[PATCH] libata-ncq: implement ap->qc_active, ap->sactive and complete helper
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67 static void ata_dev_xfermask(struct ata_device *dev);
68
69 static unsigned int ata_unique_id = 1;
70 static struct workqueue_struct *ata_wq;
71
72 int atapi_enabled = 1;
73 module_param(atapi_enabled, int, 0444);
74 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
76 int atapi_dmadir = 0;
77 module_param(atapi_dmadir, int, 0444);
78 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
80 int libata_fua = 0;
81 module_param_named(fua, libata_fua, int, 0444);
82 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88
89
90 /**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
103 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
104 {
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130 }
131
132 /**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
143 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
144 {
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159 }
160
161 static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
176 0,
177 0,
178 0,
179 0,
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
189 };
190
191 /**
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
194 *
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
197 *
198 * LOCKING:
199 * caller.
200 */
201 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
202 {
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
205 u8 cmd;
206
207 int index, fua, lba48, write;
208
209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
212
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
215 index = dev->multi_count ? 0 : 8;
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
219 index = dev->multi_count ? 0 : 8;
220 } else {
221 tf->protocol = ATA_PROT_DMA;
222 index = 16;
223 }
224
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
231 }
232
233 /**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251 {
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255 }
256
257 /**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267 static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271 {
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278 }
279
280 static const struct ata_xfer_ent {
281 int shift, bits;
282 u8 base;
283 } ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288 };
289
290 /**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304 {
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312 }
313
314 /**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327 {
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334 }
335
336 /**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348 static int ata_xfer_mode2shift(unsigned int xfer_mode)
349 {
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356 }
357
358 /**
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
361 *
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
371 */
372 static const char *ata_mode_string(unsigned int xfer_mask)
373 {
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
392 int highbit;
393
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
397 return "<n/a>";
398 }
399
400 static const char *sata_spd_string(unsigned int spd)
401 {
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410 }
411
412 void ata_dev_disable(struct ata_device *dev)
413 {
414 if (ata_dev_enabled(dev)) {
415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
416 dev->class++;
417 }
418 }
419
420 /**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438 static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440 {
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462 }
463
464 /**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482 static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484 {
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506 }
507
508 /**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521 static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523 {
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527 }
528
529 /**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
545 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
546 {
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566 }
567
568 /**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
572 * @r_err: Value of error register on completion
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
588 */
589
590 static unsigned int
591 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
592 {
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
601 ap->ops->tf_read(ap, &tf);
602 err = tf.feature;
603 if (r_err)
604 *r_err = err;
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
612 return ATA_DEV_NONE;
613
614 /* determine if device is ATA or ATAPI */
615 class = ata_dev_classify(&tf);
616
617 if (class == ATA_DEV_UNKNOWN)
618 return ATA_DEV_NONE;
619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
620 return ATA_DEV_NONE;
621 return class;
622 }
623
624 /**
625 * ata_id_string - Convert IDENTIFY DEVICE page into string
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
639 void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
641 {
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656 }
657
658 /**
659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
665 * This function is identical to ata_id_string except that it
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
672 void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
674 {
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
679 ata_id_string(id, s, ofs, len - 1);
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685 }
686
687 static u64 ata_id_n_sectors(const u16 *id)
688 {
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700 }
701
702 /**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
714 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715 {
716 }
717
718
719 /**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
729 *
730 * LOCKING:
731 * caller.
732 */
733
734 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735 {
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749 }
750
751 /**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770 void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772 {
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786 }
787
788 /**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
790 * @id: IDENTIFY DEVICE page to dump
791 *
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
794 *
795 * LOCKING:
796 * caller.
797 */
798
799 static inline void ata_dump_id(const u16 *id)
800 {
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
823 id[88],
824 id[93]);
825 }
826
827 /**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842 static unsigned int ata_id_xfermask(const u16 *id)
843 {
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873 }
874
875 /**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 *
879 * Schedule @fn(@data) for execution after @delay jiffies using
880 * port_task. There is one port_task per port and it's the
881 * user(low level driver)'s responsibility to make sure that only
882 * one task is active at any given time.
883 *
884 * libata core layer takes care of synchronization between
885 * port_task and EH. ata_port_queue_task() may be ignored for EH
886 * synchronization.
887 *
888 * LOCKING:
889 * Inherited from caller.
