[PATCH] libata-hp-prep: add ata_aux_wq
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67 static void ata_dev_xfermask(struct ata_device *dev);
68
69 static unsigned int ata_unique_id = 1;
70 static struct workqueue_struct *ata_wq;
71
72 struct workqueue_struct *ata_aux_wq;
73
74 int atapi_enabled = 1;
75 module_param(atapi_enabled, int, 0444);
76 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
77
78 int atapi_dmadir = 0;
79 module_param(atapi_dmadir, int, 0444);
80 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
81
82 int libata_fua = 0;
83 module_param_named(fua, libata_fua, int, 0444);
84 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
85
86 MODULE_AUTHOR("Jeff Garzik");
87 MODULE_DESCRIPTION("Library module for ATA devices");
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(DRV_VERSION);
90
91
92 /**
93 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
94 * @tf: Taskfile to convert
95 * @fis: Buffer into which data will output
96 * @pmp: Port multiplier port
97 *
98 * Converts a standard ATA taskfile to a Serial ATA
99 * FIS structure (Register - Host to Device).
100 *
101 * LOCKING:
102 * Inherited from caller.
103 */
104
105 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
106 {
107 fis[0] = 0x27; /* Register - Host to Device FIS */
108 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
109 bit 7 indicates Command FIS */
110 fis[2] = tf->command;
111 fis[3] = tf->feature;
112
113 fis[4] = tf->lbal;
114 fis[5] = tf->lbam;
115 fis[6] = tf->lbah;
116 fis[7] = tf->device;
117
118 fis[8] = tf->hob_lbal;
119 fis[9] = tf->hob_lbam;
120 fis[10] = tf->hob_lbah;
121 fis[11] = tf->hob_feature;
122
123 fis[12] = tf->nsect;
124 fis[13] = tf->hob_nsect;
125 fis[14] = 0;
126 fis[15] = tf->ctl;
127
128 fis[16] = 0;
129 fis[17] = 0;
130 fis[18] = 0;
131 fis[19] = 0;
132 }
133
134 /**
135 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
136 * @fis: Buffer from which data will be input
137 * @tf: Taskfile to output
138 *
139 * Converts a serial ATA FIS structure to a standard ATA taskfile.
140 *
141 * LOCKING:
142 * Inherited from caller.
143 */
144
145 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
146 {
147 tf->command = fis[2]; /* status */
148 tf->feature = fis[3]; /* error */
149
150 tf->lbal = fis[4];
151 tf->lbam = fis[5];
152 tf->lbah = fis[6];
153 tf->device = fis[7];
154
155 tf->hob_lbal = fis[8];
156 tf->hob_lbam = fis[9];
157 tf->hob_lbah = fis[10];
158
159 tf->nsect = fis[12];
160 tf->hob_nsect = fis[13];
161 }
162
163 static const u8 ata_rw_cmds[] = {
164 /* pio multi */
165 ATA_CMD_READ_MULTI,
166 ATA_CMD_WRITE_MULTI,
167 ATA_CMD_READ_MULTI_EXT,
168 ATA_CMD_WRITE_MULTI_EXT,
169 0,
170 0,
171 0,
172 ATA_CMD_WRITE_MULTI_FUA_EXT,
173 /* pio */
174 ATA_CMD_PIO_READ,
175 ATA_CMD_PIO_WRITE,
176 ATA_CMD_PIO_READ_EXT,
177 ATA_CMD_PIO_WRITE_EXT,
178 0,
179 0,
180 0,
181 0,
182 /* dma */
183 ATA_CMD_READ,
184 ATA_CMD_WRITE,
185 ATA_CMD_READ_EXT,
186 ATA_CMD_WRITE_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_FUA_EXT
191 };
192
193 /**
194 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
195 * @qc: command to examine and configure
196 *
197 * Examine the device configuration and tf->flags to calculate
198 * the proper read/write commands and protocol to use.
199 *
200 * LOCKING:
201 * caller.
202 */
203 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
204 {
205 struct ata_taskfile *tf = &qc->tf;
206 struct ata_device *dev = qc->dev;
207 u8 cmd;
208
209 int index, fua, lba48, write;
210
211 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
212 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
213 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
214
215 if (dev->flags & ATA_DFLAG_PIO) {
216 tf->protocol = ATA_PROT_PIO;
217 index = dev->multi_count ? 0 : 8;
218 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
219 /* Unable to use DMA due to host limitation */
220 tf->protocol = ATA_PROT_PIO;
221 index = dev->multi_count ? 0 : 8;
222 } else {
223 tf->protocol = ATA_PROT_DMA;
224 index = 16;
225 }
226
227 cmd = ata_rw_cmds[index + fua + lba48 + write];
228 if (cmd) {
229 tf->command = cmd;
230 return 0;
231 }
232 return -1;
233 }
234
235 /**
236 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
237 * @pio_mask: pio_mask
238 * @mwdma_mask: mwdma_mask
239 * @udma_mask: udma_mask
240 *
241 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
242 * unsigned int xfer_mask.
243 *
244 * LOCKING:
245 * None.
246 *
247 * RETURNS:
248 * Packed xfer_mask.
249 */
250 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
251 unsigned int mwdma_mask,
252 unsigned int udma_mask)
253 {
254 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
255 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
256 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
257 }
258
259 /**
260 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
261 * @xfer_mask: xfer_mask to unpack
262 * @pio_mask: resulting pio_mask
263 * @mwdma_mask: resulting mwdma_mask
264 * @udma_mask: resulting udma_mask
265 *
266 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
267 * Any NULL distination masks will be ignored.
268 */
269 static void ata_unpack_xfermask(unsigned int xfer_mask,
270 unsigned int *pio_mask,
271 unsigned int *mwdma_mask,
272 unsigned int *udma_mask)
273 {
274 if (pio_mask)
275 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
276 if (mwdma_mask)
277 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
278 if (udma_mask)
279 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
280 }
281
282 static const struct ata_xfer_ent {
283 int shift, bits;
284 u8 base;
285 } ata_xfer_tbl[] = {
286 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
287 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
288 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
289 { -1, },
290 };
291
292 /**
293 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
294 * @xfer_mask: xfer_mask of interest
295 *
296 * Return matching XFER_* value for @xfer_mask. Only the highest
297 * bit of @xfer_mask is considered.
298 *
299 * LOCKING:
300 * None.
301 *
302 * RETURNS:
303 * Matching XFER_* value, 0 if no match found.
304 */
305 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
306 {
307 int highbit = fls(xfer_mask) - 1;
308 const struct ata_xfer_ent *ent;
309
310 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
311 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
312 return ent->base + highbit - ent->shift;
313 return 0;
314 }
315
316 /**
317 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
318 * @xfer_mode: XFER_* of interest
319 *
320 * Return matching xfer_mask for @xfer_mode.
321 *
322 * LOCKING:
323 * None.
324 *
325 * RETURNS:
326 * Matching xfer_mask, 0 if no match found.
327 */
328 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
329 {
330 const struct ata_xfer_ent *ent;
331
332 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
333 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
334 return 1 << (ent->shift + xfer_mode - ent->base);
335 return 0;
336 }
337
338 /**
339 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
340 * @xfer_mode: XFER_* of interest
341 *
342 * Return matching xfer_shift for @xfer_mode.
343 *
344 * LOCKING:
345 * None.
346 *
347 * RETURNS:
348 * Matching xfer_shift, -1 if no match found.
349 */
350 static int ata_xfer_mode2shift(unsigned int xfer_mode)
351 {
352 const struct ata_xfer_ent *ent;
353
354 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
355 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
356 return ent->shift;
357 return -1;
358 }
359
360 /**
361 * ata_mode_string - convert xfer_mask to string
362 * @xfer_mask: mask of bits supported; only highest bit counts.
363 *
364 * Determine string which represents the highest speed
365 * (highest bit in @modemask).
366 *
367 * LOCKING:
368 * None.
369 *
370 * RETURNS:
371 * Constant C string representing highest speed listed in
372 * @mode_mask, or the constant C string "<n/a>".
373 */
374 static const char *ata_mode_string(unsigned int xfer_mask)
375 {
376 static const char * const xfer_mode_str[] = {
377 "PIO0",
378 "PIO1",
379 "PIO2",
380 "PIO3",
381 "PIO4",
382 "MWDMA0",
383 "MWDMA1",
384 "MWDMA2",
385 "UDMA/16",
386 "UDMA/25",
387 "UDMA/33",
388 "UDMA/44",
389 "UDMA/66",
390 "UDMA/100",
391 "UDMA/133",
392 "UDMA7",
393 };
394 int highbit;
395
396 highbit = fls(xfer_mask) - 1;
397 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
398 return xfer_mode_str[highbit];
399 return "<n/a>";
400 }
401
402 static const char *sata_spd_string(unsigned int spd)
403 {
404 static const char * const spd_str[] = {
405 "1.5 Gbps",
406 "3.0 Gbps",
407 };
408
409 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
410 return "<unknown>";
411 return spd_str[spd - 1];
412 }
413
414 void ata_dev_disable(struct ata_device *dev)
415 {
416 if (ata_dev_enabled(dev)) {
417 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
418 dev->class++;
419 }
420 }
421
422 /**
423 * ata_pio_devchk - PATA device presence detection
424 * @ap: ATA channel to examine
425 * @device: Device to examine (starting at zero)
426 *
427 * This technique was originally described in
428 * Hale Landis's ATADRVR (www.ata-atapi.com), and
429 * later found its way into the ATA/ATAPI spec.
430 *
431 * Write a pattern to the ATA shadow registers,
432 * and if a device is present, it will respond by
433 * correctly storing and echoing back the
434 * ATA shadow register contents.
435 *
436 * LOCKING:
437 * caller.
438 */
439
440 static unsigned int ata_pio_devchk(struct ata_port *ap,
441 unsigned int device)
442 {
443 struct ata_ioports *ioaddr = &ap->ioaddr;
444 u8 nsect, lbal;
445
446 ap->ops->dev_select(ap, device);
447
448 outb(0x55, ioaddr->nsect_addr);
449 outb(0xaa, ioaddr->lbal_addr);
450
451 outb(0xaa, ioaddr->nsect_addr);
452 outb(0x55, ioaddr->lbal_addr);
453
454 outb(0x55, ioaddr->nsect_addr);
455 outb(0xaa, ioaddr->lbal_addr);
456
457 nsect = inb(ioaddr->nsect_addr);
458 lbal = inb(ioaddr->lbal_addr);
459
460 if ((nsect == 0x55) && (lbal == 0xaa))
461 return 1; /* we found a device */
462
463 return 0; /* nothing found */
464 }
465
466 /**
467 * ata_mmio_devchk - PATA device presence detection
468 * @ap: ATA channel to examine
469 * @device: Device to examine (starting at zero)
470 *
471 * This technique was originally described in
472 * Hale Landis's ATADRVR (www.ata-atapi.com), and
473 * later found its way into the ATA/ATAPI spec.
474 *
475 * Write a pattern to the ATA shadow registers,
476 * and if a device is present, it will respond by
477 * correctly storing and echoing back the
478 * ATA shadow register contents.
479 *
480 * LOCKING:
481 * caller.
482 */
483
484 static unsigned int ata_mmio_devchk(struct ata_port *ap,
485 unsigned int device)
486 {
487 struct ata_ioports *ioaddr = &ap->ioaddr;
488 u8 nsect, lbal;
489
490 ap->ops->dev_select(ap, device);
491
492 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
493 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
494
495 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
496 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
497
498 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
499 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
500
501 nsect = readb((void __iomem *) ioaddr->nsect_addr);
502 lbal = readb((void __iomem *) ioaddr->lbal_addr);
503
504 if ((nsect == 0x55) && (lbal == 0xaa))
505 return 1; /* we found a device */
506
507 return 0; /* nothing found */
508 }
509
510 /**
511 * ata_devchk - PATA device presence detection
512 * @ap: ATA channel to examine
513 * @device: Device to examine (starting at zero)
514 *
515 * Dispatch ATA device presence detection, depending
516 * on whether we are using PIO or MMIO to talk to the
517 * ATA shadow registers.
518 *
519 * LOCKING:
520 * caller.
521 */
522
523 static unsigned int ata_devchk(struct ata_port *ap,
524 unsigned int device)
525 {
526 if (ap->flags & ATA_FLAG_MMIO)
527 return ata_mmio_devchk(ap, device);
528 return ata_pio_devchk(ap, device);
529 }
530
531 /**
532 * ata_dev_classify - determine device type based on ATA-spec signature
533 * @tf: ATA taskfile register set for device to be identified
534 *
535 * Determine from taskfile register contents whether a device is
536 * ATA or ATAPI, as per "Signature and persistence" section
537 * of ATA/PI spec (volume 1, sect 5.14).
538 *
539 * LOCKING:
540 * None.
541 *
542 * RETURNS:
543 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
544 * the event of failure.
545 */
546
547 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
548 {
549 /* Apple's open source Darwin code hints that some devices only
550 * put a proper signature into the LBA mid/high registers,
551 * So, we only check those. It's sufficient for uniqueness.
552 */
553
554 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
555 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
556 DPRINTK("found ATA device by sig\n");
557 return ATA_DEV_ATA;
558 }
559
560 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
561 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
562 DPRINTK("found ATAPI device by sig\n");
563 return ATA_DEV_ATAPI;
564 }
565
566 DPRINTK("unknown device\n");
567 return ATA_DEV_UNKNOWN;
568 }
569
570 /**
571 * ata_dev_try_classify - Parse returned ATA device signature
572 * @ap: ATA channel to examine
573 * @device: Device to examine (starting at zero)
574 * @r_err: Value of error register on completion
575 *
576 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
577 * an ATA/ATAPI-defined set of values is placed in the ATA
578 * shadow registers, indicating the results of device detection
579 * and diagnostics.
580 *
581 * Select the ATA device, and read the values from the ATA shadow
582 * registers. Then parse according to the Error register value,
583 * and the spec-defined values examined by ata_dev_classify().
584 *
585 * LOCKING:
586 * caller.
587 *
588 * RETURNS:
589 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
590 */
591
592 static unsigned int
593 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
594 {
595 struct ata_taskfile tf;
596 unsigned int class;
597 u8 err;
598
599 ap->ops->dev_select(ap, device);
600
601 memset(&tf, 0, sizeof(tf));
602
603 ap->ops->tf_read(ap, &tf);
604 err = tf.feature;
605 if (r_err)
606 *r_err = err;
607
608 /* see if device passed diags */
609 if (err == 1)
610 /* do nothing */ ;
611 else if ((device == 0) && (err == 0x81))
612 /* do nothing */ ;
613 else
614 return ATA_DEV_NONE;
615
616 /* determine if device is ATA or ATAPI */
617 class = ata_dev_classify(&tf);
618
619 if (class == ATA_DEV_UNKNOWN)
620 return ATA_DEV_NONE;
621 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
622 return ATA_DEV_NONE;
623 return class;
624 }
625
626 /**
627 * ata_id_string - Convert IDENTIFY DEVICE page into string
628 * @id: IDENTIFY DEVICE results we will examine
629 * @s: string into which data is output
630 * @ofs: offset into identify device page
631 * @len: length of string to return. must be an even number.
632 *
633 * The strings in the IDENTIFY DEVICE page are broken up into
634 * 16-bit chunks. Run through the string, and output each
635 * 8-bit chunk linearly, regardless of platform.
636 *
637 * LOCKING:
638 * caller.
639 */
640
641 void ata_id_string(const u16 *id, unsigned char *s,
642 unsigned int ofs, unsigned int len)
643 {
644 unsigned int c;
645
646 while (len > 0) {
647 c = id[ofs] >> 8;
648 *s = c;
649 s++;
650
651 c = id[ofs] & 0xff;
652 *s = c;
653 s++;
654
655 ofs++;
656 len -= 2;
657 }
658 }
659
660 /**
661 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
662 * @id: IDENTIFY DEVICE results we will examine
663 * @s: string into which data is output
664 * @ofs: offset into identify device page
665 * @len: length of string to return. must be an odd number.
666 *
667 * This function is identical to ata_id_string except that it
668 * trims trailing spaces and terminates the resulting string with
669 * null. @len must be actual maximum length (even number) + 1.
670 *
671 * LOCKING:
672 * caller.
673 */
674 void ata_id_c_string(const u16 *id, unsigned char *s,
675 unsigned int ofs, unsigned int len)
676 {
677 unsigned char *p;
678
679 WARN_ON(!(len & 1));
680
681 ata_id_string(id, s, ofs, len - 1);
682
683 p = s + strnlen(s, len - 1);
684 while (p > s && p[-1] == ' ')
685 p--;
686 *p = '\0';
687 }
688
689 static u64 ata_id_n_sectors(const u16 *id)
690 {
691 if (ata_id_has_lba(id)) {
692 if (ata_id_has_lba48(id))
693 return ata_id_u64(id, 100);
694 else
695 return ata_id_u32(id, 60);
696 } else {
697 if (ata_id_current_chs_valid(id))
698 return ata_id_u32(id, 57);
699 else
700 return id[1] * id[3] * id[6];
701 }
702 }
703
704 /**
705 * ata_noop_dev_select - Select device 0/1 on ATA bus
706 * @ap: ATA channel to manipulate
707 * @device: ATA device (numbered from zero) to select
708 *
709 * This function performs no actual function.
710 *
711 * May be used as the dev_select() entry in ata_port_operations.
712 *
713 * LOCKING:
714 * caller.
715 */
716 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
717 {
718 }
719
720
721 /**
722 * ata_std_dev_select - Select device 0/1 on ATA bus
723 * @ap: ATA channel to manipulate
724 * @device: ATA device (numbered from zero) to select
725 *
726 * Use the method defined in the ATA specification to
727 * make either device 0, or device 1, active on the
728 * ATA channel. Works with both PIO and MMIO.
729 *
730 * May be used as the dev_select() entry in ata_port_operations.
731 *
732 * LOCKING:
733 * caller.
734 */
735
736 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
737 {
738 u8 tmp;
739
740 if (device == 0)
741 tmp = ATA_DEVICE_OBS;
742 else
743 tmp = ATA_DEVICE_OBS | ATA_DEV1;
744
745 if (ap->flags & ATA_FLAG_MMIO) {
746 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
747 } else {
748 outb(tmp, ap->ioaddr.device_addr);
749 }
750 ata_pause(ap); /* needed; also flushes, for mmio */
751 }
752
753 /**
754 * ata_dev_select - Select device 0/1 on ATA bus
755 * @ap: ATA channel to manipulate
756 * @device: ATA device (numbered from zero) to select
757 * @wait: non-zero to wait for Status register BSY bit to clear
758 * @can_sleep: non-zero if context allows sleeping
759 *
760 * Use the method defined in the ATA specification to
761 * make either device 0, or device 1, active on the
762 * ATA channel.
763 *
764 * This is a high-level version of ata_std_dev_select(),
765 * which additionally provides the services of inserting
766 * the proper pauses and status polling, where needed.
767 *
768 * LOCKING:
769 * caller.
770 */
771
772 void ata_dev_select(struct ata_port *ap, unsigned int device,
773 unsigned int wait, unsigned int can_sleep)
774 {
775 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
776 ap->id, device, wait);
777
778 if (wait)
779 ata_wait_idle(ap);
780
781 ap->ops->dev_select(ap, device);
782
783 if (wait) {
784 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
785 msleep(150);
786 ata_wait_idle(ap);
787 }
788 }
789
790 /**
791 * ata_dump_id - IDENTIFY DEVICE info debugging output
792 * @id: IDENTIFY DEVICE page to dump
793 *
794 * Dump selected 16-bit words from the given IDENTIFY DEVICE
795 * page.
796 *
797 * LOCKING:
798 * caller.
799 */
800
801 static inline void ata_dump_id(const u16 *id)
802 {
803 DPRINTK("49==0x%04x "
804 "53==0x%04x "
805 "63==0x%04x "
806 "64==0x%04x "
807 "75==0x%04x \n",
808 id[49],
809 id[53],
810 id[63],
811 id[64],
812 id[75]);
813 DPRINTK("80==0x%04x "
814 "81==0x%04x "
815 "82==0x%04x "
816 "83==0x%04x "
817 "84==0x%04x \n",
818 id[80],
819 id[81],
820 id[82],
821 id[83],
822 id[84]);
823 DPRINTK("88==0x%04x "
824 "93==0x%04x\n",
825 id[88],
826 id[93]);
827 }
828
829 /**
830 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
831 * @id: IDENTIFY data to compute xfer mask from
832 *
833 * Compute the xfermask for this device. This is not as trivial
834 * as it seems if we must consider early devices correctly.
835 *
836 * FIXME: pre IDE drive timing (do we care ?).
837 *
838 * LOCKING:
839 * None.
