[PATCH] libata: hold host_set lock while finishing internal qc
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
68 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
71
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
74
75 int atapi_enabled = 1;
76 module_param(atapi_enabled, int, 0444);
77 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
78
79 int atapi_dmadir = 0;
80 module_param(atapi_dmadir, int, 0444);
81 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
82
83 int libata_fua = 0;
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
86
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92
93 /**
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
98 *
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
101 *
102 * LOCKING:
103 * Inherited from caller.
104 */
105
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
107 {
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
113
114 fis[4] = tf->lbal;
115 fis[5] = tf->lbam;
116 fis[6] = tf->lbah;
117 fis[7] = tf->device;
118
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
123
124 fis[12] = tf->nsect;
125 fis[13] = tf->hob_nsect;
126 fis[14] = 0;
127 fis[15] = tf->ctl;
128
129 fis[16] = 0;
130 fis[17] = 0;
131 fis[18] = 0;
132 fis[19] = 0;
133 }
134
135 /**
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
139 *
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
147 {
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
150
151 tf->lbal = fis[4];
152 tf->lbam = fis[5];
153 tf->lbah = fis[6];
154 tf->device = fis[7];
155
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
159
160 tf->nsect = fis[12];
161 tf->hob_nsect = fis[13];
162 }
163
164 static const u8 ata_rw_cmds[] = {
165 /* pio multi */
166 ATA_CMD_READ_MULTI,
167 ATA_CMD_WRITE_MULTI,
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
170 0,
171 0,
172 0,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
174 /* pio */
175 ATA_CMD_PIO_READ,
176 ATA_CMD_PIO_WRITE,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
179 0,
180 0,
181 0,
182 0,
183 /* dma */
184 ATA_CMD_READ,
185 ATA_CMD_WRITE,
186 ATA_CMD_READ_EXT,
187 ATA_CMD_WRITE_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_FUA_EXT
192 };
193
194 /**
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
197 *
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
200 *
201 * LOCKING:
202 * caller.
203 */
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
205 {
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
208 u8 cmd;
209
210 int index, fua, lba48, write;
211
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
215
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else {
224 tf->protocol = ATA_PROT_DMA;
225 index = 16;
226 }
227
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
229 if (cmd) {
230 tf->command = cmd;
231 return 0;
232 }
233 return -1;
234 }
235
236 /**
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
241 *
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
244 *
245 * LOCKING:
246 * None.
247 *
248 * RETURNS:
249 * Packed xfer_mask.
250 */
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
254 {
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258 }
259
260 /**
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
266 *
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
269 */
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
274 {
275 if (pio_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
277 if (mwdma_mask)
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
279 if (udma_mask)
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
281 }
282
283 static const struct ata_xfer_ent {
284 int shift, bits;
285 u8 base;
286 } ata_xfer_tbl[] = {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
290 { -1, },
291 };
292
293 /**
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
296 *
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
299 *
300 * LOCKING:
301 * None.
302 *
303 * RETURNS:
304 * Matching XFER_* value, 0 if no match found.
305 */
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
307 {
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
310
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
314 return 0;
315 }
316
317 /**
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
320 *
321 * Return matching xfer_mask for @xfer_mode.
322 *
323 * LOCKING:
324 * None.
325 *
326 * RETURNS:
327 * Matching xfer_mask, 0 if no match found.
328 */
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
330 {
331 const struct ata_xfer_ent *ent;
332
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
336 return 0;
337 }
338
339 /**
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
342 *
343 * Return matching xfer_shift for @xfer_mode.
344 *
345 * LOCKING:
346 * None.
347 *
348 * RETURNS:
349 * Matching xfer_shift, -1 if no match found.
350 */
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
352 {
353 const struct ata_xfer_ent *ent;
354
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 return ent->shift;
358 return -1;
359 }
360
361 /**
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
364 *
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
367 *
368 * LOCKING:
369 * None.
370 *
371 * RETURNS:
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
374 */
375 static const char *ata_mode_string(unsigned int xfer_mask)
376 {
377 static const char * const xfer_mode_str[] = {
378 "PIO0",
379 "PIO1",
380 "PIO2",
381 "PIO3",
382 "PIO4",
383 "MWDMA0",
384 "MWDMA1",
385 "MWDMA2",
386 "UDMA/16",
387 "UDMA/25",
388 "UDMA/33",
389 "UDMA/44",
390 "UDMA/66",
391 "UDMA/100",
392 "UDMA/133",
393 "UDMA7",
394 };
395 int highbit;
396
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
400 return "<n/a>";
401 }
402
403 static const char *sata_spd_string(unsigned int spd)
404 {
405 static const char * const spd_str[] = {
406 "1.5 Gbps",
407 "3.0 Gbps",
408 };
409
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
411 return "<unknown>";
412 return spd_str[spd - 1];
413 }
414
415 void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
416 {
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
419 ap->id, dev->devno);
420 dev->class++;
421 }
422 }
423
424 /**
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
428 *
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
432 *
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
437 *
438 * LOCKING:
439 * caller.
440 */
441
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
443 unsigned int device)
444 {
445 struct ata_ioports *ioaddr = &ap->ioaddr;
446 u8 nsect, lbal;
447
448 ap->ops->dev_select(ap, device);
449
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
452
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
461
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
464
465 return 0; /* nothing found */
466 }
467
468 /**
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
472 *
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
476 *
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
481 *
482 * LOCKING:
483 * caller.
484 */
485
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
487 unsigned int device)
488 {
489 struct ata_ioports *ioaddr = &ap->ioaddr;
490 u8 nsect, lbal;
491
492 ap->ops->dev_select(ap, device);
493
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
505
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
508
509 return 0; /* nothing found */
510 }
511
512 /**
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
516 *
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
520 *
521 * LOCKING:
522 * caller.
523 */
524
525 static unsigned int ata_devchk(struct ata_port *ap,
526 unsigned int device)
527 {
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
531 }
532
533 /**
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
536 *
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
547 */
548
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
550 {
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
554 */
555
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
559 return ATA_DEV_ATA;
560 }
561
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
566 }
567
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
570 }
571
572 /**
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
577 *
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
581 * and diagnostics.
582 *
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
586 *
587 * LOCKING:
588 * caller.
589 *
590 * RETURNS:
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
592 */
593
594 static unsigned int
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
596 {
597 struct ata_taskfile tf;
598 unsigned int class;
599 u8 err;
600
601 ap->ops->dev_select(ap, device);
602
603 memset(&tf, 0, sizeof(tf));
604
605 ap->ops->tf_read(ap, &tf);
606 err = tf.feature;
607 if (r_err)
608 *r_err = err;
609
610 /* see if device passed diags */
611 if (err == 1)
612 /* do nothing */ ;
613 else if ((device == 0) && (err == 0x81))
614 /* do nothing */ ;
615 else
616 return ATA_DEV_NONE;
617
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
620
621 if (class == ATA_DEV_UNKNOWN)
622 return ATA_DEV_NONE;
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
624 return ATA_DEV_NONE;
625 return class;
626 }
627
628 /**
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
634 *
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
638 *
639 * LOCKING:
640 * caller.
641 */
642
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
645 {
646 unsigned int c;
647
648 while (len > 0) {
649 c = id[ofs] >> 8;
650 *s = c;
651 s++;
652
653 c = id[ofs] & 0xff;
654 *s = c;
655 s++;
656
657 ofs++;
658 len -= 2;
659 }
660 }
661
662 /**
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
668 *
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
672 *
673 * LOCKING:
674 * caller.
675 */
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
678 {
679 unsigned char *p;
680
681 WARN_ON(!(len & 1));
682
683 ata_id_string(id, s, ofs, len - 1);
684
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
687 p--;
688 *p = '\0';
689 }
690
691 static u64 ata_id_n_sectors(const u16 *id)
692 {
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
696 else
697 return ata_id_u32(id, 60);
698 } else {
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
701 else
702 return id[1] * id[3] * id[6];
703 }
704 }
705
706 /**
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * This function performs no actual function.
712 *
713 * May be used as the dev_select() entry in ata_port_operations.
714 *
715 * LOCKING:
716 * caller.
717 */
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
719 {
720 }
721
722
723 /**
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
727 *
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
731 *
732 * May be used as the dev_select() entry in ata_port_operations.
733 *
734 * LOCKING:
735 * caller.
736 */
737
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739 {
740 u8 tmp;
741
742 if (device == 0)
743 tmp = ATA_DEVICE_OBS;
744 else
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
746
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
749 } else {
750 outb(tmp, ap->ioaddr.device_addr);
751 }
752 ata_pause(ap); /* needed; also flushes, for mmio */
753 }
754
755 /**
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
761 *
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
764 * ATA channel.
765 *
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
769 *
770 * LOCKING:
771 * caller.
772 */
773
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
776 {
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
779
780 if (wait)
781 ata_wait_idle(ap);
782
783 ap->ops->dev_select(ap, device);
784
785 if (wait) {
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
787 msleep(150);
788 ata_wait_idle(ap);
789 }
790 }
791
792 /**
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
795 *
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
797 * page.
798 *
799 * LOCKING:
800 * caller.
801 */
802
803 static inline void ata_dump_id(const u16 *id)
804 {
805 DPRINTK("49==0x%04x "
806 "53==0x%04x "
807 "63==0x%04x "
808 "64==0x%04x "
809 "75==0x%04x \n",
810 id[49],
811 id[53],
812 id[63],
813 id[64],
814 id[75]);
815 DPRINTK("80==0x%04x "
816 "81==0x%04x "
817 "82==0x%04x "
818 "83==0x%04x "
819 "84==0x%04x \n",
820 id[80],
821 id[81],
822 id[82],
823 id[83],
824 id[84]);
825 DPRINTK("88==0x%04x "
826 "93==0x%04x\n",
827 id[88],
828 id[93]);
829 }
830
831 /**
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
834 *
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
837 *
838 * FIXME: pre IDE drive timing (do we care ?).
839 *
840 * LOCKING:
841 * None.
842 *
843 * RETURNS:
844 * Computed xfermask
845 */
846 static unsigned int ata_id_xfermask(const u16 *id)
847 {
848 unsigned int pio_mask, mwdma_mask, udma_mask;
849
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
853 pio_mask <<= 3;
854 pio_mask |= 0x7;
855 } else {
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
858 * a mask.
859 */
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
861
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
867 */
868 }
869
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
871
872 udma_mask = 0;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
875
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
877 }
878
879 /**
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
882 *
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
887 *
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
890 * synchronization.
891 *
892 * LOCKING:
893 * Inherited from caller.
894 */
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 unsigned long delay)
897 {
898 int rc;
899
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
901 return;
902
903 PREPARE_WORK(&ap->port_task, fn, data);
904
905 if (!delay)
906 rc = queue_work(ata_wq, &ap->port_task);
907 else
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
909
910 /* rc == 0 means that another user is using port task */
911 WARN_ON(rc == 0);
912 }
913
914 /**
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
917 *
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
920 *
921 * LOCKING:
922 * Kernel thread context (may sleep)
923 */
924 void ata_port_flush_task(struct ata_port *ap)
925 {
926 unsigned long flags;
927
928 DPRINTK("ENTER\n");
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
936
937 /*
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
940 * Cancel and flush.
941 */
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
945 }
946
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950
951 DPRINTK("EXIT\n");
952 }
953
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
955 {
956 struct completion *waiting = qc->private_data;
957
958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
959 complete(waiting);
960 }
961
962 /**
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
967 * @cdb: CDB for packet command
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
971 *
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
977 *
978 * LOCKING:
979 * None. Should be called with kernel context, might sleep.
980 */
981
982 unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf, const u8 *cdb,
984 int dma_dir, void *buf, unsigned int buflen)
985 {
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
990 unsigned int err_mask;
991
992 spin_lock_irqsave(&ap->host_set->lock, flags);
993
994 qc = ata_qc_new_init(ap, dev);
995 BUG_ON(qc == NULL);
996
997 qc->tf = *tf;
998 if (cdb)
999 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1000 qc->dma_dir = dma_dir;
1001 if (dma_dir != DMA_NONE) {
1002 ata_sg_init_one(qc, buf, buflen);
1003 qc->nsect = buflen / ATA_SECT_SIZE;
1004 }
1005
1006 qc->private_data = &wait;
1007 qc->complete_fn = ata_qc_complete_internal;
1008
1009 ata_qc_issue(qc);
1010
1011 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1012
1013 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1014 ata_port_flush_task(ap);
1015
1016 spin_lock_irqsave(&ap->host_set->lock, flags);
1017
1018 /* We're racing with irq here. If we lose, the
1019 * following test prevents us from completing the qc
1020 * again. If completion irq occurs after here but
1021 * before the caller cleans up, it will result in a
1022 * spurious interrupt. We can live with that.
1023 */
1024 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1025 qc->err_mask = AC_ERR_TIMEOUT;
1026 ata_qc_complete(qc);
1027 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1028 ap->id, command);
1029 }
1030
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1032 }
1033
1034 /* finish up */
1035 spin_lock_irqsave(&ap->host_set->lock, flags);
1036
1037 *tf = qc->tf;
1038 err_mask = qc->err_mask;
1039
1040 ata_qc_free(qc);
1041
1042 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1043 * Until those drivers are fixed, we detect the condition
1044 * here, fail the command with AC_ERR_SYSTEM and reenable the
1045 * port.
1046 *
1047 * Note that this doesn't change any behavior as internal
1048 * command failure results in disabling the device in the
1049 * higher layer for LLDDs without new reset/EH callbacks.
1050 *
1051 * Kill the following code as soon as those drivers are fixed.
1052 */
1053 if (ap->flags & ATA_FLAG_DISABLED) {
1054 err_mask |= AC_ERR_SYSTEM;
1055 ata_port_probe(ap);
1056 }
1057
1058 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1059
1060 return err_mask;
1061 }
1062
1063 /**
1064 * ata_pio_need_iordy - check if iordy needed
1065 * @adev: ATA device
1066 *
1067 * Check if the current speed of the device requires IORDY. Used
1068 * by various controllers for chip configuration.
1069 */
1070
1071 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1072 {
1073 int pio;
1074 int speed = adev->pio_mode - XFER_PIO_0;
1075
1076 if (speed < 2)
1077 return 0;
1078 if (speed > 2)
1079 return 1;
1080
1081 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1082
1083 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1084 pio = adev->id[ATA_ID_EIDE_PIO];
1085 /* Is the speed faster than the drive allows non IORDY ? */
1086 if (pio) {
1087 /* This is cycle times not frequency - watch the logic! */
1088 if (pio > 240) /* PIO2 is 240nS per cycle */
1089 return 1;
1090 return 0;
1091 }
1092 }
1093 return 0;
1094 }
1095
1096 /**
1097 * ata_dev_read_id - Read ID data from the specified device
1098 * @ap: port on which target device resides
1099 * @dev: target device
1100 * @p_class: pointer to class of the target device (may be changed)
1101 * @post_reset: is this read ID post-reset?
1102 * @p_id: read IDENTIFY page (newly allocated)
1103 *
1104 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1105 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1106 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1107 * for pre-ATA4 drives.
1108 *
1109 * LOCKING:
1110 * Kernel thread context (may sleep)
1111 *
1112 * RETURNS:
1113 * 0 on success, -errno otherwise.
1114 */
1115 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1116 unsigned int *p_class, int post_reset, u16 **p_id)
1117 {
1118 unsigned int class = *p_class;
1119 struct ata_taskfile tf;
1120 unsigned int err_mask = 0;
1121 u16 *id;
1122 const char *reason;
1123 int rc;
1124
1125 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1126
1127 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1128
1129 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1130 if (id == NULL) {
1131 rc = -ENOMEM;
1132 reason = "out of memory";
1133 goto err_out;
1134 }
1135
1136 retry:
1137 ata_tf_init(ap, &tf, dev->devno);
1138
1139 switch (class) {
1140 case ATA_DEV_ATA:
1141 tf.command = ATA_CMD_ID_ATA;
1142 break;
1143 case ATA_DEV_ATAPI:
1144 tf.command = ATA_CMD_ID_ATAPI;
1145 break;
1146 default:
1147 rc = -ENODEV;
1148 reason = "unsupported class";
1149 goto err_out;
1150 }
1151
1152 tf.protocol = ATA_PROT_PIO;
1153
1154 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
1155 id, sizeof(id[0]) * ATA_ID_WORDS);
1156 if (err_mask) {
1157 rc = -EIO;
1158 reason = "I/O error";
1159 goto err_out;
1160 }
1161
1162 swap_buf_le16(id, ATA_ID_WORDS);
1163
1164 /* sanity check */
1165 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1166 rc = -EINVAL;
1167 reason = "device reports illegal type";
1168 goto err_out;
1169 }
1170
1171 if (post_reset && class == ATA_DEV_ATA) {
1172 /*
1173 * The exact sequence expected by certain pre-ATA4 drives is:
1174 * SRST RESET
1175 * IDENTIFY
1176 * INITIALIZE DEVICE PARAMETERS
1177 * anything else..