890 */
891 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
892 unsigned long delay)
893 {
894 int rc;
895
896 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
897 return;
898
899 PREPARE_WORK(&ap->port_task, fn, data);
900
901 if (!delay)
902 rc = queue_work(ata_wq, &ap->port_task);
903 else
904 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
905
906 /* rc == 0 means that another user is using port task */
907 WARN_ON(rc == 0);
908 }
909
910 /**
911 * ata_port_flush_task - Flush port_task
912 * @ap: The ata_port to flush port_task for
913 *
914 * After this function completes, port_task is guranteed not to
915 * be running or scheduled.
916 *
917 * LOCKING:
918 * Kernel thread context (may sleep)
919 */
920 void ata_port_flush_task(struct ata_port *ap)
921 {
922 unsigned long flags;
923
924 DPRINTK("ENTER\n");
925
926 spin_lock_irqsave(&ap->host_set->lock, flags);
927 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
928 spin_unlock_irqrestore(&ap->host_set->lock, flags);
929
930 DPRINTK("flush #1\n");
931 flush_workqueue(ata_wq);
932
933 /*
934 * At this point, if a task is running, it's guaranteed to see
935 * the FLUSH flag; thus, it will never queue pio tasks again.
936 * Cancel and flush.
937 */
938 if (!cancel_delayed_work(&ap->port_task)) {
939 DPRINTK("flush #2\n");
940 flush_workqueue(ata_wq);
941 }
942
943 spin_lock_irqsave(&ap->host_set->lock, flags);
944 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
946
947 DPRINTK("EXIT\n");
948 }
949
950 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
951 {
952 struct completion *waiting = qc->private_data;
953
954 complete(waiting);
955 }
956
957 /**
958 * ata_exec_internal - execute libata internal command
959 * @dev: Device to which the command is sent
960 * @tf: Taskfile registers for the command and the result
961 * @cdb: CDB for packet command
962 * @dma_dir: Data tranfer direction of the command
963 * @buf: Data buffer of the command
964 * @buflen: Length of data buffer
965 *
966 * Executes libata internal command with timeout. @tf contains
967 * command on entry and result on return. Timeout and error
968 * conditions are reported via return value. No recovery action
969 * is taken after a command times out. It's caller's duty to
970 * clean up after timeout.
971 *
972 * LOCKING:
973 * None. Should be called with kernel context, might sleep.
974 */
975
976 unsigned ata_exec_internal(struct ata_device *dev,
977 struct ata_taskfile *tf, const u8 *cdb,
978 int dma_dir, void *buf, unsigned int buflen)
979 {
980 struct ata_port *ap = dev->ap;
981 u8 command = tf->command;
982 struct ata_queued_cmd *qc;
983 unsigned int tag, preempted_tag;
984 u32 preempted_sactive, preempted_qc_active;
985 DECLARE_COMPLETION(wait);
986 unsigned long flags;
987 unsigned int err_mask;
988 int rc;
989
990 spin_lock_irqsave(&ap->host_set->lock, flags);
991
992 /* no internal command while frozen */
993 if (ap->flags & ATA_FLAG_FROZEN) {
994 spin_unlock_irqrestore(&ap->host_set->lock, flags);
995 return AC_ERR_SYSTEM;
996 }
997
998 /* initialize internal qc */
999
1000 /* XXX: Tag 0 is used for drivers with legacy EH as some
1001 * drivers choke if any other tag is given. This breaks
1002 * ata_tag_internal() test for those drivers. Don't use new
1003 * EH stuff without converting to it.
