Merge remote-tracking branch 'remoteproc/for-next'
[deliverable/linux.git] / drivers / rtc / rtc-cmos.c
1 /*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 /*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/spinlock.h>
39 #include <linux/platform_device.h>
40 #include <linux/log2.h>
41 #include <linux/pm.h>
42 #include <linux/of.h>
43 #include <linux/of_platform.h>
44
45 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46 #include <linux/mc146818rtc.h>
47
48 struct cmos_rtc {
49 struct rtc_device *rtc;
50 struct device *dev;
51 int irq;
52 struct resource *iomem;
53 time64_t alarm_expires;
54
55 void (*wake_on)(struct device *);
56 void (*wake_off)(struct device *);
57
58 u8 enabled_wake;
59 u8 suspend_ctrl;
60
61 /* newer hardware extends the original register set */
62 u8 day_alrm;
63 u8 mon_alrm;
64 u8 century;
65 };
66
67 /* both platform and pnp busses use negative numbers for invalid irqs */
68 #define is_valid_irq(n) ((n) > 0)
69
70 static const char driver_name[] = "rtc_cmos";
71
72 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
73 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
75 */
76 #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
77
78 static inline int is_intr(u8 rtc_intr)
79 {
80 if (!(rtc_intr & RTC_IRQF))
81 return 0;
82 return rtc_intr & RTC_IRQMASK;
83 }
84
85 /*----------------------------------------------------------------*/
86
87 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
89 * used in a broken "legacy replacement" mode. The breakage includes
90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
91 * other (better) use.
92 *
93 * When that broken mode is in use, platform glue provides a partial
94 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
95 * want to use HPET for anything except those IRQs though...
96 */
97 #ifdef CONFIG_HPET_EMULATE_RTC
98 #include <asm/hpet.h>
99 #else
100
101 static inline int is_hpet_enabled(void)
102 {
103 return 0;
104 }
105
106 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
107 {
108 return 0;
109 }
110
111 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
112 {
113 return 0;
114 }
115
116 static inline int
117 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
118 {
119 return 0;
120 }
121
122 static inline int hpet_set_periodic_freq(unsigned long freq)
123 {
124 return 0;
125 }
126
127 static inline int hpet_rtc_dropped_irq(void)
128 {
129 return 0;
130 }
131
132 static inline int hpet_rtc_timer_init(void)
133 {
134 return 0;
135 }
136
137 extern irq_handler_t hpet_rtc_interrupt;
138
139 static inline int hpet_register_irq_handler(irq_handler_t handler)
140 {
141 return 0;
142 }
143
144 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
145 {
146 return 0;
147 }
148
149 #endif
150
151 /*----------------------------------------------------------------*/
152
153 #ifdef RTC_PORT
154
155 /* Most newer x86 systems have two register banks, the first used
156 * for RTC and NVRAM and the second only for NVRAM. Caller must
157 * own rtc_lock ... and we won't worry about access during NMI.
158 */
159 #define can_bank2 true
160
161 static inline unsigned char cmos_read_bank2(unsigned char addr)
162 {
163 outb(addr, RTC_PORT(2));
164 return inb(RTC_PORT(3));
165 }
166
167 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
168 {
169 outb(addr, RTC_PORT(2));
170 outb(val, RTC_PORT(3));
171 }
172
173 #else
174
175 #define can_bank2 false
176
177 static inline unsigned char cmos_read_bank2(unsigned char addr)
178 {
179 return 0;
180 }
181
182 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
183 {
184 }
185
186 #endif
187
188 /*----------------------------------------------------------------*/
189
190 static int cmos_read_time(struct device *dev, struct rtc_time *t)
191 {
192 /* REVISIT: if the clock has a "century" register, use
193 * that instead of the heuristic in mc146818_get_time().
194 * That'll make Y3K compatility (year > 2070) easy!
195 */
196 mc146818_get_time(t);
197 return 0;
198 }
199
200 static int cmos_set_time(struct device *dev, struct rtc_time *t)
201 {
202 /* REVISIT: set the "century" register if available
203 *
204 * NOTE: this ignores the issue whereby updating the seconds
205 * takes effect exactly 500ms after we write the register.
206 * (Also queueing and other delays before we get this far.)
207 */
208 return mc146818_set_time(t);
209 }
210
211 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
212 {
213 struct cmos_rtc *cmos = dev_get_drvdata(dev);
214 unsigned char rtc_control;
215
216 if (!is_valid_irq(cmos->irq))
217 return -EIO;
218
219 /* Basic alarms only support hour, minute, and seconds fields.
