Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19 /*
20 Module: rt2500usb
21 Abstract: rt2500usb device specific routines.
22 Supported chipsets: RT2570.
23 */
24
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/usb.h>
31
32 #include "rt2x00.h"
33 #include "rt2x00usb.h"
34 #include "rt2500usb.h"
35
36 /*
37 * Allow hardware encryption to be disabled.
38 */
39 static bool modparam_nohwcrypt;
40 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
41 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
42
43 /*
44 * Register access.
45 * All access to the CSR registers will go through the methods
46 * rt2500usb_register_read and rt2500usb_register_write.
47 * BBP and RF register require indirect register access,
48 * and use the CSR registers BBPCSR and RFCSR to achieve this.
49 * These indirect registers work with busy bits,
50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51 * the register while taking a REGISTER_BUSY_DELAY us delay
52 * between each attampt. When the busy bit is still set at that time,
53 * the access attempt is considered to have failed,
54 * and we will print an error.
55 * If the csr_mutex is already held then the _lock variants must
56 * be used instead.
57 */
58 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
59 const unsigned int offset,
60 u16 *value)
61 {
62 __le16 reg;
63 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
64 USB_VENDOR_REQUEST_IN, offset,
65 &reg, sizeof(reg));
66 *value = le16_to_cpu(reg);
67 }
68
69 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
70 const unsigned int offset,
71 u16 *value)
72 {
73 __le16 reg;
74 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
75 USB_VENDOR_REQUEST_IN, offset,
76 &reg, sizeof(reg), REGISTER_TIMEOUT);
77 *value = le16_to_cpu(reg);
78 }
79
80 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
81 const unsigned int offset,
82 void *value, const u16 length)
83 {
84 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
85 USB_VENDOR_REQUEST_IN, offset,
86 value, length);
87 }
88
89 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
90 const unsigned int offset,
91 u16 value)
92 {
93 __le16 reg = cpu_to_le16(value);
94 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
95 USB_VENDOR_REQUEST_OUT, offset,
96 &reg, sizeof(reg));
97 }
98
99 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
100 const unsigned int offset,
101 u16 value)
102 {
103 __le16 reg = cpu_to_le16(value);
104 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
105 USB_VENDOR_REQUEST_OUT, offset,
106 &reg, sizeof(reg), REGISTER_TIMEOUT);
107 }
108
109 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
110 const unsigned int offset,
111 void *value, const u16 length)
112 {
113 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
114 USB_VENDOR_REQUEST_OUT, offset,
115 value, length);
116 }
117
118 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
119 const unsigned int offset,
120 struct rt2x00_field16 field,
121 u16 *reg)
122 {
123 unsigned int i;
124
125 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
126 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
127 if (!rt2x00_get_field16(*reg, field))
128 return 1;
129 udelay(REGISTER_BUSY_DELAY);
130 }
131
132 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
133 offset, *reg);
134 *reg = ~0;
135
136 return 0;
137 }
138
139 #define WAIT_FOR_BBP(__dev, __reg) \
140 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
141 #define WAIT_FOR_RF(__dev, __reg) \
142 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
143
144 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
145 const unsigned int word, const u8 value)
146 {
147 u16 reg;
148
149 mutex_lock(&rt2x00dev->csr_mutex);
150
151 /*
152 * Wait until the BBP becomes available, afterwards we
153 * can safely write the new data into the register.
154 */
155 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
156 reg = 0;
157 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
158 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
159 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
160
161 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
162 }
163
164 mutex_unlock(&rt2x00dev->csr_mutex);
165 }
166
167 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
168 const unsigned int word, u8 *value)
169 {
170 u16 reg;
171
172 mutex_lock(&rt2x00dev->csr_mutex);
173
174 /*
175 * Wait until the BBP becomes available, afterwards we
176 * can safely write the read request into the register.
177 * After the data has been written, we wait until hardware
178 * returns the correct value, if at any time the register
179 * doesn't become available in time, reg will be 0xffffffff
180 * which means we return 0xff to the caller.
181 */
182 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
183 reg = 0;
184 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
185 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
186
187 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
188
189 if (WAIT_FOR_BBP(rt2x00dev, &reg))
190 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
191 }
192
193 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
194
195 mutex_unlock(&rt2x00dev->csr_mutex);
196 }
197
198 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, const u32 value)
200 {
201 u16 reg;
202
203 mutex_lock(&rt2x00dev->csr_mutex);
204
205 /*
206 * Wait until the RF becomes available, afterwards we
207 * can safely write the new data into the register.
