Merge git://git.infradead.org/mtd-2.6
[deliverable/linux.git] / drivers / scsi / dpt_i2o.c
1 /***************************************************************************
2 dpti.c - description
3 -------------------
4 begin : Thu Sep 7 2000
5 copyright : (C) 2000 by Adaptec
6
7 July 30, 2001 First version being submitted
8 for inclusion in the kernel. V2.4
9
10 See Documentation/scsi/dpti.txt for history, notes, license info
11 and credits
12 ***************************************************************************/
13
14 /***************************************************************************
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 ***************************************************************************/
22 /***************************************************************************
23 * Sat Dec 20 2003 Go Taniguchi <go@turbolinux.co.jp>
24 - Support 2.6 kernel and DMA-mapping
25 - ioctl fix for raid tools
26 - use schedule_timeout in long long loop
27 **************************************************************************/
28
29 /*#define DEBUG 1 */
30 /*#define UARTDELAY 1 */
31
32 /* On the real kernel ADDR32 should always be zero for 2.4. GFP_HIGH allocates
33 high pages. Keep the macro around because of the broken unmerged ia64 tree */
34
35 #define ADDR32 (0)
36
37 #include <linux/module.h>
38
39 MODULE_AUTHOR("Deanna Bonds, with _lots_ of help from Mark Salyzyn");
40 MODULE_DESCRIPTION("Adaptec I2O RAID Driver");
41
42 ////////////////////////////////////////////////////////////////
43
44 #include <linux/ioctl.h> /* For SCSI-Passthrough */
45 #include <asm/uaccess.h>
46
47 #include <linux/stat.h>
48 #include <linux/slab.h> /* for kmalloc() */
49 #include <linux/pci.h> /* for PCI support */
50 #include <linux/proc_fs.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h> /* for udelay */
53 #include <linux/interrupt.h>
54 #include <linux/kernel.h> /* for printk */
55 #include <linux/sched.h>
56 #include <linux/reboot.h>
57 #include <linux/spinlock.h>
58 #include <linux/dma-mapping.h>
59
60 #include <linux/timer.h>
61 #include <linux/string.h>
62 #include <linux/ioport.h>
63 #include <linux/mutex.h>
64
65 #include <asm/processor.h> /* for boot_cpu_data */
66 #include <asm/pgtable.h>
67 #include <asm/io.h> /* for virt_to_bus, etc. */
68
69 #include <scsi/scsi.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <scsi/scsi_host.h>
73 #include <scsi/scsi_tcq.h>
74
75 #include "dpt/dptsig.h"
76 #include "dpti.h"
77
78 /*============================================================================
79 * Create a binary signature - this is read by dptsig
80 * Needed for our management apps
81 *============================================================================
82 */
83 static dpt_sig_S DPTI_sig = {
84 {'d', 'P', 't', 'S', 'i', 'G'}, SIG_VERSION,
85 #ifdef __i386__
86 PROC_INTEL, PROC_386 | PROC_486 | PROC_PENTIUM | PROC_SEXIUM,
87 #elif defined(__ia64__)
88 PROC_INTEL, PROC_IA64,
89 #elif defined(__sparc__)
90 PROC_ULTRASPARC, PROC_ULTRASPARC,
91 #elif defined(__alpha__)
92 PROC_ALPHA, PROC_ALPHA,
93 #else
94 (-1),(-1),
95 #endif
96 FT_HBADRVR, 0, OEM_DPT, OS_LINUX, CAP_OVERLAP, DEV_ALL,
97 ADF_ALL_SC5, 0, 0, DPT_VERSION, DPT_REVISION, DPT_SUBREVISION,
98 DPT_MONTH, DPT_DAY, DPT_YEAR, "Adaptec Linux I2O RAID Driver"
99 };
100
101
102
103
104 /*============================================================================
105 * Globals
106 *============================================================================
107 */
108
109 static DEFINE_MUTEX(adpt_configuration_lock);
110
111 static struct i2o_sys_tbl *sys_tbl = NULL;
112 static int sys_tbl_ind = 0;
113 static int sys_tbl_len = 0;
114
115 static adpt_hba* hba_chain = NULL;
116 static int hba_count = 0;
117
118 static const struct file_operations adpt_fops = {
119 .ioctl = adpt_ioctl,
120 .open = adpt_open,
121 .release = adpt_close
122 };
123
124 #ifdef REBOOT_NOTIFIER
125 static struct notifier_block adpt_reboot_notifier =
126 {
127 adpt_reboot_event,
128 NULL,
129 0
130 };
131 #endif
132
133 /* Structures and definitions for synchronous message posting.
134 * See adpt_i2o_post_wait() for description
135 * */
136 struct adpt_i2o_post_wait_data
137 {
138 int status;
139 u32 id;
140 adpt_wait_queue_head_t *wq;
141 struct adpt_i2o_post_wait_data *next;
142 };
143
144 static struct adpt_i2o_post_wait_data *adpt_post_wait_queue = NULL;
145 static u32 adpt_post_wait_id = 0;
146 static DEFINE_SPINLOCK(adpt_post_wait_lock);
147
148
149 /*============================================================================
150 * Functions
151 *============================================================================
152 */
153
154 static u8 adpt_read_blink_led(adpt_hba* host)
155 {
156 if(host->FwDebugBLEDflag_P != 0) {
157 if( readb(host->FwDebugBLEDflag_P) == 0xbc ){
158 return readb(host->FwDebugBLEDvalue_P);
159 }
160 }
161 return 0;
162 }
163
164 /*============================================================================
165 * Scsi host template interface functions
166 *============================================================================
167 */
168
169 static struct pci_device_id dptids[] = {
170 { PCI_DPT_VENDOR_ID, PCI_DPT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
171 { PCI_DPT_VENDOR_ID, PCI_DPT_RAPTOR_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
172 { 0, }
173 };
174 MODULE_DEVICE_TABLE(pci,dptids);
175
176 static int adpt_detect(struct scsi_host_template* sht)
177 {
178 struct pci_dev *pDev = NULL;
179 adpt_hba* pHba;
180
181 adpt_init();
182
183 PINFO("Detecting Adaptec I2O RAID controllers...\n");
184
185 /* search for all Adatpec I2O RAID cards */
186 while ((pDev = pci_get_device( PCI_DPT_VENDOR_ID, PCI_ANY_ID, pDev))) {
187 if(pDev->device == PCI_DPT_DEVICE_ID ||
188 pDev->device == PCI_DPT_RAPTOR_DEVICE_ID){
189 if(adpt_install_hba(sht, pDev) ){
190 PERROR("Could not Init an I2O RAID device\n");
191 PERROR("Will not try to detect others.\n");
192 return hba_count-1;
193 }
194 pci_dev_get(pDev);
195 }
196 }
197
198 /* In INIT state, Activate IOPs */
199 for (pHba = hba_chain; pHba; pHba = pHba->next) {
200 // Activate does get status , init outbound, and get hrt
201 if (adpt_i2o_activate_hba(pHba) < 0) {
202 adpt_i2o_delete_hba(pHba);
203 }
204 }
205
206
207 /* Active IOPs in HOLD state */
208
209 rebuild_sys_tab:
210 if (hba_chain == NULL)
211 return 0;
212
213 /*
214 * If build_sys_table fails, we kill everything and bail
215 * as we can't init the IOPs w/o a system table
216 */
217 if (adpt_i2o_build_sys_table() < 0) {
218 adpt_i2o_sys_shutdown();
219 return 0;
220 }
221
222 PDEBUG("HBA's in HOLD state\n");
223
224 /* If IOP don't get online, we need to rebuild the System table */
225 for (pHba = hba_chain; pHba; pHba = pHba->next) {
226 if (adpt_i2o_online_hba(pHba) < 0) {
227 adpt_i2o_delete_hba(pHba);
228 goto rebuild_sys_tab;
229 }
230 }
231
232 /* Active IOPs now in OPERATIONAL state */
233 PDEBUG("HBA's in OPERATIONAL state\n");
234
235 printk("dpti: If you have a lot of devices this could take a few minutes.\n");
236 for (pHba = hba_chain; pHba; pHba = pHba->next) {
237 printk(KERN_INFO"%s: Reading the hardware resource table.\n", pHba->name);
238 if (adpt_i2o_lct_get(pHba) < 0){
239 adpt_i2o_delete_hba(pHba);
240 continue;
241 }
242
243 if (adpt_i2o_parse_lct(pHba) < 0){
244 adpt_i2o_delete_hba(pHba);
245 continue;
246 }
247 adpt_inquiry(pHba);
248 }
249
250 for (pHba = hba_chain; pHba; pHba = pHba->next) {
251 if( adpt_scsi_register(pHba,sht) < 0){
252 adpt_i2o_delete_hba(pHba);
253 continue;
254 }
255 pHba->initialized = TRUE;
256 pHba->state &= ~DPTI_STATE_RESET;
257 }
258
259 // Register our control device node
260 // nodes will need to be created in /dev to access this
261 // the nodes can not be created from within the driver
262 if (hba_count && register_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER, &adpt_fops)) {
263 adpt_i2o_sys_shutdown();
264 return 0;
265 }
266 return hba_count;
267 }
268
269
270 /*
271 * scsi_unregister will be called AFTER we return.
272 */
273 static int adpt_release(struct Scsi_Host *host)
274 {
275 adpt_hba* pHba = (adpt_hba*) host->hostdata[0];
276 // adpt_i2o_quiesce_hba(pHba);
277 adpt_i2o_delete_hba(pHba);
278 scsi_unregister(host);
279 return 0;
280 }
281
282
283 static void adpt_inquiry(adpt_hba* pHba)
284 {
285 u32 msg[14];
286 u32 *mptr;
287 u32 *lenptr;
288 int direction;
289 int scsidir;
290 u32 len;
291 u32 reqlen;
292 u8* buf;
293 u8 scb[16];
294 s32 rcode;
295
296 memset(msg, 0, sizeof(msg));
297 buf = kmalloc(80,GFP_KERNEL|ADDR32);
298 if(!buf){
299 printk(KERN_ERR"%s: Could not allocate buffer\n",pHba->name);
300 return;
301 }
302 memset((void*)buf, 0, 36);
303
304 len = 36;
305 direction = 0x00000000;
306 scsidir =0x40000000; // DATA IN (iop<--dev)
307
308 reqlen = 14; // SINGLE SGE
309 /* Stick the headers on */
310 msg[0] = reqlen<<16 | SGL_OFFSET_12;
311 msg[1] = (0xff<<24|HOST_TID<<12|ADAPTER_TID);
312 msg[2] = 0;
313 msg[3] = 0;
314 // Adaptec/DPT Private stuff
315 msg[4] = I2O_CMD_SCSI_EXEC|DPT_ORGANIZATION_ID<<16;
316 msg[5] = ADAPTER_TID | 1<<16 /* Interpret*/;
317 /* Direction, disconnect ok | sense data | simple queue , CDBLen */
318 // I2O_SCB_FLAG_ENABLE_DISCONNECT |
319 // I2O_SCB_FLAG_SIMPLE_QUEUE_TAG |
320 // I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE;
321 msg[6] = scsidir|0x20a00000| 6 /* cmd len*/;
322
323 mptr=msg+7;
324
325 memset(scb, 0, sizeof(scb));
326 // Write SCSI command into the message - always 16 byte block
327 scb[0] = INQUIRY;
328 scb[1] = 0;
329 scb[2] = 0;
330 scb[3] = 0;
331 scb[4] = 36;
332 scb[5] = 0;
333 // Don't care about the rest of scb
334
335 memcpy(mptr, scb, sizeof(scb));
336 mptr+=4;
337 lenptr=mptr++; /* Remember me - fill in when we know */
338
339 /* Now fill in the SGList and command */
340 *lenptr = len;
341 *mptr++ = 0xD0000000|direction|len;
342 *mptr++ = virt_to_bus(buf);
343
344 // Send it on it's way
345 rcode = adpt_i2o_post_wait(pHba, msg, reqlen<<2, 120);
346 if (rcode != 0) {
347 sprintf(pHba->detail, "Adaptec I2O RAID");
348 printk(KERN_INFO "%s: Inquiry Error (%d)\n",pHba->name,rcode);
349 if (rcode != -ETIME && rcode != -EINTR)
350 kfree(buf);
351 } else {
352 memset(pHba->detail, 0, sizeof(pHba->detail));
353 memcpy(&(pHba->detail), "Vendor: Adaptec ", 16);
354 memcpy(&(pHba->detail[16]), " Model: ", 8);
355 memcpy(&(pHba->detail[24]), (u8*) &buf[16], 16);
356 memcpy(&(pHba->detail[40]), " FW: ", 4);
357 memcpy(&(pHba->detail[44]), (u8*) &buf[32], 4);
358 pHba->detail[48] = '\0'; /* precautionary */
359 kfree(buf);
360 }
361 adpt_i2o_status_get(pHba);
362 return ;
363 }
364
365
366 static int adpt_slave_configure(struct scsi_device * device)
367 {
368 struct Scsi_Host *host = device->host;
369 adpt_hba* pHba;
370
371 pHba = (adpt_hba *) host->hostdata[0];
372
373 if (host->can_queue && device->tagged_supported) {
374 scsi_adjust_queue_depth(device, MSG_SIMPLE_TAG,
375 host->can_queue - 1);
376 } else {
377 scsi_adjust_queue_depth(device, 0, 1);
378 }
379 return 0;
380 }
381
382 static int adpt_queue(struct scsi_cmnd * cmd, void (*done) (struct scsi_cmnd *))
383 {
384 adpt_hba* pHba = NULL;
385 struct adpt_device* pDev = NULL; /* dpt per device information */
386
387 cmd->scsi_done = done;
388 /*
389 * SCSI REQUEST_SENSE commands will be executed automatically by the
390 * Host Adapter for any errors, so they should not be executed
391 * explicitly unless the Sense Data is zero indicating that no error
392 * occurred.
393 */
394
395 if ((cmd->cmnd[0] == REQUEST_SENSE) && (cmd->sense_buffer[0] != 0)) {
396 cmd->result = (DID_OK << 16);
397 cmd->scsi_done(cmd);
398 return 0;
399 }
400
401 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
402 if (!pHba) {
403 return FAILED;
404 }
405
406 rmb();
407 /*
408 * TODO: I need to block here if I am processing ioctl cmds
409 * but if the outstanding cmds all finish before the ioctl,
410 * the scsi-core will not know to start sending cmds to me again.
411 * I need to a way to restart the scsi-cores queues or should I block
412 * calling scsi_done on the outstanding cmds instead
413 * for now we don't set the IOCTL state
414 */
415 if(((pHba->state) & DPTI_STATE_IOCTL) || ((pHba->state) & DPTI_STATE_RESET)) {
416 pHba->host->last_reset = jiffies;
417 pHba->host->resetting = 1;
418 return 1;
419 }
420
421 // TODO if the cmd->device if offline then I may need to issue a bus rescan
422 // followed by a get_lct to see if the device is there anymore
423 if((pDev = (struct adpt_device*) (cmd->device->hostdata)) == NULL) {
424 /*
425 * First command request for this device. Set up a pointer
426 * to the device structure. This should be a TEST_UNIT_READY
427 * command from scan_scsis_single.
428 */
429 if ((pDev = adpt_find_device(pHba, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun)) == NULL) {
430 // TODO: if any luns are at this bus, scsi id then fake a TEST_UNIT_READY and INQUIRY response
431 // with type 7F (for all luns less than the max for this bus,id) so the lun scan will continue.
432 cmd->result = (DID_NO_CONNECT << 16);
433 cmd->scsi_done(cmd);
434 return 0;
435 }
436 cmd->device->hostdata = pDev;
437 }
438 pDev->pScsi_dev = cmd->device;
439
440 /*
441 * If we are being called from when the device is being reset,
442 * delay processing of the command until later.
