[PATCH] SCSI: export scsi_eh_finish_cmd() and scsi_eh_flush_done_q()
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
67 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
68 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
69 static void ata_set_mode(struct ata_port *ap);
70 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
72 static int fgb(u32 bitmap);
73 static int ata_choose_xfer_mode(const struct ata_port *ap,
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
76
77 static unsigned int ata_unique_id = 1;
78 static struct workqueue_struct *ata_wq;
79
80 int atapi_enabled = 0;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88
89 /**
90 * ata_tf_load_pio - send taskfile registers to host controller
91 * @ap: Port to which output is sent
92 * @tf: ATA taskfile register set
93 *
94 * Outputs ATA taskfile to standard ATA host controller.
95 *
96 * LOCKING:
97 * Inherited from caller.
98 */
99
100 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
101 {
102 struct ata_ioports *ioaddr = &ap->ioaddr;
103 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
104
105 if (tf->ctl != ap->last_ctl) {
106 outb(tf->ctl, ioaddr->ctl_addr);
107 ap->last_ctl = tf->ctl;
108 ata_wait_idle(ap);
109 }
110
111 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
112 outb(tf->hob_feature, ioaddr->feature_addr);
113 outb(tf->hob_nsect, ioaddr->nsect_addr);
114 outb(tf->hob_lbal, ioaddr->lbal_addr);
115 outb(tf->hob_lbam, ioaddr->lbam_addr);
116 outb(tf->hob_lbah, ioaddr->lbah_addr);
117 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
118 tf->hob_feature,
119 tf->hob_nsect,
120 tf->hob_lbal,
121 tf->hob_lbam,
122 tf->hob_lbah);
123 }
124
125 if (is_addr) {
126 outb(tf->feature, ioaddr->feature_addr);
127 outb(tf->nsect, ioaddr->nsect_addr);
128 outb(tf->lbal, ioaddr->lbal_addr);
129 outb(tf->lbam, ioaddr->lbam_addr);
130 outb(tf->lbah, ioaddr->lbah_addr);
131 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
132 tf->feature,
133 tf->nsect,
134 tf->lbal,
135 tf->lbam,
136 tf->lbah);
137 }
138
139 if (tf->flags & ATA_TFLAG_DEVICE) {
140 outb(tf->device, ioaddr->device_addr);
141 VPRINTK("device 0x%X\n", tf->device);
142 }
143
144 ata_wait_idle(ap);
145 }
146
147 /**
148 * ata_tf_load_mmio - send taskfile registers to host controller
149 * @ap: Port to which output is sent
150 * @tf: ATA taskfile register set
151 *
152 * Outputs ATA taskfile to standard ATA host controller using MMIO.
153 *
154 * LOCKING:
155 * Inherited from caller.
156 */
157
158 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
159 {
160 struct ata_ioports *ioaddr = &ap->ioaddr;
161 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
162
163 if (tf->ctl != ap->last_ctl) {
164 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
165 ap->last_ctl = tf->ctl;
166 ata_wait_idle(ap);
167 }
168
169 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
170 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
171 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
172 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
173 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
174 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
175 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
176 tf->hob_feature,
177 tf->hob_nsect,
178 tf->hob_lbal,
179 tf->hob_lbam,
180 tf->hob_lbah);
181 }
182
183 if (is_addr) {
184 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
185 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
186 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
187 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
188 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
189 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
190 tf->feature,
191 tf->nsect,
192 tf->lbal,
193 tf->lbam,
194 tf->lbah);
195 }
196
197 if (tf->flags & ATA_TFLAG_DEVICE) {
198 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
199 VPRINTK("device 0x%X\n", tf->device);
200 }
201
202 ata_wait_idle(ap);
203 }
204
205
206 /**
207 * ata_tf_load - send taskfile registers to host controller
208 * @ap: Port to which output is sent
209 * @tf: ATA taskfile register set
210 *
211 * Outputs ATA taskfile to standard ATA host controller using MMIO
212 * or PIO as indicated by the ATA_FLAG_MMIO flag.
213 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
214 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
215 * hob_lbal, hob_lbam, and hob_lbah.
216 *
217 * This function waits for idle (!BUSY and !DRQ) after writing
218 * registers. If the control register has a new value, this
219 * function also waits for idle after writing control and before
220 * writing the remaining registers.
221 *
222 * May be used as the tf_load() entry in ata_port_operations.
223 *
224 * LOCKING:
225 * Inherited from caller.
226 */
227 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
228 {
229 if (ap->flags & ATA_FLAG_MMIO)
230 ata_tf_load_mmio(ap, tf);
231 else
232 ata_tf_load_pio(ap, tf);
233 }
234
235 /**
236 * ata_exec_command_pio - issue ATA command to host controller
237 * @ap: port to which command is being issued
238 * @tf: ATA taskfile register set
239 *
240 * Issues PIO write to ATA command register, with proper
241 * synchronization with interrupt handler / other threads.
242 *
243 * LOCKING:
244 * spin_lock_irqsave(host_set lock)
245 */
246
247 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
248 {
249 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
250
251 outb(tf->command, ap->ioaddr.command_addr);
252 ata_pause(ap);
253 }
254
255
256 /**
257 * ata_exec_command_mmio - issue ATA command to host controller
258 * @ap: port to which command is being issued
259 * @tf: ATA taskfile register set
260 *
261 * Issues MMIO write to ATA command register, with proper
262 * synchronization with interrupt handler / other threads.
263 *
264 * LOCKING:
265 * spin_lock_irqsave(host_set lock)
266 */
267
268 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
269 {
270 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
271
272 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
273 ata_pause(ap);
274 }
275
276
277 /**
278 * ata_exec_command - issue ATA command to host controller
279 * @ap: port to which command is being issued
280 * @tf: ATA taskfile register set
281 *
282 * Issues PIO/MMIO write to ATA command register, with proper
283 * synchronization with interrupt handler / other threads.
284 *
285 * LOCKING:
286 * spin_lock_irqsave(host_set lock)
287 */
288 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
289 {
290 if (ap->flags & ATA_FLAG_MMIO)
291 ata_exec_command_mmio(ap, tf);
292 else
293 ata_exec_command_pio(ap, tf);
294 }
295
296 /**
297 * ata_tf_to_host - issue ATA taskfile to host controller
298 * @ap: port to which command is being issued
299 * @tf: ATA taskfile register set
300 *
301 * Issues ATA taskfile register set to ATA host controller,
302 * with proper synchronization with interrupt handler and
303 * other threads.
304 *
305 * LOCKING:
306 * spin_lock_irqsave(host_set lock)
307 */
308
309 static inline void ata_tf_to_host(struct ata_port *ap,
310 const struct ata_taskfile *tf)
311 {
312 ap->ops->tf_load(ap, tf);
313 ap->ops->exec_command(ap, tf);
314 }
315
316 /**
317 * ata_tf_read_pio - input device's ATA taskfile shadow registers
318 * @ap: Port from which input is read
319 * @tf: ATA taskfile register set for storing input
320 *
321 * Reads ATA taskfile registers for currently-selected device
322 * into @tf.
323 *
324 * LOCKING:
325 * Inherited from caller.
326 */
327
328 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
329 {
330 struct ata_ioports *ioaddr = &ap->ioaddr;
331
332 tf->command = ata_check_status(ap);
333 tf->feature = inb(ioaddr->error_addr);
334 tf->nsect = inb(ioaddr->nsect_addr);
335 tf->lbal = inb(ioaddr->lbal_addr);
336 tf->lbam = inb(ioaddr->lbam_addr);
337 tf->lbah = inb(ioaddr->lbah_addr);
338 tf->device = inb(ioaddr->device_addr);
339
340 if (tf->flags & ATA_TFLAG_LBA48) {
341 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
342 tf->hob_feature = inb(ioaddr->error_addr);
343 tf->hob_nsect = inb(ioaddr->nsect_addr);
344 tf->hob_lbal = inb(ioaddr->lbal_addr);
345 tf->hob_lbam = inb(ioaddr->lbam_addr);
346 tf->hob_lbah = inb(ioaddr->lbah_addr);
347 }
348 }
349
350 /**
351 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
352 * @ap: Port from which input is read
353 * @tf: ATA taskfile register set for storing input
354 *
355 * Reads ATA taskfile registers for currently-selected device
356 * into @tf via MMIO.
357 *
358 * LOCKING:
359 * Inherited from caller.
360 */
361
362 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
363 {
364 struct ata_ioports *ioaddr = &ap->ioaddr;
365
366 tf->command = ata_check_status(ap);
367 tf->feature = readb((void __iomem *)ioaddr->error_addr);
368 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
369 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
370 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
371 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
372 tf->device = readb((void __iomem *)ioaddr->device_addr);
373
374 if (tf->flags & ATA_TFLAG_LBA48) {
375 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
376 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
377 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
378 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
379 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
380 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
381 }
382 }
383
384
385 /**
386 * ata_tf_read - input device's ATA taskfile shadow registers
387 * @ap: Port from which input is read
388 * @tf: ATA taskfile register set for storing input
389 *
390 * Reads ATA taskfile registers for currently-selected device
391 * into @tf.
392 *
393 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
394 * is set, also reads the hob registers.
395 *
396 * May be used as the tf_read() entry in ata_port_operations.
397 *
398 * LOCKING:
399 * Inherited from caller.
400 */
401 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
402 {
403 if (ap->flags & ATA_FLAG_MMIO)
404 ata_tf_read_mmio(ap, tf);
405 else
406 ata_tf_read_pio(ap, tf);
407 }
408
409 /**
410 * ata_check_status_pio - Read device status reg & clear interrupt
411 * @ap: port where the device is
412 *
413 * Reads ATA taskfile status register for currently-selected device
414 * and return its value. This also clears pending interrupts
415 * from this device
416 *
417 * LOCKING:
418 * Inherited from caller.
419 */
420 static u8 ata_check_status_pio(struct ata_port *ap)
421 {
422 return inb(ap->ioaddr.status_addr);
423 }
424
425 /**
426 * ata_check_status_mmio - Read device status reg & clear interrupt
427 * @ap: port where the device is
428 *
429 * Reads ATA taskfile status register for currently-selected device
430 * via MMIO and return its value. This also clears pending interrupts
431 * from this device
432 *
433 * LOCKING:
434 * Inherited from caller.
435 */
436 static u8 ata_check_status_mmio(struct ata_port *ap)
437 {
438 return readb((void __iomem *) ap->ioaddr.status_addr);
439 }
440
441
442 /**
443 * ata_check_status - Read device status reg & clear interrupt
444 * @ap: port where the device is
445 *
446 * Reads ATA taskfile status register for currently-selected device
447 * and return its value. This also clears pending interrupts
448 * from this device
449 *
450 * May be used as the check_status() entry in ata_port_operations.
451 *
452 * LOCKING:
453 * Inherited from caller.
454 */
455 u8 ata_check_status(struct ata_port *ap)
456 {
457 if (ap->flags & ATA_FLAG_MMIO)
458 return ata_check_status_mmio(ap);
459 return ata_check_status_pio(ap);
460 }
461
462
463 /**
464 * ata_altstatus - Read device alternate status reg
465 * @ap: port where the device is
466 *
467 * Reads ATA taskfile alternate status register for
468 * currently-selected device and return its value.
469 *
470 * Note: may NOT be used as the check_altstatus() entry in
471 * ata_port_operations.
472 *
473 * LOCKING:
474 * Inherited from caller.
475 */
476 u8 ata_altstatus(struct ata_port *ap)
477 {
478 if (ap->ops->check_altstatus)
479 return ap->ops->check_altstatus(ap);
480
481 if (ap->flags & ATA_FLAG_MMIO)
482 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
483 return inb(ap->ioaddr.altstatus_addr);
484 }
485
486
487 /**
488 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
489 * @tf: Taskfile to convert
490 * @fis: Buffer into which data will output
491 * @pmp: Port multiplier port
492 *
493 * Converts a standard ATA taskfile to a Serial ATA
494 * FIS structure (Register - Host to Device).
495 *
496 * LOCKING:
497 * Inherited from caller.
498 */
499
500 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
501 {
502 fis[0] = 0x27; /* Register - Host to Device FIS */
503 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
504 bit 7 indicates Command FIS */
505 fis[2] = tf->command;
506 fis[3] = tf->feature;
507
508 fis[4] = tf->lbal;
509 fis[5] = tf->lbam;
510 fis[6] = tf->lbah;
511 fis[7] = tf->device;
512
513 fis[8] = tf->hob_lbal;
514 fis[9] = tf->hob_lbam;
515 fis[10] = tf->hob_lbah;
516 fis[11] = tf->hob_feature;
517
518 fis[12] = tf->nsect;
519 fis[13] = tf->hob_nsect;
520 fis[14] = 0;
521 fis[15] = tf->ctl;
522
523 fis[16] = 0;
524 fis[17] = 0;
525 fis[18] = 0;
526 fis[19] = 0;
527 }
528
529 /**
530 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
531 * @fis: Buffer from which data will be input
532 * @tf: Taskfile to output
533 *
534 * Converts a serial ATA FIS structure to a standard ATA taskfile.
535 *
536 * LOCKING:
537 * Inherited from caller.
538 */
539
540 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
541 {
542 tf->command = fis[2]; /* status */
543 tf->feature = fis[3]; /* error */
544
545 tf->lbal = fis[4];
546 tf->lbam = fis[5];
547 tf->lbah = fis[6];
548 tf->device = fis[7];
549
550 tf->hob_lbal = fis[8];
551 tf->hob_lbam = fis[9];
552 tf->hob_lbah = fis[10];
553
554 tf->nsect = fis[12];
555 tf->hob_nsect = fis[13];
556 }
557
558 static const u8 ata_rw_cmds[] = {
559 /* pio multi */
560 ATA_CMD_READ_MULTI,
561 ATA_CMD_WRITE_MULTI,
562 ATA_CMD_READ_MULTI_EXT,
563 ATA_CMD_WRITE_MULTI_EXT,
564 0,
565 0,
566 0,
567 ATA_CMD_WRITE_MULTI_FUA_EXT,
568 /* pio */
569 ATA_CMD_PIO_READ,
570 ATA_CMD_PIO_WRITE,
571 ATA_CMD_PIO_READ_EXT,
572 ATA_CMD_PIO_WRITE_EXT,
573 0,
574 0,
575 0,
576 0,
577 /* dma */
578 ATA_CMD_READ,
579 ATA_CMD_WRITE,
580 ATA_CMD_READ_EXT,
581 ATA_CMD_WRITE_EXT,
582 0,
583 0,
584 0,
585 ATA_CMD_WRITE_FUA_EXT
586 };
587
588 /**
589 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
590 * @qc: command to examine and configure
591 *
592 * Examine the device configuration and tf->flags to calculate
593 * the proper read/write commands and protocol to use.
594 *
595 * LOCKING:
596 * caller.
597 */
598 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
599 {
600 struct ata_taskfile *tf = &qc->tf;
601 struct ata_device *dev = qc->dev;
602 u8 cmd;
603
604 int index, fua, lba48, write;
605
606 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
607 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
608 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
609
610 if (dev->flags & ATA_DFLAG_PIO) {
611 tf->protocol = ATA_PROT_PIO;
612 index = dev->multi_count ? 0 : 8;
613 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
614 /* Unable to use DMA due to host limitation */
615 tf->protocol = ATA_PROT_PIO;
616 index = dev->multi_count ? 0 : 4;
617 } else {
618 tf->protocol = ATA_PROT_DMA;
619 index = 16;
620 }
621
622 cmd = ata_rw_cmds[index + fua + lba48 + write];
623 if (cmd) {
624 tf->command = cmd;
625 return 0;
626 }
627 return -1;
628 }
629
630 static const char * const xfer_mode_str[] = {
631 "UDMA/16",
632 "UDMA/25",
633 "UDMA/33",
634 "UDMA/44",
635 "UDMA/66",
636 "UDMA/100",
637 "UDMA/133",
638 "UDMA7",
639 "MWDMA0",
640 "MWDMA1",
641 "MWDMA2",
642 "PIO0",
643 "PIO1",
644 "PIO2",
645 "PIO3",
646 "PIO4",
647 };
648
649 /**
650 * ata_udma_string - convert UDMA bit offset to string
651 * @mask: mask of bits supported; only highest bit counts.
652 *
653 * Determine string which represents the highest speed
654 * (highest bit in @udma_mask).
655 *
656 * LOCKING:
657 * None.
658 *
659 * RETURNS:
660 * Constant C string representing highest speed listed in
661 * @udma_mask, or the constant C string "<n/a>".
662 */
663
664 static const char *ata_mode_string(unsigned int mask)
665 {
666 int i;
667
668 for (i = 7; i >= 0; i--)
669 if (mask & (1 << i))
670 goto out;
671 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
672 if (mask & (1 << i))
673 goto out;
674 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
675 if (mask & (1 << i))
676 goto out;
677
678 return "<n/a>";
679
680 out:
681 return xfer_mode_str[i];
682 }
683
684 /**
685 * ata_pio_devchk - PATA device presence detection
686 * @ap: ATA channel to examine
687 * @device: Device to examine (starting at zero)
688 *
689 * This technique was originally described in
690 * Hale Landis's ATADRVR (www.ata-atapi.com), and
691 * later found its way into the ATA/ATAPI spec.
692 *
693 * Write a pattern to the ATA shadow registers,
694 * and if a device is present, it will respond by
695 * correctly storing and echoing back the
696 * ATA shadow register contents.
697 *
698 * LOCKING:
699 * caller.
700 */
701
702 static unsigned int ata_pio_devchk(struct ata_port *ap,
703 unsigned int device)
704 {
705 struct ata_ioports *ioaddr = &ap->ioaddr;
706 u8 nsect, lbal;
707
708 ap->ops->dev_select(ap, device);
709
710 outb(0x55, ioaddr->nsect_addr);
711 outb(0xaa, ioaddr->lbal_addr);
712
713 outb(0xaa, ioaddr->nsect_addr);
714 outb(0x55, ioaddr->lbal_addr);
715
716 outb(0x55, ioaddr->nsect_addr);
717 outb(0xaa, ioaddr->lbal_addr);
718
719 nsect = inb(ioaddr->nsect_addr);
720 lbal = inb(ioaddr->lbal_addr);
721
722 if ((nsect == 0x55) && (lbal == 0xaa))
723 return 1; /* we found a device */
724
725 return 0; /* nothing found */
726 }
727
728 /**
729 * ata_mmio_devchk - PATA device presence detection
730 * @ap: ATA channel to examine
731 * @device: Device to examine (starting at zero)
732 *
733 * This technique was originally described in
734 * Hale Landis's ATADRVR (www.ata-atapi.com), and
735 * later found its way into the ATA/ATAPI spec.