1004 */
1005 if (ap->ops->error_handler)
1006 tag = ATA_TAG_INTERNAL;
1007 else
1008 tag = 0;
1009
1010 if (test_and_set_bit(tag, &ap->qc_allocated))
1011 BUG();
1012 qc = __ata_qc_from_tag(ap, tag);
1013
1014 qc->tag = tag;
1015 qc->scsicmd = NULL;
1016 qc->ap = ap;
1017 qc->dev = dev;
1018 ata_qc_reinit(qc);
1019
1020 preempted_tag = ap->active_tag;
1021 preempted_sactive = ap->sactive;
1022 preempted_qc_active = ap->qc_active;
1023 ap->active_tag = ATA_TAG_POISON;
1024 ap->sactive = 0;
1025 ap->qc_active = 0;
1026
1027 /* prepare & issue qc */
1028 qc->tf = *tf;
1029 if (cdb)
1030 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1031 qc->flags |= ATA_QCFLAG_RESULT_TF;
1032 qc->dma_dir = dma_dir;
1033 if (dma_dir != DMA_NONE) {
1034 ata_sg_init_one(qc, buf, buflen);
1035 qc->nsect = buflen / ATA_SECT_SIZE;
1036 }
1037
1038 qc->private_data = &wait;
1039 qc->complete_fn = ata_qc_complete_internal;
1040
1041 ata_qc_issue(qc);
1042
1043 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1044
1045 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1046
1047 ata_port_flush_task(ap);
1048
1049 if (!rc) {
1050 spin_lock_irqsave(&ap->host_set->lock, flags);
1051
1052 /* We're racing with irq here. If we lose, the
1053 * following test prevents us from completing the qc
1054 * twice. If we win, the port is frozen and will be
1055 * cleaned up by ->post_internal_cmd().
1056 */
1057 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1058 qc->err_mask |= AC_ERR_TIMEOUT;
1059
1060 if (ap->ops->error_handler)
1061 ata_port_freeze(ap);
1062 else
1063 ata_qc_complete(qc);
1064
1065 ata_dev_printk(dev, KERN_WARNING,
1066 "qc timeout (cmd 0x%x)\n", command);
1067 }
1068
1069 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1070 }
1071
1072 /* do post_internal_cmd */
1073 if (ap->ops->post_internal_cmd)
1074 ap->ops->post_internal_cmd(qc);
1075
1076 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1077 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1078 "internal command, assuming AC_ERR_OTHER\n");
1079 qc->err_mask |= AC_ERR_OTHER;
1080 }
1081
1082 /* finish up */
1083 spin_lock_irqsave(&ap->host_set->lock, flags);
1084
1085 *tf = qc->result_tf;
1086 err_mask = qc->err_mask;
1087
1088 ata_qc_free(qc);
1089 ap->active_tag = preempted_tag;
1090 ap->sactive = preempted_sactive;
1091 ap->qc_active = preempted_qc_active;
1092
1093 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1094 * Until those drivers are fixed, we detect the condition
1095 * here, fail the command with AC_ERR_SYSTEM and reenable the
1096 * port.
1097 *
1098 * Note that this doesn't change any behavior as internal
1099 * command failure results in disabling the device in the
1100 * higher layer for LLDDs without new reset/EH callbacks.
1101 *
1102 * Kill the following code as soon as those drivers are fixed.
1103 */
1104 if (ap->flags & ATA_FLAG_DISABLED) {
1105 err_mask |= AC_ERR_SYSTEM;
1106 ata_port_probe(ap);
1107 }
1108
1109 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1110
1111 return err_mask;
1112 }
1113
1114 /**
1115 * ata_pio_need_iordy - check if iordy needed
1116 * @adev: ATA device
1117 *
1118 * Check if the current speed of the device requires IORDY. Used
1119 * by various controllers for chip configuration.
1120 */
1121
1122 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1123 {
1124 int pio;
1125 int speed = adev->pio_mode - XFER_PIO_0;
1126
1127 if (speed < 2)
1128 return 0;
1129 if (speed > 2)
1130 return 1;
1131
1132 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1133
1134 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1135 pio = adev->id[ATA_ID_EIDE_PIO];
1136 /* Is the speed faster than the drive allows non IORDY ? */
1137 if (pio) {
1138 /* This is cycle times not frequency - watch the logic! */
1139 if (pio > 240) /* PIO2 is 240nS per cycle */
1140 return 1;
1141 return 0;
1142 }
1143 }
1144 return 0;
1145 }
1146
1147 /**
1148 * ata_dev_read_id - Read ID data from the specified device
1149 * @dev: target device
1150 * @p_class: pointer to class of the target device (may be changed)
1151 * @post_reset: is this read ID post-reset?
1152 * @id: buffer to read IDENTIFY data into
1153 *
1154 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1155 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1156 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1157 * for pre-ATA4 drives.
1158 *
1159 * LOCKING:
1160 * Kernel thread context (may sleep)
1161 *
1162 * RETURNS:
1163 * 0 on success, -errno otherwise.
