Merge branch 'master' into upstream
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67 static void ata_dev_xfermask(struct ata_device *dev);
68
69 static unsigned int ata_unique_id = 1;
70 static struct workqueue_struct *ata_wq;
71
72 int atapi_enabled = 1;
73 module_param(atapi_enabled, int, 0444);
74 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
76 int atapi_dmadir = 0;
77 module_param(atapi_dmadir, int, 0444);
78 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
80 int libata_fua = 0;
81 module_param_named(fua, libata_fua, int, 0444);
82 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88
89
90 /**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
103 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
104 {
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130 }
131
132 /**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
143 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
144 {
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159 }
160
161 static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
176 0,
177 0,
178 0,
179 0,
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
189 };
190
191 /**
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
194 *
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
197 *
198 * LOCKING:
199 * caller.
200 */
201 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
202 {
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
205 u8 cmd;
206
207 int index, fua, lba48, write;
208
209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
212
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
215 index = dev->multi_count ? 0 : 8;
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
219 index = dev->multi_count ? 0 : 8;
220 } else {
221 tf->protocol = ATA_PROT_DMA;
222 index = 16;
223 }
224
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
231 }
232
233 /**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251 {
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255 }
256
257 /**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267 static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271 {
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278 }
279
280 static const struct ata_xfer_ent {
281 int shift, bits;
282 u8 base;
283 } ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288 };
289
290 /**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304 {
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312 }
313
314 /**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327 {
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334 }
335
336 /**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348 static int ata_xfer_mode2shift(unsigned int xfer_mode)
349 {
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356 }
357
358 /**
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
361 *
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
371 */
372 static const char *ata_mode_string(unsigned int xfer_mask)
373 {
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
392 int highbit;
393
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
397 return "<n/a>";
398 }
399
400 static const char *sata_spd_string(unsigned int spd)
401 {
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410 }
411
412 void ata_dev_disable(struct ata_device *dev)
413 {
414 if (ata_dev_enabled(dev)) {
415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
416 dev->class++;
417 }
418 }
419
420 /**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438 static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440 {
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462 }
463
464 /**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482 static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484 {
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506 }
507
508 /**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521 static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523 {
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527 }
528
529 /**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
545 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
546 {
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566 }
567
568 /**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
572 * @r_err: Value of error register on completion
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
588 */
589
590 static unsigned int
591 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
592 {
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
601 ap->ops->tf_read(ap, &tf);
602 err = tf.feature;
603 if (r_err)
604 *r_err = err;
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
612 return ATA_DEV_NONE;
613
614 /* determine if device is ATA or ATAPI */
615 class = ata_dev_classify(&tf);
616
617 if (class == ATA_DEV_UNKNOWN)
618 return ATA_DEV_NONE;
619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
620 return ATA_DEV_NONE;
621 return class;
622 }
623
624 /**
625 * ata_id_string - Convert IDENTIFY DEVICE page into string
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
639 void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
641 {
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656 }
657
658 /**
659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
665 * This function is identical to ata_id_string except that it
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
672 void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
674 {
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
679 ata_id_string(id, s, ofs, len - 1);
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685 }
686
687 static u64 ata_id_n_sectors(const u16 *id)
688 {
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700 }
701
702 /**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
714 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715 {
716 }
717
718
719 /**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
729 *
730 * LOCKING:
731 * caller.
732 */
733
734 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735 {
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749 }
750
751 /**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770 void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772 {
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786 }
787
788 /**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
790 * @id: IDENTIFY DEVICE page to dump
791 *
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
794 *
795 * LOCKING:
796 * caller.
797 */
798
799 static inline void ata_dump_id(const u16 *id)
800 {
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
823 id[88],
824 id[93]);
825 }
826
827 /**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842 static unsigned int ata_id_xfermask(const u16 *id)
843 {
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873 }
874
875 /**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 * @fn: workqueue function to be scheduled
879 * @data: data value to pass to workqueue function
880 * @delay: delay time for workqueue function
881 *
882 * Schedule @fn(@data) for execution after @delay jiffies using
883 * port_task. There is one port_task per port and it's the
884 * user(low level driver)'s responsibility to make sure that only
885 * one task is active at any given time.
886 *
887 * libata core layer takes care of synchronization between
888 * port_task and EH. ata_port_queue_task() may be ignored for EH
889 * synchronization.
890 *
891 * LOCKING:
892 * Inherited from caller.
893 */
894 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
895 unsigned long delay)
896 {
897 int rc;
898
899 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
900 return;
901
902 PREPARE_WORK(&ap->port_task, fn, data);
903
904 if (!delay)
905 rc = queue_work(ata_wq, &ap->port_task);
906 else
907 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
908
909 /* rc == 0 means that another user is using port task */
910 WARN_ON(rc == 0);
911 }
912
913 /**
914 * ata_port_flush_task - Flush port_task
915 * @ap: The ata_port to flush port_task for
916 *
917 * After this function completes, port_task is guranteed not to
918 * be running or scheduled.
919 *
920 * LOCKING:
921 * Kernel thread context (may sleep)
922 */
923 void ata_port_flush_task(struct ata_port *ap)
924 {
925 unsigned long flags;
926
927 DPRINTK("ENTER\n");
928
929 spin_lock_irqsave(&ap->host_set->lock, flags);
930 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
931 spin_unlock_irqrestore(&ap->host_set->lock, flags);
932
933 DPRINTK("flush #1\n");
934 flush_workqueue(ata_wq);
935
936 /*
937 * At this point, if a task is running, it's guaranteed to see
938 * the FLUSH flag; thus, it will never queue pio tasks again.
939 * Cancel and flush.
940 */
941 if (!cancel_delayed_work(&ap->port_task)) {
942 DPRINTK("flush #2\n");
943 flush_workqueue(ata_wq);
944 }
945
946 spin_lock_irqsave(&ap->host_set->lock, flags);
947 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
948 spin_unlock_irqrestore(&ap->host_set->lock, flags);
949
950 DPRINTK("EXIT\n");
951 }
952
953 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
954 {
955 struct completion *waiting = qc->private_data;
956
957 complete(waiting);
958 }
959
960 /**
961 * ata_exec_internal - execute libata internal command
962 * @dev: Device to which the command is sent
963 * @tf: Taskfile registers for the command and the result
964 * @cdb: CDB for packet command
965 * @dma_dir: Data tranfer direction of the command
966 * @buf: Data buffer of the command
967 * @buflen: Length of data buffer
968 *
969 * Executes libata internal command with timeout. @tf contains
970 * command on entry and result on return. Timeout and error
971 * conditions are reported via return value. No recovery action
972 * is taken after a command times out. It's caller's duty to
973 * clean up after timeout.
974 *
975 * LOCKING:
976 * None. Should be called with kernel context, might sleep.
977 */
978
979 unsigned ata_exec_internal(struct ata_device *dev,
980 struct ata_taskfile *tf, const u8 *cdb,
981 int dma_dir, void *buf, unsigned int buflen)
982 {
983 struct ata_port *ap = dev->ap;
984 u8 command = tf->command;
985 struct ata_queued_cmd *qc;
986 unsigned int tag, preempted_tag;
987 u32 preempted_sactive, preempted_qc_active;
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
990 unsigned int err_mask;
991 int rc;
992
993 spin_lock_irqsave(&ap->host_set->lock, flags);
994
995 /* no internal command while frozen */
996 if (ap->flags & ATA_FLAG_FROZEN) {
997 spin_unlock_irqrestore(&ap->host_set->lock, flags);
998 return AC_ERR_SYSTEM;
999 }
1000
1001 /* initialize internal qc */
1002
1003 /* XXX: Tag 0 is used for drivers with legacy EH as some
1004 * drivers choke if any other tag is given. This breaks
1005 * ata_tag_internal() test for those drivers. Don't use new
1006 * EH stuff without converting to it.
1007 */
1008 if (ap->ops->error_handler)
1009 tag = ATA_TAG_INTERNAL;
1010 else
1011 tag = 0;
1012
1013 if (test_and_set_bit(tag, &ap->qc_allocated))
1014 BUG();
1015 qc = __ata_qc_from_tag(ap, tag);
1016
1017 qc->tag = tag;
1018 qc->scsicmd = NULL;
1019 qc->ap = ap;
1020 qc->dev = dev;
1021 ata_qc_reinit(qc);
1022
1023 preempted_tag = ap->active_tag;
1024 preempted_sactive = ap->sactive;
1025 preempted_qc_active = ap->qc_active;
1026 ap->active_tag = ATA_TAG_POISON;
1027 ap->sactive = 0;
1028 ap->qc_active = 0;
1029
1030 /* prepare & issue qc */
1031 qc->tf = *tf;
1032 if (cdb)
1033 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1034 qc->flags |= ATA_QCFLAG_RESULT_TF;
1035 qc->dma_dir = dma_dir;
1036 if (dma_dir != DMA_NONE) {
1037 ata_sg_init_one(qc, buf, buflen);
1038 qc->nsect = buflen / ATA_SECT_SIZE;
1039 }
1040
1041 qc->private_data = &wait;
1042 qc->complete_fn = ata_qc_complete_internal;
1043
1044 ata_qc_issue(qc);
1045
1046 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1047
1048 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1049
1050 ata_port_flush_task(ap);
1051
1052 if (!rc) {
1053 spin_lock_irqsave(&ap->host_set->lock, flags);
1054
1055 /* We're racing with irq here. If we lose, the
1056 * following test prevents us from completing the qc
1057 * twice. If we win, the port is frozen and will be
1058 * cleaned up by ->post_internal_cmd().
1059 */
1060 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1061 qc->err_mask |= AC_ERR_TIMEOUT;
1062
1063 if (ap->ops->error_handler)
1064 ata_port_freeze(ap);
1065 else
1066 ata_qc_complete(qc);
1067
1068 ata_dev_printk(dev, KERN_WARNING,
1069 "qc timeout (cmd 0x%x)\n", command);
1070 }
1071
1072 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1073 }
1074
1075 /* do post_internal_cmd */
1076 if (ap->ops->post_internal_cmd)
1077 ap->ops->post_internal_cmd(qc);
1078
1079 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1080 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1081 "internal command, assuming AC_ERR_OTHER\n");
1082 qc->err_mask |= AC_ERR_OTHER;
1083 }
1084
1085 /* finish up */
1086 spin_lock_irqsave(&ap->host_set->lock, flags);
1087
1088 *tf = qc->result_tf;
1089 err_mask = qc->err_mask;
1090
1091 ata_qc_free(qc);
1092 ap->active_tag = preempted_tag;
1093 ap->sactive = preempted_sactive;
1094 ap->qc_active = preempted_qc_active;
1095
1096 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1097 * Until those drivers are fixed, we detect the condition
1098 * here, fail the command with AC_ERR_SYSTEM and reenable the
1099 * port.
1100 *
1101 * Note that this doesn't change any behavior as internal
1102 * command failure results in disabling the device in the
1103 * higher layer for LLDDs without new reset/EH callbacks.
1104 *
1105 * Kill the following code as soon as those drivers are fixed.
1106 */
1107 if (ap->flags & ATA_FLAG_DISABLED) {
1108 err_mask |= AC_ERR_SYSTEM;
1109 ata_port_probe(ap);
1110 }
1111
1112 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1113
1114 return err_mask;
1115 }
1116
1117 /**
1118 * ata_pio_need_iordy - check if iordy needed
1119 * @adev: ATA device
1120 *
1121 * Check if the current speed of the device requires IORDY. Used
1122 * by various controllers for chip configuration.
1123 */
1124
1125 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1126 {
1127 int pio;
1128 int speed = adev->pio_mode - XFER_PIO_0;
1129
1130 if (speed < 2)
1131 return 0;
1132 if (speed > 2)
1133 return 1;
1134
1135 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1136
1137 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1138 pio = adev->id[ATA_ID_EIDE_PIO];
1139 /* Is the speed faster than the drive allows non IORDY ? */
1140 if (pio) {
1141 /* This is cycle times not frequency - watch the logic! */
1142 if (pio > 240) /* PIO2 is 240nS per cycle */
1143 return 1;
1144 return 0;
1145 }
1146 }
1147 return 0;
1148 }
1149
1150 /**
1151 * ata_dev_read_id - Read ID data from the specified device
1152 * @dev: target device
1153 * @p_class: pointer to class of the target device (may be changed)
1154 * @post_reset: is this read ID post-reset?
1155 * @id: buffer to read IDENTIFY data into
1156 *
1157 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1158 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1159 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1160 * for pre-ATA4 drives.
1161 *
1162 * LOCKING:
1163 * Kernel thread context (may sleep)
1164 *
1165 * RETURNS:
1166 * 0 on success, -errno otherwise.
1167 */
1168 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1169 int post_reset, u16 *id)
1170 {
1171 struct ata_port *ap = dev->ap;
1172 unsigned int class = *p_class;
1173 struct ata_taskfile tf;
1174 unsigned int err_mask = 0;
1175 const char *reason;
1176 int rc;
1177
1178 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1179
1180 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1181
1182 retry:
1183 ata_tf_init(dev, &tf);
1184
1185 switch (class) {
1186 case ATA_DEV_ATA:
1187 tf.command = ATA_CMD_ID_ATA;
1188 break;
1189 case ATA_DEV_ATAPI:
1190 tf.command = ATA_CMD_ID_ATAPI;
1191 break;
1192 default:
1193 rc = -ENODEV;
1194 reason = "unsupported class";
1195 goto err_out;
1196 }
1197
1198 tf.protocol = ATA_PROT_PIO;
1199
1200 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1201 id, sizeof(id[0]) * ATA_ID_WORDS);
1202 if (err_mask) {
1203 rc = -EIO;
1204 reason = "I/O error";
1205 goto err_out;
1206 }
1207
1208 swap_buf_le16(id, ATA_ID_WORDS);
1209
1210 /* sanity check */
1211 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1212 rc = -EINVAL;
1213 reason = "device reports illegal type";
1214 goto err_out;
1215 }
1216
1217 if (post_reset && class == ATA_DEV_ATA) {
1218 /*
1219 * The exact sequence expected by certain pre-ATA4 drives is:
1220 * SRST RESET
1221 * IDENTIFY
1222 * INITIALIZE DEVICE PARAMETERS
1223 * anything else..
1224 * Some drives were very specific about that exact sequence.
1225 */
1226 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1227 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1228 if (err_mask) {
1229 rc = -EIO;
1230 reason = "INIT_DEV_PARAMS failed";
1231 goto err_out;
1232 }
1233
1234 /* current CHS translation info (id[53-58]) might be
1235 * changed. reread the identify device info.
1236 */
1237 post_reset = 0;
1238 goto retry;
1239 }
1240 }
1241
1242 *p_class = class;
1243
1244 return 0;
1245
1246 err_out:
1247 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1248 "(%s, err_mask=0x%x)\n", reason, err_mask);
1249 return rc;
1250 }
1251
1252 static inline u8 ata_dev_knobble(struct ata_device *dev)
1253 {
1254 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1255 }
1256
1257 static void ata_dev_config_ncq(struct ata_device *dev,
1258 char *desc, size_t desc_sz)
1259 {
1260 struct ata_port *ap = dev->ap;
1261 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1262
1263 if (!ata_id_has_ncq(dev->id)) {
1264 desc[0] = '\0';
1265 return;
1266 }
1267
1268 if (ap->flags & ATA_FLAG_NCQ) {
1269 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1270 dev->flags |= ATA_DFLAG_NCQ;
1271 }
1272
1273 if (hdepth >= ddepth)
1274 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1275 else
1276 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1277 }
1278
1279 /**
1280 * ata_dev_configure - Configure the specified ATA/ATAPI device
1281 * @dev: Target device to configure
1282 * @print_info: Enable device info printout
1283 *
1284 * Configure @dev according to @dev->id. Generic and low-level
1285 * driver specific fixups are also applied.
1286 *
1287 * LOCKING:
1288 * Kernel thread context (may sleep)
1289 *
1290 * RETURNS:
1291 * 0 on success, -errno otherwise
1292 */
1293 static int ata_dev_configure(struct ata_device *dev, int print_info)
1294 {
1295 struct ata_port *ap = dev->ap;
1296 const u16 *id = dev->id;
1297 unsigned int xfer_mask;
1298 int i, rc;
1299
1300 if (!ata_dev_enabled(dev)) {
1301 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1302 ap->id, dev->devno);
1303 return 0;
1304 }
1305
1306 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1307
1308 /* print device capabilities */
1309 if (print_info)
1310 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1311 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1312 id[49], id[82], id[83], id[84],
1313 id[85], id[86], id[87], id[88]);
1314
1315 /* initialize to-be-configured parameters */
1316 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1317 dev->max_sectors = 0;
1318 dev->cdb_len = 0;
1319 dev->n_sectors = 0;
1320 dev->cylinders = 0;
1321 dev->heads = 0;
1322 dev->sectors = 0;
1323
1324 /*
1325 * common ATA, ATAPI feature tests
1326 */
1327
1328 /* find max transfer mode; for printk only */
1329 xfer_mask = ata_id_xfermask(id);
1330
1331 ata_dump_id(id);
1332
1333 /* ATA-specific feature tests */
1334 if (dev->class == ATA_DEV_ATA) {
1335 dev->n_sectors = ata_id_n_sectors(id);
1336
1337 if (ata_id_has_lba(id)) {
1338 const char *lba_desc;
1339 char ncq_desc[20];
1340
1341 lba_desc = "LBA";
1342 dev->flags |= ATA_DFLAG_LBA;
1343 if (ata_id_has_lba48(id)) {
1344 dev->flags |= ATA_DFLAG_LBA48;
1345 lba_desc = "LBA48";
1346 }
1347
1348 /* config NCQ */
1349 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1350
1351 /* print device info to dmesg */
1352 if (print_info)
1353 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1354 "max %s, %Lu sectors: %s %s\n",
1355 ata_id_major_version(id),
1356 ata_mode_string(xfer_mask),
1357 (unsigned long long)dev->n_sectors,
1358 lba_desc, ncq_desc);
1359 } else {
1360 /* CHS */
1361
1362 /* Default translation */
1363 dev->cylinders = id[1];
1364 dev->heads = id[3];
1365 dev->sectors = id[6];
1366
1367 if (ata_id_current_chs_valid(id)) {
1368 /* Current CHS translation is valid. */
1369 dev->cylinders = id[54];
1370 dev->heads = id[55];
1371 dev->sectors = id[56];
1372 }
1373
1374 /* print device info to dmesg */
1375 if (print_info)
1376 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1377 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1378 ata_id_major_version(id),
1379 ata_mode_string(xfer_mask),
1380 (unsigned long long)dev->n_sectors,
1381 dev->cylinders, dev->heads, dev->sectors);
1382 }
1383
1384 if (dev->id[59] & 0x100) {
1385 dev->multi_count = dev->id[59] & 0xff;
1386 DPRINTK("ata%u: dev %u multi count %u\n",
1387 ap->id, dev->devno, dev->multi_count);
1388 }
1389
1390 dev->cdb_len = 16;
1391 }
1392
1393 /* ATAPI-specific feature tests */
1394 else if (dev->class == ATA_DEV_ATAPI) {
1395 char *cdb_intr_string = "";
1396
1397 rc = atapi_cdb_len(id);
1398 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1399 ata_dev_printk(dev, KERN_WARNING,
1400 "unsupported CDB len\n");
1401 rc = -EINVAL;
1402 goto err_out_nosup;
1403 }
1404 dev->cdb_len = (unsigned int) rc;
1405
1406 if (ata_id_cdb_intr(dev->id)) {
1407 dev->flags |= ATA_DFLAG_CDB_INTR;
1408 cdb_intr_string = ", CDB intr";
1409 }
1410
1411 /* print device info to dmesg */
1412 if (print_info)
1413 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1414 ata_mode_string(xfer_mask),
1415 cdb_intr_string);
1416 }
1417
1418 ap->host->max_cmd_len = 0;
1419 for (i = 0; i < ATA_MAX_DEVICES; i++)
1420 ap->host->max_cmd_len = max_t(unsigned int,
1421 ap->host->max_cmd_len,
1422 ap->device[i].cdb_len);
1423
1424 /* limit bridge transfers to udma5, 200 sectors */
1425 if (ata_dev_knobble(dev)) {
1426 if (print_info)
1427 ata_dev_printk(dev, KERN_INFO,
1428 "applying bridge limits\n");
1429 dev->udma_mask &= ATA_UDMA5;
1430 dev->max_sectors = ATA_MAX_SECTORS;
1431 }
1432
1433 if (ap->ops->dev_config)
1434 ap->ops->dev_config(ap, dev);
1435
1436 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1437 return 0;
1438
1439 err_out_nosup:
1440 DPRINTK("EXIT, err\n");
1441 return rc;
1442 }
1443
1444 /**
1445 * ata_bus_probe - Reset and probe ATA bus
1446 * @ap: Bus to probe
1447 *
1448 * Master ATA bus probing function. Initiates a hardware-dependent
1449 * bus reset, then attempts to identify any devices found on
1450 * the bus.
