };
1365
1366 enum {
1367 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1368 TX_STATUS_DELAY_MSK = 0x00000040,
1369 TX_STATUS_ABORT_MSK = 0x00000080,
1370 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1371 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1372 TX_RESERVED = 0x00780000, /* bits 19:22 */
1373 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1374 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1375 };
1376
1377 /* *******************************
1378 * TX aggregation status
1379 ******************************* */
1380
1381 enum {
1382 AGG_TX_STATE_TRANSMITTED = 0x00,
1383 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1384 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1385 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1386 AGG_TX_STATE_ABORT_MSK = 0x08,
1387 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1388 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1389 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1390 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1391 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1392 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1393 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1394 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1395 };
1396
1397 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1398 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1399 #define AGG_TX_TRY_POS 12
1400
1401 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1402 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1403 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1404
1405 /* # tx attempts for first frame in aggregation */
1406 #define AGG_TX_STATE_TRY_CNT_POS 12
1407 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1408
1409 /* Command ID and sequence number of Tx command for this frame */
1410 #define AGG_TX_STATE_SEQ_NUM_POS 16
1411 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1412
1413 /*
1414 * REPLY_TX = 0x1c (response)
1415 *
1416 * This response may be in one of two slightly different formats, indicated
1417 * by the frame_count field:
1418 *
1419 * 1) No aggregation (frame_count == 1). This reports Tx results for
1420 * a single frame. Multiple attempts, at various bit rates, may have
1421 * been made for this frame.
1422 *
1423 * 2) Aggregation (frame_count > 1). This reports Tx results for
1424 * 2 or more frames that used block-acknowledge. All frames were
1425 * transmitted at same rate. Rate scaling may have been used if first
1426 * frame in this new agg block failed in previous agg block(s).
1427 *
1428 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1429 * block-ack has not been received by the time the agn device records
1430 * this status.
1431 * This status relates to reasons the tx might have been blocked or aborted
1432 * within the sending station (this agn device), rather than whether it was
1433 * received successfully by the destination station.
1434 */
1435 struct agg_tx_status {
1436 __le16 status;
1437 __le16 sequence;
1438 } __packed;
1439
1440 /*
1441 * definitions for initial rate index field
1442 * bits [3:0] initial rate index
1443 * bits [6:4] rate table color, used for the initial rate
1444 * bit-7 invalid rate indication
1445 * i.e. rate was not chosen from rate table
1446 * or rate table color was changed during frame retries
1447 * refer tlc rate info
1448 */
1449
1450 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1451 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1452 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1453 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1454 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1455
1456 /* refer to ra_tid */
1457 #define IWLAGN_TX_RES_TID_POS 0
1458 #define IWLAGN_TX_RES_TID_MSK 0x0f
1459 #define IWLAGN_TX_RES_RA_POS 4
1460 #define IWLAGN_TX_RES_RA_MSK 0xf0
1461
1462 struct iwlagn_tx_resp {
1463 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1464 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1465 u8 failure_rts; /* # failures due to unsuccessful RTS */
1466 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1467
1468 /* For non-agg: Rate at which frame was successful.
1469 * For agg: Rate at which all frames were transmitted. */
1470 __le32 rate_n_flags; /* RATE_MCS_* */
1471
1472 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1473 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1474 __le16 wireless_media_time; /* uSecs */
1475
1476 u8 pa_status; /* RF power amplifier measurement (not used) */
1477 u8 pa_integ_res_a[3];
1478 u8 pa_integ_res_b[3];
1479 u8 pa_integ_res_C[3];
1480
1481 __le32 tfd_info;
1482 __le16 seq_ctl;
1483 __le16 byte_cnt;
1484 u8 tlc_info;
1485 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1486 __le16 frame_ctrl;
1487 /*
1488 * For non-agg: frame status TX_STATUS_*
1489 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1490 * fields follow this one, up to frame_count.
1491 * Bit fields:
1492 * 11- 0: AGG_TX_STATE_* status code
1493 * 15-12: Retry count for 1st frame in aggregation (retries
1494 * occur if tx failed for this frame when it was a
1495 * member of a previous aggregation block). If rate
1496 * scaling is used, retry count indicates the rate
1497 * table entry used for all frames in the new agg.
1498 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1499 */
1500 struct agg_tx_status status; /* TX status (in aggregation -
1501 * status of 1st frame) */
1502 } __packed;
1503 /*
1504 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1505 *
1506 * Reports Block-Acknowledge from recipient station
1507 */
1508 struct iwl_compressed_ba_resp {
1509 __le32 sta_addr_lo32;
1510 __le16 sta_addr_hi16;
1511 __le16 reserved;
1512
1513 /* Index of recipient (BA-sending) station in uCode's station table */
1514 u8 sta_id;
1515 u8 tid;
1516 __le16 seq_ctl;
1517 __le64 bitmap;
1518 __le16 scd_flow;
1519 __le16 scd_ssn;
1520 u8 txed; /* number of frames sent */
1521 u8 txed_2_done; /* number of frames acked */
1522 __le16 reserved1;
1523 } __packed;
1524
1525 /*
1526 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1527 *
1528 */
1529
1530 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1531 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1532
1533 /* # of EDCA prioritized tx fifos */
1534 #define LINK_QUAL_AC_NUM AC_NUM
1535
1536 /* # entries in rate scale table to support Tx retries */
1537 #define LINK_QUAL_MAX_RETRY_NUM 16
1538
1539 /* Tx antenna selection values */
1540 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1541 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1542 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1543
1544
1545 /**
1546 * struct iwl_link_qual_general_params
1547 *
1548 * Used in REPLY_TX_LINK_QUALITY_CMD
1549 */
1550 struct iwl_link_qual_general_params {
1551 u8 flags;
1552
1553 /* No entries at or above this (driver chosen) index contain MIMO */
1554 u8 mimo_delimiter;
1555
1556 /* Best single antenna to use for single stream (legacy, SISO). */
1557 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1558
1559 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1560 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1561
1562 /*
1563 * If driver needs to use different initial rates for different
1564 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1565 * this table will set that up, by indicating the indexes in the
1566 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1567 * Otherwise, driver should set all entries to 0.
1568 *
1569 * Entry usage:
1570 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1571 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1572 */
1573 u8 start_rate_index[LINK_QUAL_AC_NUM];
1574 } __packed;
1575
1576 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1577 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1578 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1579
1580 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1581 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1582 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1583
1584 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1585 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1586 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1587
1588 /**
1589 * struct iwl_link_qual_agg_params
1590 *
1591 * Used in REPLY_TX_LINK_QUALITY_CMD
1592 */
1593 struct iwl_link_qual_agg_params {
1594
1595 /*
1596 *Maximum number of uSec in aggregation.
1597 * default set to 4000 (4 milliseconds) if not configured in .cfg
1598 */
1599 __le16 agg_time_limit;
1600
1601 /*
1602 * Number of Tx retries allowed for a frame, before that frame will
1603 * no longer be considered for the start of an aggregation sequence
1604 * (scheduler will then try to tx it as single frame).
1605 * Driver should set this to 3.
1606 */
1607 u8 agg_dis_start_th;
1608
1609 /*
1610 * Maximum number of frames in aggregation.
1611 * 0 = no limit (default). 1 = no aggregation.
1612 * Other values = max # frames in aggregation.
1613 */
1614 u8 agg_frame_cnt_limit;
1615
1616 __le32 reserved;
1617 } __packed;
1618
1619 /*
1620 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1621 *
1622 * For agn devices
1623 *
1624 * Each station in the agn device's internal station table has its own table
1625 * of 16
1626 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1627 * an ACK is not received. This command replaces the entire table for
1628 * one station.
1629 *
1630 * NOTE: Station must already be in agn device's station table.
1631 * Use REPLY_ADD_STA.
1632 *
1633 * The rate scaling procedures described below work well. Of course, other
1634 * procedures are possible, and may work better for particular environments.
1635 *
1636 *
1637 * FILLING THE RATE TABLE
1638 *
1639 * Given a particular initial rate and mode, as determined by the rate
1640 * scaling algorithm described below, the Linux driver uses the following
1641 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1642 * Link Quality command:
1643 *
1644 *
1645 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1646 * a) Use this same initial rate for first 3 entries.
1647 * b) Find next lower available rate using same mode (SISO or MIMO),
1648 * use for next 3 entries. If no lower rate available, switch to
1649 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1650 * c) If using MIMO, set command's mimo_delimiter to number of entries
1651 * using MIMO (3 or 6).
1652 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1653 * no MIMO, no short guard interval), at the next lower bit rate
1654 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1655 * legacy procedure for remaining table entries.
1656 *
1657 * 2) If using legacy initial rate:
1658 * a) Use the initial rate for only one entry.
1659 * b) For each following entry, reduce the rate to next lower available
1660 * rate, until reaching the lowest available rate.
1661 * c) When reducing rate, also switch antenna selection.
1662 * d) Once lowest available rate is reached, repeat this rate until
1663 * rate table is filled (16 entries), switching antenna each entry.
1664 *
1665 *
1666 * ACCUMULATING HISTORY
1667 *
1668 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1669 * uses two sets of frame Tx success history: One for the current/active
1670 * modulation mode, and one for a speculative/search mode that is being
1671 * attempted. If the speculative mode turns out to be more effective (i.e.
1672 * actual transfer rate is better), then the driver continues to use the
1673 * speculative mode as the new current active mode.
1674 *
1675 * Each history set contains, separately for each possible rate, data for a
1676 * sliding window of the 62 most recent tx attempts at that rate. The data
1677 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1678 * and attempted frames, from which the driver can additionally calculate a
1679 * success ratio (success / attempted) and number of failures
1680 * (attempted - success), and control the size of the window (attempted).
1681 * The driver uses the bit map to remove successes from the success sum, as
1682 * the oldest tx attempts fall out of the window.
1683 *
1684 * When the agn device makes multiple tx attempts for a given frame, each
1685 * attempt might be at a different rate, and have different modulation
1686 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1687 * up in the rate scaling table in the Link Quality command. The driver must
1688 * determine which rate table entry was used for each tx attempt, to determine
1689 * which rate-specific history to update, and record only those attempts that
1690 * match the modulation characteristics of the history set.