208 */
209 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
210 reg = 0;
211 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
212 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
213
214 reg = 0;
215 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
216 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
217 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
218 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
219
220 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
221 rt2x00_rf_write(rt2x00dev, word, value);
222 }
223
224 mutex_unlock(&rt2x00dev->csr_mutex);
225 }
226
227 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
228 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
229 const unsigned int offset,
230 u32 *value)
231 {
232 rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
233 }
234
235 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
236 const unsigned int offset,
237 u32 value)
238 {
239 rt2500usb_register_write(rt2x00dev, offset, value);
240 }
241
242 static const struct rt2x00debug rt2500usb_rt2x00debug = {
243 .owner = THIS_MODULE,
244 .csr = {
245 .read = _rt2500usb_register_read,
246 .write = _rt2500usb_register_write,
247 .flags = RT2X00DEBUGFS_OFFSET,
248 .word_base = CSR_REG_BASE,
249 .word_size = sizeof(u16),
250 .word_count = CSR_REG_SIZE / sizeof(u16),
251 },
252 .eeprom = {
253 .read = rt2x00_eeprom_read,
254 .write = rt2x00_eeprom_write,
255 .word_base = EEPROM_BASE,
256 .word_size = sizeof(u16),
257 .word_count = EEPROM_SIZE / sizeof(u16),
258 },
259 .bbp = {
260 .read = rt2500usb_bbp_read,
261 .write = rt2500usb_bbp_write,
262 .word_base = BBP_BASE,
263 .word_size = sizeof(u8),
264 .word_count = BBP_SIZE / sizeof(u8),
265 },
266 .rf = {
267 .read = rt2x00_rf_read,
268 .write = rt2500usb_rf_write,
269 .word_base = RF_BASE,
270 .word_size = sizeof(u32),
271 .word_count = RF_SIZE / sizeof(u32),
272 },
273 };
274 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
275
276 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
277 {
278 u16 reg;
279
280 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
281 return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
282 }
283
284 #ifdef CONFIG_RT2X00_LIB_LEDS
285 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
286 enum led_brightness brightness)
287 {
288 struct rt2x00_led *led =
289 container_of(led_cdev, struct rt2x00_led, led_dev);
290 unsigned int enabled = brightness != LED_OFF;
291 u16 reg;
292
293 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
294
295 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
296 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
297 else if (led->type == LED_TYPE_ACTIVITY)
298 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
299
300 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
301 }
302
303 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
304 unsigned long *delay_on,
305 unsigned long *delay_off)
306 {
307 struct rt2x00_led *led =
308 container_of(led_cdev, struct rt2x00_led, led_dev);
309 u16 reg;
310
311 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
312 rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
313 rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
314 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
315
316 return 0;
317 }
318
319 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
320 struct rt2x00_led *led,
321 enum led_type type)
322 {
323 led->rt2x00dev = rt2x00dev;
324 led->type = type;
325 led->led_dev.brightness_set = rt2500usb_brightness_set;
326 led->led_dev.blink_set = rt2500usb_blink_set;
327 led->flags = LED_INITIALIZED;
328 }
329 #endif /* CONFIG_RT2X00_LIB_LEDS */
330
331 /*
332 * Configuration handlers.
333 */
334
335 /*
336 * rt2500usb does not differentiate between shared and pairwise
337 * keys, so we should use the same function for both key types.
338 */
339 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
340 struct rt2x00lib_crypto *crypto,
341 struct ieee80211_key_conf *key)
342 {
343 u32 mask;
344 u16 reg;
345 enum cipher curr_cipher;
346
347 if (crypto->cmd == SET_KEY) {
348 /*
349 * Disallow to set WEP key other than with index 0,
350 * it is known that not work at least on some hardware.
351 * SW crypto will be used in that case.
352 */
353 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
354 key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
355 key->keyidx != 0)
356 return -EOPNOTSUPP;
357
358 /*
359 * Pairwise key will always be entry 0, but this
360 * could collide with a shared key on the same
361 * position...
362 */
363 mask = TXRX_CSR0_KEY_ID.bit_mask;
364
365 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
366 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
367 reg &= mask;
368
369 if (reg && reg == mask)
370 return -ENOSPC;
371
372 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
373
374 key->hw_key_idx += reg ? ffz(reg) : 0;
375 /*
376 * Hardware requires that all keys use the same cipher
377 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
378 * If this is not the first key, compare the cipher with the
379 * first one and fall back to SW crypto if not the same.
380 */
381 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
382 return -EOPNOTSUPP;
383
384 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
385 crypto->key, sizeof(crypto->key));
386
387 /*
388 * The driver does not support the IV/EIV generation
389 * in hardware. However it demands the data to be provided
390 * both separately as well as inside the frame.
391 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
392 * to ensure rt2x00lib will not strip the data from the
393 * frame after the copy, now we must tell mac80211
394 * to generate the IV/EIV data.
395 */
396 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
397 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
398 }
399
400 /*
401 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
402 * a particular key is valid.
403 */
404 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
405 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
406 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
407
408 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
409 if (crypto->cmd == SET_KEY)
410 mask |= 1 << key->hw_key_idx;
411 else if (crypto->cmd == DISABLE_KEY)
412 mask &= ~(1 << key->hw_key_idx);
413 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
414 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
415
416 return 0;
417 }
418
419 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
420 const unsigned int filter_flags)
421 {
422 u16 reg;
423
424 /*
425 * Start configuration steps.
426 * Note that the version error will always be dropped
427 * and broadcast frames will always be accepted since
428 * there is no filter for it at this time.
429 */
430 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
431 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
432 !(filter_flags & FIF_FCSFAIL));
433 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
434 !(filter_flags & FIF_PLCPFAIL));
435 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
436 !(filter_flags & FIF_CONTROL));
437 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME, 1);
438 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
439 !rt2x00dev->intf_ap_count);
440 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
441 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
442 !(filter_flags & FIF_ALLMULTI));
443 rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
444 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
445 }
446
447 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
448 struct rt2x00_intf *intf,
449 struct rt2x00intf_conf *conf,
450 const unsigned int flags)
451 {
452 unsigned int bcn_preload;
453 u16 reg;
454
455 if (flags & CONFIG_UPDATE_TYPE) {
456 /*
457 * Enable beacon config
458 */
459 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
460 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
461 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
462 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
463 2 * (conf->type != NL80211_IFTYPE_STATION));
464 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
465
466 /*
467 * Enable synchronisation.