1451 *
1452 * LOCKING:
1453 * PCI/etc. bus probe sem.
1454 *
1455 * RETURNS:
1456 * Zero on success, negative errno otherwise.
1457 */
1458
1459 static int ata_bus_probe(struct ata_port *ap)
1460 {
1461 unsigned int classes[ATA_MAX_DEVICES];
1462 int tries[ATA_MAX_DEVICES];
1463 int i, rc, down_xfermask;
1464 struct ata_device *dev;
1465
1466 ata_port_probe(ap);
1467
1468 for (i = 0; i < ATA_MAX_DEVICES; i++)
1469 tries[i] = ATA_PROBE_MAX_TRIES;
1470
1471 retry:
1472 down_xfermask = 0;
1473
1474 /* reset and determine device classes */
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 classes[i] = ATA_DEV_UNKNOWN;
1477
1478 if (ap->ops->probe_reset) {
1479 rc = ap->ops->probe_reset(ap, classes);
1480 if (rc) {
1481 ata_port_printk(ap, KERN_ERR,
1482 "reset failed (errno=%d)\n", rc);
1483 return rc;
1484 }
1485 } else {
1486 ap->ops->phy_reset(ap);
1487
1488 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1489 if (!(ap->flags & ATA_FLAG_DISABLED))
1490 classes[i] = ap->device[i].class;
1491 ap->device[i].class = ATA_DEV_UNKNOWN;
1492 }
1493
1494 ata_port_probe(ap);
1495 }
1496
1497 for (i = 0; i < ATA_MAX_DEVICES; i++)
1498 if (classes[i] == ATA_DEV_UNKNOWN)
1499 classes[i] = ATA_DEV_NONE;
1500
1501 /* read IDENTIFY page and configure devices */
1502 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1503 dev = &ap->device[i];
1504
1505 if (tries[i])
1506 dev->class = classes[i];
1507
1508 if (!ata_dev_enabled(dev))
1509 continue;
1510
1511 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1512 if (rc)
1513 goto fail;
1514
1515 rc = ata_dev_configure(dev, 1);
1516 if (rc)
1517 goto fail;
1518 }
1519
1520 /* configure transfer mode */
1521 rc = ata_set_mode(ap, &dev);
1522 if (rc) {
1523 down_xfermask = 1;
1524 goto fail;
1525 }
1526
1527 for (i = 0; i < ATA_MAX_DEVICES; i++)
1528 if (ata_dev_enabled(&ap->device[i]))
1529 return 0;
1530
1531 /* no device present, disable port */
1532 ata_port_disable(ap);
1533 ap->ops->port_disable(ap);
1534 return -ENODEV;
1535
1536 fail:
1537 switch (rc) {
1538 case -EINVAL:
1539 case -ENODEV:
1540 tries[dev->devno] = 0;
1541 break;
1542 case -EIO:
1543 sata_down_spd_limit(ap);
1544 /* fall through */
1545 default:
1546 tries[dev->devno]--;
1547 if (down_xfermask &&
1548 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1549 tries[dev->devno] = 0;
1550 }
1551
1552 if (!tries[dev->devno]) {
1553 ata_down_xfermask_limit(dev, 1);
1554 ata_dev_disable(dev);
1555 }
1556
1557 goto retry;
1558 }
1559
1560 /**
1561 * ata_port_probe - Mark port as enabled
1562 * @ap: Port for which we indicate enablement
1563 *
1564 * Modify @ap data structure such that the system
1565 * thinks that the entire port is enabled.
1566 *
1567 * LOCKING: host_set lock, or some other form of
1568 * serialization.
1569 */
1570
1571 void ata_port_probe(struct ata_port *ap)
1572 {
1573 ap->flags &= ~ATA_FLAG_DISABLED;
1574 }
1575
1576 /**
1577 * sata_print_link_status - Print SATA link status
1578 * @ap: SATA port to printk link status about
1579 *
1580 * This function prints link speed and status of a SATA link.
1581 *
1582 * LOCKING:
1583 * None.
1584 */
1585 static void sata_print_link_status(struct ata_port *ap)
1586 {
1587 u32 sstatus, scontrol, tmp;
1588
1589 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1590 return;
1591 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1592
1593 if (ata_port_online(ap)) {
1594 tmp = (sstatus >> 4) & 0xf;
1595 ata_port_printk(ap, KERN_INFO,
1596 "SATA link up %s (SStatus %X SControl %X)\n",
1597 sata_spd_string(tmp), sstatus, scontrol);
1598 } else {
1599 ata_port_printk(ap, KERN_INFO,
1600 "SATA link down (SStatus %X SControl %X)\n",
1601 sstatus, scontrol);
1602 }
1603 }
1604
1605 /**
1606 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1607 * @ap: SATA port associated with target SATA PHY.
1608 *
1609 * This function issues commands to standard SATA Sxxx
1610 * PHY registers, to wake up the phy (and device), and
1611 * clear any reset condition.
1612 *
1613 * LOCKING:
1614 * PCI/etc. bus probe sem.
1615 *
1616 */
1617 void __sata_phy_reset(struct ata_port *ap)
1618 {
1619 u32 sstatus;
1620 unsigned long timeout = jiffies + (HZ * 5);
1621
1622 if (ap->flags & ATA_FLAG_SATA_RESET) {
1623 /* issue phy wake/reset */
1624 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1625 /* Couldn't find anything in SATA I/II specs, but
1626 * AHCI-1.1 10.4.2 says at least 1 ms. */
1627 mdelay(1);
1628 }
1629 /* phy wake/clear reset */
1630 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1631
1632 /* wait for phy to become ready, if necessary */
1633 do {
1634 msleep(200);
1635 sata_scr_read(ap, SCR_STATUS, &sstatus);
1636 if ((sstatus & 0xf) != 1)
1637 break;
1638 } while (time_before(jiffies, timeout));
1639
1640 /* print link status */
1641 sata_print_link_status(ap);
1642
1643 /* TODO: phy layer with polling, timeouts, etc. */
1644 if (!ata_port_offline(ap))
1645 ata_port_probe(ap);
1646 else
1647 ata_port_disable(ap);
1648
1649 if (ap->flags & ATA_FLAG_DISABLED)
1650 return;
1651
1652 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1653 ata_port_disable(ap);
1654 return;
1655 }
1656
1657 ap->cbl = ATA_CBL_SATA;
1658 }
1659
1660 /**
1661 * sata_phy_reset - Reset SATA bus.
1662 * @ap: SATA port associated with target SATA PHY.
1663 *
1664 * This function resets the SATA bus, and then probes
1665 * the bus for devices.
1666 *
1667 * LOCKING:
1668 * PCI/etc. bus probe sem.
1669 *
1670 */
1671 void sata_phy_reset(struct ata_port *ap)
1672 {
1673 __sata_phy_reset(ap);
1674 if (ap->flags & ATA_FLAG_DISABLED)
1675 return;
1676 ata_bus_reset(ap);
1677 }
1678
1679 /**
1680 * ata_dev_pair - return other device on cable
1681 * @adev: device
1682 *
1683 * Obtain the other device on the same cable, or if none is
1684 * present NULL is returned
1685 */
1686
1687 struct ata_device *ata_dev_pair(struct ata_device *adev)
1688 {
1689 struct ata_port *ap = adev->ap;
1690 struct ata_device *pair = &ap->device[1 - adev->devno];
1691 if (!ata_dev_enabled(pair))
1692 return NULL;
1693 return pair;
1694 }
1695
1696 /**
1697 * ata_port_disable - Disable port.
1698 * @ap: Port to be disabled.
1699 *
1700 * Modify @ap data structure such that the system
1701 * thinks that the entire port is disabled, and should
1702 * never attempt to probe or communicate with devices
1703 * on this port.
1704 *
1705 * LOCKING: host_set lock, or some other form of
1706 * serialization.
1707 */
1708
1709 void ata_port_disable(struct ata_port *ap)
1710 {
1711 ap->device[0].class = ATA_DEV_NONE;
1712 ap->device[1].class = ATA_DEV_NONE;
1713 ap->flags |= ATA_FLAG_DISABLED;
1714 }
1715
1716 /**
1717 * sata_down_spd_limit - adjust SATA spd limit downward
1718 * @ap: Port to adjust SATA spd limit for
1719 *
1720 * Adjust SATA spd limit of @ap downward. Note that this
1721 * function only adjusts the limit. The change must be applied
1722 * using sata_set_spd().
1723 *
1724 * LOCKING:
1725 * Inherited from caller.
1726 *
1727 * RETURNS:
1728 * 0 on success, negative errno on failure
1729 */
1730 int sata_down_spd_limit(struct ata_port *ap)
1731 {
1732 u32 sstatus, spd, mask;
1733 int rc, highbit;
1734
1735 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1736 if (rc)
1737 return rc;
1738
1739 mask = ap->sata_spd_limit;
1740 if (mask <= 1)
1741 return -EINVAL;
1742 highbit = fls(mask) - 1;
1743 mask &= ~(1 << highbit);
1744
1745 spd = (sstatus >> 4) & 0xf;
1746 if (spd <= 1)
1747 return -EINVAL;
1748 spd--;
1749 mask &= (1 << spd) - 1;
1750 if (!mask)
1751 return -EINVAL;
1752
1753 ap->sata_spd_limit = mask;
1754
1755 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1756 sata_spd_string(fls(mask)));
1757
1758 return 0;
1759 }
1760
1761 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1762 {
1763 u32 spd, limit;
1764
1765 if (ap->sata_spd_limit == UINT_MAX)
1766 limit = 0;
1767 else
1768 limit = fls(ap->sata_spd_limit);
1769
1770 spd = (*scontrol >> 4) & 0xf;
1771 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1772
1773 return spd != limit;
1774 }
1775
1776 /**
1777 * sata_set_spd_needed - is SATA spd configuration needed
1778 * @ap: Port in question
1779 *
1780 * Test whether the spd limit in SControl matches
1781 * @ap->sata_spd_limit. This function is used to determine
1782 * whether hardreset is necessary to apply SATA spd
1783 * configuration.
1784 *
1785 * LOCKING:
1786 * Inherited from caller.
1787 *
1788 * RETURNS:
1789 * 1 if SATA spd configuration is needed, 0 otherwise.
1790 */
1791 int sata_set_spd_needed(struct ata_port *ap)
1792 {
1793 u32 scontrol;
1794
1795 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1796 return 0;
1797
1798 return __sata_set_spd_needed(ap, &scontrol);
1799 }
1800
1801 /**
1802 * sata_set_spd - set SATA spd according to spd limit
1803 * @ap: Port to set SATA spd for
1804 *
1805 * Set SATA spd of @ap according to sata_spd_limit.
1806 *
1807 * LOCKING:
1808 * Inherited from caller.
1809 *
1810 * RETURNS:
1811 * 0 if spd doesn't need to be changed, 1 if spd has been
1812 * changed. Negative errno if SCR registers are inaccessible.
1813 */
1814 int sata_set_spd(struct ata_port *ap)
1815 {
1816 u32 scontrol;
1817 int rc;
1818
1819 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1820 return rc;
1821
1822 if (!__sata_set_spd_needed(ap, &scontrol))
1823 return 0;
1824
1825 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1826 return rc;
1827
1828 return 1;
1829 }
1830
1831 /*
1832 * This mode timing computation functionality is ported over from
1833 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1834 */
1835 /*
1836 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1837 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1838 * for PIO 5, which is a nonstandard extension and UDMA6, which
1839 * is currently supported only by Maxtor drives.
1840 */
1841
1842 static const struct ata_timing ata_timing[] = {
1843
1844 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1845 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1846 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1847 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1848
1849 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1850 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1851 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1852
1853 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1854
1855 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1856 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1857 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1858
1859 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1860 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1861 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1862
1863 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1864 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1865 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1866
1867 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1868 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1869 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1870
1871 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1872
1873 { 0xFF }
1874 };
1875
1876 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1877 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1878
1879 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1880 {
1881 q->setup = EZ(t->setup * 1000, T);
1882 q->act8b = EZ(t->act8b * 1000, T);
1883 q->rec8b = EZ(t->rec8b * 1000, T);
1884 q->cyc8b = EZ(t->cyc8b * 1000, T);
1885 q->active = EZ(t->active * 1000, T);
1886 q->recover = EZ(t->recover * 1000, T);
1887 q->cycle = EZ(t->cycle * 1000, T);
1888 q->udma = EZ(t->udma * 1000, UT);
1889 }
1890
1891 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1892 struct ata_timing *m, unsigned int what)
1893 {
1894 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1895 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1896 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1897 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1898 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1899 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1900 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1901 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1902 }
1903
1904 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1905 {
1906 const struct ata_timing *t;
1907
1908 for (t = ata_timing; t->mode != speed; t++)
1909 if (t->mode == 0xFF)
1910 return NULL;
1911 return t;
1912 }
1913
1914 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1915 struct ata_timing *t, int T, int UT)
1916 {
1917 const struct ata_timing *s;
1918 struct ata_timing p;
1919
1920 /*
1921 * Find the mode.
1922 */
1923
1924 if (!(s = ata_timing_find_mode(speed)))
1925 return -EINVAL;
1926
1927 memcpy(t, s, sizeof(*s));
1928
1929 /*
1930 * If the drive is an EIDE drive, it can tell us it needs extended
1931 * PIO/MW_DMA cycle timing.
1932 */
1933
1934 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1935 memset(&p, 0, sizeof(p));
1936 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1937 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1938 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1939 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1940 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1941 }
1942 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1943 }
1944
1945 /*
1946 * Convert the timing to bus clock counts.
1947 */
1948
1949 ata_timing_quantize(t, t, T, UT);
1950
1951 /*
1952 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1953 * S.M.A.R.T * and some other commands. We have to ensure that the
1954 * DMA cycle timing is slower/equal than the fastest PIO timing.
1955 */
1956
1957 if (speed > XFER_PIO_4) {
1958 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1959 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1960 }
1961
1962 /*
1963 * Lengthen active & recovery time so that cycle time is correct.
1964 */
1965
1966 if (t->act8b + t->rec8b < t->cyc8b) {
1967 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1968 t->rec8b = t->cyc8b - t->act8b;
1969 }
1970
1971 if (t->active + t->recover < t->cycle) {
1972 t->active += (t->cycle - (t->active + t->recover)) / 2;
1973 t->recover = t->cycle - t->active;
1974 }
1975
1976 return 0;
1977 }
1978
1979 /**
1980 * ata_down_xfermask_limit - adjust dev xfer masks downward
1981 * @dev: Device to adjust xfer masks
1982 * @force_pio0: Force PIO0
1983 *
1984 * Adjust xfer masks of @dev downward. Note that this function
1985 * does not apply the change. Invoking ata_set_mode() afterwards
1986 * will apply the limit.
1987 *
1988 * LOCKING:
1989 * Inherited from caller.
1990 *
1991 * RETURNS:
1992 * 0 on success, negative errno on failure
1993 */
1994 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
1995 {
1996 unsigned long xfer_mask;
1997 int highbit;
1998
1999 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2000 dev->udma_mask);
2001
2002 if (!xfer_mask)
2003 goto fail;
2004 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2005 if (xfer_mask & ATA_MASK_UDMA)
2006 xfer_mask &= ~ATA_MASK_MWDMA;
2007
2008 highbit = fls(xfer_mask) - 1;
2009 xfer_mask &= ~(1 << highbit);
2010 if (force_pio0)
2011 xfer_mask &= 1 << ATA_SHIFT_PIO;
2012 if (!xfer_mask)
2013 goto fail;
2014
2015 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2016 &dev->udma_mask);
2017
2018 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2019 ata_mode_string(xfer_mask));
2020
2021 return 0;
2022
2023 fail:
2024 return -EINVAL;
2025 }
2026
2027 static int ata_dev_set_mode(struct ata_device *dev)
2028 {
2029 unsigned int err_mask;
2030 int rc;
2031
2032 dev->flags &= ~ATA_DFLAG_PIO;
2033 if (dev->xfer_shift == ATA_SHIFT_PIO)
2034 dev->flags |= ATA_DFLAG_PIO;
2035
2036 err_mask = ata_dev_set_xfermode(dev);
2037 if (err_mask) {
2038 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2039 "(err_mask=0x%x)\n", err_mask);
2040 return -EIO;
2041 }
2042
2043 rc = ata_dev_revalidate(dev, 0);
2044 if (rc)
2045 return rc;
2046
2047 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2048 dev->xfer_shift, (int)dev->xfer_mode);
2049
2050 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2051 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2052 return 0;
2053 }
2054
2055 /**
2056 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2057 * @ap: port on which timings will be programmed
2058 * @r_failed_dev: out paramter for failed device
2059 *
2060 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2061 * ata_set_mode() fails, pointer to the failing device is
2062 * returned in @r_failed_dev.