1691 *
1692 * When using block-ack (aggregation), all frames are transmitted at the same
1693 * rate, since there is no per-attempt acknowledgment from the destination
1694 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1695 * rate_n_flags field. After receiving a block-ack, the driver can update
1696 * history for the entire block all at once.
1697 *
1698 *
1699 * FINDING BEST STARTING RATE:
1700 *
1701 * When working with a selected initial modulation mode (see below), the
1702 * driver attempts to find a best initial rate. The initial rate is the
1703 * first entry in the Link Quality command's rate table.
1704 *
1705 * 1) Calculate actual throughput (success ratio * expected throughput, see
1706 * table below) for current initial rate. Do this only if enough frames
1707 * have been attempted to make the value meaningful: at least 6 failed
1708 * tx attempts, or at least 8 successes. If not enough, don't try rate
1709 * scaling yet.
1710 *
1711 * 2) Find available rates adjacent to current initial rate. Available means:
1712 * a) supported by hardware &&
1713 * b) supported by association &&
1714 * c) within any constraints selected by user
1715 *
1716 * 3) Gather measured throughputs for adjacent rates. These might not have
1717 * enough history to calculate a throughput. That's okay, we might try
1718 * using one of them anyway!
1719 *
1720 * 4) Try decreasing rate if, for current rate:
1721 * a) success ratio is < 15% ||
1722 * b) lower adjacent rate has better measured throughput ||
1723 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1724 *
1725 * As a sanity check, if decrease was determined above, leave rate
1726 * unchanged if:
1727 * a) lower rate unavailable
1728 * b) success ratio at current rate > 85% (very good)
1729 * c) current measured throughput is better than expected throughput
1730 * of lower rate (under perfect 100% tx conditions, see table below)
1731 *
1732 * 5) Try increasing rate if, for current rate:
1733 * a) success ratio is < 15% ||
1734 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1735 * b) higher adjacent rate has better measured throughput ||
1736 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1737 *
1738 * As a sanity check, if increase was determined above, leave rate
1739 * unchanged if:
1740 * a) success ratio at current rate < 70%. This is not particularly
1741 * good performance; higher rate is sure to have poorer success.
1742 *
1743 * 6) Re-evaluate the rate after each tx frame. If working with block-
1744 * acknowledge, history and statistics may be calculated for the entire
1745 * block (including prior history that fits within the history windows),
1746 * before re-evaluation.
1747 *
1748 * FINDING BEST STARTING MODULATION MODE:
1749 *
1750 * After working with a modulation mode for a "while" (and doing rate scaling),
1751 * the driver searches for a new initial mode in an attempt to improve
1752 * throughput. The "while" is measured by numbers of attempted frames:
1753 *
1754 * For legacy mode, search for new mode after:
1755 * 480 successful frames, or 160 failed frames
1756 * For high-throughput modes (SISO or MIMO), search for new mode after:
1757 * 4500 successful frames, or 400 failed frames
1758 *
1759 * Mode switch possibilities are (3 for each mode):
1760 *
1761 * For legacy:
1762 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1763 * For SISO:
1764 * Change antenna, try MIMO, try shortened guard interval (SGI)
1765 * For MIMO:
1766 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1767 *
1768 * When trying a new mode, use the same bit rate as the old/current mode when
1769 * trying antenna switches and shortened guard interval. When switching to
1770 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1771 * for which the expected throughput (under perfect conditions) is about the
1772 * same or slightly better than the actual measured throughput delivered by
1773 * the old/current mode.
1774 *
1775 * Actual throughput can be estimated by multiplying the expected throughput
1776 * by the success ratio (successful / attempted tx frames). Frame size is
1777 * not considered in this calculation; it assumes that frame size will average
1778 * out to be fairly consistent over several samples. The following are
1779 * metric values for expected throughput assuming 100% success ratio.
1780 * Only G band has support for CCK rates:
1781 *
1782 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1783 *
1784 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1785 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1786 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1787 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1788 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1789 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1790 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1791 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1792 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1793 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1794 *
1795 * After the new mode has been tried for a short while (minimum of 6 failed
1796 * frames or 8 successful frames), compare success ratio and actual throughput
1797 * estimate of the new mode with the old. If either is better with the new
1798 * mode, continue to use the new mode.
1799 *
1800 * Continue comparing modes until all 3 possibilities have been tried.
1801 * If moving from legacy to HT, try all 3 possibilities from the new HT
1802 * mode. After trying all 3, a best mode is found. Continue to use this mode
1803 * for the longer "while" described above (e.g. 480 successful frames for
1804 * legacy), and then repeat the search process.
1805 *
1806 */
1807 struct iwl_link_quality_cmd {
1808
1809 /* Index of destination/recipient station in uCode's station table */
1810 u8 sta_id;
1811 u8 reserved1;
1812 __le16 control; /* not used */
1813 struct iwl_link_qual_general_params general_params;
1814 struct iwl_link_qual_agg_params agg_params;
1815
1816 /*
1817 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1818 * specifies 1st Tx rate attempted, via index into this table.
1819 * agn devices works its way through table when retrying Tx.
1820 */
1821 struct {
1822 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1823 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1824 __le32 reserved2;
1825 } __packed;
1826
1827 /*
1828 * BT configuration enable flags:
1829 * bit 0 - 1: BT channel announcement enabled
1830 * 0: disable
1831 * bit 1 - 1: priority of BT device enabled
1832 * 0: disable
1833 * bit 2 - 1: BT 2 wire support enabled
1834 * 0: disable
1835 */
1836 #define BT_COEX_DISABLE (0x0)
1837 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1838 #define BT_ENABLE_PRIORITY BIT(1)
1839 #define BT_ENABLE_2_WIRE BIT(2)
1840
1841 #define BT_COEX_DISABLE (0x0)
1842 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1843
1844 #define BT_LEAD_TIME_MIN (0x0)
1845 #define BT_LEAD_TIME_DEF (0x1E)
1846 #define BT_LEAD_TIME_MAX (0xFF)
1847
1848 #define BT_MAX_KILL_MIN (0x1)
1849 #define BT_MAX_KILL_DEF (0x5)
1850 #define BT_MAX_KILL_MAX (0xFF)
1851
1852 #define BT_DURATION_LIMIT_DEF 625
1853 #define BT_DURATION_LIMIT_MAX 1250
1854 #define BT_DURATION_LIMIT_MIN 625
1855
1856 #define BT_ON_THRESHOLD_DEF 4
1857 #define BT_ON_THRESHOLD_MAX 1000
1858 #define BT_ON_THRESHOLD_MIN 1
1859
1860 #define BT_FRAG_THRESHOLD_DEF 0
1861 #define BT_FRAG_THRESHOLD_MAX 0
1862 #define BT_FRAG_THRESHOLD_MIN 0
1863
1864 #define BT_AGG_THRESHOLD_DEF 1200
1865 #define BT_AGG_THRESHOLD_MAX 8000
1866 #define BT_AGG_THRESHOLD_MIN 400
1867
1868 /*
1869 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1870 *
1871 * agn devices support hardware handshake with Bluetooth device on
1872 * same platform. Bluetooth device alerts wireless device when it will Tx;
1873 * wireless device can delay or kill its own Tx to accommodate.