443 */
444 if (pDev->state & DPTI_DEV_RESET ) {
445 return FAILED;
446 }
447 return adpt_scsi_to_i2o(pHba, cmd, pDev);
448 }
449
450 static int adpt_bios_param(struct scsi_device *sdev, struct block_device *dev,
451 sector_t capacity, int geom[])
452 {
453 int heads=-1;
454 int sectors=-1;
455 int cylinders=-1;
456
457 // *** First lets set the default geometry ****
458
459 // If the capacity is less than ox2000
460 if (capacity < 0x2000 ) { // floppy
461 heads = 18;
462 sectors = 2;
463 }
464 // else if between 0x2000 and 0x20000
465 else if (capacity < 0x20000) {
466 heads = 64;
467 sectors = 32;
468 }
469 // else if between 0x20000 and 0x40000
470 else if (capacity < 0x40000) {
471 heads = 65;
472 sectors = 63;
473 }
474 // else if between 0x4000 and 0x80000
475 else if (capacity < 0x80000) {
476 heads = 128;
477 sectors = 63;
478 }
479 // else if greater than 0x80000
480 else {
481 heads = 255;
482 sectors = 63;
483 }
484 cylinders = sector_div(capacity, heads * sectors);
485
486 // Special case if CDROM
487 if(sdev->type == 5) { // CDROM
488 heads = 252;
489 sectors = 63;
490 cylinders = 1111;
491 }
492
493 geom[0] = heads;
494 geom[1] = sectors;
495 geom[2] = cylinders;
496
497 PDEBUG("adpt_bios_param: exit\n");
498 return 0;
499 }
500
501
502 static const char *adpt_info(struct Scsi_Host *host)
503 {
504 adpt_hba* pHba;
505
506 pHba = (adpt_hba *) host->hostdata[0];
507 return (char *) (pHba->detail);
508 }
509
510 static int adpt_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset,
511 int length, int inout)
512 {
513 struct adpt_device* d;
514 int id;
515 int chan;
516 int len = 0;
517 int begin = 0;
518 int pos = 0;
519 adpt_hba* pHba;
520 int unit;
521
522 *start = buffer;
523 if (inout == TRUE) {
524 /*
525 * The user has done a write and wants us to take the
526 * data in the buffer and do something with it.
527 * proc_scsiwrite calls us with inout = 1
528 *
529 * Read data from buffer (writing to us) - NOT SUPPORTED
530 */
531 return -EINVAL;
532 }
533
534 /*
535 * inout = 0 means the user has done a read and wants information
536 * returned, so we write information about the cards into the buffer
537 * proc_scsiread() calls us with inout = 0
538 */
539
540 // Find HBA (host bus adapter) we are looking for
541 mutex_lock(&adpt_configuration_lock);
542 for (pHba = hba_chain; pHba; pHba = pHba->next) {
543 if (pHba->host == host) {
544 break; /* found adapter */
545 }
546 }
547 mutex_unlock(&adpt_configuration_lock);
548 if (pHba == NULL) {
549 return 0;
550 }
551 host = pHba->host;
552
553 len = sprintf(buffer , "Adaptec I2O RAID Driver Version: %s\n\n", DPT_I2O_VERSION);
554 len += sprintf(buffer+len, "%s\n", pHba->detail);
555 len += sprintf(buffer+len, "SCSI Host=scsi%d Control Node=/dev/%s irq=%d\n",
556 pHba->host->host_no, pHba->name, host->irq);
557 len += sprintf(buffer+len, "\tpost fifo size = %d\n\treply fifo size = %d\n\tsg table size = %d\n\n",
558 host->can_queue, (int) pHba->reply_fifo_size , host->sg_tablesize);
559
560 pos = begin + len;
561
562 /* CHECKPOINT */
563 if(pos > offset + length) {
564 goto stop_output;
565 }
566 if(pos <= offset) {
567 /*
568 * If we haven't even written to where we last left
569 * off (the last time we were called), reset the
570 * beginning pointer.
571 */
572 len = 0;
573 begin = pos;
574 }
575 len += sprintf(buffer+len, "Devices:\n");
576 for(chan = 0; chan < MAX_CHANNEL; chan++) {
577 for(id = 0; id < MAX_ID; id++) {
578 d = pHba->channel[chan].device[id];
579 while(d){
580 len += sprintf(buffer+len,"\t%-24.24s", d->pScsi_dev->vendor);
581 len += sprintf(buffer+len," Rev: %-8.8s\n", d->pScsi_dev->rev);
582 pos = begin + len;
583
584
585 /* CHECKPOINT */
586 if(pos > offset + length) {
587 goto stop_output;
588 }
589 if(pos <= offset) {
590 len = 0;
591 begin = pos;
592 }
593
594 unit = d->pI2o_dev->lct_data.tid;
595 len += sprintf(buffer+len, "\tTID=%d, (Channel=%d, Target=%d, Lun=%d) (%s)\n\n",
596 unit, (int)d->scsi_channel, (int)d->scsi_id, (int)d->scsi_lun,
597 scsi_device_online(d->pScsi_dev)? "online":"offline");
598 pos = begin + len;
599
600 /* CHECKPOINT */
601 if(pos > offset + length) {
602 goto stop_output;
603 }
604 if(pos <= offset) {
605 len = 0;
606 begin = pos;
607 }
608
609 d = d->next_lun;
610 }
611 }
612 }
613
614 /*
615 * begin is where we last checked our position with regards to offset
616 * begin is always less than offset. len is relative to begin. It
617 * is the number of bytes written past begin
618 *
619 */
620 stop_output:
621 /* stop the output and calculate the correct length */
622 *(buffer + len) = '\0';
623
624 *start = buffer + (offset - begin); /* Start of wanted data */
625 len -= (offset - begin);
626 if(len > length) {
627 len = length;
628 } else if(len < 0){
629 len = 0;
630 **start = '\0';
631 }
632 return len;
633 }
634
635
636 /*===========================================================================
637 * Error Handling routines
638 *===========================================================================
639 */
640
641 static int adpt_abort(struct scsi_cmnd * cmd)
642 {
643 adpt_hba* pHba = NULL; /* host bus adapter structure */
644 struct adpt_device* dptdevice; /* dpt per device information */
645 u32 msg[5];
646 int rcode;
647
648 if(cmd->serial_number == 0){
649 return FAILED;
650 }
651 pHba = (adpt_hba*) cmd->device->host->hostdata[0];
652 printk(KERN_INFO"%s: Trying to Abort cmd=%ld\n",pHba->name, cmd->serial_number);
653 if ((dptdevice = (void*) (cmd->device->hostdata)) == NULL) {
654 printk(KERN_ERR "%s: Unable to abort: No device in cmnd\n",pHba->name);
655 return FAILED;
656 }
657
658 memset(msg, 0, sizeof(msg));
659 msg[0] = FIVE_WORD_MSG_SIZE|SGL_OFFSET_0;
660 msg[1] = I2O_CMD_SCSI_ABORT<<24|HOST_TID<<12|dptdevice->tid;
661 msg[2] = 0;
662 msg[3]= 0;
663 msg[4] = (u32)cmd;
664 if (pHba->host)
665 spin_lock_irq(pHba->host->host_lock);
666 rcode = adpt_i2o_post_wait(pHba, msg, sizeof(msg), FOREVER);
667 if (pHba->host)
668 spin_unlock_irq(pHba->host->host_lock);
669 if (rcode != 0) {
670 if(rcode == -EOPNOTSUPP ){
671 printk(KERN_INFO"%s: Abort cmd not supported\n",pHba->name);
672 return FAILED;
673 }
674 printk(KERN_INFO"%s: Abort cmd=%ld failed.\n",pHba->name, cmd->serial_number);
675 return FAILED;
676 }
677 printk(KERN_INFO"%s: Abort cmd=%ld complete.\n",pHba->name, cmd->serial_number);
678 return SUCCESS;
679 }
680
681
682 #define I2O_DEVICE_RESET 0x27
683 // This is the same for BLK and SCSI devices
684 // NOTE this is wrong in the i2o.h definitions
685 // This is not currently supported by our adapter but we issue it anyway
686 static int adpt_device_reset(struct scsi_cmnd* cmd)
687 {
688 adpt_hba* pHba;
689 u32 msg[4];
690 u32 rcode;
691 int old_state;
692 struct adpt_device* d = cmd->device->hostdata;
693
694 pHba = (void*) cmd->device->host->hostdata[0];
695 printk(KERN_INFO"%s: Trying to reset device\n",pHba->name);
696 if (!d) {
697 printk(KERN_INFO"%s: Reset Device: Device Not found\n",pHba->name);
698 return FAILED;
699 }
700 memset(msg, 0, sizeof(msg));
701 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
702 msg[1] = (I2O_DEVICE_RESET<<24|HOST_TID<<12|d->tid);
703 msg[2] = 0;
704 msg[3] = 0;
705
706 if (pHba->host)
707 spin_lock_irq(pHba->host->host_lock);
708 old_state = d->state;
709 d->state |= DPTI_DEV_RESET;
710 rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER);
711 d->state = old_state;
712 if (pHba->host)
713 spin_unlock_irq(pHba->host->host_lock);
714 if (rcode != 0) {
715 if(rcode == -EOPNOTSUPP ){
716 printk(KERN_INFO"%s: Device reset not supported\n",pHba->name);
717 return FAILED;
718 }
719 printk(KERN_INFO"%s: Device reset failed\n",pHba->name);
720 return FAILED;
721 } else {
722 printk(KERN_INFO"%s: Device reset successful\n",pHba->name);
723 return SUCCESS;
724 }
725 }
726
727
728 #define I2O_HBA_BUS_RESET 0x87
729 // This version of bus reset is called by the eh_error handler
730 static int adpt_bus_reset(struct scsi_cmnd* cmd)
731 {
732 adpt_hba* pHba;
733 u32 msg[4];
734 u32 rcode;
735
736 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
737 memset(msg, 0, sizeof(msg));
738 printk(KERN_WARNING"%s: Bus reset: SCSI Bus %d: tid: %d\n",pHba->name, cmd->device->channel,pHba->channel[cmd->device->channel].tid );
739 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
740 msg[1] = (I2O_HBA_BUS_RESET<<24|HOST_TID<<12|pHba->channel[cmd->device->channel].tid);
741 msg[2] = 0;
742 msg[3] = 0;
743 if (pHba->host)
744 spin_lock_irq(pHba->host->host_lock);
745 rcode = adpt_i2o_post_wait(pHba, msg,sizeof(msg), FOREVER);
746 if (pHba->host)
747 spin_unlock_irq(pHba->host->host_lock);
748 if (rcode != 0) {
749 printk(KERN_WARNING"%s: Bus reset failed.\n",pHba->name);
750 return FAILED;
751 } else {
752 printk(KERN_WARNING"%s: Bus reset success.\n",pHba->name);
753 return SUCCESS;
754 }
755 }
756
757 // This version of reset is called by the eh_error_handler
758 static int __adpt_reset(struct scsi_cmnd* cmd)
759 {
760 adpt_hba* pHba;
761 int rcode;
762 pHba = (adpt_hba*)cmd->device->host->hostdata[0];
763 printk(KERN_WARNING"%s: Hba Reset: scsi id %d: tid: %d\n",pHba->name,cmd->device->channel,pHba->channel[cmd->device->channel].tid );
764 rcode = adpt_hba_reset(pHba);
765 if(rcode == 0){
766 printk(KERN_WARNING"%s: HBA reset complete\n",pHba->name);
767 return SUCCESS;
768 } else {
769 printk(KERN_WARNING"%s: HBA reset failed (%x)\n",pHba->name, rcode);
770 return FAILED;
771 }
772 }
773
774 static int adpt_reset(struct scsi_cmnd* cmd)
775 {
776 int rc;
777
778 spin_lock_irq(cmd->device->host->host_lock);
779 rc = __adpt_reset(cmd);
780 spin_unlock_irq(cmd->device->host->host_lock);
781
782 return rc;
783 }
784
785 // This version of reset is called by the ioctls and indirectly from eh_error_handler via adpt_reset
786 static int adpt_hba_reset(adpt_hba* pHba)
787 {
788 int rcode;
789
790 pHba->state |= DPTI_STATE_RESET;
791
792 // Activate does get status , init outbound, and get hrt
793 if ((rcode=adpt_i2o_activate_hba(pHba)) < 0) {
794 printk(KERN_ERR "%s: Could not activate\n", pHba->name);
795 adpt_i2o_delete_hba(pHba);
796 return rcode;
797 }
798
799 if ((rcode=adpt_i2o_build_sys_table()) < 0) {
800 adpt_i2o_delete_hba(pHba);
801 return rcode;
802 }
803 PDEBUG("%s: in HOLD state\n",pHba->name);
804
805 if ((rcode=adpt_i2o_online_hba(pHba)) < 0) {
806 adpt_i2o_delete_hba(pHba);
807 return rcode;
808 }
809 PDEBUG("%s: in OPERATIONAL state\n",pHba->name);
810
811 if ((rcode=adpt_i2o_lct_get(pHba)) < 0){
812 adpt_i2o_delete_hba(pHba);
813 return rcode;
814 }
815
816 if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0){
817 adpt_i2o_delete_hba(pHba);
818 return rcode;
819 }
820 pHba->state &= ~DPTI_STATE_RESET;
821
822 adpt_fail_posted_scbs(pHba);
823 return 0; /* return success */
824 }
825
826 /*===========================================================================
827 *
828 *===========================================================================
829 */
830
831
832 static void adpt_i2o_sys_shutdown(void)
833 {
834 adpt_hba *pHba, *pNext;
835 struct adpt_i2o_post_wait_data *p1, *old;
836
837 printk(KERN_INFO"Shutting down Adaptec I2O controllers.\n");
838 printk(KERN_INFO" This could take a few minutes if there are many devices attached\n");
839 /* Delete all IOPs from the controller chain */
840 /* They should have already been released by the
841 * scsi-core
842 */
843 for (pHba = hba_chain; pHba; pHba = pNext) {
844 pNext = pHba->next;
845 adpt_i2o_delete_hba(pHba);
846 }
847
848 /* Remove any timedout entries from the wait queue. */
849 // spin_lock_irqsave(&adpt_post_wait_lock, flags);
850 /* Nothing should be outstanding at this point so just
851 * free them
852 */
853 for(p1 = adpt_post_wait_queue; p1;) {
854 old = p1;
855 p1 = p1->next;
856 kfree(old);
857 }
858 // spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
859 adpt_post_wait_queue = NULL;
860
861 printk(KERN_INFO "Adaptec I2O controllers down.\n");
862 }
863
864 /*
865 * reboot/shutdown notification.