220 * Some also support day and month, for alarms up to a year in
221 * the future.
222 */
223
224 spin_lock_irq(&rtc_lock);
225 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
226 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
227 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
228
229 if (cmos->day_alrm) {
230 /* ignore upper bits on readback per ACPI spec */
231 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
232 if (!t->time.tm_mday)
233 t->time.tm_mday = -1;
234
235 if (cmos->mon_alrm) {
236 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
237 if (!t->time.tm_mon)
238 t->time.tm_mon = -1;
239 }
240 }
241
242 rtc_control = CMOS_READ(RTC_CONTROL);
243 spin_unlock_irq(&rtc_lock);
244
245 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
246 if (((unsigned)t->time.tm_sec) < 0x60)
247 t->time.tm_sec = bcd2bin(t->time.tm_sec);
248 else
249 t->time.tm_sec = -1;
250 if (((unsigned)t->time.tm_min) < 0x60)
251 t->time.tm_min = bcd2bin(t->time.tm_min);
252 else
253 t->time.tm_min = -1;
254 if (((unsigned)t->time.tm_hour) < 0x24)
255 t->time.tm_hour = bcd2bin(t->time.tm_hour);
256 else
257 t->time.tm_hour = -1;
258
259 if (cmos->day_alrm) {
260 if (((unsigned)t->time.tm_mday) <= 0x31)
261 t->time.tm_mday = bcd2bin(t->time.tm_mday);
262 else
263 t->time.tm_mday = -1;
264
265 if (cmos->mon_alrm) {
266 if (((unsigned)t->time.tm_mon) <= 0x12)
267 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
268 else
269 t->time.tm_mon = -1;
270 }
271 }
272 }
273
274 t->enabled = !!(rtc_control & RTC_AIE);
275 t->pending = 0;
276
277 return 0;
278 }
279
280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282 unsigned char rtc_intr;
283
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
286 */
287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289 if (is_hpet_enabled())
290 return;
291
292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 if (is_intr(rtc_intr))
294 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296
297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299 unsigned char rtc_control;
300
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
303 */
304 rtc_control = CMOS_READ(RTC_CONTROL);
305 cmos_checkintr(cmos, rtc_control);
306
307 rtc_control |= mask;
308 CMOS_WRITE(rtc_control, RTC_CONTROL);
309 hpet_set_rtc_irq_bit(mask);
310
311 cmos_checkintr(cmos, rtc_control);
312 }
313
314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316 unsigned char rtc_control;
317
318 rtc_control = CMOS_READ(RTC_CONTROL);
319 rtc_control &= ~mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_mask_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324 }
325
326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
329 unsigned char mon, mday, hrs, min, sec, rtc_control;
330
331 if (!is_valid_irq(cmos->irq))
332 return -EIO;
333
334 mon = t->time.tm_mon + 1;
335 mday = t->time.tm_mday;
336 hrs = t->time.tm_hour;
337 min = t->time.tm_min;
338 sec = t->time.tm_sec;
339
340 rtc_control = CMOS_READ(RTC_CONTROL);
341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 }
349
350 spin_lock_irq(&rtc_lock);
351
352 /* next rtc irq must not be from previous alarm setting */
353 cmos_irq_disable(cmos, RTC_AIE);
354
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
365 }
366
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
369 */
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
374
375 spin_unlock_irq(&rtc_lock);
376
377 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
378
379 return 0;
380 }
381
382 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
383 {
384 struct cmos_rtc *cmos = dev_get_drvdata(dev);
385 unsigned long flags;
386
387 if (!is_valid_irq(cmos->irq))
388 return -EINVAL;
389
390 spin_lock_irqsave(&rtc_lock, flags);
391
392 if (enabled)
393 cmos_irq_enable(cmos, RTC_AIE);
394 else
395 cmos_irq_disable(cmos, RTC_AIE);
396
397 spin_unlock_irqrestore(&rtc_lock, flags);
398 return 0;
399 }
400
401 #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
402
403 static int cmos_procfs(struct device *dev, struct seq_file *seq)
404 {
405 struct cmos_rtc *cmos = dev_get_drvdata(dev);
406 unsigned char rtc_control, valid;
407
408 spin_lock_irq(&rtc_lock);
409 rtc_control = CMOS_READ(RTC_CONTROL);
410 valid = CMOS_READ(RTC_VALID);
411 spin_unlock_irq(&rtc_lock);
412
413 /* NOTE: at least ICH6 reports battery status using a different
414 * (non-RTC) bit; and SQWE is ignored on many current systems.