1874 */
1875 struct iwl_bt_cmd {
1876 u8 flags;
1877 u8 lead_time;
1878 u8 max_kill;
1879 u8 reserved;
1880 __le32 kill_ack_mask;
1881 __le32 kill_cts_mask;
1882 } __packed;
1883
1884 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1885
1886 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1887 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1888 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1889 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1890 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1891 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1892
1893 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1894 /* Disable Sync PSPoll on SCO/eSCO */
1895 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1896
1897 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1898 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1899
1900 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1901 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1902 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1903 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
1904
1905 #define IWLAGN_BT_MAX_KILL_DEFAULT 5
1906
1907 #define IWLAGN_BT3_T7_DEFAULT 1
1908
1909 enum iwl_bt_kill_idx {
1910 IWL_BT_KILL_DEFAULT = 0,
1911 IWL_BT_KILL_OVERRIDE = 1,
1912 IWL_BT_KILL_REDUCE = 2,
1913 };
1914
1915 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1916 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1917 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1918 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1919
1920 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1921
1922 #define IWLAGN_BT3_T2_DEFAULT 0xc
1923
1924 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1925 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1926 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1927 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1928 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1929 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1930 #define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1931 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1932
1933 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1934 IWLAGN_BT_VALID_BOOST | \
1935 IWLAGN_BT_VALID_MAX_KILL | \
1936 IWLAGN_BT_VALID_3W_TIMERS | \
1937 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1938 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1939 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1940 IWLAGN_BT_VALID_3W_LUT)
1941
1942 #define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1943
1944 #define IWLAGN_BT_DECISION_LUT_SIZE 12
1945
1946 struct iwl_basic_bt_cmd {
1947 u8 flags;
1948 u8 ledtime; /* unused */
1949 u8 max_kill;
1950 u8 bt3_timer_t7_value;
1951 __le32 kill_ack_mask;
1952 __le32 kill_cts_mask;
1953 u8 bt3_prio_sample_time;
1954 u8 bt3_timer_t2_value;
1955 __le16 bt4_reaction_time; /* unused */
1956 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1957 /*
1958 * bit 0: use reduced tx power for control frame
1959 * bit 1 - 7: reserved
1960 */
1961 u8 reduce_txpower;
1962 u8 reserved;
1963 __le16 valid;
1964 };
1965
1966 struct iwl_bt_cmd_v1 {
1967 struct iwl_basic_bt_cmd basic;
1968 u8 prio_boost;
1969 /*
1970 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1971 * if configure the following patterns
1972 */
1973 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1974 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1975 };
1976
1977 struct iwl_bt_cmd_v2 {
1978 struct iwl_basic_bt_cmd basic;
1979 __le32 prio_boost;
1980 /*
1981 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1982 * if configure the following patterns
1983 */
1984 u8 reserved;
1985 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1986 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1987 };
1988
1989 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1990
1991 struct iwlagn_bt_sco_cmd {
1992 __le32 flags;
1993 };
1994
1995 /******************************************************************************
1996 * (6)
1997 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1998 *
1999 *****************************************************************************/
2000
2001 /*
2002 * Spectrum Management
2003 */
2004 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2005 RXON_FILTER_CTL2HOST_MSK | \
2006 RXON_FILTER_ACCEPT_GRP_MSK | \
2007 RXON_FILTER_DIS_DECRYPT_MSK | \
2008 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2009 RXON_FILTER_ASSOC_MSK | \
2010 RXON_FILTER_BCON_AWARE_MSK)
2011
2012 struct iwl_measure_channel {
2013 __le32 duration; /* measurement duration in extended beacon
2014 * format */
2015 u8 channel; /* channel to measure */
2016 u8 type; /* see enum iwl_measure_type */
2017 __le16 reserved;
2018 } __packed;
2019
2020 /*
2021 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2022 */
2023 struct iwl_spectrum_cmd {
2024 __le16 len; /* number of bytes starting from token */
2025 u8 token; /* token id */
2026 u8 id; /* measurement id -- 0 or 1 */
2027 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2028 u8 periodic; /* 1 = periodic */
2029 __le16 path_loss_timeout;
2030 __le32 start_time; /* start time in extended beacon format */
2031 __le32 reserved2;
2032 __le32 flags; /* rxon flags */
2033 __le32 filter_flags; /* rxon filter flags */
2034 __le16 channel_count; /* minimum 1, maximum 10 */
2035 __le16 reserved3;
2036 struct iwl_measure_channel channels[10];
2037 } __packed;
2038
2039 /*
2040 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2041 */
2042 struct iwl_spectrum_resp {
2043 u8 token;
2044 u8 id; /* id of the prior command replaced, or 0xff */
2045 __le16 status; /* 0 - command will be handled
2046 * 1 - cannot handle (conflicts with another
2047 * measurement) */
2048 } __packed;
2049
2050 enum iwl_measurement_state {
2051 IWL_MEASUREMENT_START = 0,
2052 IWL_MEASUREMENT_STOP = 1,
2053 };
2054
2055 enum iwl_measurement_status {
2056 IWL_MEASUREMENT_OK = 0,
2057 IWL_MEASUREMENT_CONCURRENT = 1,
2058 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2059 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2060 /* 4-5 reserved */
2061 IWL_MEASUREMENT_STOPPED = 6,
2062 IWL_MEASUREMENT_TIMEOUT = 7,
2063 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2064 };
2065
2066 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2067
2068 struct iwl_measurement_histogram {
2069 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2070 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2071 } __packed;
2072
2073 /* clear channel availability counters */
2074 struct iwl_measurement_cca_counters {
2075 __le32 ofdm;
2076 __le32 cck;
2077 } __packed;
2078
2079 enum iwl_measure_type {
2080 IWL_MEASURE_BASIC = (1 << 0),
2081 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2082 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2083 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2084 IWL_MEASURE_FRAME = (1 << 4),
2085 /* bits 5:6 are reserved */
2086 IWL_MEASURE_IDLE = (1 << 7),
2087 };
2088
2089 /*
2090 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2091 */
2092 struct iwl_spectrum_notification {
2093 u8 id; /* measurement id -- 0 or 1 */
2094 u8 token;
2095 u8 channel_index; /* index in measurement channel list */
2096 u8 state; /* 0 - start, 1 - stop */
2097 __le32 start_time; /* lower 32-bits of TSF */
2098 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2099 u8 channel;
2100 u8 type; /* see enum iwl_measurement_type */
2101 u8 reserved1;
2102 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2103 * valid if applicable for measurement type requested. */
2104 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2105 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2106 __le32 cca_time; /* channel load time in usecs */
2107 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2108 * unidentified */
2109 u8 reserved2[3];
2110 struct iwl_measurement_histogram histogram;
2111 __le32 stop_time; /* lower 32-bits of TSF */
2112 __le32 status; /* see iwl_measurement_status */
2113 } __packed;
2114
2115 /******************************************************************************
2116 * (7)
2117 * Power Management Commands, Responses, Notifications:
2118 *
2119 *****************************************************************************/
2120
2121 /**
2122 * struct iwl_powertable_cmd - Power Table Command
2123 * @flags: See below:
2124 *
2125 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2126 *
2127 * PM allow:
2128 * bit 0 - '0' Driver not allow power management
2129 * '1' Driver allow PM (use rest of parameters)
2130 *
2131 * uCode send sleep notifications:
2132 * bit 1 - '0' Don't send sleep notification
2133 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2134 *
2135 * Sleep over DTIM
2136 * bit 2 - '0' PM have to walk up every DTIM
2137 * '1' PM could sleep over DTIM till listen Interval.
2138 *
2139 * PCI power managed
2140 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2141 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2142 *
2143 * Fast PD
2144 * bit 4 - '1' Put radio to sleep when receiving frame for others
2145 *
2146 * Force sleep Modes
2147 * bit 31/30- '00' use both mac/xtal sleeps
2148 * '01' force Mac sleep
2149 * '10' force xtal sleep
2150 * '11' Illegal set
2151 *
2152 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2153 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2154 * for every DTIM.
2155 */
2156 #define IWL_POWER_VEC_SIZE 5
2157
2158 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2159 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2160 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2161 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2162 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2163 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2164 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2165 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2166 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2167 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2168 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2169
2170 struct iwl_powertable_cmd {
2171 __le16 flags;
2172 u8 keep_alive_seconds;
2173 u8 debug_flags;
2174 __le32 rx_data_timeout;
2175 __le32 tx_data_timeout;
2176 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2177 __le32 keep_alive_beacons;
2178 } __packed;
2179
2180 /*
2181 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2182 * all devices identical.
2183 */
2184 struct iwl_sleep_notification {
2185 u8 pm_sleep_mode;
2186 u8 pm_wakeup_src;
2187 __le16 reserved;
2188 __le32 sleep_time;
2189 __le32 tsf_low;
2190 __le32 bcon_timer;
2191 } __packed;
2192
2193 /* Sleep states. all devices identical. */
2194 enum {
2195 IWL_PM_NO_SLEEP = 0,
2196 IWL_PM_SLP_MAC = 1,
2197 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2198 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2199 IWL_PM_SLP_PHY = 4,
2200 IWL_PM_SLP_REPENT = 5,
2201 IWL_PM_WAKEUP_BY_TIMER = 6,
2202 IWL_PM_WAKEUP_BY_DRIVER = 7,
2203 IWL_PM_WAKEUP_BY_RFKILL = 8,
2204 /* 3 reserved */
2205 IWL_PM_NUM_OF_MODES = 12,
2206 };
2207
2208 /*
2209 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2210 */
2211 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2212 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2213 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2214 struct iwl_card_state_cmd {
2215 __le32 status; /* CARD_STATE_CMD_* request new power state */
2216 } __packed;
2217
2218 /*
2219 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2220 */
2221 struct iwl_card_state_notif {
2222 __le32 flags;
2223 } __packed;
2224
2225 #define HW_CARD_DISABLED 0x01
2226 #define SW_CARD_DISABLED 0x02
2227 #define CT_CARD_DISABLED 0x04
2228 #define RXON_CARD_DISABLED 0x10
2229
2230 struct iwl_ct_kill_config {
2231 __le32 reserved;
2232 __le32 critical_temperature_M;
2233 __le32 critical_temperature_R;
2234 } __packed;
2235
2236 /* 1000, and 6x00 */
2237 struct iwl_ct_kill_throttling_config {
2238 __le32 critical_temperature_exit;
2239 __le32 reserved;
2240 __le32 critical_temperature_enter;
2241 } __packed;
2242
2243 /******************************************************************************
2244 * (8)
2245 * Scan Commands, Responses, Notifications:
2246 *
2247 *****************************************************************************/
2248
2249 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2250 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2251
2252 /**
2253 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2254 *
2255 * One for each channel in the scan list.
2256 * Each channel can independently select:
2257 * 1) SSID for directed active scans
2258 * 2) Txpower setting (for rate specified within Tx command)
2259 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2260 * quiet_plcp_th, good_CRC_th)
2261 *
2262 * To avoid uCode errors, make sure the following are true (see comments
2263 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2264 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2265 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2266 * 2) quiet_time <= active_dwell
2267 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2268 * passive_dwell < max_out_time
2269 * active_dwell < max_out_time
2270 */
2271
2272 struct iwl_scan_channel {
2273 /*
2274 * type is defined as:
2275 * 0:0 1 = active, 0 = passive
2276 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2277 * SSID IE is transmitted in probe request.
2278 * 21:31 reserved
2279 */
2280 __le32 type;
2281 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2282 u8 tx_gain; /* gain for analog radio */
2283 u8 dsp_atten; /* gain for DSP */
2284 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2285 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2286 } __packed;
2287
2288 /* set number of direct probes __le32 type */
2289 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2290
2291 /**
2292 * struct iwl_ssid_ie - directed scan network information element
2293 *
2294 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2295 * selected by "type" bit field in struct iwl_scan_channel;
2296 * each channel may select different ssids from among the 20 entries.
2297 * SSID IEs get transmitted in reverse order of entry.
2298 */
2299 struct iwl_ssid_ie {
2300 u8 id;
2301 u8 len;
2302 u8 ssid[32];
2303 } __packed;
2304
2305 #define PROBE_OPTION_MAX 20
2306 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2307 #define IWL_GOOD_CRC_TH_DISABLED 0
2308 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2309 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2310 #define IWL_MAX_CMD_SIZE 4096
2311
2312 /*
2313 * REPLY_SCAN_CMD = 0x80 (command)
2314 *
2315 * The hardware scan command is very powerful; the driver can set it up to
2316 * maintain (relatively) normal network traffic while doing a scan in the
2317 * background. The max_out_time and suspend_time control the ratio of how
2318 * long the device stays on an associated network channel ("service channel")
2319 * vs. how long it's away from the service channel, i.e. tuned to other channels
2320 * for scanning.