866 *
867 * - Quiesce each IOP in the system
868 *
869 */
870
871 #ifdef REBOOT_NOTIFIER
872 static int adpt_reboot_event(struct notifier_block *n, ulong code, void *p)
873 {
874
875 if(code != SYS_RESTART && code != SYS_HALT && code != SYS_POWER_OFF)
876 return NOTIFY_DONE;
877
878 adpt_i2o_sys_shutdown();
879
880 return NOTIFY_DONE;
881 }
882 #endif
883
884
885 static int adpt_install_hba(struct scsi_host_template* sht, struct pci_dev* pDev)
886 {
887
888 adpt_hba* pHba = NULL;
889 adpt_hba* p = NULL;
890 ulong base_addr0_phys = 0;
891 ulong base_addr1_phys = 0;
892 u32 hba_map0_area_size = 0;
893 u32 hba_map1_area_size = 0;
894 void __iomem *base_addr_virt = NULL;
895 void __iomem *msg_addr_virt = NULL;
896
897 int raptorFlag = FALSE;
898
899 if(pci_enable_device(pDev)) {
900 return -EINVAL;
901 }
902
903 if (pci_request_regions(pDev, "dpt_i2o")) {
904 PERROR("dpti: adpt_config_hba: pci request region failed\n");
905 return -EINVAL;
906 }
907
908 pci_set_master(pDev);
909 if (pci_set_dma_mask(pDev, DMA_64BIT_MASK) &&
910 pci_set_dma_mask(pDev, DMA_32BIT_MASK))
911 return -EINVAL;
912
913 base_addr0_phys = pci_resource_start(pDev,0);
914 hba_map0_area_size = pci_resource_len(pDev,0);
915
916 // Check if standard PCI card or single BAR Raptor
917 if(pDev->device == PCI_DPT_DEVICE_ID){
918 if(pDev->subsystem_device >=0xc032 && pDev->subsystem_device <= 0xc03b){
919 // Raptor card with this device id needs 4M
920 hba_map0_area_size = 0x400000;
921 } else { // Not Raptor - it is a PCI card
922 if(hba_map0_area_size > 0x100000 ){
923 hba_map0_area_size = 0x100000;
924 }
925 }
926 } else {// Raptor split BAR config
927 // Use BAR1 in this configuration
928 base_addr1_phys = pci_resource_start(pDev,1);
929 hba_map1_area_size = pci_resource_len(pDev,1);
930 raptorFlag = TRUE;
931 }
932
933 base_addr_virt = ioremap(base_addr0_phys,hba_map0_area_size);
934 if (!base_addr_virt) {
935 pci_release_regions(pDev);
936 PERROR("dpti: adpt_config_hba: io remap failed\n");
937 return -EINVAL;
938 }
939
940 if(raptorFlag == TRUE) {
941 msg_addr_virt = ioremap(base_addr1_phys, hba_map1_area_size );
942 if (!msg_addr_virt) {
943 PERROR("dpti: adpt_config_hba: io remap failed on BAR1\n");
944 iounmap(base_addr_virt);
945 pci_release_regions(pDev);
946 return -EINVAL;
947 }
948 } else {
949 msg_addr_virt = base_addr_virt;
950 }
951
952 // Allocate and zero the data structure
953 pHba = kmalloc(sizeof(adpt_hba), GFP_KERNEL);
954 if( pHba == NULL) {
955 if(msg_addr_virt != base_addr_virt){
956 iounmap(msg_addr_virt);
957 }
958 iounmap(base_addr_virt);
959 pci_release_regions(pDev);
960 return -ENOMEM;
961 }
962 memset(pHba, 0, sizeof(adpt_hba));
963
964 mutex_lock(&adpt_configuration_lock);
965
966 if(hba_chain != NULL){
967 for(p = hba_chain; p->next; p = p->next);
968 p->next = pHba;
969 } else {
970 hba_chain = pHba;
971 }
972 pHba->next = NULL;
973 pHba->unit = hba_count;
974 sprintf(pHba->name, "dpti%d", hba_count);
975 hba_count++;
976
977 mutex_unlock(&adpt_configuration_lock);
978
979 pHba->pDev = pDev;
980 pHba->base_addr_phys = base_addr0_phys;
981
982 // Set up the Virtual Base Address of the I2O Device
983 pHba->base_addr_virt = base_addr_virt;
984 pHba->msg_addr_virt = msg_addr_virt;
985 pHba->irq_mask = base_addr_virt+0x30;
986 pHba->post_port = base_addr_virt+0x40;
987 pHba->reply_port = base_addr_virt+0x44;
988
989 pHba->hrt = NULL;
990 pHba->lct = NULL;
991 pHba->lct_size = 0;
992 pHba->status_block = NULL;
993 pHba->post_count = 0;
994 pHba->state = DPTI_STATE_RESET;
995 pHba->pDev = pDev;
996 pHba->devices = NULL;
997
998 // Initializing the spinlocks
999 spin_lock_init(&pHba->state_lock);
1000 spin_lock_init(&adpt_post_wait_lock);
1001
1002 if(raptorFlag == 0){
1003 printk(KERN_INFO"Adaptec I2O RAID controller %d at %p size=%x irq=%d\n",
1004 hba_count-1, base_addr_virt, hba_map0_area_size, pDev->irq);
1005 } else {
1006 printk(KERN_INFO"Adaptec I2O RAID controller %d irq=%d\n",hba_count-1, pDev->irq);
1007 printk(KERN_INFO" BAR0 %p - size= %x\n",base_addr_virt,hba_map0_area_size);
1008 printk(KERN_INFO" BAR1 %p - size= %x\n",msg_addr_virt,hba_map1_area_size);
1009 }
1010
1011 if (request_irq (pDev->irq, adpt_isr, IRQF_SHARED, pHba->name, pHba)) {
1012 printk(KERN_ERR"%s: Couldn't register IRQ %d\n", pHba->name, pDev->irq);
1013 adpt_i2o_delete_hba(pHba);
1014 return -EINVAL;
1015 }
1016
1017 return 0;
1018 }
1019
1020
1021 static void adpt_i2o_delete_hba(adpt_hba* pHba)
1022 {
1023 adpt_hba* p1;
1024 adpt_hba* p2;
1025 struct i2o_device* d;
1026 struct i2o_device* next;
1027 int i;
1028 int j;
1029 struct adpt_device* pDev;
1030 struct adpt_device* pNext;
1031
1032
1033 mutex_lock(&adpt_configuration_lock);
1034 // scsi_unregister calls our adpt_release which
1035 // does a quiese
1036 if(pHba->host){
1037 free_irq(pHba->host->irq, pHba);
1038 }
1039 p2 = NULL;
1040 for( p1 = hba_chain; p1; p2 = p1,p1=p1->next){
1041 if(p1 == pHba) {
1042 if(p2) {
1043 p2->next = p1->next;
1044 } else {
1045 hba_chain = p1->next;
1046 }
1047 break;
1048 }
1049 }
1050
1051 hba_count--;
1052 mutex_unlock(&adpt_configuration_lock);
1053
1054 iounmap(pHba->base_addr_virt);
1055 pci_release_regions(pHba->pDev);
1056 if(pHba->msg_addr_virt != pHba->base_addr_virt){
1057 iounmap(pHba->msg_addr_virt);
1058 }
1059 kfree(pHba->hrt);
1060 kfree(pHba->lct);
1061 kfree(pHba->status_block);
1062 kfree(pHba->reply_pool);
1063
1064 for(d = pHba->devices; d ; d = next){
1065 next = d->next;
1066 kfree(d);
1067 }
1068 for(i = 0 ; i < pHba->top_scsi_channel ; i++){
1069 for(j = 0; j < MAX_ID; j++){
1070 if(pHba->channel[i].device[j] != NULL){
1071 for(pDev = pHba->channel[i].device[j]; pDev; pDev = pNext){
1072 pNext = pDev->next_lun;
1073 kfree(pDev);
1074 }
1075 }
1076 }
1077 }
1078 pci_dev_put(pHba->pDev);
1079 kfree(pHba);
1080
1081 if(hba_count <= 0){
1082 unregister_chrdev(DPTI_I2O_MAJOR, DPT_DRIVER);
1083 }
1084 }
1085
1086
1087 static int adpt_init(void)
1088 {
1089 printk("Loading Adaptec I2O RAID: Version " DPT_I2O_VERSION "\n");
1090 #ifdef REBOOT_NOTIFIER
1091 register_reboot_notifier(&adpt_reboot_notifier);
1092 #endif
1093
1094 return 0;
1095 }
1096
1097
1098 static struct adpt_device* adpt_find_device(adpt_hba* pHba, u32 chan, u32 id, u32 lun)
1099 {
1100 struct adpt_device* d;
1101
1102 if(chan < 0 || chan >= MAX_CHANNEL)
1103 return NULL;
1104
1105 if( pHba->channel[chan].device == NULL){
1106 printk(KERN_DEBUG"Adaptec I2O RAID: Trying to find device before they are allocated\n");
1107 return NULL;
1108 }
1109
1110 d = pHba->channel[chan].device[id];
1111 if(!d || d->tid == 0) {
1112 return NULL;
1113 }
1114
1115 /* If it is the only lun at that address then this should match*/
1116 if(d->scsi_lun == lun){
1117 return d;
1118 }
1119
1120 /* else we need to look through all the luns */
1121 for(d=d->next_lun ; d ; d = d->next_lun){
1122 if(d->scsi_lun == lun){
1123 return d;
1124 }
1125 }
1126 return NULL;
1127 }
1128
1129
1130 static int adpt_i2o_post_wait(adpt_hba* pHba, u32* msg, int len, int timeout)
1131 {
1132 // I used my own version of the WAIT_QUEUE_HEAD
1133 // to handle some version differences
1134 // When embedded in the kernel this could go back to the vanilla one
1135 ADPT_DECLARE_WAIT_QUEUE_HEAD(adpt_wq_i2o_post);
1136 int status = 0;
1137 ulong flags = 0;
1138 struct adpt_i2o_post_wait_data *p1, *p2;
1139 struct adpt_i2o_post_wait_data *wait_data =
1140 kmalloc(sizeof(struct adpt_i2o_post_wait_data),GFP_KERNEL);
1141 DECLARE_WAITQUEUE(wait, current);
1142
1143 if (!wait_data)
1144 return -ENOMEM;
1145
1146 /*
1147 * The spin locking is needed to keep anyone from playing
1148 * with the queue pointers and id while we do the same
1149 */
1150 spin_lock_irqsave(&adpt_post_wait_lock, flags);
1151 // TODO we need a MORE unique way of getting ids
1152 // to support async LCT get
1153 wait_data->next = adpt_post_wait_queue;
1154 adpt_post_wait_queue = wait_data;
1155 adpt_post_wait_id++;
1156 adpt_post_wait_id &= 0x7fff;
1157 wait_data->id = adpt_post_wait_id;
1158 spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
1159
1160 wait_data->wq = &adpt_wq_i2o_post;
1161 wait_data->status = -ETIMEDOUT;
1162
1163 add_wait_queue(&adpt_wq_i2o_post, &wait);
1164
1165 msg[2] |= 0x80000000 | ((u32)wait_data->id);
1166 timeout *= HZ;
1167 if((status = adpt_i2o_post_this(pHba, msg, len)) == 0){
1168 set_current_state(TASK_INTERRUPTIBLE);
1169 if(pHba->host)
1170 spin_unlock_irq(pHba->host->host_lock);
1171 if (!timeout)
1172 schedule();
1173 else{
1174 timeout = schedule_timeout(timeout);
1175 if (timeout == 0) {
1176 // I/O issued, but cannot get result in
1177 // specified time. Freeing resorces is
1178 // dangerous.
1179 status = -ETIME;
1180 }
1181 }
1182 if(pHba->host)
1183 spin_lock_irq(pHba->host->host_lock);
1184 }
1185 remove_wait_queue(&adpt_wq_i2o_post, &wait);
1186
1187 if(status == -ETIMEDOUT){
1188 printk(KERN_INFO"dpti%d: POST WAIT TIMEOUT\n",pHba->unit);
1189 // We will have to free the wait_data memory during shutdown
1190 return status;
1191 }
1192
1193 /* Remove the entry from the queue. */
1194 p2 = NULL;
1195 spin_lock_irqsave(&adpt_post_wait_lock, flags);
1196 for(p1 = adpt_post_wait_queue; p1; p2 = p1, p1 = p1->next) {
1197 if(p1 == wait_data) {
1198 if(p1->status == I2O_DETAIL_STATUS_UNSUPPORTED_FUNCTION ) {
1199 status = -EOPNOTSUPP;
1200 }
1201 if(p2) {
1202 p2->next = p1->next;
1203 } else {
1204 adpt_post_wait_queue = p1->next;
1205 }
1206 break;
1207 }
1208 }
1209 spin_unlock_irqrestore(&adpt_post_wait_lock, flags);
1210
1211 kfree(wait_data);
1212
1213 return status;
1214 }
1215
1216
1217 static s32 adpt_i2o_post_this(adpt_hba* pHba, u32* data, int len)
1218 {
1219
1220 u32 m = EMPTY_QUEUE;
1221 u32 __iomem *msg;
1222 ulong timeout = jiffies + 30*HZ;
1223 do {
1224 rmb();
1225 m = readl(pHba->post_port);
1226 if (m != EMPTY_QUEUE) {
1227 break;
1228 }
1229 if(time_after(jiffies,timeout)){
1230 printk(KERN_WARNING"dpti%d: Timeout waiting for message frame!\n", pHba->unit);
1231 return -ETIMEDOUT;
1232 }
1233 schedule_timeout_uninterruptible(1);
1234 } while(m == EMPTY_QUEUE);
1235
1236 msg = pHba->msg_addr_virt + m;
1237 memcpy_toio(msg, data, len);
1238 wmb();
1239
1240 //post message
1241 writel(m, pHba->post_port);
1242 wmb();
1243
1244 return 0;
1245 }
1246
1247
1248 static void adpt_i2o_post_wait_complete(u32 context, int status)
1249 {
1250 struct adpt_i2o_post_wait_data *p1 = NULL;
1251 /*
1252 * We need to search through the adpt_post_wait
1253 * queue to see if the given message is still
1254 * outstanding. If not, it means that the IOP
1255 * took longer to respond to the message than we
1256 * had allowed and timer has already expired.
1257 * Not much we can do about that except log
1258 * it for debug purposes, increase timeout, and recompile
1259 *
1260 * Lock needed to keep anyone from moving queue pointers
1261 * around while we're looking through them.
1262 */
1263
1264 context &= 0x7fff;
1265
1266 spin_lock(&adpt_post_wait_lock);
1267 for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) {
1268 if(p1->id == context) {
1269 p1->status = status;
1270 spin_unlock(&adpt_post_wait_lock);
1271 wake_up_interruptible(p1->wq);
1272 return;
1273 }
1274 }
1275 spin_unlock(&adpt_post_wait_lock);
1276 // If this happens we lose commands that probably really completed
1277 printk(KERN_DEBUG"dpti: Could Not find task %d in wait queue\n",context);
1278 printk(KERN_DEBUG" Tasks in wait queue:\n");
1279 for(p1 = adpt_post_wait_queue; p1; p1 = p1->next) {
1280 printk(KERN_DEBUG" %d\n",p1->id);
1281 }
1282 return;
1283 }
1284
1285 static s32 adpt_i2o_reset_hba(adpt_hba* pHba)
1286 {
1287 u32 msg[8];
1288 u8* status;
1289 u32 m = EMPTY_QUEUE ;
1290 ulong timeout = jiffies + (TMOUT_IOPRESET*HZ);
1291
1292 if(pHba->initialized == FALSE) { // First time reset should be quick
1293 timeout = jiffies + (25*HZ);
1294 } else {
1295 adpt_i2o_quiesce_hba(pHba);
1296 }
1297
1298 do {
1299 rmb();
1300 m = readl(pHba->post_port);
1301 if (m != EMPTY_QUEUE) {
1302 break;
1303 }
1304 if(time_after(jiffies,timeout)){
1305 printk(KERN_WARNING"Timeout waiting for message!\n");
1306 return -ETIMEDOUT;
1307 }
1308 schedule_timeout_uninterruptible(1);
1309 } while (m == EMPTY_QUEUE);
1310
1311 status = kzalloc(4, GFP_KERNEL|ADDR32);
1312 if(status == NULL) {
1313 adpt_send_nop(pHba, m);
1314 printk(KERN_ERR"IOP reset failed - no free memory.\n");
1315 return -ENOMEM;
1316 }
1317
1318 msg[0]=EIGHT_WORD_MSG_SIZE|SGL_OFFSET_0;
1319 msg[1]=I2O_CMD_ADAPTER_RESET<<24|HOST_TID<<12|ADAPTER_TID;
1320 msg[2]=0;
1321 msg[3]=0;
1322 msg[4]=0;
1323 msg[5]=0;
1324 msg[6]=virt_to_bus(status);
1325 msg[7]=0;
1326
1327 memcpy_toio(pHba->msg_addr_virt+m, msg, sizeof(msg));
1328 wmb();
1329 writel(m, pHba->post_port);
1330 wmb();
1331
1332 while(*status == 0){
1333 if(time_after(jiffies,timeout)){
1334 printk(KERN_WARNING"%s: IOP Reset Timeout\n",pHba->name);
1335 kfree(status);
1336 return -ETIMEDOUT;
1337 }
1338 rmb();
1339 schedule_timeout_uninterruptible(1);
1340 }
1341
1342 if(*status == 0x01 /*I2O_EXEC_IOP_RESET_IN_PROGRESS*/) {
1343 PDEBUG("%s: Reset in progress...\n", pHba->name);
1344 // Here we wait for message frame to become available
1345 // indicated that reset has finished
1346 do {
1347 rmb();
1348 m = readl(pHba->post_port);
1349 if (m != EMPTY_QUEUE) {
1350 break;
1351 }
1352 if(time_after(jiffies,timeout)){
1353 printk(KERN_ERR "%s:Timeout waiting for IOP Reset.\n",pHba->name);
1354 return -ETIMEDOUT;
1355 }
1356 schedule_timeout_uninterruptible(1);
1357 } while (m == EMPTY_QUEUE);
1358 // Flush the offset
1359 adpt_send_nop(pHba, m);
1360 }
1361 adpt_i2o_status_get(pHba);
1362 if(*status == 0x02 ||
1363 pHba->status_block->iop_state != ADAPTER_STATE_RESET) {
1364 printk(KERN_WARNING"%s: Reset reject, trying to clear\n",
1365 pHba->name);
1366 } else {
1367 PDEBUG("%s: Reset completed.\n", pHba->name);
1368 }
1369
1370 kfree(status);
1371 #ifdef UARTDELAY
1372 // This delay is to allow someone attached to the card through the debug UART to
1373 // set up the dump levels that they want before the rest of the initialization sequence
1374 adpt_delay(20000);
1375 #endif
1376 return 0;
1377 }
1378
1379
1380 static int adpt_i2o_parse_lct(adpt_hba* pHba)
1381 {
1382 int i;
1383 int max;
1384 int tid;
1385 struct i2o_device *d;
1386 i2o_lct *lct = pHba->lct;
1387 u8 bus_no = 0;
1388 s16 scsi_id;
1389 s16 scsi_lun;
1390 u32 buf[10]; // larger than 7, or 8 ...