736 *
737 * Write a pattern to the ATA shadow registers,
738 * and if a device is present, it will respond by
739 * correctly storing and echoing back the
740 * ATA shadow register contents.
741 *
742 * LOCKING:
743 * caller.
744 */
745
746 static unsigned int ata_mmio_devchk(struct ata_port *ap,
747 unsigned int device)
748 {
749 struct ata_ioports *ioaddr = &ap->ioaddr;
750 u8 nsect, lbal;
751
752 ap->ops->dev_select(ap, device);
753
754 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
755 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
756
757 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
758 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
759
760 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
761 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
762
763 nsect = readb((void __iomem *) ioaddr->nsect_addr);
764 lbal = readb((void __iomem *) ioaddr->lbal_addr);
765
766 if ((nsect == 0x55) && (lbal == 0xaa))
767 return 1; /* we found a device */
768
769 return 0; /* nothing found */
770 }
771
772 /**
773 * ata_devchk - PATA device presence detection
774 * @ap: ATA channel to examine
775 * @device: Device to examine (starting at zero)
776 *
777 * Dispatch ATA device presence detection, depending
778 * on whether we are using PIO or MMIO to talk to the
779 * ATA shadow registers.
780 *
781 * LOCKING:
782 * caller.
783 */
784
785 static unsigned int ata_devchk(struct ata_port *ap,
786 unsigned int device)
787 {
788 if (ap->flags & ATA_FLAG_MMIO)
789 return ata_mmio_devchk(ap, device);
790 return ata_pio_devchk(ap, device);
791 }
792
793 /**
794 * ata_dev_classify - determine device type based on ATA-spec signature
795 * @tf: ATA taskfile register set for device to be identified
796 *
797 * Determine from taskfile register contents whether a device is
798 * ATA or ATAPI, as per "Signature and persistence" section
799 * of ATA/PI spec (volume 1, sect 5.14).
800 *
801 * LOCKING:
802 * None.
803 *
804 * RETURNS:
805 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
806 * the event of failure.
807 */
808
809 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
810 {
811 /* Apple's open source Darwin code hints that some devices only
812 * put a proper signature into the LBA mid/high registers,
813 * So, we only check those. It's sufficient for uniqueness.
814 */
815
816 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
817 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
818 DPRINTK("found ATA device by sig\n");
819 return ATA_DEV_ATA;
820 }
821
822 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
823 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
824 DPRINTK("found ATAPI device by sig\n");
825 return ATA_DEV_ATAPI;
826 }
827
828 DPRINTK("unknown device\n");
829 return ATA_DEV_UNKNOWN;
830 }
831
832 /**
833 * ata_dev_try_classify - Parse returned ATA device signature
834 * @ap: ATA channel to examine
835 * @device: Device to examine (starting at zero)
836 *
837 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
838 * an ATA/ATAPI-defined set of values is placed in the ATA
839 * shadow registers, indicating the results of device detection
840 * and diagnostics.
841 *
842 * Select the ATA device, and read the values from the ATA shadow
843 * registers. Then parse according to the Error register value,
844 * and the spec-defined values examined by ata_dev_classify().
845 *
846 * LOCKING:
847 * caller.
848 */
849
850 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
851 {
852 struct ata_device *dev = &ap->device[device];
853 struct ata_taskfile tf;
854 unsigned int class;
855 u8 err;
856
857 ap->ops->dev_select(ap, device);
858
859 memset(&tf, 0, sizeof(tf));
860
861 ap->ops->tf_read(ap, &tf);
862 err = tf.feature;
863
864 dev->class = ATA_DEV_NONE;
865
866 /* see if device passed diags */
867 if (err == 1)
868 /* do nothing */ ;
869 else if ((device == 0) && (err == 0x81))
870 /* do nothing */ ;
871 else
872 return err;
873
874 /* determine if device if ATA or ATAPI */
875 class = ata_dev_classify(&tf);
876 if (class == ATA_DEV_UNKNOWN)
877 return err;
878 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
879 return err;
880
881 dev->class = class;
882
883 return err;
884 }
885
886 /**
887 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
888 * @id: IDENTIFY DEVICE results we will examine
889 * @s: string into which data is output
890 * @ofs: offset into identify device page
891 * @len: length of string to return. must be an even number.
892 *
893 * The strings in the IDENTIFY DEVICE page are broken up into
894 * 16-bit chunks. Run through the string, and output each
895 * 8-bit chunk linearly, regardless of platform.
896 *
897 * LOCKING:
898 * caller.
899 */
900
901 void ata_dev_id_string(const u16 *id, unsigned char *s,
902 unsigned int ofs, unsigned int len)
903 {
904 unsigned int c;
905
906 while (len > 0) {
907 c = id[ofs] >> 8;
908 *s = c;
909 s++;
910
911 c = id[ofs] & 0xff;
912 *s = c;
913 s++;
914
915 ofs++;
916 len -= 2;
917 }
918 }
919
920
921 /**
922 * ata_noop_dev_select - Select device 0/1 on ATA bus
923 * @ap: ATA channel to manipulate
924 * @device: ATA device (numbered from zero) to select
925 *
926 * This function performs no actual function.
927 *
928 * May be used as the dev_select() entry in ata_port_operations.
929 *
930 * LOCKING:
931 * caller.
932 */
933 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
934 {
935 }
936
937
938 /**
939 * ata_std_dev_select - Select device 0/1 on ATA bus
940 * @ap: ATA channel to manipulate
941 * @device: ATA device (numbered from zero) to select
942 *
943 * Use the method defined in the ATA specification to
944 * make either device 0, or device 1, active on the
945 * ATA channel. Works with both PIO and MMIO.
946 *
947 * May be used as the dev_select() entry in ata_port_operations.
948 *
949 * LOCKING:
950 * caller.
951 */
952
953 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
954 {
955 u8 tmp;
956
957 if (device == 0)
958 tmp = ATA_DEVICE_OBS;
959 else
960 tmp = ATA_DEVICE_OBS | ATA_DEV1;
961
962 if (ap->flags & ATA_FLAG_MMIO) {
963 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
964 } else {
965 outb(tmp, ap->ioaddr.device_addr);
966 }
967 ata_pause(ap); /* needed; also flushes, for mmio */
968 }
969
970 /**
971 * ata_dev_select - Select device 0/1 on ATA bus
972 * @ap: ATA channel to manipulate
973 * @device: ATA device (numbered from zero) to select
974 * @wait: non-zero to wait for Status register BSY bit to clear
975 * @can_sleep: non-zero if context allows sleeping
976 *
977 * Use the method defined in the ATA specification to
978 * make either device 0, or device 1, active on the
979 * ATA channel.
980 *
981 * This is a high-level version of ata_std_dev_select(),
982 * which additionally provides the services of inserting
983 * the proper pauses and status polling, where needed.
984 *
985 * LOCKING:
986 * caller.
987 */
988
989 void ata_dev_select(struct ata_port *ap, unsigned int device,
990 unsigned int wait, unsigned int can_sleep)
991 {
992 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
993 ap->id, device, wait);
994
995 if (wait)
996 ata_wait_idle(ap);
997
998 ap->ops->dev_select(ap, device);
999
1000 if (wait) {
1001 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1002 msleep(150);
1003 ata_wait_idle(ap);
1004 }
1005 }
1006
1007 /**
1008 * ata_dump_id - IDENTIFY DEVICE info debugging output
1009 * @dev: Device whose IDENTIFY DEVICE page we will dump
1010 *
1011 * Dump selected 16-bit words from a detected device's
1012 * IDENTIFY PAGE page.
1013 *
1014 * LOCKING:
1015 * caller.
1016 */
1017
1018 static inline void ata_dump_id(const struct ata_device *dev)
1019 {
1020 DPRINTK("49==0x%04x "
1021 "53==0x%04x "
1022 "63==0x%04x "
1023 "64==0x%04x "
1024 "75==0x%04x \n",
1025 dev->id[49],
1026 dev->id[53],
1027 dev->id[63],
1028 dev->id[64],
1029 dev->id[75]);
1030 DPRINTK("80==0x%04x "
1031 "81==0x%04x "
1032 "82==0x%04x "
1033 "83==0x%04x "
1034 "84==0x%04x \n",
1035 dev->id[80],
1036 dev->id[81],
1037 dev->id[82],
1038 dev->id[83],
1039 dev->id[84]);
1040 DPRINTK("88==0x%04x "
1041 "93==0x%04x\n",
1042 dev->id[88],
1043 dev->id[93]);
1044 }
1045
1046 /*
1047 * Compute the PIO modes available for this device. This is not as
1048 * trivial as it seems if we must consider early devices correctly.
1049 *
1050 * FIXME: pre IDE drive timing (do we care ?).
1051 */
1052
1053 static unsigned int ata_pio_modes(const struct ata_device *adev)
1054 {
1055 u16 modes;
1056
1057 /* Usual case. Word 53 indicates word 64 is valid */
1058 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1059 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1060 modes <<= 3;
1061 modes |= 0x7;
1062 return modes;
1063 }
1064
1065 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1066 number for the maximum. Turn it into a mask and return it */
1067 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
1068 return modes;
1069 /* But wait.. there's more. Design your standards by committee and
1070 you too can get a free iordy field to process. However its the
1071 speeds not the modes that are supported... Note drivers using the
1072 timing API will get this right anyway */
1073 }
1074
1075 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1076 {
1077 struct completion *waiting = qc->private_data;
1078
1079 qc->ap->ops->tf_read(qc->ap, &qc->tf);
1080 complete(waiting);
1081 }
1082
1083 /**
1084 * ata_exec_internal - execute libata internal command
1085 * @ap: Port to which the command is sent
1086 * @dev: Device to which the command is sent
1087 * @tf: Taskfile registers for the command and the result
1088 * @dma_dir: Data tranfer direction of the command
1089 * @buf: Data buffer of the command
1090 * @buflen: Length of data buffer
1091 *
1092 * Executes libata internal command with timeout. @tf contains
1093 * command on entry and result on return. Timeout and error
1094 * conditions are reported via return value. No recovery action
1095 * is taken after a command times out. It's caller's duty to
1096 * clean up after timeout.
1097 *
1098 * LOCKING:
1099 * None. Should be called with kernel context, might sleep.
1100 */
1101
1102 static unsigned
1103 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1104 struct ata_taskfile *tf,
1105 int dma_dir, void *buf, unsigned int buflen)
1106 {
1107 u8 command = tf->command;
1108 struct ata_queued_cmd *qc;
1109 DECLARE_COMPLETION(wait);
1110 unsigned long flags;
1111 unsigned int err_mask;
1112
1113 spin_lock_irqsave(&ap->host_set->lock, flags);
1114
1115 qc = ata_qc_new_init(ap, dev);
1116 BUG_ON(qc == NULL);
1117
1118 qc->tf = *tf;
1119 qc->dma_dir = dma_dir;
1120 if (dma_dir != DMA_NONE) {
1121 ata_sg_init_one(qc, buf, buflen);
1122 qc->nsect = buflen / ATA_SECT_SIZE;
1123 }
1124
1125 qc->private_data = &wait;
1126 qc->complete_fn = ata_qc_complete_internal;
1127
1128 qc->err_mask = ata_qc_issue(qc);
1129 if (qc->err_mask)
1130 ata_qc_complete(qc);
1131
1132 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1133
1134 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1135 spin_lock_irqsave(&ap->host_set->lock, flags);
1136
1137 /* We're racing with irq here. If we lose, the
1138 * following test prevents us from completing the qc
1139 * again. If completion irq occurs after here but
1140 * before the caller cleans up, it will result in a
1141 * spurious interrupt. We can live with that.
1142 */
1143 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1144 qc->err_mask = AC_ERR_TIMEOUT;
1145 ata_qc_complete(qc);
1146 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1147 ap->id, command);
1148 }
1149
1150 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1151 }
1152
1153 *tf = qc->tf;
1154 err_mask = qc->err_mask;
1155
1156 ata_qc_free(qc);
1157
1158 return err_mask;
1159 }
1160
1161 /**
1162 * ata_pio_need_iordy - check if iordy needed
1163 * @adev: ATA device
1164 *
1165 * Check if the current speed of the device requires IORDY. Used
1166 * by various controllers for chip configuration.
1167 */
1168
1169 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1170 {
1171 int pio;
1172 int speed = adev->pio_mode - XFER_PIO_0;
1173
1174 if (speed < 2)
1175 return 0;
1176 if (speed > 2)
1177 return 1;
1178
1179 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1180
1181 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1182 pio = adev->id[ATA_ID_EIDE_PIO];
1183 /* Is the speed faster than the drive allows non IORDY ? */
1184 if (pio) {
1185 /* This is cycle times not frequency - watch the logic! */
1186 if (pio > 240) /* PIO2 is 240nS per cycle */
1187 return 1;
1188 return 0;
1189 }
1190 }
1191 return 0;
1192 }
1193
1194 /**
1195 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1196 * @ap: port on which device we wish to probe resides
1197 * @device: device bus address, starting at zero
1198 *
1199 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1200 * command, and read back the 512-byte device information page.
1201 * The device information page is fed to us via the standard
1202 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1203 * using standard PIO-IN paths)
1204 *
1205 * After reading the device information page, we use several
1206 * bits of information from it to initialize data structures
1207 * that will be used during the lifetime of the ata_device.
1208 * Other data from the info page is used to disqualify certain
1209 * older ATA devices we do not wish to support.
1210 *
1211 * LOCKING:
1212 * Inherited from caller. Some functions called by this function
1213 * obtain the host_set lock.
1214 */
1215
1216 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1217 {
1218 struct ata_device *dev = &ap->device[device];
1219 unsigned int major_version;
1220 u16 tmp;
1221 unsigned long xfer_modes;
1222 unsigned int using_edd;
1223 struct ata_taskfile tf;
1224 unsigned int err_mask;
1225 int rc;
1226
1227 if (!ata_dev_present(dev)) {
1228 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1229 ap->id, device);
1230 return;
1231 }
1232
1233 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1234 using_edd = 0;
1235 else
1236 using_edd = 1;
1237
1238 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1239
1240 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1241 dev->class == ATA_DEV_NONE);
1242
1243 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1244
1245 retry:
1246 ata_tf_init(ap, &tf, device);
1247
1248 if (dev->class == ATA_DEV_ATA) {
1249 tf.command = ATA_CMD_ID_ATA;
1250 DPRINTK("do ATA identify\n");
1251 } else {
1252 tf.command = ATA_CMD_ID_ATAPI;
1253 DPRINTK("do ATAPI identify\n");
1254 }
1255
1256 tf.protocol = ATA_PROT_PIO;
1257
1258 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1259 dev->id, sizeof(dev->id));
1260
1261 if (err_mask) {
1262 if (err_mask & ~AC_ERR_DEV)
1263 goto err_out;
1264
1265 /*
1266 * arg! EDD works for all test cases, but seems to return
1267 * the ATA signature for some ATAPI devices. Until the
1268 * reason for this is found and fixed, we fix up the mess
1269 * here. If IDENTIFY DEVICE returns command aborted
1270 * (as ATAPI devices do), then we issue an
1271 * IDENTIFY PACKET DEVICE.
1272 *
1273 * ATA software reset (SRST, the default) does not appear
1274 * to have this problem.
1275 */
1276 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1277 u8 err = tf.feature;
1278 if (err & ATA_ABORTED) {
1279 dev->class = ATA_DEV_ATAPI;
1280 goto retry;
1281 }
1282 }
1283 goto err_out;
1284 }
1285
1286 swap_buf_le16(dev->id, ATA_ID_WORDS);
1287
1288 /* print device capabilities */
1289 printk(KERN_DEBUG "ata%u: dev %u cfg "
1290 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1291 ap->id, device, dev->id[49],
1292 dev->id[82], dev->id[83], dev->id[84],
1293 dev->id[85], dev->id[86], dev->id[87],
1294 dev->id[88]);
1295
1296 /*
1297 * common ATA, ATAPI feature tests
1298 */
1299
1300 /* we require DMA support (bits 8 of word 49) */
1301 if (!ata_id_has_dma(dev->id)) {
1302 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1303 goto err_out_nosup;
1304 }
1305
1306 /* quick-n-dirty find max transfer mode; for printk only */
1307 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1308 if (!xfer_modes)
1309 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1310 if (!xfer_modes)
1311 xfer_modes = ata_pio_modes(dev);
1312
1313 ata_dump_id(dev);
1314
1315 /* ATA-specific feature tests */
1316 if (dev->class == ATA_DEV_ATA) {
1317 if (!ata_id_is_ata(dev->id)) /* sanity check */
1318 goto err_out_nosup;
1319
1320 /* get major version */
1321 tmp = dev->id[ATA_ID_MAJOR_VER];
1322 for (major_version = 14; major_version >= 1; major_version--)
1323 if (tmp & (1 << major_version))
1324 break;
1325
1326 /*
1327 * The exact sequence expected by certain pre-ATA4 drives is:
1328 * SRST RESET
1329 * IDENTIFY
1330 * INITIALIZE DEVICE PARAMETERS
1331 * anything else..
1332 * Some drives were very specific about that exact sequence.
1333 */
1334 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1335 ata_dev_init_params(ap, dev);
1336
1337 /* current CHS translation info (id[53-58]) might be
1338 * changed. reread the identify device info.