1178 * Some drives were very specific about that exact sequence.
1179 */
1180 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1181 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1182 if (err_mask) {
1183 rc = -EIO;
1184 reason = "INIT_DEV_PARAMS failed";
1185 goto err_out;
1186 }
1187
1188 /* current CHS translation info (id[53-58]) might be
1189 * changed. reread the identify device info.
1190 */
1191 post_reset = 0;
1192 goto retry;
1193 }
1194 }
1195
1196 *p_class = class;
1197 *p_id = id;
1198 return 0;
1199
1200 err_out:
1201 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1202 ap->id, dev->devno, reason);
1203 kfree(id);
1204 return rc;
1205 }
1206
1207 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1208 struct ata_device *dev)
1209 {
1210 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1211 }
1212
1213 /**
1214 * ata_dev_configure - Configure the specified ATA/ATAPI device
1215 * @ap: Port on which target device resides
1216 * @dev: Target device to configure
1217 * @print_info: Enable device info printout
1218 *
1219 * Configure @dev according to @dev->id. Generic and low-level
1220 * driver specific fixups are also applied.
1221 *
1222 * LOCKING:
1223 * Kernel thread context (may sleep)
1224 *
1225 * RETURNS:
1226 * 0 on success, -errno otherwise
1227 */
1228 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1229 int print_info)
1230 {
1231 const u16 *id = dev->id;
1232 unsigned int xfer_mask;
1233 int i, rc;
1234
1235 if (!ata_dev_enabled(dev)) {
1236 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1237 ap->id, dev->devno);
1238 return 0;
1239 }
1240
1241 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1242
1243 /* print device capabilities */
1244 if (print_info)
1245 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1246 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1247 ap->id, dev->devno, id[49], id[82], id[83],
1248 id[84], id[85], id[86], id[87], id[88]);
1249
1250 /* initialize to-be-configured parameters */
1251 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1252 dev->max_sectors = 0;
1253 dev->cdb_len = 0;
1254 dev->n_sectors = 0;
1255 dev->cylinders = 0;
1256 dev->heads = 0;
1257 dev->sectors = 0;
1258
1259 /*
1260 * common ATA, ATAPI feature tests
1261 */
1262
1263 /* find max transfer mode; for printk only */
1264 xfer_mask = ata_id_xfermask(id);
1265
1266 ata_dump_id(id);
1267
1268 /* ATA-specific feature tests */
1269 if (dev->class == ATA_DEV_ATA) {
1270 dev->n_sectors = ata_id_n_sectors(id);
1271
1272 if (ata_id_has_lba(id)) {
1273 const char *lba_desc;
1274
1275 lba_desc = "LBA";
1276 dev->flags |= ATA_DFLAG_LBA;
1277 if (ata_id_has_lba48(id)) {
1278 dev->flags |= ATA_DFLAG_LBA48;
1279 lba_desc = "LBA48";
1280 }
1281
1282 /* print device info to dmesg */
1283 if (print_info)
1284 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1285 "max %s, %Lu sectors: %s\n",
1286 ap->id, dev->devno,
1287 ata_id_major_version(id),
1288 ata_mode_string(xfer_mask),
1289 (unsigned long long)dev->n_sectors,
1290 lba_desc);
1291 } else {
1292 /* CHS */
1293
1294 /* Default translation */
1295 dev->cylinders = id[1];
1296 dev->heads = id[3];
1297 dev->sectors = id[6];
1298
1299 if (ata_id_current_chs_valid(id)) {
1300 /* Current CHS translation is valid. */
1301 dev->cylinders = id[54];
1302 dev->heads = id[55];
1303 dev->sectors = id[56];
1304 }
1305
1306 /* print device info to dmesg */
1307 if (print_info)
1308 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1309 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1310 ap->id, dev->devno,
1311 ata_id_major_version(id),
1312 ata_mode_string(xfer_mask),
1313 (unsigned long long)dev->n_sectors,
1314 dev->cylinders, dev->heads, dev->sectors);
1315 }
1316
1317 dev->cdb_len = 16;
1318 }
1319
1320 /* ATAPI-specific feature tests */
1321 else if (dev->class == ATA_DEV_ATAPI) {
1322 rc = atapi_cdb_len(id);
1323 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1324 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1325 rc = -EINVAL;
1326 goto err_out_nosup;
1327 }
1328 dev->cdb_len = (unsigned int) rc;
1329
1330 /* print device info to dmesg */
1331 if (print_info)
1332 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1333 ap->id, dev->devno, ata_mode_string(xfer_mask));
1334 }
1335
1336 ap->host->max_cmd_len = 0;
1337 for (i = 0; i < ATA_MAX_DEVICES; i++)
1338 ap->host->max_cmd_len = max_t(unsigned int,
1339 ap->host->max_cmd_len,
1340 ap->device[i].cdb_len);
1341
1342 /* limit bridge transfers to udma5, 200 sectors */
1343 if (ata_dev_knobble(ap, dev)) {
1344 if (print_info)
1345 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1346 ap->id, dev->devno);
1347 dev->udma_mask &= ATA_UDMA5;
1348 dev->max_sectors = ATA_MAX_SECTORS;
1349 }
1350
1351 if (ap->ops->dev_config)
1352 ap->ops->dev_config(ap, dev);
1353
1354 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1355 return 0;
1356
1357 err_out_nosup:
1358 DPRINTK("EXIT, err\n");
1359 return rc;
1360 }
1361
1362 /**
1363 * ata_bus_probe - Reset and probe ATA bus
1364 * @ap: Bus to probe
1365 *
1366 * Master ATA bus probing function. Initiates a hardware-dependent
1367 * bus reset, then attempts to identify any devices found on
1368 * the bus.
1369 *
1370 * LOCKING:
1371 * PCI/etc. bus probe sem.
1372 *
1373 * RETURNS:
1374 * Zero on success, negative errno otherwise.
1375 */
1376
1377 static int ata_bus_probe(struct ata_port *ap)
1378 {
1379 unsigned int classes[ATA_MAX_DEVICES];
1380 int tries[ATA_MAX_DEVICES];
1381 int i, rc, down_xfermask;
1382 struct ata_device *dev;
1383
1384 ata_port_probe(ap);
1385
1386 for (i = 0; i < ATA_MAX_DEVICES; i++)
1387 tries[i] = ATA_PROBE_MAX_TRIES;
1388
1389 retry:
1390 down_xfermask = 0;
1391
1392 /* reset and determine device classes */
1393 for (i = 0; i < ATA_MAX_DEVICES; i++)
1394 classes[i] = ATA_DEV_UNKNOWN;
1395
1396 if (ap->ops->probe_reset) {
1397 rc = ap->ops->probe_reset(ap, classes);
1398 if (rc) {
1399 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1400 return rc;
1401 }
1402 } else {
1403 ap->ops->phy_reset(ap);
1404
1405 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1406 if (!(ap->flags & ATA_FLAG_DISABLED))
1407 classes[i] = ap->device[i].class;
1408 ap->device[i].class = ATA_DEV_UNKNOWN;
1409 }
1410
1411 ata_port_probe(ap);
1412 }
1413
1414 for (i = 0; i < ATA_MAX_DEVICES; i++)
1415 if (classes[i] == ATA_DEV_UNKNOWN)
1416 classes[i] = ATA_DEV_NONE;
1417
1418 /* read IDENTIFY page and configure devices */
1419 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1420 dev = &ap->device[i];
1421
1422 if (tries[i])
1423 dev->class = classes[i];
1424
1425 if (!ata_dev_enabled(dev))
1426 continue;
1427
1428 kfree(dev->id);
1429 dev->id = NULL;
1430 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1431 if (rc)
1432 goto fail;
1433
1434 rc = ata_dev_configure(ap, dev, 1);
1435 if (rc)
1436 goto fail;
1437 }
1438
1439 /* configure transfer mode */
1440 if (ap->ops->set_mode) {
1441 /* FIXME: make ->set_mode handle no device case and
1442 * return error code and failing device on failure as
1443 * ata_set_mode() does.
1444 */
1445 for (i = 0; i < ATA_MAX_DEVICES; i++)
1446 if (ata_dev_enabled(&ap->device[i])) {
1447 ap->ops->set_mode(ap);
1448 break;
1449 }
1450 rc = 0;
1451 } else
1452 rc = ata_set_mode(ap, &dev);
1453
1454 if (rc) {
1455 down_xfermask = 1;
1456 goto fail;
1457 }
1458
1459 for (i = 0; i < ATA_MAX_DEVICES; i++)
1460 if (ata_dev_enabled(&ap->device[i]))
1461 return 0;
1462
1463 /* no device present, disable port */
1464 ata_port_disable(ap);
1465 ap->ops->port_disable(ap);
1466 return -ENODEV;
1467
1468 fail:
1469 switch (rc) {
1470 case -EINVAL:
1471 case -ENODEV:
1472 tries[dev->devno] = 0;
1473 break;
1474 case -EIO:
1475 sata_down_spd_limit(ap);
1476 /* fall through */
1477 default:
1478 tries[dev->devno]--;
1479 if (down_xfermask &&
1480 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1481 tries[dev->devno] = 0;
1482 }
1483
1484 if (!tries[dev->devno]) {
1485 ata_down_xfermask_limit(ap, dev, 1);
1486 ata_dev_disable(ap, dev);
1487 }
1488
1489 goto retry;
1490 }
1491
1492 /**
1493 * ata_port_probe - Mark port as enabled
1494 * @ap: Port for which we indicate enablement
1495 *
1496 * Modify @ap data structure such that the system
1497 * thinks that the entire port is enabled.
1498 *
1499 * LOCKING: host_set lock, or some other form of
1500 * serialization.
1501 */
1502
1503 void ata_port_probe(struct ata_port *ap)
1504 {
1505 ap->flags &= ~ATA_FLAG_DISABLED;
1506 }
1507
1508 /**
1509 * sata_print_link_status - Print SATA link status
1510 * @ap: SATA port to printk link status about
1511 *
1512 * This function prints link speed and status of a SATA link.
1513 *
1514 * LOCKING:
1515 * None.
1516 */
1517 static void sata_print_link_status(struct ata_port *ap)
1518 {
1519 u32 sstatus, scontrol, tmp;
1520
1521 if (!ap->ops->scr_read)
1522 return;
1523
1524 sstatus = scr_read(ap, SCR_STATUS);
1525 scontrol = scr_read(ap, SCR_CONTROL);
1526
1527 if (sata_dev_present(ap)) {
1528 tmp = (sstatus >> 4) & 0xf;
1529 printk(KERN_INFO
1530 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1531 ap->id, sata_spd_string(tmp), sstatus, scontrol);
1532 } else {
1533 printk(KERN_INFO
1534 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1535 ap->id, sstatus, scontrol);
1536 }
1537 }
1538
1539 /**
1540 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1541 * @ap: SATA port associated with target SATA PHY.
1542 *
1543 * This function issues commands to standard SATA Sxxx
1544 * PHY registers, to wake up the phy (and device), and
1545 * clear any reset condition.
1546 *
1547 * LOCKING:
1548 * PCI/etc. bus probe sem.
1549 *
1550 */
1551 void __sata_phy_reset(struct ata_port *ap)
1552 {
1553 u32 sstatus;
1554 unsigned long timeout = jiffies + (HZ * 5);
1555
1556 if (ap->flags & ATA_FLAG_SATA_RESET) {
1557 /* issue phy wake/reset */
1558 scr_write_flush(ap, SCR_CONTROL, 0x301);
1559 /* Couldn't find anything in SATA I/II specs, but
1560 * AHCI-1.1 10.4.2 says at least 1 ms. */
1561 mdelay(1);
1562 }
1563 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1564
1565 /* wait for phy to become ready, if necessary */
1566 do {
1567 msleep(200);
1568 sstatus = scr_read(ap, SCR_STATUS);
1569 if ((sstatus & 0xf) != 1)
1570 break;
1571 } while (time_before(jiffies, timeout));
1572
1573 /* print link status */
1574 sata_print_link_status(ap);
1575
1576 /* TODO: phy layer with polling, timeouts, etc. */
1577 if (sata_dev_present(ap))
1578 ata_port_probe(ap);
1579 else
1580 ata_port_disable(ap);
1581
1582 if (ap->flags & ATA_FLAG_DISABLED)
1583 return;
1584
1585 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1586 ata_port_disable(ap);
1587 return;
1588 }
1589
1590 ap->cbl = ATA_CBL_SATA;
1591 }
1592
1593 /**
1594 * sata_phy_reset - Reset SATA bus.
1595 * @ap: SATA port associated with target SATA PHY.
1596 *
1597 * This function resets the SATA bus, and then probes
1598 * the bus for devices.
1599 *
1600 * LOCKING:
1601 * PCI/etc. bus probe sem.
1602 *
1603 */
1604 void sata_phy_reset(struct ata_port *ap)
1605 {
1606 __sata_phy_reset(ap);
1607 if (ap->flags & ATA_FLAG_DISABLED)
1608 return;
1609 ata_bus_reset(ap);
1610 }
1611
1612 /**
1613 * ata_dev_pair - return other device on cable
1614 * @ap: port
1615 * @adev: device
1616 *
1617 * Obtain the other device on the same cable, or if none is
1618 * present NULL is returned
1619 */
1620
1621 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1622 {
1623 struct ata_device *pair = &ap->device[1 - adev->devno];
1624 if (!ata_dev_enabled(pair))
1625 return NULL;
1626 return pair;
1627 }
1628
1629 /**
1630 * ata_port_disable - Disable port.
1631 * @ap: Port to be disabled.
1632 *
1633 * Modify @ap data structure such that the system
1634 * thinks that the entire port is disabled, and should
1635 * never attempt to probe or communicate with devices
1636 * on this port.
1637 *
1638 * LOCKING: host_set lock, or some other form of
1639 * serialization.
1640 */
1641
1642 void ata_port_disable(struct ata_port *ap)
1643 {
1644 ap->device[0].class = ATA_DEV_NONE;
1645 ap->device[1].class = ATA_DEV_NONE;
1646 ap->flags |= ATA_FLAG_DISABLED;
1647 }
1648
1649 /**
1650 * sata_down_spd_limit - adjust SATA spd limit downward
1651 * @ap: Port to adjust SATA spd limit for
1652 *
1653 * Adjust SATA spd limit of @ap downward. Note that this
1654 * function only adjusts the limit. The change must be applied
1655 * using sata_set_spd().
1656 *
1657 * LOCKING:
1658 * Inherited from caller.
1659 *
1660 * RETURNS:
1661 * 0 on success, negative errno on failure
1662 */
1663 int sata_down_spd_limit(struct ata_port *ap)
1664 {
1665 u32 spd, mask;
1666 int highbit;
1667
1668 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1669 return -EOPNOTSUPP;
1670
1671 mask = ap->sata_spd_limit;
1672 if (mask <= 1)
1673 return -EINVAL;
1674 highbit = fls(mask) - 1;
1675 mask &= ~(1 << highbit);
1676
1677 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1678 if (spd <= 1)
1679 return -EINVAL;
1680 spd--;
1681 mask &= (1 << spd) - 1;
1682 if (!mask)
1683 return -EINVAL;
1684
1685 ap->sata_spd_limit = mask;
1686
1687 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1688 ap->id, sata_spd_string(fls(mask)));
1689
1690 return 0;
1691 }
1692
1693 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1694 {
1695 u32 spd, limit;
1696
1697 if (ap->sata_spd_limit == UINT_MAX)
1698 limit = 0;
1699 else
1700 limit = fls(ap->sata_spd_limit);
1701
1702 spd = (*scontrol >> 4) & 0xf;
1703 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1704
1705 return spd != limit;
1706 }
1707
1708 /**
1709 * sata_set_spd_needed - is SATA spd configuration needed
1710 * @ap: Port in question
1711 *
1712 * Test whether the spd limit in SControl matches
1713 * @ap->sata_spd_limit. This function is used to determine
1714 * whether hardreset is necessary to apply SATA spd
1715 * configuration.
1716 *
1717 * LOCKING:
1718 * Inherited from caller.
1719 *
1720 * RETURNS:
1721 * 1 if SATA spd configuration is needed, 0 otherwise.
1722 */
1723 int sata_set_spd_needed(struct ata_port *ap)
1724 {
1725 u32 scontrol;
1726
1727 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1728 return 0;
1729
1730 scontrol = scr_read(ap, SCR_CONTROL);
1731
1732 return __sata_set_spd_needed(ap, &scontrol);
1733 }
1734
1735 /**
1736 * sata_set_spd - set SATA spd according to spd limit
1737 * @ap: Port to set SATA spd for
1738 *
1739 * Set SATA spd of @ap according to sata_spd_limit.
1740 *
1741 * LOCKING:
1742 * Inherited from caller.