1391 struct adpt_device* pDev;
1392
1393 if (lct == NULL) {
1394 printk(KERN_ERR "%s: LCT is empty???\n",pHba->name);
1395 return -1;
1396 }
1397
1398 max = lct->table_size;
1399 max -= 3;
1400 max /= 9;
1401
1402 for(i=0;i<max;i++) {
1403 if( lct->lct_entry[i].user_tid != 0xfff){
1404 /*
1405 * If we have hidden devices, we need to inform the upper layers about
1406 * the possible maximum id reference to handle device access when
1407 * an array is disassembled. This code has no other purpose but to
1408 * allow us future access to devices that are currently hidden
1409 * behind arrays, hotspares or have not been configured (JBOD mode).
1410 */
1411 if( lct->lct_entry[i].class_id != I2O_CLASS_RANDOM_BLOCK_STORAGE &&
1412 lct->lct_entry[i].class_id != I2O_CLASS_SCSI_PERIPHERAL &&
1413 lct->lct_entry[i].class_id != I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
1414 continue;
1415 }
1416 tid = lct->lct_entry[i].tid;
1417 // I2O_DPT_DEVICE_INFO_GROUP_NO;
1418 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) {
1419 continue;
1420 }
1421 bus_no = buf[0]>>16;
1422 scsi_id = buf[1];
1423 scsi_lun = (buf[2]>>8 )&0xff;
1424 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1425 printk(KERN_WARNING"%s: Channel number %d out of range \n", pHba->name, bus_no);
1426 continue;
1427 }
1428 if (scsi_id >= MAX_ID){
1429 printk(KERN_WARNING"%s: SCSI ID %d out of range \n", pHba->name, bus_no);
1430 continue;
1431 }
1432 if(bus_no > pHba->top_scsi_channel){
1433 pHba->top_scsi_channel = bus_no;
1434 }
1435 if(scsi_id > pHba->top_scsi_id){
1436 pHba->top_scsi_id = scsi_id;
1437 }
1438 if(scsi_lun > pHba->top_scsi_lun){
1439 pHba->top_scsi_lun = scsi_lun;
1440 }
1441 continue;
1442 }
1443 d = kmalloc(sizeof(struct i2o_device), GFP_KERNEL);
1444 if(d==NULL)
1445 {
1446 printk(KERN_CRIT"%s: Out of memory for I2O device data.\n",pHba->name);
1447 return -ENOMEM;
1448 }
1449
1450 d->controller = pHba;
1451 d->next = NULL;
1452
1453 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
1454
1455 d->flags = 0;
1456 tid = d->lct_data.tid;
1457 adpt_i2o_report_hba_unit(pHba, d);
1458 adpt_i2o_install_device(pHba, d);
1459 }
1460 bus_no = 0;
1461 for(d = pHba->devices; d ; d = d->next) {
1462 if(d->lct_data.class_id == I2O_CLASS_BUS_ADAPTER_PORT ||
1463 d->lct_data.class_id == I2O_CLASS_FIBRE_CHANNEL_PORT){
1464 tid = d->lct_data.tid;
1465 // TODO get the bus_no from hrt-but for now they are in order
1466 //bus_no =
1467 if(bus_no > pHba->top_scsi_channel){
1468 pHba->top_scsi_channel = bus_no;
1469 }
1470 pHba->channel[bus_no].type = d->lct_data.class_id;
1471 pHba->channel[bus_no].tid = tid;
1472 if(adpt_i2o_query_scalar(pHba, tid, 0x0200, -1, buf, 28)>=0)
1473 {
1474 pHba->channel[bus_no].scsi_id = buf[1];
1475 PDEBUG("Bus %d - SCSI ID %d.\n", bus_no, buf[1]);
1476 }
1477 // TODO remove - this is just until we get from hrt
1478 bus_no++;
1479 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1480 printk(KERN_WARNING"%s: Channel number %d out of range - LCT\n", pHba->name, bus_no);
1481 break;
1482 }
1483 }
1484 }
1485
1486 // Setup adpt_device table
1487 for(d = pHba->devices; d ; d = d->next) {
1488 if(d->lct_data.class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE ||
1489 d->lct_data.class_id == I2O_CLASS_SCSI_PERIPHERAL ||
1490 d->lct_data.class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
1491
1492 tid = d->lct_data.tid;
1493 scsi_id = -1;
1494 // I2O_DPT_DEVICE_INFO_GROUP_NO;
1495 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)>=0) {
1496 bus_no = buf[0]>>16;
1497 scsi_id = buf[1];
1498 scsi_lun = (buf[2]>>8 )&0xff;
1499 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
1500 continue;
1501 }
1502 if (scsi_id >= MAX_ID) {
1503 continue;
1504 }
1505 if( pHba->channel[bus_no].device[scsi_id] == NULL){
1506 pDev = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
1507 if(pDev == NULL) {
1508 return -ENOMEM;
1509 }
1510 pHba->channel[bus_no].device[scsi_id] = pDev;
1511 } else {
1512 for( pDev = pHba->channel[bus_no].device[scsi_id];
1513 pDev->next_lun; pDev = pDev->next_lun){
1514 }
1515 pDev->next_lun = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
1516 if(pDev->next_lun == NULL) {
1517 return -ENOMEM;
1518 }
1519 pDev = pDev->next_lun;
1520 }
1521 pDev->tid = tid;
1522 pDev->scsi_channel = bus_no;
1523 pDev->scsi_id = scsi_id;
1524 pDev->scsi_lun = scsi_lun;
1525 pDev->pI2o_dev = d;
1526 d->owner = pDev;
1527 pDev->type = (buf[0])&0xff;
1528 pDev->flags = (buf[0]>>8)&0xff;
1529 if(scsi_id > pHba->top_scsi_id){
1530 pHba->top_scsi_id = scsi_id;
1531 }
1532 if(scsi_lun > pHba->top_scsi_lun){
1533 pHba->top_scsi_lun = scsi_lun;
1534 }
1535 }
1536 if(scsi_id == -1){
1537 printk(KERN_WARNING"Could not find SCSI ID for %s\n",
1538 d->lct_data.identity_tag);
1539 }
1540 }
1541 }
1542 return 0;
1543 }
1544
1545
1546 /*
1547 * Each I2O controller has a chain of devices on it - these match
1548 * the useful parts of the LCT of the board.
1549 */
1550
1551 static int adpt_i2o_install_device(adpt_hba* pHba, struct i2o_device *d)
1552 {
1553 mutex_lock(&adpt_configuration_lock);
1554 d->controller=pHba;
1555 d->owner=NULL;
1556 d->next=pHba->devices;
1557 d->prev=NULL;
1558 if (pHba->devices != NULL){
1559 pHba->devices->prev=d;
1560 }
1561 pHba->devices=d;
1562 *d->dev_name = 0;
1563
1564 mutex_unlock(&adpt_configuration_lock);
1565 return 0;
1566 }
1567
1568 static int adpt_open(struct inode *inode, struct file *file)
1569 {
1570 int minor;
1571 adpt_hba* pHba;
1572
1573 //TODO check for root access
1574 //
1575 minor = iminor(inode);
1576 if (minor >= hba_count) {
1577 return -ENXIO;
1578 }
1579 mutex_lock(&adpt_configuration_lock);
1580 for (pHba = hba_chain; pHba; pHba = pHba->next) {
1581 if (pHba->unit == minor) {
1582 break; /* found adapter */
1583 }
1584 }
1585 if (pHba == NULL) {
1586 mutex_unlock(&adpt_configuration_lock);
1587 return -ENXIO;
1588 }
1589
1590 // if(pHba->in_use){
1591 // mutex_unlock(&adpt_configuration_lock);
1592 // return -EBUSY;
1593 // }
1594
1595 pHba->in_use = 1;
1596 mutex_unlock(&adpt_configuration_lock);
1597
1598 return 0;
1599 }
1600
1601 static int adpt_close(struct inode *inode, struct file *file)
1602 {
1603 int minor;
1604 adpt_hba* pHba;
1605
1606 minor = iminor(inode);
1607 if (minor >= hba_count) {
1608 return -ENXIO;
1609 }
1610 mutex_lock(&adpt_configuration_lock);
1611 for (pHba = hba_chain; pHba; pHba = pHba->next) {
1612 if (pHba->unit == minor) {
1613 break; /* found adapter */
1614 }
1615 }
1616 mutex_unlock(&adpt_configuration_lock);
1617 if (pHba == NULL) {
1618 return -ENXIO;
1619 }
1620
1621 pHba->in_use = 0;
1622
1623 return 0;
1624 }
1625
1626
1627 static int adpt_i2o_passthru(adpt_hba* pHba, u32 __user *arg)
1628 {
1629 u32 msg[MAX_MESSAGE_SIZE];
1630 u32* reply = NULL;
1631 u32 size = 0;
1632 u32 reply_size = 0;
1633 u32 __user *user_msg = arg;
1634 u32 __user * user_reply = NULL;
1635 void *sg_list[pHba->sg_tablesize];
1636 u32 sg_offset = 0;
1637 u32 sg_count = 0;
1638 int sg_index = 0;
1639 u32 i = 0;
1640 u32 rcode = 0;
1641 void *p = NULL;
1642 ulong flags = 0;
1643
1644 memset(&msg, 0, MAX_MESSAGE_SIZE*4);
1645 // get user msg size in u32s
1646 if(get_user(size, &user_msg[0])){
1647 return -EFAULT;
1648 }
1649 size = size>>16;
1650
1651 user_reply = &user_msg[size];
1652 if(size > MAX_MESSAGE_SIZE){
1653 return -EFAULT;
1654 }
1655 size *= 4; // Convert to bytes
1656
1657 /* Copy in the user's I2O command */
1658 if(copy_from_user(msg, user_msg, size)) {
1659 return -EFAULT;
1660 }
1661 get_user(reply_size, &user_reply[0]);
1662 reply_size = reply_size>>16;
1663 if(reply_size > REPLY_FRAME_SIZE){
1664 reply_size = REPLY_FRAME_SIZE;
1665 }
1666 reply_size *= 4;
1667 reply = kzalloc(REPLY_FRAME_SIZE*4, GFP_KERNEL);
1668 if(reply == NULL) {
1669 printk(KERN_WARNING"%s: Could not allocate reply buffer\n",pHba->name);
1670 return -ENOMEM;
1671 }
1672 sg_offset = (msg[0]>>4)&0xf;
1673 msg[2] = 0x40000000; // IOCTL context
1674 msg[3] = (u32)reply;
1675 memset(sg_list,0, sizeof(sg_list[0])*pHba->sg_tablesize);
1676 if(sg_offset) {
1677 // TODO 64bit fix
1678 struct sg_simple_element *sg = (struct sg_simple_element*) (msg+sg_offset);
1679 sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element);
1680 if (sg_count > pHba->sg_tablesize){
1681 printk(KERN_DEBUG"%s:IOCTL SG List too large (%u)\n", pHba->name,sg_count);
1682 kfree (reply);
1683 return -EINVAL;
1684 }
1685
1686 for(i = 0; i < sg_count; i++) {
1687 int sg_size;
1688
1689 if (!(sg[i].flag_count & 0x10000000 /*I2O_SGL_FLAGS_SIMPLE_ADDRESS_ELEMENT*/)) {
1690 printk(KERN_DEBUG"%s:Bad SG element %d - not simple (%x)\n",pHba->name,i, sg[i].flag_count);
1691 rcode = -EINVAL;
1692 goto cleanup;
1693 }
1694 sg_size = sg[i].flag_count & 0xffffff;
1695 /* Allocate memory for the transfer */
1696 p = kmalloc(sg_size, GFP_KERNEL|ADDR32);
1697 if(!p) {
1698 printk(KERN_DEBUG"%s: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
1699 pHba->name,sg_size,i,sg_count);
1700 rcode = -ENOMEM;
1701 goto cleanup;
1702 }
1703 sg_list[sg_index++] = p; // sglist indexed with input frame, not our internal frame.
1704 /* Copy in the user's SG buffer if necessary */
1705 if(sg[i].flag_count & 0x04000000 /*I2O_SGL_FLAGS_DIR*/) {
1706 // TODO 64bit fix
1707 if (copy_from_user(p,(void __user *)sg[i].addr_bus, sg_size)) {
1708 printk(KERN_DEBUG"%s: Could not copy SG buf %d FROM user\n",pHba->name,i);
1709 rcode = -EFAULT;
1710 goto cleanup;
1711 }
1712 }
1713 //TODO 64bit fix
1714 sg[i].addr_bus = (u32)virt_to_bus(p);
1715 }
1716 }
1717
1718 do {
1719 if(pHba->host)
1720 spin_lock_irqsave(pHba->host->host_lock, flags);
1721 // This state stops any new commands from enterring the
1722 // controller while processing the ioctl
1723 // pHba->state |= DPTI_STATE_IOCTL;
1724 // We can't set this now - The scsi subsystem sets host_blocked and
1725 // the queue empties and stops. We need a way to restart the queue
1726 rcode = adpt_i2o_post_wait(pHba, msg, size, FOREVER);
1727 if (rcode != 0)
1728 printk("adpt_i2o_passthru: post wait failed %d %p\n",
1729 rcode, reply);
1730 // pHba->state &= ~DPTI_STATE_IOCTL;
1731 if(pHba->host)
1732 spin_unlock_irqrestore(pHba->host->host_lock, flags);
1733 } while(rcode == -ETIMEDOUT);
1734
1735 if(rcode){
1736 goto cleanup;
1737 }
1738
1739 if(sg_offset) {
1740 /* Copy back the Scatter Gather buffers back to user space */
1741 u32 j;
1742 // TODO 64bit fix
1743 struct sg_simple_element* sg;
1744 int sg_size;
1745
1746 // re-acquire the original message to handle correctly the sg copy operation
1747 memset(&msg, 0, MAX_MESSAGE_SIZE*4);
1748 // get user msg size in u32s
1749 if(get_user(size, &user_msg[0])){
1750 rcode = -EFAULT;
1751 goto cleanup;
1752 }
1753 size = size>>16;
1754 size *= 4;
1755 /* Copy in the user's I2O command */
1756 if (copy_from_user (msg, user_msg, size)) {
1757 rcode = -EFAULT;
1758 goto cleanup;
1759 }
1760 sg_count = (size - sg_offset*4) / sizeof(struct sg_simple_element);
1761
1762 // TODO 64bit fix
1763 sg = (struct sg_simple_element*)(msg + sg_offset);
1764 for (j = 0; j < sg_count; j++) {
1765 /* Copy out the SG list to user's buffer if necessary */
1766 if(! (sg[j].flag_count & 0x4000000 /*I2O_SGL_FLAGS_DIR*/)) {
1767 sg_size = sg[j].flag_count & 0xffffff;
1768 // TODO 64bit fix
1769 if (copy_to_user((void __user *)sg[j].addr_bus,sg_list[j], sg_size)) {
1770 printk(KERN_WARNING"%s: Could not copy %p TO user %x\n",pHba->name, sg_list[j], sg[j].addr_bus);
1771 rcode = -EFAULT;
1772 goto cleanup;
1773 }
1774 }
1775 }
1776 }
1777
1778 /* Copy back the reply to user space */
1779 if (reply_size) {
1780 // we wrote our own values for context - now restore the user supplied ones
1781 if(copy_from_user(reply+2, user_msg+2, sizeof(u32)*2)) {
1782 printk(KERN_WARNING"%s: Could not copy message context FROM user\n",pHba->name);
1783 rcode = -EFAULT;
1784 }
1785 if(copy_to_user(user_reply, reply, reply_size)) {
1786 printk(KERN_WARNING"%s: Could not copy reply TO user\n",pHba->name);
1787 rcode = -EFAULT;
1788 }
1789 }
1790
1791
1792 cleanup:
1793 if (rcode != -ETIME && rcode != -EINTR)
1794 kfree (reply);
1795 while(sg_index) {
1796 if(sg_list[--sg_index]) {
1797 if (rcode != -ETIME && rcode != -EINTR)
1798 kfree(sg_list[sg_index]);
1799 }
1800 }
1801 return rcode;
1802 }
1803
1804
1805 /*
1806 * This routine returns information about the system. This does not effect
1807 * any logic and if the info is wrong - it doesn't matter.