2321 *
2322 * max_out_time is the max time off-channel (in usec), and suspend_time
2323 * is how long (in "extended beacon" format) that the scan is "suspended"
2324 * after returning to the service channel. That is, suspend_time is the
2325 * time that we stay on the service channel, doing normal work, between
2326 * scan segments. The driver may set these parameters differently to support
2327 * scanning when associated vs. not associated, and light vs. heavy traffic
2328 * loads when associated.
2329 *
2330 * After receiving this command, the device's scan engine does the following;
2331 *
2332 * 1) Sends SCAN_START notification to driver
2333 * 2) Checks to see if it has time to do scan for one channel
2334 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2335 * to tell AP that we're going off-channel
2336 * 4) Tunes to first channel in scan list, does active or passive scan
2337 * 5) Sends SCAN_RESULT notification to driver
2338 * 6) Checks to see if it has time to do scan on *next* channel in list
2339 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2340 * before max_out_time expires
2341 * 8) Returns to service channel
2342 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2343 * 10) Stays on service channel until suspend_time expires
2344 * 11) Repeats entire process 2-10 until list is complete
2345 * 12) Sends SCAN_COMPLETE notification
2346 *
2347 * For fast, efficient scans, the scan command also has support for staying on
2348 * a channel for just a short time, if doing active scanning and getting no
2349 * responses to the transmitted probe request. This time is controlled by
2350 * quiet_time, and the number of received packets below which a channel is
2351 * considered "quiet" is controlled by quiet_plcp_threshold.
2352 *
2353 * For active scanning on channels that have regulatory restrictions against
2354 * blindly transmitting, the scan can listen before transmitting, to make sure
2355 * that there is already legitimate activity on the channel. If enough
2356 * packets are cleanly received on the channel (controlled by good_CRC_th,
2357 * typical value 1), the scan engine starts transmitting probe requests.
2358 *
2359 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2360 *
2361 * To avoid uCode errors, see timing restrictions described under
2362 * struct iwl_scan_channel.
2363 */
2364
2365 enum iwl_scan_flags {
2366 /* BIT(0) currently unused */
2367 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2368 /* bits 2-7 reserved */
2369 };
2370
2371 struct iwl_scan_cmd {
2372 __le16 len;
2373 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2374 u8 channel_count; /* # channels in channel list */
2375 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2376 * (only for active scan) */
2377 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2378 __le16 good_CRC_th; /* passive -> active promotion threshold */
2379 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2380 __le32 max_out_time; /* max usec to be away from associated (service)
2381 * channel */
2382 __le32 suspend_time; /* pause scan this long (in "extended beacon
2383 * format") when returning to service chnl:
2384 */
2385 __le32 flags; /* RXON_FLG_* */
2386 __le32 filter_flags; /* RXON_FILTER_* */
2387
2388 /* For active scans (set to all-0s for passive scans).
2389 * Does not include payload. Must specify Tx rate; no rate scaling. */
2390 struct iwl_tx_cmd tx_cmd;
2391
2392 /* For directed active scans (set to all-0s otherwise) */
2393 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2394
2395 /*
2396 * Probe request frame, followed by channel list.
2397 *
2398 * Size of probe request frame is specified by byte count in tx_cmd.
2399 * Channel list follows immediately after probe request frame.
2400 * Number of channels in list is specified by channel_count.
2401 * Each channel in list is of type:
2402 *
2403 * struct iwl_scan_channel channels[0];
2404 *
2405 * NOTE: Only one band of channels can be scanned per pass. You
2406 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2407 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2408 * before requesting another scan.
2409 */
2410 u8 data[0];
2411 } __packed;
2412
2413 /* Can abort will notify by complete notification with abort status. */
2414 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2415 /* complete notification statuses */
2416 #define ABORT_STATUS 0x2
2417
2418 /*
2419 * REPLY_SCAN_CMD = 0x80 (response)
2420 */
2421 struct iwl_scanreq_notification {
2422 __le32 status; /* 1: okay, 2: cannot fulfill request */
2423 } __packed;
2424
2425 /*
2426 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2427 */
2428 struct iwl_scanstart_notification {
2429 __le32 tsf_low;
2430 __le32 tsf_high;
2431 __le32 beacon_timer;
2432 u8 channel;
2433 u8 band;
2434 u8 reserved[2];
2435 __le32 status;
2436 } __packed;
2437
2438 #define SCAN_OWNER_STATUS 0x1
2439 #define MEASURE_OWNER_STATUS 0x2
2440
2441 #define IWL_PROBE_STATUS_OK 0
2442 #define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2443 /* error statuses combined with TX_FAILED */
2444 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2445 #define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2446
2447 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2448 /*
2449 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2450 */
2451 struct iwl_scanresults_notification {
2452 u8 channel;
2453 u8 band;
2454 u8 probe_status;
2455 u8 num_probe_not_sent; /* not enough time to send */
2456 __le32 tsf_low;
2457 __le32 tsf_high;
2458 __le32 statistics[NUMBER_OF_STATISTICS];
2459 } __packed;
2460
2461 /*
2462 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2463 */
2464 struct iwl_scancomplete_notification {
2465 u8 scanned_channels;
2466 u8 status;
2467 u8 bt_status; /* BT On/Off status */
2468 u8 last_channel;
2469 __le32 tsf_low;
2470 __le32 tsf_high;
2471 } __packed;
2472
2473
2474 /******************************************************************************
2475 * (9)
2476 * IBSS/AP Commands and Notifications:
2477 *
2478 *****************************************************************************/
2479
2480 enum iwl_ibss_manager {
2481 IWL_NOT_IBSS_MANAGER = 0,
2482 IWL_IBSS_MANAGER = 1,
2483 };
2484
2485 /*
2486 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2487 */
2488
2489 struct iwlagn_beacon_notif {
2490 struct iwlagn_tx_resp beacon_notify_hdr;
2491 __le32 low_tsf;
2492 __le32 high_tsf;
2493 __le32 ibss_mgr_status;
2494 } __packed;
2495
2496 /*
2497 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2498 */
2499
2500 struct iwl_tx_beacon_cmd {
2501 struct iwl_tx_cmd tx;
2502 __le16 tim_idx;
2503 u8 tim_size;
2504 u8 reserved1;
2505 struct ieee80211_hdr frame[0]; /* beacon frame */
2506 } __packed;
2507
2508 /******************************************************************************
2509 * (10)
2510 * Statistics Commands and Notifications:
2511 *
2512 *****************************************************************************/
2513
2514 #define IWL_TEMP_CONVERT 260
2515
2516 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2517 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2518 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2519
2520 /* Used for passing to driver number of successes and failures per rate */
2521 struct rate_histogram {
2522 union {
2523 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2524 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2525 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2526 } success;
2527 union {
2528 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2529 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2530 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2531 } failed;
2532 } __packed;
2533
2534 /* statistics command response */
2535
2536 struct statistics_dbg {
2537 __le32 burst_check;
2538 __le32 burst_count;
2539 __le32 wait_for_silence_timeout_cnt;
2540 __le32 reserved[3];
2541 } __packed;
2542
2543 struct statistics_rx_phy {
2544 __le32 ina_cnt;
2545 __le32 fina_cnt;
2546 __le32 plcp_err;
2547 __le32 crc32_err;
2548 __le32 overrun_err;
2549 __le32 early_overrun_err;
2550 __le32 crc32_good;
2551 __le32 false_alarm_cnt;
2552 __le32 fina_sync_err_cnt;
2553 __le32 sfd_timeout;
2554 __le32 fina_timeout;
2555 __le32 unresponded_rts;
2556 __le32 rxe_frame_limit_overrun;
2557 __le32 sent_ack_cnt;
2558 __le32 sent_cts_cnt;
2559 __le32 sent_ba_rsp_cnt;
2560 __le32 dsp_self_kill;
2561 __le32 mh_format_err;
2562 __le32 re_acq_main_rssi_sum;
2563 __le32 reserved3;
2564 } __packed;
2565
2566 struct statistics_rx_ht_phy {
2567 __le32 plcp_err;
2568 __le32 overrun_err;
2569 __le32 early_overrun_err;
2570 __le32 crc32_good;
2571 __le32 crc32_err;
2572 __le32 mh_format_err;
2573 __le32 agg_crc32_good;
2574 __le32 agg_mpdu_cnt;
2575 __le32 agg_cnt;
2576 __le32 unsupport_mcs;
2577 } __packed;
2578
2579 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2580
2581 struct statistics_rx_non_phy {
2582 __le32 bogus_cts; /* CTS received when not expecting CTS */
2583 __le32 bogus_ack; /* ACK received when not expecting ACK */
2584 __le32 non_bssid_frames; /* number of frames with BSSID that
2585 * doesn't belong to the STA BSSID */
2586 __le32 filtered_frames; /* count frames that were dumped in the
2587 * filtering process */
2588 __le32 non_channel_beacons; /* beacons with our bss id but not on
2589 * our serving channel */
2590 __le32 channel_beacons; /* beacons with our bss id and in our
2591 * serving channel */
2592 __le32 num_missed_bcon; /* number of missed beacons */
2593 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2594 * ADC was in saturation */
2595 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2596 * for INA */
2597 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2598 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2599 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2600 __le32 interference_data_flag; /* flag for interference data
2601 * availability. 1 when data is
2602 * available. */
2603 __le32 channel_load; /* counts RX Enable time in uSec */
2604 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2605 * and CCK) counter */
2606 __le32 beacon_rssi_a;
2607 __le32 beacon_rssi_b;
2608 __le32 beacon_rssi_c;
2609 __le32 beacon_energy_a;
2610 __le32 beacon_energy_b;
2611 __le32 beacon_energy_c;
2612 } __packed;
2613
2614 struct statistics_rx_non_phy_bt {
2615 struct statistics_rx_non_phy common;
2616 /* additional stats for bt */
2617 __le32 num_bt_kills;
2618 __le32 reserved[2];
2619 } __packed;
2620
2621 struct statistics_rx {
2622 struct statistics_rx_phy ofdm;
2623 struct statistics_rx_phy cck;
2624 struct statistics_rx_non_phy general;
2625 struct statistics_rx_ht_phy ofdm_ht;
2626 } __packed;
2627
2628 struct statistics_rx_bt {
2629 struct statistics_rx_phy ofdm;
2630 struct statistics_rx_phy cck;
2631 struct statistics_rx_non_phy_bt general;
2632 struct statistics_rx_ht_phy ofdm_ht;
2633 } __packed;
2634
2635 /**
2636 * struct statistics_tx_power - current tx power
2637 *
2638 * @ant_a: current tx power on chain a in 1/2 dB step