2063 *
2064 * LOCKING:
2065 * PCI/etc. bus probe sem.
2066 *
2067 * RETURNS:
2068 * 0 on success, negative errno otherwise
2069 */
2070 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2071 {
2072 struct ata_device *dev;
2073 int i, rc = 0, used_dma = 0, found = 0;
2074
2075 /* has private set_mode? */
2076 if (ap->ops->set_mode) {
2077 /* FIXME: make ->set_mode handle no device case and
2078 * return error code and failing device on failure.
2079 */
2080 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2081 if (ata_dev_enabled(&ap->device[i])) {
2082 ap->ops->set_mode(ap);
2083 break;
2084 }
2085 }
2086 return 0;
2087 }
2088
2089 /* step 1: calculate xfer_mask */
2090 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2091 unsigned int pio_mask, dma_mask;
2092
2093 dev = &ap->device[i];
2094
2095 if (!ata_dev_enabled(dev))
2096 continue;
2097
2098 ata_dev_xfermask(dev);
2099
2100 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2101 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2102 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2103 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2104
2105 found = 1;
2106 if (dev->dma_mode)
2107 used_dma = 1;
2108 }
2109 if (!found)
2110 goto out;
2111
2112 /* step 2: always set host PIO timings */
2113 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2114 dev = &ap->device[i];
2115 if (!ata_dev_enabled(dev))
2116 continue;
2117
2118 if (!dev->pio_mode) {
2119 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2120 rc = -EINVAL;
2121 goto out;
2122 }
2123
2124 dev->xfer_mode = dev->pio_mode;
2125 dev->xfer_shift = ATA_SHIFT_PIO;
2126 if (ap->ops->set_piomode)
2127 ap->ops->set_piomode(ap, dev);
2128 }
2129
2130 /* step 3: set host DMA timings */
2131 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2132 dev = &ap->device[i];
2133
2134 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2135 continue;
2136
2137 dev->xfer_mode = dev->dma_mode;
2138 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2139 if (ap->ops->set_dmamode)
2140 ap->ops->set_dmamode(ap, dev);
2141 }
2142
2143 /* step 4: update devices' xfer mode */
2144 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2145 dev = &ap->device[i];
2146
2147 if (!ata_dev_enabled(dev))
2148 continue;
2149
2150 rc = ata_dev_set_mode(dev);
2151 if (rc)
2152 goto out;
2153 }
2154
2155 /* Record simplex status. If we selected DMA then the other
2156 * host channels are not permitted to do so.
2157 */
2158 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2159 ap->host_set->simplex_claimed = 1;
2160
2161 /* step5: chip specific finalisation */
2162 if (ap->ops->post_set_mode)
2163 ap->ops->post_set_mode(ap);
2164
2165 out:
2166 if (rc)
2167 *r_failed_dev = dev;
2168 return rc;
2169 }
2170
2171 /**
2172 * ata_tf_to_host - issue ATA taskfile to host controller
2173 * @ap: port to which command is being issued
2174 * @tf: ATA taskfile register set
2175 *
2176 * Issues ATA taskfile register set to ATA host controller,
2177 * with proper synchronization with interrupt handler and
2178 * other threads.
2179 *
2180 * LOCKING:
2181 * spin_lock_irqsave(host_set lock)
2182 */
2183
2184 static inline void ata_tf_to_host(struct ata_port *ap,
2185 const struct ata_taskfile *tf)
2186 {
2187 ap->ops->tf_load(ap, tf);
2188 ap->ops->exec_command(ap, tf);
2189 }
2190
2191 /**
2192 * ata_busy_sleep - sleep until BSY clears, or timeout
2193 * @ap: port containing status register to be polled
2194 * @tmout_pat: impatience timeout
2195 * @tmout: overall timeout
2196 *
2197 * Sleep until ATA Status register bit BSY clears,
2198 * or a timeout occurs.
2199 *
2200 * LOCKING: None.
2201 */
2202
2203 unsigned int ata_busy_sleep (struct ata_port *ap,
2204 unsigned long tmout_pat, unsigned long tmout)
2205 {
2206 unsigned long timer_start, timeout;
2207 u8 status;
2208
2209 status = ata_busy_wait(ap, ATA_BUSY, 300);
2210 timer_start = jiffies;
2211 timeout = timer_start + tmout_pat;
2212 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2213 msleep(50);
2214 status = ata_busy_wait(ap, ATA_BUSY, 3);
2215 }
2216
2217 if (status & ATA_BUSY)
2218 ata_port_printk(ap, KERN_WARNING,
2219 "port is slow to respond, please be patient\n");
2220
2221 timeout = timer_start + tmout;
2222 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2223 msleep(50);
2224 status = ata_chk_status(ap);
2225 }
2226
2227 if (status & ATA_BUSY) {
2228 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2229 "(%lu secs)\n", tmout / HZ);
2230 return 1;
2231 }
2232
2233 return 0;
2234 }
2235
2236 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2237 {
2238 struct ata_ioports *ioaddr = &ap->ioaddr;
2239 unsigned int dev0 = devmask & (1 << 0);
2240 unsigned int dev1 = devmask & (1 << 1);
2241 unsigned long timeout;
2242
2243 /* if device 0 was found in ata_devchk, wait for its
2244 * BSY bit to clear
2245 */
2246 if (dev0)
2247 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2248
2249 /* if device 1 was found in ata_devchk, wait for
2250 * register access, then wait for BSY to clear
2251 */
2252 timeout = jiffies + ATA_TMOUT_BOOT;
2253 while (dev1) {
2254 u8 nsect, lbal;
2255
2256 ap->ops->dev_select(ap, 1);
2257 if (ap->flags & ATA_FLAG_MMIO) {
2258 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2259 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2260 } else {
2261 nsect = inb(ioaddr->nsect_addr);
2262 lbal = inb(ioaddr->lbal_addr);
2263 }
2264 if ((nsect == 1) && (lbal == 1))
2265 break;
2266 if (time_after(jiffies, timeout)) {
2267 dev1 = 0;
2268 break;
2269 }
2270 msleep(50); /* give drive a breather */
2271 }
2272 if (dev1)
2273 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2274
2275 /* is all this really necessary? */
2276 ap->ops->dev_select(ap, 0);
2277 if (dev1)
2278 ap->ops->dev_select(ap, 1);
2279 if (dev0)
2280 ap->ops->dev_select(ap, 0);
2281 }
2282
2283 static unsigned int ata_bus_softreset(struct ata_port *ap,
2284 unsigned int devmask)
2285 {
2286 struct ata_ioports *ioaddr = &ap->ioaddr;
2287
2288 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2289
2290 /* software reset. causes dev0 to be selected */
2291 if (ap->flags & ATA_FLAG_MMIO) {
2292 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2293 udelay(20); /* FIXME: flush */
2294 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2295 udelay(20); /* FIXME: flush */
2296 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2297 } else {
2298 outb(ap->ctl, ioaddr->ctl_addr);
2299 udelay(10);
2300 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2301 udelay(10);
2302 outb(ap->ctl, ioaddr->ctl_addr);
2303 }
2304
2305 /* spec mandates ">= 2ms" before checking status.
2306 * We wait 150ms, because that was the magic delay used for
2307 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2308 * between when the ATA command register is written, and then
2309 * status is checked. Because waiting for "a while" before
2310 * checking status is fine, post SRST, we perform this magic
2311 * delay here as well.
2312 *
2313 * Old drivers/ide uses the 2mS rule and then waits for ready
2314 */
2315 msleep(150);
2316
2317 /* Before we perform post reset processing we want to see if
2318 * the bus shows 0xFF because the odd clown forgets the D7
2319 * pulldown resistor.
2320 */
2321 if (ata_check_status(ap) == 0xFF) {
2322 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2323 return AC_ERR_OTHER;
2324 }
2325
2326 ata_bus_post_reset(ap, devmask);
2327
2328 return 0;
2329 }
2330
2331 /**
2332 * ata_bus_reset - reset host port and associated ATA channel
2333 * @ap: port to reset
2334 *
2335 * This is typically the first time we actually start issuing
2336 * commands to the ATA channel. We wait for BSY to clear, then
2337 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2338 * result. Determine what devices, if any, are on the channel
2339 * by looking at the device 0/1 error register. Look at the signature
2340 * stored in each device's taskfile registers, to determine if
2341 * the device is ATA or ATAPI.
2342 *
2343 * LOCKING:
2344 * PCI/etc. bus probe sem.
2345 * Obtains host_set lock.
2346 *
2347 * SIDE EFFECTS:
2348 * Sets ATA_FLAG_DISABLED if bus reset fails.
2349 */
2350
2351 void ata_bus_reset(struct ata_port *ap)
2352 {
2353 struct ata_ioports *ioaddr = &ap->ioaddr;
2354 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2355 u8 err;
2356 unsigned int dev0, dev1 = 0, devmask = 0;
2357
2358 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2359
2360 /* determine if device 0/1 are present */
2361 if (ap->flags & ATA_FLAG_SATA_RESET)
2362 dev0 = 1;
2363 else {
2364 dev0 = ata_devchk(ap, 0);
2365 if (slave_possible)
2366 dev1 = ata_devchk(ap, 1);
2367 }
2368
2369 if (dev0)
2370 devmask |= (1 << 0);
2371 if (dev1)
2372 devmask |= (1 << 1);
2373
2374 /* select device 0 again */
2375 ap->ops->dev_select(ap, 0);
2376
2377 /* issue bus reset */
2378 if (ap->flags & ATA_FLAG_SRST)
2379 if (ata_bus_softreset(ap, devmask))
2380 goto err_out;
2381
2382 /*
2383 * determine by signature whether we have ATA or ATAPI devices
2384 */
2385 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2386 if ((slave_possible) && (err != 0x81))
2387 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2388
2389 /* re-enable interrupts */
2390 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2391 ata_irq_on(ap);
2392
2393 /* is double-select really necessary? */
2394 if (ap->device[1].class != ATA_DEV_NONE)
2395 ap->ops->dev_select(ap, 1);
2396 if (ap->device[0].class != ATA_DEV_NONE)
2397 ap->ops->dev_select(ap, 0);
2398
2399 /* if no devices were detected, disable this port */
2400 if ((ap->device[0].class == ATA_DEV_NONE) &&
2401 (ap->device[1].class == ATA_DEV_NONE))
2402 goto err_out;
2403
2404 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2405 /* set up device control for ATA_FLAG_SATA_RESET */
2406 if (ap->flags & ATA_FLAG_MMIO)
2407 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2408 else
2409 outb(ap->ctl, ioaddr->ctl_addr);
2410 }
2411
2412 DPRINTK("EXIT\n");
2413 return;
2414
2415 err_out:
2416 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2417 ap->ops->port_disable(ap);
2418
2419 DPRINTK("EXIT\n");
2420 }
2421
2422 static int sata_phy_resume(struct ata_port *ap)
2423 {
2424 unsigned long timeout = jiffies + (HZ * 5);
2425 u32 scontrol, sstatus;
2426 int rc;
2427
2428 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2429 return rc;
2430
2431 scontrol = (scontrol & 0x0f0) | 0x300;
2432
2433 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2434 return rc;
2435
2436 /* Wait for phy to become ready, if necessary. */
2437 do {
2438 msleep(200);
2439 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2440 return rc;
2441 if ((sstatus & 0xf) != 1)
2442 return 0;
2443 } while (time_before(jiffies, timeout));
2444
2445 return -EBUSY;
2446 }
2447
2448 /**
2449 * ata_std_probeinit - initialize probing
2450 * @ap: port to be probed
2451 *
2452 * @ap is about to be probed. Initialize it. This function is
2453 * to be used as standard callback for ata_drive_probe_reset().
2454 *
2455 * NOTE!!! Do not use this function as probeinit if a low level
2456 * driver implements only hardreset. Just pass NULL as probeinit
2457 * in that case. Using this function is probably okay but doing
2458 * so makes reset sequence different from the original
2459 * ->phy_reset implementation and Jeff nervous. :-P
2460 */
2461 void ata_std_probeinit(struct ata_port *ap)
2462 {
2463 u32 scontrol;
2464
2465 /* resume link */
2466 sata_phy_resume(ap);
2467
2468 /* init sata_spd_limit to the current value */
2469 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2470 int spd = (scontrol >> 4) & 0xf;
2471 ap->sata_spd_limit &= (1 << spd) - 1;
2472 }
2473
2474 /* wait for device */
2475 if (ata_port_online(ap))
2476 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2477 }
2478
2479 /**
2480 * ata_std_softreset - reset host port via ATA SRST
2481 * @ap: port to reset
2482 * @classes: resulting classes of attached devices
2483 *
2484 * Reset host port using ATA SRST. This function is to be used
2485 * as standard callback for ata_drive_*_reset() functions.
2486 *
2487 * LOCKING:
2488 * Kernel thread context (may sleep)
2489 *
2490 * RETURNS:
2491 * 0 on success, -errno otherwise.
2492 */
2493 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2494 {
2495 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2496 unsigned int devmask = 0, err_mask;
2497 u8 err;
2498
2499 DPRINTK("ENTER\n");
2500
2501 if (ata_port_offline(ap)) {
2502 classes[0] = ATA_DEV_NONE;
2503 goto out;
2504 }
2505
2506 /* determine if device 0/1 are present */
2507 if (ata_devchk(ap, 0))
2508 devmask |= (1 << 0);
2509 if (slave_possible && ata_devchk(ap, 1))
2510 devmask |= (1 << 1);
2511
2512 /* select device 0 again */
2513 ap->ops->dev_select(ap, 0);
2514
2515 /* issue bus reset */
2516 DPRINTK("about to softreset, devmask=%x\n", devmask);
2517 err_mask = ata_bus_softreset(ap, devmask);
2518 if (err_mask) {
2519 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2520 err_mask);
2521 return -EIO;
2522 }
2523
2524 /* determine by signature whether we have ATA or ATAPI devices */
2525 classes[0] = ata_dev_try_classify(ap, 0, &err);
2526 if (slave_possible && err != 0x81)
2527 classes[1] = ata_dev_try_classify(ap, 1, &err);
2528
2529 out:
2530 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2531 return 0;
2532 }
2533
2534 /**
2535 * sata_std_hardreset - reset host port via SATA phy reset
2536 * @ap: port to reset
2537 * @class: resulting class of attached device
2538 *
2539 * SATA phy-reset host port using DET bits of SControl register.
2540 * This function is to be used as standard callback for
2541 * ata_drive_*_reset().
2542 *
2543 * LOCKING:
2544 * Kernel thread context (may sleep)
2545 *
2546 * RETURNS:
2547 * 0 on success, -errno otherwise.
2548 */
2549 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2550 {
2551 u32 scontrol;
2552 int rc;
2553
2554 DPRINTK("ENTER\n");
2555
2556 if (sata_set_spd_needed(ap)) {
2557 /* SATA spec says nothing about how to reconfigure
2558 * spd. To be on the safe side, turn off phy during
2559 * reconfiguration. This works for at least ICH7 AHCI
2560 * and Sil3124.
2561 */
2562 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2563 return rc;
2564
2565 scontrol = (scontrol & 0x0f0) | 0x302;
2566
2567 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2568 return rc;
2569
2570 sata_set_spd(ap);
2571 }
2572
2573 /* issue phy wake/reset */
2574 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2575 return rc;
2576
2577 scontrol = (scontrol & 0x0f0) | 0x301;
2578
2579 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2580 return rc;
2581
2582 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2583 * 10.4.2 says at least 1 ms.
2584 */
2585 msleep(1);
2586
2587 /* bring phy back */
2588 sata_phy_resume(ap);
2589
2590 /* TODO: phy layer with polling, timeouts, etc. */
2591 if (ata_port_offline(ap)) {
2592 *class = ATA_DEV_NONE;
2593 DPRINTK("EXIT, link offline\n");
2594 return 0;
2595 }
2596
2597 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2598 ata_port_printk(ap, KERN_ERR,
2599 "COMRESET failed (device not ready)\n");
2600 return -EIO;
2601 }
2602
2603 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2604
2605 *class = ata_dev_try_classify(ap, 0, NULL);
2606
2607 DPRINTK("EXIT, class=%u\n", *class);
2608 return 0;
2609 }
2610
2611 /**
2612 * ata_std_postreset - standard postreset callback
2613 * @ap: the target ata_port
2614 * @classes: classes of attached devices
2615 *
2616 * This function is invoked after a successful reset. Note that
2617 * the device might have been reset more than once using
2618 * different reset methods before postreset is invoked.
2619 *
2620 * This function is to be used as standard callback for
2621 * ata_drive_*_reset().
2622 *
2623 * LOCKING:
2624 * Kernel thread context (may sleep)
2625 */
2626 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2627 {
2628 u32 serror;
2629
2630 DPRINTK("ENTER\n");
2631
2632 /* print link status */
2633 sata_print_link_status(ap);
2634
2635 /* clear SError */
2636 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2637 sata_scr_write(ap, SCR_ERROR, serror);
2638
2639 /* re-enable interrupts */
2640 if (!ap->ops->error_handler) {
2641 /* FIXME: hack. create a hook instead */
2642 if (ap->ioaddr.ctl_addr)
2643 ata_irq_on(ap);
2644 }
2645
2646 /* is double-select really necessary? */
2647 if (classes[0] != ATA_DEV_NONE)
2648 ap->ops->dev_select(ap, 1);
2649 if (classes[1] != ATA_DEV_NONE)
2650 ap->ops->dev_select(ap, 0);
2651
2652 /* bail out if no device is present */
2653 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2654 DPRINTK("EXIT, no device\n");
2655 return;
2656 }
2657
2658 /* set up device control */
2659 if (ap->ioaddr.ctl_addr) {
2660 if (ap->flags & ATA_FLAG_MMIO)
2661 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2662 else
2663 outb(ap->ctl, ap->ioaddr.ctl_addr);
2664 }
2665
2666 DPRINTK("EXIT\n");
2667 }
2668
2669 /**
2670 * ata_std_probe_reset - standard probe reset method
2671 * @ap: prot to perform probe-reset
2672 * @classes: resulting classes of attached devices
2673 *
2674 * The stock off-the-shelf ->probe_reset method.