1808 */
1809
1810 /* Get all the info we can not get from kernel services */
1811 static int adpt_system_info(void __user *buffer)
1812 {
1813 sysInfo_S si;
1814
1815 memset(&si, 0, sizeof(si));
1816
1817 si.osType = OS_LINUX;
1818 si.osMajorVersion = 0;
1819 si.osMinorVersion = 0;
1820 si.osRevision = 0;
1821 si.busType = SI_PCI_BUS;
1822 si.processorFamily = DPTI_sig.dsProcessorFamily;
1823
1824 #if defined __i386__
1825 adpt_i386_info(&si);
1826 #elif defined (__ia64__)
1827 adpt_ia64_info(&si);
1828 #elif defined(__sparc__)
1829 adpt_sparc_info(&si);
1830 #elif defined (__alpha__)
1831 adpt_alpha_info(&si);
1832 #else
1833 si.processorType = 0xff ;
1834 #endif
1835 if(copy_to_user(buffer, &si, sizeof(si))){
1836 printk(KERN_WARNING"dpti: Could not copy buffer TO user\n");
1837 return -EFAULT;
1838 }
1839
1840 return 0;
1841 }
1842
1843 #if defined __ia64__
1844 static void adpt_ia64_info(sysInfo_S* si)
1845 {
1846 // This is all the info we need for now
1847 // We will add more info as our new
1848 // managmenent utility requires it
1849 si->processorType = PROC_IA64;
1850 }
1851 #endif
1852
1853
1854 #if defined __sparc__
1855 static void adpt_sparc_info(sysInfo_S* si)
1856 {
1857 // This is all the info we need for now
1858 // We will add more info as our new
1859 // managmenent utility requires it
1860 si->processorType = PROC_ULTRASPARC;
1861 }
1862 #endif
1863
1864 #if defined __alpha__
1865 static void adpt_alpha_info(sysInfo_S* si)
1866 {
1867 // This is all the info we need for now
1868 // We will add more info as our new
1869 // managmenent utility requires it
1870 si->processorType = PROC_ALPHA;
1871 }
1872 #endif
1873
1874 #if defined __i386__
1875
1876 static void adpt_i386_info(sysInfo_S* si)
1877 {
1878 // This is all the info we need for now
1879 // We will add more info as our new
1880 // managmenent utility requires it
1881 switch (boot_cpu_data.x86) {
1882 case CPU_386:
1883 si->processorType = PROC_386;
1884 break;
1885 case CPU_486:
1886 si->processorType = PROC_486;
1887 break;
1888 case CPU_586:
1889 si->processorType = PROC_PENTIUM;
1890 break;
1891 default: // Just in case
1892 si->processorType = PROC_PENTIUM;
1893 break;
1894 }
1895 }
1896
1897 #endif
1898
1899
1900 static int adpt_ioctl(struct inode *inode, struct file *file, uint cmd,
1901 ulong arg)
1902 {
1903 int minor;
1904 int error = 0;
1905 adpt_hba* pHba;
1906 ulong flags = 0;
1907 void __user *argp = (void __user *)arg;
1908
1909 minor = iminor(inode);
1910 if (minor >= DPTI_MAX_HBA){
1911 return -ENXIO;
1912 }
1913 mutex_lock(&adpt_configuration_lock);
1914 for (pHba = hba_chain; pHba; pHba = pHba->next) {
1915 if (pHba->unit == minor) {
1916 break; /* found adapter */
1917 }
1918 }
1919 mutex_unlock(&adpt_configuration_lock);
1920 if(pHba == NULL){
1921 return -ENXIO;
1922 }
1923
1924 while((volatile u32) pHba->state & DPTI_STATE_RESET )
1925 schedule_timeout_uninterruptible(2);
1926
1927 switch (cmd) {
1928 // TODO: handle 3 cases
1929 case DPT_SIGNATURE:
1930 if (copy_to_user(argp, &DPTI_sig, sizeof(DPTI_sig))) {
1931 return -EFAULT;
1932 }
1933 break;
1934 case I2OUSRCMD:
1935 return adpt_i2o_passthru(pHba, argp);
1936
1937 case DPT_CTRLINFO:{
1938 drvrHBAinfo_S HbaInfo;
1939
1940 #define FLG_OSD_PCI_VALID 0x0001
1941 #define FLG_OSD_DMA 0x0002
1942 #define FLG_OSD_I2O 0x0004
1943 memset(&HbaInfo, 0, sizeof(HbaInfo));
1944 HbaInfo.drvrHBAnum = pHba->unit;
1945 HbaInfo.baseAddr = (ulong) pHba->base_addr_phys;
1946 HbaInfo.blinkState = adpt_read_blink_led(pHba);
1947 HbaInfo.pciBusNum = pHba->pDev->bus->number;
1948 HbaInfo.pciDeviceNum=PCI_SLOT(pHba->pDev->devfn);
1949 HbaInfo.Interrupt = pHba->pDev->irq;
1950 HbaInfo.hbaFlags = FLG_OSD_PCI_VALID | FLG_OSD_DMA | FLG_OSD_I2O;
1951 if(copy_to_user(argp, &HbaInfo, sizeof(HbaInfo))){
1952 printk(KERN_WARNING"%s: Could not copy HbaInfo TO user\n",pHba->name);
1953 return -EFAULT;
1954 }
1955 break;
1956 }
1957 case DPT_SYSINFO:
1958 return adpt_system_info(argp);
1959 case DPT_BLINKLED:{
1960 u32 value;
1961 value = (u32)adpt_read_blink_led(pHba);
1962 if (copy_to_user(argp, &value, sizeof(value))) {
1963 return -EFAULT;
1964 }
1965 break;
1966 }
1967 case I2ORESETCMD:
1968 if(pHba->host)
1969 spin_lock_irqsave(pHba->host->host_lock, flags);
1970 adpt_hba_reset(pHba);
1971 if(pHba->host)
1972 spin_unlock_irqrestore(pHba->host->host_lock, flags);
1973 break;
1974 case I2ORESCANCMD:
1975 adpt_rescan(pHba);
1976 break;
1977 default:
1978 return -EINVAL;
1979 }
1980
1981 return error;
1982 }
1983
1984
1985 static irqreturn_t adpt_isr(int irq, void *dev_id)
1986 {
1987 struct scsi_cmnd* cmd;
1988 adpt_hba* pHba = dev_id;
1989 u32 m;
1990 void __iomem *reply;
1991 u32 status=0;
1992 u32 context;
1993 ulong flags = 0;
1994 int handled = 0;
1995
1996 if (pHba == NULL){
1997 printk(KERN_WARNING"adpt_isr: NULL dev_id\n");
1998 return IRQ_NONE;
1999 }
2000 if(pHba->host)
2001 spin_lock_irqsave(pHba->host->host_lock, flags);
2002
2003 while( readl(pHba->irq_mask) & I2O_INTERRUPT_PENDING_B) {
2004 m = readl(pHba->reply_port);
2005 if(m == EMPTY_QUEUE){
2006 // Try twice then give up
2007 rmb();
2008 m = readl(pHba->reply_port);
2009 if(m == EMPTY_QUEUE){
2010 // This really should not happen
2011 printk(KERN_ERR"dpti: Could not get reply frame\n");
2012 goto out;
2013 }
2014 }
2015 reply = bus_to_virt(m);
2016
2017 if (readl(reply) & MSG_FAIL) {
2018 u32 old_m = readl(reply+28);
2019 void __iomem *msg;
2020 u32 old_context;
2021 PDEBUG("%s: Failed message\n",pHba->name);
2022 if(old_m >= 0x100000){
2023 printk(KERN_ERR"%s: Bad preserved MFA (%x)- dropping frame\n",pHba->name,old_m);
2024 writel(m,pHba->reply_port);
2025 continue;
2026 }
2027 // Transaction context is 0 in failed reply frame
2028 msg = pHba->msg_addr_virt + old_m;
2029 old_context = readl(msg+12);
2030 writel(old_context, reply+12);
2031 adpt_send_nop(pHba, old_m);
2032 }
2033 context = readl(reply+8);
2034 if(context & 0x40000000){ // IOCTL
2035 void *p = (void *)readl(reply+12);
2036 if( p != NULL) {
2037 memcpy_fromio(p, reply, REPLY_FRAME_SIZE * 4);
2038 }
2039 // All IOCTLs will also be post wait
2040 }
2041 if(context & 0x80000000){ // Post wait message
2042 status = readl(reply+16);
2043 if(status >> 24){
2044 status &= 0xffff; /* Get detail status */
2045 } else {
2046 status = I2O_POST_WAIT_OK;
2047 }
2048 if(!(context & 0x40000000)) {
2049 cmd = (struct scsi_cmnd*) readl(reply+12);
2050 if(cmd != NULL) {
2051 printk(KERN_WARNING"%s: Apparent SCSI cmd in Post Wait Context - cmd=%p context=%x\n", pHba->name, cmd, context);
2052 }
2053 }
2054 adpt_i2o_post_wait_complete(context, status);
2055 } else { // SCSI message
2056 cmd = (struct scsi_cmnd*) readl(reply+12);
2057 if(cmd != NULL){
2058 if(cmd->serial_number != 0) { // If not timedout
2059 adpt_i2o_to_scsi(reply, cmd);
2060 }
2061 }
2062 }
2063 writel(m, pHba->reply_port);
2064 wmb();
2065 rmb();
2066 }
2067 handled = 1;
2068 out: if(pHba->host)
2069 spin_unlock_irqrestore(pHba->host->host_lock, flags);
2070 return IRQ_RETVAL(handled);
2071 }
2072
2073 static s32 adpt_scsi_to_i2o(adpt_hba* pHba, struct scsi_cmnd* cmd, struct adpt_device* d)
2074 {
2075 int i;
2076 u32 msg[MAX_MESSAGE_SIZE];
2077 u32* mptr;
2078 u32 *lenptr;
2079 int direction;
2080 int scsidir;
2081 u32 len;
2082 u32 reqlen;
2083 s32 rcode;
2084
2085 memset(msg, 0 , sizeof(msg));
2086 len = cmd->request_bufflen;
2087 direction = 0x00000000;
2088
2089 scsidir = 0x00000000; // DATA NO XFER
2090 if(len) {
2091 /*
2092 * Set SCBFlags to indicate if data is being transferred
2093 * in or out, or no data transfer
2094 * Note: Do not have to verify index is less than 0 since
2095 * cmd->cmnd[0] is an unsigned char
2096 */
2097 switch(cmd->sc_data_direction){
2098 case DMA_FROM_DEVICE:
2099 scsidir =0x40000000; // DATA IN (iop<--dev)
2100 break;
2101 case DMA_TO_DEVICE:
2102 direction=0x04000000; // SGL OUT
2103 scsidir =0x80000000; // DATA OUT (iop-->dev)
2104 break;
2105 case DMA_NONE:
2106 break;
2107 case DMA_BIDIRECTIONAL:
2108 scsidir =0x40000000; // DATA IN (iop<--dev)
2109 // Assume In - and continue;
2110 break;
2111 default:
2112 printk(KERN_WARNING"%s: scsi opcode 0x%x not supported.\n",
2113 pHba->name, cmd->cmnd[0]);
2114 cmd->result = (DID_OK <<16) | (INITIATOR_ERROR << 8);
2115 cmd->scsi_done(cmd);
2116 return 0;
2117 }
2118 }
2119 // msg[0] is set later
2120 // I2O_CMD_SCSI_EXEC
2121 msg[1] = ((0xff<<24)|(HOST_TID<<12)|d->tid);
2122 msg[2] = 0;
2123 msg[3] = (u32)cmd; /* We want the SCSI control block back */
2124 // Our cards use the transaction context as the tag for queueing
2125 // Adaptec/DPT Private stuff
2126 msg[4] = I2O_CMD_SCSI_EXEC|(DPT_ORGANIZATION_ID<<16);
2127 msg[5] = d->tid;
2128 /* Direction, disconnect ok | sense data | simple queue , CDBLen */
2129 // I2O_SCB_FLAG_ENABLE_DISCONNECT |
2130 // I2O_SCB_FLAG_SIMPLE_QUEUE_TAG |
2131 // I2O_SCB_FLAG_SENSE_DATA_IN_MESSAGE;
2132 msg[6] = scsidir|0x20a00000|cmd->cmd_len;
2133
2134 mptr=msg+7;
2135
2136 // Write SCSI command into the message - always 16 byte block
2137 memset(mptr, 0, 16);
2138 memcpy(mptr, cmd->cmnd, cmd->cmd_len);
2139 mptr+=4;
2140 lenptr=mptr++; /* Remember me - fill in when we know */
2141 reqlen = 14; // SINGLE SGE
2142 /* Now fill in the SGList and command */
2143 if(cmd->use_sg) {
2144 struct scatterlist *sg = (struct scatterlist *)cmd->request_buffer;
2145 int sg_count = pci_map_sg(pHba->pDev, sg, cmd->use_sg,
2146 cmd->sc_data_direction);
2147
2148
2149 len = 0;
2150 for(i = 0 ; i < sg_count; i++) {
2151 *mptr++ = direction|0x10000000|sg_dma_len(sg);
2152 len+=sg_dma_len(sg);
2153 *mptr++ = sg_dma_address(sg);
2154 sg++;
2155 }
2156 /* Make this an end of list */
2157 mptr[-2] = direction|0xD0000000|sg_dma_len(sg-1);
2158 reqlen = mptr - msg;
2159 *lenptr = len;
2160
2161 if(cmd->underflow && len != cmd->underflow){
2162 printk(KERN_WARNING"Cmd len %08X Cmd underflow %08X\n",
2163 len, cmd->underflow);
2164 }
2165 } else {
2166 *lenptr = len = cmd->request_bufflen;
2167 if(len == 0) {
2168 reqlen = 12;
2169 } else {
2170 *mptr++ = 0xD0000000|direction|cmd->request_bufflen;
2171 *mptr++ = pci_map_single(pHba->pDev,
2172 cmd->request_buffer,
2173 cmd->request_bufflen,
2174 cmd->sc_data_direction);
2175 }
2176 }
2177
2178 /* Stick the headers on */
2179 msg[0] = reqlen<<16 | ((reqlen > 12) ? SGL_OFFSET_12 : SGL_OFFSET_0);
2180
2181 // Send it on it's way
2182 rcode = adpt_i2o_post_this(pHba, msg, reqlen<<2);
2183 if (rcode == 0) {
2184 return 0;
2185 }
2186 return rcode;
2187 }
2188
2189
2190 static s32 adpt_scsi_register(adpt_hba* pHba,struct scsi_host_template * sht)
2191 {
2192 struct Scsi_Host *host = NULL;
2193
2194 host = scsi_register(sht, sizeof(adpt_hba*));
2195 if (host == NULL) {
2196 printk ("%s: scsi_register returned NULL\n",pHba->name);
2197 return -1;
2198 }
2199 host->hostdata[0] = (unsigned long)pHba;
2200 pHba->host = host;
2201
2202 host->irq = pHba->pDev->irq;
2203 /* no IO ports, so don't have to set host->io_port and
2204 * host->n_io_port