840 *
841 * RETURNS:
842 * Computed xfermask
843 */
844 static unsigned int ata_id_xfermask(const u16 *id)
845 {
846 unsigned int pio_mask, mwdma_mask, udma_mask;
847
848 /* Usual case. Word 53 indicates word 64 is valid */
849 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
850 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
851 pio_mask <<= 3;
852 pio_mask |= 0x7;
853 } else {
854 /* If word 64 isn't valid then Word 51 high byte holds
855 * the PIO timing number for the maximum. Turn it into
856 * a mask.
857 */
858 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
859
860 /* But wait.. there's more. Design your standards by
861 * committee and you too can get a free iordy field to
862 * process. However its the speeds not the modes that
863 * are supported... Note drivers using the timing API
864 * will get this right anyway
865 */
866 }
867
868 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
869
870 udma_mask = 0;
871 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
872 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
873
874 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
875 }
876
877 /**
878 * ata_port_queue_task - Queue port_task
879 * @ap: The ata_port to queue port_task for
880 * @fn: workqueue function to be scheduled
881 * @data: data value to pass to workqueue function
882 * @delay: delay time for workqueue function
883 *
884 * Schedule @fn(@data) for execution after @delay jiffies using
885 * port_task. There is one port_task per port and it's the
886 * user(low level driver)'s responsibility to make sure that only
887 * one task is active at any given time.
888 *
889 * libata core layer takes care of synchronization between
890 * port_task and EH. ata_port_queue_task() may be ignored for EH
891 * synchronization.
892 *
893 * LOCKING:
894 * Inherited from caller.
895 */
896 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
897 unsigned long delay)
898 {
899 int rc;
900
901 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
902 return;
903
904 PREPARE_WORK(&ap->port_task, fn, data);
905
906 if (!delay)
907 rc = queue_work(ata_wq, &ap->port_task);
908 else
909 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
910
911 /* rc == 0 means that another user is using port task */
912 WARN_ON(rc == 0);
913 }
914
915 /**
916 * ata_port_flush_task - Flush port_task
917 * @ap: The ata_port to flush port_task for
918 *
919 * After this function completes, port_task is guranteed not to
920 * be running or scheduled.
921 *
922 * LOCKING:
923 * Kernel thread context (may sleep)
924 */
925 void ata_port_flush_task(struct ata_port *ap)
926 {
927 unsigned long flags;
928
929 DPRINTK("ENTER\n");
930
931 spin_lock_irqsave(&ap->host_set->lock, flags);
932 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
933 spin_unlock_irqrestore(&ap->host_set->lock, flags);
934
935 DPRINTK("flush #1\n");
936 flush_workqueue(ata_wq);
937
938 /*
939 * At this point, if a task is running, it's guaranteed to see
940 * the FLUSH flag; thus, it will never queue pio tasks again.
941 * Cancel and flush.
942 */
943 if (!cancel_delayed_work(&ap->port_task)) {
944 DPRINTK("flush #2\n");
945 flush_workqueue(ata_wq);
946 }
947
948 spin_lock_irqsave(&ap->host_set->lock, flags);
949 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
950 spin_unlock_irqrestore(&ap->host_set->lock, flags);
951
952 DPRINTK("EXIT\n");
953 }
954
955 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
956 {
957 struct completion *waiting = qc->private_data;
958
959 complete(waiting);
960 }
961
962 /**
963 * ata_exec_internal - execute libata internal command
964 * @dev: Device to which the command is sent
965 * @tf: Taskfile registers for the command and the result
966 * @cdb: CDB for packet command
967 * @dma_dir: Data tranfer direction of the command
968 * @buf: Data buffer of the command
969 * @buflen: Length of data buffer
970 *
971 * Executes libata internal command with timeout. @tf contains
972 * command on entry and result on return. Timeout and error
973 * conditions are reported via return value. No recovery action
974 * is taken after a command times out. It's caller's duty to
975 * clean up after timeout.
976 *
977 * LOCKING:
978 * None. Should be called with kernel context, might sleep.
979 */
980
981 unsigned ata_exec_internal(struct ata_device *dev,
982 struct ata_taskfile *tf, const u8 *cdb,
983 int dma_dir, void *buf, unsigned int buflen)
984 {
985 struct ata_port *ap = dev->ap;
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 unsigned int tag, preempted_tag;
989 u32 preempted_sactive, preempted_qc_active;
990 DECLARE_COMPLETION(wait);
991 unsigned long flags;
992 unsigned int err_mask;
993 int rc;
994
995 spin_lock_irqsave(&ap->host_set->lock, flags);
996
997 /* no internal command while frozen */
998 if (ap->flags & ATA_FLAG_FROZEN) {
999 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1000 return AC_ERR_SYSTEM;
1001 }
1002
1003 /* initialize internal qc */
1004
1005 /* XXX: Tag 0 is used for drivers with legacy EH as some
1006 * drivers choke if any other tag is given. This breaks
1007 * ata_tag_internal() test for those drivers. Don't use new
1008 * EH stuff without converting to it.
1009 */
1010 if (ap->ops->error_handler)
1011 tag = ATA_TAG_INTERNAL;
1012 else
1013 tag = 0;
1014
1015 if (test_and_set_bit(tag, &ap->qc_allocated))
1016 BUG();
1017 qc = __ata_qc_from_tag(ap, tag);
1018
1019 qc->tag = tag;
1020 qc->scsicmd = NULL;
1021 qc->ap = ap;
1022 qc->dev = dev;
1023 ata_qc_reinit(qc);
1024
1025 preempted_tag = ap->active_tag;
1026 preempted_sactive = ap->sactive;
1027 preempted_qc_active = ap->qc_active;
1028 ap->active_tag = ATA_TAG_POISON;
1029 ap->sactive = 0;
1030 ap->qc_active = 0;
1031
1032 /* prepare & issue qc */
1033 qc->tf = *tf;
1034 if (cdb)
1035 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1036 qc->flags |= ATA_QCFLAG_RESULT_TF;
1037 qc->dma_dir = dma_dir;
1038 if (dma_dir != DMA_NONE) {
1039 ata_sg_init_one(qc, buf, buflen);
1040 qc->nsect = buflen / ATA_SECT_SIZE;
1041 }
1042
1043 qc->private_data = &wait;
1044 qc->complete_fn = ata_qc_complete_internal;
1045
1046 ata_qc_issue(qc);
1047
1048 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1049
1050 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1051
1052 ata_port_flush_task(ap);
1053
1054 if (!rc) {
1055 spin_lock_irqsave(&ap->host_set->lock, flags);
1056
1057 /* We're racing with irq here. If we lose, the
1058 * following test prevents us from completing the qc
1059 * twice. If we win, the port is frozen and will be
1060 * cleaned up by ->post_internal_cmd().
1061 */
1062 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1063 qc->err_mask |= AC_ERR_TIMEOUT;
1064
1065 if (ap->ops->error_handler)
1066 ata_port_freeze(ap);
1067 else
1068 ata_qc_complete(qc);
1069
1070 ata_dev_printk(dev, KERN_WARNING,
1071 "qc timeout (cmd 0x%x)\n", command);
1072 }
1073
1074 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1075 }
1076
1077 /* do post_internal_cmd */
1078 if (ap->ops->post_internal_cmd)
1079 ap->ops->post_internal_cmd(qc);
1080
1081 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1082 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1083 "internal command, assuming AC_ERR_OTHER\n");
1084 qc->err_mask |= AC_ERR_OTHER;
1085 }
1086
1087 /* finish up */
1088 spin_lock_irqsave(&ap->host_set->lock, flags);
1089
1090 *tf = qc->result_tf;
1091 err_mask = qc->err_mask;
1092
1093 ata_qc_free(qc);
1094 ap->active_tag = preempted_tag;
1095 ap->sactive = preempted_sactive;
1096 ap->qc_active = preempted_qc_active;
1097
1098 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1099 * Until those drivers are fixed, we detect the condition
1100 * here, fail the command with AC_ERR_SYSTEM and reenable the
1101 * port.
1102 *
1103 * Note that this doesn't change any behavior as internal
1104 * command failure results in disabling the device in the
1105 * higher layer for LLDDs without new reset/EH callbacks.
1106 *
1107 * Kill the following code as soon as those drivers are fixed.
1108 */
1109 if (ap->flags & ATA_FLAG_DISABLED) {
1110 err_mask |= AC_ERR_SYSTEM;
1111 ata_port_probe(ap);
1112 }
1113
1114 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1115
1116 return err_mask;
1117 }
1118
1119 /**
1120 * ata_pio_need_iordy - check if iordy needed
1121 * @adev: ATA device
1122 *
1123 * Check if the current speed of the device requires IORDY. Used
1124 * by various controllers for chip configuration.
1125 */
1126
1127 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1128 {
1129 int pio;
1130 int speed = adev->pio_mode - XFER_PIO_0;
1131
1132 if (speed < 2)
1133 return 0;
1134 if (speed > 2)
1135 return 1;
1136
1137 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1138
1139 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1140 pio = adev->id[ATA_ID_EIDE_PIO];
1141 /* Is the speed faster than the drive allows non IORDY ? */
1142 if (pio) {
1143 /* This is cycle times not frequency - watch the logic! */
1144 if (pio > 240) /* PIO2 is 240nS per cycle */
1145 return 1;
1146 return 0;
1147 }
1148 }
1149 return 0;
1150 }
1151
1152 /**
1153 * ata_dev_read_id - Read ID data from the specified device
1154 * @dev: target device
1155 * @p_class: pointer to class of the target device (may be changed)
1156 * @post_reset: is this read ID post-reset?
1157 * @id: buffer to read IDENTIFY data into
1158 *
1159 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1160 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1161 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1162 * for pre-ATA4 drives.
1163 *
1164 * LOCKING:
1165 * Kernel thread context (may sleep)
1166 *
1167 * RETURNS:
1168 * 0 on success, -errno otherwise.
1169 */
1170 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1171 int post_reset, u16 *id)
1172 {
1173 struct ata_port *ap = dev->ap;
1174 unsigned int class = *p_class;
1175 struct ata_taskfile tf;
1176 unsigned int err_mask = 0;
1177 const char *reason;
1178 int rc;
1179
1180 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1181
1182 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1183
1184 retry:
1185 ata_tf_init(dev, &tf);
1186
1187 switch (class) {
1188 case ATA_DEV_ATA:
1189 tf.command = ATA_CMD_ID_ATA;
1190 break;
1191 case ATA_DEV_ATAPI:
1192 tf.command = ATA_CMD_ID_ATAPI;
1193 break;
1194 default:
1195 rc = -ENODEV;
1196 reason = "unsupported class";
1197 goto err_out;
1198 }
1199
1200 tf.protocol = ATA_PROT_PIO;
1201
1202 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1203 id, sizeof(id[0]) * ATA_ID_WORDS);
1204 if (err_mask) {
1205 rc = -EIO;
1206 reason = "I/O error";
1207 goto err_out;
1208 }
1209
1210 swap_buf_le16(id, ATA_ID_WORDS);
1211
1212 /* sanity check */
1213 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1214 rc = -EINVAL;
1215 reason = "device reports illegal type";
1216 goto err_out;
1217 }
1218
1219 if (post_reset && class == ATA_DEV_ATA) {
1220 /*
1221 * The exact sequence expected by certain pre-ATA4 drives is:
1222 * SRST RESET
1223 * IDENTIFY
1224 * INITIALIZE DEVICE PARAMETERS
1225 * anything else..
1226 * Some drives were very specific about that exact sequence.
1227 */
1228 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1229 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1230 if (err_mask) {
1231 rc = -EIO;
1232 reason = "INIT_DEV_PARAMS failed";
1233 goto err_out;
1234 }
1235
1236 /* current CHS translation info (id[53-58]) might be
1237 * changed. reread the identify device info.
1238 */
1239 post_reset = 0;
1240 goto retry;
1241 }
1242 }
1243
1244 *p_class = class;
1245
1246 return 0;
1247
1248 err_out:
1249 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1250 "(%s, err_mask=0x%x)\n", reason, err_mask);
1251 return rc;
1252 }
1253
1254 static inline u8 ata_dev_knobble(struct ata_device *dev)
1255 {
1256 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1257 }
1258
1259 static void ata_dev_config_ncq(struct ata_device *dev,
1260 char *desc, size_t desc_sz)
1261 {
1262 struct ata_port *ap = dev->ap;
1263 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1264
1265 if (!ata_id_has_ncq(dev->id)) {
1266 desc[0] = '\0';
1267 return;
1268 }
1269
1270 if (ap->flags & ATA_FLAG_NCQ) {
1271 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1272 dev->flags |= ATA_DFLAG_NCQ;
1273 }
1274
1275 if (hdepth >= ddepth)
1276 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1277 else
1278 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1279 }
1280
1281 /**
1282 * ata_dev_configure - Configure the specified ATA/ATAPI device
1283 * @dev: Target device to configure
1284 * @print_info: Enable device info printout
1285 *
1286 * Configure @dev according to @dev->id. Generic and low-level
1287 * driver specific fixups are also applied.
1288 *
1289 * LOCKING:
1290 * Kernel thread context (may sleep)
1291 *
1292 * RETURNS:
1293 * 0 on success, -errno otherwise
1294 */
1295 static int ata_dev_configure(struct ata_device *dev, int print_info)
1296 {
1297 struct ata_port *ap = dev->ap;
1298 const u16 *id = dev->id;
1299 unsigned int xfer_mask;
1300 int i, rc;
1301
1302 if (!ata_dev_enabled(dev)) {
1303 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1304 ap->id, dev->devno);
1305 return 0;
1306 }
1307
1308 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1309
1310 /* print device capabilities */
1311 if (print_info)
1312 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1313 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1314 id[49], id[82], id[83], id[84],
1315 id[85], id[86], id[87], id[88]);
1316
1317 /* initialize to-be-configured parameters */
1318 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1319 dev->max_sectors = 0;
1320 dev->cdb_len = 0;
1321 dev->n_sectors = 0;
1322 dev->cylinders = 0;
1323 dev->heads = 0;
1324 dev->sectors = 0;
1325
1326 /*
1327 * common ATA, ATAPI feature tests
1328 */
1329
1330 /* find max transfer mode; for printk only */
1331 xfer_mask = ata_id_xfermask(id);
1332
1333 ata_dump_id(id);
1334
1335 /* ATA-specific feature tests */
1336 if (dev->class == ATA_DEV_ATA) {
1337 dev->n_sectors = ata_id_n_sectors(id);
1338
1339 if (ata_id_has_lba(id)) {
1340 const char *lba_desc;
1341 char ncq_desc[20];
1342
1343 lba_desc = "LBA";
1344 dev->flags |= ATA_DFLAG_LBA;
1345 if (ata_id_has_lba48(id)) {
1346 dev->flags |= ATA_DFLAG_LBA48;
1347 lba_desc = "LBA48";
1348 }
1349
1350 /* config NCQ */
1351 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1352
1353 /* print device info to dmesg */
1354 if (print_info)
1355 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1356 "max %s, %Lu sectors: %s %s\n",
1357 ata_id_major_version(id),
1358 ata_mode_string(xfer_mask),
1359 (unsigned long long)dev->n_sectors,
1360 lba_desc, ncq_desc);
1361 } else {
1362 /* CHS */
1363
1364 /* Default translation */
1365 dev->cylinders = id[1];
1366 dev->heads = id[3];
1367 dev->sectors = id[6];
1368
1369 if (ata_id_current_chs_valid(id)) {
1370 /* Current CHS translation is valid. */
1371 dev->cylinders = id[54];
1372 dev->heads = id[55];
1373 dev->sectors = id[56];
1374 }
1375
1376 /* print device info to dmesg */
1377 if (print_info)
1378 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1379 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1380 ata_id_major_version(id),
1381 ata_mode_string(xfer_mask),
1382 (unsigned long long)dev->n_sectors,
1383 dev->cylinders, dev->heads, dev->sectors);
1384 }
1385
1386 if (dev->id[59] & 0x100) {
1387 dev->multi_count = dev->id[59] & 0xff;
1388 DPRINTK("ata%u: dev %u multi count %u\n",
1389 ap->id, dev->devno, dev->multi_count);
1390 }
1391
1392 dev->cdb_len = 16;
1393 }
1394
1395 /* ATAPI-specific feature tests */
1396 else if (dev->class == ATA_DEV_ATAPI) {
1397 char *cdb_intr_string = "";
1398
1399 rc = atapi_cdb_len(id);
1400 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1401 ata_dev_printk(dev, KERN_WARNING,
1402 "unsupported CDB len\n");
1403 rc = -EINVAL;
1404 goto err_out_nosup;
1405 }
1406 dev->cdb_len = (unsigned int) rc;
1407
1408 if (ata_id_cdb_intr(dev->id)) {
1409 dev->flags |= ATA_DFLAG_CDB_INTR;
1410 cdb_intr_string = ", CDB intr";
1411 }
1412
1413 /* print device info to dmesg */
1414 if (print_info)
1415 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1416 ata_mode_string(xfer_mask),
1417 cdb_intr_string);
1418 }
1419
1420 ap->host->max_cmd_len = 0;
1421 for (i = 0; i < ATA_MAX_DEVICES; i++)
1422 ap->host->max_cmd_len = max_t(unsigned int,
1423 ap->host->max_cmd_len,
1424 ap->device[i].cdb_len);
1425
1426 /* limit bridge transfers to udma5, 200 sectors */
1427 if (ata_dev_knobble(dev)) {
1428 if (print_info)
1429 ata_dev_printk(dev, KERN_INFO,
1430 "applying bridge limits\n");
1431 dev->udma_mask &= ATA_UDMA5;
1432 dev->max_sectors = ATA_MAX_SECTORS;
1433 }
1434
1435 if (ap->ops->dev_config)
1436 ap->ops->dev_config(ap, dev);
1437
1438 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1439 return 0;
1440
1441 err_out_nosup:
1442 DPRINTK("EXIT, err\n");
1443 return rc;
1444 }
1445
1446 /**
1447 * ata_bus_probe - Reset and probe ATA bus
1448 * @ap: Bus to probe
1449 *
1450 * Master ATA bus probing function. Initiates a hardware-dependent
1451 * bus reset, then attempts to identify any devices found on
1452 * the bus.
1453 *
1454 * LOCKING:
1455 * PCI/etc. bus probe sem.
1456 *
1457 * RETURNS:
1458 * Zero on success, negative errno otherwise.
1459 */
1460
1461 static int ata_bus_probe(struct ata_port *ap)
1462 {
1463 unsigned int classes[ATA_MAX_DEVICES];
1464 int tries[ATA_MAX_DEVICES];
1465 int i, rc, down_xfermask;
1466 struct ata_device *dev;
1467
1468 ata_port_probe(ap);
1469
1470 for (i = 0; i < ATA_MAX_DEVICES; i++)
1471 tries[i] = ATA_PROBE_MAX_TRIES;
1472
1473 retry:
1474 down_xfermask = 0;
1475
1476 /* reset and determine device classes */
1477 for (i = 0; i < ATA_MAX_DEVICES; i++)
1478 classes[i] = ATA_DEV_UNKNOWN;
1479
1480 if (ap->ops->probe_reset) {
1481 rc = ap->ops->probe_reset(ap, classes);
1482 if (rc) {
1483 ata_port_printk(ap, KERN_ERR,
1484 "reset failed (errno=%d)\n", rc);
1485 return rc;
1486 }
1487 } else {
1488 ap->ops->phy_reset(ap);
1489
1490 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1491 if (!(ap->flags & ATA_FLAG_DISABLED))
1492 classes[i] = ap->device[i].class;
1493 ap->device[i].class = ATA_DEV_UNKNOWN;
1494 }
1495
1496 ata_port_probe(ap);
1497 }
1498
1499 for (i = 0; i < ATA_MAX_DEVICES; i++)
1500 if (classes[i] == ATA_DEV_UNKNOWN)
1501 classes[i] = ATA_DEV_NONE;
1502
1503 /* after the reset the device state is PIO 0 and the controller
1504 state is undefined. Record the mode */
1505
1506 for (i = 0; i < ATA_MAX_DEVICES; i++)
1507 ap->device[i].pio_mode = XFER_PIO_0;
1508
1509 /* read IDENTIFY page and configure devices */
1510 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1511 dev = &ap->device[i];
1512
1513 if (tries[i])
1514 dev->class = classes[i];
1515
1516 if (!ata_dev_enabled(dev))
1517 continue;
1518
1519 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1520 if (rc)
1521 goto fail;
1522
1523 rc = ata_dev_configure(dev, 1);
1524 if (rc)
1525 goto fail;
1526 }
1527
1528 /* configure transfer mode */
1529 rc = ata_set_mode(ap, &dev);
1530 if (rc) {
1531 down_xfermask = 1;
1532 goto fail;
1533 }
1534
1535 for (i = 0; i < ATA_MAX_DEVICES; i++)
1536 if (ata_dev_enabled(&ap->device[i]))
1537 return 0;
1538
1539 /* no device present, disable port */
1540 ata_port_disable(ap);
1541 ap->ops->port_disable(ap);
1542 return -ENODEV;
1543
1544 fail:
1545 switch (rc) {
1546 case -EINVAL:
1547 case -ENODEV:
1548 tries[dev->devno] = 0;
1549 break;
1550 case -EIO:
1551 sata_down_spd_limit(ap);
1552 /* fall through */
1553 default:
1554 tries[dev->devno]--;
1555 if (down_xfermask &&
1556 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1557 tries[dev->devno] = 0;
1558 }
1559
1560 if (!tries[dev->devno]) {
1561 ata_down_xfermask_limit(dev, 1);
1562 ata_dev_disable(dev);
1563 }
1564
1565 goto retry;
1566 }
1567
1568 /**
1569 * ata_port_probe - Mark port as enabled
1570 * @ap: Port for which we indicate enablement
1571 *
1572 * Modify @ap data structure such that the system
1573 * thinks that the entire port is enabled.