415 */
416 seq_printf(seq,
417 "periodic_IRQ\t: %s\n"
418 "update_IRQ\t: %s\n"
419 "HPET_emulated\t: %s\n"
420 // "square_wave\t: %s\n"
421 "BCD\t\t: %s\n"
422 "DST_enable\t: %s\n"
423 "periodic_freq\t: %d\n"
424 "batt_status\t: %s\n",
425 (rtc_control & RTC_PIE) ? "yes" : "no",
426 (rtc_control & RTC_UIE) ? "yes" : "no",
427 is_hpet_enabled() ? "yes" : "no",
428 // (rtc_control & RTC_SQWE) ? "yes" : "no",
429 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
430 (rtc_control & RTC_DST_EN) ? "yes" : "no",
431 cmos->rtc->irq_freq,
432 (valid & RTC_VRT) ? "okay" : "dead");
433
434 return 0;
435 }
436
437 #else
438 #define cmos_procfs NULL
439 #endif
440
441 static const struct rtc_class_ops cmos_rtc_ops = {
442 .read_time = cmos_read_time,
443 .set_time = cmos_set_time,
444 .read_alarm = cmos_read_alarm,
445 .set_alarm = cmos_set_alarm,
446 .proc = cmos_procfs,
447 .alarm_irq_enable = cmos_alarm_irq_enable,
448 };
449
450 /*----------------------------------------------------------------*/
451
452 /*
453 * All these chips have at least 64 bytes of address space, shared by
454 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
455 * by boot firmware. Modern chips have 128 or 256 bytes.
456 */
457
458 #define NVRAM_OFFSET (RTC_REG_D + 1)
459
460 static ssize_t
461 cmos_nvram_read(struct file *filp, struct kobject *kobj,
462 struct bin_attribute *attr,
463 char *buf, loff_t off, size_t count)
464 {
465 int retval;
466
467 off += NVRAM_OFFSET;
468 spin_lock_irq(&rtc_lock);
469 for (retval = 0; count; count--, off++, retval++) {
470 if (off < 128)
471 *buf++ = CMOS_READ(off);
472 else if (can_bank2)
473 *buf++ = cmos_read_bank2(off);
474 else
475 break;
476 }
477 spin_unlock_irq(&rtc_lock);
478
479 return retval;
480 }
481
482 static ssize_t
483 cmos_nvram_write(struct file *filp, struct kobject *kobj,
484 struct bin_attribute *attr,
485 char *buf, loff_t off, size_t count)
486 {
487 struct cmos_rtc *cmos;
488 int retval;
489
490 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
491
492 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
493 * checksum on part of the NVRAM data. That's currently ignored
494 * here. If userspace is smart enough to know what fields of
495 * NVRAM to update, updating checksums is also part of its job.
496 */
497 off += NVRAM_OFFSET;
498 spin_lock_irq(&rtc_lock);
499 for (retval = 0; count; count--, off++, retval++) {
500 /* don't trash RTC registers */
501 if (off == cmos->day_alrm
502 || off == cmos->mon_alrm
503 || off == cmos->century)
504 buf++;
505 else if (off < 128)
506 CMOS_WRITE(*buf++, off);
507 else if (can_bank2)
508 cmos_write_bank2(*buf++, off);
509 else
510 break;
511 }
512 spin_unlock_irq(&rtc_lock);
513
514 return retval;
515 }
516
517 static struct bin_attribute nvram = {
518 .attr = {
519 .name = "nvram",
520 .mode = S_IRUGO | S_IWUSR,
521 },
522
523 .read = cmos_nvram_read,
524 .write = cmos_nvram_write,
525 /* size gets set up later */
526 };
527
528 /*----------------------------------------------------------------*/
529
530 static struct cmos_rtc cmos_rtc;
531
532 static irqreturn_t cmos_interrupt(int irq, void *p)
533 {
534 u8 irqstat;
535 u8 rtc_control;
536
537 spin_lock(&rtc_lock);
538
539 /* When the HPET interrupt handler calls us, the interrupt
540 * status is passed as arg1 instead of the irq number. But
541 * always clear irq status, even when HPET is in the way.
542 *
543 * Note that HPET and RTC are almost certainly out of phase,
544 * giving different IRQ status ...