1743 *
1744 * RETURNS:
1745 * 0 if spd doesn't need to be changed, 1 if spd has been
1746 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1747 */
1748 int sata_set_spd(struct ata_port *ap)
1749 {
1750 u32 scontrol;
1751
1752 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1753 return -EOPNOTSUPP;
1754
1755 scontrol = scr_read(ap, SCR_CONTROL);
1756 if (!__sata_set_spd_needed(ap, &scontrol))
1757 return 0;
1758
1759 scr_write(ap, SCR_CONTROL, scontrol);
1760 return 1;
1761 }
1762
1763 /*
1764 * This mode timing computation functionality is ported over from
1765 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1766 */
1767 /*
1768 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1769 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1770 * for PIO 5, which is a nonstandard extension and UDMA6, which
1771 * is currently supported only by Maxtor drives.
1772 */
1773
1774 static const struct ata_timing ata_timing[] = {
1775
1776 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1777 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1778 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1779 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1780
1781 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1782 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1783 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1784
1785 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1786
1787 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1788 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1789 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1790
1791 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1792 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1793 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1794
1795 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1796 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1797 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1798
1799 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1800 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1801 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1802
1803 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1804
1805 { 0xFF }
1806 };
1807
1808 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1809 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1810
1811 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1812 {
1813 q->setup = EZ(t->setup * 1000, T);
1814 q->act8b = EZ(t->act8b * 1000, T);
1815 q->rec8b = EZ(t->rec8b * 1000, T);
1816 q->cyc8b = EZ(t->cyc8b * 1000, T);
1817 q->active = EZ(t->active * 1000, T);
1818 q->recover = EZ(t->recover * 1000, T);
1819 q->cycle = EZ(t->cycle * 1000, T);
1820 q->udma = EZ(t->udma * 1000, UT);
1821 }
1822
1823 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1824 struct ata_timing *m, unsigned int what)
1825 {
1826 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1827 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1828 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1829 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1830 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1831 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1832 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1833 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1834 }
1835
1836 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1837 {
1838 const struct ata_timing *t;
1839
1840 for (t = ata_timing; t->mode != speed; t++)
1841 if (t->mode == 0xFF)
1842 return NULL;
1843 return t;
1844 }
1845
1846 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1847 struct ata_timing *t, int T, int UT)
1848 {
1849 const struct ata_timing *s;
1850 struct ata_timing p;
1851
1852 /*
1853 * Find the mode.
1854 */
1855
1856 if (!(s = ata_timing_find_mode(speed)))
1857 return -EINVAL;
1858
1859 memcpy(t, s, sizeof(*s));
1860
1861 /*
1862 * If the drive is an EIDE drive, it can tell us it needs extended
1863 * PIO/MW_DMA cycle timing.
1864 */
1865
1866 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1867 memset(&p, 0, sizeof(p));
1868 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1869 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1870 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1871 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1872 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1873 }
1874 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1875 }
1876
1877 /*
1878 * Convert the timing to bus clock counts.
1879 */
1880
1881 ata_timing_quantize(t, t, T, UT);
1882
1883 /*
1884 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1885 * S.M.A.R.T * and some other commands. We have to ensure that the
1886 * DMA cycle timing is slower/equal than the fastest PIO timing.
1887 */
1888
1889 if (speed > XFER_PIO_4) {
1890 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1891 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1892 }
1893
1894 /*
1895 * Lengthen active & recovery time so that cycle time is correct.
1896 */
1897
1898 if (t->act8b + t->rec8b < t->cyc8b) {
1899 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1900 t->rec8b = t->cyc8b - t->act8b;
1901 }
1902
1903 if (t->active + t->recover < t->cycle) {
1904 t->active += (t->cycle - (t->active + t->recover)) / 2;
1905 t->recover = t->cycle - t->active;
1906 }
1907
1908 return 0;
1909 }
1910
1911 /**
1912 * ata_down_xfermask_limit - adjust dev xfer masks downward
1913 * @ap: Port associated with device @dev
1914 * @dev: Device to adjust xfer masks
1915 * @force_pio0: Force PIO0
1916 *
1917 * Adjust xfer masks of @dev downward. Note that this function
1918 * does not apply the change. Invoking ata_set_mode() afterwards
1919 * will apply the limit.
1920 *
1921 * LOCKING:
1922 * Inherited from caller.
1923 *
1924 * RETURNS:
1925 * 0 on success, negative errno on failure
1926 */
1927 int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1928 int force_pio0)
1929 {
1930 unsigned long xfer_mask;
1931 int highbit;
1932
1933 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1934 dev->udma_mask);
1935
1936 if (!xfer_mask)
1937 goto fail;
1938 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1939 if (xfer_mask & ATA_MASK_UDMA)
1940 xfer_mask &= ~ATA_MASK_MWDMA;
1941
1942 highbit = fls(xfer_mask) - 1;
1943 xfer_mask &= ~(1 << highbit);
1944 if (force_pio0)
1945 xfer_mask &= 1 << ATA_SHIFT_PIO;
1946 if (!xfer_mask)
1947 goto fail;
1948
1949 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1950 &dev->udma_mask);
1951
1952 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1953 ap->id, dev->devno, ata_mode_string(xfer_mask));
1954
1955 return 0;
1956
1957 fail:
1958 return -EINVAL;
1959 }
1960
1961 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1962 {
1963 unsigned int err_mask;
1964 int rc;
1965
1966 dev->flags &= ~ATA_DFLAG_PIO;
1967 if (dev->xfer_shift == ATA_SHIFT_PIO)
1968 dev->flags |= ATA_DFLAG_PIO;
1969
1970 err_mask = ata_dev_set_xfermode(ap, dev);
1971 if (err_mask) {
1972 printk(KERN_ERR
1973 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1974 ap->id, err_mask);
1975 return -EIO;
1976 }
1977
1978 rc = ata_dev_revalidate(ap, dev, 0);
1979 if (rc)
1980 return rc;
1981
1982 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1983 dev->xfer_shift, (int)dev->xfer_mode);
1984
1985 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1986 ap->id, dev->devno,
1987 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1988 return 0;
1989 }
1990
1991 /**
1992 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1993 * @ap: port on which timings will be programmed
1994 * @r_failed_dev: out paramter for failed device
1995 *
1996 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1997 * ata_set_mode() fails, pointer to the failing device is
1998 * returned in @r_failed_dev.
1999 *
2000 * LOCKING:
2001 * PCI/etc. bus probe sem.
2002 *
2003 * RETURNS:
2004 * 0 on success, negative errno otherwise
2005 */
2006 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2007 {
2008 struct ata_device *dev;
2009 int i, rc = 0, used_dma = 0, found = 0;
2010
2011 /* step 1: calculate xfer_mask */
2012 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2013 unsigned int pio_mask, dma_mask;
2014
2015 dev = &ap->device[i];
2016
2017 if (!ata_dev_enabled(dev))
2018 continue;
2019
2020 ata_dev_xfermask(ap, dev);
2021
2022 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2023 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2024 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2025 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2026
2027 found = 1;
2028 if (dev->dma_mode)
2029 used_dma = 1;
2030 }
2031 if (!found)
2032 goto out;
2033
2034 /* step 2: always set host PIO timings */
2035 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2036 dev = &ap->device[i];
2037 if (!ata_dev_enabled(dev))
2038 continue;
2039
2040 if (!dev->pio_mode) {
2041 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2042 ap->id, dev->devno);
2043 rc = -EINVAL;
2044 goto out;
2045 }
2046
2047 dev->xfer_mode = dev->pio_mode;
2048 dev->xfer_shift = ATA_SHIFT_PIO;
2049 if (ap->ops->set_piomode)
2050 ap->ops->set_piomode(ap, dev);
2051 }
2052
2053 /* step 3: set host DMA timings */
2054 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2055 dev = &ap->device[i];
2056
2057 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2058 continue;
2059
2060 dev->xfer_mode = dev->dma_mode;
2061 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2062 if (ap->ops->set_dmamode)
2063 ap->ops->set_dmamode(ap, dev);
2064 }
2065
2066 /* step 4: update devices' xfer mode */
2067 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2068 dev = &ap->device[i];
2069
2070 if (!ata_dev_enabled(dev))
2071 continue;
2072
2073 rc = ata_dev_set_mode(ap, dev);
2074 if (rc)
2075 goto out;
2076 }
2077
2078 /* Record simplex status. If we selected DMA then the other
2079 * host channels are not permitted to do so.
2080 */
2081 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2082 ap->host_set->simplex_claimed = 1;
2083
2084 /* step5: chip specific finalisation */
2085 if (ap->ops->post_set_mode)
2086 ap->ops->post_set_mode(ap);
2087
2088 out:
2089 if (rc)
2090 *r_failed_dev = dev;
2091 return rc;
2092 }
2093
2094 /**
2095 * ata_tf_to_host - issue ATA taskfile to host controller
2096 * @ap: port to which command is being issued
2097 * @tf: ATA taskfile register set
2098 *
2099 * Issues ATA taskfile register set to ATA host controller,
2100 * with proper synchronization with interrupt handler and
2101 * other threads.
2102 *
2103 * LOCKING:
2104 * spin_lock_irqsave(host_set lock)
2105 */
2106
2107 static inline void ata_tf_to_host(struct ata_port *ap,
2108 const struct ata_taskfile *tf)
2109 {
2110 ap->ops->tf_load(ap, tf);
2111 ap->ops->exec_command(ap, tf);
2112 }
2113
2114 /**
2115 * ata_busy_sleep - sleep until BSY clears, or timeout
2116 * @ap: port containing status register to be polled
2117 * @tmout_pat: impatience timeout
2118 * @tmout: overall timeout
2119 *
2120 * Sleep until ATA Status register bit BSY clears,
2121 * or a timeout occurs.
2122 *
2123 * LOCKING: None.
2124 */
2125
2126 unsigned int ata_busy_sleep (struct ata_port *ap,
2127 unsigned long tmout_pat, unsigned long tmout)
2128 {
2129 unsigned long timer_start, timeout;
2130 u8 status;
2131
2132 status = ata_busy_wait(ap, ATA_BUSY, 300);
2133 timer_start = jiffies;
2134 timeout = timer_start + tmout_pat;
2135 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2136 msleep(50);
2137 status = ata_busy_wait(ap, ATA_BUSY, 3);
2138 }
2139
2140 if (status & ATA_BUSY)
2141 printk(KERN_WARNING "ata%u is slow to respond, "
2142 "please be patient\n", ap->id);
2143
2144 timeout = timer_start + tmout;
2145 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2146 msleep(50);
2147 status = ata_chk_status(ap);
2148 }
2149
2150 if (status & ATA_BUSY) {
2151 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2152 ap->id, tmout / HZ);
2153 return 1;
2154 }
2155
2156 return 0;
2157 }
2158
2159 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2160 {
2161 struct ata_ioports *ioaddr = &ap->ioaddr;
2162 unsigned int dev0 = devmask & (1 << 0);
2163 unsigned int dev1 = devmask & (1 << 1);
2164 unsigned long timeout;
2165
2166 /* if device 0 was found in ata_devchk, wait for its
2167 * BSY bit to clear
2168 */
2169 if (dev0)
2170 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2171
2172 /* if device 1 was found in ata_devchk, wait for
2173 * register access, then wait for BSY to clear
2174 */
2175 timeout = jiffies + ATA_TMOUT_BOOT;
2176 while (dev1) {
2177 u8 nsect, lbal;
2178
2179 ap->ops->dev_select(ap, 1);
2180 if (ap->flags & ATA_FLAG_MMIO) {
2181 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2182 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2183 } else {
2184 nsect = inb(ioaddr->nsect_addr);
2185 lbal = inb(ioaddr->lbal_addr);
2186 }
2187 if ((nsect == 1) && (lbal == 1))
2188 break;
2189 if (time_after(jiffies, timeout)) {
2190 dev1 = 0;
2191 break;
2192 }
2193 msleep(50); /* give drive a breather */
2194 }
2195 if (dev1)
2196 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2197
2198 /* is all this really necessary? */
2199 ap->ops->dev_select(ap, 0);
2200 if (dev1)
2201 ap->ops->dev_select(ap, 1);
2202 if (dev0)
2203 ap->ops->dev_select(ap, 0);
2204 }
2205
2206 static unsigned int ata_bus_softreset(struct ata_port *ap,
2207 unsigned int devmask)
2208 {
2209 struct ata_ioports *ioaddr = &ap->ioaddr;
2210
2211 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2212
2213 /* software reset. causes dev0 to be selected */
2214 if (ap->flags & ATA_FLAG_MMIO) {
2215 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2216 udelay(20); /* FIXME: flush */
2217 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2218 udelay(20); /* FIXME: flush */
2219 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2220 } else {
2221 outb(ap->ctl, ioaddr->ctl_addr);
2222 udelay(10);
2223 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2224 udelay(10);
2225 outb(ap->ctl, ioaddr->ctl_addr);
2226 }
2227
2228 /* spec mandates ">= 2ms" before checking status.
2229 * We wait 150ms, because that was the magic delay used for
2230 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2231 * between when the ATA command register is written, and then
2232 * status is checked. Because waiting for "a while" before
2233 * checking status is fine, post SRST, we perform this magic
2234 * delay here as well.
2235 *
2236 * Old drivers/ide uses the 2mS rule and then waits for ready
2237 */
2238 msleep(150);
2239
2240 /* Before we perform post reset processing we want to see if
2241 * the bus shows 0xFF because the odd clown forgets the D7
2242 * pulldown resistor.
2243 */
2244 if (ata_check_status(ap) == 0xFF) {
2245 printk(KERN_ERR "ata%u: SRST failed (status 0xFF)\n", ap->id);
2246 return AC_ERR_OTHER;
2247 }
2248
2249 ata_bus_post_reset(ap, devmask);
2250
2251 return 0;
2252 }
2253
2254 /**
2255 * ata_bus_reset - reset host port and associated ATA channel
2256 * @ap: port to reset
2257 *
2258 * This is typically the first time we actually start issuing
2259 * commands to the ATA channel. We wait for BSY to clear, then
2260 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2261 * result. Determine what devices, if any, are on the channel
2262 * by looking at the device 0/1 error register. Look at the signature
2263 * stored in each device's taskfile registers, to determine if
2264 * the device is ATA or ATAPI.
2265 *
2266 * LOCKING:
2267 * PCI/etc. bus probe sem.
2268 * Obtains host_set lock.
2269 *
2270 * SIDE EFFECTS:
2271 * Sets ATA_FLAG_DISABLED if bus reset fails.
2272 */
2273
2274 void ata_bus_reset(struct ata_port *ap)
2275 {
2276 struct ata_ioports *ioaddr = &ap->ioaddr;
2277 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2278 u8 err;
2279 unsigned int dev0, dev1 = 0, devmask = 0;
2280
2281 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2282
2283 /* determine if device 0/1 are present */
2284 if (ap->flags & ATA_FLAG_SATA_RESET)
2285 dev0 = 1;
2286 else {
2287 dev0 = ata_devchk(ap, 0);
2288 if (slave_possible)
2289 dev1 = ata_devchk(ap, 1);
2290 }
2291
2292 if (dev0)
2293 devmask |= (1 << 0);
2294 if (dev1)
2295 devmask |= (1 << 1);
2296
2297 /* select device 0 again */
2298 ap->ops->dev_select(ap, 0);
2299
2300 /* issue bus reset */
2301 if (ap->flags & ATA_FLAG_SRST)
2302 if (ata_bus_softreset(ap, devmask))
2303 goto err_out;
2304
2305 /*
2306 * determine by signature whether we have ATA or ATAPI devices
2307 */
2308 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2309 if ((slave_possible) && (err != 0x81))
2310 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2311
2312 /* re-enable interrupts */
2313 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2314 ata_irq_on(ap);
2315
2316 /* is double-select really necessary? */
2317 if (ap->device[1].class != ATA_DEV_NONE)
2318 ap->ops->dev_select(ap, 1);
2319 if (ap->device[0].class != ATA_DEV_NONE)
2320 ap->ops->dev_select(ap, 0);
2321
2322 /* if no devices were detected, disable this port */
2323 if ((ap->device[0].class == ATA_DEV_NONE) &&
2324 (ap->device[1].class == ATA_DEV_NONE))
2325 goto err_out;
2326
2327 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2328 /* set up device control for ATA_FLAG_SATA_RESET */
2329 if (ap->flags & ATA_FLAG_MMIO)
2330 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2331 else
2332 outb(ap->ctl, ioaddr->ctl_addr);
2333 }
2334
2335 DPRINTK("EXIT\n");
2336 return;
2337
2338 err_out:
2339 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2340 ap->ops->port_disable(ap);
2341
2342 DPRINTK("EXIT\n");
2343 }
2344
2345 static int sata_phy_resume(struct ata_port *ap)
2346 {
2347 unsigned long timeout = jiffies + (HZ * 5);
2348 u32 scontrol, sstatus;
2349
2350 scontrol = scr_read(ap, SCR_CONTROL);
2351 scontrol = (scontrol & 0x0f0) | 0x300;
2352 scr_write_flush(ap, SCR_CONTROL, scontrol);
2353
2354 /* Wait for phy to become ready, if necessary. */
2355 do {
2356 msleep(200);
2357 sstatus = scr_read(ap, SCR_STATUS);
2358 if ((sstatus & 0xf) != 1)
2359 return 0;
2360 } while (time_before(jiffies, timeout));
2361
2362 return -1;
2363 }
2364
2365 /**
2366 * ata_std_probeinit - initialize probing
2367 * @ap: port to be probed
2368 *
2369 * @ap is about to be probed. Initialize it. This function is
2370 * to be used as standard callback for ata_drive_probe_reset().