2675 *
2676 * LOCKING:
2677 * Kernel thread context (may sleep)
2678 *
2679 * RETURNS:
2680 * 0 on success, -errno otherwise.
2681 */
2682 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2683 {
2684 ata_reset_fn_t hardreset;
2685
2686 hardreset = NULL;
2687 if (sata_scr_valid(ap))
2688 hardreset = sata_std_hardreset;
2689
2690 return ata_drive_probe_reset(ap, ata_std_probeinit,
2691 ata_std_softreset, hardreset,
2692 ata_std_postreset, classes);
2693 }
2694
2695 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2696 unsigned int *classes)
2697 {
2698 int i, rc;
2699
2700 for (i = 0; i < ATA_MAX_DEVICES; i++)
2701 classes[i] = ATA_DEV_UNKNOWN;
2702
2703 rc = reset(ap, classes);
2704 if (rc)
2705 return rc;
2706
2707 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2708 * is complete and convert all ATA_DEV_UNKNOWN to
2709 * ATA_DEV_NONE.
2710 */
2711 for (i = 0; i < ATA_MAX_DEVICES; i++)
2712 if (classes[i] != ATA_DEV_UNKNOWN)
2713 break;
2714
2715 if (i < ATA_MAX_DEVICES)
2716 for (i = 0; i < ATA_MAX_DEVICES; i++)
2717 if (classes[i] == ATA_DEV_UNKNOWN)
2718 classes[i] = ATA_DEV_NONE;
2719
2720 return 0;
2721 }
2722
2723 /**
2724 * ata_drive_probe_reset - Perform probe reset with given methods
2725 * @ap: port to reset
2726 * @probeinit: probeinit method (can be NULL)
2727 * @softreset: softreset method (can be NULL)
2728 * @hardreset: hardreset method (can be NULL)
2729 * @postreset: postreset method (can be NULL)
2730 * @classes: resulting classes of attached devices
2731 *
2732 * Reset the specified port and classify attached devices using
2733 * given methods. This function prefers softreset but tries all
2734 * possible reset sequences to reset and classify devices. This
2735 * function is intended to be used for constructing ->probe_reset
2736 * callback by low level drivers.
2737 *
2738 * Reset methods should follow the following rules.
2739 *
2740 * - Return 0 on sucess, -errno on failure.
2741 * - If classification is supported, fill classes[] with
2742 * recognized class codes.
2743 * - If classification is not supported, leave classes[] alone.
2744 *
2745 * LOCKING:
2746 * Kernel thread context (may sleep)
2747 *
2748 * RETURNS:
2749 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2750 * if classification fails, and any error code from reset
2751 * methods.
2752 */
2753 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2754 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2755 ata_postreset_fn_t postreset, unsigned int *classes)
2756 {
2757 int rc = -EINVAL;
2758
2759 ata_eh_freeze_port(ap);
2760
2761 if (probeinit)
2762 probeinit(ap);
2763
2764 if (softreset && !sata_set_spd_needed(ap)) {
2765 rc = ata_do_reset(ap, softreset, classes);
2766 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2767 goto done;
2768 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2769 "will try hardreset in 5 secs\n");
2770 ssleep(5);
2771 }
2772
2773 if (!hardreset)
2774 goto done;
2775
2776 while (1) {
2777 rc = ata_do_reset(ap, hardreset, classes);
2778 if (rc == 0) {
2779 if (classes[0] != ATA_DEV_UNKNOWN)
2780 goto done;
2781 break;
2782 }
2783
2784 if (sata_down_spd_limit(ap))
2785 goto done;
2786
2787 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2788 "will retry in 5 secs\n");
2789 ssleep(5);
2790 }
2791
2792 if (softreset) {
2793 ata_port_printk(ap, KERN_INFO,
2794 "hardreset succeeded without classification, "
2795 "will retry softreset in 5 secs\n");
2796 ssleep(5);
2797
2798 rc = ata_do_reset(ap, softreset, classes);
2799 }
2800
2801 done:
2802 if (rc == 0) {
2803 if (postreset)
2804 postreset(ap, classes);
2805
2806 ata_eh_thaw_port(ap);
2807
2808 if (classes[0] == ATA_DEV_UNKNOWN)
2809 rc = -ENODEV;
2810 }
2811 return rc;
2812 }
2813
2814 /**
2815 * ata_dev_same_device - Determine whether new ID matches configured device
2816 * @dev: device to compare against
2817 * @new_class: class of the new device
2818 * @new_id: IDENTIFY page of the new device
2819 *
2820 * Compare @new_class and @new_id against @dev and determine
2821 * whether @dev is the device indicated by @new_class and
2822 * @new_id.
2823 *
2824 * LOCKING:
2825 * None.
2826 *
2827 * RETURNS:
2828 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2829 */
2830 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2831 const u16 *new_id)
2832 {
2833 const u16 *old_id = dev->id;
2834 unsigned char model[2][41], serial[2][21];
2835 u64 new_n_sectors;
2836
2837 if (dev->class != new_class) {
2838 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2839 dev->class, new_class);
2840 return 0;
2841 }
2842
2843 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2844 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2845 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2846 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2847 new_n_sectors = ata_id_n_sectors(new_id);
2848
2849 if (strcmp(model[0], model[1])) {
2850 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2851 "'%s' != '%s'\n", model[0], model[1]);
2852 return 0;
2853 }
2854
2855 if (strcmp(serial[0], serial[1])) {
2856 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2857 "'%s' != '%s'\n", serial[0], serial[1]);
2858 return 0;
2859 }
2860
2861 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2862 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2863 "%llu != %llu\n",
2864 (unsigned long long)dev->n_sectors,
2865 (unsigned long long)new_n_sectors);
2866 return 0;
2867 }
2868
2869 return 1;
2870 }
2871
2872 /**
2873 * ata_dev_revalidate - Revalidate ATA device
2874 * @dev: device to revalidate
2875 * @post_reset: is this revalidation after reset?
2876 *
2877 * Re-read IDENTIFY page and make sure @dev is still attached to
2878 * the port.
2879 *
2880 * LOCKING:
2881 * Kernel thread context (may sleep)
2882 *
2883 * RETURNS:
2884 * 0 on success, negative errno otherwise
2885 */
2886 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2887 {
2888 unsigned int class = dev->class;
2889 u16 *id = (void *)dev->ap->sector_buf;
2890 int rc;
2891
2892 if (!ata_dev_enabled(dev)) {
2893 rc = -ENODEV;
2894 goto fail;
2895 }
2896
2897 /* read ID data */
2898 rc = ata_dev_read_id(dev, &class, post_reset, id);
2899 if (rc)
2900 goto fail;
2901
2902 /* is the device still there? */
2903 if (!ata_dev_same_device(dev, class, id)) {
2904 rc = -ENODEV;
2905 goto fail;
2906 }
2907
2908 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2909
2910 /* configure device according to the new ID */
2911 rc = ata_dev_configure(dev, 0);
2912 if (rc == 0)
2913 return 0;
2914
2915 fail:
2916 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2917 return rc;
2918 }
2919
2920 static const char * const ata_dma_blacklist [] = {
2921 "WDC AC11000H", NULL,
2922 "WDC AC22100H", NULL,
2923 "WDC AC32500H", NULL,
2924 "WDC AC33100H", NULL,
2925 "WDC AC31600H", NULL,
2926 "WDC AC32100H", "24.09P07",
2927 "WDC AC23200L", "21.10N21",
2928 "Compaq CRD-8241B", NULL,
2929 "CRD-8400B", NULL,
2930 "CRD-8480B", NULL,
2931 "CRD-8482B", NULL,
2932 "CRD-84", NULL,
2933 "SanDisk SDP3B", NULL,
2934 "SanDisk SDP3B-64", NULL,
2935 "SANYO CD-ROM CRD", NULL,
2936 "HITACHI CDR-8", NULL,
2937 "HITACHI CDR-8335", NULL,
2938 "HITACHI CDR-8435", NULL,
2939 "Toshiba CD-ROM XM-6202B", NULL,
2940 "TOSHIBA CD-ROM XM-1702BC", NULL,
2941 "CD-532E-A", NULL,
2942 "E-IDE CD-ROM CR-840", NULL,
2943 "CD-ROM Drive/F5A", NULL,
2944 "WPI CDD-820", NULL,
2945 "SAMSUNG CD-ROM SC-148C", NULL,
2946 "SAMSUNG CD-ROM SC", NULL,
2947 "SanDisk SDP3B-64", NULL,
2948 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2949 "_NEC DV5800A", NULL,
2950 "SAMSUNG CD-ROM SN-124", "N001"
2951 };
2952
2953 static int ata_strim(char *s, size_t len)
2954 {
2955 len = strnlen(s, len);
2956
2957 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2958 while ((len > 0) && (s[len - 1] == ' ')) {
2959 len--;
2960 s[len] = 0;
2961 }
2962 return len;
2963 }
2964
2965 static int ata_dma_blacklisted(const struct ata_device *dev)
2966 {
2967 unsigned char model_num[40];
2968 unsigned char model_rev[16];
2969 unsigned int nlen, rlen;
2970 int i;
2971
2972 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2973 sizeof(model_num));
2974 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2975 sizeof(model_rev));
2976 nlen = ata_strim(model_num, sizeof(model_num));
2977 rlen = ata_strim(model_rev, sizeof(model_rev));
2978
2979 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2980 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2981 if (ata_dma_blacklist[i+1] == NULL)
2982 return 1;
2983 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2984 return 1;
2985 }
2986 }
2987 return 0;
2988 }
2989
2990 /**
2991 * ata_dev_xfermask - Compute supported xfermask of the given device
2992 * @dev: Device to compute xfermask for
2993 *
2994 * Compute supported xfermask of @dev and store it in
2995 * dev->*_mask. This function is responsible for applying all
2996 * known limits including host controller limits, device
2997 * blacklist, etc...
2998 *
2999 * FIXME: The current implementation limits all transfer modes to
3000 * the fastest of the lowested device on the port. This is not
3001 * required on most controllers.
3002 *
3003 * LOCKING:
3004 * None.
3005 */
3006 static void ata_dev_xfermask(struct ata_device *dev)
3007 {
3008 struct ata_port *ap = dev->ap;
3009 struct ata_host_set *hs = ap->host_set;
3010 unsigned long xfer_mask;
3011 int i;
3012
3013 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3014 ap->mwdma_mask, ap->udma_mask);
3015
3016 /* Apply cable rule here. Don't apply it early because when
3017 * we handle hot plug the cable type can itself change.
3018 */
3019 if (ap->cbl == ATA_CBL_PATA40)
3020 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3021
3022 /* FIXME: Use port-wide xfermask for now */
3023 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3024 struct ata_device *d = &ap->device[i];
3025
3026 if (ata_dev_absent(d))
3027 continue;
3028
3029 if (ata_dev_disabled(d)) {
3030 /* to avoid violating device selection timing */
3031 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3032 UINT_MAX, UINT_MAX);
3033 continue;
3034 }
3035
3036 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3037 d->mwdma_mask, d->udma_mask);
3038 xfer_mask &= ata_id_xfermask(d->id);
3039 if (ata_dma_blacklisted(d))
3040 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3041 }
3042
3043 if (ata_dma_blacklisted(dev))
3044 ata_dev_printk(dev, KERN_WARNING,
3045 "device is on DMA blacklist, disabling DMA\n");
3046
3047 if (hs->flags & ATA_HOST_SIMPLEX) {
3048 if (hs->simplex_claimed)
3049 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3050 }
3051
3052 if (ap->ops->mode_filter)
3053 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3054
3055 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3056 &dev->mwdma_mask, &dev->udma_mask);
3057 }
3058
3059 /**
3060 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3061 * @dev: Device to which command will be sent
3062 *
3063 * Issue SET FEATURES - XFER MODE command to device @dev
3064 * on port @ap.
3065 *
3066 * LOCKING:
3067 * PCI/etc. bus probe sem.
3068 *
3069 * RETURNS:
3070 * 0 on success, AC_ERR_* mask otherwise.
3071 */
3072
3073 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3074 {
3075 struct ata_taskfile tf;
3076 unsigned int err_mask;
3077
3078 /* set up set-features taskfile */
3079 DPRINTK("set features - xfer mode\n");
3080
3081 ata_tf_init(dev, &tf);
3082 tf.command = ATA_CMD_SET_FEATURES;
3083 tf.feature = SETFEATURES_XFER;
3084 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3085 tf.protocol = ATA_PROT_NODATA;
3086 tf.nsect = dev->xfer_mode;
3087
3088 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3089
3090 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3091 return err_mask;
3092 }
3093
3094 /**
3095 * ata_dev_init_params - Issue INIT DEV PARAMS command
3096 * @dev: Device to which command will be sent
3097 * @heads: Number of heads (taskfile parameter)
3098 * @sectors: Number of sectors (taskfile parameter)
3099 *
3100 * LOCKING:
3101 * Kernel thread context (may sleep)
3102 *
3103 * RETURNS:
3104 * 0 on success, AC_ERR_* mask otherwise.
3105 */
3106 static unsigned int ata_dev_init_params(struct ata_device *dev,
3107 u16 heads, u16 sectors)
3108 {
3109 struct ata_taskfile tf;
3110 unsigned int err_mask;
3111
3112 /* Number of sectors per track 1-255. Number of heads 1-16 */
3113 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3114 return AC_ERR_INVALID;
3115
3116 /* set up init dev params taskfile */
3117 DPRINTK("init dev params \n");
3118
3119 ata_tf_init(dev, &tf);
3120 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3121 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3122 tf.protocol = ATA_PROT_NODATA;
3123 tf.nsect = sectors;
3124 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3125
3126 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3127
3128 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3129 return err_mask;
3130 }
3131
3132 /**
3133 * ata_sg_clean - Unmap DMA memory associated with command
3134 * @qc: Command containing DMA memory to be released
3135 *
3136 * Unmap all mapped DMA memory associated with this command.
3137 *
3138 * LOCKING:
3139 * spin_lock_irqsave(host_set lock)
3140 */
3141
3142 static void ata_sg_clean(struct ata_queued_cmd *qc)
3143 {
3144 struct ata_port *ap = qc->ap;
3145 struct scatterlist *sg = qc->__sg;
3146 int dir = qc->dma_dir;
3147 void *pad_buf = NULL;
3148
3149 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3150 WARN_ON(sg == NULL);
3151
3152 if (qc->flags & ATA_QCFLAG_SINGLE)
3153 WARN_ON(qc->n_elem > 1);
3154
3155 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3156
3157 /* if we padded the buffer out to 32-bit bound, and data
3158 * xfer direction is from-device, we must copy from the
3159 * pad buffer back into the supplied buffer
3160 */
3161 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3162 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3163
3164 if (qc->flags & ATA_QCFLAG_SG) {
3165 if (qc->n_elem)
3166 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3167 /* restore last sg */
3168 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3169 if (pad_buf) {
3170 struct scatterlist *psg = &qc->pad_sgent;
3171 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3172 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3173 kunmap_atomic(addr, KM_IRQ0);
3174 }
3175 } else {
3176 if (qc->n_elem)
3177 dma_unmap_single(ap->dev,
3178 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3179 dir);
3180 /* restore sg */
3181 sg->length += qc->pad_len;
3182 if (pad_buf)
3183 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3184 pad_buf, qc->pad_len);
3185 }
3186
3187 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3188 qc->__sg = NULL;
3189 }
3190
3191 /**
3192 * ata_fill_sg - Fill PCI IDE PRD table
3193 * @qc: Metadata associated with taskfile to be transferred
3194 *
3195 * Fill PCI IDE PRD (scatter-gather) table with segments
3196 * associated with the current disk command.
3197 *
3198 * LOCKING:
3199 * spin_lock_irqsave(host_set lock)
3200 *
3201 */
3202 static void ata_fill_sg(struct ata_queued_cmd *qc)
3203 {
3204 struct ata_port *ap = qc->ap;
3205 struct scatterlist *sg;
3206 unsigned int idx;
3207
3208 WARN_ON(qc->__sg == NULL);
3209 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3210
3211 idx = 0;
3212 ata_for_each_sg(sg, qc) {
3213 u32 addr, offset;
3214 u32 sg_len, len;
3215
3216 /* determine if physical DMA addr spans 64K boundary.
3217 * Note h/w doesn't support 64-bit, so we unconditionally
3218 * truncate dma_addr_t to u32.
3219 */
3220 addr = (u32) sg_dma_address(sg);
3221 sg_len = sg_dma_len(sg);
3222
3223 while (sg_len) {
3224 offset = addr & 0xffff;
3225 len = sg_len;
3226 if ((offset + sg_len) > 0x10000)
3227 len = 0x10000 - offset;
3228
3229 ap->prd[idx].addr = cpu_to_le32(addr);
3230 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3231 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3232
3233 idx++;
3234 sg_len -= len;
3235 addr += len;
3236 }
3237 }
3238
3239 if (idx)
3240 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3241 }
3242 /**
3243 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3244 * @qc: Metadata associated with taskfile to check
3245 *
3246 * Allow low-level driver to filter ATA PACKET commands, returning
3247 * a status indicating whether or not it is OK to use DMA for the
3248 * supplied PACKET command.
3249 *
3250 * LOCKING:
3251 * spin_lock_irqsave(host_set lock)
3252 *
3253 * RETURNS: 0 when ATAPI DMA can be used
3254 * nonzero otherwise
3255 */
3256 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3257 {
3258 struct ata_port *ap = qc->ap;
3259 int rc = 0; /* Assume ATAPI DMA is OK by default */
3260
3261 if (ap->ops->check_atapi_dma)
3262 rc = ap->ops->check_atapi_dma(qc);
3263
3264 /* We don't support polling DMA.
3265 * Use PIO if the LLDD handles only interrupts in
3266 * the HSM_ST_LAST state and the ATAPI device
3267 * generates CDB interrupts.
3268 */
3269 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3270 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3271 rc = 1;
3272
3273 return rc;
3274 }
3275 /**
3276 * ata_qc_prep - Prepare taskfile for submission
3277 * @qc: Metadata associated with taskfile to be prepared
3278 *
3279 * Prepare ATA taskfile for submission.