2639 * @ant_b: current tx power on chain b in 1/2 dB step
2640 * @ant_c: current tx power on chain c in 1/2 dB step
2641 */
2642 struct statistics_tx_power {
2643 u8 ant_a;
2644 u8 ant_b;
2645 u8 ant_c;
2646 u8 reserved;
2647 } __packed;
2648
2649 struct statistics_tx_non_phy_agg {
2650 __le32 ba_timeout;
2651 __le32 ba_reschedule_frames;
2652 __le32 scd_query_agg_frame_cnt;
2653 __le32 scd_query_no_agg;
2654 __le32 scd_query_agg;
2655 __le32 scd_query_mismatch;
2656 __le32 frame_not_ready;
2657 __le32 underrun;
2658 __le32 bt_prio_kill;
2659 __le32 rx_ba_rsp_cnt;
2660 } __packed;
2661
2662 struct statistics_tx {
2663 __le32 preamble_cnt;
2664 __le32 rx_detected_cnt;
2665 __le32 bt_prio_defer_cnt;
2666 __le32 bt_prio_kill_cnt;
2667 __le32 few_bytes_cnt;
2668 __le32 cts_timeout;
2669 __le32 ack_timeout;
2670 __le32 expected_ack_cnt;
2671 __le32 actual_ack_cnt;
2672 __le32 dump_msdu_cnt;
2673 __le32 burst_abort_next_frame_mismatch_cnt;
2674 __le32 burst_abort_missing_next_frame_cnt;
2675 __le32 cts_timeout_collision;
2676 __le32 ack_or_ba_timeout_collision;
2677 struct statistics_tx_non_phy_agg agg;
2678 /*
2679 * "tx_power" are optional parameters provided by uCode,
2680 * 6000 series is the only device provide the information,
2681 * Those are reserved fields for all the other devices
2682 */
2683 struct statistics_tx_power tx_power;
2684 __le32 reserved1;
2685 } __packed;
2686
2687
2688 struct statistics_div {
2689 __le32 tx_on_a;
2690 __le32 tx_on_b;
2691 __le32 exec_time;
2692 __le32 probe_time;
2693 __le32 reserved1;
2694 __le32 reserved2;
2695 } __packed;
2696
2697 struct statistics_general_common {
2698 __le32 temperature; /* radio temperature */
2699 __le32 temperature_m; /* radio voltage */
2700 struct statistics_dbg dbg;
2701 __le32 sleep_time;
2702 __le32 slots_out;
2703 __le32 slots_idle;
2704 __le32 ttl_timestamp;
2705 struct statistics_div div;
2706 __le32 rx_enable_counter;
2707 /*
2708 * num_of_sos_states:
2709 * count the number of times we have to re-tune
2710 * in order to get out of bad PHY status
2711 */
2712 __le32 num_of_sos_states;
2713 } __packed;
2714
2715 struct statistics_bt_activity {
2716 /* Tx statistics */
2717 __le32 hi_priority_tx_req_cnt;
2718 __le32 hi_priority_tx_denied_cnt;
2719 __le32 lo_priority_tx_req_cnt;
2720 __le32 lo_priority_tx_denied_cnt;
2721 /* Rx statistics */
2722 __le32 hi_priority_rx_req_cnt;
2723 __le32 hi_priority_rx_denied_cnt;
2724 __le32 lo_priority_rx_req_cnt;
2725 __le32 lo_priority_rx_denied_cnt;
2726 } __packed;
2727
2728 struct statistics_general {
2729 struct statistics_general_common common;
2730 __le32 reserved2;
2731 __le32 reserved3;
2732 } __packed;
2733
2734 struct statistics_general_bt {
2735 struct statistics_general_common common;
2736 struct statistics_bt_activity activity;
2737 __le32 reserved2;
2738 __le32 reserved3;
2739 } __packed;
2740
2741 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2742 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2743 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2744
2745 /*
2746 * REPLY_STATISTICS_CMD = 0x9c,
2747 * all devices identical.
2748 *
2749 * This command triggers an immediate response containing uCode statistics.
2750 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2751 *
2752 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2753 * internal copy of the statistics (counters) after issuing the response.
2754 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2755 *
2756 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2757 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2758 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2759 */
2760 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2761 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2762 struct iwl_statistics_cmd {
2763 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2764 } __packed;
2765
2766 /*
2767 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2768 *
2769 * By default, uCode issues this notification after receiving a beacon
2770 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2771 * REPLY_STATISTICS_CMD 0x9c, above.
2772 *
2773 * Statistics counters continue to increment beacon after beacon, but are
2774 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2775 * 0x9c with CLEAR_STATS bit set (see above).
2776 *
2777 * uCode also issues this notification during scans. uCode clears statistics
2778 * appropriately so that each notification contains statistics for only the
2779 * one channel that has just been scanned.
2780 */
2781 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2782 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2783
2784 struct iwl_notif_statistics {
2785 __le32 flag;
2786 struct statistics_rx rx;
2787 struct statistics_tx tx;
2788 struct statistics_general general;
2789 } __packed;
2790
2791 struct iwl_bt_notif_statistics {
2792 __le32 flag;
2793 struct statistics_rx_bt rx;
2794 struct statistics_tx tx;
2795 struct statistics_general_bt general;
2796 } __packed;
2797
2798 /*
2799 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2800 *
2801 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2802 * in regardless of how many missed beacons, which mean when driver receive the
2803 * notification, inside the command, it can find all the beacons information
2804 * which include number of total missed beacons, number of consecutive missed
2805 * beacons, number of beacons received and number of beacons expected to
2806 * receive.
2807 *
2808 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2809 * in order to bring the radio/PHY back to working state; which has no relation
2810 * to when driver will perform sensitivity calibration.
2811 *
2812 * Driver should set it own missed_beacon_threshold to decide when to perform
2813 * sensitivity calibration based on number of consecutive missed beacons in
2814 * order to improve overall performance, especially in noisy environment.
2815 *
2816 */
2817
2818 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2819 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2820 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2821
2822 struct iwl_missed_beacon_notif {
2823 __le32 consecutive_missed_beacons;
2824 __le32 total_missed_becons;
2825 __le32 num_expected_beacons;
2826 __le32 num_recvd_beacons;
2827 } __packed;
2828
2829
2830 /******************************************************************************
2831 * (11)
2832 * Rx Calibration Commands:
2833 *
2834 * With the uCode used for open source drivers, most Tx calibration (except
2835 * for Tx Power) and most Rx calibration is done by uCode during the
2836 * "initialize" phase of uCode boot. Driver must calibrate only:
2837 *
2838 * 1) Tx power (depends on temperature), described elsewhere
2839 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2840 * 3) Receiver sensitivity (to optimize signal detection)
2841 *
2842 *****************************************************************************/
2843
2844 /**
2845 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2846 *
2847 * This command sets up the Rx signal detector for a sensitivity level that
2848 * is high enough to lock onto all signals within the associated network,
2849 * but low enough to ignore signals that are below a certain threshold, so as
2850 * not to have too many "false alarms". False alarms are signals that the
2851 * Rx DSP tries to lock onto, but then discards after determining that they
2852 * are noise.
2853 *
2854 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2855 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2856 * time listening, not transmitting). Driver must adjust sensitivity so that
2857 * the ratio of actual false alarms to actual Rx time falls within this range.
2858 *
2859 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2860 * received beacon. These provide information to the driver to analyze the
2861 * sensitivity. Don't analyze statistics that come in from scanning, or any
2862 * other non-associated-network source. Pertinent statistics include:
2863 *
2864 * From "general" statistics (struct statistics_rx_non_phy):
2865 *
2866 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2867 * Measure of energy of desired signal. Used for establishing a level
2868 * below which the device does not detect signals.
2869 *
2870 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2871 * Measure of background noise in silent period after beacon.
2872 *
2873 * channel_load
2874 * uSecs of actual Rx time during beacon period (varies according to
2875 * how much time was spent transmitting).
2876 *
2877 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2878 *
2879 * false_alarm_cnt
2880 * Signal locks abandoned early (before phy-level header).
2881 *
2882 * plcp_err
2883 * Signal locks abandoned late (during phy-level header).
2884 *
2885 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2886 * beacon to beacon, i.e. each value is an accumulation of all errors
2887 * before and including the latest beacon. Values will wrap around to 0
2888 * after counting up to 2^32 - 1. Driver must differentiate vs.
2889 * previous beacon's values to determine # false alarms in the current
2890 * beacon period.
2891 *
2892 * Total number of false alarms = false_alarms + plcp_errs
2893 *
2894 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2895 * (notice that the start points for OFDM are at or close to settings for
2896 * maximum sensitivity):
2897 *
2898 * START / MIN / MAX
2899 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2900 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2901 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2902 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2903 *
2904 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2905 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2906 * by *adding* 1 to all 4 of the table entries above, up to the max for
2907 * each entry. Conversely, if false alarm rate is too low (less than 5
2908 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2909 * increase sensitivity.
2910 *
2911 * For CCK sensitivity, keep track of the following:
2912 *
2913 * 1). 20-beacon history of maximum background noise, indicated by
2914 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2915 * 3 receivers. For any given beacon, the "silence reference" is
2916 * the maximum of last 60 samples (20 beacons * 3 receivers).
2917 *
2918 * 2). 10-beacon history of strongest signal level, as indicated
2919 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2920 * i.e. the strength of the signal through the best receiver at the
2921 * moment. These measurements are "upside down", with lower values
2922 * for stronger signals, so max energy will be *minimum* value.
2923 *
2924 * Then for any given beacon, the driver must determine the *weakest*
2925 * of the strongest signals; this is the minimum level that needs to be
2926 * successfully detected, when using the best receiver at the moment.
2927 * "Max cck energy" is the maximum (higher value means lower energy!)