545 */
546 irqstat = CMOS_READ(RTC_INTR_FLAGS);
547 rtc_control = CMOS_READ(RTC_CONTROL);
548 if (is_hpet_enabled())
549 irqstat = (unsigned long)irq & 0xF0;
550
551 /* If we were suspended, RTC_CONTROL may not be accurate since the
552 * bios may have cleared it.
553 */
554 if (!cmos_rtc.suspend_ctrl)
555 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
556 else
557 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
558
559 /* All Linux RTC alarms should be treated as if they were oneshot.
560 * Similar code may be needed in system wakeup paths, in case the
561 * alarm woke the system.
562 */
563 if (irqstat & RTC_AIE) {
564 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
565 rtc_control &= ~RTC_AIE;
566 CMOS_WRITE(rtc_control, RTC_CONTROL);
567 hpet_mask_rtc_irq_bit(RTC_AIE);
568 CMOS_READ(RTC_INTR_FLAGS);
569 }
570 spin_unlock(&rtc_lock);
571
572 if (is_intr(irqstat)) {
573 rtc_update_irq(p, 1, irqstat);
574 return IRQ_HANDLED;
575 } else
576 return IRQ_NONE;
577 }
578
579 #ifdef CONFIG_PNP
580 #define INITSECTION
581
582 #else
583 #define INITSECTION __init
584 #endif
585
586 static int INITSECTION
587 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
588 {
589 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
590 int retval = 0;
591 unsigned char rtc_control;
592 unsigned address_space;
593 u32 flags = 0;
594
595 /* there can be only one ... */
596 if (cmos_rtc.dev)
597 return -EBUSY;
598
599 if (!ports)
600 return -ENODEV;
601
602 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
603 *
604 * REVISIT non-x86 systems may instead use memory space resources
605 * (needing ioremap etc), not i/o space resources like this ...
606 */
607 if (RTC_IOMAPPED)
608 ports = request_region(ports->start, resource_size(ports),
609 driver_name);
610 else
611 ports = request_mem_region(ports->start, resource_size(ports),
612 driver_name);
613 if (!ports) {
614 dev_dbg(dev, "i/o registers already in use\n");
615 return -EBUSY;
616 }
617
618 cmos_rtc.irq = rtc_irq;
619 cmos_rtc.iomem = ports;
620
621 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
622 * driver did, but don't reject unknown configs. Old hardware
623 * won't address 128 bytes. Newer chips have multiple banks,
624 * though they may not be listed in one I/O resource.
625 */
626 #if defined(CONFIG_ATARI)
627 address_space = 64;
628 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
629 || defined(__sparc__) || defined(__mips__) \
630 || defined(__powerpc__) || defined(CONFIG_MN10300)
631 address_space = 128;
632 #else
633 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
634 address_space = 128;
635 #endif
636 if (can_bank2 && ports->end > (ports->start + 1))
637 address_space = 256;
638
639 /* For ACPI systems extension info comes from the FADT. On others,
640 * board specific setup provides it as appropriate. Systems where
641 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
642 * some almost-clones) can provide hooks to make that behave.
643 *
644 * Note that ACPI doesn't preclude putting these registers into
645 * "extended" areas of the chip, including some that we won't yet
646 * expect CMOS_READ and friends to handle.
647 */
648 if (info) {
649 if (info->flags)
650 flags = info->flags;
651 if (info->address_space)
652 address_space = info->address_space;
653
654 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
655 cmos_rtc.day_alrm = info->rtc_day_alarm;
656 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
657 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
658 if (info->rtc_century && info->rtc_century < 128)
659 cmos_rtc.century = info->rtc_century;
660
661 if (info->wake_on && info->wake_off) {
662 cmos_rtc.wake_on = info->wake_on;
663 cmos_rtc.wake_off = info->wake_off;
664 }
665 }
666
667 cmos_rtc.dev = dev;
668 dev_set_drvdata(dev, &cmos_rtc);
669
670 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
671 &cmos_rtc_ops, THIS_MODULE);
672 if (IS_ERR(cmos_rtc.rtc)) {
673 retval = PTR_ERR(cmos_rtc.rtc);
674 goto cleanup0;
675 }
676
677 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
678
679 spin_lock_irq(&rtc_lock);
680
681 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
682 /* force periodic irq to CMOS reset default of 1024Hz;
683 *
684 * REVISIT it's been reported that at least one x86_64 ALI
685 * mobo doesn't use 32KHz here ... for portability we might
686 * need to do something about other clock frequencies.