3280 *
3281 * LOCKING:
3282 * spin_lock_irqsave(host_set lock)
3283 */
3284 void ata_qc_prep(struct ata_queued_cmd *qc)
3285 {
3286 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3287 return;
3288
3289 ata_fill_sg(qc);
3290 }
3291
3292 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3293
3294 /**
3295 * ata_sg_init_one - Associate command with memory buffer
3296 * @qc: Command to be associated
3297 * @buf: Memory buffer
3298 * @buflen: Length of memory buffer, in bytes.
3299 *
3300 * Initialize the data-related elements of queued_cmd @qc
3301 * to point to a single memory buffer, @buf of byte length @buflen.
3302 *
3303 * LOCKING:
3304 * spin_lock_irqsave(host_set lock)
3305 */
3306
3307 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3308 {
3309 struct scatterlist *sg;
3310
3311 qc->flags |= ATA_QCFLAG_SINGLE;
3312
3313 memset(&qc->sgent, 0, sizeof(qc->sgent));
3314 qc->__sg = &qc->sgent;
3315 qc->n_elem = 1;
3316 qc->orig_n_elem = 1;
3317 qc->buf_virt = buf;
3318
3319 sg = qc->__sg;
3320 sg_init_one(sg, buf, buflen);
3321 }
3322
3323 /**
3324 * ata_sg_init - Associate command with scatter-gather table.
3325 * @qc: Command to be associated
3326 * @sg: Scatter-gather table.
3327 * @n_elem: Number of elements in s/g table.
3328 *
3329 * Initialize the data-related elements of queued_cmd @qc
3330 * to point to a scatter-gather table @sg, containing @n_elem
3331 * elements.
3332 *
3333 * LOCKING:
3334 * spin_lock_irqsave(host_set lock)
3335 */
3336
3337 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3338 unsigned int n_elem)
3339 {
3340 qc->flags |= ATA_QCFLAG_SG;
3341 qc->__sg = sg;
3342 qc->n_elem = n_elem;
3343 qc->orig_n_elem = n_elem;
3344 }
3345
3346 /**
3347 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3348 * @qc: Command with memory buffer to be mapped.
3349 *
3350 * DMA-map the memory buffer associated with queued_cmd @qc.
3351 *
3352 * LOCKING:
3353 * spin_lock_irqsave(host_set lock)
3354 *
3355 * RETURNS:
3356 * Zero on success, negative on error.
3357 */
3358
3359 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3360 {
3361 struct ata_port *ap = qc->ap;
3362 int dir = qc->dma_dir;
3363 struct scatterlist *sg = qc->__sg;
3364 dma_addr_t dma_address;
3365 int trim_sg = 0;
3366
3367 /* we must lengthen transfers to end on a 32-bit boundary */
3368 qc->pad_len = sg->length & 3;
3369 if (qc->pad_len) {
3370 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3371 struct scatterlist *psg = &qc->pad_sgent;
3372
3373 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3374
3375 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3376
3377 if (qc->tf.flags & ATA_TFLAG_WRITE)
3378 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3379 qc->pad_len);
3380
3381 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3382 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3383 /* trim sg */
3384 sg->length -= qc->pad_len;
3385 if (sg->length == 0)
3386 trim_sg = 1;
3387
3388 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3389 sg->length, qc->pad_len);
3390 }
3391
3392 if (trim_sg) {
3393 qc->n_elem--;
3394 goto skip_map;
3395 }
3396
3397 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3398 sg->length, dir);
3399 if (dma_mapping_error(dma_address)) {
3400 /* restore sg */
3401 sg->length += qc->pad_len;
3402 return -1;
3403 }
3404
3405 sg_dma_address(sg) = dma_address;
3406 sg_dma_len(sg) = sg->length;
3407
3408 skip_map:
3409 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3410 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3411
3412 return 0;
3413 }
3414
3415 /**
3416 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3417 * @qc: Command with scatter-gather table to be mapped.
3418 *
3419 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3420 *
3421 * LOCKING:
3422 * spin_lock_irqsave(host_set lock)
3423 *
3424 * RETURNS:
3425 * Zero on success, negative on error.
3426 *
3427 */
3428
3429 static int ata_sg_setup(struct ata_queued_cmd *qc)
3430 {
3431 struct ata_port *ap = qc->ap;
3432 struct scatterlist *sg = qc->__sg;
3433 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3434 int n_elem, pre_n_elem, dir, trim_sg = 0;
3435
3436 VPRINTK("ENTER, ata%u\n", ap->id);
3437 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3438
3439 /* we must lengthen transfers to end on a 32-bit boundary */
3440 qc->pad_len = lsg->length & 3;
3441 if (qc->pad_len) {
3442 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3443 struct scatterlist *psg = &qc->pad_sgent;
3444 unsigned int offset;
3445
3446 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3447
3448 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3449
3450 /*
3451 * psg->page/offset are used to copy to-be-written
3452 * data in this function or read data in ata_sg_clean.
3453 */
3454 offset = lsg->offset + lsg->length - qc->pad_len;
3455 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3456 psg->offset = offset_in_page(offset);
3457
3458 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3459 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3460 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3461 kunmap_atomic(addr, KM_IRQ0);
3462 }
3463
3464 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3465 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3466 /* trim last sg */
3467 lsg->length -= qc->pad_len;
3468 if (lsg->length == 0)
3469 trim_sg = 1;
3470
3471 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3472 qc->n_elem - 1, lsg->length, qc->pad_len);
3473 }
3474
3475 pre_n_elem = qc->n_elem;
3476 if (trim_sg && pre_n_elem)
3477 pre_n_elem--;
3478
3479 if (!pre_n_elem) {
3480 n_elem = 0;
3481 goto skip_map;
3482 }
3483
3484 dir = qc->dma_dir;
3485 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3486 if (n_elem < 1) {
3487 /* restore last sg */
3488 lsg->length += qc->pad_len;
3489 return -1;
3490 }
3491
3492 DPRINTK("%d sg elements mapped\n", n_elem);
3493
3494 skip_map:
3495 qc->n_elem = n_elem;
3496
3497 return 0;
3498 }
3499
3500 /**
3501 * swap_buf_le16 - swap halves of 16-bit words in place
3502 * @buf: Buffer to swap
3503 * @buf_words: Number of 16-bit words in buffer.
3504 *
3505 * Swap halves of 16-bit words if needed to convert from
3506 * little-endian byte order to native cpu byte order, or
3507 * vice-versa.
3508 *
3509 * LOCKING:
3510 * Inherited from caller.
3511 */
3512 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3513 {
3514 #ifdef __BIG_ENDIAN
3515 unsigned int i;
3516
3517 for (i = 0; i < buf_words; i++)
3518 buf[i] = le16_to_cpu(buf[i]);
3519 #endif /* __BIG_ENDIAN */
3520 }
3521
3522 /**
3523 * ata_mmio_data_xfer - Transfer data by MMIO
3524 * @ap: port to read/write
3525 * @buf: data buffer
3526 * @buflen: buffer length
3527 * @write_data: read/write
3528 *
3529 * Transfer data from/to the device data register by MMIO.
3530 *
3531 * LOCKING:
3532 * Inherited from caller.
3533 */
3534
3535 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3536 unsigned int buflen, int write_data)
3537 {
3538 unsigned int i;
3539 unsigned int words = buflen >> 1;
3540 u16 *buf16 = (u16 *) buf;
3541 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3542
3543 /* Transfer multiple of 2 bytes */
3544 if (write_data) {
3545 for (i = 0; i < words; i++)
3546 writew(le16_to_cpu(buf16[i]), mmio);
3547 } else {
3548 for (i = 0; i < words; i++)
3549 buf16[i] = cpu_to_le16(readw(mmio));
3550 }
3551
3552 /* Transfer trailing 1 byte, if any. */
3553 if (unlikely(buflen & 0x01)) {
3554 u16 align_buf[1] = { 0 };
3555 unsigned char *trailing_buf = buf + buflen - 1;
3556
3557 if (write_data) {
3558 memcpy(align_buf, trailing_buf, 1);
3559 writew(le16_to_cpu(align_buf[0]), mmio);
3560 } else {
3561 align_buf[0] = cpu_to_le16(readw(mmio));
3562 memcpy(trailing_buf, align_buf, 1);
3563 }
3564 }
3565 }
3566
3567 /**
3568 * ata_pio_data_xfer - Transfer data by PIO
3569 * @ap: port to read/write
3570 * @buf: data buffer
3571 * @buflen: buffer length
3572 * @write_data: read/write
3573 *
3574 * Transfer data from/to the device data register by PIO.
3575 *
3576 * LOCKING:
3577 * Inherited from caller.
3578 */
3579
3580 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3581 unsigned int buflen, int write_data)
3582 {
3583 unsigned int words = buflen >> 1;
3584
3585 /* Transfer multiple of 2 bytes */
3586 if (write_data)
3587 outsw(ap->ioaddr.data_addr, buf, words);
3588 else
3589 insw(ap->ioaddr.data_addr, buf, words);
3590
3591 /* Transfer trailing 1 byte, if any. */
3592 if (unlikely(buflen & 0x01)) {
3593 u16 align_buf[1] = { 0 };
3594 unsigned char *trailing_buf = buf + buflen - 1;
3595
3596 if (write_data) {
3597 memcpy(align_buf, trailing_buf, 1);
3598 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3599 } else {
3600 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3601 memcpy(trailing_buf, align_buf, 1);
3602 }
3603 }
3604 }
3605
3606 /**
3607 * ata_data_xfer - Transfer data from/to the data register.
3608 * @ap: port to read/write
3609 * @buf: data buffer
3610 * @buflen: buffer length
3611 * @do_write: read/write
3612 *
3613 * Transfer data from/to the device data register.
3614 *
3615 * LOCKING:
3616 * Inherited from caller.
3617 */
3618
3619 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3620 unsigned int buflen, int do_write)
3621 {
3622 /* Make the crap hardware pay the costs not the good stuff */
3623 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3624 unsigned long flags;
3625 local_irq_save(flags);
3626 if (ap->flags & ATA_FLAG_MMIO)
3627 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3628 else
3629 ata_pio_data_xfer(ap, buf, buflen, do_write);
3630 local_irq_restore(flags);
3631 } else {
3632 if (ap->flags & ATA_FLAG_MMIO)
3633 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3634 else
3635 ata_pio_data_xfer(ap, buf, buflen, do_write);
3636 }
3637 }
3638
3639 /**
3640 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3641 * @qc: Command on going
3642 *
3643 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3644 *
3645 * LOCKING:
3646 * Inherited from caller.
3647 */
3648
3649 static void ata_pio_sector(struct ata_queued_cmd *qc)
3650 {
3651 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3652 struct scatterlist *sg = qc->__sg;
3653 struct ata_port *ap = qc->ap;
3654 struct page *page;
3655 unsigned int offset;
3656 unsigned char *buf;
3657
3658 if (qc->cursect == (qc->nsect - 1))
3659 ap->hsm_task_state = HSM_ST_LAST;
3660
3661 page = sg[qc->cursg].page;
3662 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3663
3664 /* get the current page and offset */
3665 page = nth_page(page, (offset >> PAGE_SHIFT));
3666 offset %= PAGE_SIZE;
3667
3668 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3669
3670 if (PageHighMem(page)) {
3671 unsigned long flags;
3672
3673 local_irq_save(flags);
3674 buf = kmap_atomic(page, KM_IRQ0);
3675
3676 /* do the actual data transfer */
3677 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3678
3679 kunmap_atomic(buf, KM_IRQ0);
3680 local_irq_restore(flags);
3681 } else {
3682 buf = page_address(page);
3683 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3684 }
3685
3686 qc->cursect++;
3687 qc->cursg_ofs++;
3688
3689 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3690 qc->cursg++;
3691 qc->cursg_ofs = 0;
3692 }
3693 }
3694
3695 /**
3696 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3697 * @qc: Command on going
3698 *
3699 * Transfer one or many ATA_SECT_SIZE of data from/to the
3700 * ATA device for the DRQ request.
3701 *
3702 * LOCKING:
3703 * Inherited from caller.
3704 */
3705
3706 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3707 {
3708 if (is_multi_taskfile(&qc->tf)) {
3709 /* READ/WRITE MULTIPLE */
3710 unsigned int nsect;
3711
3712 WARN_ON(qc->dev->multi_count == 0);
3713
3714 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3715 while (nsect--)
3716 ata_pio_sector(qc);
3717 } else
3718 ata_pio_sector(qc);
3719 }
3720
3721 /**
3722 * atapi_send_cdb - Write CDB bytes to hardware
3723 * @ap: Port to which ATAPI device is attached.
3724 * @qc: Taskfile currently active
3725 *
3726 * When device has indicated its readiness to accept
3727 * a CDB, this function is called. Send the CDB.
3728 *
3729 * LOCKING:
3730 * caller.
3731 */
3732
3733 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3734 {
3735 /* send SCSI cdb */
3736 DPRINTK("send cdb\n");
3737 WARN_ON(qc->dev->cdb_len < 12);
3738
3739 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3740 ata_altstatus(ap); /* flush */
3741
3742 switch (qc->tf.protocol) {
3743 case ATA_PROT_ATAPI:
3744 ap->hsm_task_state = HSM_ST;
3745 break;
3746 case ATA_PROT_ATAPI_NODATA:
3747 ap->hsm_task_state = HSM_ST_LAST;
3748 break;
3749 case ATA_PROT_ATAPI_DMA:
3750 ap->hsm_task_state = HSM_ST_LAST;
3751 /* initiate bmdma */
3752 ap->ops->bmdma_start(qc);
3753 break;
3754 }
3755 }
3756
3757 /**
3758 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3759 * @qc: Command on going
3760 * @bytes: number of bytes
3761 *
3762 * Transfer Transfer data from/to the ATAPI device.
3763 *
3764 * LOCKING:
3765 * Inherited from caller.
3766 *
3767 */
3768
3769 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3770 {
3771 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3772 struct scatterlist *sg = qc->__sg;
3773 struct ata_port *ap = qc->ap;
3774 struct page *page;
3775 unsigned char *buf;
3776 unsigned int offset, count;
3777
3778 if (qc->curbytes + bytes >= qc->nbytes)
3779 ap->hsm_task_state = HSM_ST_LAST;
3780
3781 next_sg:
3782 if (unlikely(qc->cursg >= qc->n_elem)) {
3783 /*
3784 * The end of qc->sg is reached and the device expects
3785 * more data to transfer. In order not to overrun qc->sg
3786 * and fulfill length specified in the byte count register,
3787 * - for read case, discard trailing data from the device
3788 * - for write case, padding zero data to the device
3789 */
3790 u16 pad_buf[1] = { 0 };
3791 unsigned int words = bytes >> 1;
3792 unsigned int i;
3793
3794 if (words) /* warning if bytes > 1 */
3795 ata_dev_printk(qc->dev, KERN_WARNING,
3796 "%u bytes trailing data\n", bytes);
3797
3798 for (i = 0; i < words; i++)
3799 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3800
3801 ap->hsm_task_state = HSM_ST_LAST;
3802 return;
3803 }
3804
3805 sg = &qc->__sg[qc->cursg];
3806
3807 page = sg->page;
3808 offset = sg->offset + qc->cursg_ofs;
3809
3810 /* get the current page and offset */
3811 page = nth_page(page, (offset >> PAGE_SHIFT));
3812 offset %= PAGE_SIZE;
3813
3814 /* don't overrun current sg */
3815 count = min(sg->length - qc->cursg_ofs, bytes);
3816
3817 /* don't cross page boundaries */
3818 count = min(count, (unsigned int)PAGE_SIZE - offset);
3819
3820 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3821
3822 if (PageHighMem(page)) {
3823 unsigned long flags;
3824
3825 local_irq_save(flags);
3826 buf = kmap_atomic(page, KM_IRQ0);
3827
3828 /* do the actual data transfer */
3829 ata_data_xfer(ap, buf + offset, count, do_write);
3830
3831 kunmap_atomic(buf, KM_IRQ0);
3832 local_irq_restore(flags);
3833 } else {
3834 buf = page_address(page);
3835 ata_data_xfer(ap, buf + offset, count, do_write);
3836 }
3837
3838 bytes -= count;
3839 qc->curbytes += count;
3840 qc->cursg_ofs += count;
3841
3842 if (qc->cursg_ofs == sg->length) {
3843 qc->cursg++;
3844 qc->cursg_ofs = 0;
3845 }
3846
3847 if (bytes)
3848 goto next_sg;
3849 }
3850
3851 /**
3852 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3853 * @qc: Command on going
3854 *
3855 * Transfer Transfer data from/to the ATAPI device.
3856 *
3857 * LOCKING:
3858 * Inherited from caller.
3859 */
3860
3861 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3862 {
3863 struct ata_port *ap = qc->ap;
3864 struct ata_device *dev = qc->dev;
3865 unsigned int ireason, bc_lo, bc_hi, bytes;
3866 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3867
3868 /* Abuse qc->result_tf for temp storage of intermediate TF
3869 * here to save some kernel stack usage.
3870 * For normal completion, qc->result_tf is not relevant. For
3871 * error, qc->result_tf is later overwritten by ata_qc_complete().
3872 * So, the correctness of qc->result_tf is not affected.
3873 */
3874 ap->ops->tf_read(ap, &qc->result_tf);
3875 ireason = qc->result_tf.nsect;
3876 bc_lo = qc->result_tf.lbam;
3877 bc_hi = qc->result_tf.lbah;
3878 bytes = (bc_hi << 8) | bc_lo;
3879
3880 /* shall be cleared to zero, indicating xfer of data */
3881 if (ireason & (1 << 0))
3882 goto err_out;
3883
3884 /* make sure transfer direction matches expected */
3885 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3886 if (do_write != i_write)
3887 goto err_out;
3888
3889 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3890
3891 __atapi_pio_bytes(qc, bytes);
3892
3893 return;
3894
3895 err_out:
3896 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3897 qc->err_mask |= AC_ERR_HSM;
3898 ap->hsm_task_state = HSM_ST_ERR;
3899 }
3900
3901 /**
3902 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3903 * @ap: the target ata_port
3904 * @qc: qc on going
3905 *
3906 * RETURNS:
3907 * 1 if ok in workqueue, 0 otherwise.
3908 */
3909
3910 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3911 {
3912 if (qc->tf.flags & ATA_TFLAG_POLLING)
3913 return 1;
3914
3915 if (ap->hsm_task_state == HSM_ST_FIRST) {
3916 if (qc->tf.protocol == ATA_PROT_PIO &&
3917 (qc->tf.flags & ATA_TFLAG_WRITE))
3918 return 1;
3919
3920 if (is_atapi_taskfile(&qc->tf) &&
3921 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3922 return 1;
3923 }
3924
3925 return 0;
3926 }
3927
3928 /**
3929 * ata_hsm_qc_complete - finish a qc running on standard HSM
3930 * @qc: Command to complete
3931 * @in_wq: 1 if called from workqueue, 0 otherwise
3932 *
3933 * Finish @qc which is running on standard HSM.