2928 * of the last 10 minima. Once this is determined, driver must add
2929 * a little margin by adding "6" to it.
2930 *
2931 * 3). Number of consecutive beacon periods with too few false alarms.
2932 * Reset this to 0 at the first beacon period that falls within the
2933 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2934 *
2935 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2936 * (notice that the start points for CCK are at maximum sensitivity):
2937 *
2938 * START / MIN / MAX
2939 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2940 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2941 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2942 *
2943 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2944 * (greater than 50 for each 204.8 msecs listening), method for reducing
2945 * sensitivity is:
2946 *
2947 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2948 * up to max 400.
2949 *
2950 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2951 * sensitivity has been reduced a significant amount; bring it up to
2952 * a moderate 161. Otherwise, *add* 3, up to max 200.
2953 *
2954 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2955 * sensitivity has been reduced only a moderate or small amount;
2956 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2957 * down to min 0. Otherwise (if gain has been significantly reduced),
2958 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2959 *
2960 * b) Save a snapshot of the "silence reference".
2961 *
2962 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2963 * (less than 5 for each 204.8 msecs listening), method for increasing
2964 * sensitivity is used only if:
2965 *
2966 * 1a) Previous beacon did not have too many false alarms
2967 * 1b) AND difference between previous "silence reference" and current
2968 * "silence reference" (prev - current) is 2 or more,
2969 * OR 2) 100 or more consecutive beacon periods have had rate of
2970 * less than 5 false alarms per 204.8 milliseconds rx time.
2971 *
2972 * Method for increasing sensitivity:
2973 *
2974 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2975 * down to min 125.
2976 *
2977 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2978 * down to min 200.
2979 *
2980 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2981 *
2982 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2983 * (between 5 and 50 for each 204.8 msecs listening):
2984 *
2985 * 1) Save a snapshot of the silence reference.
2986 *
2987 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2988 * give some extra margin to energy threshold by *subtracting* 8
2989 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2990 *
2991 * For all cases (too few, too many, good range), make sure that the CCK
2992 * detection threshold (energy) is below the energy level for robust
2993 * detection over the past 10 beacon periods, the "Max cck energy".
2994 * Lower values mean higher energy; this means making sure that the value
2995 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2996 *
2997 */
2998
2999 /*
3000 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3001 */
3002 #define HD_TABLE_SIZE (11) /* number of entries */
3003 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
3004 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3005 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3006 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3007 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3008 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3009 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3010 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3011 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3012 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3013 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3014
3015 /*
3016 * Additional table entries in enhance SENSITIVITY_CMD
3017 */
3018 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
3019 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
3020 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
3021 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3022 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3023 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3024 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3025 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3026 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3027 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3028 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3029 #define HD_RESERVED (22)
3030
3031 /* number of entries for enhanced tbl */
3032 #define ENHANCE_HD_TABLE_SIZE (23)
3033
3034 /* number of additional entries for enhanced tbl */
3035 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3036
3037 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3038 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3039 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3040 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3041 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3042 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3043 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3044 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3045 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3046 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3047 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3048
3049 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3050 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3051 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3052 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3053 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3054 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3055 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3056 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3057 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3058 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3059 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3060
3061
3062 /* Control field in struct iwl_sensitivity_cmd */
3063 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3064 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3065
3066 /**
3067 * struct iwl_sensitivity_cmd
3068 * @control: (1) updates working table, (0) updates default table
3069 * @table: energy threshold values, use HD_* as index into table
3070 *
3071 * Always use "1" in "control" to update uCode's working table and DSP.
3072 */
3073 struct iwl_sensitivity_cmd {
3074 __le16 control; /* always use "1" */
3075 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3076 } __packed;
3077
3078 /*
3079 *
3080 */
3081 struct iwl_enhance_sensitivity_cmd {
3082 __le16 control; /* always use "1" */
3083 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3084 } __packed;
3085
3086
3087 /**
3088 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3089 *
3090 * This command sets the relative gains of agn device's 3 radio receiver chains.
3091 *
3092 * After the first association, driver should accumulate signal and noise
3093 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3094 * beacons from the associated network (don't collect statistics that come
3095 * in from scanning, or any other non-network source).
3096 *
3097 * DISCONNECTED ANTENNA:
3098 *
3099 * Driver should determine which antennas are actually connected, by comparing
3100 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3101 * following values over 20 beacons, one accumulator for each of the chains
3102 * a/b/c, from struct statistics_rx_non_phy:
3103 *
3104 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3105 *
3106 * Find the strongest signal from among a/b/c. Compare the other two to the
3107 * strongest. If any signal is more than 15 dB (times 20, unless you
3108 * divide the accumulated values by 20) below the strongest, the driver
3109 * considers that antenna to be disconnected, and should not try to use that
3110 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3111 * driver should declare the stronger one as connected, and attempt to use it
3112 * (A and B are the only 2 Tx chains!).
3113 *
3114 *
3115 * RX BALANCE:
3116 *
3117 * Driver should balance the 3 receivers (but just the ones that are connected
3118 * to antennas, see above) for gain, by comparing the average signal levels
3119 * detected during the silence after each beacon (background noise).
3120 * Accumulate (add) the following values over 20 beacons, one accumulator for
3121 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3122 *
3123 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3124 *
3125 * Find the weakest background noise level from among a/b/c. This Rx chain
3126 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3127 * finding noise difference:
3128 *
3129 * (accum_noise[i] - accum_noise[reference]) / 30
3130 *
3131 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3132 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3133 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3134 * and set bit 2 to indicate "reduce gain". The value for the reference
3135 * (weakest) chain should be "0".
3136 *
3137 * diff_gain_[abc] bit fields:
3138 * 2: (1) reduce gain, (0) increase gain
3139 * 1-0: amount of gain, units of 1.5 dB
3140 */
3141
3142 /* Phy calibration command for series */
3143 enum {
3144 IWL_PHY_CALIBRATE_DC_CMD = 8,
3145 IWL_PHY_CALIBRATE_LO_CMD = 9,
3146 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3147 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3148 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3149 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3150 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3151 };
3152
3153 /* This enum defines the bitmap of various calibrations to enable in both
3154 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3155 */
3156 enum iwl_ucode_calib_cfg {
3157 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3158 IWL_CALIB_CFG_DC_IDX = BIT(1),
3159 IWL_CALIB_CFG_LO_IDX = BIT(2),
3160 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3161 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3162 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3163 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3164 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3165 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3166 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3167 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3168 };
3169
3170 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3171 IWL_CALIB_CFG_DC_IDX | \
3172 IWL_CALIB_CFG_LO_IDX | \
3173 IWL_CALIB_CFG_TX_IQ_IDX | \
3174 IWL_CALIB_CFG_RX_IQ_IDX | \
3175 IWL_CALIB_CFG_CRYSTAL_IDX)
3176
3177 #define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3178 IWL_CALIB_CFG_DC_IDX | \
3179 IWL_CALIB_CFG_LO_IDX | \
3180 IWL_CALIB_CFG_TX_IQ_IDX | \
3181 IWL_CALIB_CFG_RX_IQ_IDX | \
3182 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3183 IWL_CALIB_CFG_PAPD_IDX | \
3184 IWL_CALIB_CFG_TX_PWR_IDX | \
3185 IWL_CALIB_CFG_CRYSTAL_IDX)
3186
3187 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3188
3189 struct iwl_calib_cfg_elmnt_s {
3190 __le32 is_enable;
3191 __le32 start;
3192 __le32 send_res;
3193 __le32 apply_res;
3194 __le32 reserved;
3195 } __packed;
3196
3197 struct iwl_calib_cfg_status_s {
3198 struct iwl_calib_cfg_elmnt_s once;
3199 struct iwl_calib_cfg_elmnt_s perd;
3200 __le32 flags;
3201 } __packed;
3202
3203 struct iwl_calib_cfg_cmd {
3204 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3205 struct iwl_calib_cfg_status_s drv_calib_cfg;
3206 __le32 reserved1;
3207 } __packed;
3208
3209 struct iwl_calib_hdr {
3210 u8 op_code;
3211 u8 first_group;
3212 u8 groups_num;
3213 u8 data_valid;
3214 } __packed;
3215
3216 struct iwl_calib_cmd {
3217 struct iwl_calib_hdr hdr;
3218 u8 data[0];
3219 } __packed;
3220
3221 struct iwl_calib_xtal_freq_cmd {
3222 struct iwl_calib_hdr hdr;
3223 u8 cap_pin1;
3224 u8 cap_pin2;
3225 u8 pad[2];
3226 } __packed;
3227
3228 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3229 struct iwl_calib_temperature_offset_cmd {
3230 struct iwl_calib_hdr hdr;
3231 __le16 radio_sensor_offset;
3232 __le16 reserved;
3233 } __packed;
3234
3235 struct iwl_calib_temperature_offset_v2_cmd {
3236 struct iwl_calib_hdr hdr;
3237 __le16 radio_sensor_offset_high;
3238 __le16 radio_sensor_offset_low;
3239 __le16 burntVoltageRef;
3240 __le16 reserved;
3241 } __packed;
3242
3243 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3244 struct iwl_calib_chain_noise_reset_cmd {
3245 struct iwl_calib_hdr hdr;
3246 u8 data[0];
3247 };
3248
3249 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3250 struct iwl_calib_chain_noise_gain_cmd {
3251 struct iwl_calib_hdr hdr;
3252 u8 delta_gain_1;
3253 u8 delta_gain_2;
3254 u8 pad[2];
3255 } __packed;
3256
3257 /******************************************************************************
3258 * (12)
3259 * Miscellaneous Commands:
3260 *
3261 *****************************************************************************/
3262
3263 /*
3264 * LEDs Command & Response
3265 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3266 *
3267 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3268 * this command turns it on or off, or sets up a periodic blinking cycle.