468 */
469 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
470 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
471 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
472
473 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
474 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
475 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
476 }
477
478 if (flags & CONFIG_UPDATE_MAC)
479 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
480 (3 * sizeof(__le16)));
481
482 if (flags & CONFIG_UPDATE_BSSID)
483 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
484 (3 * sizeof(__le16)));
485 }
486
487 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
488 struct rt2x00lib_erp *erp,
489 u32 changed)
490 {
491 u16 reg;
492
493 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
494 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
495 rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
496 !!erp->short_preamble);
497 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
498 }
499
500 if (changed & BSS_CHANGED_BASIC_RATES)
501 rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
502 erp->basic_rates);
503
504 if (changed & BSS_CHANGED_BEACON_INT) {
505 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
506 rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
507 erp->beacon_int * 4);
508 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
509 }
510
511 if (changed & BSS_CHANGED_ERP_SLOT) {
512 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
513 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
514 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
515 }
516 }
517
518 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
519 struct antenna_setup *ant)
520 {
521 u8 r2;
522 u8 r14;
523 u16 csr5;
524 u16 csr6;
525
526 /*
527 * We should never come here because rt2x00lib is supposed
528 * to catch this and send us the correct antenna explicitely.
529 */
530 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
531 ant->tx == ANTENNA_SW_DIVERSITY);
532
533 rt2500usb_bbp_read(rt2x00dev, 2, &r2);
534 rt2500usb_bbp_read(rt2x00dev, 14, &r14);
535 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
536 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
537
538 /*
539 * Configure the TX antenna.
540 */
541 switch (ant->tx) {
542 case ANTENNA_HW_DIVERSITY:
543 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
544 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
545 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
546 break;
547 case ANTENNA_A:
548 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
549 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
550 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
551 break;
552 case ANTENNA_B:
553 default:
554 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
555 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
556 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
557 break;
558 }
559
560 /*
561 * Configure the RX antenna.
562 */
563 switch (ant->rx) {
564 case ANTENNA_HW_DIVERSITY:
565 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
566 break;
567 case ANTENNA_A:
568 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
569 break;
570 case ANTENNA_B:
571 default:
572 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
573 break;
574 }
575
576 /*
577 * RT2525E and RT5222 need to flip TX I/Q
578 */
579 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
580 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
581 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
582 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
583
584 /*
585 * RT2525E does not need RX I/Q Flip.
586 */
587 if (rt2x00_rf(rt2x00dev, RF2525E))
588 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
589 } else {
590 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
591 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
592 }
593
594 rt2500usb_bbp_write(rt2x00dev, 2, r2);
595 rt2500usb_bbp_write(rt2x00dev, 14, r14);
596 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
597 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
598 }
599
600 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
601 struct rf_channel *rf, const int txpower)
602 {
603 /*
604 * Set TXpower.
605 */
606 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
607
608 /*
609 * For RT2525E we should first set the channel to half band higher.
610 */
611 if (rt2x00_rf(rt2x00dev, RF2525E)) {
612 static const u32 vals[] = {
613 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
614 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
615 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
616 0x00000902, 0x00000906
617 };
618
619 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
620 if (rf->rf4)
621 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
622 }
623
624 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
625 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
626 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
627 if (rf->rf4)
628 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
629 }
630
631 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
632 const int txpower)
633 {
634 u32 rf3;
635
636 rt2x00_rf_read(rt2x00dev, 3, &rf3);
637 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
638 rt2500usb_rf_write(rt2x00dev, 3, rf3);
639 }
640
641 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
642 struct rt2x00lib_conf *libconf)
643 {
644 enum dev_state state =
645 (libconf->conf->flags & IEEE80211_CONF_PS) ?
646 STATE_SLEEP : STATE_AWAKE;
647 u16 reg;
648
649 if (state == STATE_SLEEP) {
650 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
651 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
652 rt2x00dev->beacon_int - 20);
653 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
654 libconf->conf->listen_interval - 1);
655
656 /* We must first disable autowake before it can be enabled */
657 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
658 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
659
660 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
661 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
662 } else {
663 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
664 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
665 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
666 }
667
668 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
669 }
670
671 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
672 struct rt2x00lib_conf *libconf,
673 const unsigned int flags)
674 {
675 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
676 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
677 libconf->conf->power_level);
678 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
679 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
680 rt2500usb_config_txpower(rt2x00dev,
681 libconf->conf->power_level);
682 if (flags & IEEE80211_CONF_CHANGE_PS)
683 rt2500usb_config_ps(rt2x00dev, libconf);
684 }
685
686 /*
687 * Link tuning
688 */
689 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
690 struct link_qual *qual)
691 {
692 u16 reg;
693
694 /*
695 * Update FCS error count from register.
696 */
697 rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
698 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
699
700 /*
701 * Update False CCA count from register.
702 */
703 rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
704 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
705 }
706
707 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
708 struct link_qual *qual)
709 {
710 u16 eeprom;
711 u16 value;
712
713 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
714 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
715 rt2500usb_bbp_write(rt2x00dev, 24, value);
716
717 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
718 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
719 rt2500usb_bbp_write(rt2x00dev, 25, value);
720
721 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
722 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
723 rt2500usb_bbp_write(rt2x00dev, 61, value);
724
725 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
726 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
727 rt2500usb_bbp_write(rt2x00dev, 17, value);
728
729 qual->vgc_level = value;
730 }
731
732 /*
733 * Queue handlers.
734 */
735 static void rt2500usb_start_queue(struct data_queue *queue)
736 {
737 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
738 u16 reg;
739
740 switch (queue->qid) {
741 case QID_RX:
742 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
743 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
744 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
745 break;
746 case QID_BEACON:
747 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
748 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
749 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
750 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
751 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
752 break;
753 default:
754 break;
755 }
756 }
757
758 static void rt2500usb_stop_queue(struct data_queue *queue)
759 {
760 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
761 u16 reg;
762
763 switch (queue->qid) {
764 case QID_RX:
765 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
766 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
767 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
768 break;
769 case QID_BEACON:
770 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
771 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
772 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
773 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
774 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
775 break;
776 default:
777 break;
778 }
779 }
780
781 /*
782 * Initialization functions.