1574 *
1575 * LOCKING: host_set lock, or some other form of
1576 * serialization.
1577 */
1578
1579 void ata_port_probe(struct ata_port *ap)
1580 {
1581 ap->flags &= ~ATA_FLAG_DISABLED;
1582 }
1583
1584 /**
1585 * sata_print_link_status - Print SATA link status
1586 * @ap: SATA port to printk link status about
1587 *
1588 * This function prints link speed and status of a SATA link.
1589 *
1590 * LOCKING:
1591 * None.
1592 */
1593 static void sata_print_link_status(struct ata_port *ap)
1594 {
1595 u32 sstatus, scontrol, tmp;
1596
1597 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1598 return;
1599 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1600
1601 if (ata_port_online(ap)) {
1602 tmp = (sstatus >> 4) & 0xf;
1603 ata_port_printk(ap, KERN_INFO,
1604 "SATA link up %s (SStatus %X SControl %X)\n",
1605 sata_spd_string(tmp), sstatus, scontrol);
1606 } else {
1607 ata_port_printk(ap, KERN_INFO,
1608 "SATA link down (SStatus %X SControl %X)\n",
1609 sstatus, scontrol);
1610 }
1611 }
1612
1613 /**
1614 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1615 * @ap: SATA port associated with target SATA PHY.
1616 *
1617 * This function issues commands to standard SATA Sxxx
1618 * PHY registers, to wake up the phy (and device), and
1619 * clear any reset condition.
1620 *
1621 * LOCKING:
1622 * PCI/etc. bus probe sem.
1623 *
1624 */
1625 void __sata_phy_reset(struct ata_port *ap)
1626 {
1627 u32 sstatus;
1628 unsigned long timeout = jiffies + (HZ * 5);
1629
1630 if (ap->flags & ATA_FLAG_SATA_RESET) {
1631 /* issue phy wake/reset */
1632 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1633 /* Couldn't find anything in SATA I/II specs, but
1634 * AHCI-1.1 10.4.2 says at least 1 ms. */
1635 mdelay(1);
1636 }
1637 /* phy wake/clear reset */
1638 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1639
1640 /* wait for phy to become ready, if necessary */
1641 do {
1642 msleep(200);
1643 sata_scr_read(ap, SCR_STATUS, &sstatus);
1644 if ((sstatus & 0xf) != 1)
1645 break;
1646 } while (time_before(jiffies, timeout));
1647
1648 /* print link status */
1649 sata_print_link_status(ap);
1650
1651 /* TODO: phy layer with polling, timeouts, etc. */
1652 if (!ata_port_offline(ap))
1653 ata_port_probe(ap);
1654 else
1655 ata_port_disable(ap);
1656
1657 if (ap->flags & ATA_FLAG_DISABLED)
1658 return;
1659
1660 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1661 ata_port_disable(ap);
1662 return;
1663 }
1664
1665 ap->cbl = ATA_CBL_SATA;
1666 }
1667
1668 /**
1669 * sata_phy_reset - Reset SATA bus.
1670 * @ap: SATA port associated with target SATA PHY.
1671 *
1672 * This function resets the SATA bus, and then probes
1673 * the bus for devices.
1674 *
1675 * LOCKING:
1676 * PCI/etc. bus probe sem.
1677 *
1678 */
1679 void sata_phy_reset(struct ata_port *ap)
1680 {
1681 __sata_phy_reset(ap);
1682 if (ap->flags & ATA_FLAG_DISABLED)
1683 return;
1684 ata_bus_reset(ap);
1685 }
1686
1687 /**
1688 * ata_dev_pair - return other device on cable
1689 * @adev: device
1690 *
1691 * Obtain the other device on the same cable, or if none is
1692 * present NULL is returned
1693 */
1694
1695 struct ata_device *ata_dev_pair(struct ata_device *adev)
1696 {
1697 struct ata_port *ap = adev->ap;
1698 struct ata_device *pair = &ap->device[1 - adev->devno];
1699 if (!ata_dev_enabled(pair))
1700 return NULL;
1701 return pair;
1702 }
1703
1704 /**
1705 * ata_port_disable - Disable port.
1706 * @ap: Port to be disabled.
1707 *
1708 * Modify @ap data structure such that the system
1709 * thinks that the entire port is disabled, and should
1710 * never attempt to probe or communicate with devices
1711 * on this port.
1712 *
1713 * LOCKING: host_set lock, or some other form of
1714 * serialization.
1715 */
1716
1717 void ata_port_disable(struct ata_port *ap)
1718 {
1719 ap->device[0].class = ATA_DEV_NONE;
1720 ap->device[1].class = ATA_DEV_NONE;
1721 ap->flags |= ATA_FLAG_DISABLED;
1722 }
1723
1724 /**
1725 * sata_down_spd_limit - adjust SATA spd limit downward
1726 * @ap: Port to adjust SATA spd limit for
1727 *
1728 * Adjust SATA spd limit of @ap downward. Note that this
1729 * function only adjusts the limit. The change must be applied
1730 * using sata_set_spd().
1731 *
1732 * LOCKING:
1733 * Inherited from caller.
1734 *
1735 * RETURNS:
1736 * 0 on success, negative errno on failure
1737 */
1738 int sata_down_spd_limit(struct ata_port *ap)
1739 {
1740 u32 sstatus, spd, mask;
1741 int rc, highbit;
1742
1743 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1744 if (rc)
1745 return rc;
1746
1747 mask = ap->sata_spd_limit;
1748 if (mask <= 1)
1749 return -EINVAL;
1750 highbit = fls(mask) - 1;
1751 mask &= ~(1 << highbit);
1752
1753 spd = (sstatus >> 4) & 0xf;
1754 if (spd <= 1)
1755 return -EINVAL;
1756 spd--;
1757 mask &= (1 << spd) - 1;
1758 if (!mask)
1759 return -EINVAL;
1760
1761 ap->sata_spd_limit = mask;
1762
1763 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1764 sata_spd_string(fls(mask)));
1765
1766 return 0;
1767 }
1768
1769 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1770 {
1771 u32 spd, limit;
1772
1773 if (ap->sata_spd_limit == UINT_MAX)
1774 limit = 0;
1775 else
1776 limit = fls(ap->sata_spd_limit);
1777
1778 spd = (*scontrol >> 4) & 0xf;
1779 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1780
1781 return spd != limit;
1782 }
1783
1784 /**
1785 * sata_set_spd_needed - is SATA spd configuration needed
1786 * @ap: Port in question
1787 *
1788 * Test whether the spd limit in SControl matches
1789 * @ap->sata_spd_limit. This function is used to determine
1790 * whether hardreset is necessary to apply SATA spd
1791 * configuration.
1792 *
1793 * LOCKING:
1794 * Inherited from caller.
1795 *
1796 * RETURNS:
1797 * 1 if SATA spd configuration is needed, 0 otherwise.
1798 */
1799 int sata_set_spd_needed(struct ata_port *ap)
1800 {
1801 u32 scontrol;
1802
1803 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1804 return 0;
1805
1806 return __sata_set_spd_needed(ap, &scontrol);
1807 }
1808
1809 /**
1810 * sata_set_spd - set SATA spd according to spd limit
1811 * @ap: Port to set SATA spd for
1812 *
1813 * Set SATA spd of @ap according to sata_spd_limit.
1814 *
1815 * LOCKING:
1816 * Inherited from caller.
1817 *
1818 * RETURNS:
1819 * 0 if spd doesn't need to be changed, 1 if spd has been
1820 * changed. Negative errno if SCR registers are inaccessible.
1821 */
1822 int sata_set_spd(struct ata_port *ap)
1823 {
1824 u32 scontrol;
1825 int rc;
1826
1827 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1828 return rc;
1829
1830 if (!__sata_set_spd_needed(ap, &scontrol))
1831 return 0;
1832
1833 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1834 return rc;
1835
1836 return 1;
1837 }
1838
1839 /*
1840 * This mode timing computation functionality is ported over from
1841 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1842 */
1843 /*
1844 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1845 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1846 * for PIO 5, which is a nonstandard extension and UDMA6, which
1847 * is currently supported only by Maxtor drives.
1848 */
1849
1850 static const struct ata_timing ata_timing[] = {
1851
1852 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1853 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1854 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1855 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1856
1857 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1858 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1859 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1860
1861 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1862
1863 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1864 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1865 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1866
1867 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1868 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1869 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1870
1871 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1872 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1873 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1874
1875 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1876 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1877 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1878
1879 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1880
1881 { 0xFF }
1882 };
1883
1884 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1885 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1886
1887 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1888 {
1889 q->setup = EZ(t->setup * 1000, T);
1890 q->act8b = EZ(t->act8b * 1000, T);
1891 q->rec8b = EZ(t->rec8b * 1000, T);
1892 q->cyc8b = EZ(t->cyc8b * 1000, T);
1893 q->active = EZ(t->active * 1000, T);
1894 q->recover = EZ(t->recover * 1000, T);
1895 q->cycle = EZ(t->cycle * 1000, T);
1896 q->udma = EZ(t->udma * 1000, UT);
1897 }
1898
1899 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1900 struct ata_timing *m, unsigned int what)
1901 {
1902 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1903 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1904 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1905 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1906 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1907 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1908 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1909 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1910 }
1911
1912 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1913 {
1914 const struct ata_timing *t;
1915
1916 for (t = ata_timing; t->mode != speed; t++)
1917 if (t->mode == 0xFF)
1918 return NULL;
1919 return t;
1920 }
1921
1922 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1923 struct ata_timing *t, int T, int UT)
1924 {
1925 const struct ata_timing *s;
1926 struct ata_timing p;
1927
1928 /*
1929 * Find the mode.
1930 */
1931
1932 if (!(s = ata_timing_find_mode(speed)))
1933 return -EINVAL;
1934
1935 memcpy(t, s, sizeof(*s));
1936
1937 /*
1938 * If the drive is an EIDE drive, it can tell us it needs extended
1939 * PIO/MW_DMA cycle timing.
1940 */
1941
1942 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1943 memset(&p, 0, sizeof(p));
1944 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1945 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1946 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1947 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1948 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1949 }
1950 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1951 }
1952
1953 /*
1954 * Convert the timing to bus clock counts.
1955 */
1956
1957 ata_timing_quantize(t, t, T, UT);
1958
1959 /*
1960 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1961 * S.M.A.R.T * and some other commands. We have to ensure that the
1962 * DMA cycle timing is slower/equal than the fastest PIO timing.
1963 */
1964
1965 if (speed > XFER_PIO_4) {
1966 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1967 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1968 }
1969
1970 /*
1971 * Lengthen active & recovery time so that cycle time is correct.
1972 */
1973
1974 if (t->act8b + t->rec8b < t->cyc8b) {
1975 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1976 t->rec8b = t->cyc8b - t->act8b;
1977 }
1978
1979 if (t->active + t->recover < t->cycle) {
1980 t->active += (t->cycle - (t->active + t->recover)) / 2;
1981 t->recover = t->cycle - t->active;
1982 }
1983
1984 return 0;
1985 }
1986
1987 /**
1988 * ata_down_xfermask_limit - adjust dev xfer masks downward
1989 * @dev: Device to adjust xfer masks
1990 * @force_pio0: Force PIO0
1991 *
1992 * Adjust xfer masks of @dev downward. Note that this function
1993 * does not apply the change. Invoking ata_set_mode() afterwards
1994 * will apply the limit.
1995 *
1996 * LOCKING:
1997 * Inherited from caller.
1998 *
1999 * RETURNS:
2000 * 0 on success, negative errno on failure
2001 */
2002 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2003 {
2004 unsigned long xfer_mask;
2005 int highbit;
2006
2007 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2008 dev->udma_mask);
2009
2010 if (!xfer_mask)
2011 goto fail;
2012 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2013 if (xfer_mask & ATA_MASK_UDMA)
2014 xfer_mask &= ~ATA_MASK_MWDMA;
2015
2016 highbit = fls(xfer_mask) - 1;
2017 xfer_mask &= ~(1 << highbit);
2018 if (force_pio0)
2019 xfer_mask &= 1 << ATA_SHIFT_PIO;
2020 if (!xfer_mask)
2021 goto fail;
2022
2023 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2024 &dev->udma_mask);
2025
2026 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2027 ata_mode_string(xfer_mask));
2028
2029 return 0;
2030
2031 fail:
2032 return -EINVAL;
2033 }
2034
2035 static int ata_dev_set_mode(struct ata_device *dev)
2036 {
2037 unsigned int err_mask;
2038 int rc;
2039
2040 dev->flags &= ~ATA_DFLAG_PIO;
2041 if (dev->xfer_shift == ATA_SHIFT_PIO)
2042 dev->flags |= ATA_DFLAG_PIO;
2043
2044 err_mask = ata_dev_set_xfermode(dev);
2045 if (err_mask) {
2046 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2047 "(err_mask=0x%x)\n", err_mask);
2048 return -EIO;
2049 }
2050
2051 rc = ata_dev_revalidate(dev, 0);
2052 if (rc)
2053 return rc;
2054
2055 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2056 dev->xfer_shift, (int)dev->xfer_mode);
2057
2058 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2059 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2060 return 0;
2061 }
2062
2063 /**
2064 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2065 * @ap: port on which timings will be programmed
2066 * @r_failed_dev: out paramter for failed device
2067 *
2068 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2069 * ata_set_mode() fails, pointer to the failing device is
2070 * returned in @r_failed_dev.
2071 *
2072 * LOCKING:
2073 * PCI/etc. bus probe sem.
2074 *
2075 * RETURNS:
2076 * 0 on success, negative errno otherwise
2077 */
2078 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2079 {
2080 struct ata_device *dev;
2081 int i, rc = 0, used_dma = 0, found = 0;
2082
2083 /* has private set_mode? */
2084 if (ap->ops->set_mode) {
2085 /* FIXME: make ->set_mode handle no device case and
2086 * return error code and failing device on failure.
2087 */
2088 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2089 if (ata_dev_enabled(&ap->device[i])) {
2090 ap->ops->set_mode(ap);
2091 break;
2092 }
2093 }
2094 return 0;
2095 }
2096
2097 /* step 1: calculate xfer_mask */
2098 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2099 unsigned int pio_mask, dma_mask;
2100
2101 dev = &ap->device[i];
2102
2103 if (!ata_dev_enabled(dev))
2104 continue;
2105
2106 ata_dev_xfermask(dev);
2107
2108 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2109 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2110 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2111 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2112
2113 found = 1;
2114 if (dev->dma_mode)
2115 used_dma = 1;
2116 }
2117 if (!found)
2118 goto out;
2119
2120 /* step 2: always set host PIO timings */
2121 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2122 dev = &ap->device[i];
2123 if (!ata_dev_enabled(dev))
2124 continue;
2125
2126 if (!dev->pio_mode) {
2127 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2128 rc = -EINVAL;
2129 goto out;
2130 }
2131
2132 dev->xfer_mode = dev->pio_mode;
2133 dev->xfer_shift = ATA_SHIFT_PIO;
2134 if (ap->ops->set_piomode)
2135 ap->ops->set_piomode(ap, dev);
2136 }
2137
2138 /* step 3: set host DMA timings */
2139 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2140 dev = &ap->device[i];
2141
2142 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2143 continue;
2144
2145 dev->xfer_mode = dev->dma_mode;
2146 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2147 if (ap->ops->set_dmamode)
2148 ap->ops->set_dmamode(ap, dev);
2149 }
2150
2151 /* step 4: update devices' xfer mode */
2152 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2153 dev = &ap->device[i];
2154
2155 if (!ata_dev_enabled(dev))
2156 continue;
2157
2158 rc = ata_dev_set_mode(dev);
2159 if (rc)
2160 goto out;
2161 }
2162
2163 /* Record simplex status. If we selected DMA then the other
2164 * host channels are not permitted to do so.
2165 */
2166 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2167 ap->host_set->simplex_claimed = 1;
2168
2169 /* step5: chip specific finalisation */
2170 if (ap->ops->post_set_mode)
2171 ap->ops->post_set_mode(ap);
2172
2173 out:
2174 if (rc)
2175 *r_failed_dev = dev;
2176 return rc;
2177 }
2178
2179 /**
2180 * ata_tf_to_host - issue ATA taskfile to host controller
2181 * @ap: port to which command is being issued
2182 * @tf: ATA taskfile register set
2183 *
2184 * Issues ATA taskfile register set to ATA host controller,
2185 * with proper synchronization with interrupt handler and
2186 * other threads.
2187 *
2188 * LOCKING:
2189 * spin_lock_irqsave(host_set lock)
2190 */
2191
2192 static inline void ata_tf_to_host(struct ata_port *ap,
2193 const struct ata_taskfile *tf)
2194 {
2195 ap->ops->tf_load(ap, tf);
2196 ap->ops->exec_command(ap, tf);
2197 }
2198
2199 /**
2200 * ata_busy_sleep - sleep until BSY clears, or timeout
2201 * @ap: port containing status register to be polled
2202 * @tmout_pat: impatience timeout
2203 * @tmout: overall timeout
2204 *
2205 * Sleep until ATA Status register bit BSY clears,
2206 * or a timeout occurs.
2207 *
2208 * LOCKING: None.
2209 */
2210
2211 unsigned int ata_busy_sleep (struct ata_port *ap,
2212 unsigned long tmout_pat, unsigned long tmout)
2213 {
2214 unsigned long timer_start, timeout;
2215 u8 status;
2216
2217 status = ata_busy_wait(ap, ATA_BUSY, 300);
2218 timer_start = jiffies;
2219 timeout = timer_start + tmout_pat;
2220 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2221 msleep(50);
2222 status = ata_busy_wait(ap, ATA_BUSY, 3);
2223 }
2224
2225 if (status & ATA_BUSY)
2226 ata_port_printk(ap, KERN_WARNING,
2227 "port is slow to respond, please be patient\n");
2228
2229 timeout = timer_start + tmout;
2230 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2231 msleep(50);
2232 status = ata_chk_status(ap);
2233 }
2234
2235 if (status & ATA_BUSY) {
2236 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2237 "(%lu secs)\n", tmout / HZ);
2238 return 1;
2239 }
2240
2241 return 0;
2242 }
2243
2244 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2245 {
2246 struct ata_ioports *ioaddr = &ap->ioaddr;
2247 unsigned int dev0 = devmask & (1 << 0);
2248 unsigned int dev1 = devmask & (1 << 1);
2249 unsigned long timeout;
2250
2251 /* if device 0 was found in ata_devchk, wait for its
2252 * BSY bit to clear
2253 */
2254 if (dev0)
2255 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2256
2257 /* if device 1 was found in ata_devchk, wait for
2258 * register access, then wait for BSY to clear
2259 */
2260 timeout = jiffies + ATA_TMOUT_BOOT;
2261 while (dev1) {
2262 u8 nsect, lbal;
2263
2264 ap->ops->dev_select(ap, 1);
2265 if (ap->flags & ATA_FLAG_MMIO) {
2266 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2267 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2268 } else {
2269 nsect = inb(ioaddr->nsect_addr);
2270 lbal = inb(ioaddr->lbal_addr);
2271 }
2272 if ((nsect == 1) && (lbal == 1))
2273 break;
2274 if (time_after(jiffies, timeout)) {
2275 dev1 = 0;
2276 break;
2277 }
2278 msleep(50); /* give drive a breather */
2279 }
2280 if (dev1)
2281 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2282
2283 /* is all this really necessary? */
2284 ap->ops->dev_select(ap, 0);
2285 if (dev1)
2286 ap->ops->dev_select(ap, 1);
2287 if (dev0)
2288 ap->ops->dev_select(ap, 0);
2289 }
2290
2291 static unsigned int ata_bus_softreset(struct ata_port *ap,
2292 unsigned int devmask)
2293 {
2294 struct ata_ioports *ioaddr = &ap->ioaddr;
2295
2296 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2297
2298 /* software reset. causes dev0 to be selected */
2299 if (ap->flags & ATA_FLAG_MMIO) {
2300 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2301 udelay(20); /* FIXME: flush */
2302 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2303 udelay(20); /* FIXME: flush */
2304 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2305 } else {
2306 outb(ap->ctl, ioaddr->ctl_addr);
2307 udelay(10);
2308 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2309 udelay(10);
2310 outb(ap->ctl, ioaddr->ctl_addr);
2311 }
2312
2313 /* spec mandates ">= 2ms" before checking status.