3269 */
3270 struct iwl_led_cmd {
3271 __le32 interval; /* "interval" in uSec */
3272 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3273 u8 off; /* # intervals off while blinking;
3274 * "0", with >0 "on" value, turns LED on */
3275 u8 on; /* # intervals on while blinking;
3276 * "0", regardless of "off", turns LED off */
3277 u8 reserved;
3278 } __packed;
3279
3280 /*
3281 * station priority table entries
3282 * also used as potential "events" value for both
3283 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3284 */
3285
3286 /*
3287 * COEX events entry flag masks
3288 * RP - Requested Priority
3289 * WP - Win Medium Priority: priority assigned when the contention has been won
3290 */
3291 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3292 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3293 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3294
3295 #define COEX_CU_UNASSOC_IDLE_RP 4
3296 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3297 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3298 #define COEX_CU_CALIBRATION_RP 4
3299 #define COEX_CU_PERIODIC_CALIBRATION_RP 4
3300 #define COEX_CU_CONNECTION_ESTAB_RP 4
3301 #define COEX_CU_ASSOCIATED_IDLE_RP 4
3302 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3303 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3304 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3305 #define COEX_CU_RF_ON_RP 6
3306 #define COEX_CU_RF_OFF_RP 4
3307 #define COEX_CU_STAND_ALONE_DEBUG_RP 6
3308 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3309 #define COEX_CU_RSRVD1_RP 4
3310 #define COEX_CU_RSRVD2_RP 4
3311
3312 #define COEX_CU_UNASSOC_IDLE_WP 3
3313 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3314 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3315 #define COEX_CU_CALIBRATION_WP 3
3316 #define COEX_CU_PERIODIC_CALIBRATION_WP 3
3317 #define COEX_CU_CONNECTION_ESTAB_WP 3
3318 #define COEX_CU_ASSOCIATED_IDLE_WP 3
3319 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3320 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3321 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3322 #define COEX_CU_RF_ON_WP 3
3323 #define COEX_CU_RF_OFF_WP 3
3324 #define COEX_CU_STAND_ALONE_DEBUG_WP 6
3325 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3326 #define COEX_CU_RSRVD1_WP 3
3327 #define COEX_CU_RSRVD2_WP 3
3328
3329 #define COEX_UNASSOC_IDLE_FLAGS 0
3330 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3331 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3332 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3333 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3334 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3335 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3336 #define COEX_CALIBRATION_FLAGS \
3337 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3338 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3339 #define COEX_PERIODIC_CALIBRATION_FLAGS 0
3340 /*
3341 * COEX_CONNECTION_ESTAB:
3342 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3343 */
3344 #define COEX_CONNECTION_ESTAB_FLAGS \
3345 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3346 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3347 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3348 #define COEX_ASSOCIATED_IDLE_FLAGS 0
3349 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3350 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3351 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3352 #define COEX_ASSOC_AUTO_SCAN_FLAGS \
3353 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3354 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3355 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3356 #define COEX_RF_ON_FLAGS 0
3357 #define COEX_RF_OFF_FLAGS 0
3358 #define COEX_STAND_ALONE_DEBUG_FLAGS \
3359 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3360 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3361 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3362 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3363 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3364 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3365 #define COEX_RSRVD1_FLAGS 0
3366 #define COEX_RSRVD2_FLAGS 0
3367 /*
3368 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3369 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3370 */
3371 #define COEX_CU_RF_ON_FLAGS \
3372 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3373 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3374 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3375
3376
3377 enum {
3378 /* un-association part */
3379 COEX_UNASSOC_IDLE = 0,
3380 COEX_UNASSOC_MANUAL_SCAN = 1,
3381 COEX_UNASSOC_AUTO_SCAN = 2,
3382 /* calibration */
3383 COEX_CALIBRATION = 3,
3384 COEX_PERIODIC_CALIBRATION = 4,
3385 /* connection */
3386 COEX_CONNECTION_ESTAB = 5,
3387 /* association part */
3388 COEX_ASSOCIATED_IDLE = 6,
3389 COEX_ASSOC_MANUAL_SCAN = 7,
3390 COEX_ASSOC_AUTO_SCAN = 8,
3391 COEX_ASSOC_ACTIVE_LEVEL = 9,
3392 /* RF ON/OFF */
3393 COEX_RF_ON = 10,
3394 COEX_RF_OFF = 11,
3395 COEX_STAND_ALONE_DEBUG = 12,
3396 /* IPAN */
3397 COEX_IPAN_ASSOC_LEVEL = 13,
3398 /* reserved */
3399 COEX_RSRVD1 = 14,
3400 COEX_RSRVD2 = 15,
3401 COEX_NUM_OF_EVENTS = 16
3402 };
3403
3404 /*
3405 * Coexistence WIFI/WIMAX Command
3406 * COEX_PRIORITY_TABLE_CMD = 0x5a
3407 *
3408 */
3409 struct iwl_wimax_coex_event_entry {
3410 u8 request_prio;
3411 u8 win_medium_prio;
3412 u8 reserved;
3413 u8 flags;
3414 } __packed;
3415
3416 /* COEX flag masks */
3417
3418 /* Station table is valid */
3419 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3420 /* UnMask wake up src at unassociated sleep */
3421 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3422 /* UnMask wake up src at associated sleep */
3423 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3424 /* Enable CoEx feature. */
3425 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3426
3427 struct iwl_wimax_coex_cmd {
3428 u8 flags;
3429 u8 reserved[3];
3430 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3431 } __packed;
3432
3433 /*
3434 * Coexistence MEDIUM NOTIFICATION
3435 * COEX_MEDIUM_NOTIFICATION = 0x5b
3436 *
3437 * notification from uCode to host to indicate medium changes
3438 *
3439 */
3440 /*
3441 * status field
3442 * bit 0 - 2: medium status
3443 * bit 3: medium change indication
3444 * bit 4 - 31: reserved
3445 */
3446 /* status option values, (0 - 2 bits) */
3447 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3448 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3449 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3450 #define COEX_MEDIUM_MSK (0x7)
3451
3452 /* send notification status (1 bit) */
3453 #define COEX_MEDIUM_CHANGED (0x8)
3454 #define COEX_MEDIUM_CHANGED_MSK (0x8)
3455 #define COEX_MEDIUM_SHIFT (3)
3456
3457 struct iwl_coex_medium_notification {
3458 __le32 status;
3459 __le32 events;
3460 } __packed;
3461
3462 /*
3463 * Coexistence EVENT Command
3464 * COEX_EVENT_CMD = 0x5c
3465 *
3466 * send from host to uCode for coex event request.
3467 */
3468 /* flags options */
3469 #define COEX_EVENT_REQUEST_MSK (0x1)
3470
3471 struct iwl_coex_event_cmd {
3472 u8 flags;
3473 u8 event;
3474 __le16 reserved;
3475 } __packed;
3476
3477 struct iwl_coex_event_resp {
3478 __le32 status;
3479 } __packed;
3480
3481
3482 /******************************************************************************
3483 * Bluetooth Coexistence commands
3484 *
3485 *****************************************************************************/
3486
3487 /*
3488 * BT Status notification
3489 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3490 */
3491 enum iwl_bt_coex_profile_traffic_load {
3492 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3493 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3494 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3495 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3496 /*
3497 * There are no more even though below is a u8, the
3498 * indication from the BT device only has two bits.
3499 */
3500 };
3501
3502 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3503 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3504
3505 /* BT UART message - Share Part (BT -> WiFi) */
3506 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3507 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3508 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3509 #define BT_UART_MSG_FRAME1SSN_POS (3)
3510 #define BT_UART_MSG_FRAME1SSN_MSK \
3511 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3512 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3513 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3514 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3515 #define BT_UART_MSG_FRAME1RESERVED_POS (6)
3516 #define BT_UART_MSG_FRAME1RESERVED_MSK \
3517 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3518
3519 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3520 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3521 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3522 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3523 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3524 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3525 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3526 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3527 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3528 #define BT_UART_MSG_FRAME2INBAND_POS (5)
3529 #define BT_UART_MSG_FRAME2INBAND_MSK \
3530 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3531 #define BT_UART_MSG_FRAME2RESERVED_POS (6)
3532 #define BT_UART_MSG_FRAME2RESERVED_MSK \
3533 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3534
3535 #define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3536 #define BT_UART_MSG_FRAME3SCOESCO_MSK \
3537 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3538 #define BT_UART_MSG_FRAME3SNIFF_POS (1)
3539 #define BT_UART_MSG_FRAME3SNIFF_MSK \
3540 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3541 #define BT_UART_MSG_FRAME3A2DP_POS (2)
3542 #define BT_UART_MSG_FRAME3A2DP_MSK \
3543 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3544 #define BT_UART_MSG_FRAME3ACL_POS (3)
3545 #define BT_UART_MSG_FRAME3ACL_MSK \
3546 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3547 #define BT_UART_MSG_FRAME3MASTER_POS (4)
3548 #define BT_UART_MSG_FRAME3MASTER_MSK \
3549 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3550 #define BT_UART_MSG_FRAME3OBEX_POS (5)
3551 #define BT_UART_MSG_FRAME3OBEX_MSK \
3552 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3553 #define BT_UART_MSG_FRAME3RESERVED_POS (6)
3554 #define BT_UART_MSG_FRAME3RESERVED_MSK \
3555 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3556
3557 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3558 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3559 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3560 #define BT_UART_MSG_FRAME4RESERVED_POS (6)
3561 #define BT_UART_MSG_FRAME4RESERVED_MSK \
3562 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3563
3564 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3565 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3566 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3567 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3568 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3569 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3570 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3571 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3572 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3573 #define BT_UART_MSG_FRAME5RESERVED_POS (6)
3574 #define BT_UART_MSG_FRAME5RESERVED_MSK \
3575 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3576
3577 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3578 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3579 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3580 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3581 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3582 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3583 #define BT_UART_MSG_FRAME6RESERVED_POS (6)
3584 #define BT_UART_MSG_FRAME6RESERVED_MSK \
3585 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3586
3587 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3588 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3589 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3590 #define BT_UART_MSG_FRAME7PAGE_POS (3)
3591 #define BT_UART_MSG_FRAME7PAGE_MSK \
3592 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3593 #define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3594 #define BT_UART_MSG_FRAME7INQUIRY_MSK \
3595 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3596 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3597 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3598 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3599 #define BT_UART_MSG_FRAME7RESERVED_POS (6)
3600 #define BT_UART_MSG_FRAME7RESERVED_MSK \
3601 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3602
3603 /* BT Session Activity 2 UART message (BT -> WiFi) */
3604 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3605 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3606 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3607 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3608 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3609 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3610