3934 *
3935 * LOCKING:
3936 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3937 * Otherwise, none on entry and grabs host lock.
3938 */
3939 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3940 {
3941 struct ata_port *ap = qc->ap;
3942 unsigned long flags;
3943
3944 if (ap->ops->error_handler) {
3945 if (in_wq) {
3946 spin_lock_irqsave(&ap->host_set->lock, flags);
3947
3948 /* EH might have kicked in while host_set lock
3949 * is released.
3950 */
3951 qc = ata_qc_from_tag(ap, qc->tag);
3952 if (qc) {
3953 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3954 ata_irq_on(ap);
3955 ata_qc_complete(qc);
3956 } else
3957 ata_port_freeze(ap);
3958 }
3959
3960 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3961 } else {
3962 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3963 ata_qc_complete(qc);
3964 else
3965 ata_port_freeze(ap);
3966 }
3967 } else {
3968 if (in_wq) {
3969 spin_lock_irqsave(&ap->host_set->lock, flags);
3970 ata_irq_on(ap);
3971 ata_qc_complete(qc);
3972 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3973 } else
3974 ata_qc_complete(qc);
3975 }
3976 }
3977
3978 /**
3979 * ata_hsm_move - move the HSM to the next state.
3980 * @ap: the target ata_port
3981 * @qc: qc on going
3982 * @status: current device status
3983 * @in_wq: 1 if called from workqueue, 0 otherwise
3984 *
3985 * RETURNS:
3986 * 1 when poll next status needed, 0 otherwise.
3987 */
3988
3989 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3990 u8 status, int in_wq)
3991 {
3992 unsigned long flags = 0;
3993 int poll_next;
3994
3995 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3996
3997 /* Make sure ata_qc_issue_prot() does not throw things
3998 * like DMA polling into the workqueue. Notice that
3999 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4000 */
4001 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4002
4003 fsm_start:
4004 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4005 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4006
4007 switch (ap->hsm_task_state) {
4008 case HSM_ST_FIRST:
4009 /* Send first data block or PACKET CDB */
4010
4011 /* If polling, we will stay in the work queue after
4012 * sending the data. Otherwise, interrupt handler
4013 * takes over after sending the data.
4014 */
4015 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4016
4017 /* check device status */
4018 if (unlikely((status & ATA_DRQ) == 0)) {
4019 /* handle BSY=0, DRQ=0 as error */
4020 if (likely(status & (ATA_ERR | ATA_DF)))
4021 /* device stops HSM for abort/error */
4022 qc->err_mask |= AC_ERR_DEV;
4023 else
4024 /* HSM violation. Let EH handle this */
4025 qc->err_mask |= AC_ERR_HSM;
4026
4027 ap->hsm_task_state = HSM_ST_ERR;
4028 goto fsm_start;
4029 }
4030
4031 /* Device should not ask for data transfer (DRQ=1)
4032 * when it finds something wrong.
4033 * We ignore DRQ here and stop the HSM by
4034 * changing hsm_task_state to HSM_ST_ERR and
4035 * let the EH abort the command or reset the device.
4036 */
4037 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4038 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4039 ap->id, status);
4040 qc->err_mask |= AC_ERR_HSM;
4041 ap->hsm_task_state = HSM_ST_ERR;
4042 goto fsm_start;
4043 }
4044
4045 /* Send the CDB (atapi) or the first data block (ata pio out).
4046 * During the state transition, interrupt handler shouldn't
4047 * be invoked before the data transfer is complete and
4048 * hsm_task_state is changed. Hence, the following locking.
4049 */
4050 if (in_wq)
4051 spin_lock_irqsave(&ap->host_set->lock, flags);
4052
4053 if (qc->tf.protocol == ATA_PROT_PIO) {
4054 /* PIO data out protocol.
4055 * send first data block.
4056 */
4057
4058 /* ata_pio_sectors() might change the state
4059 * to HSM_ST_LAST. so, the state is changed here
4060 * before ata_pio_sectors().
4061 */
4062 ap->hsm_task_state = HSM_ST;
4063 ata_pio_sectors(qc);
4064 ata_altstatus(ap); /* flush */
4065 } else
4066 /* send CDB */
4067 atapi_send_cdb(ap, qc);
4068
4069 if (in_wq)
4070 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4071
4072 /* if polling, ata_pio_task() handles the rest.
4073 * otherwise, interrupt handler takes over from here.
4074 */
4075 break;
4076
4077 case HSM_ST:
4078 /* complete command or read/write the data register */
4079 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4080 /* ATAPI PIO protocol */
4081 if ((status & ATA_DRQ) == 0) {
4082 /* No more data to transfer or device error.
4083 * Device error will be tagged in HSM_ST_LAST.
4084 */
4085 ap->hsm_task_state = HSM_ST_LAST;
4086 goto fsm_start;
4087 }
4088
4089 /* Device should not ask for data transfer (DRQ=1)
4090 * when it finds something wrong.
4091 * We ignore DRQ here and stop the HSM by
4092 * changing hsm_task_state to HSM_ST_ERR and
4093 * let the EH abort the command or reset the device.
4094 */
4095 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4096 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4097 ap->id, status);
4098 qc->err_mask |= AC_ERR_HSM;
4099 ap->hsm_task_state = HSM_ST_ERR;
4100 goto fsm_start;
4101 }
4102
4103 atapi_pio_bytes(qc);
4104
4105 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4106 /* bad ireason reported by device */
4107 goto fsm_start;
4108
4109 } else {
4110 /* ATA PIO protocol */
4111 if (unlikely((status & ATA_DRQ) == 0)) {
4112 /* handle BSY=0, DRQ=0 as error */
4113 if (likely(status & (ATA_ERR | ATA_DF)))
4114 /* device stops HSM for abort/error */
4115 qc->err_mask |= AC_ERR_DEV;
4116 else
4117 /* HSM violation. Let EH handle this */
4118 qc->err_mask |= AC_ERR_HSM;
4119
4120 ap->hsm_task_state = HSM_ST_ERR;
4121 goto fsm_start;
4122 }
4123
4124 /* For PIO reads, some devices may ask for
4125 * data transfer (DRQ=1) alone with ERR=1.
4126 * We respect DRQ here and transfer one
4127 * block of junk data before changing the
4128 * hsm_task_state to HSM_ST_ERR.
4129 *
4130 * For PIO writes, ERR=1 DRQ=1 doesn't make
4131 * sense since the data block has been
4132 * transferred to the device.
4133 */
4134 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4135 /* data might be corrputed */
4136 qc->err_mask |= AC_ERR_DEV;
4137
4138 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4139 ata_pio_sectors(qc);
4140 ata_altstatus(ap);
4141 status = ata_wait_idle(ap);
4142 }
4143
4144 if (status & (ATA_BUSY | ATA_DRQ))
4145 qc->err_mask |= AC_ERR_HSM;
4146
4147 /* ata_pio_sectors() might change the
4148 * state to HSM_ST_LAST. so, the state
4149 * is changed after ata_pio_sectors().
4150 */
4151 ap->hsm_task_state = HSM_ST_ERR;
4152 goto fsm_start;
4153 }
4154
4155 ata_pio_sectors(qc);
4156
4157 if (ap->hsm_task_state == HSM_ST_LAST &&
4158 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4159 /* all data read */
4160 ata_altstatus(ap);
4161 status = ata_wait_idle(ap);
4162 goto fsm_start;
4163 }
4164 }
4165
4166 ata_altstatus(ap); /* flush */
4167 poll_next = 1;
4168 break;
4169
4170 case HSM_ST_LAST:
4171 if (unlikely(!ata_ok(status))) {
4172 qc->err_mask |= __ac_err_mask(status);
4173 ap->hsm_task_state = HSM_ST_ERR;
4174 goto fsm_start;
4175 }
4176
4177 /* no more data to transfer */
4178 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4179 ap->id, qc->dev->devno, status);
4180
4181 WARN_ON(qc->err_mask);
4182
4183 ap->hsm_task_state = HSM_ST_IDLE;
4184
4185 /* complete taskfile transaction */
4186 ata_hsm_qc_complete(qc, in_wq);
4187
4188 poll_next = 0;
4189 break;
4190
4191 case HSM_ST_ERR:
4192 /* make sure qc->err_mask is available to
4193 * know what's wrong and recover
4194 */
4195 WARN_ON(qc->err_mask == 0);
4196
4197 ap->hsm_task_state = HSM_ST_IDLE;
4198
4199 /* complete taskfile transaction */
4200 ata_hsm_qc_complete(qc, in_wq);
4201
4202 poll_next = 0;
4203 break;
4204 default:
4205 poll_next = 0;
4206 BUG();
4207 }
4208
4209 return poll_next;
4210 }
4211
4212 static void ata_pio_task(void *_data)
4213 {
4214 struct ata_queued_cmd *qc = _data;
4215 struct ata_port *ap = qc->ap;
4216 u8 status;
4217 int poll_next;
4218
4219 fsm_start:
4220 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4221
4222 /*
4223 * This is purely heuristic. This is a fast path.
4224 * Sometimes when we enter, BSY will be cleared in
4225 * a chk-status or two. If not, the drive is probably seeking
4226 * or something. Snooze for a couple msecs, then
4227 * chk-status again. If still busy, queue delayed work.
4228 */
4229 status = ata_busy_wait(ap, ATA_BUSY, 5);
4230 if (status & ATA_BUSY) {
4231 msleep(2);
4232 status = ata_busy_wait(ap, ATA_BUSY, 10);
4233 if (status & ATA_BUSY) {
4234 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4235 return;
4236 }
4237 }
4238
4239 /* move the HSM */
4240 poll_next = ata_hsm_move(ap, qc, status, 1);
4241
4242 /* another command or interrupt handler
4243 * may be running at this point.
4244 */
4245 if (poll_next)
4246 goto fsm_start;
4247 }
4248
4249 /**
4250 * ata_qc_new - Request an available ATA command, for queueing
4251 * @ap: Port associated with device @dev
4252 * @dev: Device from whom we request an available command structure
4253 *
4254 * LOCKING:
4255 * None.
4256 */
4257
4258 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4259 {
4260 struct ata_queued_cmd *qc = NULL;
4261 unsigned int i;
4262
4263 /* no command while frozen */
4264 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4265 return NULL;
4266
4267 /* the last tag is reserved for internal command. */
4268 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4269 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4270 qc = __ata_qc_from_tag(ap, i);
4271 break;
4272 }
4273
4274 if (qc)
4275 qc->tag = i;
4276
4277 return qc;
4278 }
4279
4280 /**
4281 * ata_qc_new_init - Request an available ATA command, and initialize it
4282 * @dev: Device from whom we request an available command structure
4283 *
4284 * LOCKING:
4285 * None.
4286 */
4287
4288 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4289 {
4290 struct ata_port *ap = dev->ap;
4291 struct ata_queued_cmd *qc;
4292
4293 qc = ata_qc_new(ap);
4294 if (qc) {
4295 qc->scsicmd = NULL;
4296 qc->ap = ap;
4297 qc->dev = dev;
4298
4299 ata_qc_reinit(qc);
4300 }
4301
4302 return qc;
4303 }
4304
4305 /**
4306 * ata_qc_free - free unused ata_queued_cmd
4307 * @qc: Command to complete
4308 *
4309 * Designed to free unused ata_queued_cmd object
4310 * in case something prevents using it.
4311 *
4312 * LOCKING:
4313 * spin_lock_irqsave(host_set lock)
4314 */
4315 void ata_qc_free(struct ata_queued_cmd *qc)
4316 {
4317 struct ata_port *ap = qc->ap;
4318 unsigned int tag;
4319
4320 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4321
4322 qc->flags = 0;
4323 tag = qc->tag;
4324 if (likely(ata_tag_valid(tag))) {
4325 qc->tag = ATA_TAG_POISON;
4326 clear_bit(tag, &ap->qc_allocated);
4327 }
4328 }
4329
4330 void __ata_qc_complete(struct ata_queued_cmd *qc)
4331 {
4332 struct ata_port *ap = qc->ap;
4333
4334 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4335 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4336
4337 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4338 ata_sg_clean(qc);
4339
4340 /* command should be marked inactive atomically with qc completion */
4341 if (qc->tf.protocol == ATA_PROT_NCQ)
4342 ap->sactive &= ~(1 << qc->tag);
4343 else
4344 ap->active_tag = ATA_TAG_POISON;
4345
4346 /* atapi: mark qc as inactive to prevent the interrupt handler
4347 * from completing the command twice later, before the error handler
4348 * is called. (when rc != 0 and atapi request sense is needed)
4349 */
4350 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4351 ap->qc_active &= ~(1 << qc->tag);
4352
4353 /* call completion callback */
4354 qc->complete_fn(qc);
4355 }
4356
4357 /**
4358 * ata_qc_complete - Complete an active ATA command
4359 * @qc: Command to complete
4360 * @err_mask: ATA Status register contents
4361 *
4362 * Indicate to the mid and upper layers that an ATA
4363 * command has completed, with either an ok or not-ok status.
4364 *
4365 * LOCKING:
4366 * spin_lock_irqsave(host_set lock)
4367 */
4368 void ata_qc_complete(struct ata_queued_cmd *qc)
4369 {
4370 struct ata_port *ap = qc->ap;
4371
4372 /* XXX: New EH and old EH use different mechanisms to
4373 * synchronize EH with regular execution path.
4374 *
4375 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4376 * Normal execution path is responsible for not accessing a
4377 * failed qc. libata core enforces the rule by returning NULL
4378 * from ata_qc_from_tag() for failed qcs.
4379 *
4380 * Old EH depends on ata_qc_complete() nullifying completion
4381 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4382 * not synchronize with interrupt handler. Only PIO task is
4383 * taken care of.
4384 */
4385 if (ap->ops->error_handler) {
4386 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4387
4388 if (unlikely(qc->err_mask))
4389 qc->flags |= ATA_QCFLAG_FAILED;
4390
4391 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4392 if (!ata_tag_internal(qc->tag)) {
4393 /* always fill result TF for failed qc */
4394 ap->ops->tf_read(ap, &qc->result_tf);
4395 ata_qc_schedule_eh(qc);
4396 return;
4397 }
4398 }
4399
4400 /* read result TF if requested */
4401 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4402 ap->ops->tf_read(ap, &qc->result_tf);
4403
4404 __ata_qc_complete(qc);
4405 } else {
4406 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4407 return;
4408
4409 /* read result TF if failed or requested */
4410 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4411 ap->ops->tf_read(ap, &qc->result_tf);
4412
4413 __ata_qc_complete(qc);
4414 }
4415 }
4416
4417 /**
4418 * ata_qc_complete_multiple - Complete multiple qcs successfully
4419 * @ap: port in question
4420 * @qc_active: new qc_active mask
4421 * @finish_qc: LLDD callback invoked before completing a qc
4422 *
4423 * Complete in-flight commands. This functions is meant to be
4424 * called from low-level driver's interrupt routine to complete
4425 * requests normally. ap->qc_active and @qc_active is compared
4426 * and commands are completed accordingly.
4427 *
4428 * LOCKING:
4429 * spin_lock_irqsave(host_set lock)
4430 *
4431 * RETURNS:
4432 * Number of completed commands on success, -errno otherwise.
4433 */
4434 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4435 void (*finish_qc)(struct ata_queued_cmd *))
4436 {
4437 int nr_done = 0;
4438 u32 done_mask;
4439 int i;
4440
4441 done_mask = ap->qc_active ^ qc_active;
4442
4443 if (unlikely(done_mask & qc_active)) {
4444 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4445 "(%08x->%08x)\n", ap->qc_active, qc_active);
4446 return -EINVAL;
4447 }
4448
4449 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4450 struct ata_queued_cmd *qc;
4451
4452 if (!(done_mask & (1 << i)))
4453 continue;
4454
4455 if ((qc = ata_qc_from_tag(ap, i))) {
4456 if (finish_qc)
4457 finish_qc(qc);
4458 ata_qc_complete(qc);
4459 nr_done++;
4460 }
4461 }
4462
4463 return nr_done;
4464 }
4465
4466 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4467 {
4468 struct ata_port *ap = qc->ap;
4469
4470 switch (qc->tf.protocol) {
4471 case ATA_PROT_NCQ:
4472 case ATA_PROT_DMA:
4473 case ATA_PROT_ATAPI_DMA:
4474 return 1;
4475
4476 case ATA_PROT_ATAPI:
4477 case ATA_PROT_PIO:
4478 if (ap->flags & ATA_FLAG_PIO_DMA)
4479 return 1;
4480
4481 /* fall through */
4482
4483 default:
4484 return 0;
4485 }
4486
4487 /* never reached */
4488 }
4489
4490 /**
4491 * ata_qc_issue - issue taskfile to device
4492 * @qc: command to issue to device
4493 *
4494 * Prepare an ATA command to submission to device.
4495 * This includes mapping the data into a DMA-able
4496 * area, filling in the S/G table, and finally
4497 * writing the taskfile to hardware, starting the command.
4498 *
4499 * LOCKING:
4500 * spin_lock_irqsave(host_set lock)
4501 */
4502 void ata_qc_issue(struct ata_queued_cmd *qc)
4503 {
4504 struct ata_port *ap = qc->ap;
4505
4506 /* Make sure only one non-NCQ command is outstanding. The
4507 * check is skipped for old EH because it reuses active qc to
4508 * request ATAPI sense.
4509 */
4510 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4511
4512 if (qc->tf.protocol == ATA_PROT_NCQ) {
4513 WARN_ON(ap->sactive & (1 << qc->tag));
4514 ap->sactive |= 1 << qc->tag;
4515 } else {
4516 WARN_ON(ap->sactive);
4517 ap->active_tag = qc->tag;
4518 }
4519
4520 qc->flags |= ATA_QCFLAG_ACTIVE;
4521 ap->qc_active |= 1 << qc->tag;
4522
4523 if (ata_should_dma_map(qc)) {
4524 if (qc->flags & ATA_QCFLAG_SG) {
4525 if (ata_sg_setup(qc))
4526 goto sg_err;
4527 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4528 if (ata_sg_setup_one(qc))
4529 goto sg_err;
4530 }
4531 } else {
4532 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4533 }
4534
4535 ap->ops->qc_prep(qc);
4536
4537 qc->err_mask |= ap->ops->qc_issue(qc);
4538 if (unlikely(qc->err_mask))
4539 goto err;
4540 return;
4541
4542 sg_err:
4543 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4544 qc->err_mask |= AC_ERR_SYSTEM;
4545 err:
4546 ata_qc_complete(qc);
4547 }
4548
4549 /**
4550 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4551 * @qc: command to issue to device
4552 *
4553 * Using various libata functions and hooks, this function
4554 * starts an ATA command. ATA commands are grouped into
4555 * classes called "protocols", and issuing each type of protocol
4556 * is slightly different.