2205 */
2206 host->io_port = 0;
2207 host->n_io_port = 0;
2208 /* see comments in scsi_host.h */
2209 host->max_id = 16;
2210 host->max_lun = 256;
2211 host->max_channel = pHba->top_scsi_channel + 1;
2212 host->cmd_per_lun = 1;
2213 host->unique_id = (uint) pHba;
2214 host->sg_tablesize = pHba->sg_tablesize;
2215 host->can_queue = pHba->post_fifo_size;
2216
2217 return 0;
2218 }
2219
2220
2221 static s32 adpt_i2o_to_scsi(void __iomem *reply, struct scsi_cmnd* cmd)
2222 {
2223 adpt_hba* pHba;
2224 u32 hba_status;
2225 u32 dev_status;
2226 u32 reply_flags = readl(reply) & 0xff00; // Leave it shifted up 8 bits
2227 // I know this would look cleaner if I just read bytes
2228 // but the model I have been using for all the rest of the
2229 // io is in 4 byte words - so I keep that model
2230 u16 detailed_status = readl(reply+16) &0xffff;
2231 dev_status = (detailed_status & 0xff);
2232 hba_status = detailed_status >> 8;
2233
2234 // calculate resid for sg
2235 cmd->resid = cmd->request_bufflen - readl(reply+5);
2236
2237 pHba = (adpt_hba*) cmd->device->host->hostdata[0];
2238
2239 cmd->sense_buffer[0] = '\0'; // initialize sense valid flag to false
2240
2241 if(!(reply_flags & MSG_FAIL)) {
2242 switch(detailed_status & I2O_SCSI_DSC_MASK) {
2243 case I2O_SCSI_DSC_SUCCESS:
2244 cmd->result = (DID_OK << 16);
2245 // handle underflow
2246 if(readl(reply+5) < cmd->underflow ) {
2247 cmd->result = (DID_ERROR <<16);
2248 printk(KERN_WARNING"%s: SCSI CMD underflow\n",pHba->name);
2249 }
2250 break;
2251 case I2O_SCSI_DSC_REQUEST_ABORTED:
2252 cmd->result = (DID_ABORT << 16);
2253 break;
2254 case I2O_SCSI_DSC_PATH_INVALID:
2255 case I2O_SCSI_DSC_DEVICE_NOT_PRESENT:
2256 case I2O_SCSI_DSC_SELECTION_TIMEOUT:
2257 case I2O_SCSI_DSC_COMMAND_TIMEOUT:
2258 case I2O_SCSI_DSC_NO_ADAPTER:
2259 case I2O_SCSI_DSC_RESOURCE_UNAVAILABLE:
2260 printk(KERN_WARNING"%s: SCSI Timeout-Device (%d,%d,%d) hba status=0x%x, dev status=0x%x, cmd=0x%x\n",
2261 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun, hba_status, dev_status, cmd->cmnd[0]);
2262 cmd->result = (DID_TIME_OUT << 16);
2263 break;
2264 case I2O_SCSI_DSC_ADAPTER_BUSY:
2265 case I2O_SCSI_DSC_BUS_BUSY:
2266 cmd->result = (DID_BUS_BUSY << 16);
2267 break;
2268 case I2O_SCSI_DSC_SCSI_BUS_RESET:
2269 case I2O_SCSI_DSC_BDR_MESSAGE_SENT:
2270 cmd->result = (DID_RESET << 16);
2271 break;
2272 case I2O_SCSI_DSC_PARITY_ERROR_FAILURE:
2273 printk(KERN_WARNING"%s: SCSI CMD parity error\n",pHba->name);
2274 cmd->result = (DID_PARITY << 16);
2275 break;
2276 case I2O_SCSI_DSC_UNABLE_TO_ABORT:
2277 case I2O_SCSI_DSC_COMPLETE_WITH_ERROR:
2278 case I2O_SCSI_DSC_UNABLE_TO_TERMINATE:
2279 case I2O_SCSI_DSC_MR_MESSAGE_RECEIVED:
2280 case I2O_SCSI_DSC_AUTOSENSE_FAILED:
2281 case I2O_SCSI_DSC_DATA_OVERRUN:
2282 case I2O_SCSI_DSC_UNEXPECTED_BUS_FREE:
2283 case I2O_SCSI_DSC_SEQUENCE_FAILURE:
2284 case I2O_SCSI_DSC_REQUEST_LENGTH_ERROR:
2285 case I2O_SCSI_DSC_PROVIDE_FAILURE:
2286 case I2O_SCSI_DSC_REQUEST_TERMINATED:
2287 case I2O_SCSI_DSC_IDE_MESSAGE_SENT:
2288 case I2O_SCSI_DSC_UNACKNOWLEDGED_EVENT:
2289 case I2O_SCSI_DSC_MESSAGE_RECEIVED:
2290 case I2O_SCSI_DSC_INVALID_CDB:
2291 case I2O_SCSI_DSC_LUN_INVALID:
2292 case I2O_SCSI_DSC_SCSI_TID_INVALID:
2293 case I2O_SCSI_DSC_FUNCTION_UNAVAILABLE:
2294 case I2O_SCSI_DSC_NO_NEXUS:
2295 case I2O_SCSI_DSC_CDB_RECEIVED:
2296 case I2O_SCSI_DSC_LUN_ALREADY_ENABLED:
2297 case I2O_SCSI_DSC_QUEUE_FROZEN:
2298 case I2O_SCSI_DSC_REQUEST_INVALID:
2299 default:
2300 printk(KERN_WARNING"%s: SCSI error %0x-Device(%d,%d,%d) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n",
2301 pHba->name, detailed_status & I2O_SCSI_DSC_MASK, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun,
2302 hba_status, dev_status, cmd->cmnd[0]);
2303 cmd->result = (DID_ERROR << 16);
2304 break;
2305 }
2306
2307 // copy over the request sense data if it was a check
2308 // condition status
2309 if(dev_status == 0x02 /*CHECK_CONDITION*/) {
2310 u32 len = sizeof(cmd->sense_buffer);
2311 len = (len > 40) ? 40 : len;
2312 // Copy over the sense data
2313 memcpy_fromio(cmd->sense_buffer, (reply+28) , len);
2314 if(cmd->sense_buffer[0] == 0x70 /* class 7 */ &&
2315 cmd->sense_buffer[2] == DATA_PROTECT ){
2316 /* This is to handle an array failed */
2317 cmd->result = (DID_TIME_OUT << 16);
2318 printk(KERN_WARNING"%s: SCSI Data Protect-Device (%d,%d,%d) hba_status=0x%x, dev_status=0x%x, cmd=0x%x\n",
2319 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun,
2320 hba_status, dev_status, cmd->cmnd[0]);
2321
2322 }
2323 }
2324 } else {
2325 /* In this condtion we could not talk to the tid
2326 * the card rejected it. We should signal a retry
2327 * for a limitted number of retries.
2328 */
2329 cmd->result = (DID_TIME_OUT << 16);
2330 printk(KERN_WARNING"%s: I2O MSG_FAIL - Device (%d,%d,%d) tid=%d, cmd=0x%x\n",
2331 pHba->name, (u32)cmd->device->channel, (u32)cmd->device->id, (u32)cmd->device->lun,
2332 ((struct adpt_device*)(cmd->device->hostdata))->tid, cmd->cmnd[0]);
2333 }
2334
2335 cmd->result |= (dev_status);
2336
2337 if(cmd->scsi_done != NULL){
2338 cmd->scsi_done(cmd);
2339 }
2340 return cmd->result;
2341 }
2342
2343
2344 static s32 adpt_rescan(adpt_hba* pHba)
2345 {
2346 s32 rcode;
2347 ulong flags = 0;
2348
2349 if(pHba->host)
2350 spin_lock_irqsave(pHba->host->host_lock, flags);
2351 if ((rcode=adpt_i2o_lct_get(pHba)) < 0)
2352 goto out;
2353 if ((rcode=adpt_i2o_reparse_lct(pHba)) < 0)
2354 goto out;
2355 rcode = 0;
2356 out: if(pHba->host)
2357 spin_unlock_irqrestore(pHba->host->host_lock, flags);
2358 return rcode;
2359 }
2360
2361
2362 static s32 adpt_i2o_reparse_lct(adpt_hba* pHba)
2363 {
2364 int i;
2365 int max;
2366 int tid;
2367 struct i2o_device *d;
2368 i2o_lct *lct = pHba->lct;
2369 u8 bus_no = 0;
2370 s16 scsi_id;
2371 s16 scsi_lun;
2372 u32 buf[10]; // at least 8 u32's
2373 struct adpt_device* pDev = NULL;
2374 struct i2o_device* pI2o_dev = NULL;
2375
2376 if (lct == NULL) {
2377 printk(KERN_ERR "%s: LCT is empty???\n",pHba->name);
2378 return -1;
2379 }
2380
2381 max = lct->table_size;
2382 max -= 3;
2383 max /= 9;
2384
2385 // Mark each drive as unscanned
2386 for (d = pHba->devices; d; d = d->next) {
2387 pDev =(struct adpt_device*) d->owner;
2388 if(!pDev){
2389 continue;
2390 }
2391 pDev->state |= DPTI_DEV_UNSCANNED;
2392 }
2393
2394 printk(KERN_INFO "%s: LCT has %d entries.\n", pHba->name,max);
2395
2396 for(i=0;i<max;i++) {
2397 if( lct->lct_entry[i].user_tid != 0xfff){
2398 continue;
2399 }
2400
2401 if( lct->lct_entry[i].class_id == I2O_CLASS_RANDOM_BLOCK_STORAGE ||
2402 lct->lct_entry[i].class_id == I2O_CLASS_SCSI_PERIPHERAL ||
2403 lct->lct_entry[i].class_id == I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL ){
2404 tid = lct->lct_entry[i].tid;
2405 if(adpt_i2o_query_scalar(pHba, tid, 0x8000, -1, buf, 32)<0) {
2406 printk(KERN_ERR"%s: Could not query device\n",pHba->name);
2407 continue;
2408 }
2409 bus_no = buf[0]>>16;
2410 scsi_id = buf[1];
2411 scsi_lun = (buf[2]>>8 )&0xff;
2412 pDev = pHba->channel[bus_no].device[scsi_id];
2413 /* da lun */
2414 while(pDev) {
2415 if(pDev->scsi_lun == scsi_lun) {
2416 break;
2417 }
2418 pDev = pDev->next_lun;
2419 }
2420 if(!pDev ) { // Something new add it
2421 d = kmalloc(sizeof(struct i2o_device), GFP_KERNEL);
2422 if(d==NULL)
2423 {
2424 printk(KERN_CRIT "Out of memory for I2O device data.\n");
2425 return -ENOMEM;
2426 }
2427
2428 d->controller = pHba;
2429 d->next = NULL;
2430
2431 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
2432
2433 d->flags = 0;
2434 adpt_i2o_report_hba_unit(pHba, d);
2435 adpt_i2o_install_device(pHba, d);
2436
2437 if(bus_no >= MAX_CHANNEL) { // Something wrong skip it
2438 printk(KERN_WARNING"%s: Channel number %d out of range \n", pHba->name, bus_no);
2439 continue;
2440 }
2441 pDev = pHba->channel[bus_no].device[scsi_id];
2442 if( pDev == NULL){
2443 pDev = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
2444 if(pDev == NULL) {
2445 return -ENOMEM;
2446 }
2447 pHba->channel[bus_no].device[scsi_id] = pDev;
2448 } else {
2449 while (pDev->next_lun) {
2450 pDev = pDev->next_lun;
2451 }
2452 pDev = pDev->next_lun = kzalloc(sizeof(struct adpt_device),GFP_KERNEL);
2453 if(pDev == NULL) {
2454 return -ENOMEM;
2455 }
2456 }
2457 pDev->tid = d->lct_data.tid;
2458 pDev->scsi_channel = bus_no;
2459 pDev->scsi_id = scsi_id;
2460 pDev->scsi_lun = scsi_lun;
2461 pDev->pI2o_dev = d;
2462 d->owner = pDev;
2463 pDev->type = (buf[0])&0xff;
2464 pDev->flags = (buf[0]>>8)&0xff;
2465 // Too late, SCSI system has made up it's mind, but what the hey ...
2466 if(scsi_id > pHba->top_scsi_id){
2467 pHba->top_scsi_id = scsi_id;
2468 }
2469 if(scsi_lun > pHba->top_scsi_lun){
2470 pHba->top_scsi_lun = scsi_lun;
2471 }
2472 continue;
2473 } // end of new i2o device
2474
2475 // We found an old device - check it
2476 while(pDev) {
2477 if(pDev->scsi_lun == scsi_lun) {
2478 if(!scsi_device_online(pDev->pScsi_dev)) {
2479 printk(KERN_WARNING"%s: Setting device (%d,%d,%d) back online\n",
2480 pHba->name,bus_no,scsi_id,scsi_lun);
2481 if (pDev->pScsi_dev) {
2482 scsi_device_set_state(pDev->pScsi_dev, SDEV_RUNNING);
2483 }
2484 }
2485 d = pDev->pI2o_dev;
2486 if(d->lct_data.tid != tid) { // something changed
2487 pDev->tid = tid;
2488 memcpy(&d->lct_data, &lct->lct_entry[i], sizeof(i2o_lct_entry));
2489 if (pDev->pScsi_dev) {
2490 pDev->pScsi_dev->changed = TRUE;
2491 pDev->pScsi_dev->removable = TRUE;
2492 }
2493 }
2494 // Found it - mark it scanned
2495 pDev->state = DPTI_DEV_ONLINE;
2496 break;
2497 }
2498 pDev = pDev->next_lun;
2499 }
2500 }
2501 }
2502 for (pI2o_dev = pHba->devices; pI2o_dev; pI2o_dev = pI2o_dev->next) {
2503 pDev =(struct adpt_device*) pI2o_dev->owner;
2504 if(!pDev){
2505 continue;
2506 }
2507 // Drive offline drives that previously existed but could not be found
2508 // in the LCT table
2509 if (pDev->state & DPTI_DEV_UNSCANNED){
2510 pDev->state = DPTI_DEV_OFFLINE;
2511 printk(KERN_WARNING"%s: Device (%d,%d,%d) offline\n",pHba->name,pDev->scsi_channel,pDev->scsi_id,pDev->scsi_lun);
2512 if (pDev->pScsi_dev) {
2513 scsi_device_set_state(pDev->pScsi_dev, SDEV_OFFLINE);
2514 }
2515 }
2516 }
2517 return 0;
2518 }
2519
2520 static void adpt_fail_posted_scbs(adpt_hba* pHba)
2521 {
2522 struct scsi_cmnd* cmd = NULL;
2523 struct scsi_device* d = NULL;
2524
2525 shost_for_each_device(d, pHba->host) {
2526 unsigned long flags;
2527 spin_lock_irqsave(&d->list_lock, flags);
2528 list_for_each_entry(cmd, &d->cmd_list, list) {
2529 if(cmd->serial_number == 0){
2530 continue;
2531 }
2532 cmd->result = (DID_OK << 16) | (QUEUE_FULL <<1);
2533 cmd->scsi_done(cmd);
2534 }
2535 spin_unlock_irqrestore(&d->list_lock, flags);
2536 }
2537 }
2538
2539
2540 /*============================================================================
2541 * Routines from i2o subsystem
2542 *============================================================================
2543 */
2544
2545
2546
2547 /*
2548 * Bring an I2O controller into HOLD state. See the spec.