2371 *
2372 * NOTE!!! Do not use this function as probeinit if a low level
2373 * driver implements only hardreset. Just pass NULL as probeinit
2374 * in that case. Using this function is probably okay but doing
2375 * so makes reset sequence different from the original
2376 * ->phy_reset implementation and Jeff nervous. :-P
2377 */
2378 void ata_std_probeinit(struct ata_port *ap)
2379 {
2380 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2381 u32 spd;
2382
2383 /* set cable type and resume link */
2384 ap->cbl = ATA_CBL_SATA;
2385 sata_phy_resume(ap);
2386
2387 /* init sata_spd_limit to the current value */
2388 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2389 if (spd)
2390 ap->sata_spd_limit &= (1 << spd) - 1;
2391
2392 /* wait for device */
2393 if (sata_dev_present(ap))
2394 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2395 }
2396 }
2397
2398 /**
2399 * ata_std_softreset - reset host port via ATA SRST
2400 * @ap: port to reset
2401 * @classes: resulting classes of attached devices
2402 *
2403 * Reset host port using ATA SRST. This function is to be used
2404 * as standard callback for ata_drive_*_reset() functions.
2405 *
2406 * LOCKING:
2407 * Kernel thread context (may sleep)
2408 *
2409 * RETURNS:
2410 * 0 on success, -errno otherwise.
2411 */
2412 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2413 {
2414 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2415 unsigned int devmask = 0, err_mask;
2416 u8 err;
2417
2418 DPRINTK("ENTER\n");
2419
2420 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2421 classes[0] = ATA_DEV_NONE;
2422 goto out;
2423 }
2424
2425 /* determine if device 0/1 are present */
2426 if (ata_devchk(ap, 0))
2427 devmask |= (1 << 0);
2428 if (slave_possible && ata_devchk(ap, 1))
2429 devmask |= (1 << 1);
2430
2431 /* select device 0 again */
2432 ap->ops->dev_select(ap, 0);
2433
2434 /* issue bus reset */
2435 DPRINTK("about to softreset, devmask=%x\n", devmask);
2436 err_mask = ata_bus_softreset(ap, devmask);
2437 if (err_mask) {
2438 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2439 ap->id, err_mask);
2440 return -EIO;
2441 }
2442
2443 /* determine by signature whether we have ATA or ATAPI devices */
2444 classes[0] = ata_dev_try_classify(ap, 0, &err);
2445 if (slave_possible && err != 0x81)
2446 classes[1] = ata_dev_try_classify(ap, 1, &err);
2447
2448 out:
2449 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2450 return 0;
2451 }
2452
2453 /**
2454 * sata_std_hardreset - reset host port via SATA phy reset
2455 * @ap: port to reset
2456 * @class: resulting class of attached device
2457 *
2458 * SATA phy-reset host port using DET bits of SControl register.
2459 * This function is to be used as standard callback for
2460 * ata_drive_*_reset().
2461 *
2462 * LOCKING:
2463 * Kernel thread context (may sleep)
2464 *
2465 * RETURNS:
2466 * 0 on success, -errno otherwise.
2467 */
2468 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2469 {
2470 u32 scontrol;
2471
2472 DPRINTK("ENTER\n");
2473
2474 if (sata_set_spd_needed(ap)) {
2475 /* SATA spec says nothing about how to reconfigure
2476 * spd. To be on the safe side, turn off phy during
2477 * reconfiguration. This works for at least ICH7 AHCI
2478 * and Sil3124.
2479 */
2480 scontrol = scr_read(ap, SCR_CONTROL);
2481 scontrol = (scontrol & 0x0f0) | 0x302;
2482 scr_write_flush(ap, SCR_CONTROL, scontrol);
2483
2484 sata_set_spd(ap);
2485 }
2486
2487 /* issue phy wake/reset */
2488 scontrol = scr_read(ap, SCR_CONTROL);
2489 scontrol = (scontrol & 0x0f0) | 0x301;
2490 scr_write_flush(ap, SCR_CONTROL, scontrol);
2491
2492 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2493 * 10.4.2 says at least 1 ms.
2494 */
2495 msleep(1);
2496
2497 /* bring phy back */
2498 sata_phy_resume(ap);
2499
2500 /* TODO: phy layer with polling, timeouts, etc. */
2501 if (!sata_dev_present(ap)) {
2502 *class = ATA_DEV_NONE;
2503 DPRINTK("EXIT, link offline\n");
2504 return 0;
2505 }
2506
2507 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2508 printk(KERN_ERR
2509 "ata%u: COMRESET failed (device not ready)\n", ap->id);
2510 return -EIO;
2511 }
2512
2513 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2514
2515 *class = ata_dev_try_classify(ap, 0, NULL);
2516
2517 DPRINTK("EXIT, class=%u\n", *class);
2518 return 0;
2519 }
2520
2521 /**
2522 * ata_std_postreset - standard postreset callback
2523 * @ap: the target ata_port
2524 * @classes: classes of attached devices
2525 *
2526 * This function is invoked after a successful reset. Note that
2527 * the device might have been reset more than once using
2528 * different reset methods before postreset is invoked.
2529 *
2530 * This function is to be used as standard callback for
2531 * ata_drive_*_reset().
2532 *
2533 * LOCKING:
2534 * Kernel thread context (may sleep)
2535 */
2536 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2537 {
2538 DPRINTK("ENTER\n");
2539
2540 /* print link status */
2541 if (ap->cbl == ATA_CBL_SATA)
2542 sata_print_link_status(ap);
2543
2544 /* re-enable interrupts */
2545 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2546 ata_irq_on(ap);
2547
2548 /* is double-select really necessary? */
2549 if (classes[0] != ATA_DEV_NONE)
2550 ap->ops->dev_select(ap, 1);
2551 if (classes[1] != ATA_DEV_NONE)
2552 ap->ops->dev_select(ap, 0);
2553
2554 /* bail out if no device is present */
2555 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2556 DPRINTK("EXIT, no device\n");
2557 return;
2558 }
2559
2560 /* set up device control */
2561 if (ap->ioaddr.ctl_addr) {
2562 if (ap->flags & ATA_FLAG_MMIO)
2563 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2564 else
2565 outb(ap->ctl, ap->ioaddr.ctl_addr);
2566 }
2567
2568 DPRINTK("EXIT\n");
2569 }
2570
2571 /**
2572 * ata_std_probe_reset - standard probe reset method
2573 * @ap: prot to perform probe-reset
2574 * @classes: resulting classes of attached devices
2575 *
2576 * The stock off-the-shelf ->probe_reset method.
2577 *
2578 * LOCKING:
2579 * Kernel thread context (may sleep)
2580 *
2581 * RETURNS:
2582 * 0 on success, -errno otherwise.
2583 */
2584 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2585 {
2586 ata_reset_fn_t hardreset;
2587
2588 hardreset = NULL;
2589 if (ap->cbl == ATA_CBL_SATA && ap->ops->scr_read)
2590 hardreset = sata_std_hardreset;
2591
2592 return ata_drive_probe_reset(ap, ata_std_probeinit,
2593 ata_std_softreset, hardreset,
2594 ata_std_postreset, classes);
2595 }
2596
2597 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2598 ata_postreset_fn_t postreset, unsigned int *classes)
2599 {
2600 int i, rc;
2601
2602 for (i = 0; i < ATA_MAX_DEVICES; i++)
2603 classes[i] = ATA_DEV_UNKNOWN;
2604
2605 rc = reset(ap, classes);
2606 if (rc)
2607 return rc;
2608
2609 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2610 * is complete and convert all ATA_DEV_UNKNOWN to
2611 * ATA_DEV_NONE.
2612 */
2613 for (i = 0; i < ATA_MAX_DEVICES; i++)
2614 if (classes[i] != ATA_DEV_UNKNOWN)
2615 break;
2616
2617 if (i < ATA_MAX_DEVICES)
2618 for (i = 0; i < ATA_MAX_DEVICES; i++)
2619 if (classes[i] == ATA_DEV_UNKNOWN)
2620 classes[i] = ATA_DEV_NONE;
2621
2622 if (postreset)
2623 postreset(ap, classes);
2624
2625 return 0;
2626 }
2627
2628 /**
2629 * ata_drive_probe_reset - Perform probe reset with given methods
2630 * @ap: port to reset
2631 * @probeinit: probeinit method (can be NULL)
2632 * @softreset: softreset method (can be NULL)
2633 * @hardreset: hardreset method (can be NULL)
2634 * @postreset: postreset method (can be NULL)
2635 * @classes: resulting classes of attached devices
2636 *
2637 * Reset the specified port and classify attached devices using
2638 * given methods. This function prefers softreset but tries all
2639 * possible reset sequences to reset and classify devices. This
2640 * function is intended to be used for constructing ->probe_reset
2641 * callback by low level drivers.
2642 *
2643 * Reset methods should follow the following rules.
2644 *
2645 * - Return 0 on sucess, -errno on failure.
2646 * - If classification is supported, fill classes[] with
2647 * recognized class codes.
2648 * - If classification is not supported, leave classes[] alone.
2649 *
2650 * LOCKING:
2651 * Kernel thread context (may sleep)
2652 *
2653 * RETURNS:
2654 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2655 * if classification fails, and any error code from reset
2656 * methods.
2657 */
2658 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2659 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2660 ata_postreset_fn_t postreset, unsigned int *classes)
2661 {
2662 int rc = -EINVAL;
2663
2664 if (probeinit)
2665 probeinit(ap);
2666
2667 if (softreset && !sata_set_spd_needed(ap)) {
2668 rc = ata_do_reset(ap, softreset, postreset, classes);
2669 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2670 goto done;
2671 printk(KERN_INFO "ata%u: softreset failed, will try "
2672 "hardreset in 5 secs\n", ap->id);
2673 ssleep(5);
2674 }
2675
2676 if (!hardreset)
2677 goto done;
2678
2679 while (1) {
2680 rc = ata_do_reset(ap, hardreset, postreset, classes);
2681 if (rc == 0) {
2682 if (classes[0] != ATA_DEV_UNKNOWN)
2683 goto done;
2684 break;
2685 }
2686
2687 if (sata_down_spd_limit(ap))
2688 goto done;
2689
2690 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2691 "in 5 secs\n", ap->id);
2692 ssleep(5);
2693 }
2694
2695 if (softreset) {
2696 printk(KERN_INFO "ata%u: hardreset succeeded without "
2697 "classification, will retry softreset in 5 secs\n",
2698 ap->id);
2699 ssleep(5);
2700
2701 rc = ata_do_reset(ap, softreset, postreset, classes);
2702 }
2703
2704 done:
2705 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2706 rc = -ENODEV;
2707 return rc;
2708 }
2709
2710 /**
2711 * ata_dev_same_device - Determine whether new ID matches configured device
2712 * @ap: port on which the device to compare against resides
2713 * @dev: device to compare against
2714 * @new_class: class of the new device
2715 * @new_id: IDENTIFY page of the new device
2716 *
2717 * Compare @new_class and @new_id against @dev and determine
2718 * whether @dev is the device indicated by @new_class and
2719 * @new_id.
2720 *
2721 * LOCKING:
2722 * None.
2723 *
2724 * RETURNS:
2725 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2726 */
2727 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2728 unsigned int new_class, const u16 *new_id)
2729 {
2730 const u16 *old_id = dev->id;
2731 unsigned char model[2][41], serial[2][21];
2732 u64 new_n_sectors;
2733
2734 if (dev->class != new_class) {
2735 printk(KERN_INFO
2736 "ata%u: dev %u class mismatch %d != %d\n",
2737 ap->id, dev->devno, dev->class, new_class);
2738 return 0;
2739 }
2740
2741 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2742 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2743 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2744 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2745 new_n_sectors = ata_id_n_sectors(new_id);
2746
2747 if (strcmp(model[0], model[1])) {
2748 printk(KERN_INFO
2749 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2750 ap->id, dev->devno, model[0], model[1]);
2751 return 0;
2752 }
2753
2754 if (strcmp(serial[0], serial[1])) {
2755 printk(KERN_INFO
2756 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2757 ap->id, dev->devno, serial[0], serial[1]);
2758 return 0;
2759 }
2760
2761 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2762 printk(KERN_INFO
2763 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2764 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2765 (unsigned long long)new_n_sectors);
2766 return 0;
2767 }
2768
2769 return 1;
2770 }
2771
2772 /**
2773 * ata_dev_revalidate - Revalidate ATA device
2774 * @ap: port on which the device to revalidate resides
2775 * @dev: device to revalidate
2776 * @post_reset: is this revalidation after reset?
2777 *
2778 * Re-read IDENTIFY page and make sure @dev is still attached to
2779 * the port.
2780 *
2781 * LOCKING:
2782 * Kernel thread context (may sleep)
2783 *
2784 * RETURNS:
2785 * 0 on success, negative errno otherwise
2786 */
2787 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2788 int post_reset)
2789 {
2790 unsigned int class = dev->class;
2791 u16 *id = NULL;
2792 int rc;
2793
2794 if (!ata_dev_enabled(dev)) {
2795 rc = -ENODEV;
2796 goto fail;
2797 }
2798
2799 /* allocate & read ID data */
2800 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2801 if (rc)
2802 goto fail;
2803
2804 /* is the device still there? */
2805 if (!ata_dev_same_device(ap, dev, class, id)) {
2806 rc = -ENODEV;
2807 goto fail;
2808 }
2809
2810 kfree(dev->id);
2811 dev->id = id;
2812
2813 /* configure device according to the new ID */
2814 rc = ata_dev_configure(ap, dev, 0);
2815 if (rc == 0)
2816 return 0;
2817
2818 fail:
2819 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2820 ap->id, dev->devno, rc);
2821 kfree(id);
2822 return rc;
2823 }
2824
2825 static const char * const ata_dma_blacklist [] = {
2826 "WDC AC11000H", NULL,
2827 "WDC AC22100H", NULL,
2828 "WDC AC32500H", NULL,
2829 "WDC AC33100H", NULL,
2830 "WDC AC31600H", NULL,
2831 "WDC AC32100H", "24.09P07",
2832 "WDC AC23200L", "21.10N21",
2833 "Compaq CRD-8241B", NULL,
2834 "CRD-8400B", NULL,
2835 "CRD-8480B", NULL,
2836 "CRD-8482B", NULL,
2837 "CRD-84", NULL,
2838 "SanDisk SDP3B", NULL,
2839 "SanDisk SDP3B-64", NULL,
2840 "SANYO CD-ROM CRD", NULL,
2841 "HITACHI CDR-8", NULL,
2842 "HITACHI CDR-8335", NULL,
2843 "HITACHI CDR-8435", NULL,
2844 "Toshiba CD-ROM XM-6202B", NULL,
2845 "TOSHIBA CD-ROM XM-1702BC", NULL,
2846 "CD-532E-A", NULL,
2847 "E-IDE CD-ROM CR-840", NULL,
2848 "CD-ROM Drive/F5A", NULL,
2849 "WPI CDD-820", NULL,
2850 "SAMSUNG CD-ROM SC-148C", NULL,
2851 "SAMSUNG CD-ROM SC", NULL,
2852 "SanDisk SDP3B-64", NULL,
2853 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2854 "_NEC DV5800A", NULL,
2855 "SAMSUNG CD-ROM SN-124", "N001"
2856 };
2857
2858 static int ata_strim(char *s, size_t len)
2859 {
2860 len = strnlen(s, len);
2861
2862 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2863 while ((len > 0) && (s[len - 1] == ' ')) {
2864 len--;
2865 s[len] = 0;
2866 }
2867 return len;
2868 }
2869
2870 static int ata_dma_blacklisted(const struct ata_device *dev)
2871 {
2872 unsigned char model_num[40];
2873 unsigned char model_rev[16];
2874 unsigned int nlen, rlen;
2875 int i;
2876
2877 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2878 sizeof(model_num));
2879 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2880 sizeof(model_rev));
2881 nlen = ata_strim(model_num, sizeof(model_num));
2882 rlen = ata_strim(model_rev, sizeof(model_rev));
2883
2884 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2885 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2886 if (ata_dma_blacklist[i+1] == NULL)
2887 return 1;
2888 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2889 return 1;
2890 }
2891 }
2892 return 0;
2893 }
2894
2895 /**
2896 * ata_dev_xfermask - Compute supported xfermask of the given device
2897 * @ap: Port on which the device to compute xfermask for resides
2898 * @dev: Device to compute xfermask for
2899 *
2900 * Compute supported xfermask of @dev and store it in
2901 * dev->*_mask. This function is responsible for applying all
2902 * known limits including host controller limits, device
2903 * blacklist, etc...