687 */
688 cmos_rtc.rtc->irq_freq = 1024;
689 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
690 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
691 }
692
693 /* disable irqs */
694 if (is_valid_irq(rtc_irq))
695 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
696
697 rtc_control = CMOS_READ(RTC_CONTROL);
698
699 spin_unlock_irq(&rtc_lock);
700
701 /* FIXME:
702 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
703 */
704 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
705 dev_warn(dev, "only 24-hr supported\n");
706 retval = -ENXIO;
707 goto cleanup1;
708 }
709
710 if (is_valid_irq(rtc_irq)) {
711 irq_handler_t rtc_cmos_int_handler;
712
713 if (is_hpet_enabled()) {
714 rtc_cmos_int_handler = hpet_rtc_interrupt;
715 retval = hpet_register_irq_handler(cmos_interrupt);
716 if (retval) {
717 dev_warn(dev, "hpet_register_irq_handler "
718 " failed in rtc_init().");
719 goto cleanup1;
720 }
721 } else
722 rtc_cmos_int_handler = cmos_interrupt;
723
724 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
725 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
726 cmos_rtc.rtc);
727 if (retval < 0) {
728 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
729 goto cleanup1;
730 }
731 }
732 hpet_rtc_timer_init();
733
734 /* export at least the first block of NVRAM */
735 nvram.size = address_space - NVRAM_OFFSET;
736 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
737 if (retval < 0) {
738 dev_dbg(dev, "can't create nvram file? %d\n", retval);
739 goto cleanup2;
740 }
741
742 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
743 !is_valid_irq(rtc_irq) ? "no alarms" :
744 cmos_rtc.mon_alrm ? "alarms up to one year" :
745 cmos_rtc.day_alrm ? "alarms up to one month" :
746 "alarms up to one day",
747 cmos_rtc.century ? ", y3k" : "",
748 nvram.size,
749 is_hpet_enabled() ? ", hpet irqs" : "");
750
751 return 0;
752
753 cleanup2:
754 if (is_valid_irq(rtc_irq))
755 free_irq(rtc_irq, cmos_rtc.rtc);
756 cleanup1:
757 cmos_rtc.dev = NULL;
758 rtc_device_unregister(cmos_rtc.rtc);
759 cleanup0:
760 if (RTC_IOMAPPED)
761 release_region(ports->start, resource_size(ports));
762 else
763 release_mem_region(ports->start, resource_size(ports));
764 return retval;
765 }
766
767 static void cmos_do_shutdown(int rtc_irq)
768 {
769 spin_lock_irq(&rtc_lock);
770 if (is_valid_irq(rtc_irq))
771 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
772 spin_unlock_irq(&rtc_lock);
773 }
774
775 static void __exit cmos_do_remove(struct device *dev)
776 {
777 struct cmos_rtc *cmos = dev_get_drvdata(dev);
778 struct resource *ports;
779
780 cmos_do_shutdown(cmos->irq);
781
782 sysfs_remove_bin_file(&dev->kobj, &nvram);
783
784 if (is_valid_irq(cmos->irq)) {
785 free_irq(cmos->irq, cmos->rtc);
786 hpet_unregister_irq_handler(cmos_interrupt);
787 }
788
789 rtc_device_unregister(cmos->rtc);
790 cmos->rtc = NULL;
791
792 ports = cmos->iomem;
793 if (RTC_IOMAPPED)
794 release_region(ports->start, resource_size(ports));
795 else
796 release_mem_region(ports->start, resource_size(ports));
797 cmos->iomem = NULL;
798
799 cmos->dev = NULL;
800 }
801
802 static int cmos_aie_poweroff(struct device *dev)
803 {
804 struct cmos_rtc *cmos = dev_get_drvdata(dev);
805 struct rtc_time now;
806 time64_t t_now;
807 int retval = 0;
808 unsigned char rtc_control;
809
810 if (!cmos->alarm_expires)
811 return -EINVAL;
812
813 spin_lock_irq(&rtc_lock);
814 rtc_control = CMOS_READ(RTC_CONTROL);
815 spin_unlock_irq(&rtc_lock);
816
817 /* We only care about the situation where AIE is disabled. */
818 if (rtc_control & RTC_AIE)
819 return -EBUSY;
820
821 cmos_read_time(dev, &now);
822 t_now = rtc_tm_to_time64(&now);
823
824 /*
825 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
826 * automatically right after shutdown on some buggy boxes.