783 */
784 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
785 {
786 u16 reg;
787
788 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
789 USB_MODE_TEST, REGISTER_TIMEOUT);
790 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
791 0x00f0, REGISTER_TIMEOUT);
792
793 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
794 rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
795 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
796
797 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
798 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
799
800 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
801 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
802 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
803 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
804 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
805
806 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
807 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
808 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
809 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
810 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
811
812 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
813 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
814 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
815 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
816 rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
817 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
818
819 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
820 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
821 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
822 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
823 rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
824 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
825
826 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
827 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
828 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
829 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
830 rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
831 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
832
833 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
834 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
835 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
836 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
837 rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
838 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
839
840 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
841 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
842 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
843 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
844 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
845 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
846
847 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
848 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
849
850 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
851 return -EBUSY;
852
853 rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
854 rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
855 rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
856 rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
857 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
858
859 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
860 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
861 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
862 } else {
863 reg = 0;
864 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
865 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
866 }
867 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
868
869 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
870 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
871 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
872 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
873
874 rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
875 rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
876 rt2x00dev->rx->data_size);
877 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
878
879 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
880 rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
881 rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
882 rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
883 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
884
885 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
886 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
887 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
888
889 rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
890 rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
891 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
892
893 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
894 rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
895 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
896
897 return 0;
898 }
899
900 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
901 {
902 unsigned int i;
903 u8 value;
904
905 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
906 rt2500usb_bbp_read(rt2x00dev, 0, &value);
907 if ((value != 0xff) && (value != 0x00))
908 return 0;
909 udelay(REGISTER_BUSY_DELAY);
910 }
911
912 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
913 return -EACCES;
914 }
915
916 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
917 {
918 unsigned int i;
919 u16 eeprom;
920 u8 value;
921 u8 reg_id;
922
923 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
924 return -EACCES;
925
926 rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
927 rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
928 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
929 rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
930 rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
931 rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
932 rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
933 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
934 rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
935 rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
936 rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
937 rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
938 rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
939 rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
940 rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
941 rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
942 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
943 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
944 rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
945 rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
946 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
947 rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
948 rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
949 rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
950 rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
951 rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
952 rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
953 rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
954 rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
955 rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
956 rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
957
958 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
959 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
960
961 if (eeprom != 0xffff && eeprom != 0x0000) {
962 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
963 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
964 rt2500usb_bbp_write(rt2x00dev, reg_id, value);
965 }
966 }
967
968 return 0;
969 }
970
971 /*
972 * Device state switch handlers.
973 */
974 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
975 {
976 /*
977 * Initialize all registers.
978 */
979 if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
980 rt2500usb_init_bbp(rt2x00dev)))
981 return -EIO;
982
983 return 0;
984 }
985
986 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
987 {
988 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
989 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
990
991 /*
992 * Disable synchronisation.
993 */
994 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
995
996 rt2x00usb_disable_radio(rt2x00dev);
997 }
998
999 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1000 enum dev_state state)
1001 {
1002 u16 reg;
1003 u16 reg2;
1004 unsigned int i;
1005 char put_to_sleep;
1006 char bbp_state;
1007 char rf_state;
1008
1009 put_to_sleep = (state != STATE_AWAKE);
1010
1011 reg = 0;
1012 rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1013 rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1014 rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1015 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1016 rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1017 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1018
1019 /*
1020 * Device is not guaranteed to be in the requested state yet.
1021 * We must wait until the register indicates that the
1022 * device has entered the correct state.
1023 */
1024 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1025 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1026 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1027 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1028 if (bbp_state == state && rf_state == state)
1029 return 0;
1030 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1031 msleep(30);
1032 }
1033
1034 return -EBUSY;
1035 }
1036
1037 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1038 enum dev_state state)
1039 {
1040 int retval = 0;
1041
1042 switch (state) {
1043 case STATE_RADIO_ON:
1044 retval = rt2500usb_enable_radio(rt2x00dev);
1045 break;
1046 case STATE_RADIO_OFF:
1047 rt2500usb_disable_radio(rt2x00dev);
1048 break;
1049 case STATE_RADIO_IRQ_ON:
1050 case STATE_RADIO_IRQ_OFF:
1051 /* No support, but no error either */
1052 break;
1053 case STATE_DEEP_SLEEP:
1054 case STATE_SLEEP:
1055 case STATE_STANDBY:
1056 case STATE_AWAKE:
1057 retval = rt2500usb_set_state(rt2x00dev, state);
1058 break;
1059 default:
1060 retval = -ENOTSUPP;
1061 break;
1062 }
1063
1064 if (unlikely(retval))
1065 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1066 state, retval);
1067
1068 return retval;
1069 }
1070
1071 /*
1072 * TX descriptor initialization
1073 */
1074 static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1075 struct txentry_desc *txdesc)
1076 {
1077 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1078 __le32 *txd = (__le32 *) entry->skb->data;
1079 u32 word;
1080
1081 /*
1082 * Start writing the descriptor words.
1083 */
1084 rt2x00_desc_read(txd, 0, &word);
1085 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1086 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1087 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1088 rt2x00_set_field32(&word, TXD_W0_ACK,
1089 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1090 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1091 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1092 rt2x00_set_field32(&word, TXD_W0_OFDM,
1093 (txdesc->rate_mode == RATE_MODE_OFDM));
1094 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1095 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1096 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1097 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1098 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1099 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1100 rt2x00_desc_write(txd, 0, word);
1101
1102 rt2x00_desc_read(txd, 1, &word);
1103 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1104 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1105 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1106 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1107 rt2x00_desc_write(txd, 1, word);
1108
1109 rt2x00_desc_read(txd, 2, &word);
1110 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1111 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1112 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1113 txdesc->u.plcp.length_low);
1114 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1115 txdesc->u.plcp.length_high);
1116 rt2x00_desc_write(txd, 2, word);
1117
1118 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1119 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1120 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1121 }
1122
1123 /*
1124 * Register descriptor details in skb frame descriptor.