2904 *
2905 * FIXME: The current implementation limits all transfer modes to
2906 * the fastest of the lowested device on the port. This is not
2907 * required on most controllers.
2908 *
2909 * LOCKING:
2910 * None.
2911 */
2912 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2913 {
2914 struct ata_host_set *hs = ap->host_set;
2915 unsigned long xfer_mask;
2916 int i;
2917
2918 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2919 ap->mwdma_mask, ap->udma_mask);
2920
2921 /* Apply cable rule here. Don't apply it early because when
2922 * we handle hot plug the cable type can itself change.
2923 */
2924 if (ap->cbl == ATA_CBL_PATA40)
2925 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2926
2927 /* FIXME: Use port-wide xfermask for now */
2928 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2929 struct ata_device *d = &ap->device[i];
2930
2931 if (ata_dev_absent(d))
2932 continue;
2933
2934 if (ata_dev_disabled(d)) {
2935 /* to avoid violating device selection timing */
2936 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2937 UINT_MAX, UINT_MAX);
2938 continue;
2939 }
2940
2941 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2942 d->mwdma_mask, d->udma_mask);
2943 xfer_mask &= ata_id_xfermask(d->id);
2944 if (ata_dma_blacklisted(d))
2945 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2946 }
2947
2948 if (ata_dma_blacklisted(dev))
2949 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2950 "disabling DMA\n", ap->id, dev->devno);
2951
2952 if (hs->flags & ATA_HOST_SIMPLEX) {
2953 if (hs->simplex_claimed)
2954 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2955 }
2956
2957 if (ap->ops->mode_filter)
2958 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2959
2960 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2961 &dev->mwdma_mask, &dev->udma_mask);
2962 }
2963
2964 /**
2965 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2966 * @ap: Port associated with device @dev
2967 * @dev: Device to which command will be sent
2968 *
2969 * Issue SET FEATURES - XFER MODE command to device @dev
2970 * on port @ap.
2971 *
2972 * LOCKING:
2973 * PCI/etc. bus probe sem.
2974 *
2975 * RETURNS:
2976 * 0 on success, AC_ERR_* mask otherwise.
2977 */
2978
2979 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2980 struct ata_device *dev)
2981 {
2982 struct ata_taskfile tf;
2983 unsigned int err_mask;
2984
2985 /* set up set-features taskfile */
2986 DPRINTK("set features - xfer mode\n");
2987
2988 ata_tf_init(ap, &tf, dev->devno);
2989 tf.command = ATA_CMD_SET_FEATURES;
2990 tf.feature = SETFEATURES_XFER;
2991 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2992 tf.protocol = ATA_PROT_NODATA;
2993 tf.nsect = dev->xfer_mode;
2994
2995 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
2996
2997 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2998 return err_mask;
2999 }
3000
3001 /**
3002 * ata_dev_init_params - Issue INIT DEV PARAMS command
3003 * @ap: Port associated with device @dev
3004 * @dev: Device to which command will be sent
3005 *
3006 * LOCKING:
3007 * Kernel thread context (may sleep)
3008 *
3009 * RETURNS:
3010 * 0 on success, AC_ERR_* mask otherwise.
3011 */
3012
3013 static unsigned int ata_dev_init_params(struct ata_port *ap,
3014 struct ata_device *dev,
3015 u16 heads,
3016 u16 sectors)
3017 {
3018 struct ata_taskfile tf;
3019 unsigned int err_mask;
3020
3021 /* Number of sectors per track 1-255. Number of heads 1-16 */
3022 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3023 return AC_ERR_INVALID;
3024
3025 /* set up init dev params taskfile */
3026 DPRINTK("init dev params \n");
3027
3028 ata_tf_init(ap, &tf, dev->devno);
3029 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3030 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3031 tf.protocol = ATA_PROT_NODATA;
3032 tf.nsect = sectors;
3033 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3034
3035 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
3036
3037 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3038 return err_mask;
3039 }
3040
3041 /**
3042 * ata_sg_clean - Unmap DMA memory associated with command
3043 * @qc: Command containing DMA memory to be released
3044 *
3045 * Unmap all mapped DMA memory associated with this command.
3046 *
3047 * LOCKING:
3048 * spin_lock_irqsave(host_set lock)
3049 */
3050
3051 static void ata_sg_clean(struct ata_queued_cmd *qc)
3052 {
3053 struct ata_port *ap = qc->ap;
3054 struct scatterlist *sg = qc->__sg;
3055 int dir = qc->dma_dir;
3056 void *pad_buf = NULL;
3057
3058 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3059 WARN_ON(sg == NULL);
3060
3061 if (qc->flags & ATA_QCFLAG_SINGLE)
3062 WARN_ON(qc->n_elem > 1);
3063
3064 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3065
3066 /* if we padded the buffer out to 32-bit bound, and data
3067 * xfer direction is from-device, we must copy from the
3068 * pad buffer back into the supplied buffer
3069 */
3070 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3071 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3072
3073 if (qc->flags & ATA_QCFLAG_SG) {
3074 if (qc->n_elem)
3075 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3076 /* restore last sg */
3077 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3078 if (pad_buf) {
3079 struct scatterlist *psg = &qc->pad_sgent;
3080 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3081 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3082 kunmap_atomic(addr, KM_IRQ0);
3083 }
3084 } else {
3085 if (qc->n_elem)
3086 dma_unmap_single(ap->dev,
3087 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3088 dir);
3089 /* restore sg */
3090 sg->length += qc->pad_len;
3091 if (pad_buf)
3092 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3093 pad_buf, qc->pad_len);
3094 }
3095
3096 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3097 qc->__sg = NULL;
3098 }
3099
3100 /**
3101 * ata_fill_sg - Fill PCI IDE PRD table
3102 * @qc: Metadata associated with taskfile to be transferred
3103 *
3104 * Fill PCI IDE PRD (scatter-gather) table with segments
3105 * associated with the current disk command.
3106 *
3107 * LOCKING:
3108 * spin_lock_irqsave(host_set lock)
3109 *
3110 */
3111 static void ata_fill_sg(struct ata_queued_cmd *qc)
3112 {
3113 struct ata_port *ap = qc->ap;
3114 struct scatterlist *sg;
3115 unsigned int idx;
3116
3117 WARN_ON(qc->__sg == NULL);
3118 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3119
3120 idx = 0;
3121 ata_for_each_sg(sg, qc) {
3122 u32 addr, offset;
3123 u32 sg_len, len;
3124
3125 /* determine if physical DMA addr spans 64K boundary.
3126 * Note h/w doesn't support 64-bit, so we unconditionally
3127 * truncate dma_addr_t to u32.
3128 */
3129 addr = (u32) sg_dma_address(sg);
3130 sg_len = sg_dma_len(sg);
3131
3132 while (sg_len) {
3133 offset = addr & 0xffff;
3134 len = sg_len;
3135 if ((offset + sg_len) > 0x10000)
3136 len = 0x10000 - offset;
3137
3138 ap->prd[idx].addr = cpu_to_le32(addr);
3139 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3140 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3141
3142 idx++;
3143 sg_len -= len;
3144 addr += len;
3145 }
3146 }
3147
3148 if (idx)
3149 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3150 }
3151 /**
3152 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3153 * @qc: Metadata associated with taskfile to check
3154 *
3155 * Allow low-level driver to filter ATA PACKET commands, returning
3156 * a status indicating whether or not it is OK to use DMA for the
3157 * supplied PACKET command.
3158 *
3159 * LOCKING:
3160 * spin_lock_irqsave(host_set lock)
3161 *
3162 * RETURNS: 0 when ATAPI DMA can be used
3163 * nonzero otherwise
3164 */
3165 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3166 {
3167 struct ata_port *ap = qc->ap;
3168 int rc = 0; /* Assume ATAPI DMA is OK by default */
3169
3170 if (ap->ops->check_atapi_dma)
3171 rc = ap->ops->check_atapi_dma(qc);
3172
3173 return rc;
3174 }
3175 /**
3176 * ata_qc_prep - Prepare taskfile for submission
3177 * @qc: Metadata associated with taskfile to be prepared
3178 *
3179 * Prepare ATA taskfile for submission.
3180 *
3181 * LOCKING:
3182 * spin_lock_irqsave(host_set lock)
3183 */
3184 void ata_qc_prep(struct ata_queued_cmd *qc)
3185 {
3186 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3187 return;
3188
3189 ata_fill_sg(qc);
3190 }
3191
3192 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3193
3194 /**
3195 * ata_sg_init_one - Associate command with memory buffer
3196 * @qc: Command to be associated
3197 * @buf: Memory buffer
3198 * @buflen: Length of memory buffer, in bytes.
3199 *
3200 * Initialize the data-related elements of queued_cmd @qc
3201 * to point to a single memory buffer, @buf of byte length @buflen.
3202 *
3203 * LOCKING:
3204 * spin_lock_irqsave(host_set lock)
3205 */
3206
3207 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3208 {
3209 struct scatterlist *sg;
3210
3211 qc->flags |= ATA_QCFLAG_SINGLE;
3212
3213 memset(&qc->sgent, 0, sizeof(qc->sgent));
3214 qc->__sg = &qc->sgent;
3215 qc->n_elem = 1;
3216 qc->orig_n_elem = 1;
3217 qc->buf_virt = buf;
3218
3219 sg = qc->__sg;
3220 sg_init_one(sg, buf, buflen);
3221 }
3222
3223 /**
3224 * ata_sg_init - Associate command with scatter-gather table.
3225 * @qc: Command to be associated
3226 * @sg: Scatter-gather table.
3227 * @n_elem: Number of elements in s/g table.
3228 *
3229 * Initialize the data-related elements of queued_cmd @qc
3230 * to point to a scatter-gather table @sg, containing @n_elem
3231 * elements.
3232 *
3233 * LOCKING:
3234 * spin_lock_irqsave(host_set lock)
3235 */
3236
3237 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3238 unsigned int n_elem)
3239 {
3240 qc->flags |= ATA_QCFLAG_SG;
3241 qc->__sg = sg;
3242 qc->n_elem = n_elem;
3243 qc->orig_n_elem = n_elem;
3244 }
3245
3246 /**
3247 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3248 * @qc: Command with memory buffer to be mapped.
3249 *
3250 * DMA-map the memory buffer associated with queued_cmd @qc.
3251 *
3252 * LOCKING:
3253 * spin_lock_irqsave(host_set lock)
3254 *
3255 * RETURNS:
3256 * Zero on success, negative on error.
3257 */
3258
3259 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3260 {
3261 struct ata_port *ap = qc->ap;
3262 int dir = qc->dma_dir;
3263 struct scatterlist *sg = qc->__sg;
3264 dma_addr_t dma_address;
3265 int trim_sg = 0;
3266
3267 /* we must lengthen transfers to end on a 32-bit boundary */
3268 qc->pad_len = sg->length & 3;
3269 if (qc->pad_len) {
3270 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3271 struct scatterlist *psg = &qc->pad_sgent;
3272
3273 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3274
3275 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3276
3277 if (qc->tf.flags & ATA_TFLAG_WRITE)
3278 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3279 qc->pad_len);
3280
3281 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3282 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3283 /* trim sg */
3284 sg->length -= qc->pad_len;
3285 if (sg->length == 0)
3286 trim_sg = 1;
3287
3288 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3289 sg->length, qc->pad_len);
3290 }
3291
3292 if (trim_sg) {
3293 qc->n_elem--;
3294 goto skip_map;
3295 }
3296
3297 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3298 sg->length, dir);
3299 if (dma_mapping_error(dma_address)) {
3300 /* restore sg */
3301 sg->length += qc->pad_len;
3302 return -1;
3303 }
3304
3305 sg_dma_address(sg) = dma_address;
3306 sg_dma_len(sg) = sg->length;
3307
3308 skip_map:
3309 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3310 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3311
3312 return 0;
3313 }
3314
3315 /**
3316 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3317 * @qc: Command with scatter-gather table to be mapped.
3318 *
3319 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3320 *
3321 * LOCKING:
3322 * spin_lock_irqsave(host_set lock)
3323 *
3324 * RETURNS:
3325 * Zero on success, negative on error.
3326 *
3327 */
3328
3329 static int ata_sg_setup(struct ata_queued_cmd *qc)
3330 {
3331 struct ata_port *ap = qc->ap;
3332 struct scatterlist *sg = qc->__sg;
3333 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3334 int n_elem, pre_n_elem, dir, trim_sg = 0;
3335
3336 VPRINTK("ENTER, ata%u\n", ap->id);
3337 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3338
3339 /* we must lengthen transfers to end on a 32-bit boundary */
3340 qc->pad_len = lsg->length & 3;
3341 if (qc->pad_len) {
3342 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3343 struct scatterlist *psg = &qc->pad_sgent;
3344 unsigned int offset;
3345
3346 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3347
3348 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3349
3350 /*
3351 * psg->page/offset are used to copy to-be-written
3352 * data in this function or read data in ata_sg_clean.
3353 */
3354 offset = lsg->offset + lsg->length - qc->pad_len;
3355 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3356 psg->offset = offset_in_page(offset);
3357
3358 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3359 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3360 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3361 kunmap_atomic(addr, KM_IRQ0);
3362 }
3363
3364 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3365 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3366 /* trim last sg */
3367 lsg->length -= qc->pad_len;
3368 if (lsg->length == 0)
3369 trim_sg = 1;
3370
3371 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3372 qc->n_elem - 1, lsg->length, qc->pad_len);
3373 }
3374
3375 pre_n_elem = qc->n_elem;
3376 if (trim_sg && pre_n_elem)
3377 pre_n_elem--;
3378
3379 if (!pre_n_elem) {
3380 n_elem = 0;
3381 goto skip_map;
3382 }
3383
3384 dir = qc->dma_dir;
3385 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3386 if (n_elem < 1) {
3387 /* restore last sg */
3388 lsg->length += qc->pad_len;
3389 return -1;
3390 }
3391
3392 DPRINTK("%d sg elements mapped\n", n_elem);
3393
3394 skip_map:
3395 qc->n_elem = n_elem;
3396
3397 return 0;
3398 }
3399
3400 /**
3401 * ata_poll_qc_complete - turn irq back on and finish qc
3402 * @qc: Command to complete
3403 * @err_mask: ATA status register content
3404 *
3405 * LOCKING:
3406 * None. (grabs host lock)
3407 */
3408
3409 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3410 {
3411 struct ata_port *ap = qc->ap;
3412 unsigned long flags;
3413
3414 spin_lock_irqsave(&ap->host_set->lock, flags);
3415 ap->flags &= ~ATA_FLAG_NOINTR;
3416 ata_irq_on(ap);
3417 ata_qc_complete(qc);
3418 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3419 }
3420
3421 /**
3422 * ata_pio_poll - poll using PIO, depending on current state
3423 * @qc: qc in progress
3424 *
3425 * LOCKING:
3426 * None. (executing in kernel thread context)
3427 *
3428 * RETURNS:
3429 * timeout value to use
3430 */
3431 static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
3432 {
3433 struct ata_port *ap = qc->ap;
3434 u8 status;
3435 unsigned int poll_state = HSM_ST_UNKNOWN;
3436 unsigned int reg_state = HSM_ST_UNKNOWN;
3437
3438 switch (ap->hsm_task_state) {
3439 case HSM_ST:
3440 case HSM_ST_POLL:
3441 poll_state = HSM_ST_POLL;
3442 reg_state = HSM_ST;
3443 break;
3444 case HSM_ST_LAST:
3445 case HSM_ST_LAST_POLL:
3446 poll_state = HSM_ST_LAST_POLL;
3447 reg_state = HSM_ST_LAST;
3448 break;
3449 default:
3450 BUG();
3451 break;
3452 }
3453
3454 status = ata_chk_status(ap);
3455 if (status & ATA_BUSY) {
3456 if (time_after(jiffies, ap->pio_task_timeout)) {
3457 qc->err_mask |= AC_ERR_TIMEOUT;
3458 ap->hsm_task_state = HSM_ST_TMOUT;
3459 return 0;
3460 }
3461 ap->hsm_task_state = poll_state;
3462 return ATA_SHORT_PAUSE;
3463 }
3464
3465 ap->hsm_task_state = reg_state;
3466 return 0;
3467 }
3468
3469 /**
3470 * ata_pio_complete - check if drive is busy or idle
3471 * @qc: qc to complete
3472 *
3473 * LOCKING:
3474 * None. (executing in kernel thread context)
3475 *
3476 * RETURNS:
3477 * Non-zero if qc completed, zero otherwise.