827 * This automatic rebooting issue won't happen when the alarm
828 * time is larger than now+1 seconds.
829 *
830 * If the alarm time is equal to now+1 seconds, the issue can be
831 * prevented by cancelling the alarm.
832 */
833 if (cmos->alarm_expires == t_now + 1) {
834 struct rtc_wkalrm alarm;
835
836 /* Cancel the AIE timer by configuring the past time. */
837 rtc_time64_to_tm(t_now - 1, &alarm.time);
838 alarm.enabled = 0;
839 retval = cmos_set_alarm(dev, &alarm);
840 } else if (cmos->alarm_expires > t_now + 1) {
841 retval = -EBUSY;
842 }
843
844 return retval;
845 }
846
847 #ifdef CONFIG_PM
848
849 static int cmos_suspend(struct device *dev)
850 {
851 struct cmos_rtc *cmos = dev_get_drvdata(dev);
852 unsigned char tmp;
853
854 /* only the alarm might be a wakeup event source */
855 spin_lock_irq(&rtc_lock);
856 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
857 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
858 unsigned char mask;
859
860 if (device_may_wakeup(dev))
861 mask = RTC_IRQMASK & ~RTC_AIE;
862 else
863 mask = RTC_IRQMASK;
864 tmp &= ~mask;
865 CMOS_WRITE(tmp, RTC_CONTROL);
866 hpet_mask_rtc_irq_bit(mask);
867
868 cmos_checkintr(cmos, tmp);
869 }
870 spin_unlock_irq(&rtc_lock);
871
872 if (tmp & RTC_AIE) {
873 cmos->enabled_wake = 1;
874 if (cmos->wake_on)
875 cmos->wake_on(dev);
876 else
877 enable_irq_wake(cmos->irq);
878 }
879
880 dev_dbg(dev, "suspend%s, ctrl %02x\n",
881 (tmp & RTC_AIE) ? ", alarm may wake" : "",
882 tmp);
883
884 return 0;
885 }
886
887 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
888 * after a detour through G3 "mechanical off", although the ACPI spec
889 * says wakeup should only work from G1/S4 "hibernate". To most users,
890 * distinctions between S4 and S5 are pointless. So when the hardware
891 * allows, don't draw that distinction.
892 */
893 static inline int cmos_poweroff(struct device *dev)
894 {
895 return cmos_suspend(dev);
896 }
897
898 #ifdef CONFIG_PM_SLEEP
899
900 static int cmos_resume(struct device *dev)
901 {
902 struct cmos_rtc *cmos = dev_get_drvdata(dev);
903 unsigned char tmp;
904
905 if (cmos->enabled_wake) {
906 if (cmos->wake_off)
907 cmos->wake_off(dev);
908 else
909 disable_irq_wake(cmos->irq);
910 cmos->enabled_wake = 0;
911 }
912
913 spin_lock_irq(&rtc_lock);
914 tmp = cmos->suspend_ctrl;
915 cmos->suspend_ctrl = 0;
916 /* re-enable any irqs previously active */
917 if (tmp & RTC_IRQMASK) {
918 unsigned char mask;
919
920 if (device_may_wakeup(dev))
921 hpet_rtc_timer_init();
922
923 do {
924 CMOS_WRITE(tmp, RTC_CONTROL);
925 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
926
927 mask = CMOS_READ(RTC_INTR_FLAGS);
928 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
929 if (!is_hpet_enabled() || !is_intr(mask))
930 break;
931
932 /* force one-shot behavior if HPET blocked
933 * the wake alarm's irq
934 */
935 rtc_update_irq(cmos->rtc, 1, mask);
936 tmp &= ~RTC_AIE;
937 hpet_mask_rtc_irq_bit(RTC_AIE);
938 } while (mask & RTC_AIE);
939 }
940 spin_unlock_irq(&rtc_lock);
941
942 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
943
944 return 0;
945 }
946
947 #endif
948 #else
949
950 static inline int cmos_poweroff(struct device *dev)
951 {
952 return -ENOSYS;
953 }
954
955 #endif
956
957 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
958
959 /*----------------------------------------------------------------*/
960
961 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
962 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
963 * probably list them in similar PNPBIOS tables; so PNP is more common.
964 *
965 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
966 * predate even PNPBIOS should set up platform_bus devices.