1125 */
1126 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1127 skbdesc->desc = txd;
1128 skbdesc->desc_len = TXD_DESC_SIZE;
1129 }
1130
1131 /*
1132 * TX data initialization
1133 */
1134 static void rt2500usb_beacondone(struct urb *urb);
1135
1136 static void rt2500usb_write_beacon(struct queue_entry *entry,
1137 struct txentry_desc *txdesc)
1138 {
1139 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1140 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1141 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1142 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1143 int length;
1144 u16 reg, reg0;
1145
1146 /*
1147 * Disable beaconing while we are reloading the beacon data,
1148 * otherwise we might be sending out invalid data.
1149 */
1150 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1151 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1152 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1153
1154 /*
1155 * Add space for the descriptor in front of the skb.
1156 */
1157 skb_push(entry->skb, TXD_DESC_SIZE);
1158 memset(entry->skb->data, 0, TXD_DESC_SIZE);
1159
1160 /*
1161 * Write the TX descriptor for the beacon.
1162 */
1163 rt2500usb_write_tx_desc(entry, txdesc);
1164
1165 /*
1166 * Dump beacon to userspace through debugfs.
1167 */
1168 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1169
1170 /*
1171 * USB devices cannot blindly pass the skb->len as the
1172 * length of the data to usb_fill_bulk_urb. Pass the skb
1173 * to the driver to determine what the length should be.
1174 */
1175 length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1176
1177 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1178 entry->skb->data, length, rt2500usb_beacondone,
1179 entry);
1180
1181 /*
1182 * Second we need to create the guardian byte.
1183 * We only need a single byte, so lets recycle
1184 * the 'flags' field we are not using for beacons.
1185 */
1186 bcn_priv->guardian_data = 0;
1187 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1188 &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1189 entry);
1190
1191 /*
1192 * Send out the guardian byte.
1193 */
1194 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1195
1196 /*
1197 * Enable beaconing again.
1198 */
1199 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1200 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1201 reg0 = reg;
1202 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1203 /*
1204 * Beacon generation will fail initially.
1205 * To prevent this we need to change the TXRX_CSR19
1206 * register several times (reg0 is the same as reg
1207 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1208 * and 1 in reg).
1209 */
1210 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1211 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1212 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1213 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1214 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1215 }
1216
1217 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1218 {
1219 int length;
1220
1221 /*
1222 * The length _must_ be a multiple of 2,
1223 * but it must _not_ be a multiple of the USB packet size.
1224 */
1225 length = roundup(entry->skb->len, 2);
1226 length += (2 * !(length % entry->queue->usb_maxpacket));
1227
1228 return length;
1229 }
1230
1231 /*
1232 * RX control handlers
1233 */
1234 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1235 struct rxdone_entry_desc *rxdesc)
1236 {
1237 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1238 struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1239 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1240 __le32 *rxd =
1241 (__le32 *)(entry->skb->data +
1242 (entry_priv->urb->actual_length -
1243 entry->queue->desc_size));
1244 u32 word0;
1245 u32 word1;
1246
1247 /*
1248 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1249 * frame data in rt2x00usb.
1250 */
1251 memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1252 rxd = (__le32 *)skbdesc->desc;
1253
1254 /*
1255 * It is now safe to read the descriptor on all architectures.
1256 */
1257 rt2x00_desc_read(rxd, 0, &word0);
1258 rt2x00_desc_read(rxd, 1, &word1);
1259
1260 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1261 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1262 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1263 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1264
1265 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1266 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1267 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1268
1269 if (rxdesc->cipher != CIPHER_NONE) {
1270 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1271 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1272 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1273
1274 /* ICV is located at the end of frame */
1275
1276 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1277 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1278 rxdesc->flags |= RX_FLAG_DECRYPTED;
1279 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1280 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1281 }
1282
1283 /*
1284 * Obtain the status about this packet.
1285 * When frame was received with an OFDM bitrate,
1286 * the signal is the PLCP value. If it was received with
1287 * a CCK bitrate the signal is the rate in 100kbit/s.
1288 */
1289 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1290 rxdesc->rssi =
1291 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1292 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1293
1294 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1295 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1296 else
1297 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1298 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1299 rxdesc->dev_flags |= RXDONE_MY_BSS;
1300
1301 /*
1302 * Adjust the skb memory window to the frame boundaries.
1303 */
1304 skb_trim(entry->skb, rxdesc->size);
1305 }
1306
1307 /*
1308 * Interrupt functions.
1309 */
1310 static void rt2500usb_beacondone(struct urb *urb)
1311 {
1312 struct queue_entry *entry = (struct queue_entry *)urb->context;
1313 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1314
1315 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1316 return;
1317
1318 /*
1319 * Check if this was the guardian beacon,
1320 * if that was the case we need to send the real beacon now.
1321 * Otherwise we should free the sk_buffer, the device
1322 * should be doing the rest of the work now.
1323 */
1324 if (bcn_priv->guardian_urb == urb) {
1325 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1326 } else if (bcn_priv->urb == urb) {
1327 dev_kfree_skb(entry->skb);
1328 entry->skb = NULL;
1329 }
1330 }
1331
1332 /*
1333 * Device probe functions.
1334 */
1335 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1336 {
1337 u16 word;
1338 u8 *mac;
1339 u8 bbp;
1340
1341 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1342
1343 /*
1344 * Start validation of the data that has been read.