1339 */
1340 ata_dev_reread_id(ap, dev);
1341 }
1342
1343 if (ata_id_has_lba(dev->id)) {
1344 dev->flags |= ATA_DFLAG_LBA;
1345
1346 if (ata_id_has_lba48(dev->id)) {
1347 dev->flags |= ATA_DFLAG_LBA48;
1348 dev->n_sectors = ata_id_u64(dev->id, 100);
1349 } else {
1350 dev->n_sectors = ata_id_u32(dev->id, 60);
1351 }
1352
1353 /* print device info to dmesg */
1354 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1355 ap->id, device,
1356 major_version,
1357 ata_mode_string(xfer_modes),
1358 (unsigned long long)dev->n_sectors,
1359 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1360 } else {
1361 /* CHS */
1362
1363 /* Default translation */
1364 dev->cylinders = dev->id[1];
1365 dev->heads = dev->id[3];
1366 dev->sectors = dev->id[6];
1367 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1368
1369 if (ata_id_current_chs_valid(dev->id)) {
1370 /* Current CHS translation is valid. */
1371 dev->cylinders = dev->id[54];
1372 dev->heads = dev->id[55];
1373 dev->sectors = dev->id[56];
1374
1375 dev->n_sectors = ata_id_u32(dev->id, 57);
1376 }
1377
1378 /* print device info to dmesg */
1379 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1380 ap->id, device,
1381 major_version,
1382 ata_mode_string(xfer_modes),
1383 (unsigned long long)dev->n_sectors,
1384 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1385
1386 }
1387
1388 ap->host->max_cmd_len = 16;
1389 }
1390
1391 /* ATAPI-specific feature tests */
1392 else if (dev->class == ATA_DEV_ATAPI) {
1393 if (ata_id_is_ata(dev->id)) /* sanity check */
1394 goto err_out_nosup;
1395
1396 rc = atapi_cdb_len(dev->id);
1397 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1398 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1399 goto err_out_nosup;
1400 }
1401 ap->cdb_len = (unsigned int) rc;
1402 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1403
1404 /* print device info to dmesg */
1405 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1406 ap->id, device,
1407 ata_mode_string(xfer_modes));
1408 }
1409
1410 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1411 return;
1412
1413 err_out_nosup:
1414 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1415 ap->id, device);
1416 err_out:
1417 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1418 DPRINTK("EXIT, err\n");
1419 }
1420
1421
1422 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1423 {
1424 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1425 }
1426
1427 /**
1428 * ata_dev_config - Run device specific handlers and check for
1429 * SATA->PATA bridges
1430 * @ap: Bus
1431 * @i: Device
1432 *
1433 * LOCKING:
1434 */
1435
1436 void ata_dev_config(struct ata_port *ap, unsigned int i)
1437 {
1438 /* limit bridge transfers to udma5, 200 sectors */
1439 if (ata_dev_knobble(ap)) {
1440 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1441 ap->id, ap->device->devno);
1442 ap->udma_mask &= ATA_UDMA5;
1443 ap->host->max_sectors = ATA_MAX_SECTORS;
1444 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1445 ap->device[i].flags |= ATA_DFLAG_LOCK_SECTORS;
1446 }
1447
1448 if (ap->ops->dev_config)
1449 ap->ops->dev_config(ap, &ap->device[i]);
1450 }
1451
1452 /**
1453 * ata_bus_probe - Reset and probe ATA bus
1454 * @ap: Bus to probe
1455 *
1456 * Master ATA bus probing function. Initiates a hardware-dependent
1457 * bus reset, then attempts to identify any devices found on
1458 * the bus.
1459 *
1460 * LOCKING:
1461 * PCI/etc. bus probe sem.
1462 *
1463 * RETURNS:
1464 * Zero on success, non-zero on error.
1465 */
1466
1467 static int ata_bus_probe(struct ata_port *ap)
1468 {
1469 unsigned int i, found = 0;
1470
1471 ap->ops->phy_reset(ap);
1472 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1473 goto err_out;
1474
1475 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1476 ata_dev_identify(ap, i);
1477 if (ata_dev_present(&ap->device[i])) {
1478 found = 1;
1479 ata_dev_config(ap,i);
1480 }
1481 }
1482
1483 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1484 goto err_out_disable;
1485
1486 ata_set_mode(ap);
1487 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1488 goto err_out_disable;
1489
1490 return 0;
1491
1492 err_out_disable:
1493 ap->ops->port_disable(ap);
1494 err_out:
1495 return -1;
1496 }
1497
1498 /**
1499 * ata_port_probe - Mark port as enabled
1500 * @ap: Port for which we indicate enablement
1501 *
1502 * Modify @ap data structure such that the system
1503 * thinks that the entire port is enabled.
1504 *
1505 * LOCKING: host_set lock, or some other form of
1506 * serialization.
1507 */
1508
1509 void ata_port_probe(struct ata_port *ap)
1510 {
1511 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1512 }
1513
1514 /**
1515 * sata_print_link_status - Print SATA link status
1516 * @ap: SATA port to printk link status about
1517 *
1518 * This function prints link speed and status of a SATA link.
1519 *
1520 * LOCKING:
1521 * None.
1522 */
1523 static void sata_print_link_status(struct ata_port *ap)
1524 {
1525 u32 sstatus, tmp;
1526 const char *speed;
1527
1528 if (!ap->ops->scr_read)
1529 return;
1530
1531 sstatus = scr_read(ap, SCR_STATUS);
1532
1533 if (sata_dev_present(ap)) {
1534 tmp = (sstatus >> 4) & 0xf;
1535 if (tmp & (1 << 0))
1536 speed = "1.5";
1537 else if (tmp & (1 << 1))
1538 speed = "3.0";
1539 else
1540 speed = "<unknown>";
1541 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1542 ap->id, speed, sstatus);
1543 } else {
1544 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1545 ap->id, sstatus);
1546 }
1547 }
1548
1549 /**
1550 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1551 * @ap: SATA port associated with target SATA PHY.
1552 *
1553 * This function issues commands to standard SATA Sxxx
1554 * PHY registers, to wake up the phy (and device), and
1555 * clear any reset condition.
1556 *
1557 * LOCKING:
1558 * PCI/etc. bus probe sem.
1559 *
1560 */
1561 void __sata_phy_reset(struct ata_port *ap)
1562 {
1563 u32 sstatus;
1564 unsigned long timeout = jiffies + (HZ * 5);
1565
1566 if (ap->flags & ATA_FLAG_SATA_RESET) {
1567 /* issue phy wake/reset */
1568 scr_write_flush(ap, SCR_CONTROL, 0x301);
1569 /* Couldn't find anything in SATA I/II specs, but
1570 * AHCI-1.1 10.4.2 says at least 1 ms. */
1571 mdelay(1);
1572 }
1573 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1574
1575 /* wait for phy to become ready, if necessary */
1576 do {
1577 msleep(200);
1578 sstatus = scr_read(ap, SCR_STATUS);
1579 if ((sstatus & 0xf) != 1)
1580 break;
1581 } while (time_before(jiffies, timeout));
1582
1583 /* print link status */
1584 sata_print_link_status(ap);
1585
1586 /* TODO: phy layer with polling, timeouts, etc. */
1587 if (sata_dev_present(ap))
1588 ata_port_probe(ap);
1589 else
1590 ata_port_disable(ap);
1591
1592 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1593 return;
1594
1595 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1596 ata_port_disable(ap);
1597 return;
1598 }
1599
1600 ap->cbl = ATA_CBL_SATA;
1601 }
1602
1603 /**
1604 * sata_phy_reset - Reset SATA bus.
1605 * @ap: SATA port associated with target SATA PHY.
1606 *
1607 * This function resets the SATA bus, and then probes
1608 * the bus for devices.
1609 *
1610 * LOCKING:
1611 * PCI/etc. bus probe sem.
1612 *
1613 */
1614 void sata_phy_reset(struct ata_port *ap)
1615 {
1616 __sata_phy_reset(ap);
1617 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1618 return;
1619 ata_bus_reset(ap);
1620 }
1621
1622 /**
1623 * ata_port_disable - Disable port.
1624 * @ap: Port to be disabled.
1625 *
1626 * Modify @ap data structure such that the system
1627 * thinks that the entire port is disabled, and should
1628 * never attempt to probe or communicate with devices
1629 * on this port.
1630 *
1631 * LOCKING: host_set lock, or some other form of
1632 * serialization.
1633 */
1634
1635 void ata_port_disable(struct ata_port *ap)
1636 {
1637 ap->device[0].class = ATA_DEV_NONE;
1638 ap->device[1].class = ATA_DEV_NONE;
1639 ap->flags |= ATA_FLAG_PORT_DISABLED;
1640 }
1641
1642 /*
1643 * This mode timing computation functionality is ported over from
1644 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1645 */
1646 /*
1647 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1648 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1649 * for PIO 5, which is a nonstandard extension and UDMA6, which
1650 * is currently supported only by Maxtor drives.
1651 */
1652
1653 static const struct ata_timing ata_timing[] = {
1654
1655 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1656 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1657 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1658 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1659
1660 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1661 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1662 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1663
1664 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1665
1666 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1667 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1668 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1669
1670 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1671 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1672 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1673
1674 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1675 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1676 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1677
1678 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1679 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1680 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1681
1682 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1683
1684 { 0xFF }
1685 };
1686
1687 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1688 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1689
1690 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1691 {
1692 q->setup = EZ(t->setup * 1000, T);
1693 q->act8b = EZ(t->act8b * 1000, T);
1694 q->rec8b = EZ(t->rec8b * 1000, T);
1695 q->cyc8b = EZ(t->cyc8b * 1000, T);
1696 q->active = EZ(t->active * 1000, T);
1697 q->recover = EZ(t->recover * 1000, T);
1698 q->cycle = EZ(t->cycle * 1000, T);
1699 q->udma = EZ(t->udma * 1000, UT);
1700 }
1701
1702 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1703 struct ata_timing *m, unsigned int what)
1704 {
1705 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1706 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1707 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1708 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1709 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1710 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1711 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1712 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1713 }
1714
1715 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1716 {
1717 const struct ata_timing *t;
1718
1719 for (t = ata_timing; t->mode != speed; t++)
1720 if (t->mode == 0xFF)
1721 return NULL;
1722 return t;
1723 }
1724
1725 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1726 struct ata_timing *t, int T, int UT)
1727 {
1728 const struct ata_timing *s;
1729 struct ata_timing p;
1730
1731 /*
1732 * Find the mode.
1733 */
1734
1735 if (!(s = ata_timing_find_mode(speed)))
1736 return -EINVAL;
1737
1738 memcpy(t, s, sizeof(*s));
1739
1740 /*
1741 * If the drive is an EIDE drive, it can tell us it needs extended
1742 * PIO/MW_DMA cycle timing.
1743 */
1744
1745 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1746 memset(&p, 0, sizeof(p));
1747 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1748 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1749 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1750 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1751 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1752 }
1753 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1754 }
1755
1756 /*
1757 * Convert the timing to bus clock counts.
1758 */
1759
1760 ata_timing_quantize(t, t, T, UT);
1761
1762 /*
1763 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1764 * and some other commands. We have to ensure that the DMA cycle timing is
1765 * slower/equal than the fastest PIO timing.
1766 */
1767
1768 if (speed > XFER_PIO_4) {
1769 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1770 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1771 }
1772
1773 /*
1774 * Lenghten active & recovery time so that cycle time is correct.
1775 */
1776
1777 if (t->act8b + t->rec8b < t->cyc8b) {
1778 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1779 t->rec8b = t->cyc8b - t->act8b;
1780 }
1781
1782 if (t->active + t->recover < t->cycle) {
1783 t->active += (t->cycle - (t->active + t->recover)) / 2;
1784 t->recover = t->cycle - t->active;
1785 }
1786
1787 return 0;
1788 }
1789
1790 static const struct {
1791 unsigned int shift;
1792 u8 base;
1793 } xfer_mode_classes[] = {
1794 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1795 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1796 { ATA_SHIFT_PIO, XFER_PIO_0 },
1797 };
1798
1799 static u8 base_from_shift(unsigned int shift)
1800 {
1801 int i;
1802
1803 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1804 if (xfer_mode_classes[i].shift == shift)
1805 return xfer_mode_classes[i].base;
1806
1807 return 0xff;
1808 }
1809
1810 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1811 {
1812 int ofs, idx;
1813 u8 base;
1814
1815 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1816 return;
1817
1818 if (dev->xfer_shift == ATA_SHIFT_PIO)
1819 dev->flags |= ATA_DFLAG_PIO;
1820
1821 ata_dev_set_xfermode(ap, dev);
1822
1823 base = base_from_shift(dev->xfer_shift);
1824 ofs = dev->xfer_mode - base;
1825 idx = ofs + dev->xfer_shift;
1826 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1827
1828 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1829 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1830
1831 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1832 ap->id, dev->devno, xfer_mode_str[idx]);
1833 }
1834
1835 static int ata_host_set_pio(struct ata_port *ap)
1836 {
1837 unsigned int mask;
1838 int x, i;
1839 u8 base, xfer_mode;
1840
1841 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1842 x = fgb(mask);
1843 if (x < 0) {
1844 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1845 return -1;
1846 }
1847
1848 base = base_from_shift(ATA_SHIFT_PIO);
1849 xfer_mode = base + x;
1850
1851 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1852 (int)base, (int)xfer_mode, mask, x);
1853
1854 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1855 struct ata_device *dev = &ap->device[i];
1856 if (ata_dev_present(dev)) {
1857 dev->pio_mode = xfer_mode;
1858 dev->xfer_mode = xfer_mode;
1859 dev->xfer_shift = ATA_SHIFT_PIO;
1860 if (ap->ops->set_piomode)
1861 ap->ops->set_piomode(ap, dev);
1862 }
1863 }
1864
1865 return 0;
1866 }
1867
1868 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1869 unsigned int xfer_shift)
1870 {
1871 int i;
1872
1873 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1874 struct ata_device *dev = &ap->device[i];
1875 if (ata_dev_present(dev)) {
1876 dev->dma_mode = xfer_mode;
1877 dev->xfer_mode = xfer_mode;
1878 dev->xfer_shift = xfer_shift;
1879 if (ap->ops->set_dmamode)
1880 ap->ops->set_dmamode(ap, dev);
1881 }
1882 }
1883 }
1884
1885 /**
1886 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1887 * @ap: port on which timings will be programmed
1888 *
1889 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1890 *
1891 * LOCKING:
1892 * PCI/etc. bus probe sem.
1893 *
1894 */
1895 static void ata_set_mode(struct ata_port *ap)
1896 {
1897 unsigned int xfer_shift;
1898 u8 xfer_mode;
1899 int rc;
1900
1901 /* step 1: always set host PIO timings */
1902 rc = ata_host_set_pio(ap);
1903 if (rc)
1904 goto err_out;
1905
1906 /* step 2: choose the best data xfer mode */
1907 xfer_mode = xfer_shift = 0;
1908 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1909 if (rc)
1910 goto err_out;
1911
1912 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1913 if (xfer_shift != ATA_SHIFT_PIO)
1914 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1915
1916 /* step 4: update devices' xfer mode */
1917 ata_dev_set_mode(ap, &ap->device[0]);
1918 ata_dev_set_mode(ap, &ap->device[1]);
1919
1920 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1921 return;
1922
1923 if (ap->ops->post_set_mode)
1924 ap->ops->post_set_mode(ap);
1925
1926 return;
1927
1928 err_out:
1929 ata_port_disable(ap);
1930 }
1931
1932 /**
1933 * ata_busy_sleep - sleep until BSY clears, or timeout
1934 * @ap: port containing status register to be polled
1935 * @tmout_pat: impatience timeout
1936 * @tmout: overall timeout
1937 *
1938 * Sleep until ATA Status register bit BSY clears,
1939 * or a timeout occurs.
1940 *
1941 * LOCKING: None.
1942 *
1943 */
1944
1945 static unsigned int ata_busy_sleep (struct ata_port *ap,
1946 unsigned long tmout_pat,
1947 unsigned long tmout)
1948 {
1949 unsigned long timer_start, timeout;
1950 u8 status;
1951
1952 status = ata_busy_wait(ap, ATA_BUSY, 300);
1953 timer_start = jiffies;
1954 timeout = timer_start + tmout_pat;
1955 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1956 msleep(50);
1957 status = ata_busy_wait(ap, ATA_BUSY, 3);
1958 }
1959
1960 if (status & ATA_BUSY)
1961 printk(KERN_WARNING "ata%u is slow to respond, "
1962 "please be patient\n", ap->id);
1963
1964 timeout = timer_start + tmout;
1965 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1966 msleep(50);
1967 status = ata_chk_status(ap);
1968 }
1969
1970 if (status & ATA_BUSY) {
1971 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1972 ap->id, tmout / HZ);
1973 return 1;
1974 }
1975
1976 return 0;
1977 }
1978
1979 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1980 {
1981 struct ata_ioports *ioaddr = &ap->ioaddr;
1982 unsigned int dev0 = devmask & (1 << 0);
1983 unsigned int dev1 = devmask & (1 << 1);
1984 unsigned long timeout;
1985
1986 /* if device 0 was found in ata_devchk, wait for its
1987 * BSY bit to clear
1988 */
1989 if (dev0)
1990 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1991
1992 /* if device 1 was found in ata_devchk, wait for
1993 * register access, then wait for BSY to clear
1994 */
1995 timeout = jiffies + ATA_TMOUT_BOOT;
1996 while (dev1) {
1997 u8 nsect, lbal;
1998
1999 ap->ops->dev_select(ap, 1);
2000 if (ap->flags & ATA_FLAG_MMIO) {
2001 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2002 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2003 } else {
2004 nsect = inb(ioaddr->nsect_addr);
2005 lbal = inb(ioaddr->lbal_addr);
2006 }
2007 if ((nsect == 1) && (lbal == 1))
2008 break;
2009 if (time_after(jiffies, timeout)) {
2010 dev1 = 0;
2011 break;
2012 }
2013 msleep(50); /* give drive a breather */
2014 }
2015 if (dev1)
2016 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2017
2018 /* is all this really necessary? */
2019 ap->ops->dev_select(ap, 0);
2020 if (dev1)
2021 ap->ops->dev_select(ap, 1);
2022 if (dev0)
2023 ap->ops->dev_select(ap, 0);
2024 }
2025
2026 /**
2027 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2028 * @ap: Port to reset and probe
2029 *
2030 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2031 * probe the bus. Not often used these days.
2032 *
2033 * LOCKING:
2034 * PCI/etc. bus probe sem.
2035 * Obtains host_set lock.
2036 *
2037 */
2038
2039 static unsigned int ata_bus_edd(struct ata_port *ap)
2040 {
2041 struct ata_taskfile tf;
2042 unsigned long flags;
2043
2044 /* set up execute-device-diag (bus reset) taskfile */
2045 /* also, take interrupts to a known state (disabled) */
2046 DPRINTK("execute-device-diag\n");
2047 ata_tf_init(ap, &tf, 0);
2048 tf.ctl |= ATA_NIEN;
2049 tf.command = ATA_CMD_EDD;
2050 tf.protocol = ATA_PROT_NODATA;
2051
2052 /* do bus reset */
2053 spin_lock_irqsave(&ap->host_set->lock, flags);
2054 ata_tf_to_host(ap, &tf);
2055 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2056
2057 /* spec says at least 2ms. but who knows with those
2058 * crazy ATAPI devices...