967 */
968
969 #ifdef CONFIG_ACPI
970
971 #include <linux/acpi.h>
972
973 static u32 rtc_handler(void *context)
974 {
975 struct device *dev = context;
976
977 pm_wakeup_event(dev, 0);
978 acpi_clear_event(ACPI_EVENT_RTC);
979 acpi_disable_event(ACPI_EVENT_RTC, 0);
980 return ACPI_INTERRUPT_HANDLED;
981 }
982
983 static inline void rtc_wake_setup(struct device *dev)
984 {
985 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
986 /*
987 * After the RTC handler is installed, the Fixed_RTC event should
988 * be disabled. Only when the RTC alarm is set will it be enabled.
989 */
990 acpi_clear_event(ACPI_EVENT_RTC);
991 acpi_disable_event(ACPI_EVENT_RTC, 0);
992 }
993
994 static void rtc_wake_on(struct device *dev)
995 {
996 acpi_clear_event(ACPI_EVENT_RTC);
997 acpi_enable_event(ACPI_EVENT_RTC, 0);
998 }
999
1000 static void rtc_wake_off(struct device *dev)
1001 {
1002 acpi_disable_event(ACPI_EVENT_RTC, 0);
1003 }
1004
1005 /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1006 * its device node and pass extra config data. This helps its driver use
1007 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1008 * that this board's RTC is wakeup-capable (per ACPI spec).
1009 */
1010 static struct cmos_rtc_board_info acpi_rtc_info;
1011
1012 static void cmos_wake_setup(struct device *dev)
1013 {
1014 if (acpi_disabled)
1015 return;
1016
1017 rtc_wake_setup(dev);
1018 acpi_rtc_info.wake_on = rtc_wake_on;
1019 acpi_rtc_info.wake_off = rtc_wake_off;
1020
1021 /* workaround bug in some ACPI tables */
1022 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1023 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1024 acpi_gbl_FADT.month_alarm);
1025 acpi_gbl_FADT.month_alarm = 0;
1026 }
1027
1028 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1029 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1030 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1031
1032 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1033 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1034 dev_info(dev, "RTC can wake from S4\n");
1035
1036 dev->platform_data = &acpi_rtc_info;
1037
1038 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1039 device_init_wakeup(dev, 1);
1040 }
1041
1042 #else
1043
1044 static void cmos_wake_setup(struct device *dev)
1045 {
1046 }
1047
1048 #endif
1049
1050 #ifdef CONFIG_PNP
1051
1052 #include <linux/pnp.h>
1053
1054 static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1055 {
1056 cmos_wake_setup(&pnp->dev);
1057
1058 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1059 /* Some machines contain a PNP entry for the RTC, but
1060 * don't define the IRQ. It should always be safe to
1061 * hardcode it in these cases
1062 */
1063 return cmos_do_probe(&pnp->dev,
1064 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1065 else
1066 return cmos_do_probe(&pnp->dev,
1067 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1068 pnp_irq(pnp, 0));
1069 }
1070
1071 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1072 {
1073 cmos_do_remove(&pnp->dev);
1074 }
1075
1076 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1077 {
1078 struct device *dev = &pnp->dev;
1079 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1080
1081 if (system_state == SYSTEM_POWER_OFF) {
1082 int retval = cmos_poweroff(dev);
1083
1084 if (cmos_aie_poweroff(dev) < 0 && !retval)
1085 return;
1086 }
1087
1088 cmos_do_shutdown(cmos->irq);
1089 }
1090
1091 static const struct pnp_device_id rtc_ids[] = {
1092 { .id = "PNP0b00", },
1093 { .id = "PNP0b01", },
1094 { .id = "PNP0b02", },
1095 { },
1096 };
1097 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1098
1099 static struct pnp_driver cmos_pnp_driver = {
1100 .name = (char *) driver_name,
1101 .id_table = rtc_ids,
1102 .probe = cmos_pnp_probe,
1103 .remove = __exit_p(cmos_pnp_remove),
1104 .shutdown = cmos_pnp_shutdown,
1105
1106 /* flag ensures resume() gets called, and stops syslog spam */
1107 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1108 .driver = {
1109 .pm = &cmos_pm_ops,
1110 },
1111 };
1112
1113 #endif /* CONFIG_PNP */
1114
1115 #ifdef CONFIG_OF
1116 static const struct of_device_id of_cmos_match[] = {
1117 {
1118 .compatible = "motorola,mc146818",
1119 },
1120 { },
1121 };
1122 MODULE_DEVICE_TABLE(of, of_cmos_match);
1123
1124 static __init void cmos_of_init(struct platform_device *pdev)
1125 {
1126 struct device_node *node = pdev->dev.of_node;
1127 struct rtc_time time;
1128 int ret;
1129 const __be32 *val;
1130
1131 if (!node)
1132 return;
1133
1134 val = of_get_property(node, "ctrl-reg", NULL);
1135 if (val)
1136 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1137
1138 val = of_get_property(node, "freq-reg", NULL);
1139 if (val)
1140 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1141
1142 cmos_read_time(&pdev->dev, &time);
1143 ret = rtc_valid_tm(&time);
1144 if (ret) {
1145 struct rtc_time def_time = {
1146 .tm_year = 1,
1147 .tm_mday = 1,
1148 };
1149 cmos_set_time(&pdev->dev, &def_time);
1150 }
1151 }
1152 #else
1153 static inline void cmos_of_init(struct platform_device *pdev) {}
1154 #endif
1155 /*----------------------------------------------------------------*/
1156
1157 /* Platform setup should have set up an RTC device, when PNP is
1158 * unavailable ... this could happen even on (older) PCs.