1345 */
1346 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1347 if (!is_valid_ether_addr(mac)) {
1348 eth_random_addr(mac);
1349 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1350 }
1351
1352 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1353 if (word == 0xffff) {
1354 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1355 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1356 ANTENNA_SW_DIVERSITY);
1357 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1358 ANTENNA_SW_DIVERSITY);
1359 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1360 LED_MODE_DEFAULT);
1361 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1362 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1363 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1364 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1365 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1366 }
1367
1368 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1369 if (word == 0xffff) {
1370 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1371 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1372 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1373 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1374 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1375 }
1376
1377 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1378 if (word == 0xffff) {
1379 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1380 DEFAULT_RSSI_OFFSET);
1381 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1382 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1383 word);
1384 }
1385
1386 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1387 if (word == 0xffff) {
1388 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1389 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1390 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1391 }
1392
1393 /*
1394 * Switch lower vgc bound to current BBP R17 value,
1395 * lower the value a bit for better quality.
1396 */
1397 rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1398 bbp -= 6;
1399
1400 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1401 if (word == 0xffff) {
1402 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1403 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1404 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1405 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1406 } else {
1407 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1408 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1409 }
1410
1411 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1412 if (word == 0xffff) {
1413 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1414 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1415 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1416 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1417 }
1418
1419 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1420 if (word == 0xffff) {
1421 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1422 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1423 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1424 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1425 }
1426
1427 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1428 if (word == 0xffff) {
1429 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1430 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1431 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1432 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1433 }
1434
1435 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1436 if (word == 0xffff) {
1437 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1438 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1439 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1440 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1441 }
1442
1443 return 0;
1444 }
1445
1446 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1447 {
1448 u16 reg;
1449 u16 value;
1450 u16 eeprom;
1451
1452 /*
1453 * Read EEPROM word for configuration.
1454 */
1455 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1456
1457 /*
1458 * Identify RF chipset.
1459 */
1460 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1461 rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1462 rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1463
1464 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1465 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1466 return -ENODEV;
1467 }
1468
1469 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1470 !rt2x00_rf(rt2x00dev, RF2523) &&
1471 !rt2x00_rf(rt2x00dev, RF2524) &&
1472 !rt2x00_rf(rt2x00dev, RF2525) &&
1473 !rt2x00_rf(rt2x00dev, RF2525E) &&
1474 !rt2x00_rf(rt2x00dev, RF5222)) {
1475 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1476 return -ENODEV;
1477 }
1478
1479 /*
1480 * Identify default antenna configuration.
1481 */
1482 rt2x00dev->default_ant.tx =
1483 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1484 rt2x00dev->default_ant.rx =
1485 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1486
1487 /*
1488 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1489 * I am not 100% sure about this, but the legacy drivers do not
1490 * indicate antenna swapping in software is required when
1491 * diversity is enabled.
1492 */
1493 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1494 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1495 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1496 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1497
1498 /*
1499 * Store led mode, for correct led behaviour.
1500 */
1501 #ifdef CONFIG_RT2X00_LIB_LEDS
1502 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1503
1504 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1505 if (value == LED_MODE_TXRX_ACTIVITY ||
1506 value == LED_MODE_DEFAULT ||
1507 value == LED_MODE_ASUS)
1508 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1509 LED_TYPE_ACTIVITY);
1510 #endif /* CONFIG_RT2X00_LIB_LEDS */
1511
1512 /*
1513 * Detect if this device has an hardware controlled radio.
1514 */
1515 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1516 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1517
1518 /*
1519 * Read the RSSI <-> dBm offset information.
1520 */
1521 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1522 rt2x00dev->rssi_offset =
1523 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1524
1525 return 0;
1526 }
1527
1528 /*
1529 * RF value list for RF2522
1530 * Supports: 2.4 GHz
1531 */
1532 static const struct rf_channel rf_vals_bg_2522[] = {
1533 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1534 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1535 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1536 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1537 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1538 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1539 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1540 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1541 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1542 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1543 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1544 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1545 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1546 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1547 };
1548
1549 /*
1550 * RF value list for RF2523
1551 * Supports: 2.4 GHz
1552 */
1553 static const struct rf_channel rf_vals_bg_2523[] = {
1554 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1555 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1556 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1557 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1558 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1559 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1560 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1561 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1562 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1563 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1564 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1565 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1566 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1567 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1568 };
1569
1570 /*
1571 * RF value list for RF2524
1572 * Supports: 2.4 GHz
1573 */
1574 static const struct rf_channel rf_vals_bg_2524[] = {
1575 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1576 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1577 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1578 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1579 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1580 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1581 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1582 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1583 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1584 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1585 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1586 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1587 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1588 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1589 };
1590
1591 /*
1592 * RF value list for RF2525
1593 * Supports: 2.4 GHz
1594 */
1595 static const struct rf_channel rf_vals_bg_2525[] = {
1596 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1597 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1598 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1599 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1600 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1601 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1602 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1603 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1604 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1605 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1606 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1607 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1608 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1609 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1610 };
1611
1612 /*
1613 * RF value list for RF2525e
1614 * Supports: 2.4 GHz
1615 */
1616 static const struct rf_channel rf_vals_bg_2525e[] = {
1617 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1618 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1619 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1620 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1621 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1622 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1623 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1624 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1625 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1626 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1627 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1628 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1629 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1630 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1631 };
1632
1633 /*
1634 * RF value list for RF5222
1635 * Supports: 2.4 GHz & 5.2 GHz
1636 */
1637 static const struct rf_channel rf_vals_5222[] = {
1638 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1639 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1640 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1641 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1642 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1643 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1644 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1645 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1646 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1647 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1648 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1649 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1650 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1651 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1652
1653 /* 802.11 UNI / HyperLan 2 */
1654 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1655 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1656 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1657 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1658 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1659 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1660 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1661 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1662
1663 /* 802.11 HyperLan 2 */
1664 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1665 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1666 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1667 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1668 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1669 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1670 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1671 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1672 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1673 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1674
1675 /* 802.11 UNII */
1676 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1677 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1678 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1679 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1680 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1681 };
1682
1683 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1684 {
1685 struct hw_mode_spec *spec = &rt2x00dev->spec;
1686 struct channel_info *info;
1687 char *tx_power;
1688 unsigned int i;
1689
1690 /*
1691 * Initialize all hw fields.