2059 */
2060 msleep(150);
2061
2062 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2063 }
2064
2065 static unsigned int ata_bus_softreset(struct ata_port *ap,
2066 unsigned int devmask)
2067 {
2068 struct ata_ioports *ioaddr = &ap->ioaddr;
2069
2070 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2071
2072 /* software reset. causes dev0 to be selected */
2073 if (ap->flags & ATA_FLAG_MMIO) {
2074 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2075 udelay(20); /* FIXME: flush */
2076 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2077 udelay(20); /* FIXME: flush */
2078 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2079 } else {
2080 outb(ap->ctl, ioaddr->ctl_addr);
2081 udelay(10);
2082 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2083 udelay(10);
2084 outb(ap->ctl, ioaddr->ctl_addr);
2085 }
2086
2087 /* spec mandates ">= 2ms" before checking status.
2088 * We wait 150ms, because that was the magic delay used for
2089 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2090 * between when the ATA command register is written, and then
2091 * status is checked. Because waiting for "a while" before
2092 * checking status is fine, post SRST, we perform this magic
2093 * delay here as well.
2094 */
2095 msleep(150);
2096
2097 ata_bus_post_reset(ap, devmask);
2098
2099 return 0;
2100 }
2101
2102 /**
2103 * ata_bus_reset - reset host port and associated ATA channel
2104 * @ap: port to reset
2105 *
2106 * This is typically the first time we actually start issuing
2107 * commands to the ATA channel. We wait for BSY to clear, then
2108 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2109 * result. Determine what devices, if any, are on the channel
2110 * by looking at the device 0/1 error register. Look at the signature
2111 * stored in each device's taskfile registers, to determine if
2112 * the device is ATA or ATAPI.
2113 *
2114 * LOCKING:
2115 * PCI/etc. bus probe sem.
2116 * Obtains host_set lock.
2117 *
2118 * SIDE EFFECTS:
2119 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2120 */
2121
2122 void ata_bus_reset(struct ata_port *ap)
2123 {
2124 struct ata_ioports *ioaddr = &ap->ioaddr;
2125 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2126 u8 err;
2127 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2128
2129 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2130
2131 /* determine if device 0/1 are present */
2132 if (ap->flags & ATA_FLAG_SATA_RESET)
2133 dev0 = 1;
2134 else {
2135 dev0 = ata_devchk(ap, 0);
2136 if (slave_possible)
2137 dev1 = ata_devchk(ap, 1);
2138 }
2139
2140 if (dev0)
2141 devmask |= (1 << 0);
2142 if (dev1)
2143 devmask |= (1 << 1);
2144
2145 /* select device 0 again */
2146 ap->ops->dev_select(ap, 0);
2147
2148 /* issue bus reset */
2149 if (ap->flags & ATA_FLAG_SRST)
2150 rc = ata_bus_softreset(ap, devmask);
2151 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2152 /* set up device control */
2153 if (ap->flags & ATA_FLAG_MMIO)
2154 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2155 else
2156 outb(ap->ctl, ioaddr->ctl_addr);
2157 rc = ata_bus_edd(ap);
2158 }
2159
2160 if (rc)
2161 goto err_out;
2162
2163 /*
2164 * determine by signature whether we have ATA or ATAPI devices
2165 */
2166 err = ata_dev_try_classify(ap, 0);
2167 if ((slave_possible) && (err != 0x81))
2168 ata_dev_try_classify(ap, 1);
2169
2170 /* re-enable interrupts */
2171 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2172 ata_irq_on(ap);
2173
2174 /* is double-select really necessary? */
2175 if (ap->device[1].class != ATA_DEV_NONE)
2176 ap->ops->dev_select(ap, 1);
2177 if (ap->device[0].class != ATA_DEV_NONE)
2178 ap->ops->dev_select(ap, 0);
2179
2180 /* if no devices were detected, disable this port */
2181 if ((ap->device[0].class == ATA_DEV_NONE) &&
2182 (ap->device[1].class == ATA_DEV_NONE))
2183 goto err_out;
2184
2185 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2186 /* set up device control for ATA_FLAG_SATA_RESET */
2187 if (ap->flags & ATA_FLAG_MMIO)
2188 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2189 else
2190 outb(ap->ctl, ioaddr->ctl_addr);
2191 }
2192
2193 DPRINTK("EXIT\n");
2194 return;
2195
2196 err_out:
2197 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2198 ap->ops->port_disable(ap);
2199
2200 DPRINTK("EXIT\n");
2201 }
2202
2203 static void ata_pr_blacklisted(const struct ata_port *ap,
2204 const struct ata_device *dev)
2205 {
2206 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2207 ap->id, dev->devno);
2208 }
2209
2210 static const char * const ata_dma_blacklist [] = {
2211 "WDC AC11000H",
2212 "WDC AC22100H",
2213 "WDC AC32500H",
2214 "WDC AC33100H",
2215 "WDC AC31600H",
2216 "WDC AC32100H",
2217 "WDC AC23200L",
2218 "Compaq CRD-8241B",
2219 "CRD-8400B",
2220 "CRD-8480B",
2221 "CRD-8482B",
2222 "CRD-84",
2223 "SanDisk SDP3B",
2224 "SanDisk SDP3B-64",
2225 "SANYO CD-ROM CRD",
2226 "HITACHI CDR-8",
2227 "HITACHI CDR-8335",
2228 "HITACHI CDR-8435",
2229 "Toshiba CD-ROM XM-6202B",
2230 "TOSHIBA CD-ROM XM-1702BC",
2231 "CD-532E-A",
2232 "E-IDE CD-ROM CR-840",
2233 "CD-ROM Drive/F5A",
2234 "WPI CDD-820",
2235 "SAMSUNG CD-ROM SC-148C",
2236 "SAMSUNG CD-ROM SC",
2237 "SanDisk SDP3B-64",
2238 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2239 "_NEC DV5800A",
2240 };
2241
2242 static int ata_dma_blacklisted(const struct ata_device *dev)
2243 {
2244 unsigned char model_num[40];
2245 char *s;
2246 unsigned int len;
2247 int i;
2248
2249 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2250 sizeof(model_num));
2251 s = &model_num[0];
2252 len = strnlen(s, sizeof(model_num));
2253
2254 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2255 while ((len > 0) && (s[len - 1] == ' ')) {
2256 len--;
2257 s[len] = 0;
2258 }
2259
2260 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2261 if (!strncmp(ata_dma_blacklist[i], s, len))
2262 return 1;
2263
2264 return 0;
2265 }
2266
2267 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2268 {
2269 const struct ata_device *master, *slave;
2270 unsigned int mask;
2271
2272 master = &ap->device[0];
2273 slave = &ap->device[1];
2274
2275 assert (ata_dev_present(master) || ata_dev_present(slave));
2276
2277 if (shift == ATA_SHIFT_UDMA) {
2278 mask = ap->udma_mask;
2279 if (ata_dev_present(master)) {
2280 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2281 if (ata_dma_blacklisted(master)) {
2282 mask = 0;
2283 ata_pr_blacklisted(ap, master);
2284 }
2285 }
2286 if (ata_dev_present(slave)) {
2287 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2288 if (ata_dma_blacklisted(slave)) {
2289 mask = 0;
2290 ata_pr_blacklisted(ap, slave);
2291 }
2292 }
2293 }
2294 else if (shift == ATA_SHIFT_MWDMA) {
2295 mask = ap->mwdma_mask;
2296 if (ata_dev_present(master)) {
2297 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2298 if (ata_dma_blacklisted(master)) {
2299 mask = 0;
2300 ata_pr_blacklisted(ap, master);
2301 }
2302 }
2303 if (ata_dev_present(slave)) {
2304 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2305 if (ata_dma_blacklisted(slave)) {
2306 mask = 0;
2307 ata_pr_blacklisted(ap, slave);
2308 }
2309 }
2310 }
2311 else if (shift == ATA_SHIFT_PIO) {
2312 mask = ap->pio_mask;
2313 if (ata_dev_present(master)) {
2314 /* spec doesn't return explicit support for
2315 * PIO0-2, so we fake it
2316 */
2317 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2318 tmp_mode <<= 3;
2319 tmp_mode |= 0x7;
2320 mask &= tmp_mode;
2321 }
2322 if (ata_dev_present(slave)) {
2323 /* spec doesn't return explicit support for
2324 * PIO0-2, so we fake it
2325 */
2326 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2327 tmp_mode <<= 3;
2328 tmp_mode |= 0x7;
2329 mask &= tmp_mode;
2330 }
2331 }
2332 else {
2333 mask = 0xffffffff; /* shut up compiler warning */
2334 BUG();
2335 }
2336
2337 return mask;
2338 }
2339
2340 /* find greatest bit */
2341 static int fgb(u32 bitmap)
2342 {
2343 unsigned int i;
2344 int x = -1;
2345
2346 for (i = 0; i < 32; i++)
2347 if (bitmap & (1 << i))
2348 x = i;
2349
2350 return x;
2351 }
2352
2353 /**
2354 * ata_choose_xfer_mode - attempt to find best transfer mode
2355 * @ap: Port for which an xfer mode will be selected
2356 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2357 * @xfer_shift_out: (output) bit shift that selects this mode
2358 *
2359 * Based on host and device capabilities, determine the
2360 * maximum transfer mode that is amenable to all.
2361 *
2362 * LOCKING:
2363 * PCI/etc. bus probe sem.
2364 *
2365 * RETURNS:
2366 * Zero on success, negative on error.
2367 */
2368
2369 static int ata_choose_xfer_mode(const struct ata_port *ap,
2370 u8 *xfer_mode_out,
2371 unsigned int *xfer_shift_out)
2372 {
2373 unsigned int mask, shift;
2374 int x, i;
2375
2376 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2377 shift = xfer_mode_classes[i].shift;
2378 mask = ata_get_mode_mask(ap, shift);
2379
2380 x = fgb(mask);
2381 if (x >= 0) {
2382 *xfer_mode_out = xfer_mode_classes[i].base + x;
2383 *xfer_shift_out = shift;
2384 return 0;
2385 }
2386 }
2387
2388 return -1;
2389 }
2390
2391 /**
2392 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2393 * @ap: Port associated with device @dev
2394 * @dev: Device to which command will be sent
2395 *
2396 * Issue SET FEATURES - XFER MODE command to device @dev
2397 * on port @ap.
2398 *
2399 * LOCKING:
2400 * PCI/etc. bus probe sem.
2401 */
2402
2403 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2404 {
2405 struct ata_taskfile tf;
2406
2407 /* set up set-features taskfile */
2408 DPRINTK("set features - xfer mode\n");
2409
2410 ata_tf_init(ap, &tf, dev->devno);
2411 tf.command = ATA_CMD_SET_FEATURES;
2412 tf.feature = SETFEATURES_XFER;
2413 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2414 tf.protocol = ATA_PROT_NODATA;
2415 tf.nsect = dev->xfer_mode;
2416
2417 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2418 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2419 ap->id);
2420 ata_port_disable(ap);
2421 }
2422
2423 DPRINTK("EXIT\n");
2424 }
2425
2426 /**
2427 * ata_dev_reread_id - Reread the device identify device info
2428 * @ap: port where the device is
2429 * @dev: device to reread the identify device info
2430 *
2431 * LOCKING:
2432 */
2433
2434 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2435 {
2436 struct ata_taskfile tf;
2437
2438 ata_tf_init(ap, &tf, dev->devno);
2439
2440 if (dev->class == ATA_DEV_ATA) {
2441 tf.command = ATA_CMD_ID_ATA;
2442 DPRINTK("do ATA identify\n");
2443 } else {
2444 tf.command = ATA_CMD_ID_ATAPI;
2445 DPRINTK("do ATAPI identify\n");
2446 }
2447
2448 tf.flags |= ATA_TFLAG_DEVICE;
2449 tf.protocol = ATA_PROT_PIO;
2450
2451 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2452 dev->id, sizeof(dev->id)))
2453 goto err_out;
2454
2455 swap_buf_le16(dev->id, ATA_ID_WORDS);
2456
2457 ata_dump_id(dev);
2458
2459 DPRINTK("EXIT\n");
2460
2461 return;
2462 err_out:
2463 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2464 ata_port_disable(ap);
2465 }
2466
2467 /**
2468 * ata_dev_init_params - Issue INIT DEV PARAMS command
2469 * @ap: Port associated with device @dev
2470 * @dev: Device to which command will be sent
2471 *
2472 * LOCKING:
2473 */
2474
2475 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2476 {
2477 struct ata_taskfile tf;
2478 u16 sectors = dev->id[6];
2479 u16 heads = dev->id[3];
2480
2481 /* Number of sectors per track 1-255. Number of heads 1-16 */
2482 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2483 return;
2484
2485 /* set up init dev params taskfile */
2486 DPRINTK("init dev params \n");
2487
2488 ata_tf_init(ap, &tf, dev->devno);
2489 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2490 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2491 tf.protocol = ATA_PROT_NODATA;
2492 tf.nsect = sectors;
2493 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2494
2495 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2496 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2497 ap->id);
2498 ata_port_disable(ap);
2499 }
2500
2501 DPRINTK("EXIT\n");
2502 }
2503
2504 /**
2505 * ata_sg_clean - Unmap DMA memory associated with command
2506 * @qc: Command containing DMA memory to be released
2507 *
2508 * Unmap all mapped DMA memory associated with this command.
2509 *
2510 * LOCKING:
2511 * spin_lock_irqsave(host_set lock)
2512 */
2513
2514 static void ata_sg_clean(struct ata_queued_cmd *qc)
2515 {
2516 struct ata_port *ap = qc->ap;
2517 struct scatterlist *sg = qc->__sg;
2518 int dir = qc->dma_dir;
2519 void *pad_buf = NULL;
2520
2521 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2522 assert(sg != NULL);
2523
2524 if (qc->flags & ATA_QCFLAG_SINGLE)
2525 assert(qc->n_elem == 1);
2526
2527 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2528
2529 /* if we padded the buffer out to 32-bit bound, and data
2530 * xfer direction is from-device, we must copy from the
2531 * pad buffer back into the supplied buffer
2532 */
2533 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2534 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2535
2536 if (qc->flags & ATA_QCFLAG_SG) {
2537 if (qc->n_elem)
2538 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2539 /* restore last sg */
2540 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2541 if (pad_buf) {
2542 struct scatterlist *psg = &qc->pad_sgent;
2543 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2544 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2545 kunmap_atomic(addr, KM_IRQ0);
2546 }
2547 } else {
2548 if (sg_dma_len(&sg[0]) > 0)
2549 dma_unmap_single(ap->host_set->dev,
2550 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2551 dir);
2552 /* restore sg */
2553 sg->length += qc->pad_len;
2554 if (pad_buf)
2555 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2556 pad_buf, qc->pad_len);
2557 }
2558
2559 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2560 qc->__sg = NULL;
2561 }
2562
2563 /**
2564 * ata_fill_sg - Fill PCI IDE PRD table
2565 * @qc: Metadata associated with taskfile to be transferred
2566 *
2567 * Fill PCI IDE PRD (scatter-gather) table with segments
2568 * associated with the current disk command.
2569 *
2570 * LOCKING:
2571 * spin_lock_irqsave(host_set lock)
2572 *
2573 */
2574 static void ata_fill_sg(struct ata_queued_cmd *qc)
2575 {
2576 struct ata_port *ap = qc->ap;
2577 struct scatterlist *sg;
2578 unsigned int idx;
2579
2580 assert(qc->__sg != NULL);
2581 assert(qc->n_elem > 0);
2582
2583 idx = 0;
2584 ata_for_each_sg(sg, qc) {
2585 u32 addr, offset;
2586 u32 sg_len, len;
2587
2588 /* determine if physical DMA addr spans 64K boundary.
2589 * Note h/w doesn't support 64-bit, so we unconditionally
2590 * truncate dma_addr_t to u32.
2591 */
2592 addr = (u32) sg_dma_address(sg);
2593 sg_len = sg_dma_len(sg);
2594
2595 while (sg_len) {
2596 offset = addr & 0xffff;
2597 len = sg_len;
2598 if ((offset + sg_len) > 0x10000)
2599 len = 0x10000 - offset;
2600
2601 ap->prd[idx].addr = cpu_to_le32(addr);
2602 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2603 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2604
2605 idx++;
2606 sg_len -= len;
2607 addr += len;
2608 }
2609 }
2610
2611 if (idx)
2612 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2613 }
2614 /**
2615 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2616 * @qc: Metadata associated with taskfile to check
2617 *
2618 * Allow low-level driver to filter ATA PACKET commands, returning
2619 * a status indicating whether or not it is OK to use DMA for the
2620 * supplied PACKET command.
2621 *
2622 * LOCKING:
2623 * spin_lock_irqsave(host_set lock)
2624 *
2625 * RETURNS: 0 when ATAPI DMA can be used
2626 * nonzero otherwise
2627 */
2628 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2629 {
2630 struct ata_port *ap = qc->ap;
2631 int rc = 0; /* Assume ATAPI DMA is OK by default */
2632
2633 if (ap->ops->check_atapi_dma)
2634 rc = ap->ops->check_atapi_dma(qc);
2635
2636 return rc;
2637 }
2638 /**
2639 * ata_qc_prep - Prepare taskfile for submission
2640 * @qc: Metadata associated with taskfile to be prepared
2641 *
2642 * Prepare ATA taskfile for submission.
2643 *
2644 * LOCKING:
2645 * spin_lock_irqsave(host_set lock)
2646 */
2647 void ata_qc_prep(struct ata_queued_cmd *qc)
2648 {
2649 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2650 return;
2651
2652 ata_fill_sg(qc);
2653 }
2654
2655 /**
2656 * ata_sg_init_one - Associate command with memory buffer
2657 * @qc: Command to be associated
2658 * @buf: Memory buffer
2659 * @buflen: Length of memory buffer, in bytes.
2660 *
2661 * Initialize the data-related elements of queued_cmd @qc
2662 * to point to a single memory buffer, @buf of byte length @buflen.
2663 *
2664 * LOCKING:
2665 * spin_lock_irqsave(host_set lock)
2666 */
2667
2668 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2669 {
2670 struct scatterlist *sg;
2671
2672 qc->flags |= ATA_QCFLAG_SINGLE;
2673
2674 memset(&qc->sgent, 0, sizeof(qc->sgent));
2675 qc->__sg = &qc->sgent;
2676 qc->n_elem = 1;
2677 qc->orig_n_elem = 1;
2678 qc->buf_virt = buf;
2679
2680 sg = qc->__sg;
2681 sg_init_one(sg, buf, buflen);
2682 }
2683
2684 /**
2685 * ata_sg_init - Associate command with scatter-gather table.
2686 * @qc: Command to be associated
2687 * @sg: Scatter-gather table.
2688 * @n_elem: Number of elements in s/g table.