2314 * We wait 150ms, because that was the magic delay used for
2315 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2316 * between when the ATA command register is written, and then
2317 * status is checked. Because waiting for "a while" before
2318 * checking status is fine, post SRST, we perform this magic
2319 * delay here as well.
2320 *
2321 * Old drivers/ide uses the 2mS rule and then waits for ready
2322 */
2323 msleep(150);
2324
2325 /* Before we perform post reset processing we want to see if
2326 * the bus shows 0xFF because the odd clown forgets the D7
2327 * pulldown resistor.
2328 */
2329 if (ata_check_status(ap) == 0xFF) {
2330 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2331 return AC_ERR_OTHER;
2332 }
2333
2334 ata_bus_post_reset(ap, devmask);
2335
2336 return 0;
2337 }
2338
2339 /**
2340 * ata_bus_reset - reset host port and associated ATA channel
2341 * @ap: port to reset
2342 *
2343 * This is typically the first time we actually start issuing
2344 * commands to the ATA channel. We wait for BSY to clear, then
2345 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2346 * result. Determine what devices, if any, are on the channel
2347 * by looking at the device 0/1 error register. Look at the signature
2348 * stored in each device's taskfile registers, to determine if
2349 * the device is ATA or ATAPI.
2350 *
2351 * LOCKING:
2352 * PCI/etc. bus probe sem.
2353 * Obtains host_set lock.
2354 *
2355 * SIDE EFFECTS:
2356 * Sets ATA_FLAG_DISABLED if bus reset fails.
2357 */
2358
2359 void ata_bus_reset(struct ata_port *ap)
2360 {
2361 struct ata_ioports *ioaddr = &ap->ioaddr;
2362 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2363 u8 err;
2364 unsigned int dev0, dev1 = 0, devmask = 0;
2365
2366 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2367
2368 /* determine if device 0/1 are present */
2369 if (ap->flags & ATA_FLAG_SATA_RESET)
2370 dev0 = 1;
2371 else {
2372 dev0 = ata_devchk(ap, 0);
2373 if (slave_possible)
2374 dev1 = ata_devchk(ap, 1);
2375 }
2376
2377 if (dev0)
2378 devmask |= (1 << 0);
2379 if (dev1)
2380 devmask |= (1 << 1);
2381
2382 /* select device 0 again */
2383 ap->ops->dev_select(ap, 0);
2384
2385 /* issue bus reset */
2386 if (ap->flags & ATA_FLAG_SRST)
2387 if (ata_bus_softreset(ap, devmask))
2388 goto err_out;
2389
2390 /*
2391 * determine by signature whether we have ATA or ATAPI devices
2392 */
2393 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2394 if ((slave_possible) && (err != 0x81))
2395 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2396
2397 /* re-enable interrupts */
2398 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2399 ata_irq_on(ap);
2400
2401 /* is double-select really necessary? */
2402 if (ap->device[1].class != ATA_DEV_NONE)
2403 ap->ops->dev_select(ap, 1);
2404 if (ap->device[0].class != ATA_DEV_NONE)
2405 ap->ops->dev_select(ap, 0);
2406
2407 /* if no devices were detected, disable this port */
2408 if ((ap->device[0].class == ATA_DEV_NONE) &&
2409 (ap->device[1].class == ATA_DEV_NONE))
2410 goto err_out;
2411
2412 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2413 /* set up device control for ATA_FLAG_SATA_RESET */
2414 if (ap->flags & ATA_FLAG_MMIO)
2415 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2416 else
2417 outb(ap->ctl, ioaddr->ctl_addr);
2418 }
2419
2420 DPRINTK("EXIT\n");
2421 return;
2422
2423 err_out:
2424 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2425 ap->ops->port_disable(ap);
2426
2427 DPRINTK("EXIT\n");
2428 }
2429
2430 static int sata_phy_resume(struct ata_port *ap)
2431 {
2432 unsigned long timeout = jiffies + (HZ * 5);
2433 u32 scontrol, sstatus;
2434 int rc;
2435
2436 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2437 return rc;
2438
2439 scontrol = (scontrol & 0x0f0) | 0x300;
2440
2441 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2442 return rc;
2443
2444 /* Wait for phy to become ready, if necessary. */
2445 do {
2446 msleep(200);
2447 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2448 return rc;
2449 if ((sstatus & 0xf) != 1)
2450 return 0;
2451 } while (time_before(jiffies, timeout));
2452
2453 return -EBUSY;
2454 }
2455
2456 /**
2457 * ata_std_probeinit - initialize probing
2458 * @ap: port to be probed
2459 *
2460 * @ap is about to be probed. Initialize it. This function is
2461 * to be used as standard callback for ata_drive_probe_reset().
2462 *
2463 * NOTE!!! Do not use this function as probeinit if a low level
2464 * driver implements only hardreset. Just pass NULL as probeinit
2465 * in that case. Using this function is probably okay but doing
2466 * so makes reset sequence different from the original
2467 * ->phy_reset implementation and Jeff nervous. :-P
2468 */
2469 void ata_std_probeinit(struct ata_port *ap)
2470 {
2471 /* resume link */
2472 sata_phy_resume(ap);
2473
2474 /* wait for device */
2475 if (ata_port_online(ap))
2476 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2477 }
2478
2479 /**
2480 * ata_std_softreset - reset host port via ATA SRST
2481 * @ap: port to reset
2482 * @classes: resulting classes of attached devices
2483 *
2484 * Reset host port using ATA SRST. This function is to be used
2485 * as standard callback for ata_drive_*_reset() functions.
2486 *
2487 * LOCKING:
2488 * Kernel thread context (may sleep)
2489 *
2490 * RETURNS:
2491 * 0 on success, -errno otherwise.
2492 */
2493 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2494 {
2495 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2496 unsigned int devmask = 0, err_mask;
2497 u8 err;
2498
2499 DPRINTK("ENTER\n");
2500
2501 if (ata_port_offline(ap)) {
2502 classes[0] = ATA_DEV_NONE;
2503 goto out;
2504 }
2505
2506 /* determine if device 0/1 are present */
2507 if (ata_devchk(ap, 0))
2508 devmask |= (1 << 0);
2509 if (slave_possible && ata_devchk(ap, 1))
2510 devmask |= (1 << 1);
2511
2512 /* select device 0 again */
2513 ap->ops->dev_select(ap, 0);
2514
2515 /* issue bus reset */
2516 DPRINTK("about to softreset, devmask=%x\n", devmask);
2517 err_mask = ata_bus_softreset(ap, devmask);
2518 if (err_mask) {
2519 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2520 err_mask);
2521 return -EIO;
2522 }
2523
2524 /* determine by signature whether we have ATA or ATAPI devices */
2525 classes[0] = ata_dev_try_classify(ap, 0, &err);
2526 if (slave_possible && err != 0x81)
2527 classes[1] = ata_dev_try_classify(ap, 1, &err);
2528
2529 out:
2530 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2531 return 0;
2532 }
2533
2534 /**
2535 * sata_std_hardreset - reset host port via SATA phy reset
2536 * @ap: port to reset
2537 * @class: resulting class of attached device
2538 *
2539 * SATA phy-reset host port using DET bits of SControl register.
2540 * This function is to be used as standard callback for
2541 * ata_drive_*_reset().
2542 *
2543 * LOCKING:
2544 * Kernel thread context (may sleep)
2545 *
2546 * RETURNS:
2547 * 0 on success, -errno otherwise.
2548 */
2549 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2550 {
2551 u32 scontrol;
2552 int rc;
2553
2554 DPRINTK("ENTER\n");
2555
2556 if (sata_set_spd_needed(ap)) {
2557 /* SATA spec says nothing about how to reconfigure
2558 * spd. To be on the safe side, turn off phy during
2559 * reconfiguration. This works for at least ICH7 AHCI
2560 * and Sil3124.
2561 */
2562 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2563 return rc;
2564
2565 scontrol = (scontrol & 0x0f0) | 0x302;
2566
2567 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2568 return rc;
2569
2570 sata_set_spd(ap);
2571 }
2572
2573 /* issue phy wake/reset */
2574 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2575 return rc;
2576
2577 scontrol = (scontrol & 0x0f0) | 0x301;
2578
2579 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2580 return rc;
2581
2582 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2583 * 10.4.2 says at least 1 ms.
2584 */
2585 msleep(1);
2586
2587 /* bring phy back */
2588 sata_phy_resume(ap);
2589
2590 /* TODO: phy layer with polling, timeouts, etc. */
2591 if (ata_port_offline(ap)) {
2592 *class = ATA_DEV_NONE;
2593 DPRINTK("EXIT, link offline\n");
2594 return 0;
2595 }
2596
2597 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2598 ata_port_printk(ap, KERN_ERR,
2599 "COMRESET failed (device not ready)\n");
2600 return -EIO;
2601 }
2602
2603 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2604
2605 *class = ata_dev_try_classify(ap, 0, NULL);
2606
2607 DPRINTK("EXIT, class=%u\n", *class);
2608 return 0;
2609 }
2610
2611 /**
2612 * ata_std_postreset - standard postreset callback
2613 * @ap: the target ata_port
2614 * @classes: classes of attached devices
2615 *
2616 * This function is invoked after a successful reset. Note that
2617 * the device might have been reset more than once using
2618 * different reset methods before postreset is invoked.
2619 *
2620 * This function is to be used as standard callback for
2621 * ata_drive_*_reset().
2622 *
2623 * LOCKING:
2624 * Kernel thread context (may sleep)
2625 */
2626 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2627 {
2628 u32 serror;
2629
2630 DPRINTK("ENTER\n");
2631
2632 /* print link status */
2633 sata_print_link_status(ap);
2634
2635 /* clear SError */
2636 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2637 sata_scr_write(ap, SCR_ERROR, serror);
2638
2639 /* re-enable interrupts */
2640 if (!ap->ops->error_handler) {
2641 /* FIXME: hack. create a hook instead */
2642 if (ap->ioaddr.ctl_addr)
2643 ata_irq_on(ap);
2644 }
2645
2646 /* is double-select really necessary? */
2647 if (classes[0] != ATA_DEV_NONE)
2648 ap->ops->dev_select(ap, 1);
2649 if (classes[1] != ATA_DEV_NONE)
2650 ap->ops->dev_select(ap, 0);
2651
2652 /* bail out if no device is present */
2653 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2654 DPRINTK("EXIT, no device\n");
2655 return;
2656 }
2657
2658 /* set up device control */
2659 if (ap->ioaddr.ctl_addr) {
2660 if (ap->flags & ATA_FLAG_MMIO)
2661 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2662 else
2663 outb(ap->ctl, ap->ioaddr.ctl_addr);
2664 }
2665
2666 DPRINTK("EXIT\n");
2667 }
2668
2669 /**
2670 * ata_std_probe_reset - standard probe reset method
2671 * @ap: prot to perform probe-reset
2672 * @classes: resulting classes of attached devices
2673 *
2674 * The stock off-the-shelf ->probe_reset method.
2675 *
2676 * LOCKING:
2677 * Kernel thread context (may sleep)
2678 *
2679 * RETURNS:
2680 * 0 on success, -errno otherwise.
2681 */
2682 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2683 {
2684 ata_reset_fn_t hardreset;
2685
2686 hardreset = NULL;
2687 if (sata_scr_valid(ap))
2688 hardreset = sata_std_hardreset;
2689
2690 return ata_drive_probe_reset(ap, ata_std_probeinit,
2691 ata_std_softreset, hardreset,
2692 ata_std_postreset, classes);
2693 }
2694
2695 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2696 unsigned int *classes)
2697 {
2698 int i, rc;
2699
2700 for (i = 0; i < ATA_MAX_DEVICES; i++)
2701 classes[i] = ATA_DEV_UNKNOWN;
2702
2703 rc = reset(ap, classes);
2704 if (rc)
2705 return rc;
2706
2707 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2708 * is complete and convert all ATA_DEV_UNKNOWN to
2709 * ATA_DEV_NONE.
2710 */
2711 for (i = 0; i < ATA_MAX_DEVICES; i++)
2712 if (classes[i] != ATA_DEV_UNKNOWN)
2713 break;
2714
2715 if (i < ATA_MAX_DEVICES)
2716 for (i = 0; i < ATA_MAX_DEVICES; i++)
2717 if (classes[i] == ATA_DEV_UNKNOWN)
2718 classes[i] = ATA_DEV_NONE;
2719
2720 return 0;
2721 }
2722
2723 /**
2724 * ata_drive_probe_reset - Perform probe reset with given methods
2725 * @ap: port to reset
2726 * @probeinit: probeinit method (can be NULL)
2727 * @softreset: softreset method (can be NULL)
2728 * @hardreset: hardreset method (can be NULL)
2729 * @postreset: postreset method (can be NULL)
2730 * @classes: resulting classes of attached devices
2731 *
2732 * Reset the specified port and classify attached devices using
2733 * given methods. This function prefers softreset but tries all
2734 * possible reset sequences to reset and classify devices. This
2735 * function is intended to be used for constructing ->probe_reset
2736 * callback by low level drivers.
2737 *
2738 * Reset methods should follow the following rules.
2739 *
2740 * - Return 0 on sucess, -errno on failure.
2741 * - If classification is supported, fill classes[] with
2742 * recognized class codes.
2743 * - If classification is not supported, leave classes[] alone.
2744 *
2745 * LOCKING:
2746 * Kernel thread context (may sleep)
2747 *
2748 * RETURNS:
2749 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2750 * if classification fails, and any error code from reset
2751 * methods.
2752 */
2753 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2754 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2755 ata_postreset_fn_t postreset, unsigned int *classes)
2756 {
2757 int rc = -EINVAL;
2758
2759 ata_eh_freeze_port(ap);
2760
2761 if (probeinit)
2762 probeinit(ap);
2763
2764 if (softreset && !sata_set_spd_needed(ap)) {
2765 rc = ata_do_reset(ap, softreset, classes);
2766 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2767 goto done;
2768 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2769 "will try hardreset in 5 secs\n");
2770 ssleep(5);
2771 }
2772
2773 if (!hardreset)
2774 goto done;
2775
2776 while (1) {
2777 rc = ata_do_reset(ap, hardreset, classes);
2778 if (rc == 0) {
2779 if (classes[0] != ATA_DEV_UNKNOWN)
2780 goto done;
2781 break;
2782 }
2783
2784 if (sata_down_spd_limit(ap))
2785 goto done;
2786
2787 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2788 "will retry in 5 secs\n");
2789 ssleep(5);
2790 }
2791
2792 if (softreset) {
2793 ata_port_printk(ap, KERN_INFO,
2794 "hardreset succeeded without classification, "
2795 "will retry softreset in 5 secs\n");
2796 ssleep(5);
2797
2798 rc = ata_do_reset(ap, softreset, classes);
2799 }
2800
2801 done:
2802 if (rc == 0) {
2803 if (postreset)
2804 postreset(ap, classes);
2805
2806 ata_eh_thaw_port(ap);
2807
2808 if (classes[0] == ATA_DEV_UNKNOWN)
2809 rc = -ENODEV;
2810 }
2811 return rc;
2812 }
2813
2814 /**
2815 * ata_dev_same_device - Determine whether new ID matches configured device
2816 * @dev: device to compare against
2817 * @new_class: class of the new device
2818 * @new_id: IDENTIFY page of the new device
2819 *
2820 * Compare @new_class and @new_id against @dev and determine
2821 * whether @dev is the device indicated by @new_class and
2822 * @new_id.
2823 *
2824 * LOCKING:
2825 * None.
2826 *
2827 * RETURNS:
2828 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2829 */
2830 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2831 const u16 *new_id)
2832 {
2833 const u16 *old_id = dev->id;
2834 unsigned char model[2][41], serial[2][21];
2835 u64 new_n_sectors;
2836
2837 if (dev->class != new_class) {
2838 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2839 dev->class, new_class);
2840 return 0;
2841 }
2842
2843 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2844 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2845 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2846 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2847 new_n_sectors = ata_id_n_sectors(new_id);
2848
2849 if (strcmp(model[0], model[1])) {
2850 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2851 "'%s' != '%s'\n", model[0], model[1]);
2852 return 0;
2853 }
2854
2855 if (strcmp(serial[0], serial[1])) {
2856 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2857 "'%s' != '%s'\n", serial[0], serial[1]);
2858 return 0;
2859 }
2860
2861 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2862 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2863 "%llu != %llu\n",
2864 (unsigned long long)dev->n_sectors,
2865 (unsigned long long)new_n_sectors);
2866 return 0;
2867 }
2868
2869 return 1;
2870 }
2871
2872 /**
2873 * ata_dev_revalidate - Revalidate ATA device
2874 * @dev: device to revalidate
2875 * @post_reset: is this revalidation after reset?
2876 *
2877 * Re-read IDENTIFY page and make sure @dev is still attached to
2878 * the port.
2879 *
2880 * LOCKING:
2881 * Kernel thread context (may sleep)
2882 *
2883 * RETURNS:
2884 * 0 on success, negative errno otherwise
2885 */
2886 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2887 {
2888 unsigned int class = dev->class;
2889 u16 *id = (void *)dev->ap->sector_buf;
2890 int rc;
2891
2892 if (!ata_dev_enabled(dev)) {
2893 rc = -ENODEV;
2894 goto fail;
2895 }
2896
2897 /* read ID data */
2898 rc = ata_dev_read_id(dev, &class, post_reset, id);
2899 if (rc)
2900 goto fail;
2901
2902 /* is the device still there? */
2903 if (!ata_dev_same_device(dev, class, id)) {
2904 rc = -ENODEV;
2905 goto fail;
2906 }
2907
2908 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2909
2910 /* configure device according to the new ID */
2911 rc = ata_dev_configure(dev, 0);
2912 if (rc == 0)
2913 return 0;
2914
2915 fail:
2916 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2917 return rc;
2918 }
2919
2920 static const char * const ata_dma_blacklist [] = {
2921 "WDC AC11000H", NULL,
2922 "WDC AC22100H", NULL,
2923 "WDC AC32500H", NULL,
2924 "WDC AC33100H", NULL,
2925 "WDC AC31600H", NULL,
2926 "WDC AC32100H", "24.09P07",
2927 "WDC AC23200L", "21.10N21",
2928 "Compaq CRD-8241B", NULL,
2929 "CRD-8400B", NULL,
2930 "CRD-8480B", NULL,
2931 "CRD-8482B", NULL,
2932 "CRD-84", NULL,
2933 "SanDisk SDP3B", NULL,
2934 "SanDisk SDP3B-64", NULL,
2935 "SANYO CD-ROM CRD", NULL,
2936 "HITACHI CDR-8", NULL,
2937 "HITACHI CDR-8335", NULL,
2938 "HITACHI CDR-8435", NULL,
2939 "Toshiba CD-ROM XM-6202B", NULL,
2940 "TOSHIBA CD-ROM XM-1702BC", NULL,
2941 "CD-532E-A", NULL,
2942 "E-IDE CD-ROM CR-840", NULL,
2943 "CD-ROM Drive/F5A", NULL,
2944 "WPI CDD-820", NULL,
2945 "SAMSUNG CD-ROM SC-148C", NULL,
2946 "SAMSUNG CD-ROM SC", NULL,
2947 "SanDisk SDP3B-64", NULL,
2948 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2949 "_NEC DV5800A", NULL,
2950 "SAMSUNG CD-ROM SN-124", "N001"
2951 };
2952
2953 static int ata_strim(char *s, size_t len)
2954 {
2955 len = strnlen(s, len);
2956
2957 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2958 while ((len > 0) && (s[len - 1] == ' ')) {
2959 len--;
2960 s[len] = 0;
2961 }
2962 return len;
2963 }
2964
2965 static int ata_dma_blacklisted(const struct ata_device *dev)
2966 {
2967 unsigned char model_num[40];
2968 unsigned char model_rev[16];
2969 unsigned int nlen, rlen;
2970 int i;
2971
2972 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2973 sizeof(model_num));
2974 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2975 sizeof(model_rev));
2976 nlen = ata_strim(model_num, sizeof(model_num));
2977 rlen = ata_strim(model_rev, sizeof(model_rev));
2978
2979 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2980 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2981 if (ata_dma_blacklist[i+1] == NULL)
2982 return 1;
2983 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2984 return 1;
2985 }
2986 }
2987 return 0;
2988 }
2989
2990 /**
2991 * ata_dev_xfermask - Compute supported xfermask of the given device
2992 * @dev: Device to compute xfermask for
2993 *
2994 * Compute supported xfermask of @dev and store it in
2995 * dev->*_mask. This function is responsible for applying all
2996 * known limits including host controller limits, device
2997 * blacklist, etc...
2998 *
2999 * FIXME: The current implementation limits all transfer modes to
3000 * the fastest of the lowested device on the port. This is not
3001 * required on most controllers.