1692 *
1693 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1694 * capable of sending the buffered frames out after the DTIM
1695 * transmission using rt2x00lib_beacondone. This will send out
1696 * multicast and broadcast traffic immediately instead of buffering it
1697 * infinitly and thus dropping it after some time.
1698 */
1699 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1700 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1701 ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1702 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1703
1704 /*
1705 * Disable powersaving as default.
1706 */
1707 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1708
1709 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1710 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1711 rt2x00_eeprom_addr(rt2x00dev,
1712 EEPROM_MAC_ADDR_0));
1713
1714 /*
1715 * Initialize hw_mode information.
1716 */
1717 spec->supported_bands = SUPPORT_BAND_2GHZ;
1718 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1719
1720 if (rt2x00_rf(rt2x00dev, RF2522)) {
1721 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1722 spec->channels = rf_vals_bg_2522;
1723 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1724 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1725 spec->channels = rf_vals_bg_2523;
1726 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1727 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1728 spec->channels = rf_vals_bg_2524;
1729 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1730 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1731 spec->channels = rf_vals_bg_2525;
1732 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1733 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1734 spec->channels = rf_vals_bg_2525e;
1735 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1736 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1737 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1738 spec->channels = rf_vals_5222;
1739 }
1740
1741 /*
1742 * Create channel information array
1743 */
1744 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1745 if (!info)
1746 return -ENOMEM;
1747
1748 spec->channels_info = info;
1749
1750 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1751 for (i = 0; i < 14; i++) {
1752 info[i].max_power = MAX_TXPOWER;
1753 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1754 }
1755
1756 if (spec->num_channels > 14) {
1757 for (i = 14; i < spec->num_channels; i++) {
1758 info[i].max_power = MAX_TXPOWER;
1759 info[i].default_power1 = DEFAULT_TXPOWER;
1760 }
1761 }
1762
1763 return 0;
1764 }
1765
1766 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1767 {
1768 int retval;
1769 u16 reg;
1770
1771 /*
1772 * Allocate eeprom data.
1773 */
1774 retval = rt2500usb_validate_eeprom(rt2x00dev);
1775 if (retval)
1776 return retval;
1777
1778 retval = rt2500usb_init_eeprom(rt2x00dev);
1779 if (retval)
1780 return retval;
1781
1782 /*
1783 * Enable rfkill polling by setting GPIO direction of the
1784 * rfkill switch GPIO pin correctly.
1785 */
1786 rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
1787 rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1788 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1789
1790 /*
1791 * Initialize hw specifications.
1792 */
1793 retval = rt2500usb_probe_hw_mode(rt2x00dev);
1794 if (retval)
1795 return retval;
1796
1797 /*
1798 * This device requires the atim queue
1799 */
1800 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1801 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1802 if (!modparam_nohwcrypt) {
1803 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1804 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1805 }
1806 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1807 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1808
1809 /*
1810 * Set the rssi offset.
1811 */
1812 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1813
1814 return 0;
1815 }
1816
1817 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1818 .tx = rt2x00mac_tx,
1819 .start = rt2x00mac_start,
1820 .stop = rt2x00mac_stop,
1821 .add_interface = rt2x00mac_add_interface,
1822 .remove_interface = rt2x00mac_remove_interface,
1823 .config = rt2x00mac_config,
1824 .configure_filter = rt2x00mac_configure_filter,
1825 .set_tim = rt2x00mac_set_tim,
1826 .set_key = rt2x00mac_set_key,
1827 .sw_scan_start = rt2x00mac_sw_scan_start,
1828 .sw_scan_complete = rt2x00mac_sw_scan_complete,
1829 .get_stats = rt2x00mac_get_stats,
1830 .bss_info_changed = rt2x00mac_bss_info_changed,
1831 .conf_tx = rt2x00mac_conf_tx,
1832 .rfkill_poll = rt2x00mac_rfkill_poll,
1833 .flush = rt2x00mac_flush,
1834 .set_antenna = rt2x00mac_set_antenna,
1835 .get_antenna = rt2x00mac_get_antenna,
1836 .get_ringparam = rt2x00mac_get_ringparam,
1837 .tx_frames_pending = rt2x00mac_tx_frames_pending,
1838 };
1839
1840 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1841 .probe_hw = rt2500usb_probe_hw,
1842 .initialize = rt2x00usb_initialize,