2549 */
2550 static int adpt_i2o_activate_hba(adpt_hba* pHba)
2551 {
2552 int rcode;
2553
2554 if(pHba->initialized ) {
2555 if (adpt_i2o_status_get(pHba) < 0) {
2556 if((rcode = adpt_i2o_reset_hba(pHba)) != 0){
2557 printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name);
2558 return rcode;
2559 }
2560 if (adpt_i2o_status_get(pHba) < 0) {
2561 printk(KERN_INFO "HBA not responding.\n");
2562 return -1;
2563 }
2564 }
2565
2566 if(pHba->status_block->iop_state == ADAPTER_STATE_FAULTED) {
2567 printk(KERN_CRIT "%s: hardware fault\n", pHba->name);
2568 return -1;
2569 }
2570
2571 if (pHba->status_block->iop_state == ADAPTER_STATE_READY ||
2572 pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL ||
2573 pHba->status_block->iop_state == ADAPTER_STATE_HOLD ||
2574 pHba->status_block->iop_state == ADAPTER_STATE_FAILED) {
2575 adpt_i2o_reset_hba(pHba);
2576 if (adpt_i2o_status_get(pHba) < 0 || pHba->status_block->iop_state != ADAPTER_STATE_RESET) {
2577 printk(KERN_ERR "%s: Failed to initialize.\n", pHba->name);
2578 return -1;
2579 }
2580 }
2581 } else {
2582 if((rcode = adpt_i2o_reset_hba(pHba)) != 0){
2583 printk(KERN_WARNING"%s: Could NOT reset.\n", pHba->name);
2584 return rcode;
2585 }
2586
2587 }
2588
2589 if (adpt_i2o_init_outbound_q(pHba) < 0) {
2590 return -1;
2591 }
2592
2593 /* In HOLD state */
2594
2595 if (adpt_i2o_hrt_get(pHba) < 0) {
2596 return -1;
2597 }
2598
2599 return 0;
2600 }
2601
2602 /*
2603 * Bring a controller online into OPERATIONAL state.
2604 */
2605
2606 static int adpt_i2o_online_hba(adpt_hba* pHba)
2607 {
2608 if (adpt_i2o_systab_send(pHba) < 0) {
2609 adpt_i2o_delete_hba(pHba);
2610 return -1;
2611 }
2612 /* In READY state */
2613
2614 if (adpt_i2o_enable_hba(pHba) < 0) {
2615 adpt_i2o_delete_hba(pHba);
2616 return -1;
2617 }
2618
2619 /* In OPERATIONAL state */
2620 return 0;
2621 }
2622
2623 static s32 adpt_send_nop(adpt_hba*pHba,u32 m)
2624 {
2625 u32 __iomem *msg;
2626 ulong timeout = jiffies + 5*HZ;
2627
2628 while(m == EMPTY_QUEUE){
2629 rmb();
2630 m = readl(pHba->post_port);
2631 if(m != EMPTY_QUEUE){
2632 break;
2633 }
2634 if(time_after(jiffies,timeout)){
2635 printk(KERN_ERR "%s: Timeout waiting for message frame!\n",pHba->name);
2636 return 2;
2637 }
2638 schedule_timeout_uninterruptible(1);
2639 }
2640 msg = (u32 __iomem *)(pHba->msg_addr_virt + m);
2641 writel( THREE_WORD_MSG_SIZE | SGL_OFFSET_0,&msg[0]);
2642 writel( I2O_CMD_UTIL_NOP << 24 | HOST_TID << 12 | 0,&msg[1]);
2643 writel( 0,&msg[2]);
2644 wmb();
2645
2646 writel(m, pHba->post_port);
2647 wmb();
2648 return 0;
2649 }
2650
2651 static s32 adpt_i2o_init_outbound_q(adpt_hba* pHba)
2652 {
2653 u8 *status;
2654 u32 __iomem *msg = NULL;
2655 int i;
2656 ulong timeout = jiffies + TMOUT_INITOUTBOUND*HZ;
2657 u32* ptr;
2658 u32 outbound_frame; // This had to be a 32 bit address
2659 u32 m;
2660
2661 do {
2662 rmb();
2663 m = readl(pHba->post_port);
2664 if (m != EMPTY_QUEUE) {
2665 break;
2666 }
2667
2668 if(time_after(jiffies,timeout)){
2669 printk(KERN_WARNING"%s: Timeout waiting for message frame\n",pHba->name);
2670 return -ETIMEDOUT;
2671 }
2672 schedule_timeout_uninterruptible(1);
2673 } while(m == EMPTY_QUEUE);
2674
2675 msg=(u32 __iomem *)(pHba->msg_addr_virt+m);
2676
2677 status = kmalloc(4,GFP_KERNEL|ADDR32);
2678 if (status==NULL) {
2679 adpt_send_nop(pHba, m);
2680 printk(KERN_WARNING"%s: IOP reset failed - no free memory.\n",
2681 pHba->name);
2682 return -ENOMEM;
2683 }
2684 memset(status, 0, 4);
2685
2686 writel(EIGHT_WORD_MSG_SIZE| SGL_OFFSET_6, &msg[0]);
2687 writel(I2O_CMD_OUTBOUND_INIT<<24 | HOST_TID<<12 | ADAPTER_TID, &msg[1]);
2688 writel(0, &msg[2]);
2689 writel(0x0106, &msg[3]); /* Transaction context */
2690 writel(4096, &msg[4]); /* Host page frame size */
2691 writel((REPLY_FRAME_SIZE)<<16|0x80, &msg[5]); /* Outbound msg frame size and Initcode */
2692 writel(0xD0000004, &msg[6]); /* Simple SG LE, EOB */
2693 writel(virt_to_bus(status), &msg[7]);
2694
2695 writel(m, pHba->post_port);
2696 wmb();
2697
2698 // Wait for the reply status to come back
2699 do {
2700 if (*status) {
2701 if (*status != 0x01 /*I2O_EXEC_OUTBOUND_INIT_IN_PROGRESS*/) {
2702 break;
2703 }
2704 }
2705 rmb();
2706 if(time_after(jiffies,timeout)){
2707 printk(KERN_WARNING"%s: Timeout Initializing\n",pHba->name);
2708 return -ETIMEDOUT;
2709 }
2710 schedule_timeout_uninterruptible(1);
2711 } while (1);
2712
2713 // If the command was successful, fill the fifo with our reply
2714 // message packets
2715 if(*status != 0x04 /*I2O_EXEC_OUTBOUND_INIT_COMPLETE*/) {
2716 kfree(status);
2717 return -2;
2718 }
2719 kfree(status);
2720
2721 kfree(pHba->reply_pool);
2722
2723 pHba->reply_pool = kmalloc(pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4, GFP_KERNEL|ADDR32);
2724 if(!pHba->reply_pool){
2725 printk(KERN_ERR"%s: Could not allocate reply pool\n",pHba->name);
2726 return -1;
2727 }
2728 memset(pHba->reply_pool, 0 , pHba->reply_fifo_size * REPLY_FRAME_SIZE * 4);
2729
2730 ptr = pHba->reply_pool;
2731 for(i = 0; i < pHba->reply_fifo_size; i++) {
2732 outbound_frame = (u32)virt_to_bus(ptr);
2733 writel(outbound_frame, pHba->reply_port);
2734 wmb();
2735 ptr += REPLY_FRAME_SIZE;
2736 }
2737 adpt_i2o_status_get(pHba);
2738 return 0;
2739 }
2740
2741
2742 /*
2743 * I2O System Table. Contains information about
2744 * all the IOPs in the system. Used to inform IOPs
2745 * about each other's existence.
2746 *
2747 * sys_tbl_ver is the CurrentChangeIndicator that is
2748 * used by IOPs to track changes.
2749 */
2750
2751
2752
2753 static s32 adpt_i2o_status_get(adpt_hba* pHba)
2754 {
2755 ulong timeout;
2756 u32 m;
2757 u32 __iomem *msg;
2758 u8 *status_block=NULL;
2759 ulong status_block_bus;
2760
2761 if(pHba->status_block == NULL) {
2762 pHba->status_block = (i2o_status_block*)
2763 kmalloc(sizeof(i2o_status_block),GFP_KERNEL|ADDR32);
2764 if(pHba->status_block == NULL) {
2765 printk(KERN_ERR
2766 "dpti%d: Get Status Block failed; Out of memory. \n",
2767 pHba->unit);
2768 return -ENOMEM;
2769 }
2770 }
2771 memset(pHba->status_block, 0, sizeof(i2o_status_block));
2772 status_block = (u8*)(pHba->status_block);
2773 status_block_bus = virt_to_bus(pHba->status_block);
2774 timeout = jiffies+TMOUT_GETSTATUS*HZ;
2775 do {
2776 rmb();
2777 m = readl(pHba->post_port);
2778 if (m != EMPTY_QUEUE) {
2779 break;
2780 }
2781 if(time_after(jiffies,timeout)){
2782 printk(KERN_ERR "%s: Timeout waiting for message !\n",
2783 pHba->name);
2784 return -ETIMEDOUT;
2785 }
2786 schedule_timeout_uninterruptible(1);
2787 } while(m==EMPTY_QUEUE);
2788
2789
2790 msg=(u32 __iomem *)(pHba->msg_addr_virt+m);
2791
2792 writel(NINE_WORD_MSG_SIZE|SGL_OFFSET_0, &msg[0]);
2793 writel(I2O_CMD_STATUS_GET<<24|HOST_TID<<12|ADAPTER_TID, &msg[1]);
2794 writel(1, &msg[2]);
2795 writel(0, &msg[3]);
2796 writel(0, &msg[4]);
2797 writel(0, &msg[5]);
2798 writel(((u32)status_block_bus)&0xffffffff, &msg[6]);
2799 writel(0, &msg[7]);
2800 writel(sizeof(i2o_status_block), &msg[8]); // 88 bytes
2801
2802 //post message
2803 writel(m, pHba->post_port);
2804 wmb();
2805
2806 while(status_block[87]!=0xff){
2807 if(time_after(jiffies,timeout)){
2808 printk(KERN_ERR"dpti%d: Get status timeout.\n",
2809 pHba->unit);
2810 return -ETIMEDOUT;
2811 }
2812 rmb();
2813 schedule_timeout_uninterruptible(1);
2814 }
2815
2816 // Set up our number of outbound and inbound messages
2817 pHba->post_fifo_size = pHba->status_block->max_inbound_frames;
2818 if (pHba->post_fifo_size > MAX_TO_IOP_MESSAGES) {
2819 pHba->post_fifo_size = MAX_TO_IOP_MESSAGES;
2820 }
2821
2822 pHba->reply_fifo_size = pHba->status_block->max_outbound_frames;
2823 if (pHba->reply_fifo_size > MAX_FROM_IOP_MESSAGES) {
2824 pHba->reply_fifo_size = MAX_FROM_IOP_MESSAGES;
2825 }
2826
2827 // Calculate the Scatter Gather list size
2828 pHba->sg_tablesize = (pHba->status_block->inbound_frame_size * 4 -40)/ sizeof(struct sg_simple_element);
2829 if (pHba->sg_tablesize > SG_LIST_ELEMENTS) {
2830 pHba->sg_tablesize = SG_LIST_ELEMENTS;
2831 }
2832
2833
2834 #ifdef DEBUG
2835 printk("dpti%d: State = ",pHba->unit);
2836 switch(pHba->status_block->iop_state) {
2837 case 0x01:
2838 printk("INIT\n");
2839 break;
2840 case 0x02:
2841 printk("RESET\n");
2842 break;
2843 case 0x04:
2844 printk("HOLD\n");
2845 break;
2846 case 0x05:
2847 printk("READY\n");
2848 break;
2849 case 0x08:
2850 printk("OPERATIONAL\n");
2851 break;
2852 case 0x10:
2853 printk("FAILED\n");
2854 break;
2855 case 0x11:
2856 printk("FAULTED\n");
2857 break;
2858 default:
2859 printk("%x (unknown!!)\n",pHba->status_block->iop_state);
2860 }
2861 #endif
2862 return 0;
2863 }
2864
2865 /*
2866 * Get the IOP's Logical Configuration Table
2867 */
2868 static int adpt_i2o_lct_get(adpt_hba* pHba)
2869 {
2870 u32 msg[8];
2871 int ret;
2872 u32 buf[16];
2873
2874 if ((pHba->lct_size == 0) || (pHba->lct == NULL)){
2875 pHba->lct_size = pHba->status_block->expected_lct_size;
2876 }
2877 do {
2878 if (pHba->lct == NULL) {
2879 pHba->lct = kmalloc(pHba->lct_size, GFP_KERNEL|ADDR32);
2880 if(pHba->lct == NULL) {
2881 printk(KERN_CRIT "%s: Lct Get failed. Out of memory.\n",
2882 pHba->name);
2883 return -ENOMEM;
2884 }
2885 }
2886 memset(pHba->lct, 0, pHba->lct_size);
2887
2888 msg[0] = EIGHT_WORD_MSG_SIZE|SGL_OFFSET_6;
2889 msg[1] = I2O_CMD_LCT_NOTIFY<<24 | HOST_TID<<12 | ADAPTER_TID;
2890 msg[2] = 0;
2891 msg[3] = 0;
2892 msg[4] = 0xFFFFFFFF; /* All devices */
2893 msg[5] = 0x00000000; /* Report now */
2894 msg[6] = 0xD0000000|pHba->lct_size;
2895 msg[7] = virt_to_bus(pHba->lct);
2896
2897 if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 360))) {
2898 printk(KERN_ERR "%s: LCT Get failed (status=%#10x.\n",
2899 pHba->name, ret);
2900 printk(KERN_ERR"Adaptec: Error Reading Hardware.\n");
2901 return ret;
2902 }
2903
2904 if ((pHba->lct->table_size << 2) > pHba->lct_size) {
2905 pHba->lct_size = pHba->lct->table_size << 2;
2906 kfree(pHba->lct);
2907 pHba->lct = NULL;
2908 }
2909 } while (pHba->lct == NULL);
2910
2911 PDEBUG("%s: Hardware resource table read.\n", pHba->name);
2912
2913
2914 // I2O_DPT_EXEC_IOP_BUFFERS_GROUP_NO;
2915 if(adpt_i2o_query_scalar(pHba, 0 , 0x8000, -1, buf, sizeof(buf))>=0) {
2916 pHba->FwDebugBufferSize = buf[1];
2917 pHba->FwDebugBuffer_P = pHba->base_addr_virt + buf[0];
2918 pHba->FwDebugFlags_P = pHba->FwDebugBuffer_P + FW_DEBUG_FLAGS_OFFSET;
2919 pHba->FwDebugBLEDvalue_P = pHba->FwDebugBuffer_P + FW_DEBUG_BLED_OFFSET;
2920 pHba->FwDebugBLEDflag_P = pHba->FwDebugBLEDvalue_P + 1;
2921 pHba->FwDebugStrLength_P = pHba->FwDebugBuffer_P + FW_DEBUG_STR_LENGTH_OFFSET;
2922 pHba->FwDebugBuffer_P += buf[2];
2923 pHba->FwDebugFlags = 0;
2924 }
2925
2926 return 0;
2927 }
2928
2929 static int adpt_i2o_build_sys_table(void)
2930 {
2931 adpt_hba* pHba = NULL;
2932 int count = 0;
2933
2934 sys_tbl_len = sizeof(struct i2o_sys_tbl) + // Header + IOPs
2935 (hba_count) * sizeof(struct i2o_sys_tbl_entry);
2936
2937 kfree(sys_tbl);
2938
2939 sys_tbl = kmalloc(sys_tbl_len, GFP_KERNEL|ADDR32);
2940 if(!sys_tbl) {
2941 printk(KERN_WARNING "SysTab Set failed. Out of memory.\n");
2942 return -ENOMEM;
2943 }
2944 memset(sys_tbl, 0, sys_tbl_len);
2945
2946 sys_tbl->num_entries = hba_count;
2947 sys_tbl->version = I2OVERSION;
2948 sys_tbl->change_ind = sys_tbl_ind++;
2949
2950 for(pHba = hba_chain; pHba; pHba = pHba->next) {
2951 // Get updated Status Block so we have the latest information
2952 if (adpt_i2o_status_get(pHba)) {
2953 sys_tbl->num_entries--;
2954 continue; // try next one
2955 }
2956
2957 sys_tbl->iops[count].org_id = pHba->status_block->org_id;
2958 sys_tbl->iops[count].iop_id = pHba->unit + 2;
2959 sys_tbl->iops[count].seg_num = 0;
2960 sys_tbl->iops[count].i2o_version = pHba->status_block->i2o_version;
2961 sys_tbl->iops[count].iop_state = pHba->status_block->iop_state;
2962 sys_tbl->iops[count].msg_type = pHba->status_block->msg_type;
2963 sys_tbl->iops[count].frame_size = pHba->status_block->inbound_frame_size;
2964 sys_tbl->iops[count].last_changed = sys_tbl_ind - 1; // ??