4557 *
4558 * May be used as the qc_issue() entry in ata_port_operations.
4559 *
4560 * LOCKING:
4561 * spin_lock_irqsave(host_set lock)
4562 *
4563 * RETURNS:
4564 * Zero on success, AC_ERR_* mask on failure
4565 */
4566
4567 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4568 {
4569 struct ata_port *ap = qc->ap;
4570
4571 /* Use polling pio if the LLD doesn't handle
4572 * interrupt driven pio and atapi CDB interrupt.
4573 */
4574 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4575 switch (qc->tf.protocol) {
4576 case ATA_PROT_PIO:
4577 case ATA_PROT_ATAPI:
4578 case ATA_PROT_ATAPI_NODATA:
4579 qc->tf.flags |= ATA_TFLAG_POLLING;
4580 break;
4581 case ATA_PROT_ATAPI_DMA:
4582 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4583 /* see ata_check_atapi_dma() */
4584 BUG();
4585 break;
4586 default:
4587 break;
4588 }
4589 }
4590
4591 /* select the device */
4592 ata_dev_select(ap, qc->dev->devno, 1, 0);
4593
4594 /* start the command */
4595 switch (qc->tf.protocol) {
4596 case ATA_PROT_NODATA:
4597 if (qc->tf.flags & ATA_TFLAG_POLLING)
4598 ata_qc_set_polling(qc);
4599
4600 ata_tf_to_host(ap, &qc->tf);
4601 ap->hsm_task_state = HSM_ST_LAST;
4602
4603 if (qc->tf.flags & ATA_TFLAG_POLLING)
4604 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4605
4606 break;
4607
4608 case ATA_PROT_DMA:
4609 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4610
4611 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4612 ap->ops->bmdma_setup(qc); /* set up bmdma */
4613 ap->ops->bmdma_start(qc); /* initiate bmdma */
4614 ap->hsm_task_state = HSM_ST_LAST;
4615 break;
4616
4617 case ATA_PROT_PIO:
4618 if (qc->tf.flags & ATA_TFLAG_POLLING)
4619 ata_qc_set_polling(qc);
4620
4621 ata_tf_to_host(ap, &qc->tf);
4622
4623 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4624 /* PIO data out protocol */
4625 ap->hsm_task_state = HSM_ST_FIRST;
4626 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4627
4628 /* always send first data block using
4629 * the ata_pio_task() codepath.
4630 */
4631 } else {
4632 /* PIO data in protocol */
4633 ap->hsm_task_state = HSM_ST;
4634
4635 if (qc->tf.flags & ATA_TFLAG_POLLING)
4636 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4637
4638 /* if polling, ata_pio_task() handles the rest.
4639 * otherwise, interrupt handler takes over from here.
4640 */
4641 }
4642
4643 break;
4644
4645 case ATA_PROT_ATAPI:
4646 case ATA_PROT_ATAPI_NODATA:
4647 if (qc->tf.flags & ATA_TFLAG_POLLING)
4648 ata_qc_set_polling(qc);
4649
4650 ata_tf_to_host(ap, &qc->tf);
4651
4652 ap->hsm_task_state = HSM_ST_FIRST;
4653
4654 /* send cdb by polling if no cdb interrupt */
4655 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4656 (qc->tf.flags & ATA_TFLAG_POLLING))
4657 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4658 break;
4659
4660 case ATA_PROT_ATAPI_DMA:
4661 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4662
4663 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4664 ap->ops->bmdma_setup(qc); /* set up bmdma */
4665 ap->hsm_task_state = HSM_ST_FIRST;
4666
4667 /* send cdb by polling if no cdb interrupt */
4668 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4669 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4670 break;
4671
4672 default:
4673 WARN_ON(1);
4674 return AC_ERR_SYSTEM;
4675 }
4676
4677 return 0;
4678 }
4679
4680 /**
4681 * ata_host_intr - Handle host interrupt for given (port, task)
4682 * @ap: Port on which interrupt arrived (possibly...)
4683 * @qc: Taskfile currently active in engine
4684 *
4685 * Handle host interrupt for given queued command. Currently,
4686 * only DMA interrupts are handled. All other commands are
4687 * handled via polling with interrupts disabled (nIEN bit).
4688 *
4689 * LOCKING:
4690 * spin_lock_irqsave(host_set lock)
4691 *
4692 * RETURNS:
4693 * One if interrupt was handled, zero if not (shared irq).
4694 */
4695
4696 inline unsigned int ata_host_intr (struct ata_port *ap,
4697 struct ata_queued_cmd *qc)
4698 {
4699 u8 status, host_stat = 0;
4700
4701 VPRINTK("ata%u: protocol %d task_state %d\n",
4702 ap->id, qc->tf.protocol, ap->hsm_task_state);
4703
4704 /* Check whether we are expecting interrupt in this state */
4705 switch (ap->hsm_task_state) {
4706 case HSM_ST_FIRST:
4707 /* Some pre-ATAPI-4 devices assert INTRQ
4708 * at this state when ready to receive CDB.
4709 */
4710
4711 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4712 * The flag was turned on only for atapi devices.
4713 * No need to check is_atapi_taskfile(&qc->tf) again.
4714 */
4715 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4716 goto idle_irq;
4717 break;
4718 case HSM_ST_LAST:
4719 if (qc->tf.protocol == ATA_PROT_DMA ||
4720 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4721 /* check status of DMA engine */
4722 host_stat = ap->ops->bmdma_status(ap);
4723 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4724
4725 /* if it's not our irq... */
4726 if (!(host_stat & ATA_DMA_INTR))
4727 goto idle_irq;
4728
4729 /* before we do anything else, clear DMA-Start bit */
4730 ap->ops->bmdma_stop(qc);
4731
4732 if (unlikely(host_stat & ATA_DMA_ERR)) {
4733 /* error when transfering data to/from memory */
4734 qc->err_mask |= AC_ERR_HOST_BUS;
4735 ap->hsm_task_state = HSM_ST_ERR;
4736 }
4737 }
4738 break;
4739 case HSM_ST:
4740 break;
4741 default:
4742 goto idle_irq;
4743 }
4744
4745 /* check altstatus */
4746 status = ata_altstatus(ap);
4747 if (status & ATA_BUSY)
4748 goto idle_irq;
4749
4750 /* check main status, clearing INTRQ */
4751 status = ata_chk_status(ap);
4752 if (unlikely(status & ATA_BUSY))
4753 goto idle_irq;
4754
4755 /* ack bmdma irq events */
4756 ap->ops->irq_clear(ap);
4757
4758 ata_hsm_move(ap, qc, status, 0);
4759 return 1; /* irq handled */
4760
4761 idle_irq:
4762 ap->stats.idle_irq++;
4763
4764 #ifdef ATA_IRQ_TRAP
4765 if ((ap->stats.idle_irq % 1000) == 0) {
4766 ata_irq_ack(ap, 0); /* debug trap */
4767 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4768 return 1;
4769 }
4770 #endif
4771 return 0; /* irq not handled */
4772 }
4773
4774 /**
4775 * ata_interrupt - Default ATA host interrupt handler
4776 * @irq: irq line (unused)
4777 * @dev_instance: pointer to our ata_host_set information structure
4778 * @regs: unused
4779 *
4780 * Default interrupt handler for PCI IDE devices. Calls
4781 * ata_host_intr() for each port that is not disabled.
4782 *
4783 * LOCKING:
4784 * Obtains host_set lock during operation.
4785 *
4786 * RETURNS:
4787 * IRQ_NONE or IRQ_HANDLED.
4788 */
4789
4790 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4791 {
4792 struct ata_host_set *host_set = dev_instance;
4793 unsigned int i;
4794 unsigned int handled = 0;
4795 unsigned long flags;
4796
4797 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4798 spin_lock_irqsave(&host_set->lock, flags);
4799
4800 for (i = 0; i < host_set->n_ports; i++) {
4801 struct ata_port *ap;
4802
4803 ap = host_set->ports[i];
4804 if (ap &&
4805 !(ap->flags & ATA_FLAG_DISABLED)) {
4806 struct ata_queued_cmd *qc;
4807
4808 qc = ata_qc_from_tag(ap, ap->active_tag);
4809 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4810 (qc->flags & ATA_QCFLAG_ACTIVE))
4811 handled |= ata_host_intr(ap, qc);
4812 }
4813 }
4814
4815 spin_unlock_irqrestore(&host_set->lock, flags);
4816
4817 return IRQ_RETVAL(handled);
4818 }
4819
4820 /**
4821 * sata_scr_valid - test whether SCRs are accessible
4822 * @ap: ATA port to test SCR accessibility for
4823 *
4824 * Test whether SCRs are accessible for @ap.
4825 *
4826 * LOCKING:
4827 * None.
4828 *
4829 * RETURNS:
4830 * 1 if SCRs are accessible, 0 otherwise.
4831 */
4832 int sata_scr_valid(struct ata_port *ap)
4833 {
4834 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4835 }
4836
4837 /**
4838 * sata_scr_read - read SCR register of the specified port
4839 * @ap: ATA port to read SCR for
4840 * @reg: SCR to read
4841 * @val: Place to store read value
4842 *
4843 * Read SCR register @reg of @ap into *@val. This function is
4844 * guaranteed to succeed if the cable type of the port is SATA
4845 * and the port implements ->scr_read.
4846 *
4847 * LOCKING:
4848 * None.
4849 *
4850 * RETURNS:
4851 * 0 on success, negative errno on failure.
4852 */
4853 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4854 {
4855 if (sata_scr_valid(ap)) {
4856 *val = ap->ops->scr_read(ap, reg);
4857 return 0;
4858 }
4859 return -EOPNOTSUPP;
4860 }
4861
4862 /**
4863 * sata_scr_write - write SCR register of the specified port
4864 * @ap: ATA port to write SCR for
4865 * @reg: SCR to write
4866 * @val: value to write
4867 *
4868 * Write @val to SCR register @reg of @ap. This function is
4869 * guaranteed to succeed if the cable type of the port is SATA
4870 * and the port implements ->scr_read.
4871 *
4872 * LOCKING:
4873 * None.
4874 *
4875 * RETURNS:
4876 * 0 on success, negative errno on failure.
4877 */
4878 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4879 {
4880 if (sata_scr_valid(ap)) {
4881 ap->ops->scr_write(ap, reg, val);
4882 return 0;
4883 }
4884 return -EOPNOTSUPP;
4885 }
4886
4887 /**
4888 * sata_scr_write_flush - write SCR register of the specified port and flush
4889 * @ap: ATA port to write SCR for
4890 * @reg: SCR to write
4891 * @val: value to write
4892 *
4893 * This function is identical to sata_scr_write() except that this
4894 * function performs flush after writing to the register.
4895 *
4896 * LOCKING:
4897 * None.
4898 *
4899 * RETURNS:
4900 * 0 on success, negative errno on failure.
4901 */
4902 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4903 {
4904 if (sata_scr_valid(ap)) {
4905 ap->ops->scr_write(ap, reg, val);
4906 ap->ops->scr_read(ap, reg);
4907 return 0;
4908 }
4909 return -EOPNOTSUPP;
4910 }
4911
4912 /**
4913 * ata_port_online - test whether the given port is online
4914 * @ap: ATA port to test
4915 *
4916 * Test whether @ap is online. Note that this function returns 0
4917 * if online status of @ap cannot be obtained, so
4918 * ata_port_online(ap) != !ata_port_offline(ap).
4919 *
4920 * LOCKING:
4921 * None.
4922 *
4923 * RETURNS:
4924 * 1 if the port online status is available and online.
4925 */
4926 int ata_port_online(struct ata_port *ap)
4927 {
4928 u32 sstatus;
4929
4930 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4931 return 1;
4932 return 0;
4933 }
4934
4935 /**
4936 * ata_port_offline - test whether the given port is offline
4937 * @ap: ATA port to test
4938 *
4939 * Test whether @ap is offline. Note that this function returns
4940 * 0 if offline status of @ap cannot be obtained, so
4941 * ata_port_online(ap) != !ata_port_offline(ap).
4942 *
4943 * LOCKING:
4944 * None.
4945 *
4946 * RETURNS:
4947 * 1 if the port offline status is available and offline.
4948 */
4949 int ata_port_offline(struct ata_port *ap)
4950 {
4951 u32 sstatus;
4952
4953 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4954 return 1;
4955 return 0;
4956 }
4957
4958 /*
4959 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4960 * without filling any other registers
4961 */
4962 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4963 {
4964 struct ata_taskfile tf;
4965 int err;
4966
4967 ata_tf_init(dev, &tf);
4968
4969 tf.command = cmd;
4970 tf.flags |= ATA_TFLAG_DEVICE;
4971 tf.protocol = ATA_PROT_NODATA;
4972
4973 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4974 if (err)
4975 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4976 __FUNCTION__, err);
4977
4978 return err;
4979 }
4980
4981 static int ata_flush_cache(struct ata_device *dev)
4982 {
4983 u8 cmd;
4984
4985 if (!ata_try_flush_cache(dev))
4986 return 0;
4987
4988 if (ata_id_has_flush_ext(dev->id))
4989 cmd = ATA_CMD_FLUSH_EXT;
4990 else
4991 cmd = ATA_CMD_FLUSH;
4992
4993 return ata_do_simple_cmd(dev, cmd);
4994 }
4995
4996 static int ata_standby_drive(struct ata_device *dev)
4997 {
4998 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4999 }
5000
5001 static int ata_start_drive(struct ata_device *dev)
5002 {
5003 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5004 }
5005
5006 /**
5007 * ata_device_resume - wakeup a previously suspended devices
5008 * @dev: the device to resume
5009 *
5010 * Kick the drive back into action, by sending it an idle immediate
5011 * command and making sure its transfer mode matches between drive
5012 * and host.
5013 *
5014 */
5015 int ata_device_resume(struct ata_device *dev)
5016 {
5017 struct ata_port *ap = dev->ap;
5018
5019 if (ap->flags & ATA_FLAG_SUSPENDED) {
5020 struct ata_device *failed_dev;
5021 ap->flags &= ~ATA_FLAG_SUSPENDED;
5022 while (ata_set_mode(ap, &failed_dev))
5023 ata_dev_disable(failed_dev);
5024 }
5025 if (!ata_dev_enabled(dev))
5026 return 0;
5027 if (dev->class == ATA_DEV_ATA)
5028 ata_start_drive(dev);
5029
5030 return 0;
5031 }
5032
5033 /**
5034 * ata_device_suspend - prepare a device for suspend
5035 * @dev: the device to suspend
5036 * @state: target power management state
5037 *
5038 * Flush the cache on the drive, if appropriate, then issue a
5039 * standbynow command.
5040 */
5041 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5042 {
5043 struct ata_port *ap = dev->ap;
5044
5045 if (!ata_dev_enabled(dev))
5046 return 0;
5047 if (dev->class == ATA_DEV_ATA)
5048 ata_flush_cache(dev);
5049
5050 if (state.event != PM_EVENT_FREEZE)
5051 ata_standby_drive(dev);
5052 ap->flags |= ATA_FLAG_SUSPENDED;
5053 return 0;
5054 }
5055
5056 /**
5057 * ata_port_start - Set port up for dma.
5058 * @ap: Port to initialize
5059 *
5060 * Called just after data structures for each port are
5061 * initialized. Allocates space for PRD table.
5062 *
5063 * May be used as the port_start() entry in ata_port_operations.
5064 *
5065 * LOCKING:
5066 * Inherited from caller.
5067 */
5068
5069 int ata_port_start (struct ata_port *ap)
5070 {
5071 struct device *dev = ap->dev;
5072 int rc;
5073
5074 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5075 if (!ap->prd)
5076 return -ENOMEM;
5077
5078 rc = ata_pad_alloc(ap, dev);
5079 if (rc) {
5080 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5081 return rc;
5082 }
5083
5084 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5085
5086 return 0;
5087 }
5088
5089
5090 /**
5091 * ata_port_stop - Undo ata_port_start()
5092 * @ap: Port to shut down
5093 *
5094 * Frees the PRD table.
5095 *
5096 * May be used as the port_stop() entry in ata_port_operations.
5097 *
5098 * LOCKING:
5099 * Inherited from caller.
5100 */
5101
5102 void ata_port_stop (struct ata_port *ap)
5103 {
5104 struct device *dev = ap->dev;
5105
5106 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5107 ata_pad_free(ap, dev);
5108 }
5109
5110 void ata_host_stop (struct ata_host_set *host_set)
5111 {
5112 if (host_set->mmio_base)
5113 iounmap(host_set->mmio_base);
5114 }
5115
5116
5117 /**
5118 * ata_host_remove - Unregister SCSI host structure with upper layers
5119 * @ap: Port to unregister
5120 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5121 *
5122 * LOCKING:
5123 * Inherited from caller.
5124 */
5125
5126 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5127 {
5128 struct Scsi_Host *sh = ap->host;
5129
5130 DPRINTK("ENTER\n");
5131
5132 if (do_unregister)
5133 scsi_remove_host(sh);
5134
5135 ap->ops->port_stop(ap);
5136 }
5137
5138 /**
5139 * ata_host_init - Initialize an ata_port structure
5140 * @ap: Structure to initialize
5141 * @host: associated SCSI mid-layer structure
5142 * @host_set: Collection of hosts to which @ap belongs
5143 * @ent: Probe information provided by low-level driver
5144 * @port_no: Port number associated with this ata_port
5145 *
5146 * Initialize a new ata_port structure, and its associated
5147 * scsi_host.
5148 *
5149 * LOCKING:
5150 * Inherited from caller.