2689 *
2690 * Initialize the data-related elements of queued_cmd @qc
2691 * to point to a scatter-gather table @sg, containing @n_elem
2692 * elements.
2693 *
2694 * LOCKING:
2695 * spin_lock_irqsave(host_set lock)
2696 */
2697
2698 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2699 unsigned int n_elem)
2700 {
2701 qc->flags |= ATA_QCFLAG_SG;
2702 qc->__sg = sg;
2703 qc->n_elem = n_elem;
2704 qc->orig_n_elem = n_elem;
2705 }
2706
2707 /**
2708 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2709 * @qc: Command with memory buffer to be mapped.
2710 *
2711 * DMA-map the memory buffer associated with queued_cmd @qc.
2712 *
2713 * LOCKING:
2714 * spin_lock_irqsave(host_set lock)
2715 *
2716 * RETURNS:
2717 * Zero on success, negative on error.
2718 */
2719
2720 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2721 {
2722 struct ata_port *ap = qc->ap;
2723 int dir = qc->dma_dir;
2724 struct scatterlist *sg = qc->__sg;
2725 dma_addr_t dma_address;
2726
2727 /* we must lengthen transfers to end on a 32-bit boundary */
2728 qc->pad_len = sg->length & 3;
2729 if (qc->pad_len) {
2730 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2731 struct scatterlist *psg = &qc->pad_sgent;
2732
2733 assert(qc->dev->class == ATA_DEV_ATAPI);
2734
2735 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2736
2737 if (qc->tf.flags & ATA_TFLAG_WRITE)
2738 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2739 qc->pad_len);
2740
2741 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2742 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2743 /* trim sg */
2744 sg->length -= qc->pad_len;
2745
2746 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2747 sg->length, qc->pad_len);
2748 }
2749
2750 if (!sg->length) {
2751 sg_dma_address(sg) = 0;
2752 goto skip_map;
2753 }
2754
2755 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2756 sg->length, dir);
2757 if (dma_mapping_error(dma_address)) {
2758 /* restore sg */
2759 sg->length += qc->pad_len;
2760 return -1;
2761 }
2762
2763 sg_dma_address(sg) = dma_address;
2764 skip_map:
2765 sg_dma_len(sg) = sg->length;
2766
2767 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2768 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2769
2770 return 0;
2771 }
2772
2773 /**
2774 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2775 * @qc: Command with scatter-gather table to be mapped.
2776 *
2777 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2778 *
2779 * LOCKING:
2780 * spin_lock_irqsave(host_set lock)
2781 *
2782 * RETURNS:
2783 * Zero on success, negative on error.
2784 *
2785 */
2786
2787 static int ata_sg_setup(struct ata_queued_cmd *qc)
2788 {
2789 struct ata_port *ap = qc->ap;
2790 struct scatterlist *sg = qc->__sg;
2791 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2792 int n_elem, pre_n_elem, dir, trim_sg = 0;
2793
2794 VPRINTK("ENTER, ata%u\n", ap->id);
2795 assert(qc->flags & ATA_QCFLAG_SG);
2796
2797 /* we must lengthen transfers to end on a 32-bit boundary */
2798 qc->pad_len = lsg->length & 3;
2799 if (qc->pad_len) {
2800 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2801 struct scatterlist *psg = &qc->pad_sgent;
2802 unsigned int offset;
2803
2804 assert(qc->dev->class == ATA_DEV_ATAPI);
2805
2806 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2807
2808 /*
2809 * psg->page/offset are used to copy to-be-written
2810 * data in this function or read data in ata_sg_clean.
2811 */
2812 offset = lsg->offset + lsg->length - qc->pad_len;
2813 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2814 psg->offset = offset_in_page(offset);
2815
2816 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2817 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2818 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2819 kunmap_atomic(addr, KM_IRQ0);
2820 }
2821
2822 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2823 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2824 /* trim last sg */
2825 lsg->length -= qc->pad_len;
2826 if (lsg->length == 0)
2827 trim_sg = 1;
2828
2829 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2830 qc->n_elem - 1, lsg->length, qc->pad_len);
2831 }
2832
2833 pre_n_elem = qc->n_elem;
2834 if (trim_sg && pre_n_elem)
2835 pre_n_elem--;
2836
2837 if (!pre_n_elem) {
2838 n_elem = 0;
2839 goto skip_map;
2840 }
2841
2842 dir = qc->dma_dir;
2843 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2844 if (n_elem < 1) {
2845 /* restore last sg */
2846 lsg->length += qc->pad_len;
2847 return -1;
2848 }
2849
2850 DPRINTK("%d sg elements mapped\n", n_elem);
2851
2852 skip_map:
2853 qc->n_elem = n_elem;
2854
2855 return 0;
2856 }
2857
2858 /**
2859 * ata_poll_qc_complete - turn irq back on and finish qc
2860 * @qc: Command to complete
2861 * @err_mask: ATA status register content
2862 *
2863 * LOCKING:
2864 * None. (grabs host lock)
2865 */
2866
2867 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2868 {
2869 struct ata_port *ap = qc->ap;
2870 unsigned long flags;
2871
2872 spin_lock_irqsave(&ap->host_set->lock, flags);
2873 ap->flags &= ~ATA_FLAG_NOINTR;
2874 ata_irq_on(ap);
2875 ata_qc_complete(qc);
2876 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2877 }
2878
2879 /**
2880 * ata_pio_poll -
2881 * @ap: the target ata_port
2882 *
2883 * LOCKING:
2884 * None. (executing in kernel thread context)
2885 *
2886 * RETURNS:
2887 * timeout value to use
2888 */
2889
2890 static unsigned long ata_pio_poll(struct ata_port *ap)
2891 {
2892 struct ata_queued_cmd *qc;
2893 u8 status;
2894 unsigned int poll_state = HSM_ST_UNKNOWN;
2895 unsigned int reg_state = HSM_ST_UNKNOWN;
2896
2897 qc = ata_qc_from_tag(ap, ap->active_tag);
2898 assert(qc != NULL);
2899
2900 switch (ap->hsm_task_state) {
2901 case HSM_ST:
2902 case HSM_ST_POLL:
2903 poll_state = HSM_ST_POLL;
2904 reg_state = HSM_ST;
2905 break;
2906 case HSM_ST_LAST:
2907 case HSM_ST_LAST_POLL:
2908 poll_state = HSM_ST_LAST_POLL;
2909 reg_state = HSM_ST_LAST;
2910 break;
2911 default:
2912 BUG();
2913 break;
2914 }
2915
2916 status = ata_chk_status(ap);
2917 if (status & ATA_BUSY) {
2918 if (time_after(jiffies, ap->pio_task_timeout)) {
2919 qc->err_mask |= AC_ERR_TIMEOUT;
2920 ap->hsm_task_state = HSM_ST_TMOUT;
2921 return 0;
2922 }
2923 ap->hsm_task_state = poll_state;
2924 return ATA_SHORT_PAUSE;
2925 }
2926
2927 ap->hsm_task_state = reg_state;
2928 return 0;
2929 }
2930
2931 /**
2932 * ata_pio_complete - check if drive is busy or idle
2933 * @ap: the target ata_port
2934 *
2935 * LOCKING:
2936 * None. (executing in kernel thread context)
2937 *
2938 * RETURNS:
2939 * Non-zero if qc completed, zero otherwise.
2940 */
2941
2942 static int ata_pio_complete (struct ata_port *ap)
2943 {
2944 struct ata_queued_cmd *qc;
2945 u8 drv_stat;
2946
2947 /*
2948 * This is purely heuristic. This is a fast path. Sometimes when
2949 * we enter, BSY will be cleared in a chk-status or two. If not,
2950 * the drive is probably seeking or something. Snooze for a couple
2951 * msecs, then chk-status again. If still busy, fall back to
2952 * HSM_ST_POLL state.
2953 */
2954 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2955 if (drv_stat & ATA_BUSY) {
2956 msleep(2);
2957 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2958 if (drv_stat & ATA_BUSY) {
2959 ap->hsm_task_state = HSM_ST_LAST_POLL;
2960 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2961 return 0;
2962 }
2963 }
2964
2965 qc = ata_qc_from_tag(ap, ap->active_tag);
2966 assert(qc != NULL);
2967
2968 drv_stat = ata_wait_idle(ap);
2969 if (!ata_ok(drv_stat)) {
2970 qc->err_mask |= __ac_err_mask(drv_stat);
2971 ap->hsm_task_state = HSM_ST_ERR;
2972 return 0;
2973 }
2974
2975 ap->hsm_task_state = HSM_ST_IDLE;
2976
2977 assert(qc->err_mask == 0);
2978 ata_poll_qc_complete(qc);
2979
2980 /* another command may start at this point */
2981
2982 return 1;
2983 }
2984
2985
2986 /**
2987 * swap_buf_le16 - swap halves of 16-words in place
2988 * @buf: Buffer to swap
2989 * @buf_words: Number of 16-bit words in buffer.
2990 *
2991 * Swap halves of 16-bit words if needed to convert from
2992 * little-endian byte order to native cpu byte order, or
2993 * vice-versa.
2994 *
2995 * LOCKING:
2996 * Inherited from caller.
2997 */
2998 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2999 {
3000 #ifdef __BIG_ENDIAN
3001 unsigned int i;
3002
3003 for (i = 0; i < buf_words; i++)
3004 buf[i] = le16_to_cpu(buf[i]);
3005 #endif /* __BIG_ENDIAN */
3006 }
3007
3008 /**
3009 * ata_mmio_data_xfer - Transfer data by MMIO
3010 * @ap: port to read/write
3011 * @buf: data buffer
3012 * @buflen: buffer length
3013 * @write_data: read/write
3014 *
3015 * Transfer data from/to the device data register by MMIO.
3016 *
3017 * LOCKING:
3018 * Inherited from caller.
3019 */
3020
3021 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3022 unsigned int buflen, int write_data)
3023 {
3024 unsigned int i;
3025 unsigned int words = buflen >> 1;
3026 u16 *buf16 = (u16 *) buf;
3027 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3028
3029 /* Transfer multiple of 2 bytes */
3030 if (write_data) {
3031 for (i = 0; i < words; i++)
3032 writew(le16_to_cpu(buf16[i]), mmio);
3033 } else {
3034 for (i = 0; i < words; i++)
3035 buf16[i] = cpu_to_le16(readw(mmio));
3036 }
3037
3038 /* Transfer trailing 1 byte, if any. */
3039 if (unlikely(buflen & 0x01)) {
3040 u16 align_buf[1] = { 0 };
3041 unsigned char *trailing_buf = buf + buflen - 1;
3042
3043 if (write_data) {
3044 memcpy(align_buf, trailing_buf, 1);
3045 writew(le16_to_cpu(align_buf[0]), mmio);
3046 } else {
3047 align_buf[0] = cpu_to_le16(readw(mmio));
3048 memcpy(trailing_buf, align_buf, 1);
3049 }
3050 }
3051 }
3052
3053 /**
3054 * ata_pio_data_xfer - Transfer data by PIO
3055 * @ap: port to read/write
3056 * @buf: data buffer
3057 * @buflen: buffer length
3058 * @write_data: read/write
3059 *
3060 * Transfer data from/to the device data register by PIO.
3061 *
3062 * LOCKING:
3063 * Inherited from caller.
3064 */
3065
3066 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3067 unsigned int buflen, int write_data)
3068 {
3069 unsigned int words = buflen >> 1;
3070
3071 /* Transfer multiple of 2 bytes */
3072 if (write_data)
3073 outsw(ap->ioaddr.data_addr, buf, words);
3074 else
3075 insw(ap->ioaddr.data_addr, buf, words);
3076
3077 /* Transfer trailing 1 byte, if any. */
3078 if (unlikely(buflen & 0x01)) {
3079 u16 align_buf[1] = { 0 };
3080 unsigned char *trailing_buf = buf + buflen - 1;
3081
3082 if (write_data) {
3083 memcpy(align_buf, trailing_buf, 1);
3084 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3085 } else {
3086 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3087 memcpy(trailing_buf, align_buf, 1);
3088 }
3089 }
3090 }
3091
3092 /**
3093 * ata_data_xfer - Transfer data from/to the data register.
3094 * @ap: port to read/write
3095 * @buf: data buffer
3096 * @buflen: buffer length
3097 * @do_write: read/write
3098 *
3099 * Transfer data from/to the device data register.
3100 *
3101 * LOCKING:
3102 * Inherited from caller.
3103 */
3104
3105 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3106 unsigned int buflen, int do_write)
3107 {
3108 /* Make the crap hardware pay the costs not the good stuff */
3109 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3110 unsigned long flags;
3111 local_irq_save(flags);
3112 if (ap->flags & ATA_FLAG_MMIO)
3113 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3114 else
3115 ata_pio_data_xfer(ap, buf, buflen, do_write);
3116 local_irq_restore(flags);
3117 } else {
3118 if (ap->flags & ATA_FLAG_MMIO)
3119 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3120 else
3121 ata_pio_data_xfer(ap, buf, buflen, do_write);
3122 }
3123 }
3124
3125 /**
3126 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3127 * @qc: Command on going
3128 *
3129 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3130 *
3131 * LOCKING:
3132 * Inherited from caller.
3133 */
3134
3135 static void ata_pio_sector(struct ata_queued_cmd *qc)
3136 {
3137 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3138 struct scatterlist *sg = qc->__sg;
3139 struct ata_port *ap = qc->ap;
3140 struct page *page;
3141 unsigned int offset;
3142 unsigned char *buf;
3143
3144 if (qc->cursect == (qc->nsect - 1))
3145 ap->hsm_task_state = HSM_ST_LAST;
3146
3147 page = sg[qc->cursg].page;
3148 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3149
3150 /* get the current page and offset */
3151 page = nth_page(page, (offset >> PAGE_SHIFT));
3152 offset %= PAGE_SIZE;
3153
3154 buf = kmap(page) + offset;
3155
3156 qc->cursect++;
3157 qc->cursg_ofs++;
3158
3159 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3160 qc->cursg++;
3161 qc->cursg_ofs = 0;
3162 }
3163
3164 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3165
3166 /* do the actual data transfer */
3167 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3168 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3169
3170 kunmap(page);
3171 }
3172
3173 /**
3174 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3175 * @qc: Command on going
3176 * @bytes: number of bytes
3177 *
3178 * Transfer Transfer data from/to the ATAPI device.
3179 *
3180 * LOCKING:
3181 * Inherited from caller.
3182 *
3183 */
3184
3185 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3186 {
3187 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3188 struct scatterlist *sg = qc->__sg;
3189 struct ata_port *ap = qc->ap;
3190 struct page *page;
3191 unsigned char *buf;
3192 unsigned int offset, count;
3193
3194 if (qc->curbytes + bytes >= qc->nbytes)
3195 ap->hsm_task_state = HSM_ST_LAST;
3196
3197 next_sg:
3198 if (unlikely(qc->cursg >= qc->n_elem)) {
3199 /*
3200 * The end of qc->sg is reached and the device expects
3201 * more data to transfer. In order not to overrun qc->sg
3202 * and fulfill length specified in the byte count register,
3203 * - for read case, discard trailing data from the device
3204 * - for write case, padding zero data to the device
3205 */
3206 u16 pad_buf[1] = { 0 };
3207 unsigned int words = bytes >> 1;
3208 unsigned int i;
3209
3210 if (words) /* warning if bytes > 1 */
3211 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3212 ap->id, bytes);
3213
3214 for (i = 0; i < words; i++)
3215 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3216
3217 ap->hsm_task_state = HSM_ST_LAST;
3218 return;
3219 }
3220
3221 sg = &qc->__sg[qc->cursg];
3222
3223 page = sg->page;
3224 offset = sg->offset + qc->cursg_ofs;
3225
3226 /* get the current page and offset */
3227 page = nth_page(page, (offset >> PAGE_SHIFT));
3228 offset %= PAGE_SIZE;
3229
3230 /* don't overrun current sg */
3231 count = min(sg->length - qc->cursg_ofs, bytes);
3232
3233 /* don't cross page boundaries */
3234 count = min(count, (unsigned int)PAGE_SIZE - offset);
3235
3236 buf = kmap(page) + offset;
3237
3238 bytes -= count;
3239 qc->curbytes += count;
3240 qc->cursg_ofs += count;
3241
3242 if (qc->cursg_ofs == sg->length) {
3243 qc->cursg++;
3244 qc->cursg_ofs = 0;
3245 }
3246
3247 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3248
3249 /* do the actual data transfer */
3250 ata_data_xfer(ap, buf, count, do_write);
3251
3252 kunmap(page);
3253
3254 if (bytes)
3255 goto next_sg;
3256 }
3257
3258 /**
3259 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3260 * @qc: Command on going
3261 *
3262 * Transfer Transfer data from/to the ATAPI device.
3263 *
3264 * LOCKING:
3265 * Inherited from caller.
3266 */
3267
3268 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3269 {
3270 struct ata_port *ap = qc->ap;
3271 struct ata_device *dev = qc->dev;
3272 unsigned int ireason, bc_lo, bc_hi, bytes;
3273 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3274
3275 ap->ops->tf_read(ap, &qc->tf);
3276 ireason = qc->tf.nsect;
3277 bc_lo = qc->tf.lbam;
3278 bc_hi = qc->tf.lbah;
3279 bytes = (bc_hi << 8) | bc_lo;
3280
3281 /* shall be cleared to zero, indicating xfer of data */
3282 if (ireason & (1 << 0))
3283 goto err_out;
3284
3285 /* make sure transfer direction matches expected */
3286 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3287 if (do_write != i_write)
3288 goto err_out;
3289
3290 __atapi_pio_bytes(qc, bytes);
3291
3292 return;
3293
3294 err_out:
3295 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3296 ap->id, dev->devno);
3297 qc->err_mask |= AC_ERR_HSM;
3298 ap->hsm_task_state = HSM_ST_ERR;
3299 }
3300
3301 /**
3302 * ata_pio_block - start PIO on a block
3303 * @ap: the target ata_port
3304 *
3305 * LOCKING:
3306 * None. (executing in kernel thread context)
3307 */
3308
3309 static void ata_pio_block(struct ata_port *ap)
3310 {
3311 struct ata_queued_cmd *qc;
3312 u8 status;
3313
3314 /*
3315 * This is purely heuristic. This is a fast path.
3316 * Sometimes when we enter, BSY will be cleared in
3317 * a chk-status or two. If not, the drive is probably seeking
3318 * or something. Snooze for a couple msecs, then
3319 * chk-status again. If still busy, fall back to
3320 * HSM_ST_POLL state.