3002 *
3003 * LOCKING:
3004 * None.
3005 */
3006 static void ata_dev_xfermask(struct ata_device *dev)
3007 {
3008 struct ata_port *ap = dev->ap;
3009 struct ata_host_set *hs = ap->host_set;
3010 unsigned long xfer_mask;
3011 int i;
3012
3013 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3014 ap->mwdma_mask, ap->udma_mask);
3015
3016 /* Apply cable rule here. Don't apply it early because when
3017 * we handle hot plug the cable type can itself change.
3018 */
3019 if (ap->cbl == ATA_CBL_PATA40)
3020 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3021
3022 /* FIXME: Use port-wide xfermask for now */
3023 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3024 struct ata_device *d = &ap->device[i];
3025
3026 if (ata_dev_absent(d))
3027 continue;
3028
3029 if (ata_dev_disabled(d)) {
3030 /* to avoid violating device selection timing */
3031 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3032 UINT_MAX, UINT_MAX);
3033 continue;
3034 }
3035
3036 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3037 d->mwdma_mask, d->udma_mask);
3038 xfer_mask &= ata_id_xfermask(d->id);
3039 if (ata_dma_blacklisted(d))
3040 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3041 }
3042
3043 if (ata_dma_blacklisted(dev))
3044 ata_dev_printk(dev, KERN_WARNING,
3045 "device is on DMA blacklist, disabling DMA\n");
3046
3047 if (hs->flags & ATA_HOST_SIMPLEX) {
3048 if (hs->simplex_claimed)
3049 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3050 }
3051
3052 if (ap->ops->mode_filter)
3053 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3054
3055 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3056 &dev->mwdma_mask, &dev->udma_mask);
3057 }
3058
3059 /**
3060 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3061 * @dev: Device to which command will be sent
3062 *
3063 * Issue SET FEATURES - XFER MODE command to device @dev
3064 * on port @ap.
3065 *
3066 * LOCKING:
3067 * PCI/etc. bus probe sem.
3068 *
3069 * RETURNS:
3070 * 0 on success, AC_ERR_* mask otherwise.
3071 */
3072
3073 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3074 {
3075 struct ata_taskfile tf;
3076 unsigned int err_mask;
3077
3078 /* set up set-features taskfile */
3079 DPRINTK("set features - xfer mode\n");
3080
3081 ata_tf_init(dev, &tf);
3082 tf.command = ATA_CMD_SET_FEATURES;
3083 tf.feature = SETFEATURES_XFER;
3084 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3085 tf.protocol = ATA_PROT_NODATA;
3086 tf.nsect = dev->xfer_mode;
3087
3088 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3089
3090 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3091 return err_mask;
3092 }
3093
3094 /**
3095 * ata_dev_init_params - Issue INIT DEV PARAMS command
3096 * @dev: Device to which command will be sent
3097 * @heads: Number of heads (taskfile parameter)
3098 * @sectors: Number of sectors (taskfile parameter)
3099 *
3100 * LOCKING:
3101 * Kernel thread context (may sleep)
3102 *
3103 * RETURNS:
3104 * 0 on success, AC_ERR_* mask otherwise.
3105 */
3106 static unsigned int ata_dev_init_params(struct ata_device *dev,
3107 u16 heads, u16 sectors)
3108 {
3109 struct ata_taskfile tf;
3110 unsigned int err_mask;
3111
3112 /* Number of sectors per track 1-255. Number of heads 1-16 */
3113 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3114 return AC_ERR_INVALID;
3115
3116 /* set up init dev params taskfile */
3117 DPRINTK("init dev params \n");
3118
3119 ata_tf_init(dev, &tf);
3120 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3121 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3122 tf.protocol = ATA_PROT_NODATA;
3123 tf.nsect = sectors;
3124 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3125
3126 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3127
3128 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3129 return err_mask;
3130 }
3131
3132 /**
3133 * ata_sg_clean - Unmap DMA memory associated with command
3134 * @qc: Command containing DMA memory to be released
3135 *
3136 * Unmap all mapped DMA memory associated with this command.
3137 *
3138 * LOCKING:
3139 * spin_lock_irqsave(host_set lock)
3140 */
3141
3142 static void ata_sg_clean(struct ata_queued_cmd *qc)
3143 {
3144 struct ata_port *ap = qc->ap;
3145 struct scatterlist *sg = qc->__sg;
3146 int dir = qc->dma_dir;
3147 void *pad_buf = NULL;
3148
3149 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3150 WARN_ON(sg == NULL);
3151
3152 if (qc->flags & ATA_QCFLAG_SINGLE)
3153 WARN_ON(qc->n_elem > 1);
3154
3155 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3156
3157 /* if we padded the buffer out to 32-bit bound, and data
3158 * xfer direction is from-device, we must copy from the
3159 * pad buffer back into the supplied buffer
3160 */
3161 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3162 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3163
3164 if (qc->flags & ATA_QCFLAG_SG) {
3165 if (qc->n_elem)
3166 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3167 /* restore last sg */
3168 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3169 if (pad_buf) {
3170 struct scatterlist *psg = &qc->pad_sgent;
3171 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3172 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3173 kunmap_atomic(addr, KM_IRQ0);
3174 }
3175 } else {
3176 if (qc->n_elem)
3177 dma_unmap_single(ap->dev,
3178 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3179 dir);
3180 /* restore sg */
3181 sg->length += qc->pad_len;
3182 if (pad_buf)
3183 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3184 pad_buf, qc->pad_len);
3185 }
3186
3187 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3188 qc->__sg = NULL;
3189 }
3190
3191 /**
3192 * ata_fill_sg - Fill PCI IDE PRD table
3193 * @qc: Metadata associated with taskfile to be transferred
3194 *
3195 * Fill PCI IDE PRD (scatter-gather) table with segments
3196 * associated with the current disk command.
3197 *
3198 * LOCKING:
3199 * spin_lock_irqsave(host_set lock)
3200 *
3201 */
3202 static void ata_fill_sg(struct ata_queued_cmd *qc)
3203 {
3204 struct ata_port *ap = qc->ap;
3205 struct scatterlist *sg;
3206 unsigned int idx;
3207
3208 WARN_ON(qc->__sg == NULL);
3209 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3210
3211 idx = 0;
3212 ata_for_each_sg(sg, qc) {
3213 u32 addr, offset;
3214 u32 sg_len, len;
3215
3216 /* determine if physical DMA addr spans 64K boundary.
3217 * Note h/w doesn't support 64-bit, so we unconditionally
3218 * truncate dma_addr_t to u32.
3219 */
3220 addr = (u32) sg_dma_address(sg);
3221 sg_len = sg_dma_len(sg);
3222
3223 while (sg_len) {
3224 offset = addr & 0xffff;
3225 len = sg_len;
3226 if ((offset + sg_len) > 0x10000)
3227 len = 0x10000 - offset;
3228
3229 ap->prd[idx].addr = cpu_to_le32(addr);
3230 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3231 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3232
3233 idx++;
3234 sg_len -= len;
3235 addr += len;
3236 }
3237 }
3238
3239 if (idx)
3240 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3241 }
3242 /**
3243 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3244 * @qc: Metadata associated with taskfile to check
3245 *
3246 * Allow low-level driver to filter ATA PACKET commands, returning
3247 * a status indicating whether or not it is OK to use DMA for the
3248 * supplied PACKET command.
3249 *
3250 * LOCKING:
3251 * spin_lock_irqsave(host_set lock)
3252 *
3253 * RETURNS: 0 when ATAPI DMA can be used
3254 * nonzero otherwise
3255 */
3256 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3257 {
3258 struct ata_port *ap = qc->ap;
3259 int rc = 0; /* Assume ATAPI DMA is OK by default */
3260
3261 if (ap->ops->check_atapi_dma)
3262 rc = ap->ops->check_atapi_dma(qc);
3263
3264 /* We don't support polling DMA.
3265 * Use PIO if the LLDD handles only interrupts in
3266 * the HSM_ST_LAST state and the ATAPI device
3267 * generates CDB interrupts.
3268 */
3269 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3270 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3271 rc = 1;
3272
3273 return rc;
3274 }
3275 /**
3276 * ata_qc_prep - Prepare taskfile for submission
3277 * @qc: Metadata associated with taskfile to be prepared
3278 *
3279 * Prepare ATA taskfile for submission.
3280 *
3281 * LOCKING:
3282 * spin_lock_irqsave(host_set lock)
3283 */
3284 void ata_qc_prep(struct ata_queued_cmd *qc)
3285 {
3286 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3287 return;
3288
3289 ata_fill_sg(qc);
3290 }
3291
3292 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3293
3294 /**
3295 * ata_sg_init_one - Associate command with memory buffer
3296 * @qc: Command to be associated
3297 * @buf: Memory buffer
3298 * @buflen: Length of memory buffer, in bytes.
3299 *
3300 * Initialize the data-related elements of queued_cmd @qc
3301 * to point to a single memory buffer, @buf of byte length @buflen.
3302 *
3303 * LOCKING:
3304 * spin_lock_irqsave(host_set lock)
3305 */
3306
3307 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3308 {
3309 struct scatterlist *sg;
3310
3311 qc->flags |= ATA_QCFLAG_SINGLE;
3312
3313 memset(&qc->sgent, 0, sizeof(qc->sgent));
3314 qc->__sg = &qc->sgent;
3315 qc->n_elem = 1;
3316 qc->orig_n_elem = 1;
3317 qc->buf_virt = buf;
3318
3319 sg = qc->__sg;
3320 sg_init_one(sg, buf, buflen);
3321 }
3322
3323 /**
3324 * ata_sg_init - Associate command with scatter-gather table.
3325 * @qc: Command to be associated
3326 * @sg: Scatter-gather table.
3327 * @n_elem: Number of elements in s/g table.
3328 *
3329 * Initialize the data-related elements of queued_cmd @qc
3330 * to point to a scatter-gather table @sg, containing @n_elem
3331 * elements.
3332 *
3333 * LOCKING:
3334 * spin_lock_irqsave(host_set lock)
3335 */
3336
3337 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3338 unsigned int n_elem)
3339 {
3340 qc->flags |= ATA_QCFLAG_SG;
3341 qc->__sg = sg;
3342 qc->n_elem = n_elem;
3343 qc->orig_n_elem = n_elem;
3344 }
3345
3346 /**
3347 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3348 * @qc: Command with memory buffer to be mapped.
3349 *
3350 * DMA-map the memory buffer associated with queued_cmd @qc.
3351 *
3352 * LOCKING:
3353 * spin_lock_irqsave(host_set lock)
3354 *
3355 * RETURNS:
3356 * Zero on success, negative on error.
3357 */
3358
3359 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3360 {
3361 struct ata_port *ap = qc->ap;
3362 int dir = qc->dma_dir;
3363 struct scatterlist *sg = qc->__sg;
3364 dma_addr_t dma_address;
3365 int trim_sg = 0;
3366
3367 /* we must lengthen transfers to end on a 32-bit boundary */
3368 qc->pad_len = sg->length & 3;
3369 if (qc->pad_len) {
3370 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3371 struct scatterlist *psg = &qc->pad_sgent;
3372
3373 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3374
3375 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3376
3377 if (qc->tf.flags & ATA_TFLAG_WRITE)
3378 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3379 qc->pad_len);
3380
3381 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3382 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3383 /* trim sg */
3384 sg->length -= qc->pad_len;
3385 if (sg->length == 0)
3386 trim_sg = 1;
3387
3388 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3389 sg->length, qc->pad_len);
3390 }
3391
3392 if (trim_sg) {
3393 qc->n_elem--;
3394 goto skip_map;
3395 }
3396
3397 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3398 sg->length, dir);
3399 if (dma_mapping_error(dma_address)) {
3400 /* restore sg */
3401 sg->length += qc->pad_len;
3402 return -1;
3403 }
3404
3405 sg_dma_address(sg) = dma_address;
3406 sg_dma_len(sg) = sg->length;
3407
3408 skip_map:
3409 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3410 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3411
3412 return 0;
3413 }
3414
3415 /**
3416 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3417 * @qc: Command with scatter-gather table to be mapped.
3418 *
3419 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3420 *
3421 * LOCKING:
3422 * spin_lock_irqsave(host_set lock)
3423 *
3424 * RETURNS:
3425 * Zero on success, negative on error.
3426 *
3427 */
3428
3429 static int ata_sg_setup(struct ata_queued_cmd *qc)
3430 {
3431 struct ata_port *ap = qc->ap;
3432 struct scatterlist *sg = qc->__sg;
3433 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3434 int n_elem, pre_n_elem, dir, trim_sg = 0;
3435
3436 VPRINTK("ENTER, ata%u\n", ap->id);
3437 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3438
3439 /* we must lengthen transfers to end on a 32-bit boundary */
3440 qc->pad_len = lsg->length & 3;
3441 if (qc->pad_len) {
3442 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3443 struct scatterlist *psg = &qc->pad_sgent;
3444 unsigned int offset;
3445
3446 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3447
3448 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3449
3450 /*
3451 * psg->page/offset are used to copy to-be-written
3452 * data in this function or read data in ata_sg_clean.
3453 */
3454 offset = lsg->offset + lsg->length - qc->pad_len;
3455 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3456 psg->offset = offset_in_page(offset);
3457
3458 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3459 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3460 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3461 kunmap_atomic(addr, KM_IRQ0);
3462 }
3463
3464 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3465 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3466 /* trim last sg */
3467 lsg->length -= qc->pad_len;
3468 if (lsg->length == 0)
3469 trim_sg = 1;
3470
3471 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3472 qc->n_elem - 1, lsg->length, qc->pad_len);
3473 }
3474
3475 pre_n_elem = qc->n_elem;
3476 if (trim_sg && pre_n_elem)
3477 pre_n_elem--;
3478
3479 if (!pre_n_elem) {
3480 n_elem = 0;
3481 goto skip_map;
3482 }
3483
3484 dir = qc->dma_dir;
3485 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3486 if (n_elem < 1) {
3487 /* restore last sg */
3488 lsg->length += qc->pad_len;
3489 return -1;
3490 }
3491
3492 DPRINTK("%d sg elements mapped\n", n_elem);
3493
3494 skip_map:
3495 qc->n_elem = n_elem;
3496
3497 return 0;
3498 }
3499
3500 /**
3501 * swap_buf_le16 - swap halves of 16-bit words in place
3502 * @buf: Buffer to swap
3503 * @buf_words: Number of 16-bit words in buffer.
3504 *
3505 * Swap halves of 16-bit words if needed to convert from
3506 * little-endian byte order to native cpu byte order, or
3507 * vice-versa.
3508 *
3509 * LOCKING:
3510 * Inherited from caller.
3511 */
3512 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3513 {
3514 #ifdef __BIG_ENDIAN
3515 unsigned int i;
3516
3517 for (i = 0; i < buf_words; i++)
3518 buf[i] = le16_to_cpu(buf[i]);
3519 #endif /* __BIG_ENDIAN */
3520 }
3521
3522 /**
3523 * ata_mmio_data_xfer - Transfer data by MMIO
3524 * @dev: device for this I/O
3525 * @buf: data buffer
3526 * @buflen: buffer length
3527 * @write_data: read/write
3528 *
3529 * Transfer data from/to the device data register by MMIO.
3530 *
3531 * LOCKING:
3532 * Inherited from caller.
3533 */
3534
3535 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3536 unsigned int buflen, int write_data)
3537 {
3538 struct ata_port *ap = adev->ap;
3539 unsigned int i;
3540 unsigned int words = buflen >> 1;
3541 u16 *buf16 = (u16 *) buf;
3542 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3543
3544 /* Transfer multiple of 2 bytes */
3545 if (write_data) {
3546 for (i = 0; i < words; i++)
3547 writew(le16_to_cpu(buf16[i]), mmio);
3548 } else {
3549 for (i = 0; i < words; i++)
3550 buf16[i] = cpu_to_le16(readw(mmio));
3551 }
3552
3553 /* Transfer trailing 1 byte, if any. */
3554 if (unlikely(buflen & 0x01)) {
3555 u16 align_buf[1] = { 0 };
3556 unsigned char *trailing_buf = buf + buflen - 1;
3557
3558 if (write_data) {
3559 memcpy(align_buf, trailing_buf, 1);
3560 writew(le16_to_cpu(align_buf[0]), mmio);
3561 } else {
3562 align_buf[0] = cpu_to_le16(readw(mmio));
3563 memcpy(trailing_buf, align_buf, 1);
3564 }
3565 }
3566 }
3567
3568 /**
3569 * ata_pio_data_xfer - Transfer data by PIO
3570 * @adev: device to target
3571 * @buf: data buffer
3572 * @buflen: buffer length
3573 * @write_data: read/write
3574 *
3575 * Transfer data from/to the device data register by PIO.
3576 *
3577 * LOCKING:
3578 * Inherited from caller.
3579 */
3580
3581 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3582 unsigned int buflen, int write_data)
3583 {
3584 struct ata_port *ap = adev->ap;
3585 unsigned int words = buflen >> 1;
3586
3587 /* Transfer multiple of 2 bytes */
3588 if (write_data)
3589 outsw(ap->ioaddr.data_addr, buf, words);
3590 else
3591 insw(ap->ioaddr.data_addr, buf, words);
3592
3593 /* Transfer trailing 1 byte, if any. */
3594 if (unlikely(buflen & 0x01)) {
3595 u16 align_buf[1] = { 0 };
3596 unsigned char *trailing_buf = buf + buflen - 1;
3597
3598 if (write_data) {
3599 memcpy(align_buf, trailing_buf, 1);
3600 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3601 } else {
3602 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3603 memcpy(trailing_buf, align_buf, 1);
3604 }
3605 }
3606 }
3607
3608 /**
3609 * ata_pio_data_xfer_noirq - Transfer data by PIO
3610 * @adev: device to target
3611 * @buf: data buffer
3612 * @buflen: buffer length
3613 * @write_data: read/write
3614 *
3615 * Transfer data from/to the device data register by PIO. Do the
3616 * transfer with interrupts disabled.
3617 *
3618 * LOCKING:
3619 * Inherited from caller.
3620 */
3621
3622 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3623 unsigned int buflen, int write_data)
3624 {
3625 unsigned long flags;
3626 local_irq_save(flags);
3627 ata_pio_data_xfer(adev, buf, buflen, write_data);
3628 local_irq_restore(flags);
3629 }
3630
3631
3632 /**
3633 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3634 * @qc: Command on going
3635 *
3636 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3637 *
3638 * LOCKING:
3639 * Inherited from caller.
3640 */
3641
3642 static void ata_pio_sector(struct ata_queued_cmd *qc)
3643 {
3644 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3645 struct scatterlist *sg = qc->__sg;
3646 struct ata_port *ap = qc->ap;
3647 struct page *page;
3648 unsigned int offset;
3649 unsigned char *buf;
3650
3651 if (qc->cursect == (qc->nsect - 1))
3652 ap->hsm_task_state = HSM_ST_LAST;
3653
3654 page = sg[qc->cursg].page;
3655 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3656
3657 /* get the current page and offset */
3658 page = nth_page(page, (offset >> PAGE_SHIFT));
3659 offset %= PAGE_SIZE;
3660
3661 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3662
3663 if (PageHighMem(page)) {
3664 unsigned long flags;
3665
3666 /* FIXME: use a bounce buffer */
3667 local_irq_save(flags);
3668 buf = kmap_atomic(page, KM_IRQ0);
3669
3670 /* do the actual data transfer */
3671 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3672
3673 kunmap_atomic(buf, KM_IRQ0);
3674 local_irq_restore(flags);
3675 } else {
3676 buf = page_address(page);
3677 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3678 }
3679
3680 qc->cursect++;
3681 qc->cursg_ofs++;
3682
3683 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3684 qc->cursg++;
3685 qc->cursg_ofs = 0;
3686 }
3687 }
3688
3689 /**
3690 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3691 * @qc: Command on going
3692 *
3693 * Transfer one or many ATA_SECT_SIZE of data from/to the
3694 * ATA device for the DRQ request.
3695 *
3696 * LOCKING:
3697 * Inherited from caller.
3698 */
3699
3700 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3701 {
3702 if (is_multi_taskfile(&qc->tf)) {
3703 /* READ/WRITE MULTIPLE */
3704 unsigned int nsect;
3705
3706 WARN_ON(qc->dev->multi_count == 0);
3707
3708 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3709 while (nsect--)
3710 ata_pio_sector(qc);
3711 } else
3712 ata_pio_sector(qc);
3713 }
3714
3715 /**
3716 * atapi_send_cdb - Write CDB bytes to hardware
3717 * @ap: Port to which ATAPI device is attached.
3718 * @qc: Taskfile currently active
3719 *
3720 * When device has indicated its readiness to accept
3721 * a CDB, this function is called. Send the CDB.
3722 *
3723 * LOCKING:
3724 * caller.