2965 sys_tbl->iops[count].iop_capabilities = pHba->status_block->iop_capabilities;
2966 sys_tbl->iops[count].inbound_low = (u32)virt_to_bus(pHba->post_port);
2967 sys_tbl->iops[count].inbound_high = (u32)((u64)virt_to_bus(pHba->post_port)>>32);
2968
2969 count++;
2970 }
2971
2972 #ifdef DEBUG
2973 {
2974 u32 *table = (u32*)sys_tbl;
2975 printk(KERN_DEBUG"sys_tbl_len=%d in 32bit words\n",(sys_tbl_len >>2));
2976 for(count = 0; count < (sys_tbl_len >>2); count++) {
2977 printk(KERN_INFO "sys_tbl[%d] = %0#10x\n",
2978 count, table[count]);
2979 }
2980 }
2981 #endif
2982
2983 return 0;
2984 }
2985
2986
2987 /*
2988 * Dump the information block associated with a given unit (TID)
2989 */
2990
2991 static void adpt_i2o_report_hba_unit(adpt_hba* pHba, struct i2o_device *d)
2992 {
2993 char buf[64];
2994 int unit = d->lct_data.tid;
2995
2996 printk(KERN_INFO "TID %3.3d ", unit);
2997
2998 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 3, buf, 16)>=0)
2999 {
3000 buf[16]=0;
3001 printk(" Vendor: %-12.12s", buf);
3002 }
3003 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 4, buf, 16)>=0)
3004 {
3005 buf[16]=0;
3006 printk(" Device: %-12.12s", buf);
3007 }
3008 if(adpt_i2o_query_scalar(pHba, unit, 0xF100, 6, buf, 8)>=0)
3009 {
3010 buf[8]=0;
3011 printk(" Rev: %-12.12s\n", buf);
3012 }
3013 #ifdef DEBUG
3014 printk(KERN_INFO "\tClass: %.21s\n", adpt_i2o_get_class_name(d->lct_data.class_id));
3015 printk(KERN_INFO "\tSubclass: 0x%04X\n", d->lct_data.sub_class);
3016 printk(KERN_INFO "\tFlags: ");
3017
3018 if(d->lct_data.device_flags&(1<<0))
3019 printk("C"); // ConfigDialog requested
3020 if(d->lct_data.device_flags&(1<<1))
3021 printk("U"); // Multi-user capable
3022 if(!(d->lct_data.device_flags&(1<<4)))
3023 printk("P"); // Peer service enabled!
3024 if(!(d->lct_data.device_flags&(1<<5)))
3025 printk("M"); // Mgmt service enabled!
3026 printk("\n");
3027 #endif
3028 }
3029
3030 #ifdef DEBUG
3031 /*
3032 * Do i2o class name lookup
3033 */
3034 static const char *adpt_i2o_get_class_name(int class)
3035 {
3036 int idx = 16;
3037 static char *i2o_class_name[] = {
3038 "Executive",
3039 "Device Driver Module",
3040 "Block Device",
3041 "Tape Device",
3042 "LAN Interface",
3043 "WAN Interface",
3044 "Fibre Channel Port",
3045 "Fibre Channel Device",
3046 "SCSI Device",
3047 "ATE Port",
3048 "ATE Device",
3049 "Floppy Controller",
3050 "Floppy Device",
3051 "Secondary Bus Port",
3052 "Peer Transport Agent",
3053 "Peer Transport",
3054 "Unknown"
3055 };
3056
3057 switch(class&0xFFF) {
3058 case I2O_CLASS_EXECUTIVE:
3059 idx = 0; break;
3060 case I2O_CLASS_DDM:
3061 idx = 1; break;
3062 case I2O_CLASS_RANDOM_BLOCK_STORAGE:
3063 idx = 2; break;
3064 case I2O_CLASS_SEQUENTIAL_STORAGE:
3065 idx = 3; break;
3066 case I2O_CLASS_LAN:
3067 idx = 4; break;
3068 case I2O_CLASS_WAN:
3069 idx = 5; break;
3070 case I2O_CLASS_FIBRE_CHANNEL_PORT:
3071 idx = 6; break;
3072 case I2O_CLASS_FIBRE_CHANNEL_PERIPHERAL:
3073 idx = 7; break;
3074 case I2O_CLASS_SCSI_PERIPHERAL:
3075 idx = 8; break;
3076 case I2O_CLASS_ATE_PORT:
3077 idx = 9; break;
3078 case I2O_CLASS_ATE_PERIPHERAL:
3079 idx = 10; break;
3080 case I2O_CLASS_FLOPPY_CONTROLLER:
3081 idx = 11; break;
3082 case I2O_CLASS_FLOPPY_DEVICE:
3083 idx = 12; break;
3084 case I2O_CLASS_BUS_ADAPTER_PORT:
3085 idx = 13; break;
3086 case I2O_CLASS_PEER_TRANSPORT_AGENT:
3087 idx = 14; break;
3088 case I2O_CLASS_PEER_TRANSPORT:
3089 idx = 15; break;
3090 }
3091 return i2o_class_name[idx];
3092 }
3093 #endif
3094
3095
3096 static s32 adpt_i2o_hrt_get(adpt_hba* pHba)
3097 {
3098 u32 msg[6];
3099 int ret, size = sizeof(i2o_hrt);
3100
3101 do {
3102 if (pHba->hrt == NULL) {
3103 pHba->hrt=kmalloc(size, GFP_KERNEL|ADDR32);
3104 if (pHba->hrt == NULL) {
3105 printk(KERN_CRIT "%s: Hrt Get failed; Out of memory.\n", pHba->name);
3106 return -ENOMEM;
3107 }
3108 }
3109
3110 msg[0]= SIX_WORD_MSG_SIZE| SGL_OFFSET_4;
3111 msg[1]= I2O_CMD_HRT_GET<<24 | HOST_TID<<12 | ADAPTER_TID;
3112 msg[2]= 0;
3113 msg[3]= 0;
3114 msg[4]= (0xD0000000 | size); /* Simple transaction */
3115 msg[5]= virt_to_bus(pHba->hrt); /* Dump it here */
3116
3117 if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg),20))) {
3118 printk(KERN_ERR "%s: Unable to get HRT (status=%#10x)\n", pHba->name, ret);
3119 return ret;
3120 }
3121
3122 if (pHba->hrt->num_entries * pHba->hrt->entry_len << 2 > size) {
3123 size = pHba->hrt->num_entries * pHba->hrt->entry_len << 2;
3124 kfree(pHba->hrt);
3125 pHba->hrt = NULL;
3126 }
3127 } while(pHba->hrt == NULL);
3128 return 0;
3129 }
3130
3131 /*
3132 * Query one scalar group value or a whole scalar group.
3133 */
3134 static int adpt_i2o_query_scalar(adpt_hba* pHba, int tid,
3135 int group, int field, void *buf, int buflen)
3136 {
3137 u16 opblk[] = { 1, 0, I2O_PARAMS_FIELD_GET, group, 1, field };
3138 u8 *resblk;
3139
3140 int size;
3141
3142 /* 8 bytes for header */
3143 resblk = kmalloc(sizeof(u8) * (8+buflen), GFP_KERNEL|ADDR32);
3144 if (resblk == NULL) {
3145 printk(KERN_CRIT "%s: query scalar failed; Out of memory.\n", pHba->name);
3146 return -ENOMEM;
3147 }
3148
3149 if (field == -1) /* whole group */
3150 opblk[4] = -1;
3151
3152 size = adpt_i2o_issue_params(I2O_CMD_UTIL_PARAMS_GET, pHba, tid,
3153 opblk, sizeof(opblk), resblk, sizeof(u8)*(8+buflen));
3154 if (size == -ETIME) {
3155 printk(KERN_WARNING "%s: issue params failed; Timed out.\n", pHba->name);
3156 return -ETIME;
3157 } else if (size == -EINTR) {
3158 printk(KERN_WARNING "%s: issue params failed; Interrupted.\n", pHba->name);
3159 return -EINTR;
3160 }
3161
3162 memcpy(buf, resblk+8, buflen); /* cut off header */
3163
3164 kfree(resblk);
3165 if (size < 0)
3166 return size;
3167
3168 return buflen;
3169 }
3170
3171
3172 /* Issue UTIL_PARAMS_GET or UTIL_PARAMS_SET
3173 *
3174 * This function can be used for all UtilParamsGet/Set operations.
3175 * The OperationBlock is given in opblk-buffer,
3176 * and results are returned in resblk-buffer.
3177 * Note that the minimum sized resblk is 8 bytes and contains
3178 * ResultCount, ErrorInfoSize, BlockStatus and BlockSize.
3179 */
3180 static int adpt_i2o_issue_params(int cmd, adpt_hba* pHba, int tid,
3181 void *opblk, int oplen, void *resblk, int reslen)
3182 {
3183 u32 msg[9];
3184 u32 *res = (u32 *)resblk;
3185 int wait_status;
3186
3187 msg[0] = NINE_WORD_MSG_SIZE | SGL_OFFSET_5;
3188 msg[1] = cmd << 24 | HOST_TID << 12 | tid;
3189 msg[2] = 0;
3190 msg[3] = 0;
3191 msg[4] = 0;
3192 msg[5] = 0x54000000 | oplen; /* OperationBlock */
3193 msg[6] = virt_to_bus(opblk);
3194 msg[7] = 0xD0000000 | reslen; /* ResultBlock */
3195 msg[8] = virt_to_bus(resblk);
3196
3197 if ((wait_status = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 20))) {
3198 printk("adpt_i2o_issue_params: post_wait failed (%p)\n", resblk);
3199 return wait_status; /* -DetailedStatus */
3200 }
3201
3202 if (res[1]&0x00FF0000) { /* BlockStatus != SUCCESS */
3203 printk(KERN_WARNING "%s: %s - Error:\n ErrorInfoSize = 0x%02x, "
3204 "BlockStatus = 0x%02x, BlockSize = 0x%04x\n",
3205 pHba->name,
3206 (cmd == I2O_CMD_UTIL_PARAMS_SET) ? "PARAMS_SET"
3207 : "PARAMS_GET",
3208 res[1]>>24, (res[1]>>16)&0xFF, res[1]&0xFFFF);
3209 return -((res[1] >> 16) & 0xFF); /* -BlockStatus */
3210 }
3211
3212 return 4 + ((res[1] & 0x0000FFFF) << 2); /* bytes used in resblk */
3213 }
3214
3215
3216 static s32 adpt_i2o_quiesce_hba(adpt_hba* pHba)
3217 {
3218 u32 msg[4];
3219 int ret;
3220
3221 adpt_i2o_status_get(pHba);
3222
3223 /* SysQuiesce discarded if IOP not in READY or OPERATIONAL state */
3224
3225 if((pHba->status_block->iop_state != ADAPTER_STATE_READY) &&
3226 (pHba->status_block->iop_state != ADAPTER_STATE_OPERATIONAL)){
3227 return 0;
3228 }
3229
3230 msg[0] = FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
3231 msg[1] = I2O_CMD_SYS_QUIESCE<<24|HOST_TID<<12|ADAPTER_TID;
3232 msg[2] = 0;
3233 msg[3] = 0;
3234
3235 if((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) {
3236 printk(KERN_INFO"dpti%d: Unable to quiesce (status=%#x).\n",
3237 pHba->unit, -ret);
3238 } else {
3239 printk(KERN_INFO"dpti%d: Quiesced.\n",pHba->unit);
3240 }
3241
3242 adpt_i2o_status_get(pHba);
3243 return ret;
3244 }
3245
3246
3247 /*
3248 * Enable IOP. Allows the IOP to resume external operations.
3249 */
3250 static int adpt_i2o_enable_hba(adpt_hba* pHba)
3251 {
3252 u32 msg[4];
3253 int ret;
3254
3255 adpt_i2o_status_get(pHba);
3256 if(!pHba->status_block){
3257 return -ENOMEM;
3258 }
3259 /* Enable only allowed on READY state */
3260 if(pHba->status_block->iop_state == ADAPTER_STATE_OPERATIONAL)
3261 return 0;
3262
3263 if(pHba->status_block->iop_state != ADAPTER_STATE_READY)
3264 return -EINVAL;
3265
3266 msg[0]=FOUR_WORD_MSG_SIZE|SGL_OFFSET_0;
3267 msg[1]=I2O_CMD_SYS_ENABLE<<24|HOST_TID<<12|ADAPTER_TID;
3268 msg[2]= 0;
3269 msg[3]= 0;
3270
3271 if ((ret = adpt_i2o_post_wait(pHba, msg, sizeof(msg), 240))) {
3272 printk(KERN_WARNING"%s: Could not enable (status=%#10x).\n",
3273 pHba->name, ret);
3274 } else {
3275 PDEBUG("%s: Enabled.\n", pHba->name);
3276 }
3277
3278 adpt_i2o_status_get(pHba);
3279 return ret;
3280 }
3281
3282
3283 static int adpt_i2o_systab_send(adpt_hba* pHba)
3284 {
3285 u32 msg[12];
3286 int ret;
3287
3288 msg[0] = I2O_MESSAGE_SIZE(12) | SGL_OFFSET_6;
3289 msg[1] = I2O_CMD_SYS_TAB_SET<<24 | HOST_TID<<12 | ADAPTER_TID;
3290 msg[2] = 0;
3291 msg[3] = 0;
3292 msg[4] = (0<<16) | ((pHba->unit+2) << 12); /* Host 0 IOP ID (unit + 2) */
3293 msg[5] = 0; /* Segment 0 */
3294
3295 /*
3296 * Provide three SGL-elements:
3297 * System table (SysTab), Private memory space declaration and
3298 * Private i/o space declaration
3299 */
3300 msg[6] = 0x54000000 | sys_tbl_len;
3301 msg[7] = virt_to_phys(sys_tbl);
3302 msg[8] = 0x54000000 | 0;
3303 msg[9] = 0;
3304 msg[10] = 0xD4000000 | 0;
3305 msg[11] = 0;
3306
3307 if ((ret=adpt_i2o_post_wait(pHba, msg, sizeof(msg), 120))) {
3308 printk(KERN_INFO "%s: Unable to set SysTab (status=%#10x).\n",
3309 pHba->name, ret);
3310 }
3311 #ifdef DEBUG
3312 else {
3313 PINFO("%s: SysTab set.\n", pHba->name);
3314 }
3315 #endif
3316
3317 return ret;
3318 }
3319
3320
3321 /*============================================================================
3322 *
3323 *============================================================================
3324 */
3325
3326
3327 #ifdef UARTDELAY
3328
3329 static static void adpt_delay(int millisec)
3330 {
3331 int i;
3332 for (i = 0; i < millisec; i++) {
3333 udelay(1000); /* delay for one millisecond */
3334 }
3335 }
3336
3337 #endif
3338
3339 static struct scsi_host_template driver_template = {
3340 .name = "dpt_i2o",
3341 .proc_name = "dpt_i2o",
3342 .proc_info = adpt_proc_info,
3343 .detect = adpt_detect,
3344 .release = adpt_release,
3345 .info = adpt_info,
3346 .queuecommand = adpt_queue,
3347 .eh_abort_handler = adpt_abort,
3348 .eh_device_reset_handler = adpt_device_reset,
3349 .eh_bus_reset_handler = adpt_bus_reset,
3350 .eh_host_reset_handler = adpt_reset,
3351 .bios_param = adpt_bios_param,
3352 .slave_configure = adpt_slave_configure,
3353 .can_queue = MAX_TO_IOP_MESSAGES,
3354 .this_id = 7,
3355 .cmd_per_lun = 1,
3356 .use_clustering = ENABLE_CLUSTERING,
3357 };
3358 #include "scsi_module.c"
3359 MODULE_LICENSE("GPL");
This page took 0.142029 seconds and 6 git commands to generate.