3321 */
3322 status = ata_busy_wait(ap, ATA_BUSY, 5);
3323 if (status & ATA_BUSY) {
3324 msleep(2);
3325 status = ata_busy_wait(ap, ATA_BUSY, 10);
3326 if (status & ATA_BUSY) {
3327 ap->hsm_task_state = HSM_ST_POLL;
3328 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3329 return;
3330 }
3331 }
3332
3333 qc = ata_qc_from_tag(ap, ap->active_tag);
3334 assert(qc != NULL);
3335
3336 /* check error */
3337 if (status & (ATA_ERR | ATA_DF)) {
3338 qc->err_mask |= AC_ERR_DEV;
3339 ap->hsm_task_state = HSM_ST_ERR;
3340 return;
3341 }
3342
3343 /* transfer data if any */
3344 if (is_atapi_taskfile(&qc->tf)) {
3345 /* DRQ=0 means no more data to transfer */
3346 if ((status & ATA_DRQ) == 0) {
3347 ap->hsm_task_state = HSM_ST_LAST;
3348 return;
3349 }
3350
3351 atapi_pio_bytes(qc);
3352 } else {
3353 /* handle BSY=0, DRQ=0 as error */
3354 if ((status & ATA_DRQ) == 0) {
3355 qc->err_mask |= AC_ERR_HSM;
3356 ap->hsm_task_state = HSM_ST_ERR;
3357 return;
3358 }
3359
3360 ata_pio_sector(qc);
3361 }
3362 }
3363
3364 static void ata_pio_error(struct ata_port *ap)
3365 {
3366 struct ata_queued_cmd *qc;
3367
3368 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3369
3370 qc = ata_qc_from_tag(ap, ap->active_tag);
3371 assert(qc != NULL);
3372
3373 /* make sure qc->err_mask is available to
3374 * know what's wrong and recover
3375 */
3376 assert(qc->err_mask);
3377
3378 ap->hsm_task_state = HSM_ST_IDLE;
3379
3380 ata_poll_qc_complete(qc);
3381 }
3382
3383 static void ata_pio_task(void *_data)
3384 {
3385 struct ata_port *ap = _data;
3386 unsigned long timeout;
3387 int qc_completed;
3388
3389 fsm_start:
3390 timeout = 0;
3391 qc_completed = 0;
3392
3393 switch (ap->hsm_task_state) {
3394 case HSM_ST_IDLE:
3395 return;
3396
3397 case HSM_ST:
3398 ata_pio_block(ap);
3399 break;
3400
3401 case HSM_ST_LAST:
3402 qc_completed = ata_pio_complete(ap);
3403 break;
3404
3405 case HSM_ST_POLL:
3406 case HSM_ST_LAST_POLL:
3407 timeout = ata_pio_poll(ap);
3408 break;
3409
3410 case HSM_ST_TMOUT:
3411 case HSM_ST_ERR:
3412 ata_pio_error(ap);
3413 return;
3414 }
3415
3416 if (timeout)
3417 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3418 else if (!qc_completed)
3419 goto fsm_start;
3420 }
3421
3422 /**
3423 * ata_qc_timeout - Handle timeout of queued command
3424 * @qc: Command that timed out
3425 *
3426 * Some part of the kernel (currently, only the SCSI layer)
3427 * has noticed that the active command on port @ap has not
3428 * completed after a specified length of time. Handle this
3429 * condition by disabling DMA (if necessary) and completing
3430 * transactions, with error if necessary.
3431 *
3432 * This also handles the case of the "lost interrupt", where
3433 * for some reason (possibly hardware bug, possibly driver bug)
3434 * an interrupt was not delivered to the driver, even though the
3435 * transaction completed successfully.
3436 *
3437 * LOCKING:
3438 * Inherited from SCSI layer (none, can sleep)
3439 */
3440
3441 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3442 {
3443 struct ata_port *ap = qc->ap;
3444 struct ata_host_set *host_set = ap->host_set;
3445 u8 host_stat = 0, drv_stat;
3446 unsigned long flags;
3447
3448 DPRINTK("ENTER\n");
3449
3450 spin_lock_irqsave(&host_set->lock, flags);
3451
3452 /* hack alert! We cannot use the supplied completion
3453 * function from inside the ->eh_strategy_handler() thread.
3454 * libata is the only user of ->eh_strategy_handler() in
3455 * any kernel, so the default scsi_done() assumes it is
3456 * not being called from the SCSI EH.
3457 */
3458 qc->scsidone = scsi_finish_command;
3459
3460 switch (qc->tf.protocol) {
3461
3462 case ATA_PROT_DMA:
3463 case ATA_PROT_ATAPI_DMA:
3464 host_stat = ap->ops->bmdma_status(ap);
3465
3466 /* before we do anything else, clear DMA-Start bit */
3467 ap->ops->bmdma_stop(qc);
3468
3469 /* fall through */
3470
3471 default:
3472 ata_altstatus(ap);
3473 drv_stat = ata_chk_status(ap);
3474
3475 /* ack bmdma irq events */
3476 ap->ops->irq_clear(ap);
3477
3478 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3479 ap->id, qc->tf.command, drv_stat, host_stat);
3480
3481 /* complete taskfile transaction */
3482 qc->err_mask |= ac_err_mask(drv_stat);
3483 ata_qc_complete(qc);
3484 break;
3485 }
3486
3487 spin_unlock_irqrestore(&host_set->lock, flags);
3488
3489 DPRINTK("EXIT\n");
3490 }
3491
3492 /**
3493 * ata_eng_timeout - Handle timeout of queued command
3494 * @ap: Port on which timed-out command is active
3495 *
3496 * Some part of the kernel (currently, only the SCSI layer)
3497 * has noticed that the active command on port @ap has not
3498 * completed after a specified length of time. Handle this
3499 * condition by disabling DMA (if necessary) and completing
3500 * transactions, with error if necessary.
3501 *
3502 * This also handles the case of the "lost interrupt", where
3503 * for some reason (possibly hardware bug, possibly driver bug)
3504 * an interrupt was not delivered to the driver, even though the
3505 * transaction completed successfully.
3506 *
3507 * LOCKING:
3508 * Inherited from SCSI layer (none, can sleep)
3509 */
3510
3511 void ata_eng_timeout(struct ata_port *ap)
3512 {
3513 struct ata_queued_cmd *qc;
3514
3515 DPRINTK("ENTER\n");
3516
3517 qc = ata_qc_from_tag(ap, ap->active_tag);
3518 if (qc)
3519 ata_qc_timeout(qc);
3520 else {
3521 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3522 ap->id);
3523 goto out;
3524 }
3525
3526 out:
3527 DPRINTK("EXIT\n");
3528 }
3529
3530 /**
3531 * ata_qc_new - Request an available ATA command, for queueing
3532 * @ap: Port associated with device @dev
3533 * @dev: Device from whom we request an available command structure
3534 *
3535 * LOCKING:
3536 * None.
3537 */
3538
3539 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3540 {
3541 struct ata_queued_cmd *qc = NULL;
3542 unsigned int i;
3543
3544 for (i = 0; i < ATA_MAX_QUEUE; i++)
3545 if (!test_and_set_bit(i, &ap->qactive)) {
3546 qc = ata_qc_from_tag(ap, i);
3547 break;
3548 }
3549
3550 if (qc)
3551 qc->tag = i;
3552
3553 return qc;
3554 }
3555
3556 /**
3557 * ata_qc_new_init - Request an available ATA command, and initialize it
3558 * @ap: Port associated with device @dev
3559 * @dev: Device from whom we request an available command structure
3560 *
3561 * LOCKING:
3562 * None.
3563 */
3564
3565 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3566 struct ata_device *dev)
3567 {
3568 struct ata_queued_cmd *qc;
3569
3570 qc = ata_qc_new(ap);
3571 if (qc) {
3572 qc->scsicmd = NULL;
3573 qc->ap = ap;
3574 qc->dev = dev;
3575
3576 ata_qc_reinit(qc);
3577 }
3578
3579 return qc;
3580 }
3581
3582 /**
3583 * ata_qc_free - free unused ata_queued_cmd
3584 * @qc: Command to complete
3585 *
3586 * Designed to free unused ata_queued_cmd object
3587 * in case something prevents using it.
3588 *
3589 * LOCKING:
3590 * spin_lock_irqsave(host_set lock)
3591 */
3592 void ata_qc_free(struct ata_queued_cmd *qc)
3593 {
3594 struct ata_port *ap = qc->ap;
3595 unsigned int tag;
3596
3597 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3598
3599 qc->flags = 0;
3600 tag = qc->tag;
3601 if (likely(ata_tag_valid(tag))) {
3602 if (tag == ap->active_tag)
3603 ap->active_tag = ATA_TAG_POISON;
3604 qc->tag = ATA_TAG_POISON;
3605 clear_bit(tag, &ap->qactive);
3606 }
3607 }
3608
3609 /**
3610 * ata_qc_complete - Complete an active ATA command
3611 * @qc: Command to complete
3612 * @err_mask: ATA Status register contents
3613 *
3614 * Indicate to the mid and upper layers that an ATA
3615 * command has completed, with either an ok or not-ok status.
3616 *
3617 * LOCKING:
3618 * spin_lock_irqsave(host_set lock)
3619 */
3620
3621 void ata_qc_complete(struct ata_queued_cmd *qc)
3622 {
3623 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3624 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3625
3626 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3627 ata_sg_clean(qc);
3628
3629 /* atapi: mark qc as inactive to prevent the interrupt handler
3630 * from completing the command twice later, before the error handler
3631 * is called. (when rc != 0 and atapi request sense is needed)
3632 */
3633 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3634
3635 /* call completion callback */
3636 qc->complete_fn(qc);
3637 }
3638
3639 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3640 {
3641 struct ata_port *ap = qc->ap;
3642
3643 switch (qc->tf.protocol) {
3644 case ATA_PROT_DMA:
3645 case ATA_PROT_ATAPI_DMA:
3646 return 1;
3647
3648 case ATA_PROT_ATAPI:
3649 case ATA_PROT_PIO:
3650 case ATA_PROT_PIO_MULT:
3651 if (ap->flags & ATA_FLAG_PIO_DMA)
3652 return 1;
3653
3654 /* fall through */
3655
3656 default:
3657 return 0;
3658 }
3659
3660 /* never reached */
3661 }
3662
3663 /**
3664 * ata_qc_issue - issue taskfile to device
3665 * @qc: command to issue to device
3666 *
3667 * Prepare an ATA command to submission to device.
3668 * This includes mapping the data into a DMA-able
3669 * area, filling in the S/G table, and finally
3670 * writing the taskfile to hardware, starting the command.
3671 *
3672 * LOCKING:
3673 * spin_lock_irqsave(host_set lock)
3674 *
3675 * RETURNS:
3676 * Zero on success, AC_ERR_* mask on failure
3677 */
3678
3679 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3680 {
3681 struct ata_port *ap = qc->ap;
3682
3683 if (ata_should_dma_map(qc)) {
3684 if (qc->flags & ATA_QCFLAG_SG) {
3685 if (ata_sg_setup(qc))
3686 goto sg_err;
3687 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3688 if (ata_sg_setup_one(qc))
3689 goto sg_err;
3690 }
3691 } else {
3692 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3693 }
3694
3695 ap->ops->qc_prep(qc);
3696
3697 qc->ap->active_tag = qc->tag;
3698 qc->flags |= ATA_QCFLAG_ACTIVE;
3699
3700 return ap->ops->qc_issue(qc);
3701
3702 sg_err:
3703 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3704 return AC_ERR_SYSTEM;
3705 }
3706
3707
3708 /**
3709 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3710 * @qc: command to issue to device
3711 *
3712 * Using various libata functions and hooks, this function
3713 * starts an ATA command. ATA commands are grouped into
3714 * classes called "protocols", and issuing each type of protocol
3715 * is slightly different.
3716 *
3717 * May be used as the qc_issue() entry in ata_port_operations.
3718 *
3719 * LOCKING:
3720 * spin_lock_irqsave(host_set lock)
3721 *
3722 * RETURNS:
3723 * Zero on success, AC_ERR_* mask on failure
3724 */
3725
3726 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3727 {
3728 struct ata_port *ap = qc->ap;
3729
3730 ata_dev_select(ap, qc->dev->devno, 1, 0);
3731
3732 switch (qc->tf.protocol) {
3733 case ATA_PROT_NODATA:
3734 ata_tf_to_host(ap, &qc->tf);
3735 break;
3736
3737 case ATA_PROT_DMA:
3738 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3739 ap->ops->bmdma_setup(qc); /* set up bmdma */
3740 ap->ops->bmdma_start(qc); /* initiate bmdma */
3741 break;
3742
3743 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3744 ata_qc_set_polling(qc);
3745 ata_tf_to_host(ap, &qc->tf);
3746 ap->hsm_task_state = HSM_ST;
3747 queue_work(ata_wq, &ap->pio_task);
3748 break;
3749
3750 case ATA_PROT_ATAPI:
3751 ata_qc_set_polling(qc);
3752 ata_tf_to_host(ap, &qc->tf);
3753 queue_work(ata_wq, &ap->packet_task);
3754 break;
3755
3756 case ATA_PROT_ATAPI_NODATA:
3757 ap->flags |= ATA_FLAG_NOINTR;
3758 ata_tf_to_host(ap, &qc->tf);
3759 queue_work(ata_wq, &ap->packet_task);
3760 break;
3761
3762 case ATA_PROT_ATAPI_DMA:
3763 ap->flags |= ATA_FLAG_NOINTR;
3764 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3765 ap->ops->bmdma_setup(qc); /* set up bmdma */
3766 queue_work(ata_wq, &ap->packet_task);
3767 break;
3768
3769 default:
3770 WARN_ON(1);
3771 return AC_ERR_SYSTEM;
3772 }
3773
3774 return 0;
3775 }
3776
3777 /**
3778 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3779 * @qc: Info associated with this ATA transaction.
3780 *
3781 * LOCKING:
3782 * spin_lock_irqsave(host_set lock)
3783 */
3784
3785 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3786 {
3787 struct ata_port *ap = qc->ap;
3788 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3789 u8 dmactl;
3790 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3791
3792 /* load PRD table addr. */
3793 mb(); /* make sure PRD table writes are visible to controller */
3794 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3795
3796 /* specify data direction, triple-check start bit is clear */
3797 dmactl = readb(mmio + ATA_DMA_CMD);
3798 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3799 if (!rw)
3800 dmactl |= ATA_DMA_WR;
3801 writeb(dmactl, mmio + ATA_DMA_CMD);
3802
3803 /* issue r/w command */
3804 ap->ops->exec_command(ap, &qc->tf);
3805 }
3806
3807 /**
3808 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3809 * @qc: Info associated with this ATA transaction.
3810 *
3811 * LOCKING:
3812 * spin_lock_irqsave(host_set lock)
3813 */
3814
3815 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3816 {
3817 struct ata_port *ap = qc->ap;
3818 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3819 u8 dmactl;
3820
3821 /* start host DMA transaction */
3822 dmactl = readb(mmio + ATA_DMA_CMD);
3823 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3824
3825 /* Strictly, one may wish to issue a readb() here, to
3826 * flush the mmio write. However, control also passes
3827 * to the hardware at this point, and it will interrupt
3828 * us when we are to resume control. So, in effect,
3829 * we don't care when the mmio write flushes.
3830 * Further, a read of the DMA status register _immediately_
3831 * following the write may not be what certain flaky hardware
3832 * is expected, so I think it is best to not add a readb()
3833 * without first all the MMIO ATA cards/mobos.
3834 * Or maybe I'm just being paranoid.
3835 */
3836 }
3837
3838 /**
3839 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3840 * @qc: Info associated with this ATA transaction.
3841 *
3842 * LOCKING:
3843 * spin_lock_irqsave(host_set lock)
3844 */
3845
3846 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3847 {
3848 struct ata_port *ap = qc->ap;
3849 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3850 u8 dmactl;
3851
3852 /* load PRD table addr. */
3853 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3854
3855 /* specify data direction, triple-check start bit is clear */
3856 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3857 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3858 if (!rw)
3859 dmactl |= ATA_DMA_WR;
3860 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3861
3862 /* issue r/w command */
3863 ap->ops->exec_command(ap, &qc->tf);
3864 }
3865
3866 /**
3867 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3868 * @qc: Info associated with this ATA transaction.
3869 *
3870 * LOCKING:
3871 * spin_lock_irqsave(host_set lock)
3872 */
3873
3874 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3875 {
3876 struct ata_port *ap = qc->ap;
3877 u8 dmactl;
3878
3879 /* start host DMA transaction */
3880 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3881 outb(dmactl | ATA_DMA_START,
3882 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3883 }
3884
3885
3886 /**
3887 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3888 * @qc: Info associated with this ATA transaction.
3889 *
3890 * Writes the ATA_DMA_START flag to the DMA command register.
3891 *
3892 * May be used as the bmdma_start() entry in ata_port_operations.
3893 *
3894 * LOCKING:
3895 * spin_lock_irqsave(host_set lock)
3896 */
3897 void ata_bmdma_start(struct ata_queued_cmd *qc)
3898 {
3899 if (qc->ap->flags & ATA_FLAG_MMIO)
3900 ata_bmdma_start_mmio(qc);
3901 else
3902 ata_bmdma_start_pio(qc);
3903 }
3904
3905
3906 /**
3907 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3908 * @qc: Info associated with this ATA transaction.
3909 *
3910 * Writes address of PRD table to device's PRD Table Address
3911 * register, sets the DMA control register, and calls
3912 * ops->exec_command() to start the transfer.
3913 *
3914 * May be used as the bmdma_setup() entry in ata_port_operations.
3915 *
3916 * LOCKING:
3917 * spin_lock_irqsave(host_set lock)
3918 */
3919 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3920 {
3921 if (qc->ap->flags & ATA_FLAG_MMIO)
3922 ata_bmdma_setup_mmio(qc);
3923 else
3924 ata_bmdma_setup_pio(qc);
3925 }
3926
3927
3928 /**
3929 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3930 * @ap: Port associated with this ATA transaction.
3931 *
3932 * Clear interrupt and error flags in DMA status register.
3933 *
3934 * May be used as the irq_clear() entry in ata_port_operations.
3935 *
3936 * LOCKING:
3937 * spin_lock_irqsave(host_set lock)
3938 */
3939
3940 void ata_bmdma_irq_clear(struct ata_port *ap)
3941 {
3942 if (ap->flags & ATA_FLAG_MMIO) {
3943 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3944 writeb(readb(mmio), mmio);
3945 } else {
3946 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3947 outb(inb(addr), addr);
3948 }
3949
3950 }
3951
3952
3953 /**
3954 * ata_bmdma_status - Read PCI IDE BMDMA status
3955 * @ap: Port associated with this ATA transaction.