3725 */
3726
3727 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3728 {
3729 /* send SCSI cdb */
3730 DPRINTK("send cdb\n");
3731 WARN_ON(qc->dev->cdb_len < 12);
3732
3733 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3734 ata_altstatus(ap); /* flush */
3735
3736 switch (qc->tf.protocol) {
3737 case ATA_PROT_ATAPI:
3738 ap->hsm_task_state = HSM_ST;
3739 break;
3740 case ATA_PROT_ATAPI_NODATA:
3741 ap->hsm_task_state = HSM_ST_LAST;
3742 break;
3743 case ATA_PROT_ATAPI_DMA:
3744 ap->hsm_task_state = HSM_ST_LAST;
3745 /* initiate bmdma */
3746 ap->ops->bmdma_start(qc);
3747 break;
3748 }
3749 }
3750
3751 /**
3752 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3753 * @qc: Command on going
3754 * @bytes: number of bytes
3755 *
3756 * Transfer Transfer data from/to the ATAPI device.
3757 *
3758 * LOCKING:
3759 * Inherited from caller.
3760 *
3761 */
3762
3763 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3764 {
3765 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3766 struct scatterlist *sg = qc->__sg;
3767 struct ata_port *ap = qc->ap;
3768 struct page *page;
3769 unsigned char *buf;
3770 unsigned int offset, count;
3771
3772 if (qc->curbytes + bytes >= qc->nbytes)
3773 ap->hsm_task_state = HSM_ST_LAST;
3774
3775 next_sg:
3776 if (unlikely(qc->cursg >= qc->n_elem)) {
3777 /*
3778 * The end of qc->sg is reached and the device expects
3779 * more data to transfer. In order not to overrun qc->sg
3780 * and fulfill length specified in the byte count register,
3781 * - for read case, discard trailing data from the device
3782 * - for write case, padding zero data to the device
3783 */
3784 u16 pad_buf[1] = { 0 };
3785 unsigned int words = bytes >> 1;
3786 unsigned int i;
3787
3788 if (words) /* warning if bytes > 1 */
3789 ata_dev_printk(qc->dev, KERN_WARNING,
3790 "%u bytes trailing data\n", bytes);
3791
3792 for (i = 0; i < words; i++)
3793 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3794
3795 ap->hsm_task_state = HSM_ST_LAST;
3796 return;
3797 }
3798
3799 sg = &qc->__sg[qc->cursg];
3800
3801 page = sg->page;
3802 offset = sg->offset + qc->cursg_ofs;
3803
3804 /* get the current page and offset */
3805 page = nth_page(page, (offset >> PAGE_SHIFT));
3806 offset %= PAGE_SIZE;
3807
3808 /* don't overrun current sg */
3809 count = min(sg->length - qc->cursg_ofs, bytes);
3810
3811 /* don't cross page boundaries */
3812 count = min(count, (unsigned int)PAGE_SIZE - offset);
3813
3814 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3815
3816 if (PageHighMem(page)) {
3817 unsigned long flags;
3818
3819 /* FIXME: use bounce buffer */
3820 local_irq_save(flags);
3821 buf = kmap_atomic(page, KM_IRQ0);
3822
3823 /* do the actual data transfer */
3824 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3825
3826 kunmap_atomic(buf, KM_IRQ0);
3827 local_irq_restore(flags);
3828 } else {
3829 buf = page_address(page);
3830 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3831 }
3832
3833 bytes -= count;
3834 qc->curbytes += count;
3835 qc->cursg_ofs += count;
3836
3837 if (qc->cursg_ofs == sg->length) {
3838 qc->cursg++;
3839 qc->cursg_ofs = 0;
3840 }
3841
3842 if (bytes)
3843 goto next_sg;
3844 }
3845
3846 /**
3847 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3848 * @qc: Command on going
3849 *
3850 * Transfer Transfer data from/to the ATAPI device.
3851 *
3852 * LOCKING:
3853 * Inherited from caller.
3854 */
3855
3856 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3857 {
3858 struct ata_port *ap = qc->ap;
3859 struct ata_device *dev = qc->dev;
3860 unsigned int ireason, bc_lo, bc_hi, bytes;
3861 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3862
3863 /* Abuse qc->result_tf for temp storage of intermediate TF
3864 * here to save some kernel stack usage.
3865 * For normal completion, qc->result_tf is not relevant. For
3866 * error, qc->result_tf is later overwritten by ata_qc_complete().
3867 * So, the correctness of qc->result_tf is not affected.
3868 */
3869 ap->ops->tf_read(ap, &qc->result_tf);
3870 ireason = qc->result_tf.nsect;
3871 bc_lo = qc->result_tf.lbam;
3872 bc_hi = qc->result_tf.lbah;
3873 bytes = (bc_hi << 8) | bc_lo;
3874
3875 /* shall be cleared to zero, indicating xfer of data */
3876 if (ireason & (1 << 0))
3877 goto err_out;
3878
3879 /* make sure transfer direction matches expected */
3880 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3881 if (do_write != i_write)
3882 goto err_out;
3883
3884 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3885
3886 __atapi_pio_bytes(qc, bytes);
3887
3888 return;
3889
3890 err_out:
3891 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3892 qc->err_mask |= AC_ERR_HSM;
3893 ap->hsm_task_state = HSM_ST_ERR;
3894 }
3895
3896 /**
3897 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3898 * @ap: the target ata_port
3899 * @qc: qc on going
3900 *
3901 * RETURNS:
3902 * 1 if ok in workqueue, 0 otherwise.
3903 */
3904
3905 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3906 {
3907 if (qc->tf.flags & ATA_TFLAG_POLLING)
3908 return 1;
3909
3910 if (ap->hsm_task_state == HSM_ST_FIRST) {
3911 if (qc->tf.protocol == ATA_PROT_PIO &&
3912 (qc->tf.flags & ATA_TFLAG_WRITE))
3913 return 1;
3914
3915 if (is_atapi_taskfile(&qc->tf) &&
3916 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3917 return 1;
3918 }
3919
3920 return 0;
3921 }
3922
3923 /**
3924 * ata_hsm_qc_complete - finish a qc running on standard HSM
3925 * @qc: Command to complete
3926 * @in_wq: 1 if called from workqueue, 0 otherwise
3927 *
3928 * Finish @qc which is running on standard HSM.
3929 *
3930 * LOCKING:
3931 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3932 * Otherwise, none on entry and grabs host lock.
3933 */
3934 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3935 {
3936 struct ata_port *ap = qc->ap;
3937 unsigned long flags;
3938
3939 if (ap->ops->error_handler) {
3940 if (in_wq) {
3941 spin_lock_irqsave(&ap->host_set->lock, flags);
3942
3943 /* EH might have kicked in while host_set lock
3944 * is released.
3945 */
3946 qc = ata_qc_from_tag(ap, qc->tag);
3947 if (qc) {
3948 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3949 ata_irq_on(ap);
3950 ata_qc_complete(qc);
3951 } else
3952 ata_port_freeze(ap);
3953 }
3954
3955 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3956 } else {
3957 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3958 ata_qc_complete(qc);
3959 else
3960 ata_port_freeze(ap);
3961 }
3962 } else {
3963 if (in_wq) {
3964 spin_lock_irqsave(&ap->host_set->lock, flags);
3965 ata_irq_on(ap);
3966 ata_qc_complete(qc);
3967 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3968 } else
3969 ata_qc_complete(qc);
3970 }
3971
3972 ata_altstatus(ap); /* flush */
3973 }
3974
3975 /**
3976 * ata_hsm_move - move the HSM to the next state.
3977 * @ap: the target ata_port
3978 * @qc: qc on going
3979 * @status: current device status
3980 * @in_wq: 1 if called from workqueue, 0 otherwise
3981 *
3982 * RETURNS:
3983 * 1 when poll next status needed, 0 otherwise.
3984 */
3985
3986 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3987 u8 status, int in_wq)
3988 {
3989 unsigned long flags = 0;
3990 int poll_next;
3991
3992 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3993
3994 /* Make sure ata_qc_issue_prot() does not throw things
3995 * like DMA polling into the workqueue. Notice that
3996 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3997 */
3998 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
3999
4000 fsm_start:
4001 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4002 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4003
4004 switch (ap->hsm_task_state) {
4005 case HSM_ST_FIRST:
4006 /* Send first data block or PACKET CDB */
4007
4008 /* If polling, we will stay in the work queue after
4009 * sending the data. Otherwise, interrupt handler
4010 * takes over after sending the data.
4011 */
4012 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4013
4014 /* check device status */
4015 if (unlikely((status & ATA_DRQ) == 0)) {
4016 /* handle BSY=0, DRQ=0 as error */
4017 if (likely(status & (ATA_ERR | ATA_DF)))
4018 /* device stops HSM for abort/error */
4019 qc->err_mask |= AC_ERR_DEV;
4020 else
4021 /* HSM violation. Let EH handle this */
4022 qc->err_mask |= AC_ERR_HSM;
4023
4024 ap->hsm_task_state = HSM_ST_ERR;
4025 goto fsm_start;
4026 }
4027
4028 /* Device should not ask for data transfer (DRQ=1)
4029 * when it finds something wrong.
4030 * We ignore DRQ here and stop the HSM by
4031 * changing hsm_task_state to HSM_ST_ERR and
4032 * let the EH abort the command or reset the device.
4033 */
4034 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4035 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4036 ap->id, status);
4037 qc->err_mask |= AC_ERR_HSM;
4038 ap->hsm_task_state = HSM_ST_ERR;
4039 goto fsm_start;
4040 }
4041
4042 /* Send the CDB (atapi) or the first data block (ata pio out).
4043 * During the state transition, interrupt handler shouldn't
4044 * be invoked before the data transfer is complete and
4045 * hsm_task_state is changed. Hence, the following locking.
4046 */
4047 if (in_wq)
4048 spin_lock_irqsave(&ap->host_set->lock, flags);
4049
4050 if (qc->tf.protocol == ATA_PROT_PIO) {
4051 /* PIO data out protocol.
4052 * send first data block.
4053 */
4054
4055 /* ata_pio_sectors() might change the state
4056 * to HSM_ST_LAST. so, the state is changed here
4057 * before ata_pio_sectors().
4058 */
4059 ap->hsm_task_state = HSM_ST;
4060 ata_pio_sectors(qc);
4061 ata_altstatus(ap); /* flush */
4062 } else
4063 /* send CDB */
4064 atapi_send_cdb(ap, qc);
4065
4066 if (in_wq)
4067 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4068
4069 /* if polling, ata_pio_task() handles the rest.
4070 * otherwise, interrupt handler takes over from here.
4071 */
4072 break;
4073
4074 case HSM_ST:
4075 /* complete command or read/write the data register */
4076 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4077 /* ATAPI PIO protocol */
4078 if ((status & ATA_DRQ) == 0) {
4079 /* No more data to transfer or device error.
4080 * Device error will be tagged in HSM_ST_LAST.
4081 */
4082 ap->hsm_task_state = HSM_ST_LAST;
4083 goto fsm_start;
4084 }
4085
4086 /* Device should not ask for data transfer (DRQ=1)
4087 * when it finds something wrong.
4088 * We ignore DRQ here and stop the HSM by
4089 * changing hsm_task_state to HSM_ST_ERR and
4090 * let the EH abort the command or reset the device.
4091 */
4092 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4093 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4094 ap->id, status);
4095 qc->err_mask |= AC_ERR_HSM;
4096 ap->hsm_task_state = HSM_ST_ERR;
4097 goto fsm_start;
4098 }
4099
4100 atapi_pio_bytes(qc);
4101
4102 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4103 /* bad ireason reported by device */
4104 goto fsm_start;
4105
4106 } else {
4107 /* ATA PIO protocol */
4108 if (unlikely((status & ATA_DRQ) == 0)) {
4109 /* handle BSY=0, DRQ=0 as error */
4110 if (likely(status & (ATA_ERR | ATA_DF)))
4111 /* device stops HSM for abort/error */
4112 qc->err_mask |= AC_ERR_DEV;
4113 else
4114 /* HSM violation. Let EH handle this */
4115 qc->err_mask |= AC_ERR_HSM;
4116
4117 ap->hsm_task_state = HSM_ST_ERR;
4118 goto fsm_start;
4119 }
4120
4121 /* For PIO reads, some devices may ask for
4122 * data transfer (DRQ=1) alone with ERR=1.
4123 * We respect DRQ here and transfer one
4124 * block of junk data before changing the
4125 * hsm_task_state to HSM_ST_ERR.
4126 *
4127 * For PIO writes, ERR=1 DRQ=1 doesn't make
4128 * sense since the data block has been
4129 * transferred to the device.
4130 */
4131 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4132 /* data might be corrputed */
4133 qc->err_mask |= AC_ERR_DEV;
4134
4135 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4136 ata_pio_sectors(qc);
4137 ata_altstatus(ap);
4138 status = ata_wait_idle(ap);
4139 }
4140
4141 if (status & (ATA_BUSY | ATA_DRQ))
4142 qc->err_mask |= AC_ERR_HSM;
4143
4144 /* ata_pio_sectors() might change the
4145 * state to HSM_ST_LAST. so, the state
4146 * is changed after ata_pio_sectors().
4147 */
4148 ap->hsm_task_state = HSM_ST_ERR;
4149 goto fsm_start;
4150 }
4151
4152 ata_pio_sectors(qc);
4153
4154 if (ap->hsm_task_state == HSM_ST_LAST &&
4155 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4156 /* all data read */
4157 ata_altstatus(ap);
4158 status = ata_wait_idle(ap);
4159 goto fsm_start;
4160 }
4161 }
4162
4163 ata_altstatus(ap); /* flush */
4164 poll_next = 1;
4165 break;
4166
4167 case HSM_ST_LAST:
4168 if (unlikely(!ata_ok(status))) {
4169 qc->err_mask |= __ac_err_mask(status);
4170 ap->hsm_task_state = HSM_ST_ERR;
4171 goto fsm_start;
4172 }
4173
4174 /* no more data to transfer */
4175 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4176 ap->id, qc->dev->devno, status);
4177
4178 WARN_ON(qc->err_mask);
4179
4180 ap->hsm_task_state = HSM_ST_IDLE;
4181
4182 /* complete taskfile transaction */
4183 ata_hsm_qc_complete(qc, in_wq);
4184
4185 poll_next = 0;
4186 break;
4187
4188 case HSM_ST_ERR:
4189 /* make sure qc->err_mask is available to
4190 * know what's wrong and recover
4191 */
4192 WARN_ON(qc->err_mask == 0);
4193
4194 ap->hsm_task_state = HSM_ST_IDLE;
4195
4196 /* complete taskfile transaction */
4197 ata_hsm_qc_complete(qc, in_wq);
4198
4199 poll_next = 0;
4200 break;
4201 default:
4202 poll_next = 0;
4203 BUG();
4204 }
4205
4206 return poll_next;
4207 }
4208
4209 static void ata_pio_task(void *_data)
4210 {
4211 struct ata_queued_cmd *qc = _data;
4212 struct ata_port *ap = qc->ap;
4213 u8 status;
4214 int poll_next;
4215
4216 fsm_start:
4217 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4218
4219 /*
4220 * This is purely heuristic. This is a fast path.
4221 * Sometimes when we enter, BSY will be cleared in
4222 * a chk-status or two. If not, the drive is probably seeking
4223 * or something. Snooze for a couple msecs, then
4224 * chk-status again. If still busy, queue delayed work.
4225 */
4226 status = ata_busy_wait(ap, ATA_BUSY, 5);
4227 if (status & ATA_BUSY) {
4228 msleep(2);
4229 status = ata_busy_wait(ap, ATA_BUSY, 10);
4230 if (status & ATA_BUSY) {
4231 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4232 return;
4233 }
4234 }
4235
4236 /* move the HSM */
4237 poll_next = ata_hsm_move(ap, qc, status, 1);
4238
4239 /* another command or interrupt handler
4240 * may be running at this point.
4241 */
4242 if (poll_next)
4243 goto fsm_start;
4244 }
4245
4246 /**
4247 * ata_qc_new - Request an available ATA command, for queueing
4248 * @ap: Port associated with device @dev
4249 * @dev: Device from whom we request an available command structure
4250 *
4251 * LOCKING:
4252 * None.
4253 */
4254
4255 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4256 {
4257 struct ata_queued_cmd *qc = NULL;
4258 unsigned int i;
4259
4260 /* no command while frozen */
4261 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4262 return NULL;
4263
4264 /* the last tag is reserved for internal command. */
4265 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4266 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4267 qc = __ata_qc_from_tag(ap, i);
4268 break;
4269 }
4270
4271 if (qc)
4272 qc->tag = i;
4273
4274 return qc;
4275 }
4276
4277 /**
4278 * ata_qc_new_init - Request an available ATA command, and initialize it
4279 * @dev: Device from whom we request an available command structure
4280 *
4281 * LOCKING:
4282 * None.
4283 */
4284
4285 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4286 {
4287 struct ata_port *ap = dev->ap;
4288 struct ata_queued_cmd *qc;
4289
4290 qc = ata_qc_new(ap);
4291 if (qc) {
4292 qc->scsicmd = NULL;
4293 qc->ap = ap;
4294 qc->dev = dev;
4295
4296 ata_qc_reinit(qc);
4297 }
4298
4299 return qc;
4300 }
4301
4302 /**
4303 * ata_qc_free - free unused ata_queued_cmd
4304 * @qc: Command to complete
4305 *
4306 * Designed to free unused ata_queued_cmd object
4307 * in case something prevents using it.
4308 *
4309 * LOCKING:
4310 * spin_lock_irqsave(host_set lock)
4311 */
4312 void ata_qc_free(struct ata_queued_cmd *qc)
4313 {
4314 struct ata_port *ap = qc->ap;
4315 unsigned int tag;
4316
4317 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4318
4319 qc->flags = 0;
4320 tag = qc->tag;
4321 if (likely(ata_tag_valid(tag))) {
4322 qc->tag = ATA_TAG_POISON;
4323 clear_bit(tag, &ap->qc_allocated);
4324 }
4325 }
4326
4327 void __ata_qc_complete(struct ata_queued_cmd *qc)
4328 {
4329 struct ata_port *ap = qc->ap;
4330
4331 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4332 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4333
4334 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4335 ata_sg_clean(qc);
4336
4337 /* command should be marked inactive atomically with qc completion */
4338 if (qc->tf.protocol == ATA_PROT_NCQ)
4339 ap->sactive &= ~(1 << qc->tag);
4340 else
4341 ap->active_tag = ATA_TAG_POISON;
4342
4343 /* atapi: mark qc as inactive to prevent the interrupt handler
4344 * from completing the command twice later, before the error handler
4345 * is called. (when rc != 0 and atapi request sense is needed)
4346 */
4347 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4348 ap->qc_active &= ~(1 << qc->tag);
4349
4350 /* call completion callback */
4351 qc->complete_fn(qc);
4352 }
4353
4354 /**
4355 * ata_qc_complete - Complete an active ATA command
4356 * @qc: Command to complete
4357 * @err_mask: ATA Status register contents
4358 *
4359 * Indicate to the mid and upper layers that an ATA
4360 * command has completed, with either an ok or not-ok status.
4361 *
4362 * LOCKING:
4363 * spin_lock_irqsave(host_set lock)
4364 */
4365 void ata_qc_complete(struct ata_queued_cmd *qc)
4366 {
4367 struct ata_port *ap = qc->ap;
4368
4369 /* XXX: New EH and old EH use different mechanisms to
4370 * synchronize EH with regular execution path.
4371 *
4372 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4373 * Normal execution path is responsible for not accessing a
4374 * failed qc. libata core enforces the rule by returning NULL
4375 * from ata_qc_from_tag() for failed qcs.
4376 *
4377 * Old EH depends on ata_qc_complete() nullifying completion
4378 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4379 * not synchronize with interrupt handler. Only PIO task is
4380 * taken care of.
4381 */
4382 if (ap->ops->error_handler) {
4383 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4384
4385 if (unlikely(qc->err_mask))
4386 qc->flags |= ATA_QCFLAG_FAILED;
4387
4388 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4389 if (!ata_tag_internal(qc->tag)) {
4390 /* always fill result TF for failed qc */
4391 ap->ops->tf_read(ap, &qc->result_tf);
4392 ata_qc_schedule_eh(qc);
4393 return;
4394 }
4395 }
4396
4397 /* read result TF if requested */
4398 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4399 ap->ops->tf_read(ap, &qc->result_tf);
4400
4401 __ata_qc_complete(qc);
4402 } else {
4403 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4404 return;
4405
4406 /* read result TF if failed or requested */
4407 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4408 ap->ops->tf_read(ap, &qc->result_tf);
4409
4410 __ata_qc_complete(qc);
4411 }
4412 }
4413
4414 /**
4415 * ata_qc_complete_multiple - Complete multiple qcs successfully
4416 * @ap: port in question
4417 * @qc_active: new qc_active mask
4418 * @finish_qc: LLDD callback invoked before completing a qc
4419 *
4420 * Complete in-flight commands. This functions is meant to be
4421 * called from low-level driver's interrupt routine to complete
4422 * requests normally. ap->qc_active and @qc_active is compared
4423 * and commands are completed accordingly.