3478 */
3479 static int ata_pio_complete(struct ata_queued_cmd *qc)
3480 {
3481 struct ata_port *ap = qc->ap;
3482 u8 drv_stat;
3483
3484 /*
3485 * This is purely heuristic. This is a fast path. Sometimes when
3486 * we enter, BSY will be cleared in a chk-status or two. If not,
3487 * the drive is probably seeking or something. Snooze for a couple
3488 * msecs, then chk-status again. If still busy, fall back to
3489 * HSM_ST_POLL state.
3490 */
3491 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3492 if (drv_stat & ATA_BUSY) {
3493 msleep(2);
3494 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3495 if (drv_stat & ATA_BUSY) {
3496 ap->hsm_task_state = HSM_ST_LAST_POLL;
3497 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3498 return 0;
3499 }
3500 }
3501
3502 drv_stat = ata_wait_idle(ap);
3503 if (!ata_ok(drv_stat)) {
3504 qc->err_mask |= __ac_err_mask(drv_stat);
3505 ap->hsm_task_state = HSM_ST_ERR;
3506 return 0;
3507 }
3508
3509 ap->hsm_task_state = HSM_ST_IDLE;
3510
3511 WARN_ON(qc->err_mask);
3512 ata_poll_qc_complete(qc);
3513
3514 /* another command may start at this point */
3515
3516 return 1;
3517 }
3518
3519
3520 /**
3521 * swap_buf_le16 - swap halves of 16-bit words in place
3522 * @buf: Buffer to swap
3523 * @buf_words: Number of 16-bit words in buffer.
3524 *
3525 * Swap halves of 16-bit words if needed to convert from
3526 * little-endian byte order to native cpu byte order, or
3527 * vice-versa.
3528 *
3529 * LOCKING:
3530 * Inherited from caller.
3531 */
3532 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3533 {
3534 #ifdef __BIG_ENDIAN
3535 unsigned int i;
3536
3537 for (i = 0; i < buf_words; i++)
3538 buf[i] = le16_to_cpu(buf[i]);
3539 #endif /* __BIG_ENDIAN */
3540 }
3541
3542 /**
3543 * ata_mmio_data_xfer - Transfer data by MMIO
3544 * @ap: port to read/write
3545 * @buf: data buffer
3546 * @buflen: buffer length
3547 * @write_data: read/write
3548 *
3549 * Transfer data from/to the device data register by MMIO.
3550 *
3551 * LOCKING:
3552 * Inherited from caller.
3553 */
3554
3555 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3556 unsigned int buflen, int write_data)
3557 {
3558 unsigned int i;
3559 unsigned int words = buflen >> 1;
3560 u16 *buf16 = (u16 *) buf;
3561 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3562
3563 /* Transfer multiple of 2 bytes */
3564 if (write_data) {
3565 for (i = 0; i < words; i++)
3566 writew(le16_to_cpu(buf16[i]), mmio);
3567 } else {
3568 for (i = 0; i < words; i++)
3569 buf16[i] = cpu_to_le16(readw(mmio));
3570 }
3571
3572 /* Transfer trailing 1 byte, if any. */
3573 if (unlikely(buflen & 0x01)) {
3574 u16 align_buf[1] = { 0 };
3575 unsigned char *trailing_buf = buf + buflen - 1;
3576
3577 if (write_data) {
3578 memcpy(align_buf, trailing_buf, 1);
3579 writew(le16_to_cpu(align_buf[0]), mmio);
3580 } else {
3581 align_buf[0] = cpu_to_le16(readw(mmio));
3582 memcpy(trailing_buf, align_buf, 1);
3583 }
3584 }
3585 }
3586
3587 /**
3588 * ata_pio_data_xfer - Transfer data by PIO
3589 * @ap: port to read/write
3590 * @buf: data buffer
3591 * @buflen: buffer length
3592 * @write_data: read/write
3593 *
3594 * Transfer data from/to the device data register by PIO.
3595 *
3596 * LOCKING:
3597 * Inherited from caller.
3598 */
3599
3600 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3601 unsigned int buflen, int write_data)
3602 {
3603 unsigned int words = buflen >> 1;
3604
3605 /* Transfer multiple of 2 bytes */
3606 if (write_data)
3607 outsw(ap->ioaddr.data_addr, buf, words);
3608 else
3609 insw(ap->ioaddr.data_addr, buf, words);
3610
3611 /* Transfer trailing 1 byte, if any. */
3612 if (unlikely(buflen & 0x01)) {
3613 u16 align_buf[1] = { 0 };
3614 unsigned char *trailing_buf = buf + buflen - 1;
3615
3616 if (write_data) {
3617 memcpy(align_buf, trailing_buf, 1);
3618 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3619 } else {
3620 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3621 memcpy(trailing_buf, align_buf, 1);
3622 }
3623 }
3624 }
3625
3626 /**
3627 * ata_data_xfer - Transfer data from/to the data register.
3628 * @ap: port to read/write
3629 * @buf: data buffer
3630 * @buflen: buffer length
3631 * @do_write: read/write
3632 *
3633 * Transfer data from/to the device data register.
3634 *
3635 * LOCKING:
3636 * Inherited from caller.
3637 */
3638
3639 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3640 unsigned int buflen, int do_write)
3641 {
3642 /* Make the crap hardware pay the costs not the good stuff */
3643 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3644 unsigned long flags;
3645 local_irq_save(flags);
3646 if (ap->flags & ATA_FLAG_MMIO)
3647 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3648 else
3649 ata_pio_data_xfer(ap, buf, buflen, do_write);
3650 local_irq_restore(flags);
3651 } else {
3652 if (ap->flags & ATA_FLAG_MMIO)
3653 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3654 else
3655 ata_pio_data_xfer(ap, buf, buflen, do_write);
3656 }
3657 }
3658
3659 /**
3660 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3661 * @qc: Command on going
3662 *
3663 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3664 *
3665 * LOCKING:
3666 * Inherited from caller.
3667 */
3668
3669 static void ata_pio_sector(struct ata_queued_cmd *qc)
3670 {
3671 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3672 struct scatterlist *sg = qc->__sg;
3673 struct ata_port *ap = qc->ap;
3674 struct page *page;
3675 unsigned int offset;
3676 unsigned char *buf;
3677
3678 if (qc->cursect == (qc->nsect - 1))
3679 ap->hsm_task_state = HSM_ST_LAST;
3680
3681 page = sg[qc->cursg].page;
3682 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3683
3684 /* get the current page and offset */
3685 page = nth_page(page, (offset >> PAGE_SHIFT));
3686 offset %= PAGE_SIZE;
3687
3688 buf = kmap(page) + offset;
3689
3690 qc->cursect++;
3691 qc->cursg_ofs++;
3692
3693 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3694 qc->cursg++;
3695 qc->cursg_ofs = 0;
3696 }
3697
3698 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3699
3700 /* do the actual data transfer */
3701 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3702 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3703
3704 kunmap(page);
3705 }
3706
3707 /**
3708 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3709 * @qc: Command on going
3710 * @bytes: number of bytes
3711 *
3712 * Transfer Transfer data from/to the ATAPI device.
3713 *
3714 * LOCKING:
3715 * Inherited from caller.
3716 *
3717 */
3718
3719 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3720 {
3721 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3722 struct scatterlist *sg = qc->__sg;
3723 struct ata_port *ap = qc->ap;
3724 struct page *page;
3725 unsigned char *buf;
3726 unsigned int offset, count;
3727
3728 if (qc->curbytes + bytes >= qc->nbytes)
3729 ap->hsm_task_state = HSM_ST_LAST;
3730
3731 next_sg:
3732 if (unlikely(qc->cursg >= qc->n_elem)) {
3733 /*
3734 * The end of qc->sg is reached and the device expects
3735 * more data to transfer. In order not to overrun qc->sg
3736 * and fulfill length specified in the byte count register,
3737 * - for read case, discard trailing data from the device
3738 * - for write case, padding zero data to the device
3739 */
3740 u16 pad_buf[1] = { 0 };
3741 unsigned int words = bytes >> 1;
3742 unsigned int i;
3743
3744 if (words) /* warning if bytes > 1 */
3745 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3746 ap->id, bytes);
3747
3748 for (i = 0; i < words; i++)
3749 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3750
3751 ap->hsm_task_state = HSM_ST_LAST;
3752 return;
3753 }
3754
3755 sg = &qc->__sg[qc->cursg];
3756
3757 page = sg->page;
3758 offset = sg->offset + qc->cursg_ofs;
3759
3760 /* get the current page and offset */
3761 page = nth_page(page, (offset >> PAGE_SHIFT));
3762 offset %= PAGE_SIZE;
3763
3764 /* don't overrun current sg */
3765 count = min(sg->length - qc->cursg_ofs, bytes);
3766
3767 /* don't cross page boundaries */
3768 count = min(count, (unsigned int)PAGE_SIZE - offset);
3769
3770 buf = kmap(page) + offset;
3771
3772 bytes -= count;
3773 qc->curbytes += count;
3774 qc->cursg_ofs += count;
3775
3776 if (qc->cursg_ofs == sg->length) {
3777 qc->cursg++;
3778 qc->cursg_ofs = 0;
3779 }
3780
3781 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3782
3783 /* do the actual data transfer */
3784 ata_data_xfer(ap, buf, count, do_write);
3785
3786 kunmap(page);
3787
3788 if (bytes)
3789 goto next_sg;
3790 }
3791
3792 /**
3793 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3794 * @qc: Command on going
3795 *
3796 * Transfer Transfer data from/to the ATAPI device.
3797 *
3798 * LOCKING:
3799 * Inherited from caller.
3800 */
3801
3802 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3803 {
3804 struct ata_port *ap = qc->ap;
3805 struct ata_device *dev = qc->dev;
3806 unsigned int ireason, bc_lo, bc_hi, bytes;
3807 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3808
3809 ap->ops->tf_read(ap, &qc->tf);
3810 ireason = qc->tf.nsect;
3811 bc_lo = qc->tf.lbam;
3812 bc_hi = qc->tf.lbah;
3813 bytes = (bc_hi << 8) | bc_lo;
3814
3815 /* shall be cleared to zero, indicating xfer of data */
3816 if (ireason & (1 << 0))
3817 goto err_out;
3818
3819 /* make sure transfer direction matches expected */
3820 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3821 if (do_write != i_write)
3822 goto err_out;
3823
3824 __atapi_pio_bytes(qc, bytes);
3825
3826 return;
3827
3828 err_out:
3829 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3830 ap->id, dev->devno);
3831 qc->err_mask |= AC_ERR_HSM;
3832 ap->hsm_task_state = HSM_ST_ERR;
3833 }
3834
3835 /**
3836 * ata_pio_block - start PIO on a block
3837 * @qc: qc to transfer block for
3838 *
3839 * LOCKING:
3840 * None. (executing in kernel thread context)
3841 */
3842 static void ata_pio_block(struct ata_queued_cmd *qc)
3843 {
3844 struct ata_port *ap = qc->ap;
3845 u8 status;
3846
3847 /*
3848 * This is purely heuristic. This is a fast path.
3849 * Sometimes when we enter, BSY will be cleared in
3850 * a chk-status or two. If not, the drive is probably seeking
3851 * or something. Snooze for a couple msecs, then
3852 * chk-status again. If still busy, fall back to
3853 * HSM_ST_POLL state.
3854 */
3855 status = ata_busy_wait(ap, ATA_BUSY, 5);
3856 if (status & ATA_BUSY) {
3857 msleep(2);
3858 status = ata_busy_wait(ap, ATA_BUSY, 10);
3859 if (status & ATA_BUSY) {
3860 ap->hsm_task_state = HSM_ST_POLL;
3861 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3862 return;
3863 }
3864 }
3865
3866 /* check error */
3867 if (status & (ATA_ERR | ATA_DF)) {
3868 qc->err_mask |= AC_ERR_DEV;
3869 ap->hsm_task_state = HSM_ST_ERR;
3870 return;
3871 }
3872
3873 /* transfer data if any */
3874 if (is_atapi_taskfile(&qc->tf)) {
3875 /* DRQ=0 means no more data to transfer */
3876 if ((status & ATA_DRQ) == 0) {
3877 ap->hsm_task_state = HSM_ST_LAST;
3878 return;
3879 }
3880
3881 atapi_pio_bytes(qc);
3882 } else {
3883 /* handle BSY=0, DRQ=0 as error */
3884 if ((status & ATA_DRQ) == 0) {
3885 qc->err_mask |= AC_ERR_HSM;
3886 ap->hsm_task_state = HSM_ST_ERR;
3887 return;
3888 }
3889
3890 ata_pio_sector(qc);
3891 }
3892 }
3893
3894 static void ata_pio_error(struct ata_queued_cmd *qc)
3895 {
3896 struct ata_port *ap = qc->ap;
3897
3898 if (qc->tf.command != ATA_CMD_PACKET)
3899 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3900 ap->id, qc->dev->devno);
3901
3902 /* make sure qc->err_mask is available to
3903 * know what's wrong and recover
3904 */
3905 WARN_ON(qc->err_mask == 0);
3906
3907 ap->hsm_task_state = HSM_ST_IDLE;
3908
3909 ata_poll_qc_complete(qc);
3910 }
3911
3912 static void ata_pio_task(void *_data)
3913 {
3914 struct ata_queued_cmd *qc = _data;
3915 struct ata_port *ap = qc->ap;
3916 unsigned long timeout;
3917 int qc_completed;
3918
3919 fsm_start:
3920 timeout = 0;
3921 qc_completed = 0;
3922
3923 switch (ap->hsm_task_state) {
3924 case HSM_ST_IDLE:
3925 return;
3926
3927 case HSM_ST:
3928 ata_pio_block(qc);
3929 break;
3930
3931 case HSM_ST_LAST:
3932 qc_completed = ata_pio_complete(qc);
3933 break;
3934
3935 case HSM_ST_POLL:
3936 case HSM_ST_LAST_POLL:
3937 timeout = ata_pio_poll(qc);
3938 break;
3939
3940 case HSM_ST_TMOUT:
3941 case HSM_ST_ERR:
3942 ata_pio_error(qc);
3943 return;
3944 }
3945
3946 if (timeout)
3947 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
3948 else if (!qc_completed)
3949 goto fsm_start;
3950 }
3951
3952 /**
3953 * atapi_packet_task - Write CDB bytes to hardware
3954 * @_data: qc in progress
3955 *
3956 * When device has indicated its readiness to accept
3957 * a CDB, this function is called. Send the CDB.
3958 * If DMA is to be performed, exit immediately.
3959 * Otherwise, we are in polling mode, so poll
3960 * status under operation succeeds or fails.
3961 *
3962 * LOCKING:
3963 * Kernel thread context (may sleep)
3964 */
3965 static void atapi_packet_task(void *_data)
3966 {
3967 struct ata_queued_cmd *qc = _data;
3968 struct ata_port *ap = qc->ap;
3969 u8 status;
3970
3971 /* sleep-wait for BSY to clear */
3972 DPRINTK("busy wait\n");
3973 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3974 qc->err_mask |= AC_ERR_TIMEOUT;
3975 goto err_out;
3976 }
3977
3978 /* make sure DRQ is set */
3979 status = ata_chk_status(ap);
3980 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3981 qc->err_mask |= AC_ERR_HSM;
3982 goto err_out;
3983 }
3984
3985 /* send SCSI cdb */
3986 DPRINTK("send cdb\n");
3987 WARN_ON(qc->dev->cdb_len < 12);
3988
3989 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3990 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3991 unsigned long flags;
3992
3993 /* Once we're done issuing command and kicking bmdma,
3994 * irq handler takes over. To not lose irq, we need
3995 * to clear NOINTR flag before sending cdb, but
3996 * interrupt handler shouldn't be invoked before we're
3997 * finished. Hence, the following locking.
3998 */
3999 spin_lock_irqsave(&ap->host_set->lock, flags);
4000 ap->flags &= ~ATA_FLAG_NOINTR;
4001 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4002 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4003 ap->ops->bmdma_start(qc); /* initiate bmdma */
4004 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4005 } else {
4006 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4007
4008 /* PIO commands are handled by polling */
4009 ap->hsm_task_state = HSM_ST;
4010 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4011 }
4012
4013 return;
4014
4015 err_out:
4016 ata_poll_qc_complete(qc);
4017 }
4018
4019 /**
4020 * ata_qc_new - Request an available ATA command, for queueing
4021 * @ap: Port associated with device @dev
4022 * @dev: Device from whom we request an available command structure
4023 *
4024 * LOCKING:
4025 * None.