3956 *
3957 * Read and return BMDMA status register.
3958 *
3959 * May be used as the bmdma_status() entry in ata_port_operations.
3960 *
3961 * LOCKING:
3962 * spin_lock_irqsave(host_set lock)
3963 */
3964
3965 u8 ata_bmdma_status(struct ata_port *ap)
3966 {
3967 u8 host_stat;
3968 if (ap->flags & ATA_FLAG_MMIO) {
3969 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3970 host_stat = readb(mmio + ATA_DMA_STATUS);
3971 } else
3972 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3973 return host_stat;
3974 }
3975
3976
3977 /**
3978 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3979 * @qc: Command we are ending DMA for
3980 *
3981 * Clears the ATA_DMA_START flag in the dma control register
3982 *
3983 * May be used as the bmdma_stop() entry in ata_port_operations.
3984 *
3985 * LOCKING:
3986 * spin_lock_irqsave(host_set lock)
3987 */
3988
3989 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3990 {
3991 struct ata_port *ap = qc->ap;
3992 if (ap->flags & ATA_FLAG_MMIO) {
3993 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3994
3995 /* clear start/stop bit */
3996 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3997 mmio + ATA_DMA_CMD);
3998 } else {
3999 /* clear start/stop bit */
4000 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4001 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4002 }
4003
4004 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4005 ata_altstatus(ap); /* dummy read */
4006 }
4007
4008 /**
4009 * ata_host_intr - Handle host interrupt for given (port, task)
4010 * @ap: Port on which interrupt arrived (possibly...)
4011 * @qc: Taskfile currently active in engine
4012 *
4013 * Handle host interrupt for given queued command. Currently,
4014 * only DMA interrupts are handled. All other commands are
4015 * handled via polling with interrupts disabled (nIEN bit).
4016 *
4017 * LOCKING:
4018 * spin_lock_irqsave(host_set lock)
4019 *
4020 * RETURNS:
4021 * One if interrupt was handled, zero if not (shared irq).
4022 */
4023
4024 inline unsigned int ata_host_intr (struct ata_port *ap,
4025 struct ata_queued_cmd *qc)
4026 {
4027 u8 status, host_stat;
4028
4029 switch (qc->tf.protocol) {
4030
4031 case ATA_PROT_DMA:
4032 case ATA_PROT_ATAPI_DMA:
4033 case ATA_PROT_ATAPI:
4034 /* check status of DMA engine */
4035 host_stat = ap->ops->bmdma_status(ap);
4036 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4037
4038 /* if it's not our irq... */
4039 if (!(host_stat & ATA_DMA_INTR))
4040 goto idle_irq;
4041
4042 /* before we do anything else, clear DMA-Start bit */
4043 ap->ops->bmdma_stop(qc);
4044
4045 /* fall through */
4046
4047 case ATA_PROT_ATAPI_NODATA:
4048 case ATA_PROT_NODATA:
4049 /* check altstatus */
4050 status = ata_altstatus(ap);
4051 if (status & ATA_BUSY)
4052 goto idle_irq;
4053
4054 /* check main status, clearing INTRQ */
4055 status = ata_chk_status(ap);
4056 if (unlikely(status & ATA_BUSY))
4057 goto idle_irq;
4058 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4059 ap->id, qc->tf.protocol, status);
4060
4061 /* ack bmdma irq events */
4062 ap->ops->irq_clear(ap);
4063
4064 /* complete taskfile transaction */
4065 qc->err_mask |= ac_err_mask(status);
4066 ata_qc_complete(qc);
4067 break;
4068
4069 default:
4070 goto idle_irq;
4071 }
4072
4073 return 1; /* irq handled */
4074
4075 idle_irq:
4076 ap->stats.idle_irq++;
4077
4078 #ifdef ATA_IRQ_TRAP
4079 if ((ap->stats.idle_irq % 1000) == 0) {
4080 handled = 1;
4081 ata_irq_ack(ap, 0); /* debug trap */
4082 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4083 }
4084 #endif
4085 return 0; /* irq not handled */
4086 }
4087
4088 /**
4089 * ata_interrupt - Default ATA host interrupt handler
4090 * @irq: irq line (unused)
4091 * @dev_instance: pointer to our ata_host_set information structure
4092 * @regs: unused
4093 *
4094 * Default interrupt handler for PCI IDE devices. Calls
4095 * ata_host_intr() for each port that is not disabled.
4096 *
4097 * LOCKING:
4098 * Obtains host_set lock during operation.
4099 *
4100 * RETURNS:
4101 * IRQ_NONE or IRQ_HANDLED.
4102 */
4103
4104 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4105 {
4106 struct ata_host_set *host_set = dev_instance;
4107 unsigned int i;
4108 unsigned int handled = 0;
4109 unsigned long flags;
4110
4111 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4112 spin_lock_irqsave(&host_set->lock, flags);
4113
4114 for (i = 0; i < host_set->n_ports; i++) {
4115 struct ata_port *ap;
4116
4117 ap = host_set->ports[i];
4118 if (ap &&
4119 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4120 struct ata_queued_cmd *qc;
4121
4122 qc = ata_qc_from_tag(ap, ap->active_tag);
4123 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4124 (qc->flags & ATA_QCFLAG_ACTIVE))
4125 handled |= ata_host_intr(ap, qc);
4126 }
4127 }
4128
4129 spin_unlock_irqrestore(&host_set->lock, flags);
4130
4131 return IRQ_RETVAL(handled);
4132 }
4133
4134 /**
4135 * atapi_packet_task - Write CDB bytes to hardware
4136 * @_data: Port to which ATAPI device is attached.
4137 *
4138 * When device has indicated its readiness to accept
4139 * a CDB, this function is called. Send the CDB.
4140 * If DMA is to be performed, exit immediately.
4141 * Otherwise, we are in polling mode, so poll
4142 * status under operation succeeds or fails.
4143 *
4144 * LOCKING:
4145 * Kernel thread context (may sleep)
4146 */
4147
4148 static void atapi_packet_task(void *_data)
4149 {
4150 struct ata_port *ap = _data;
4151 struct ata_queued_cmd *qc;
4152 u8 status;
4153
4154 qc = ata_qc_from_tag(ap, ap->active_tag);
4155 assert(qc != NULL);
4156 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4157
4158 /* sleep-wait for BSY to clear */
4159 DPRINTK("busy wait\n");
4160 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4161 qc->err_mask |= AC_ERR_TIMEOUT;
4162 goto err_out;
4163 }
4164
4165 /* make sure DRQ is set */
4166 status = ata_chk_status(ap);
4167 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4168 qc->err_mask |= AC_ERR_HSM;
4169 goto err_out;
4170 }
4171
4172 /* send SCSI cdb */
4173 DPRINTK("send cdb\n");
4174 assert(ap->cdb_len >= 12);
4175
4176 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4177 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4178 unsigned long flags;
4179
4180 /* Once we're done issuing command and kicking bmdma,
4181 * irq handler takes over. To not lose irq, we need
4182 * to clear NOINTR flag before sending cdb, but
4183 * interrupt handler shouldn't be invoked before we're
4184 * finished. Hence, the following locking.
4185 */
4186 spin_lock_irqsave(&ap->host_set->lock, flags);
4187 ap->flags &= ~ATA_FLAG_NOINTR;
4188 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4189 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4190 ap->ops->bmdma_start(qc); /* initiate bmdma */
4191 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4192 } else {
4193 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4194
4195 /* PIO commands are handled by polling */
4196 ap->hsm_task_state = HSM_ST;
4197 queue_work(ata_wq, &ap->pio_task);
4198 }
4199
4200 return;
4201
4202 err_out:
4203 ata_poll_qc_complete(qc);
4204 }
4205
4206
4207 /**
4208 * ata_port_start - Set port up for dma.
4209 * @ap: Port to initialize
4210 *
4211 * Called just after data structures for each port are
4212 * initialized. Allocates space for PRD table.
4213 *
4214 * May be used as the port_start() entry in ata_port_operations.
4215 *
4216 * LOCKING:
4217 * Inherited from caller.
4218 */
4219
4220 /*
4221 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4222 * without filling any other registers
4223 */
4224 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4225 u8 cmd)
4226 {
4227 struct ata_taskfile tf;
4228 int err;
4229
4230 ata_tf_init(ap, &tf, dev->devno);
4231
4232 tf.command = cmd;
4233 tf.flags |= ATA_TFLAG_DEVICE;
4234 tf.protocol = ATA_PROT_NODATA;
4235
4236 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4237 if (err)
4238 printk(KERN_ERR "%s: ata command failed: %d\n",
4239 __FUNCTION__, err);
4240
4241 return err;
4242 }
4243
4244 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4245 {
4246 u8 cmd;
4247
4248 if (!ata_try_flush_cache(dev))
4249 return 0;
4250
4251 if (ata_id_has_flush_ext(dev->id))
4252 cmd = ATA_CMD_FLUSH_EXT;
4253 else
4254 cmd = ATA_CMD_FLUSH;
4255
4256 return ata_do_simple_cmd(ap, dev, cmd);
4257 }
4258
4259 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4260 {
4261 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4262 }
4263
4264 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4265 {
4266 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4267 }
4268
4269 /**
4270 * ata_device_resume - wakeup a previously suspended devices
4271 *
4272 * Kick the drive back into action, by sending it an idle immediate
4273 * command and making sure its transfer mode matches between drive
4274 * and host.
4275 *
4276 */
4277 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4278 {
4279 if (ap->flags & ATA_FLAG_SUSPENDED) {
4280 ap->flags &= ~ATA_FLAG_SUSPENDED;
4281 ata_set_mode(ap);
4282 }
4283 if (!ata_dev_present(dev))
4284 return 0;
4285 if (dev->class == ATA_DEV_ATA)
4286 ata_start_drive(ap, dev);
4287
4288 return 0;
4289 }
4290
4291 /**
4292 * ata_device_suspend - prepare a device for suspend
4293 *
4294 * Flush the cache on the drive, if appropriate, then issue a
4295 * standbynow command.
4296 *
4297 */
4298 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4299 {
4300 if (!ata_dev_present(dev))
4301 return 0;
4302 if (dev->class == ATA_DEV_ATA)
4303 ata_flush_cache(ap, dev);
4304
4305 ata_standby_drive(ap, dev);
4306 ap->flags |= ATA_FLAG_SUSPENDED;
4307 return 0;
4308 }
4309
4310 int ata_port_start (struct ata_port *ap)
4311 {
4312 struct device *dev = ap->host_set->dev;
4313 int rc;
4314
4315 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4316 if (!ap->prd)
4317 return -ENOMEM;
4318
4319 rc = ata_pad_alloc(ap, dev);
4320 if (rc) {
4321 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4322 return rc;
4323 }
4324
4325 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4326
4327 return 0;
4328 }
4329
4330
4331 /**
4332 * ata_port_stop - Undo ata_port_start()
4333 * @ap: Port to shut down
4334 *
4335 * Frees the PRD table.
4336 *
4337 * May be used as the port_stop() entry in ata_port_operations.
4338 *
4339 * LOCKING:
4340 * Inherited from caller.
4341 */
4342
4343 void ata_port_stop (struct ata_port *ap)
4344 {
4345 struct device *dev = ap->host_set->dev;
4346
4347 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4348 ata_pad_free(ap, dev);
4349 }
4350
4351 void ata_host_stop (struct ata_host_set *host_set)
4352 {
4353 if (host_set->mmio_base)
4354 iounmap(host_set->mmio_base);
4355 }
4356
4357
4358 /**
4359 * ata_host_remove - Unregister SCSI host structure with upper layers
4360 * @ap: Port to unregister
4361 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4362 *
4363 * LOCKING:
4364 * Inherited from caller.
4365 */
4366
4367 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4368 {
4369 struct Scsi_Host *sh = ap->host;
4370
4371 DPRINTK("ENTER\n");
4372
4373 if (do_unregister)
4374 scsi_remove_host(sh);
4375
4376 ap->ops->port_stop(ap);
4377 }
4378
4379 /**
4380 * ata_host_init - Initialize an ata_port structure
4381 * @ap: Structure to initialize
4382 * @host: associated SCSI mid-layer structure
4383 * @host_set: Collection of hosts to which @ap belongs
4384 * @ent: Probe information provided by low-level driver
4385 * @port_no: Port number associated with this ata_port
4386 *
4387 * Initialize a new ata_port structure, and its associated
4388 * scsi_host.
4389 *
4390 * LOCKING:
4391 * Inherited from caller.
4392 */
4393
4394 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4395 struct ata_host_set *host_set,
4396 const struct ata_probe_ent *ent, unsigned int port_no)
4397 {
4398 unsigned int i;
4399
4400 host->max_id = 16;
4401 host->max_lun = 1;
4402 host->max_channel = 1;
4403 host->unique_id = ata_unique_id++;
4404 host->max_cmd_len = 12;
4405
4406 ap->flags = ATA_FLAG_PORT_DISABLED;
4407 ap->id = host->unique_id;
4408 ap->host = host;
4409 ap->ctl = ATA_DEVCTL_OBS;
4410 ap->host_set = host_set;
4411 ap->port_no = port_no;
4412 ap->hard_port_no =
4413 ent->legacy_mode ? ent->hard_port_no : port_no;
4414 ap->pio_mask = ent->pio_mask;
4415 ap->mwdma_mask = ent->mwdma_mask;
4416 ap->udma_mask = ent->udma_mask;
4417 ap->flags |= ent->host_flags;
4418 ap->ops = ent->port_ops;
4419 ap->cbl = ATA_CBL_NONE;
4420 ap->active_tag = ATA_TAG_POISON;
4421 ap->last_ctl = 0xFF;
4422
4423 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4424 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4425
4426 for (i = 0; i < ATA_MAX_DEVICES; i++)
4427 ap->device[i].devno = i;
4428
4429 #ifdef ATA_IRQ_TRAP
4430 ap->stats.unhandled_irq = 1;
4431 ap->stats.idle_irq = 1;
4432 #endif
4433
4434 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4435 }
4436
4437 /**
4438 * ata_host_add - Attach low-level ATA driver to system
4439 * @ent: Information provided by low-level driver
4440 * @host_set: Collections of ports to which we add
4441 * @port_no: Port number associated with this host
4442 *
4443 * Attach low-level ATA driver to system.
4444 *
4445 * LOCKING:
4446 * PCI/etc. bus probe sem.
4447 *
4448 * RETURNS:
4449 * New ata_port on success, for NULL on error.
4450 */
4451
4452 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4453 struct ata_host_set *host_set,
4454 unsigned int port_no)
4455 {
4456 struct Scsi_Host *host;
4457 struct ata_port *ap;
4458 int rc;
4459
4460 DPRINTK("ENTER\n");
4461 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4462 if (!host)
4463 return NULL;
4464
4465 ap = (struct ata_port *) &host->hostdata[0];
4466
4467 ata_host_init(ap, host, host_set, ent, port_no);
4468
4469 rc = ap->ops->port_start(ap);
4470 if (rc)
4471 goto err_out;
4472
4473 return ap;
4474
4475 err_out:
4476 scsi_host_put(host);
4477 return NULL;
4478 }
4479
4480 /**
4481 * ata_device_add - Register hardware device with ATA and SCSI layers
4482 * @ent: Probe information describing hardware device to be registered
4483 *
4484 * This function processes the information provided in the probe
4485 * information struct @ent, allocates the necessary ATA and SCSI
4486 * host information structures, initializes them, and registers
4487 * everything with requisite kernel subsystems.
4488 *
4489 * This function requests irqs, probes the ATA bus, and probes
4490 * the SCSI bus.
4491 *
4492 * LOCKING:
4493 * PCI/etc. bus probe sem.
4494 *
4495 * RETURNS:
4496 * Number of ports registered. Zero on error (no ports registered).
4497 */
4498
4499 int ata_device_add(const struct ata_probe_ent *ent)
4500 {
4501 unsigned int count = 0, i;
4502 struct device *dev = ent->dev;
4503 struct ata_host_set *host_set;
4504
4505 DPRINTK("ENTER\n");
4506 /* alloc a container for our list of ATA ports (buses) */
4507 host_set = kzalloc(sizeof(struct ata_host_set) +
4508 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4509 if (!host_set)
4510 return 0;
4511 spin_lock_init(&host_set->lock);
4512
4513 host_set->dev = dev;
4514 host_set->n_ports = ent->n_ports;
4515 host_set->irq = ent->irq;
4516 host_set->mmio_base = ent->mmio_base;
4517 host_set->private_data = ent->private_data;
4518 host_set->ops = ent->port_ops;
4519
4520 /* register each port bound to this device */
4521 for (i = 0; i < ent->n_ports; i++) {
4522 struct ata_port *ap;
4523 unsigned long xfer_mode_mask;
4524
4525 ap = ata_host_add(ent, host_set, i);
4526 if (!ap)
4527 goto err_out;
4528
4529 host_set->ports[i] = ap;
4530 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4531 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4532 (ap->pio_mask << ATA_SHIFT_PIO);
4533
4534 /* print per-port info to dmesg */
4535 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4536 "bmdma 0x%lX irq %lu\n",
4537 ap->id,
4538 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4539 ata_mode_string(xfer_mode_mask),
4540 ap->ioaddr.cmd_addr,
4541 ap->ioaddr.ctl_addr,
4542 ap->ioaddr.bmdma_addr,
4543 ent->irq);
4544
4545 ata_chk_status(ap);
4546 host_set->ops->irq_clear(ap);
4547 count++;
4548 }
4549
4550 if (!count)
4551 goto err_free_ret;
4552
4553 /* obtain irq, that is shared between channels */
4554 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4555 DRV_NAME, host_set))
4556 goto err_out;
4557
4558 /* perform each probe synchronously */
4559 DPRINTK("probe begin\n");
4560 for (i = 0; i < count; i++) {
4561 struct ata_port *ap;
4562 int rc;
4563
4564 ap = host_set->ports[i];
4565
4566 DPRINTK("ata%u: probe begin\n", ap->id);
4567 rc = ata_bus_probe(ap);
4568 DPRINTK("ata%u: probe end\n", ap->id);
4569
4570 if (rc) {
4571 /* FIXME: do something useful here?
4572 * Current libata behavior will
4573 * tear down everything when
4574 * the module is removed
4575 * or the h/w is unplugged.