4424 *
4425 * LOCKING:
4426 * spin_lock_irqsave(host_set lock)
4427 *
4428 * RETURNS:
4429 * Number of completed commands on success, -errno otherwise.
4430 */
4431 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4432 void (*finish_qc)(struct ata_queued_cmd *))
4433 {
4434 int nr_done = 0;
4435 u32 done_mask;
4436 int i;
4437
4438 done_mask = ap->qc_active ^ qc_active;
4439
4440 if (unlikely(done_mask & qc_active)) {
4441 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4442 "(%08x->%08x)\n", ap->qc_active, qc_active);
4443 return -EINVAL;
4444 }
4445
4446 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4447 struct ata_queued_cmd *qc;
4448
4449 if (!(done_mask & (1 << i)))
4450 continue;
4451
4452 if ((qc = ata_qc_from_tag(ap, i))) {
4453 if (finish_qc)
4454 finish_qc(qc);
4455 ata_qc_complete(qc);
4456 nr_done++;
4457 }
4458 }
4459
4460 return nr_done;
4461 }
4462
4463 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4464 {
4465 struct ata_port *ap = qc->ap;
4466
4467 switch (qc->tf.protocol) {
4468 case ATA_PROT_NCQ:
4469 case ATA_PROT_DMA:
4470 case ATA_PROT_ATAPI_DMA:
4471 return 1;
4472
4473 case ATA_PROT_ATAPI:
4474 case ATA_PROT_PIO:
4475 if (ap->flags & ATA_FLAG_PIO_DMA)
4476 return 1;
4477
4478 /* fall through */
4479
4480 default:
4481 return 0;
4482 }
4483
4484 /* never reached */
4485 }
4486
4487 /**
4488 * ata_qc_issue - issue taskfile to device
4489 * @qc: command to issue to device
4490 *
4491 * Prepare an ATA command to submission to device.
4492 * This includes mapping the data into a DMA-able
4493 * area, filling in the S/G table, and finally
4494 * writing the taskfile to hardware, starting the command.
4495 *
4496 * LOCKING:
4497 * spin_lock_irqsave(host_set lock)
4498 */
4499 void ata_qc_issue(struct ata_queued_cmd *qc)
4500 {
4501 struct ata_port *ap = qc->ap;
4502
4503 /* Make sure only one non-NCQ command is outstanding. The
4504 * check is skipped for old EH because it reuses active qc to
4505 * request ATAPI sense.
4506 */
4507 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4508
4509 if (qc->tf.protocol == ATA_PROT_NCQ) {
4510 WARN_ON(ap->sactive & (1 << qc->tag));
4511 ap->sactive |= 1 << qc->tag;
4512 } else {
4513 WARN_ON(ap->sactive);
4514 ap->active_tag = qc->tag;
4515 }
4516
4517 qc->flags |= ATA_QCFLAG_ACTIVE;
4518 ap->qc_active |= 1 << qc->tag;
4519
4520 if (ata_should_dma_map(qc)) {
4521 if (qc->flags & ATA_QCFLAG_SG) {
4522 if (ata_sg_setup(qc))
4523 goto sg_err;
4524 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4525 if (ata_sg_setup_one(qc))
4526 goto sg_err;
4527 }
4528 } else {
4529 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4530 }
4531
4532 ap->ops->qc_prep(qc);
4533
4534 qc->err_mask |= ap->ops->qc_issue(qc);
4535 if (unlikely(qc->err_mask))
4536 goto err;
4537 return;
4538
4539 sg_err:
4540 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4541 qc->err_mask |= AC_ERR_SYSTEM;
4542 err:
4543 ata_qc_complete(qc);
4544 }
4545
4546 /**
4547 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4548 * @qc: command to issue to device
4549 *
4550 * Using various libata functions and hooks, this function
4551 * starts an ATA command. ATA commands are grouped into
4552 * classes called "protocols", and issuing each type of protocol
4553 * is slightly different.
4554 *
4555 * May be used as the qc_issue() entry in ata_port_operations.
4556 *
4557 * LOCKING:
4558 * spin_lock_irqsave(host_set lock)
4559 *
4560 * RETURNS:
4561 * Zero on success, AC_ERR_* mask on failure
4562 */
4563
4564 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4565 {
4566 struct ata_port *ap = qc->ap;
4567
4568 /* Use polling pio if the LLD doesn't handle
4569 * interrupt driven pio and atapi CDB interrupt.
4570 */
4571 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4572 switch (qc->tf.protocol) {
4573 case ATA_PROT_PIO:
4574 case ATA_PROT_ATAPI:
4575 case ATA_PROT_ATAPI_NODATA:
4576 qc->tf.flags |= ATA_TFLAG_POLLING;
4577 break;
4578 case ATA_PROT_ATAPI_DMA:
4579 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4580 /* see ata_check_atapi_dma() */
4581 BUG();
4582 break;
4583 default:
4584 break;
4585 }
4586 }
4587
4588 /* select the device */
4589 ata_dev_select(ap, qc->dev->devno, 1, 0);
4590
4591 /* start the command */
4592 switch (qc->tf.protocol) {
4593 case ATA_PROT_NODATA:
4594 if (qc->tf.flags & ATA_TFLAG_POLLING)
4595 ata_qc_set_polling(qc);
4596
4597 ata_tf_to_host(ap, &qc->tf);
4598 ap->hsm_task_state = HSM_ST_LAST;
4599
4600 if (qc->tf.flags & ATA_TFLAG_POLLING)
4601 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4602
4603 break;
4604
4605 case ATA_PROT_DMA:
4606 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4607
4608 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4609 ap->ops->bmdma_setup(qc); /* set up bmdma */
4610 ap->ops->bmdma_start(qc); /* initiate bmdma */
4611 ap->hsm_task_state = HSM_ST_LAST;
4612 break;
4613
4614 case ATA_PROT_PIO:
4615 if (qc->tf.flags & ATA_TFLAG_POLLING)
4616 ata_qc_set_polling(qc);
4617
4618 ata_tf_to_host(ap, &qc->tf);
4619
4620 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4621 /* PIO data out protocol */
4622 ap->hsm_task_state = HSM_ST_FIRST;
4623 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4624
4625 /* always send first data block using
4626 * the ata_pio_task() codepath.
4627 */
4628 } else {
4629 /* PIO data in protocol */
4630 ap->hsm_task_state = HSM_ST;
4631
4632 if (qc->tf.flags & ATA_TFLAG_POLLING)
4633 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4634
4635 /* if polling, ata_pio_task() handles the rest.
4636 * otherwise, interrupt handler takes over from here.
4637 */
4638 }
4639
4640 break;
4641
4642 case ATA_PROT_ATAPI:
4643 case ATA_PROT_ATAPI_NODATA:
4644 if (qc->tf.flags & ATA_TFLAG_POLLING)
4645 ata_qc_set_polling(qc);
4646
4647 ata_tf_to_host(ap, &qc->tf);
4648
4649 ap->hsm_task_state = HSM_ST_FIRST;
4650
4651 /* send cdb by polling if no cdb interrupt */
4652 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4653 (qc->tf.flags & ATA_TFLAG_POLLING))
4654 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4655 break;
4656
4657 case ATA_PROT_ATAPI_DMA:
4658 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4659
4660 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4661 ap->ops->bmdma_setup(qc); /* set up bmdma */
4662 ap->hsm_task_state = HSM_ST_FIRST;
4663
4664 /* send cdb by polling if no cdb interrupt */
4665 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4666 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4667 break;
4668
4669 default:
4670 WARN_ON(1);
4671 return AC_ERR_SYSTEM;
4672 }
4673
4674 return 0;
4675 }
4676
4677 /**
4678 * ata_host_intr - Handle host interrupt for given (port, task)
4679 * @ap: Port on which interrupt arrived (possibly...)
4680 * @qc: Taskfile currently active in engine
4681 *
4682 * Handle host interrupt for given queued command. Currently,
4683 * only DMA interrupts are handled. All other commands are
4684 * handled via polling with interrupts disabled (nIEN bit).
4685 *
4686 * LOCKING:
4687 * spin_lock_irqsave(host_set lock)
4688 *
4689 * RETURNS:
4690 * One if interrupt was handled, zero if not (shared irq).
4691 */
4692
4693 inline unsigned int ata_host_intr (struct ata_port *ap,
4694 struct ata_queued_cmd *qc)
4695 {
4696 u8 status, host_stat = 0;
4697
4698 VPRINTK("ata%u: protocol %d task_state %d\n",
4699 ap->id, qc->tf.protocol, ap->hsm_task_state);
4700
4701 /* Check whether we are expecting interrupt in this state */
4702 switch (ap->hsm_task_state) {
4703 case HSM_ST_FIRST:
4704 /* Some pre-ATAPI-4 devices assert INTRQ
4705 * at this state when ready to receive CDB.
4706 */
4707
4708 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4709 * The flag was turned on only for atapi devices.
4710 * No need to check is_atapi_taskfile(&qc->tf) again.
4711 */
4712 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4713 goto idle_irq;
4714 break;
4715 case HSM_ST_LAST:
4716 if (qc->tf.protocol == ATA_PROT_DMA ||
4717 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4718 /* check status of DMA engine */
4719 host_stat = ap->ops->bmdma_status(ap);
4720 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4721
4722 /* if it's not our irq... */
4723 if (!(host_stat & ATA_DMA_INTR))
4724 goto idle_irq;
4725
4726 /* before we do anything else, clear DMA-Start bit */
4727 ap->ops->bmdma_stop(qc);
4728
4729 if (unlikely(host_stat & ATA_DMA_ERR)) {
4730 /* error when transfering data to/from memory */
4731 qc->err_mask |= AC_ERR_HOST_BUS;
4732 ap->hsm_task_state = HSM_ST_ERR;
4733 }
4734 }
4735 break;
4736 case HSM_ST:
4737 break;
4738 default:
4739 goto idle_irq;
4740 }
4741
4742 /* check altstatus */
4743 status = ata_altstatus(ap);
4744 if (status & ATA_BUSY)
4745 goto idle_irq;
4746
4747 /* check main status, clearing INTRQ */
4748 status = ata_chk_status(ap);
4749 if (unlikely(status & ATA_BUSY))
4750 goto idle_irq;
4751
4752 /* ack bmdma irq events */
4753 ap->ops->irq_clear(ap);
4754
4755 ata_hsm_move(ap, qc, status, 0);
4756 return 1; /* irq handled */
4757
4758 idle_irq:
4759 ap->stats.idle_irq++;
4760
4761 #ifdef ATA_IRQ_TRAP
4762 if ((ap->stats.idle_irq % 1000) == 0) {
4763 ata_irq_ack(ap, 0); /* debug trap */
4764 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4765 return 1;
4766 }
4767 #endif
4768 return 0; /* irq not handled */
4769 }
4770
4771 /**
4772 * ata_interrupt - Default ATA host interrupt handler
4773 * @irq: irq line (unused)
4774 * @dev_instance: pointer to our ata_host_set information structure
4775 * @regs: unused
4776 *
4777 * Default interrupt handler for PCI IDE devices. Calls
4778 * ata_host_intr() for each port that is not disabled.
4779 *
4780 * LOCKING:
4781 * Obtains host_set lock during operation.
4782 *
4783 * RETURNS:
4784 * IRQ_NONE or IRQ_HANDLED.
4785 */
4786
4787 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4788 {
4789 struct ata_host_set *host_set = dev_instance;
4790 unsigned int i;
4791 unsigned int handled = 0;
4792 unsigned long flags;
4793
4794 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4795 spin_lock_irqsave(&host_set->lock, flags);
4796
4797 for (i = 0; i < host_set->n_ports; i++) {
4798 struct ata_port *ap;
4799
4800 ap = host_set->ports[i];
4801 if (ap &&
4802 !(ap->flags & ATA_FLAG_DISABLED)) {
4803 struct ata_queued_cmd *qc;
4804
4805 qc = ata_qc_from_tag(ap, ap->active_tag);
4806 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4807 (qc->flags & ATA_QCFLAG_ACTIVE))
4808 handled |= ata_host_intr(ap, qc);
4809 }
4810 }
4811
4812 spin_unlock_irqrestore(&host_set->lock, flags);
4813
4814 return IRQ_RETVAL(handled);
4815 }
4816
4817 /**
4818 * sata_scr_valid - test whether SCRs are accessible
4819 * @ap: ATA port to test SCR accessibility for
4820 *
4821 * Test whether SCRs are accessible for @ap.
4822 *
4823 * LOCKING:
4824 * None.
4825 *
4826 * RETURNS:
4827 * 1 if SCRs are accessible, 0 otherwise.
4828 */
4829 int sata_scr_valid(struct ata_port *ap)
4830 {
4831 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4832 }
4833
4834 /**
4835 * sata_scr_read - read SCR register of the specified port
4836 * @ap: ATA port to read SCR for
4837 * @reg: SCR to read
4838 * @val: Place to store read value
4839 *
4840 * Read SCR register @reg of @ap into *@val. This function is
4841 * guaranteed to succeed if the cable type of the port is SATA
4842 * and the port implements ->scr_read.
4843 *
4844 * LOCKING:
4845 * None.
4846 *
4847 * RETURNS:
4848 * 0 on success, negative errno on failure.
4849 */
4850 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4851 {
4852 if (sata_scr_valid(ap)) {
4853 *val = ap->ops->scr_read(ap, reg);
4854 return 0;
4855 }
4856 return -EOPNOTSUPP;
4857 }
4858
4859 /**
4860 * sata_scr_write - write SCR register of the specified port
4861 * @ap: ATA port to write SCR for
4862 * @reg: SCR to write
4863 * @val: value to write
4864 *
4865 * Write @val to SCR register @reg of @ap. This function is
4866 * guaranteed to succeed if the cable type of the port is SATA
4867 * and the port implements ->scr_read.
4868 *
4869 * LOCKING:
4870 * None.
4871 *
4872 * RETURNS:
4873 * 0 on success, negative errno on failure.
4874 */
4875 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4876 {
4877 if (sata_scr_valid(ap)) {
4878 ap->ops->scr_write(ap, reg, val);
4879 return 0;
4880 }
4881 return -EOPNOTSUPP;
4882 }
4883
4884 /**
4885 * sata_scr_write_flush - write SCR register of the specified port and flush
4886 * @ap: ATA port to write SCR for
4887 * @reg: SCR to write
4888 * @val: value to write
4889 *
4890 * This function is identical to sata_scr_write() except that this
4891 * function performs flush after writing to the register.
4892 *
4893 * LOCKING:
4894 * None.
4895 *
4896 * RETURNS:
4897 * 0 on success, negative errno on failure.
4898 */
4899 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4900 {
4901 if (sata_scr_valid(ap)) {
4902 ap->ops->scr_write(ap, reg, val);
4903 ap->ops->scr_read(ap, reg);
4904 return 0;
4905 }
4906 return -EOPNOTSUPP;
4907 }
4908
4909 /**
4910 * ata_port_online - test whether the given port is online
4911 * @ap: ATA port to test
4912 *
4913 * Test whether @ap is online. Note that this function returns 0
4914 * if online status of @ap cannot be obtained, so
4915 * ata_port_online(ap) != !ata_port_offline(ap).
4916 *
4917 * LOCKING:
4918 * None.
4919 *
4920 * RETURNS:
4921 * 1 if the port online status is available and online.
4922 */
4923 int ata_port_online(struct ata_port *ap)
4924 {
4925 u32 sstatus;
4926
4927 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4928 return 1;
4929 return 0;
4930 }
4931
4932 /**
4933 * ata_port_offline - test whether the given port is offline
4934 * @ap: ATA port to test
4935 *
4936 * Test whether @ap is offline. Note that this function returns
4937 * 0 if offline status of @ap cannot be obtained, so
4938 * ata_port_online(ap) != !ata_port_offline(ap).
4939 *
4940 * LOCKING:
4941 * None.
4942 *
4943 * RETURNS:
4944 * 1 if the port offline status is available and offline.
4945 */
4946 int ata_port_offline(struct ata_port *ap)
4947 {
4948 u32 sstatus;
4949
4950 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4951 return 1;
4952 return 0;
4953 }
4954
4955 /*
4956 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4957 * without filling any other registers
4958 */
4959 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4960 {
4961 struct ata_taskfile tf;
4962 int err;
4963
4964 ata_tf_init(dev, &tf);
4965
4966 tf.command = cmd;
4967 tf.flags |= ATA_TFLAG_DEVICE;
4968 tf.protocol = ATA_PROT_NODATA;
4969
4970 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4971 if (err)
4972 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4973 __FUNCTION__, err);
4974
4975 return err;
4976 }
4977
4978 static int ata_flush_cache(struct ata_device *dev)
4979 {
4980 u8 cmd;
4981
4982 if (!ata_try_flush_cache(dev))
4983 return 0;
4984
4985 if (ata_id_has_flush_ext(dev->id))
4986 cmd = ATA_CMD_FLUSH_EXT;
4987 else
4988 cmd = ATA_CMD_FLUSH;
4989
4990 return ata_do_simple_cmd(dev, cmd);
4991 }
4992
4993 static int ata_standby_drive(struct ata_device *dev)
4994 {
4995 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4996 }
4997
4998 static int ata_start_drive(struct ata_device *dev)
4999 {
5000 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5001 }
5002
5003 /**
5004 * ata_device_resume - wakeup a previously suspended devices
5005 * @dev: the device to resume
5006 *
5007 * Kick the drive back into action, by sending it an idle immediate
5008 * command and making sure its transfer mode matches between drive
5009 * and host.
5010 *
5011 */
5012 int ata_device_resume(struct ata_device *dev)
5013 {
5014 struct ata_port *ap = dev->ap;
5015
5016 if (ap->flags & ATA_FLAG_SUSPENDED) {
5017 struct ata_device *failed_dev;
5018
5019 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5020
5021 ap->flags &= ~ATA_FLAG_SUSPENDED;
5022 while (ata_set_mode(ap, &failed_dev))
5023 ata_dev_disable(failed_dev);
5024 }
5025 if (!ata_dev_enabled(dev))
5026 return 0;
5027 if (dev->class == ATA_DEV_ATA)
5028 ata_start_drive(dev);
5029
5030 return 0;
5031 }
5032
5033 /**
5034 * ata_device_suspend - prepare a device for suspend
5035 * @dev: the device to suspend
5036 * @state: target power management state
5037 *
5038 * Flush the cache on the drive, if appropriate, then issue a
5039 * standbynow command.
5040 */
5041 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5042 {
5043 struct ata_port *ap = dev->ap;
5044
5045 if (!ata_dev_enabled(dev))
5046 return 0;
5047 if (dev->class == ATA_DEV_ATA)
5048 ata_flush_cache(dev);
5049
5050 if (state.event != PM_EVENT_FREEZE)
5051 ata_standby_drive(dev);
5052 ap->flags |= ATA_FLAG_SUSPENDED;
5053 return 0;
5054 }
5055
5056 /**
5057 * ata_port_start - Set port up for dma.
5058 * @ap: Port to initialize
5059 *
5060 * Called just after data structures for each port are
5061 * initialized. Allocates space for PRD table.
5062 *
5063 * May be used as the port_start() entry in ata_port_operations.
5064 *
5065 * LOCKING:
5066 * Inherited from caller.
5067 */
5068
5069 int ata_port_start (struct ata_port *ap)
5070 {
5071 struct device *dev = ap->dev;
5072 int rc;
5073
5074 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5075 if (!ap->prd)
5076 return -ENOMEM;
5077
5078 rc = ata_pad_alloc(ap, dev);
5079 if (rc) {
5080 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5081 return rc;
5082 }
5083
5084 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5085
5086 return 0;
5087 }
5088
5089
5090 /**
5091 * ata_port_stop - Undo ata_port_start()
5092 * @ap: Port to shut down
5093 *
5094 * Frees the PRD table.
5095 *
5096 * May be used as the port_stop() entry in ata_port_operations.
5097 *
5098 * LOCKING:
5099 * Inherited from caller.
5100 */
5101
5102 void ata_port_stop (struct ata_port *ap)
5103 {
5104 struct device *dev = ap->dev;
5105
5106 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5107 ata_pad_free(ap, dev);
5108 }
5109
5110 void ata_host_stop (struct ata_host_set *host_set)
5111 {
5112 if (host_set->mmio_base)
5113 iounmap(host_set->mmio_base);
5114 }
5115
5116
5117 /**
5118 * ata_host_remove - Unregister SCSI host structure with upper layers
5119 * @ap: Port to unregister
5120 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5121 *
5122 * LOCKING:
5123 * Inherited from caller.