4026 */
4027
4028 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4029 {
4030 struct ata_queued_cmd *qc = NULL;
4031 unsigned int i;
4032
4033 for (i = 0; i < ATA_MAX_QUEUE; i++)
4034 if (!test_and_set_bit(i, &ap->qactive)) {
4035 qc = ata_qc_from_tag(ap, i);
4036 break;
4037 }
4038
4039 if (qc)
4040 qc->tag = i;
4041
4042 return qc;
4043 }
4044
4045 /**
4046 * ata_qc_new_init - Request an available ATA command, and initialize it
4047 * @ap: Port associated with device @dev
4048 * @dev: Device from whom we request an available command structure
4049 *
4050 * LOCKING:
4051 * None.
4052 */
4053
4054 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4055 struct ata_device *dev)
4056 {
4057 struct ata_queued_cmd *qc;
4058
4059 qc = ata_qc_new(ap);
4060 if (qc) {
4061 qc->scsicmd = NULL;
4062 qc->ap = ap;
4063 qc->dev = dev;
4064
4065 ata_qc_reinit(qc);
4066 }
4067
4068 return qc;
4069 }
4070
4071 /**
4072 * ata_qc_free - free unused ata_queued_cmd
4073 * @qc: Command to complete
4074 *
4075 * Designed to free unused ata_queued_cmd object
4076 * in case something prevents using it.
4077 *
4078 * LOCKING:
4079 * spin_lock_irqsave(host_set lock)
4080 */
4081 void ata_qc_free(struct ata_queued_cmd *qc)
4082 {
4083 struct ata_port *ap = qc->ap;
4084 unsigned int tag;
4085
4086 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4087
4088 qc->flags = 0;
4089 tag = qc->tag;
4090 if (likely(ata_tag_valid(tag))) {
4091 qc->tag = ATA_TAG_POISON;
4092 clear_bit(tag, &ap->qactive);
4093 }
4094 }
4095
4096 void __ata_qc_complete(struct ata_queued_cmd *qc)
4097 {
4098 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4099 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4100
4101 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4102 ata_sg_clean(qc);
4103
4104 /* command should be marked inactive atomically with qc completion */
4105 qc->ap->active_tag = ATA_TAG_POISON;
4106
4107 /* atapi: mark qc as inactive to prevent the interrupt handler
4108 * from completing the command twice later, before the error handler
4109 * is called. (when rc != 0 and atapi request sense is needed)
4110 */
4111 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4112
4113 /* call completion callback */
4114 qc->complete_fn(qc);
4115 }
4116
4117 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4118 {
4119 struct ata_port *ap = qc->ap;
4120
4121 switch (qc->tf.protocol) {
4122 case ATA_PROT_DMA:
4123 case ATA_PROT_ATAPI_DMA:
4124 return 1;
4125
4126 case ATA_PROT_ATAPI:
4127 case ATA_PROT_PIO:
4128 if (ap->flags & ATA_FLAG_PIO_DMA)
4129 return 1;
4130
4131 /* fall through */
4132
4133 default:
4134 return 0;
4135 }
4136
4137 /* never reached */
4138 }
4139
4140 /**
4141 * ata_qc_issue - issue taskfile to device
4142 * @qc: command to issue to device
4143 *
4144 * Prepare an ATA command to submission to device.
4145 * This includes mapping the data into a DMA-able
4146 * area, filling in the S/G table, and finally
4147 * writing the taskfile to hardware, starting the command.
4148 *
4149 * LOCKING:
4150 * spin_lock_irqsave(host_set lock)
4151 */
4152 void ata_qc_issue(struct ata_queued_cmd *qc)
4153 {
4154 struct ata_port *ap = qc->ap;
4155
4156 qc->ap->active_tag = qc->tag;
4157 qc->flags |= ATA_QCFLAG_ACTIVE;
4158
4159 if (ata_should_dma_map(qc)) {
4160 if (qc->flags & ATA_QCFLAG_SG) {
4161 if (ata_sg_setup(qc))
4162 goto sg_err;
4163 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4164 if (ata_sg_setup_one(qc))
4165 goto sg_err;
4166 }
4167 } else {
4168 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4169 }
4170
4171 ap->ops->qc_prep(qc);
4172
4173 qc->err_mask |= ap->ops->qc_issue(qc);
4174 if (unlikely(qc->err_mask))
4175 goto err;
4176 return;
4177
4178 sg_err:
4179 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4180 qc->err_mask |= AC_ERR_SYSTEM;
4181 err:
4182 ata_qc_complete(qc);
4183 }
4184
4185 /**
4186 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4187 * @qc: command to issue to device
4188 *
4189 * Using various libata functions and hooks, this function
4190 * starts an ATA command. ATA commands are grouped into
4191 * classes called "protocols", and issuing each type of protocol
4192 * is slightly different.
4193 *
4194 * May be used as the qc_issue() entry in ata_port_operations.
4195 *
4196 * LOCKING:
4197 * spin_lock_irqsave(host_set lock)
4198 *
4199 * RETURNS:
4200 * Zero on success, AC_ERR_* mask on failure
4201 */
4202
4203 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4204 {
4205 struct ata_port *ap = qc->ap;
4206
4207 ata_dev_select(ap, qc->dev->devno, 1, 0);
4208
4209 switch (qc->tf.protocol) {
4210 case ATA_PROT_NODATA:
4211 ata_tf_to_host(ap, &qc->tf);
4212 break;
4213
4214 case ATA_PROT_DMA:
4215 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4216 ap->ops->bmdma_setup(qc); /* set up bmdma */
4217 ap->ops->bmdma_start(qc); /* initiate bmdma */
4218 break;
4219
4220 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4221 ata_qc_set_polling(qc);
4222 ata_tf_to_host(ap, &qc->tf);
4223 ap->hsm_task_state = HSM_ST;
4224 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4225 break;
4226
4227 case ATA_PROT_ATAPI:
4228 ata_qc_set_polling(qc);
4229 ata_tf_to_host(ap, &qc->tf);
4230 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4231 break;
4232
4233 case ATA_PROT_ATAPI_NODATA:
4234 ap->flags |= ATA_FLAG_NOINTR;
4235 ata_tf_to_host(ap, &qc->tf);
4236 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4237 break;
4238
4239 case ATA_PROT_ATAPI_DMA:
4240 ap->flags |= ATA_FLAG_NOINTR;
4241 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4242 ap->ops->bmdma_setup(qc); /* set up bmdma */
4243 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4244 break;
4245
4246 default:
4247 WARN_ON(1);
4248 return AC_ERR_SYSTEM;
4249 }
4250
4251 return 0;
4252 }
4253
4254 /**
4255 * ata_host_intr - Handle host interrupt for given (port, task)
4256 * @ap: Port on which interrupt arrived (possibly...)
4257 * @qc: Taskfile currently active in engine
4258 *
4259 * Handle host interrupt for given queued command. Currently,
4260 * only DMA interrupts are handled. All other commands are
4261 * handled via polling with interrupts disabled (nIEN bit).
4262 *
4263 * LOCKING:
4264 * spin_lock_irqsave(host_set lock)
4265 *
4266 * RETURNS:
4267 * One if interrupt was handled, zero if not (shared irq).
4268 */
4269
4270 inline unsigned int ata_host_intr (struct ata_port *ap,
4271 struct ata_queued_cmd *qc)
4272 {
4273 u8 status, host_stat;
4274
4275 switch (qc->tf.protocol) {
4276
4277 case ATA_PROT_DMA:
4278 case ATA_PROT_ATAPI_DMA:
4279 case ATA_PROT_ATAPI:
4280 /* check status of DMA engine */
4281 host_stat = ap->ops->bmdma_status(ap);
4282 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4283
4284 /* if it's not our irq... */
4285 if (!(host_stat & ATA_DMA_INTR))
4286 goto idle_irq;
4287
4288 /* before we do anything else, clear DMA-Start bit */
4289 ap->ops->bmdma_stop(qc);
4290
4291 /* fall through */
4292
4293 case ATA_PROT_ATAPI_NODATA:
4294 case ATA_PROT_NODATA:
4295 /* check altstatus */
4296 status = ata_altstatus(ap);
4297 if (status & ATA_BUSY)
4298 goto idle_irq;
4299
4300 /* check main status, clearing INTRQ */
4301 status = ata_chk_status(ap);
4302 if (unlikely(status & ATA_BUSY))
4303 goto idle_irq;
4304 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4305 ap->id, qc->tf.protocol, status);
4306
4307 /* ack bmdma irq events */
4308 ap->ops->irq_clear(ap);
4309
4310 /* complete taskfile transaction */
4311 qc->err_mask |= ac_err_mask(status);
4312 ata_qc_complete(qc);
4313 break;
4314
4315 default:
4316 goto idle_irq;
4317 }
4318
4319 return 1; /* irq handled */
4320
4321 idle_irq:
4322 ap->stats.idle_irq++;
4323
4324 #ifdef ATA_IRQ_TRAP
4325 if ((ap->stats.idle_irq % 1000) == 0) {
4326 ata_irq_ack(ap, 0); /* debug trap */
4327 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4328 return 1;
4329 }
4330 #endif
4331 return 0; /* irq not handled */
4332 }
4333
4334 /**
4335 * ata_interrupt - Default ATA host interrupt handler
4336 * @irq: irq line (unused)
4337 * @dev_instance: pointer to our ata_host_set information structure
4338 * @regs: unused
4339 *
4340 * Default interrupt handler for PCI IDE devices. Calls
4341 * ata_host_intr() for each port that is not disabled.
4342 *
4343 * LOCKING:
4344 * Obtains host_set lock during operation.
4345 *
4346 * RETURNS:
4347 * IRQ_NONE or IRQ_HANDLED.
4348 */
4349
4350 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4351 {
4352 struct ata_host_set *host_set = dev_instance;
4353 unsigned int i;
4354 unsigned int handled = 0;
4355 unsigned long flags;
4356
4357 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4358 spin_lock_irqsave(&host_set->lock, flags);
4359
4360 for (i = 0; i < host_set->n_ports; i++) {
4361 struct ata_port *ap;
4362
4363 ap = host_set->ports[i];
4364 if (ap &&
4365 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
4366 struct ata_queued_cmd *qc;
4367
4368 qc = ata_qc_from_tag(ap, ap->active_tag);
4369 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4370 (qc->flags & ATA_QCFLAG_ACTIVE))
4371 handled |= ata_host_intr(ap, qc);
4372 }
4373 }
4374
4375 spin_unlock_irqrestore(&host_set->lock, flags);
4376
4377 return IRQ_RETVAL(handled);
4378 }
4379
4380
4381 /*
4382 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4383 * without filling any other registers
4384 */
4385 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4386 u8 cmd)
4387 {
4388 struct ata_taskfile tf;
4389 int err;
4390
4391 ata_tf_init(ap, &tf, dev->devno);
4392
4393 tf.command = cmd;
4394 tf.flags |= ATA_TFLAG_DEVICE;
4395 tf.protocol = ATA_PROT_NODATA;
4396
4397 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
4398 if (err)
4399 printk(KERN_ERR "%s: ata command failed: %d\n",
4400 __FUNCTION__, err);
4401
4402 return err;
4403 }
4404
4405 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4406 {
4407 u8 cmd;
4408
4409 if (!ata_try_flush_cache(dev))
4410 return 0;
4411
4412 if (ata_id_has_flush_ext(dev->id))
4413 cmd = ATA_CMD_FLUSH_EXT;
4414 else
4415 cmd = ATA_CMD_FLUSH;
4416
4417 return ata_do_simple_cmd(ap, dev, cmd);
4418 }
4419
4420 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4421 {
4422 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4423 }
4424
4425 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4426 {
4427 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4428 }
4429
4430 /**
4431 * ata_device_resume - wakeup a previously suspended devices
4432 * @ap: port the device is connected to
4433 * @dev: the device to resume
4434 *
4435 * Kick the drive back into action, by sending it an idle immediate
4436 * command and making sure its transfer mode matches between drive
4437 * and host.
4438 *
4439 */
4440 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4441 {
4442 if (ap->flags & ATA_FLAG_SUSPENDED) {
4443 struct ata_device *failed_dev;
4444 ap->flags &= ~ATA_FLAG_SUSPENDED;
4445 while (ata_set_mode(ap, &failed_dev))
4446 ata_dev_disable(ap, failed_dev);
4447 }
4448 if (!ata_dev_enabled(dev))
4449 return 0;
4450 if (dev->class == ATA_DEV_ATA)
4451 ata_start_drive(ap, dev);
4452
4453 return 0;
4454 }
4455
4456 /**
4457 * ata_device_suspend - prepare a device for suspend
4458 * @ap: port the device is connected to
4459 * @dev: the device to suspend
4460 *
4461 * Flush the cache on the drive, if appropriate, then issue a
4462 * standbynow command.
4463 */
4464 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4465 {
4466 if (!ata_dev_enabled(dev))
4467 return 0;
4468 if (dev->class == ATA_DEV_ATA)
4469 ata_flush_cache(ap, dev);
4470
4471 if (state.event != PM_EVENT_FREEZE)
4472 ata_standby_drive(ap, dev);
4473 ap->flags |= ATA_FLAG_SUSPENDED;
4474 return 0;
4475 }
4476
4477 /**
4478 * ata_port_start - Set port up for dma.
4479 * @ap: Port to initialize
4480 *
4481 * Called just after data structures for each port are
4482 * initialized. Allocates space for PRD table.
4483 *
4484 * May be used as the port_start() entry in ata_port_operations.
4485 *
4486 * LOCKING:
4487 * Inherited from caller.
4488 */
4489
4490 int ata_port_start (struct ata_port *ap)
4491 {
4492 struct device *dev = ap->dev;
4493 int rc;
4494
4495 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4496 if (!ap->prd)
4497 return -ENOMEM;
4498
4499 rc = ata_pad_alloc(ap, dev);
4500 if (rc) {
4501 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4502 return rc;
4503 }
4504
4505 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4506
4507 return 0;
4508 }
4509
4510
4511 /**
4512 * ata_port_stop - Undo ata_port_start()
4513 * @ap: Port to shut down
4514 *
4515 * Frees the PRD table.
4516 *
4517 * May be used as the port_stop() entry in ata_port_operations.
4518 *
4519 * LOCKING:
4520 * Inherited from caller.
4521 */
4522
4523 void ata_port_stop (struct ata_port *ap)
4524 {
4525 struct device *dev = ap->dev;
4526
4527 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4528 ata_pad_free(ap, dev);
4529 }
4530
4531 void ata_host_stop (struct ata_host_set *host_set)
4532 {
4533 if (host_set->mmio_base)
4534 iounmap(host_set->mmio_base);
4535 }
4536
4537
4538 /**
4539 * ata_host_remove - Unregister SCSI host structure with upper layers
4540 * @ap: Port to unregister
4541 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4542 *
4543 * LOCKING:
4544 * Inherited from caller.
4545 */
4546
4547 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4548 {
4549 struct Scsi_Host *sh = ap->host;
4550
4551 DPRINTK("ENTER\n");
4552
4553 if (do_unregister)
4554 scsi_remove_host(sh);
4555
4556 ap->ops->port_stop(ap);
4557 }
4558
4559 /**
4560 * ata_host_init - Initialize an ata_port structure
4561 * @ap: Structure to initialize
4562 * @host: associated SCSI mid-layer structure
4563 * @host_set: Collection of hosts to which @ap belongs
4564 * @ent: Probe information provided by low-level driver
4565 * @port_no: Port number associated with this ata_port
4566 *
4567 * Initialize a new ata_port structure, and its associated
4568 * scsi_host.
4569 *
4570 * LOCKING:
4571 * Inherited from caller.
4572 */
4573
4574 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4575 struct ata_host_set *host_set,
4576 const struct ata_probe_ent *ent, unsigned int port_no)
4577 {
4578 unsigned int i;
4579
4580 host->max_id = 16;
4581 host->max_lun = 1;
4582 host->max_channel = 1;
4583 host->unique_id = ata_unique_id++;
4584 host->max_cmd_len = 12;
4585
4586 ap->flags = ATA_FLAG_DISABLED;
4587 ap->id = host->unique_id;
4588 ap->host = host;
4589 ap->ctl = ATA_DEVCTL_OBS;
4590 ap->host_set = host_set;
4591 ap->dev = ent->dev;
4592 ap->port_no = port_no;
4593 ap->hard_port_no =
4594 ent->legacy_mode ? ent->hard_port_no : port_no;
4595 ap->pio_mask = ent->pio_mask;
4596 ap->mwdma_mask = ent->mwdma_mask;
4597 ap->udma_mask = ent->udma_mask;
4598 ap->flags |= ent->host_flags;
4599 ap->ops = ent->port_ops;
4600 ap->cbl = ATA_CBL_NONE;
4601 ap->sata_spd_limit = UINT_MAX;
4602 ap->active_tag = ATA_TAG_POISON;
4603 ap->last_ctl = 0xFF;
4604
4605 INIT_WORK(&ap->port_task, NULL, NULL);
4606 INIT_LIST_HEAD(&ap->eh_done_q);
4607
4608 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4609 struct ata_device *dev = &ap->device[i];
4610 dev->devno = i;
4611 dev->pio_mask = UINT_MAX;
4612 dev->mwdma_mask = UINT_MAX;
4613 dev->udma_mask = UINT_MAX;
4614 }
4615
4616 #ifdef ATA_IRQ_TRAP
4617 ap->stats.unhandled_irq = 1;
4618 ap->stats.idle_irq = 1;
4619 #endif
4620
4621 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4622 }
4623
4624 /**
4625 * ata_host_add - Attach low-level ATA driver to system
4626 * @ent: Information provided by low-level driver
4627 * @host_set: Collections of ports to which we add
4628 * @port_no: Port number associated with this host
4629 *
4630 * Attach low-level ATA driver to system.