4576 */
4577 }
4578
4579 rc = scsi_add_host(ap->host, dev);
4580 if (rc) {
4581 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4582 ap->id);
4583 /* FIXME: do something useful here */
4584 /* FIXME: handle unconditional calls to
4585 * scsi_scan_host and ata_host_remove, below,
4586 * at the very least
4587 */
4588 }
4589 }
4590
4591 /* probes are done, now scan each port's disk(s) */
4592 DPRINTK("probe begin\n");
4593 for (i = 0; i < count; i++) {
4594 struct ata_port *ap = host_set->ports[i];
4595
4596 ata_scsi_scan_host(ap);
4597 }
4598
4599 dev_set_drvdata(dev, host_set);
4600
4601 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4602 return ent->n_ports; /* success */
4603
4604 err_out:
4605 for (i = 0; i < count; i++) {
4606 ata_host_remove(host_set->ports[i], 1);
4607 scsi_host_put(host_set->ports[i]->host);
4608 }
4609 err_free_ret:
4610 kfree(host_set);
4611 VPRINTK("EXIT, returning 0\n");
4612 return 0;
4613 }
4614
4615 /**
4616 * ata_host_set_remove - PCI layer callback for device removal
4617 * @host_set: ATA host set that was removed
4618 *
4619 * Unregister all objects associated with this host set. Free those
4620 * objects.
4621 *
4622 * LOCKING:
4623 * Inherited from calling layer (may sleep).
4624 */
4625
4626 void ata_host_set_remove(struct ata_host_set *host_set)
4627 {
4628 struct ata_port *ap;
4629 unsigned int i;
4630
4631 for (i = 0; i < host_set->n_ports; i++) {
4632 ap = host_set->ports[i];
4633 scsi_remove_host(ap->host);
4634 }
4635
4636 free_irq(host_set->irq, host_set);
4637
4638 for (i = 0; i < host_set->n_ports; i++) {
4639 ap = host_set->ports[i];
4640
4641 ata_scsi_release(ap->host);
4642
4643 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4644 struct ata_ioports *ioaddr = &ap->ioaddr;
4645
4646 if (ioaddr->cmd_addr == 0x1f0)
4647 release_region(0x1f0, 8);
4648 else if (ioaddr->cmd_addr == 0x170)
4649 release_region(0x170, 8);
4650 }
4651
4652 scsi_host_put(ap->host);
4653 }
4654
4655 if (host_set->ops->host_stop)
4656 host_set->ops->host_stop(host_set);
4657
4658 kfree(host_set);
4659 }
4660
4661 /**
4662 * ata_scsi_release - SCSI layer callback hook for host unload
4663 * @host: libata host to be unloaded
4664 *
4665 * Performs all duties necessary to shut down a libata port...
4666 * Kill port kthread, disable port, and release resources.
4667 *
4668 * LOCKING:
4669 * Inherited from SCSI layer.
4670 *
4671 * RETURNS:
4672 * One.
4673 */
4674
4675 int ata_scsi_release(struct Scsi_Host *host)
4676 {
4677 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4678
4679 DPRINTK("ENTER\n");
4680
4681 ap->ops->port_disable(ap);
4682 ata_host_remove(ap, 0);
4683
4684 DPRINTK("EXIT\n");
4685 return 1;
4686 }
4687
4688 /**
4689 * ata_std_ports - initialize ioaddr with standard port offsets.
4690 * @ioaddr: IO address structure to be initialized
4691 *
4692 * Utility function which initializes data_addr, error_addr,
4693 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4694 * device_addr, status_addr, and command_addr to standard offsets
4695 * relative to cmd_addr.
4696 *
4697 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4698 */
4699
4700 void ata_std_ports(struct ata_ioports *ioaddr)
4701 {
4702 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4703 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4704 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4705 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4706 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4707 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4708 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4709 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4710 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4711 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4712 }
4713
4714 static struct ata_probe_ent *
4715 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
4716 {
4717 struct ata_probe_ent *probe_ent;
4718
4719 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
4720 if (!probe_ent) {
4721 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4722 kobject_name(&(dev->kobj)));
4723 return NULL;
4724 }
4725
4726 INIT_LIST_HEAD(&probe_ent->node);
4727 probe_ent->dev = dev;
4728
4729 probe_ent->sht = port->sht;
4730 probe_ent->host_flags = port->host_flags;
4731 probe_ent->pio_mask = port->pio_mask;
4732 probe_ent->mwdma_mask = port->mwdma_mask;
4733 probe_ent->udma_mask = port->udma_mask;
4734 probe_ent->port_ops = port->port_ops;
4735
4736 return probe_ent;
4737 }
4738
4739
4740
4741 #ifdef CONFIG_PCI
4742
4743 void ata_pci_host_stop (struct ata_host_set *host_set)
4744 {
4745 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4746
4747 pci_iounmap(pdev, host_set->mmio_base);
4748 }
4749
4750 /**
4751 * ata_pci_init_native_mode - Initialize native-mode driver
4752 * @pdev: pci device to be initialized
4753 * @port: array[2] of pointers to port info structures.
4754 * @ports: bitmap of ports present
4755 *
4756 * Utility function which allocates and initializes an
4757 * ata_probe_ent structure for a standard dual-port
4758 * PIO-based IDE controller. The returned ata_probe_ent
4759 * structure can be passed to ata_device_add(). The returned
4760 * ata_probe_ent structure should then be freed with kfree().
4761 *
4762 * The caller need only pass the address of the primary port, the
4763 * secondary will be deduced automatically. If the device has non
4764 * standard secondary port mappings this function can be called twice,
4765 * once for each interface.
4766 */
4767
4768 struct ata_probe_ent *
4769 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
4770 {
4771 struct ata_probe_ent *probe_ent =
4772 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4773 int p = 0;
4774
4775 if (!probe_ent)
4776 return NULL;
4777
4778 probe_ent->irq = pdev->irq;
4779 probe_ent->irq_flags = SA_SHIRQ;
4780 probe_ent->private_data = port[0]->private_data;
4781
4782 if (ports & ATA_PORT_PRIMARY) {
4783 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4784 probe_ent->port[p].altstatus_addr =
4785 probe_ent->port[p].ctl_addr =
4786 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4787 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4788 ata_std_ports(&probe_ent->port[p]);
4789 p++;
4790 }
4791
4792 if (ports & ATA_PORT_SECONDARY) {
4793 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4794 probe_ent->port[p].altstatus_addr =
4795 probe_ent->port[p].ctl_addr =
4796 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4797 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4798 ata_std_ports(&probe_ent->port[p]);
4799 p++;
4800 }
4801
4802 probe_ent->n_ports = p;
4803 return probe_ent;
4804 }
4805
4806 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
4807 {
4808 struct ata_probe_ent *probe_ent;
4809
4810 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
4811 if (!probe_ent)
4812 return NULL;
4813
4814 probe_ent->legacy_mode = 1;
4815 probe_ent->n_ports = 1;
4816 probe_ent->hard_port_no = port_num;
4817 probe_ent->private_data = port->private_data;
4818
4819 switch(port_num)
4820 {
4821 case 0:
4822 probe_ent->irq = 14;
4823 probe_ent->port[0].cmd_addr = 0x1f0;
4824 probe_ent->port[0].altstatus_addr =
4825 probe_ent->port[0].ctl_addr = 0x3f6;
4826 break;
4827 case 1:
4828 probe_ent->irq = 15;
4829 probe_ent->port[0].cmd_addr = 0x170;
4830 probe_ent->port[0].altstatus_addr =
4831 probe_ent->port[0].ctl_addr = 0x376;
4832 break;
4833 }
4834 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
4835 ata_std_ports(&probe_ent->port[0]);
4836 return probe_ent;
4837 }
4838
4839 /**
4840 * ata_pci_init_one - Initialize/register PCI IDE host controller
4841 * @pdev: Controller to be initialized
4842 * @port_info: Information from low-level host driver
4843 * @n_ports: Number of ports attached to host controller
4844 *
4845 * This is a helper function which can be called from a driver's
4846 * xxx_init_one() probe function if the hardware uses traditional
4847 * IDE taskfile registers.
4848 *
4849 * This function calls pci_enable_device(), reserves its register
4850 * regions, sets the dma mask, enables bus master mode, and calls
4851 * ata_device_add()
4852 *
4853 * LOCKING:
4854 * Inherited from PCI layer (may sleep).
4855 *
4856 * RETURNS:
4857 * Zero on success, negative on errno-based value on error.
4858 */
4859
4860 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4861 unsigned int n_ports)
4862 {
4863 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
4864 struct ata_port_info *port[2];
4865 u8 tmp8, mask;
4866 unsigned int legacy_mode = 0;
4867 int disable_dev_on_err = 1;
4868 int rc;
4869
4870 DPRINTK("ENTER\n");
4871
4872 port[0] = port_info[0];
4873 if (n_ports > 1)
4874 port[1] = port_info[1];
4875 else
4876 port[1] = port[0];
4877
4878 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4879 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4880 /* TODO: What if one channel is in native mode ... */
4881 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4882 mask = (1 << 2) | (1 << 0);
4883 if ((tmp8 & mask) != mask)
4884 legacy_mode = (1 << 3);
4885 }
4886
4887 /* FIXME... */
4888 if ((!legacy_mode) && (n_ports > 2)) {
4889 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4890 n_ports = 2;
4891 /* For now */
4892 }
4893
4894 /* FIXME: Really for ATA it isn't safe because the device may be
4895 multi-purpose and we want to leave it alone if it was already
4896 enabled. Secondly for shared use as Arjan says we want refcounting
4897
4898 Checking dev->is_enabled is insufficient as this is not set at
4899 boot for the primary video which is BIOS enabled
4900 */
4901
4902 rc = pci_enable_device(pdev);
4903 if (rc)
4904 return rc;
4905
4906 rc = pci_request_regions(pdev, DRV_NAME);
4907 if (rc) {
4908 disable_dev_on_err = 0;
4909 goto err_out;
4910 }
4911
4912 /* FIXME: Should use platform specific mappers for legacy port ranges */
4913 if (legacy_mode) {
4914 if (!request_region(0x1f0, 8, "libata")) {
4915 struct resource *conflict, res;
4916 res.start = 0x1f0;
4917 res.end = 0x1f0 + 8 - 1;
4918 conflict = ____request_resource(&ioport_resource, &res);
4919 if (!strcmp(conflict->name, "libata"))
4920 legacy_mode |= (1 << 0);
4921 else {
4922 disable_dev_on_err = 0;
4923 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4924 }
4925 } else
4926 legacy_mode |= (1 << 0);
4927
4928 if (!request_region(0x170, 8, "libata")) {
4929 struct resource *conflict, res;
4930 res.start = 0x170;
4931 res.end = 0x170 + 8 - 1;
4932 conflict = ____request_resource(&ioport_resource, &res);
4933 if (!strcmp(conflict->name, "libata"))
4934 legacy_mode |= (1 << 1);
4935 else {
4936 disable_dev_on_err = 0;
4937 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4938 }
4939 } else
4940 legacy_mode |= (1 << 1);
4941 }
4942
4943 /* we have legacy mode, but all ports are unavailable */
4944 if (legacy_mode == (1 << 3)) {
4945 rc = -EBUSY;
4946 goto err_out_regions;
4947 }
4948
4949 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4950 if (rc)
4951 goto err_out_regions;
4952 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4953 if (rc)
4954 goto err_out_regions;
4955
4956 if (legacy_mode) {
4957 if (legacy_mode & (1 << 0))
4958 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
4959 if (legacy_mode & (1 << 1))
4960 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
4961 } else {
4962 if (n_ports == 2)
4963 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4964 else
4965 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4966 }
4967 if (!probe_ent && !probe_ent2) {
4968 rc = -ENOMEM;
4969 goto err_out_regions;
4970 }
4971
4972 pci_set_master(pdev);
4973
4974 /* FIXME: check ata_device_add return */
4975 if (legacy_mode) {
4976 if (legacy_mode & (1 << 0))
4977 ata_device_add(probe_ent);
4978 if (legacy_mode & (1 << 1))
4979 ata_device_add(probe_ent2);
4980 } else
4981 ata_device_add(probe_ent);
4982
4983 kfree(probe_ent);
4984 kfree(probe_ent2);
4985
4986 return 0;
4987
4988 err_out_regions:
4989 if (legacy_mode & (1 << 0))
4990 release_region(0x1f0, 8);
4991 if (legacy_mode & (1 << 1))
4992 release_region(0x170, 8);
4993 pci_release_regions(pdev);
4994 err_out:
4995 if (disable_dev_on_err)
4996 pci_disable_device(pdev);
4997 return rc;
4998 }
4999
5000 /**
5001 * ata_pci_remove_one - PCI layer callback for device removal
5002 * @pdev: PCI device that was removed
5003 *
5004 * PCI layer indicates to libata via this hook that
5005 * hot-unplug or module unload event has occurred.
5006 * Handle this by unregistering all objects associated
5007 * with this PCI device. Free those objects. Then finally
5008 * release PCI resources and disable device.
5009 *
5010 * LOCKING:
5011 * Inherited from PCI layer (may sleep).
5012 */
5013
5014 void ata_pci_remove_one (struct pci_dev *pdev)
5015 {
5016 struct device *dev = pci_dev_to_dev(pdev);
5017 struct ata_host_set *host_set = dev_get_drvdata(dev);
5018
5019 ata_host_set_remove(host_set);
5020 pci_release_regions(pdev);
5021 pci_disable_device(pdev);
5022 dev_set_drvdata(dev, NULL);
5023 }
5024
5025 /* move to PCI subsystem */
5026 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5027 {
5028 unsigned long tmp = 0;
5029
5030 switch (bits->width) {
5031 case 1: {
5032 u8 tmp8 = 0;
5033 pci_read_config_byte(pdev, bits->reg, &tmp8);
5034 tmp = tmp8;
5035 break;
5036 }
5037 case 2: {
5038 u16 tmp16 = 0;
5039 pci_read_config_word(pdev, bits->reg, &tmp16);
5040 tmp = tmp16;
5041 break;
5042 }
5043 case 4: {
5044 u32 tmp32 = 0;
5045 pci_read_config_dword(pdev, bits->reg, &tmp32);
5046 tmp = tmp32;
5047 break;
5048 }
5049
5050 default:
5051 return -EINVAL;
5052 }
5053
5054 tmp &= bits->mask;
5055
5056 return (tmp == bits->val) ? 1 : 0;
5057 }
5058
5059 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5060 {
5061 pci_save_state(pdev);
5062 pci_disable_device(pdev);
5063 pci_set_power_state(pdev, PCI_D3hot);
5064 return 0;
5065 }
5066
5067 int ata_pci_device_resume(struct pci_dev *pdev)
5068 {
5069 pci_set_power_state(pdev, PCI_D0);
5070 pci_restore_state(pdev);
5071 pci_enable_device(pdev);
5072 pci_set_master(pdev);
5073 return 0;
5074 }
5075 #endif /* CONFIG_PCI */
5076
5077
5078 static int __init ata_init(void)
5079 {
5080 ata_wq = create_workqueue("ata");
5081 if (!ata_wq)
5082 return -ENOMEM;
5083
5084 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5085 return 0;
5086 }
5087
5088 static void __exit ata_exit(void)
5089 {
5090 destroy_workqueue(ata_wq);
5091 }
5092
5093 module_init(ata_init);
5094 module_exit(ata_exit);
5095
5096 static unsigned long ratelimit_time;
5097 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5098
5099 int ata_ratelimit(void)
5100 {
5101 int rc;
5102 unsigned long flags;
5103
5104 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5105
5106 if (time_after(jiffies, ratelimit_time)) {
5107 rc = 1;
5108 ratelimit_time = jiffies + (HZ/5);
5109 } else
5110 rc = 0;
5111
5112 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5113
5114 return rc;
5115 }
5116
5117 /*
5118 * libata is essentially a library of internal helper functions for
5119 * low-level ATA host controller drivers. As such, the API/ABI is
5120 * likely to change as new drivers are added and updated.
5121 * Do not depend on ABI/API stability.
5122 */
5123
5124 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5125 EXPORT_SYMBOL_GPL(ata_std_ports);
5126 EXPORT_SYMBOL_GPL(ata_device_add);
5127 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5128 EXPORT_SYMBOL_GPL(ata_sg_init);
5129 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5130 EXPORT_SYMBOL_GPL(ata_qc_complete);
5131 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5132 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5133 EXPORT_SYMBOL_GPL(ata_tf_load);
5134 EXPORT_SYMBOL_GPL(ata_tf_read);
5135 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5136 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5137 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5138 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5139 EXPORT_SYMBOL_GPL(ata_check_status);
5140 EXPORT_SYMBOL_GPL(ata_altstatus);
5141 EXPORT_SYMBOL_GPL(ata_exec_command);
5142 EXPORT_SYMBOL_GPL(ata_port_start);
5143 EXPORT_SYMBOL_GPL(ata_port_stop);
5144 EXPORT_SYMBOL_GPL(ata_host_stop);
5145 EXPORT_SYMBOL_GPL(ata_interrupt);
5146 EXPORT_SYMBOL_GPL(ata_qc_prep);
5147 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5148 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5149 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5150 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5151 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5152 EXPORT_SYMBOL_GPL(ata_port_probe);
5153 EXPORT_SYMBOL_GPL(sata_phy_reset);
5154 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5155 EXPORT_SYMBOL_GPL(ata_bus_reset);
5156 EXPORT_SYMBOL_GPL(ata_port_disable);
5157 EXPORT_SYMBOL_GPL(ata_ratelimit);
5158 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5159 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5160 EXPORT_SYMBOL_GPL(ata_scsi_error);
5161 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5162 EXPORT_SYMBOL_GPL(ata_scsi_release);
5163 EXPORT_SYMBOL_GPL(ata_host_intr);
5164 EXPORT_SYMBOL_GPL(ata_dev_classify);
5165 EXPORT_SYMBOL_GPL(ata_dev_id_string);
5166 EXPORT_SYMBOL_GPL(ata_dev_config);
5167 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5168
5169 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5170 EXPORT_SYMBOL_GPL(ata_timing_compute);
5171 EXPORT_SYMBOL_GPL(ata_timing_merge);
5172
5173 #ifdef CONFIG_PCI
5174 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5175 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5176 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5177 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5178 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5179 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5180 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5181 #endif /* CONFIG_PCI */
5182
5183 EXPORT_SYMBOL_GPL(ata_device_suspend);
5184 EXPORT_SYMBOL_GPL(ata_device_resume);
5185 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5186 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.185679 seconds and 6 git commands to generate.