1159 */
1160
1161 static int __init cmos_platform_probe(struct platform_device *pdev)
1162 {
1163 struct resource *resource;
1164 int irq;
1165
1166 cmos_of_init(pdev);
1167 cmos_wake_setup(&pdev->dev);
1168
1169 if (RTC_IOMAPPED)
1170 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1171 else
1172 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1173 irq = platform_get_irq(pdev, 0);
1174 if (irq < 0)
1175 irq = -1;
1176
1177 return cmos_do_probe(&pdev->dev, resource, irq);
1178 }
1179
1180 static int __exit cmos_platform_remove(struct platform_device *pdev)
1181 {
1182 cmos_do_remove(&pdev->dev);
1183 return 0;
1184 }
1185
1186 static void cmos_platform_shutdown(struct platform_device *pdev)
1187 {
1188 struct device *dev = &pdev->dev;
1189 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1190
1191 if (system_state == SYSTEM_POWER_OFF) {
1192 int retval = cmos_poweroff(dev);
1193
1194 if (cmos_aie_poweroff(dev) < 0 && !retval)
1195 return;
1196 }
1197
1198 cmos_do_shutdown(cmos->irq);
1199 }
1200
1201 /* work with hotplug and coldplug */
1202 MODULE_ALIAS("platform:rtc_cmos");
1203
1204 static struct platform_driver cmos_platform_driver = {
1205 .remove = __exit_p(cmos_platform_remove),
1206 .shutdown = cmos_platform_shutdown,
1207 .driver = {
1208 .name = driver_name,
1209 #ifdef CONFIG_PM
1210 .pm = &cmos_pm_ops,
1211 #endif
1212 .of_match_table = of_match_ptr(of_cmos_match),
1213 }
1214 };
1215
1216 #ifdef CONFIG_PNP
1217 static bool pnp_driver_registered;
1218 #endif
1219 static bool platform_driver_registered;
1220
1221 static int __init cmos_init(void)
1222 {
1223 int retval = 0;
1224
1225 #ifdef CONFIG_PNP
1226 retval = pnp_register_driver(&cmos_pnp_driver);
1227 if (retval == 0)
1228 pnp_driver_registered = true;
1229 #endif
1230
1231 if (!cmos_rtc.dev) {
1232 retval = platform_driver_probe(&cmos_platform_driver,
1233 cmos_platform_probe);
1234 if (retval == 0)
1235 platform_driver_registered = true;
1236 }
1237
1238 if (retval == 0)
1239 return 0;
1240
1241 #ifdef CONFIG_PNP
1242 if (pnp_driver_registered)
1243 pnp_unregister_driver(&cmos_pnp_driver);
1244 #endif
1245 return retval;
1246 }
1247 module_init(cmos_init);
1248
1249 static void __exit cmos_exit(void)
1250 {
1251 #ifdef CONFIG_PNP
1252 if (pnp_driver_registered)
1253 pnp_unregister_driver(&cmos_pnp_driver);
1254 #endif
1255 if (platform_driver_registered)
1256 platform_driver_unregister(&cmos_platform_driver);
1257 }
1258 module_exit(cmos_exit);
1259
1260
1261 MODULE_AUTHOR("David Brownell");
1262 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1263 MODULE_LICENSE("GPL");
This page took 0.084353 seconds and 5 git commands to generate.