1843 .uninitialize = rt2x00usb_uninitialize,
1844 .clear_entry = rt2x00usb_clear_entry,
1845 .set_device_state = rt2500usb_set_device_state,
1846 .rfkill_poll = rt2500usb_rfkill_poll,
1847 .link_stats = rt2500usb_link_stats,
1848 .reset_tuner = rt2500usb_reset_tuner,
1849 .watchdog = rt2x00usb_watchdog,
1850 .start_queue = rt2500usb_start_queue,
1851 .kick_queue = rt2x00usb_kick_queue,
1852 .stop_queue = rt2500usb_stop_queue,
1853 .flush_queue = rt2x00usb_flush_queue,
1854 .write_tx_desc = rt2500usb_write_tx_desc,
1855 .write_beacon = rt2500usb_write_beacon,
1856 .get_tx_data_len = rt2500usb_get_tx_data_len,
1857 .fill_rxdone = rt2500usb_fill_rxdone,
1858 .config_shared_key = rt2500usb_config_key,
1859 .config_pairwise_key = rt2500usb_config_key,
1860 .config_filter = rt2500usb_config_filter,
1861 .config_intf = rt2500usb_config_intf,
1862 .config_erp = rt2500usb_config_erp,
1863 .config_ant = rt2500usb_config_ant,
1864 .config = rt2500usb_config,
1865 };
1866
1867 static void rt2500usb_queue_init(struct data_queue *queue)
1868 {
1869 switch (queue->qid) {
1870 case QID_RX:
1871 queue->limit = 32;
1872 queue->data_size = DATA_FRAME_SIZE;
1873 queue->desc_size = RXD_DESC_SIZE;
1874 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1875 break;
1876
1877 case QID_AC_VO:
1878 case QID_AC_VI:
1879 case QID_AC_BE:
1880 case QID_AC_BK:
1881 queue->limit = 32;
1882 queue->data_size = DATA_FRAME_SIZE;
1883 queue->desc_size = TXD_DESC_SIZE;
1884 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1885 break;
1886
1887 case QID_BEACON:
1888 queue->limit = 1;
1889 queue->data_size = MGMT_FRAME_SIZE;
1890 queue->desc_size = TXD_DESC_SIZE;
1891 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1892 break;
1893
1894 case QID_ATIM:
1895 queue->limit = 8;
1896 queue->data_size = DATA_FRAME_SIZE;
1897 queue->desc_size = TXD_DESC_SIZE;
1898 queue->priv_size = sizeof(struct queue_entry_priv_usb);
1899 break;
1900
1901 default:
1902 BUG();
1903 break;
1904 }
1905 }
1906
1907 static const struct rt2x00_ops rt2500usb_ops = {
1908 .name = KBUILD_MODNAME,
1909 .max_ap_intf = 1,
1910 .eeprom_size = EEPROM_SIZE,
1911 .rf_size = RF_SIZE,
1912 .tx_queues = NUM_TX_QUEUES,
1913 .queue_init = rt2500usb_queue_init,
1914 .lib = &rt2500usb_rt2x00_ops,
1915 .hw = &rt2500usb_mac80211_ops,
1916 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1917 .debugfs = &rt2500usb_rt2x00debug,
1918 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1919 };
1920
1921 /*
1922 * rt2500usb module information.
1923 */
1924 static struct usb_device_id rt2500usb_device_table[] = {
1925 /* ASUS */
1926 { USB_DEVICE(0x0b05, 0x1706) },
1927 { USB_DEVICE(0x0b05, 0x1707) },
1928 /* Belkin */
1929 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1930 { USB_DEVICE(0x050d, 0x7051) },
1931 /* Cisco Systems */
1932 { USB_DEVICE(0x13b1, 0x000d) },
1933 { USB_DEVICE(0x13b1, 0x0011) },
1934 { USB_DEVICE(0x13b1, 0x001a) },
1935 /* Conceptronic */
1936 { USB_DEVICE(0x14b2, 0x3c02) },
1937 /* D-LINK */
1938 { USB_DEVICE(0x2001, 0x3c00) },
1939 /* Gigabyte */
1940 { USB_DEVICE(0x1044, 0x8001) },
1941 { USB_DEVICE(0x1044, 0x8007) },
1942 /* Hercules */
1943 { USB_DEVICE(0x06f8, 0xe000) },
1944 /* Melco */
1945 { USB_DEVICE(0x0411, 0x005e) },
1946 { USB_DEVICE(0x0411, 0x0066) },
1947 { USB_DEVICE(0x0411, 0x0067) },
1948 { USB_DEVICE(0x0411, 0x008b) },
1949 { USB_DEVICE(0x0411, 0x0097) },
1950 /* MSI */
1951 { USB_DEVICE(0x0db0, 0x6861) },
1952 { USB_DEVICE(0x0db0, 0x6865) },
1953 { USB_DEVICE(0x0db0, 0x6869) },
1954 /* Ralink */
1955 { USB_DEVICE(0x148f, 0x1706) },
1956 { USB_DEVICE(0x148f, 0x2570) },
1957 { USB_DEVICE(0x148f, 0x9020) },
1958 /* Sagem */
1959 { USB_DEVICE(0x079b, 0x004b) },
1960 /* Siemens */
1961 { USB_DEVICE(0x0681, 0x3c06) },
1962 /* SMC */
1963 { USB_DEVICE(0x0707, 0xee13) },
1964 /* Spairon */
1965 { USB_DEVICE(0x114b, 0x0110) },
1966 /* SURECOM */
1967 { USB_DEVICE(0x0769, 0x11f3) },
1968 /* Trust */
1969 { USB_DEVICE(0x0eb0, 0x9020) },
1970 /* VTech */
1971 { USB_DEVICE(0x0f88, 0x3012) },
1972 /* Zinwell */
1973 { USB_DEVICE(0x5a57, 0x0260) },
1974 { 0, }
1975 };
1976
1977 MODULE_AUTHOR(DRV_PROJECT);
1978 MODULE_VERSION(DRV_VERSION);
1979 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1980 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1981 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1982 MODULE_LICENSE("GPL");
1983
1984 static int rt2500usb_probe(struct usb_interface *usb_intf,
1985 const struct usb_device_id *id)
1986 {
1987 return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1988 }
1989
1990 static struct usb_driver rt2500usb_driver = {
1991 .name = KBUILD_MODNAME,
1992 .id_table = rt2500usb_device_table,
1993 .probe = rt2500usb_probe,
1994 .disconnect = rt2x00usb_disconnect,
1995 .suspend = rt2x00usb_suspend,
1996 .resume = rt2x00usb_resume,
1997 .reset_resume = rt2x00usb_resume,
1998 .disable_hub_initiated_lpm = 1,
1999 };
2000
2001 module_usb_driver(rt2500usb_driver);
This page took 0.074698 seconds and 5 git commands to generate.