4631 *
4632 * LOCKING:
4633 * PCI/etc. bus probe sem.
4634 *
4635 * RETURNS:
4636 * New ata_port on success, for NULL on error.
4637 */
4638
4639 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4640 struct ata_host_set *host_set,
4641 unsigned int port_no)
4642 {
4643 struct Scsi_Host *host;
4644 struct ata_port *ap;
4645 int rc;
4646
4647 DPRINTK("ENTER\n");
4648
4649 if (!ent->port_ops->probe_reset &&
4650 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4651 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4652 port_no);
4653 return NULL;
4654 }
4655
4656 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4657 if (!host)
4658 return NULL;
4659
4660 host->transportt = &ata_scsi_transport_template;
4661
4662 ap = ata_shost_to_port(host);
4663
4664 ata_host_init(ap, host, host_set, ent, port_no);
4665
4666 rc = ap->ops->port_start(ap);
4667 if (rc)
4668 goto err_out;
4669
4670 return ap;
4671
4672 err_out:
4673 scsi_host_put(host);
4674 return NULL;
4675 }
4676
4677 /**
4678 * ata_device_add - Register hardware device with ATA and SCSI layers
4679 * @ent: Probe information describing hardware device to be registered
4680 *
4681 * This function processes the information provided in the probe
4682 * information struct @ent, allocates the necessary ATA and SCSI
4683 * host information structures, initializes them, and registers
4684 * everything with requisite kernel subsystems.
4685 *
4686 * This function requests irqs, probes the ATA bus, and probes
4687 * the SCSI bus.
4688 *
4689 * LOCKING:
4690 * PCI/etc. bus probe sem.
4691 *
4692 * RETURNS:
4693 * Number of ports registered. Zero on error (no ports registered).
4694 */
4695
4696 int ata_device_add(const struct ata_probe_ent *ent)
4697 {
4698 unsigned int count = 0, i;
4699 struct device *dev = ent->dev;
4700 struct ata_host_set *host_set;
4701
4702 DPRINTK("ENTER\n");
4703 /* alloc a container for our list of ATA ports (buses) */
4704 host_set = kzalloc(sizeof(struct ata_host_set) +
4705 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4706 if (!host_set)
4707 return 0;
4708 spin_lock_init(&host_set->lock);
4709
4710 host_set->dev = dev;
4711 host_set->n_ports = ent->n_ports;
4712 host_set->irq = ent->irq;
4713 host_set->mmio_base = ent->mmio_base;
4714 host_set->private_data = ent->private_data;
4715 host_set->ops = ent->port_ops;
4716 host_set->flags = ent->host_set_flags;
4717
4718 /* register each port bound to this device */
4719 for (i = 0; i < ent->n_ports; i++) {
4720 struct ata_port *ap;
4721 unsigned long xfer_mode_mask;
4722
4723 ap = ata_host_add(ent, host_set, i);
4724 if (!ap)
4725 goto err_out;
4726
4727 host_set->ports[i] = ap;
4728 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4729 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4730 (ap->pio_mask << ATA_SHIFT_PIO);
4731
4732 /* print per-port info to dmesg */
4733 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4734 "bmdma 0x%lX irq %lu\n",
4735 ap->id,
4736 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4737 ata_mode_string(xfer_mode_mask),
4738 ap->ioaddr.cmd_addr,
4739 ap->ioaddr.ctl_addr,
4740 ap->ioaddr.bmdma_addr,
4741 ent->irq);
4742
4743 ata_chk_status(ap);
4744 host_set->ops->irq_clear(ap);
4745 count++;
4746 }
4747
4748 if (!count)
4749 goto err_free_ret;
4750
4751 /* obtain irq, that is shared between channels */
4752 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4753 DRV_NAME, host_set))
4754 goto err_out;
4755
4756 /* perform each probe synchronously */
4757 DPRINTK("probe begin\n");
4758 for (i = 0; i < count; i++) {
4759 struct ata_port *ap;
4760 int rc;
4761
4762 ap = host_set->ports[i];
4763
4764 DPRINTK("ata%u: bus probe begin\n", ap->id);
4765 rc = ata_bus_probe(ap);
4766 DPRINTK("ata%u: bus probe end\n", ap->id);
4767
4768 if (rc) {
4769 /* FIXME: do something useful here?
4770 * Current libata behavior will
4771 * tear down everything when
4772 * the module is removed
4773 * or the h/w is unplugged.
4774 */
4775 }
4776
4777 rc = scsi_add_host(ap->host, dev);
4778 if (rc) {
4779 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4780 ap->id);
4781 /* FIXME: do something useful here */
4782 /* FIXME: handle unconditional calls to
4783 * scsi_scan_host and ata_host_remove, below,
4784 * at the very least
4785 */
4786 }
4787 }
4788
4789 /* probes are done, now scan each port's disk(s) */
4790 DPRINTK("host probe begin\n");
4791 for (i = 0; i < count; i++) {
4792 struct ata_port *ap = host_set->ports[i];
4793
4794 ata_scsi_scan_host(ap);
4795 }
4796
4797 dev_set_drvdata(dev, host_set);
4798
4799 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4800 return ent->n_ports; /* success */
4801
4802 err_out:
4803 for (i = 0; i < count; i++) {
4804 ata_host_remove(host_set->ports[i], 1);
4805 scsi_host_put(host_set->ports[i]->host);
4806 }
4807 err_free_ret:
4808 kfree(host_set);
4809 VPRINTK("EXIT, returning 0\n");
4810 return 0;
4811 }
4812
4813 /**
4814 * ata_host_set_remove - PCI layer callback for device removal
4815 * @host_set: ATA host set that was removed
4816 *
4817 * Unregister all objects associated with this host set. Free those
4818 * objects.
4819 *
4820 * LOCKING:
4821 * Inherited from calling layer (may sleep).
4822 */
4823
4824 void ata_host_set_remove(struct ata_host_set *host_set)
4825 {
4826 struct ata_port *ap;
4827 unsigned int i;
4828
4829 for (i = 0; i < host_set->n_ports; i++) {
4830 ap = host_set->ports[i];
4831 scsi_remove_host(ap->host);
4832 }
4833
4834 free_irq(host_set->irq, host_set);
4835
4836 for (i = 0; i < host_set->n_ports; i++) {
4837 ap = host_set->ports[i];
4838
4839 ata_scsi_release(ap->host);
4840
4841 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4842 struct ata_ioports *ioaddr = &ap->ioaddr;
4843
4844 if (ioaddr->cmd_addr == 0x1f0)
4845 release_region(0x1f0, 8);
4846 else if (ioaddr->cmd_addr == 0x170)
4847 release_region(0x170, 8);
4848 }
4849
4850 scsi_host_put(ap->host);
4851 }
4852
4853 if (host_set->ops->host_stop)
4854 host_set->ops->host_stop(host_set);
4855
4856 kfree(host_set);
4857 }
4858
4859 /**
4860 * ata_scsi_release - SCSI layer callback hook for host unload
4861 * @host: libata host to be unloaded
4862 *
4863 * Performs all duties necessary to shut down a libata port...
4864 * Kill port kthread, disable port, and release resources.
4865 *
4866 * LOCKING:
4867 * Inherited from SCSI layer.
4868 *
4869 * RETURNS:
4870 * One.
4871 */
4872
4873 int ata_scsi_release(struct Scsi_Host *host)
4874 {
4875 struct ata_port *ap = ata_shost_to_port(host);
4876 int i;
4877
4878 DPRINTK("ENTER\n");
4879
4880 ap->ops->port_disable(ap);
4881 ata_host_remove(ap, 0);
4882 for (i = 0; i < ATA_MAX_DEVICES; i++)
4883 kfree(ap->device[i].id);
4884
4885 DPRINTK("EXIT\n");
4886 return 1;
4887 }
4888
4889 /**
4890 * ata_std_ports - initialize ioaddr with standard port offsets.
4891 * @ioaddr: IO address structure to be initialized
4892 *
4893 * Utility function which initializes data_addr, error_addr,
4894 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4895 * device_addr, status_addr, and command_addr to standard offsets
4896 * relative to cmd_addr.
4897 *
4898 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4899 */
4900
4901 void ata_std_ports(struct ata_ioports *ioaddr)
4902 {
4903 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4904 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4905 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4906 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4907 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4908 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4909 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4910 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4911 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4912 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4913 }
4914
4915
4916 #ifdef CONFIG_PCI
4917
4918 void ata_pci_host_stop (struct ata_host_set *host_set)
4919 {
4920 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4921
4922 pci_iounmap(pdev, host_set->mmio_base);
4923 }
4924
4925 /**
4926 * ata_pci_remove_one - PCI layer callback for device removal
4927 * @pdev: PCI device that was removed
4928 *
4929 * PCI layer indicates to libata via this hook that
4930 * hot-unplug or module unload event has occurred.
4931 * Handle this by unregistering all objects associated
4932 * with this PCI device. Free those objects. Then finally
4933 * release PCI resources and disable device.
4934 *
4935 * LOCKING:
4936 * Inherited from PCI layer (may sleep).
4937 */
4938
4939 void ata_pci_remove_one (struct pci_dev *pdev)
4940 {
4941 struct device *dev = pci_dev_to_dev(pdev);
4942 struct ata_host_set *host_set = dev_get_drvdata(dev);
4943
4944 ata_host_set_remove(host_set);
4945 pci_release_regions(pdev);
4946 pci_disable_device(pdev);
4947 dev_set_drvdata(dev, NULL);
4948 }
4949
4950 /* move to PCI subsystem */
4951 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4952 {
4953 unsigned long tmp = 0;
4954
4955 switch (bits->width) {
4956 case 1: {
4957 u8 tmp8 = 0;
4958 pci_read_config_byte(pdev, bits->reg, &tmp8);
4959 tmp = tmp8;
4960 break;
4961 }
4962 case 2: {
4963 u16 tmp16 = 0;
4964 pci_read_config_word(pdev, bits->reg, &tmp16);
4965 tmp = tmp16;
4966 break;
4967 }
4968 case 4: {
4969 u32 tmp32 = 0;
4970 pci_read_config_dword(pdev, bits->reg, &tmp32);
4971 tmp = tmp32;
4972 break;
4973 }
4974
4975 default:
4976 return -EINVAL;
4977 }
4978
4979 tmp &= bits->mask;
4980
4981 return (tmp == bits->val) ? 1 : 0;
4982 }
4983
4984 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4985 {
4986 pci_save_state(pdev);
4987 pci_disable_device(pdev);
4988 pci_set_power_state(pdev, PCI_D3hot);
4989 return 0;
4990 }
4991
4992 int ata_pci_device_resume(struct pci_dev *pdev)
4993 {
4994 pci_set_power_state(pdev, PCI_D0);
4995 pci_restore_state(pdev);
4996 pci_enable_device(pdev);
4997 pci_set_master(pdev);
4998 return 0;
4999 }
5000 #endif /* CONFIG_PCI */
5001
5002
5003 static int __init ata_init(void)
5004 {
5005 ata_wq = create_workqueue("ata");
5006 if (!ata_wq)
5007 return -ENOMEM;
5008
5009 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5010 return 0;
5011 }
5012
5013 static void __exit ata_exit(void)
5014 {
5015 destroy_workqueue(ata_wq);
5016 }
5017
5018 module_init(ata_init);
5019 module_exit(ata_exit);
5020
5021 static unsigned long ratelimit_time;
5022 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5023
5024 int ata_ratelimit(void)
5025 {
5026 int rc;
5027 unsigned long flags;
5028
5029 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5030
5031 if (time_after(jiffies, ratelimit_time)) {
5032 rc = 1;
5033 ratelimit_time = jiffies + (HZ/5);
5034 } else
5035 rc = 0;
5036
5037 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5038
5039 return rc;
5040 }
5041
5042 /**
5043 * ata_wait_register - wait until register value changes
5044 * @reg: IO-mapped register
5045 * @mask: Mask to apply to read register value
5046 * @val: Wait condition
5047 * @interval_msec: polling interval in milliseconds
5048 * @timeout_msec: timeout in milliseconds
5049 *
5050 * Waiting for some bits of register to change is a common
5051 * operation for ATA controllers. This function reads 32bit LE
5052 * IO-mapped register @reg and tests for the following condition.
5053 *
5054 * (*@reg & mask) != val
5055 *
5056 * If the condition is met, it returns; otherwise, the process is
5057 * repeated after @interval_msec until timeout.
5058 *
5059 * LOCKING:
5060 * Kernel thread context (may sleep)
5061 *
5062 * RETURNS:
5063 * The final register value.
5064 */
5065 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5066 unsigned long interval_msec,
5067 unsigned long timeout_msec)
5068 {
5069 unsigned long timeout;
5070 u32 tmp;
5071
5072 tmp = ioread32(reg);
5073
5074 /* Calculate timeout _after_ the first read to make sure
5075 * preceding writes reach the controller before starting to
5076 * eat away the timeout.
5077 */
5078 timeout = jiffies + (timeout_msec * HZ) / 1000;
5079
5080 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5081 msleep(interval_msec);
5082 tmp = ioread32(reg);
5083 }
5084
5085 return tmp;
5086 }
5087
5088 /*
5089 * libata is essentially a library of internal helper functions for
5090 * low-level ATA host controller drivers. As such, the API/ABI is
5091 * likely to change as new drivers are added and updated.
5092 * Do not depend on ABI/API stability.
5093 */
5094
5095 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5096 EXPORT_SYMBOL_GPL(ata_std_ports);
5097 EXPORT_SYMBOL_GPL(ata_device_add);
5098 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5099 EXPORT_SYMBOL_GPL(ata_sg_init);
5100 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5101 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5102 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5103 EXPORT_SYMBOL_GPL(ata_tf_load);
5104 EXPORT_SYMBOL_GPL(ata_tf_read);
5105 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5106 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5107 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5108 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5109 EXPORT_SYMBOL_GPL(ata_check_status);
5110 EXPORT_SYMBOL_GPL(ata_altstatus);
5111 EXPORT_SYMBOL_GPL(ata_exec_command);
5112 EXPORT_SYMBOL_GPL(ata_port_start);
5113 EXPORT_SYMBOL_GPL(ata_port_stop);
5114 EXPORT_SYMBOL_GPL(ata_host_stop);
5115 EXPORT_SYMBOL_GPL(ata_interrupt);
5116 EXPORT_SYMBOL_GPL(ata_qc_prep);
5117 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5118 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5119 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5120 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5121 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5122 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5123 EXPORT_SYMBOL_GPL(ata_port_probe);
5124 EXPORT_SYMBOL_GPL(sata_set_spd);
5125 EXPORT_SYMBOL_GPL(sata_phy_reset);
5126 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5127 EXPORT_SYMBOL_GPL(ata_bus_reset);
5128 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5129 EXPORT_SYMBOL_GPL(ata_std_softreset);
5130 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5131 EXPORT_SYMBOL_GPL(ata_std_postreset);
5132 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5133 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5134 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5135 EXPORT_SYMBOL_GPL(ata_dev_classify);
5136 EXPORT_SYMBOL_GPL(ata_dev_pair);
5137 EXPORT_SYMBOL_GPL(ata_port_disable);
5138 EXPORT_SYMBOL_GPL(ata_ratelimit);
5139 EXPORT_SYMBOL_GPL(ata_wait_register);
5140 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5141 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5142 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5143 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5144 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5145 EXPORT_SYMBOL_GPL(ata_scsi_release);
5146 EXPORT_SYMBOL_GPL(ata_host_intr);
5147 EXPORT_SYMBOL_GPL(ata_id_string);
5148 EXPORT_SYMBOL_GPL(ata_id_c_string);
5149 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5150
5151 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5152 EXPORT_SYMBOL_GPL(ata_timing_compute);
5153 EXPORT_SYMBOL_GPL(ata_timing_merge);
5154
5155 #ifdef CONFIG_PCI
5156 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5157 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5158 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5159 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5160 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5161 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5162 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5163 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5164 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5165 #endif /* CONFIG_PCI */
5166
5167 EXPORT_SYMBOL_GPL(ata_device_suspend);
5168 EXPORT_SYMBOL_GPL(ata_device_resume);
5169 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5170 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5171
5172 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5173 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5174 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
This page took 0.131232 seconds and 6 git commands to generate.