5124 */
5125
5126 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5127 {
5128 struct Scsi_Host *sh = ap->host;
5129
5130 DPRINTK("ENTER\n");
5131
5132 if (do_unregister)
5133 scsi_remove_host(sh);
5134
5135 ap->ops->port_stop(ap);
5136 }
5137
5138 /**
5139 * ata_dev_init - Initialize an ata_device structure
5140 * @dev: Device structure to initialize
5141 *
5142 * Initialize @dev in preparation for probing.
5143 *
5144 * LOCKING:
5145 * Inherited from caller.
5146 */
5147 void ata_dev_init(struct ata_device *dev)
5148 {
5149 struct ata_port *ap = dev->ap;
5150 unsigned long flags;
5151
5152 /* SATA spd limit is bound to the first device */
5153 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5154
5155 /* High bits of dev->flags are used to record warm plug
5156 * requests which occur asynchronously. Synchronize using
5157 * host_set lock.
5158 */
5159 spin_lock_irqsave(&ap->host_set->lock, flags);
5160 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5161 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5162
5163 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5164 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5165 dev->pio_mask = UINT_MAX;
5166 dev->mwdma_mask = UINT_MAX;
5167 dev->udma_mask = UINT_MAX;
5168 }
5169
5170 /**
5171 * ata_host_init - Initialize an ata_port structure
5172 * @ap: Structure to initialize
5173 * @host: associated SCSI mid-layer structure
5174 * @host_set: Collection of hosts to which @ap belongs
5175 * @ent: Probe information provided by low-level driver
5176 * @port_no: Port number associated with this ata_port
5177 *
5178 * Initialize a new ata_port structure, and its associated
5179 * scsi_host.
5180 *
5181 * LOCKING:
5182 * Inherited from caller.
5183 */
5184 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5185 struct ata_host_set *host_set,
5186 const struct ata_probe_ent *ent, unsigned int port_no)
5187 {
5188 unsigned int i;
5189
5190 host->max_id = 16;
5191 host->max_lun = 1;
5192 host->max_channel = 1;
5193 host->unique_id = ata_unique_id++;
5194 host->max_cmd_len = 12;
5195
5196 ap->flags = ATA_FLAG_DISABLED;
5197 ap->id = host->unique_id;
5198 ap->host = host;
5199 ap->ctl = ATA_DEVCTL_OBS;
5200 ap->host_set = host_set;
5201 ap->dev = ent->dev;
5202 ap->port_no = port_no;
5203 ap->hard_port_no =
5204 ent->legacy_mode ? ent->hard_port_no : port_no;
5205 ap->pio_mask = ent->pio_mask;
5206 ap->mwdma_mask = ent->mwdma_mask;
5207 ap->udma_mask = ent->udma_mask;
5208 ap->flags |= ent->host_flags;
5209 ap->ops = ent->port_ops;
5210 ap->hw_sata_spd_limit = UINT_MAX;
5211 ap->active_tag = ATA_TAG_POISON;
5212 ap->last_ctl = 0xFF;
5213 ap->msg_enable = ATA_MSG_DRV;
5214
5215 INIT_WORK(&ap->port_task, NULL, NULL);
5216 INIT_LIST_HEAD(&ap->eh_done_q);
5217 init_waitqueue_head(&ap->eh_wait_q);
5218
5219 /* set cable type */
5220 ap->cbl = ATA_CBL_NONE;
5221 if (ap->flags & ATA_FLAG_SATA)
5222 ap->cbl = ATA_CBL_SATA;
5223
5224 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5225 struct ata_device *dev = &ap->device[i];
5226 dev->ap = ap;
5227 dev->devno = i;
5228 ata_dev_init(dev);
5229 }
5230
5231 #ifdef ATA_IRQ_TRAP
5232 ap->stats.unhandled_irq = 1;
5233 ap->stats.idle_irq = 1;
5234 #endif
5235
5236 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5237 }
5238
5239 /**
5240 * ata_host_add - Attach low-level ATA driver to system
5241 * @ent: Information provided by low-level driver
5242 * @host_set: Collections of ports to which we add
5243 * @port_no: Port number associated with this host
5244 *
5245 * Attach low-level ATA driver to system.
5246 *
5247 * LOCKING:
5248 * PCI/etc. bus probe sem.
5249 *
5250 * RETURNS:
5251 * New ata_port on success, for NULL on error.
5252 */
5253
5254 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5255 struct ata_host_set *host_set,
5256 unsigned int port_no)
5257 {
5258 struct Scsi_Host *host;
5259 struct ata_port *ap;
5260 int rc;
5261
5262 DPRINTK("ENTER\n");
5263
5264 if (!ent->port_ops->probe_reset &&
5265 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5266 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5267 port_no);
5268 return NULL;
5269 }
5270
5271 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5272 if (!host)
5273 return NULL;
5274
5275 host->transportt = &ata_scsi_transport_template;
5276
5277 ap = ata_shost_to_port(host);
5278
5279 ata_host_init(ap, host, host_set, ent, port_no);
5280
5281 rc = ap->ops->port_start(ap);
5282 if (rc)
5283 goto err_out;
5284
5285 return ap;
5286
5287 err_out:
5288 scsi_host_put(host);
5289 return NULL;
5290 }
5291
5292 /**
5293 * ata_device_add - Register hardware device with ATA and SCSI layers
5294 * @ent: Probe information describing hardware device to be registered
5295 *
5296 * This function processes the information provided in the probe
5297 * information struct @ent, allocates the necessary ATA and SCSI
5298 * host information structures, initializes them, and registers
5299 * everything with requisite kernel subsystems.
5300 *
5301 * This function requests irqs, probes the ATA bus, and probes
5302 * the SCSI bus.
5303 *
5304 * LOCKING:
5305 * PCI/etc. bus probe sem.
5306 *
5307 * RETURNS:
5308 * Number of ports registered. Zero on error (no ports registered).
5309 */
5310
5311 int ata_device_add(const struct ata_probe_ent *ent)
5312 {
5313 unsigned int count = 0, i;
5314 struct device *dev = ent->dev;
5315 struct ata_host_set *host_set;
5316
5317 DPRINTK("ENTER\n");
5318 /* alloc a container for our list of ATA ports (buses) */
5319 host_set = kzalloc(sizeof(struct ata_host_set) +
5320 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5321 if (!host_set)
5322 return 0;
5323 spin_lock_init(&host_set->lock);
5324
5325 host_set->dev = dev;
5326 host_set->n_ports = ent->n_ports;
5327 host_set->irq = ent->irq;
5328 host_set->mmio_base = ent->mmio_base;
5329 host_set->private_data = ent->private_data;
5330 host_set->ops = ent->port_ops;
5331 host_set->flags = ent->host_set_flags;
5332
5333 /* register each port bound to this device */
5334 for (i = 0; i < ent->n_ports; i++) {
5335 struct ata_port *ap;
5336 unsigned long xfer_mode_mask;
5337
5338 ap = ata_host_add(ent, host_set, i);
5339 if (!ap)
5340 goto err_out;
5341
5342 host_set->ports[i] = ap;
5343 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5344 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5345 (ap->pio_mask << ATA_SHIFT_PIO);
5346
5347 /* print per-port info to dmesg */
5348 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5349 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5350 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5351 ata_mode_string(xfer_mode_mask),
5352 ap->ioaddr.cmd_addr,
5353 ap->ioaddr.ctl_addr,
5354 ap->ioaddr.bmdma_addr,
5355 ent->irq);
5356
5357 ata_chk_status(ap);
5358 host_set->ops->irq_clear(ap);
5359 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5360 count++;
5361 }
5362
5363 if (!count)
5364 goto err_free_ret;
5365
5366 /* obtain irq, that is shared between channels */
5367 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5368 DRV_NAME, host_set))
5369 goto err_out;
5370
5371 /* perform each probe synchronously */
5372 DPRINTK("probe begin\n");
5373 for (i = 0; i < count; i++) {
5374 struct ata_port *ap;
5375 u32 scontrol;
5376 int rc;
5377
5378 ap = host_set->ports[i];
5379
5380 /* init sata_spd_limit to the current value */
5381 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5382 int spd = (scontrol >> 4) & 0xf;
5383 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5384 }
5385 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5386
5387 DPRINTK("ata%u: bus probe begin\n", ap->id);
5388 rc = ata_bus_probe(ap);
5389 DPRINTK("ata%u: bus probe end\n", ap->id);
5390
5391 if (rc) {
5392 /* FIXME: do something useful here?
5393 * Current libata behavior will
5394 * tear down everything when
5395 * the module is removed
5396 * or the h/w is unplugged.
5397 */
5398 }
5399
5400 rc = scsi_add_host(ap->host, dev);
5401 if (rc) {
5402 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5403 /* FIXME: do something useful here */
5404 /* FIXME: handle unconditional calls to
5405 * scsi_scan_host and ata_host_remove, below,
5406 * at the very least
5407 */
5408 }
5409 }
5410
5411 /* probes are done, now scan each port's disk(s) */
5412 DPRINTK("host probe begin\n");
5413 for (i = 0; i < count; i++) {
5414 struct ata_port *ap = host_set->ports[i];
5415
5416 ata_scsi_scan_host(ap);
5417 }
5418
5419 dev_set_drvdata(dev, host_set);
5420
5421 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5422 return ent->n_ports; /* success */
5423
5424 err_out:
5425 for (i = 0; i < count; i++) {
5426 ata_host_remove(host_set->ports[i], 1);
5427 scsi_host_put(host_set->ports[i]->host);
5428 }
5429 err_free_ret:
5430 kfree(host_set);
5431 VPRINTK("EXIT, returning 0\n");
5432 return 0;
5433 }
5434
5435 /**
5436 * ata_host_set_remove - PCI layer callback for device removal
5437 * @host_set: ATA host set that was removed
5438 *
5439 * Unregister all objects associated with this host set. Free those
5440 * objects.
5441 *
5442 * LOCKING:
5443 * Inherited from calling layer (may sleep).
5444 */
5445
5446 void ata_host_set_remove(struct ata_host_set *host_set)
5447 {
5448 struct ata_port *ap;
5449 unsigned int i;
5450
5451 for (i = 0; i < host_set->n_ports; i++) {
5452 ap = host_set->ports[i];
5453 scsi_remove_host(ap->host);
5454 }
5455
5456 free_irq(host_set->irq, host_set);
5457
5458 for (i = 0; i < host_set->n_ports; i++) {
5459 ap = host_set->ports[i];
5460
5461 ata_scsi_release(ap->host);
5462
5463 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5464 struct ata_ioports *ioaddr = &ap->ioaddr;
5465
5466 if (ioaddr->cmd_addr == 0x1f0)
5467 release_region(0x1f0, 8);
5468 else if (ioaddr->cmd_addr == 0x170)
5469 release_region(0x170, 8);
5470 }
5471
5472 scsi_host_put(ap->host);
5473 }
5474
5475 if (host_set->ops->host_stop)
5476 host_set->ops->host_stop(host_set);
5477
5478 kfree(host_set);
5479 }
5480
5481 /**
5482 * ata_scsi_release - SCSI layer callback hook for host unload
5483 * @host: libata host to be unloaded
5484 *
5485 * Performs all duties necessary to shut down a libata port...
5486 * Kill port kthread, disable port, and release resources.
5487 *
5488 * LOCKING:
5489 * Inherited from SCSI layer.
5490 *
5491 * RETURNS:
5492 * One.
5493 */
5494
5495 int ata_scsi_release(struct Scsi_Host *host)
5496 {
5497 struct ata_port *ap = ata_shost_to_port(host);
5498
5499 DPRINTK("ENTER\n");
5500
5501 ap->ops->port_disable(ap);
5502 ata_host_remove(ap, 0);
5503
5504 DPRINTK("EXIT\n");
5505 return 1;
5506 }
5507
5508 /**
5509 * ata_std_ports - initialize ioaddr with standard port offsets.
5510 * @ioaddr: IO address structure to be initialized
5511 *
5512 * Utility function which initializes data_addr, error_addr,
5513 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5514 * device_addr, status_addr, and command_addr to standard offsets
5515 * relative to cmd_addr.
5516 *
5517 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5518 */
5519
5520 void ata_std_ports(struct ata_ioports *ioaddr)
5521 {
5522 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5523 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5524 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5525 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5526 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5527 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5528 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5529 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5530 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5531 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5532 }
5533
5534
5535 #ifdef CONFIG_PCI
5536
5537 void ata_pci_host_stop (struct ata_host_set *host_set)
5538 {
5539 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5540
5541 pci_iounmap(pdev, host_set->mmio_base);
5542 }
5543
5544 /**
5545 * ata_pci_remove_one - PCI layer callback for device removal
5546 * @pdev: PCI device that was removed
5547 *
5548 * PCI layer indicates to libata via this hook that
5549 * hot-unplug or module unload event has occurred.
5550 * Handle this by unregistering all objects associated
5551 * with this PCI device. Free those objects. Then finally
5552 * release PCI resources and disable device.
5553 *
5554 * LOCKING:
5555 * Inherited from PCI layer (may sleep).
5556 */
5557
5558 void ata_pci_remove_one (struct pci_dev *pdev)
5559 {
5560 struct device *dev = pci_dev_to_dev(pdev);
5561 struct ata_host_set *host_set = dev_get_drvdata(dev);
5562
5563 ata_host_set_remove(host_set);
5564 pci_release_regions(pdev);
5565 pci_disable_device(pdev);
5566 dev_set_drvdata(dev, NULL);
5567 }
5568
5569 /* move to PCI subsystem */
5570 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5571 {
5572 unsigned long tmp = 0;
5573
5574 switch (bits->width) {
5575 case 1: {
5576 u8 tmp8 = 0;
5577 pci_read_config_byte(pdev, bits->reg, &tmp8);
5578 tmp = tmp8;
5579 break;
5580 }
5581 case 2: {
5582 u16 tmp16 = 0;
5583 pci_read_config_word(pdev, bits->reg, &tmp16);
5584 tmp = tmp16;
5585 break;
5586 }
5587 case 4: {
5588 u32 tmp32 = 0;
5589 pci_read_config_dword(pdev, bits->reg, &tmp32);
5590 tmp = tmp32;
5591 break;
5592 }
5593
5594 default:
5595 return -EINVAL;
5596 }
5597
5598 tmp &= bits->mask;
5599
5600 return (tmp == bits->val) ? 1 : 0;
5601 }
5602
5603 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5604 {
5605 pci_save_state(pdev);
5606 pci_disable_device(pdev);
5607 pci_set_power_state(pdev, PCI_D3hot);
5608 return 0;
5609 }
5610
5611 int ata_pci_device_resume(struct pci_dev *pdev)
5612 {
5613 pci_set_power_state(pdev, PCI_D0);
5614 pci_restore_state(pdev);
5615 pci_enable_device(pdev);
5616 pci_set_master(pdev);
5617 return 0;
5618 }
5619 #endif /* CONFIG_PCI */
5620
5621
5622 static int __init ata_init(void)
5623 {
5624 ata_wq = create_workqueue("ata");
5625 if (!ata_wq)
5626 return -ENOMEM;
5627
5628 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5629 if (!ata_aux_wq) {
5630 destroy_workqueue(ata_wq);
5631 return -ENOMEM;
5632 }
5633
5634 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5635 return 0;
5636 }
5637
5638 static void __exit ata_exit(void)
5639 {
5640 destroy_workqueue(ata_wq);
5641 destroy_workqueue(ata_aux_wq);
5642 }
5643
5644 module_init(ata_init);
5645 module_exit(ata_exit);
5646
5647 static unsigned long ratelimit_time;
5648 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5649
5650 int ata_ratelimit(void)
5651 {
5652 int rc;
5653 unsigned long flags;
5654
5655 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5656
5657 if (time_after(jiffies, ratelimit_time)) {
5658 rc = 1;
5659 ratelimit_time = jiffies + (HZ/5);
5660 } else
5661 rc = 0;
5662
5663 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5664
5665 return rc;
5666 }
5667
5668 /**
5669 * ata_wait_register - wait until register value changes
5670 * @reg: IO-mapped register
5671 * @mask: Mask to apply to read register value
5672 * @val: Wait condition
5673 * @interval_msec: polling interval in milliseconds
5674 * @timeout_msec: timeout in milliseconds
5675 *
5676 * Waiting for some bits of register to change is a common
5677 * operation for ATA controllers. This function reads 32bit LE
5678 * IO-mapped register @reg and tests for the following condition.
5679 *
5680 * (*@reg & mask) != val
5681 *
5682 * If the condition is met, it returns; otherwise, the process is
5683 * repeated after @interval_msec until timeout.
5684 *
5685 * LOCKING:
5686 * Kernel thread context (may sleep)
5687 *
5688 * RETURNS:
5689 * The final register value.
5690 */
5691 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5692 unsigned long interval_msec,
5693 unsigned long timeout_msec)
5694 {
5695 unsigned long timeout;
5696 u32 tmp;
5697
5698 tmp = ioread32(reg);
5699
5700 /* Calculate timeout _after_ the first read to make sure
5701 * preceding writes reach the controller before starting to
5702 * eat away the timeout.
5703 */
5704 timeout = jiffies + (timeout_msec * HZ) / 1000;
5705
5706 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5707 msleep(interval_msec);
5708 tmp = ioread32(reg);
5709 }
5710
5711 return tmp;
5712 }
5713
5714 /*
5715 * libata is essentially a library of internal helper functions for
5716 * low-level ATA host controller drivers. As such, the API/ABI is
5717 * likely to change as new drivers are added and updated.
5718 * Do not depend on ABI/API stability.
5719 */
5720
5721 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5722 EXPORT_SYMBOL_GPL(ata_std_ports);
5723 EXPORT_SYMBOL_GPL(ata_device_add);
5724 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5725 EXPORT_SYMBOL_GPL(ata_sg_init);
5726 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5727 EXPORT_SYMBOL_GPL(ata_qc_complete);
5728 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5729 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5730 EXPORT_SYMBOL_GPL(ata_tf_load);
5731 EXPORT_SYMBOL_GPL(ata_tf_read);
5732 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5733 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5734 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5735 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5736 EXPORT_SYMBOL_GPL(ata_check_status);
5737 EXPORT_SYMBOL_GPL(ata_altstatus);
5738 EXPORT_SYMBOL_GPL(ata_exec_command);
5739 EXPORT_SYMBOL_GPL(ata_port_start);
5740 EXPORT_SYMBOL_GPL(ata_port_stop);
5741 EXPORT_SYMBOL_GPL(ata_host_stop);
5742 EXPORT_SYMBOL_GPL(ata_interrupt);
5743 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5744 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5745 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5746 EXPORT_SYMBOL_GPL(ata_qc_prep);
5747 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5748 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5749 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5750 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5751 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5752 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5753 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5754 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5755 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5756 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5757 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5758 EXPORT_SYMBOL_GPL(ata_port_probe);
5759 EXPORT_SYMBOL_GPL(sata_set_spd);
5760 EXPORT_SYMBOL_GPL(sata_phy_reset);
5761 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5762 EXPORT_SYMBOL_GPL(ata_bus_reset);
5763 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5764 EXPORT_SYMBOL_GPL(ata_std_softreset);
5765 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5766 EXPORT_SYMBOL_GPL(ata_std_postreset);
5767 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5768 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5769 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5770 EXPORT_SYMBOL_GPL(ata_dev_classify);
5771 EXPORT_SYMBOL_GPL(ata_dev_pair);
5772 EXPORT_SYMBOL_GPL(ata_port_disable);
5773 EXPORT_SYMBOL_GPL(ata_ratelimit);
5774 EXPORT_SYMBOL_GPL(ata_wait_register);
5775 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5776 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5777 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5778 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5779 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5780 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5781 EXPORT_SYMBOL_GPL(ata_scsi_release);
5782 EXPORT_SYMBOL_GPL(ata_host_intr);
5783 EXPORT_SYMBOL_GPL(sata_scr_valid);
5784 EXPORT_SYMBOL_GPL(sata_scr_read);
5785 EXPORT_SYMBOL_GPL(sata_scr_write);
5786 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5787 EXPORT_SYMBOL_GPL(ata_port_online);
5788 EXPORT_SYMBOL_GPL(ata_port_offline);
5789 EXPORT_SYMBOL_GPL(ata_id_string);
5790 EXPORT_SYMBOL_GPL(ata_id_c_string);
5791 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5792
5793 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5794 EXPORT_SYMBOL_GPL(ata_timing_compute);
5795 EXPORT_SYMBOL_GPL(ata_timing_merge);
5796
5797 #ifdef CONFIG_PCI
5798 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5799 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5800 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5801 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5802 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5803 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5804 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5805 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5806 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5807 #endif /* CONFIG_PCI */
5808
5809 EXPORT_SYMBOL_GPL(ata_device_suspend);
5810 EXPORT_SYMBOL_GPL(ata_device_resume);
5811 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5812 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5813
5814 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5815 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5816 EXPORT_SYMBOL_GPL(ata_port_abort);
5817 EXPORT_SYMBOL_GPL(ata_port_freeze);
5818 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5819 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5820 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5821 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5822 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.417853 seconds and 6 git commands to generate.