5151 */
5152
5153 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5154 struct ata_host_set *host_set,
5155 const struct ata_probe_ent *ent, unsigned int port_no)
5156 {
5157 unsigned int i;
5158
5159 host->max_id = 16;
5160 host->max_lun = 1;
5161 host->max_channel = 1;
5162 host->unique_id = ata_unique_id++;
5163 host->max_cmd_len = 12;
5164
5165 ap->flags = ATA_FLAG_DISABLED;
5166 ap->id = host->unique_id;
5167 ap->host = host;
5168 ap->ctl = ATA_DEVCTL_OBS;
5169 ap->host_set = host_set;
5170 ap->dev = ent->dev;
5171 ap->port_no = port_no;
5172 ap->hard_port_no =
5173 ent->legacy_mode ? ent->hard_port_no : port_no;
5174 ap->pio_mask = ent->pio_mask;
5175 ap->mwdma_mask = ent->mwdma_mask;
5176 ap->udma_mask = ent->udma_mask;
5177 ap->flags |= ent->host_flags;
5178 ap->ops = ent->port_ops;
5179 ap->sata_spd_limit = UINT_MAX;
5180 ap->active_tag = ATA_TAG_POISON;
5181 ap->last_ctl = 0xFF;
5182
5183 INIT_WORK(&ap->port_task, NULL, NULL);
5184 INIT_LIST_HEAD(&ap->eh_done_q);
5185
5186 /* set cable type */
5187 ap->cbl = ATA_CBL_NONE;
5188 if (ap->flags & ATA_FLAG_SATA)
5189 ap->cbl = ATA_CBL_SATA;
5190
5191 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5192 struct ata_device *dev = &ap->device[i];
5193 dev->ap = ap;
5194 dev->devno = i;
5195 dev->pio_mask = UINT_MAX;
5196 dev->mwdma_mask = UINT_MAX;
5197 dev->udma_mask = UINT_MAX;
5198 }
5199
5200 #ifdef ATA_IRQ_TRAP
5201 ap->stats.unhandled_irq = 1;
5202 ap->stats.idle_irq = 1;
5203 #endif
5204
5205 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5206 }
5207
5208 /**
5209 * ata_host_add - Attach low-level ATA driver to system
5210 * @ent: Information provided by low-level driver
5211 * @host_set: Collections of ports to which we add
5212 * @port_no: Port number associated with this host
5213 *
5214 * Attach low-level ATA driver to system.
5215 *
5216 * LOCKING:
5217 * PCI/etc. bus probe sem.
5218 *
5219 * RETURNS:
5220 * New ata_port on success, for NULL on error.
5221 */
5222
5223 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5224 struct ata_host_set *host_set,
5225 unsigned int port_no)
5226 {
5227 struct Scsi_Host *host;
5228 struct ata_port *ap;
5229 int rc;
5230
5231 DPRINTK("ENTER\n");
5232
5233 if (!ent->port_ops->probe_reset &&
5234 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5235 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5236 port_no);
5237 return NULL;
5238 }
5239
5240 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5241 if (!host)
5242 return NULL;
5243
5244 host->transportt = &ata_scsi_transport_template;
5245
5246 ap = ata_shost_to_port(host);
5247
5248 ata_host_init(ap, host, host_set, ent, port_no);
5249
5250 rc = ap->ops->port_start(ap);
5251 if (rc)
5252 goto err_out;
5253
5254 return ap;
5255
5256 err_out:
5257 scsi_host_put(host);
5258 return NULL;
5259 }
5260
5261 /**
5262 * ata_device_add - Register hardware device with ATA and SCSI layers
5263 * @ent: Probe information describing hardware device to be registered
5264 *
5265 * This function processes the information provided in the probe
5266 * information struct @ent, allocates the necessary ATA and SCSI
5267 * host information structures, initializes them, and registers
5268 * everything with requisite kernel subsystems.
5269 *
5270 * This function requests irqs, probes the ATA bus, and probes
5271 * the SCSI bus.
5272 *
5273 * LOCKING:
5274 * PCI/etc. bus probe sem.
5275 *
5276 * RETURNS:
5277 * Number of ports registered. Zero on error (no ports registered).
5278 */
5279
5280 int ata_device_add(const struct ata_probe_ent *ent)
5281 {
5282 unsigned int count = 0, i;
5283 struct device *dev = ent->dev;
5284 struct ata_host_set *host_set;
5285
5286 DPRINTK("ENTER\n");
5287 /* alloc a container for our list of ATA ports (buses) */
5288 host_set = kzalloc(sizeof(struct ata_host_set) +
5289 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5290 if (!host_set)
5291 return 0;
5292 spin_lock_init(&host_set->lock);
5293
5294 host_set->dev = dev;
5295 host_set->n_ports = ent->n_ports;
5296 host_set->irq = ent->irq;
5297 host_set->mmio_base = ent->mmio_base;
5298 host_set->private_data = ent->private_data;
5299 host_set->ops = ent->port_ops;
5300 host_set->flags = ent->host_set_flags;
5301
5302 /* register each port bound to this device */
5303 for (i = 0; i < ent->n_ports; i++) {
5304 struct ata_port *ap;
5305 unsigned long xfer_mode_mask;
5306
5307 ap = ata_host_add(ent, host_set, i);
5308 if (!ap)
5309 goto err_out;
5310
5311 host_set->ports[i] = ap;
5312 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5313 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5314 (ap->pio_mask << ATA_SHIFT_PIO);
5315
5316 /* print per-port info to dmesg */
5317 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5318 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5319 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5320 ata_mode_string(xfer_mode_mask),
5321 ap->ioaddr.cmd_addr,
5322 ap->ioaddr.ctl_addr,
5323 ap->ioaddr.bmdma_addr,
5324 ent->irq);
5325
5326 ata_chk_status(ap);
5327 host_set->ops->irq_clear(ap);
5328 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5329 count++;
5330 }
5331
5332 if (!count)
5333 goto err_free_ret;
5334
5335 /* obtain irq, that is shared between channels */
5336 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5337 DRV_NAME, host_set))
5338 goto err_out;
5339
5340 /* perform each probe synchronously */
5341 DPRINTK("probe begin\n");
5342 for (i = 0; i < count; i++) {
5343 struct ata_port *ap;
5344 int rc;
5345
5346 ap = host_set->ports[i];
5347
5348 DPRINTK("ata%u: bus probe begin\n", ap->id);
5349 rc = ata_bus_probe(ap);
5350 DPRINTK("ata%u: bus probe end\n", ap->id);
5351
5352 if (rc) {
5353 /* FIXME: do something useful here?
5354 * Current libata behavior will
5355 * tear down everything when
5356 * the module is removed
5357 * or the h/w is unplugged.
5358 */
5359 }
5360
5361 rc = scsi_add_host(ap->host, dev);
5362 if (rc) {
5363 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5364 /* FIXME: do something useful here */
5365 /* FIXME: handle unconditional calls to
5366 * scsi_scan_host and ata_host_remove, below,
5367 * at the very least
5368 */
5369 }
5370 }
5371
5372 /* probes are done, now scan each port's disk(s) */
5373 DPRINTK("host probe begin\n");
5374 for (i = 0; i < count; i++) {
5375 struct ata_port *ap = host_set->ports[i];
5376
5377 ata_scsi_scan_host(ap);
5378 }
5379
5380 dev_set_drvdata(dev, host_set);
5381
5382 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5383 return ent->n_ports; /* success */
5384
5385 err_out:
5386 for (i = 0; i < count; i++) {
5387 ata_host_remove(host_set->ports[i], 1);
5388 scsi_host_put(host_set->ports[i]->host);
5389 }
5390 err_free_ret:
5391 kfree(host_set);
5392 VPRINTK("EXIT, returning 0\n");
5393 return 0;
5394 }
5395
5396 /**
5397 * ata_host_set_remove - PCI layer callback for device removal
5398 * @host_set: ATA host set that was removed
5399 *
5400 * Unregister all objects associated with this host set. Free those
5401 * objects.
5402 *
5403 * LOCKING:
5404 * Inherited from calling layer (may sleep).
5405 */
5406
5407 void ata_host_set_remove(struct ata_host_set *host_set)
5408 {
5409 struct ata_port *ap;
5410 unsigned int i;
5411
5412 for (i = 0; i < host_set->n_ports; i++) {
5413 ap = host_set->ports[i];
5414 scsi_remove_host(ap->host);
5415 }
5416
5417 free_irq(host_set->irq, host_set);
5418
5419 for (i = 0; i < host_set->n_ports; i++) {
5420 ap = host_set->ports[i];
5421
5422 ata_scsi_release(ap->host);
5423
5424 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5425 struct ata_ioports *ioaddr = &ap->ioaddr;
5426
5427 if (ioaddr->cmd_addr == 0x1f0)
5428 release_region(0x1f0, 8);
5429 else if (ioaddr->cmd_addr == 0x170)
5430 release_region(0x170, 8);
5431 }
5432
5433 scsi_host_put(ap->host);
5434 }
5435
5436 if (host_set->ops->host_stop)
5437 host_set->ops->host_stop(host_set);
5438
5439 kfree(host_set);
5440 }
5441
5442 /**
5443 * ata_scsi_release - SCSI layer callback hook for host unload
5444 * @host: libata host to be unloaded
5445 *
5446 * Performs all duties necessary to shut down a libata port...
5447 * Kill port kthread, disable port, and release resources.
5448 *
5449 * LOCKING:
5450 * Inherited from SCSI layer.
5451 *
5452 * RETURNS:
5453 * One.
5454 */
5455
5456 int ata_scsi_release(struct Scsi_Host *host)
5457 {
5458 struct ata_port *ap = ata_shost_to_port(host);
5459
5460 DPRINTK("ENTER\n");
5461
5462 ap->ops->port_disable(ap);
5463 ata_host_remove(ap, 0);
5464
5465 DPRINTK("EXIT\n");
5466 return 1;
5467 }
5468
5469 /**
5470 * ata_std_ports - initialize ioaddr with standard port offsets.
5471 * @ioaddr: IO address structure to be initialized
5472 *
5473 * Utility function which initializes data_addr, error_addr,
5474 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5475 * device_addr, status_addr, and command_addr to standard offsets
5476 * relative to cmd_addr.
5477 *
5478 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5479 */
5480
5481 void ata_std_ports(struct ata_ioports *ioaddr)
5482 {
5483 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5484 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5485 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5486 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5487 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5488 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5489 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5490 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5491 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5492 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5493 }
5494
5495
5496 #ifdef CONFIG_PCI
5497
5498 void ata_pci_host_stop (struct ata_host_set *host_set)
5499 {
5500 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5501
5502 pci_iounmap(pdev, host_set->mmio_base);
5503 }
5504
5505 /**
5506 * ata_pci_remove_one - PCI layer callback for device removal
5507 * @pdev: PCI device that was removed
5508 *
5509 * PCI layer indicates to libata via this hook that
5510 * hot-unplug or module unload event has occurred.
5511 * Handle this by unregistering all objects associated
5512 * with this PCI device. Free those objects. Then finally
5513 * release PCI resources and disable device.
5514 *
5515 * LOCKING:
5516 * Inherited from PCI layer (may sleep).
5517 */
5518
5519 void ata_pci_remove_one (struct pci_dev *pdev)
5520 {
5521 struct device *dev = pci_dev_to_dev(pdev);
5522 struct ata_host_set *host_set = dev_get_drvdata(dev);
5523
5524 ata_host_set_remove(host_set);
5525 pci_release_regions(pdev);
5526 pci_disable_device(pdev);
5527 dev_set_drvdata(dev, NULL);
5528 }
5529
5530 /* move to PCI subsystem */
5531 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5532 {
5533 unsigned long tmp = 0;
5534
5535 switch (bits->width) {
5536 case 1: {
5537 u8 tmp8 = 0;
5538 pci_read_config_byte(pdev, bits->reg, &tmp8);
5539 tmp = tmp8;
5540 break;
5541 }
5542 case 2: {
5543 u16 tmp16 = 0;
5544 pci_read_config_word(pdev, bits->reg, &tmp16);
5545 tmp = tmp16;
5546 break;
5547 }
5548 case 4: {
5549 u32 tmp32 = 0;
5550 pci_read_config_dword(pdev, bits->reg, &tmp32);
5551 tmp = tmp32;
5552 break;
5553 }
5554
5555 default:
5556 return -EINVAL;
5557 }
5558
5559 tmp &= bits->mask;
5560
5561 return (tmp == bits->val) ? 1 : 0;
5562 }
5563
5564 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5565 {
5566 pci_save_state(pdev);
5567 pci_disable_device(pdev);
5568 pci_set_power_state(pdev, PCI_D3hot);
5569 return 0;
5570 }
5571
5572 int ata_pci_device_resume(struct pci_dev *pdev)
5573 {
5574 pci_set_power_state(pdev, PCI_D0);
5575 pci_restore_state(pdev);
5576 pci_enable_device(pdev);
5577 pci_set_master(pdev);
5578 return 0;
5579 }
5580 #endif /* CONFIG_PCI */
5581
5582
5583 static int __init ata_init(void)
5584 {
5585 ata_wq = create_workqueue("ata");
5586 if (!ata_wq)
5587 return -ENOMEM;
5588
5589 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5590 return 0;
5591 }
5592
5593 static void __exit ata_exit(void)
5594 {
5595 destroy_workqueue(ata_wq);
5596 }
5597
5598 module_init(ata_init);
5599 module_exit(ata_exit);
5600
5601 static unsigned long ratelimit_time;
5602 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5603
5604 int ata_ratelimit(void)
5605 {
5606 int rc;
5607 unsigned long flags;
5608
5609 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5610
5611 if (time_after(jiffies, ratelimit_time)) {
5612 rc = 1;
5613 ratelimit_time = jiffies + (HZ/5);
5614 } else
5615 rc = 0;
5616
5617 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5618
5619 return rc;
5620 }
5621
5622 /**
5623 * ata_wait_register - wait until register value changes
5624 * @reg: IO-mapped register
5625 * @mask: Mask to apply to read register value
5626 * @val: Wait condition
5627 * @interval_msec: polling interval in milliseconds
5628 * @timeout_msec: timeout in milliseconds
5629 *
5630 * Waiting for some bits of register to change is a common
5631 * operation for ATA controllers. This function reads 32bit LE
5632 * IO-mapped register @reg and tests for the following condition.
5633 *
5634 * (*@reg & mask) != val
5635 *
5636 * If the condition is met, it returns; otherwise, the process is
5637 * repeated after @interval_msec until timeout.
5638 *
5639 * LOCKING:
5640 * Kernel thread context (may sleep)
5641 *
5642 * RETURNS:
5643 * The final register value.
5644 */
5645 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5646 unsigned long interval_msec,
5647 unsigned long timeout_msec)
5648 {
5649 unsigned long timeout;
5650 u32 tmp;
5651
5652 tmp = ioread32(reg);
5653
5654 /* Calculate timeout _after_ the first read to make sure
5655 * preceding writes reach the controller before starting to
5656 * eat away the timeout.
5657 */
5658 timeout = jiffies + (timeout_msec * HZ) / 1000;
5659
5660 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5661 msleep(interval_msec);
5662 tmp = ioread32(reg);
5663 }
5664
5665 return tmp;
5666 }
5667
5668 /*
5669 * libata is essentially a library of internal helper functions for
5670 * low-level ATA host controller drivers. As such, the API/ABI is
5671 * likely to change as new drivers are added and updated.
5672 * Do not depend on ABI/API stability.
5673 */
5674
5675 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5676 EXPORT_SYMBOL_GPL(ata_std_ports);
5677 EXPORT_SYMBOL_GPL(ata_device_add);
5678 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5679 EXPORT_SYMBOL_GPL(ata_sg_init);
5680 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5681 EXPORT_SYMBOL_GPL(ata_qc_complete);
5682 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5683 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5684 EXPORT_SYMBOL_GPL(ata_tf_load);
5685 EXPORT_SYMBOL_GPL(ata_tf_read);
5686 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5687 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5688 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5689 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5690 EXPORT_SYMBOL_GPL(ata_check_status);
5691 EXPORT_SYMBOL_GPL(ata_altstatus);
5692 EXPORT_SYMBOL_GPL(ata_exec_command);
5693 EXPORT_SYMBOL_GPL(ata_port_start);
5694 EXPORT_SYMBOL_GPL(ata_port_stop);
5695 EXPORT_SYMBOL_GPL(ata_host_stop);
5696 EXPORT_SYMBOL_GPL(ata_interrupt);
5697 EXPORT_SYMBOL_GPL(ata_qc_prep);
5698 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5699 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5700 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5701 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5702 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5703 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5704 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5705 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5706 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5707 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5708 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5709 EXPORT_SYMBOL_GPL(ata_port_probe);
5710 EXPORT_SYMBOL_GPL(sata_set_spd);
5711 EXPORT_SYMBOL_GPL(sata_phy_reset);
5712 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5713 EXPORT_SYMBOL_GPL(ata_bus_reset);
5714 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5715 EXPORT_SYMBOL_GPL(ata_std_softreset);
5716 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5717 EXPORT_SYMBOL_GPL(ata_std_postreset);
5718 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5719 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5720 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5721 EXPORT_SYMBOL_GPL(ata_dev_classify);
5722 EXPORT_SYMBOL_GPL(ata_dev_pair);
5723 EXPORT_SYMBOL_GPL(ata_port_disable);
5724 EXPORT_SYMBOL_GPL(ata_ratelimit);
5725 EXPORT_SYMBOL_GPL(ata_wait_register);
5726 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5727 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5728 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5729 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5730 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5731 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5732 EXPORT_SYMBOL_GPL(ata_scsi_release);
5733 EXPORT_SYMBOL_GPL(ata_host_intr);
5734 EXPORT_SYMBOL_GPL(sata_scr_valid);
5735 EXPORT_SYMBOL_GPL(sata_scr_read);
5736 EXPORT_SYMBOL_GPL(sata_scr_write);
5737 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5738 EXPORT_SYMBOL_GPL(ata_port_online);
5739 EXPORT_SYMBOL_GPL(ata_port_offline);
5740 EXPORT_SYMBOL_GPL(ata_id_string);
5741 EXPORT_SYMBOL_GPL(ata_id_c_string);
5742 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5743
5744 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5745 EXPORT_SYMBOL_GPL(ata_timing_compute);
5746 EXPORT_SYMBOL_GPL(ata_timing_merge);
5747
5748 #ifdef CONFIG_PCI
5749 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5750 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5751 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5752 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5753 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5754 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5755 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5756 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5757 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5758 #endif /* CONFIG_PCI */
5759
5760 EXPORT_SYMBOL_GPL(ata_device_suspend);
5761 EXPORT_SYMBOL_GPL(ata_device_resume);
5762 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5763 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5764
5765 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5766 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5767 EXPORT_SYMBOL_GPL(ata_port_abort);
5768 EXPORT_SYMBOL_GPL(ata_port_freeze);
5769 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5770 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5771 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5772 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5773 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.762905 seconds and 6 git commands to generate.