3611 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3612 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3613 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3614 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3615 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3616 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3617
3618 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3619 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3620 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3621 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3622 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3623 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3624 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3625 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3626 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3627 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3628 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3629 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3630
3631 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3632 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3633 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3634 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3635 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3636 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3637 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3638 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3639 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3640
3641 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3642 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3643 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3644 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3645 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3646 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3647 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3648 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3649 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3650 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3651 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3652 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3653
3654 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3655 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3656 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3657 #define BT_UART_MSG_2_FRAME6RFU_POS (5)
3658 #define BT_UART_MSG_2_FRAME6RFU_MSK \
3659 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3660 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3661 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3662 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3663
3664 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3665 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3666 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3667 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3668 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3669 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3670 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3671 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3672 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3673 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3674 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3675 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3676 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3677 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3678 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3679
3680
3681 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3682 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3683
3684 struct iwl_bt_uart_msg {
3685 u8 header;
3686 u8 frame1;
3687 u8 frame2;
3688 u8 frame3;
3689 u8 frame4;
3690 u8 frame5;
3691 u8 frame6;
3692 u8 frame7;
3693 } __packed;
3694
3695 struct iwl_bt_coex_profile_notif {
3696 struct iwl_bt_uart_msg last_bt_uart_msg;
3697 u8 bt_status; /* 0 - off, 1 - on */
3698 u8 bt_traffic_load; /* 0 .. 3? */
3699 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3700 u8 reserved;
3701 } __packed;
3702
3703 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3704 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3705 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3706 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3707 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3708 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3709 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3710
3711 /*
3712 * BT Coexistence Priority table
3713 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3714 */
3715 enum bt_coex_prio_table_events {
3716 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3717 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3718 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3719 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3720 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3721 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3722 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3723 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3724 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3725 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3726 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3727 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3728 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3729 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3730 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3731 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3732 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3733 BT_COEX_PRIO_TBL_EVT_MAX,
3734 };
3735
3736 enum bt_coex_prio_table_priorities {
3737 BT_COEX_PRIO_TBL_DISABLED = 0,
3738 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3739 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3740 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3741 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3742 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3743 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3744 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3745 BT_COEX_PRIO_TBL_MAX,
3746 };
3747
3748 struct iwl_bt_coex_prio_table_cmd {
3749 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3750 } __packed;
3751
3752 #define IWL_BT_COEX_ENV_CLOSE 0
3753 #define IWL_BT_COEX_ENV_OPEN 1
3754 /*
3755 * BT Protection Envelope
3756 * REPLY_BT_COEX_PROT_ENV = 0xcd
3757 */
3758 struct iwl_bt_coex_prot_env_cmd {
3759 u8 action; /* 0 = closed, 1 = open */
3760 u8 type; /* 0 .. 15 */
3761 u8 reserved[2];
3762 } __packed;
3763
3764 /*
3765 * REPLY_D3_CONFIG
3766 */
3767 enum iwlagn_d3_wakeup_filters {
3768 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3769 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3770 };
3771
3772 struct iwlagn_d3_config_cmd {
3773 __le32 min_sleep_time;
3774 __le32 wakeup_flags;
3775 } __packed;
3776
3777 /*
3778 * REPLY_WOWLAN_PATTERNS
3779 */
3780 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3781 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3782
3783 struct iwlagn_wowlan_pattern {
3784 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3785 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3786 u8 mask_size;
3787 u8 pattern_size;
3788 __le16 reserved;
3789 } __packed;
3790
3791 #define IWLAGN_WOWLAN_MAX_PATTERNS 20
3792
3793 struct iwlagn_wowlan_patterns_cmd {
3794 __le32 n_patterns;
3795 struct iwlagn_wowlan_pattern patterns[];
3796 } __packed;
3797
3798 /*
3799 * REPLY_WOWLAN_WAKEUP_FILTER
3800 */
3801 enum iwlagn_wowlan_wakeup_filters {
3802 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3803 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3804 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3805 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3806 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3807 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3808 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3809 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3810 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3811 };
3812
3813 struct iwlagn_wowlan_wakeup_filter_cmd {
3814 __le32 enabled;
3815 __le16 non_qos_seq;
3816 __le16 reserved;
3817 __le16 qos_seq[8];
3818 };
3819
3820 /*
3821 * REPLY_WOWLAN_TSC_RSC_PARAMS
3822 */
3823 #define IWLAGN_NUM_RSC 16
3824
3825 struct tkip_sc {
3826 __le16 iv16;
3827 __le16 pad;
3828 __le32 iv32;
3829 } __packed;
3830
3831 struct iwlagn_tkip_rsc_tsc {
3832 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3833 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3834 struct tkip_sc tsc;
3835 } __packed;
3836
3837 struct aes_sc {
3838 __le64 pn;
3839 } __packed;
3840
3841 struct iwlagn_aes_rsc_tsc {
3842 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3843 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3844 struct aes_sc tsc;
3845 } __packed;
3846
3847 union iwlagn_all_tsc_rsc {
3848 struct iwlagn_tkip_rsc_tsc tkip;
3849 struct iwlagn_aes_rsc_tsc aes;
3850 };
3851
3852 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3853 union iwlagn_all_tsc_rsc all_tsc_rsc;
3854 } __packed;
3855
3856 /*
3857 * REPLY_WOWLAN_TKIP_PARAMS
3858 */
3859 #define IWLAGN_MIC_KEY_SIZE 8
3860 #define IWLAGN_P1K_SIZE 5
3861 struct iwlagn_mic_keys {
3862 u8 tx[IWLAGN_MIC_KEY_SIZE];
3863 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3864 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3865 } __packed;
3866
3867 struct iwlagn_p1k_cache {
3868 __le16 p1k[IWLAGN_P1K_SIZE];
3869 } __packed;
3870
3871 #define IWLAGN_NUM_RX_P1K_CACHE 2
3872
3873 struct iwlagn_wowlan_tkip_params_cmd {
3874 struct iwlagn_mic_keys mic_keys;
3875 struct iwlagn_p1k_cache tx;
3876 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3877 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3878 } __packed;
3879
3880 /*
3881 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3882 */
3883
3884 #define IWLAGN_KCK_MAX_SIZE 32
3885 #define IWLAGN_KEK_MAX_SIZE 32
3886
3887 struct iwlagn_wowlan_kek_kck_material_cmd {
3888 u8 kck[IWLAGN_KCK_MAX_SIZE];
3889 u8 kek[IWLAGN_KEK_MAX_SIZE];
3890 __le16 kck_len;
3891 __le16 kek_len;
3892 __le64 replay_ctr;
3893 } __packed;
3894
3895 #define RF_KILL_INDICATOR_FOR_WOWLAN 0x87
3896
3897 /*
3898 * REPLY_WOWLAN_GET_STATUS = 0xe5
3899 */
3900 struct iwlagn_wowlan_status {
3901 __le64 replay_ctr;
3902 __le32 rekey_status;
3903 __le32 wakeup_reason;
3904 u8 pattern_number;
3905 u8 reserved1;
3906 __le16 qos_seq_ctr[8];
3907 __le16 non_qos_seq_ctr;
3908 __le16 reserved2;
3909 union iwlagn_all_tsc_rsc tsc_rsc;
3910 __le16 reserved3;
3911 } __packed;
3912
3913 /*
3914 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3915 */
3916
3917 /*
3918 * Minimum slot time in TU
3919 */
3920 #define IWL_MIN_SLOT_TIME 20
3921
3922 /**
3923 * struct iwl_wipan_slot
3924 * @width: Time in TU
3925 * @type:
3926 * 0 - BSS
3927 * 1 - PAN
3928 */
3929 struct iwl_wipan_slot {
3930 __le16 width;
3931 u8 type;
3932 u8 reserved;
3933 } __packed;
3934
3935 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3936 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3937 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3938 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3939 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3940
3941 /**
3942 * struct iwl_wipan_params_cmd
3943 * @flags:
3944 * bit0: reserved
3945 * bit1: CP leave channel with CTS
3946 * bit2: CP leave channel qith Quiet
3947 * bit3: slotted mode
3948 * 1 - work in slotted mode
3949 * 0 - work in non slotted mode
3950 * bit4: filter beacon notification
3951 * bit5: full tx slotted mode. if this flag is set,
3952 * uCode will perform leaving channel methods in context switch
3953 * also when working in same channel mode
3954 * @num_slots: 1 - 10
3955 */
3956 struct iwl_wipan_params_cmd {
3957 __le16 flags;
3958 u8 reserved;
3959 u8 num_slots;
3960 struct iwl_wipan_slot slots[10];
3961 } __packed;
3962
3963 /*
3964 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3965 *
3966 * TODO: Figure out what this is used for,
3967 * it can only switch between 2.4 GHz
3968 * channels!!
3969 */
3970
3971 struct iwl_wipan_p2p_channel_switch_cmd {
3972 __le16 channel;
3973 __le16 reserved;
3974 };
3975
3976 /*
3977 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3978 *
3979 * This is used by the device to notify us of the
3980 * NoA schedule it determined so we can forward it
3981 * to userspace for inclusion in probe responses.
3982 *
3983 * In beacons, the NoA schedule is simply appended
3984 * to the frame we give the device.
3985 */
3986
3987 struct iwl_wipan_noa_descriptor {
3988 u8 count;
3989 __le32 duration;
3990 __le32 interval;
3991 __le32 starttime;
3992 } __packed;
3993
3994 struct iwl_wipan_noa_attribute {
3995 u8 id;
3996 __le16 length;
3997 u8 index;
3998 u8 ct_window;
3999 struct iwl_wipan_noa_descriptor descr0, descr1;
4000 u8 reserved;
4001 } __packed;
4002
4003 struct iwl_wipan_noa_notification {
4004 u32 noa_active;
4005 struct iwl_wipan_noa_attribute noa_attribute;
4006 } __packed;
4007
4008 #endif /* __iwl_commands_h__ */
This page took 0.151035 seconds and 5 git commands to generate.