1164 */
1165 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1166 int post_reset, u16 *id)
1167 {
1168 struct ata_port *ap = dev->ap;
1169 unsigned int class = *p_class;
1170 struct ata_taskfile tf;
1171 unsigned int err_mask = 0;
1172 const char *reason;
1173 int rc;
1174
1175 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1176
1177 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1178
1179 retry:
1180 ata_tf_init(dev, &tf);
1181
1182 switch (class) {
1183 case ATA_DEV_ATA:
1184 tf.command = ATA_CMD_ID_ATA;
1185 break;
1186 case ATA_DEV_ATAPI:
1187 tf.command = ATA_CMD_ID_ATAPI;
1188 break;
1189 default:
1190 rc = -ENODEV;
1191 reason = "unsupported class";
1192 goto err_out;
1193 }
1194
1195 tf.protocol = ATA_PROT_PIO;
1196
1197 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1198 id, sizeof(id[0]) * ATA_ID_WORDS);
1199 if (err_mask) {
1200 rc = -EIO;
1201 reason = "I/O error";
1202 goto err_out;
1203 }
1204
1205 swap_buf_le16(id, ATA_ID_WORDS);
1206
1207 /* sanity check */
1208 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1209 rc = -EINVAL;
1210 reason = "device reports illegal type";
1211 goto err_out;
1212 }
1213
1214 if (post_reset && class == ATA_DEV_ATA) {
1215 /*
1216 * The exact sequence expected by certain pre-ATA4 drives is:
1217 * SRST RESET
1218 * IDENTIFY
1219 * INITIALIZE DEVICE PARAMETERS
1220 * anything else..
1221 * Some drives were very specific about that exact sequence.
1222 */
1223 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1224 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1225 if (err_mask) {
1226 rc = -EIO;
1227 reason = "INIT_DEV_PARAMS failed";
1228 goto err_out;
1229 }
1230
1231 /* current CHS translation info (id[53-58]) might be
1232 * changed. reread the identify device info.
1233 */
1234 post_reset = 0;
1235 goto retry;
1236 }
1237 }
1238
1239 *p_class = class;
1240
1241 return 0;
1242
1243 err_out:
1244 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1245 "(%s, err_mask=0x%x)\n", reason, err_mask);
1246 return rc;
1247 }
1248
1249 static inline u8 ata_dev_knobble(struct ata_device *dev)
1250 {
1251 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1252 }
1253
1254 /**
1255 * ata_dev_configure - Configure the specified ATA/ATAPI device
1256 * @dev: Target device to configure
1257 * @print_info: Enable device info printout
1258 *
1259 * Configure @dev according to @dev->id. Generic and low-level
1260 * driver specific fixups are also applied.
1261 *
1262 * LOCKING:
1263 * Kernel thread context (may sleep)
1264 *
1265 * RETURNS:
1266 * 0 on success, -errno otherwise
1267 */
1268 static int ata_dev_configure(struct ata_device *dev, int print_info)
1269 {
1270 struct ata_port *ap = dev->ap;
1271 const u16 *id = dev->id;
1272 unsigned int xfer_mask;
1273 int i, rc;
1274
1275 if (!ata_dev_enabled(dev)) {
1276 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1277 ap->id, dev->devno);
1278 return 0;
1279 }
1280
1281 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1282
1283 /* print device capabilities */
1284 if (print_info)
1285 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1286 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1287 id[49], id[82], id[83], id[84],
1288 id[85], id[86], id[87], id[88]);
1289
1290 /* initialize to-be-configured parameters */
1291 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1292 dev->max_sectors = 0;
1293 dev->cdb_len = 0;
1294 dev->n_sectors = 0;
1295 dev->cylinders = 0;
1296 dev->heads = 0;
1297 dev->sectors = 0;
1298
1299 /*
1300 * common ATA, ATAPI feature tests
1301 */
1302
1303 /* find max transfer mode; for printk only */
1304 xfer_mask = ata_id_xfermask(id);
1305
1306 ata_dump_id(id);
1307
1308 /* ATA-specific feature tests */
1309 if (dev->class == ATA_DEV_ATA) {
1310 dev->n_sectors = ata_id_n_sectors(id);
1311
1312 if (ata_id_has_lba(id)) {
1313 const char *lba_desc;
1314
1315 lba_desc = "LBA";
1316 dev->flags |= ATA_DFLAG_LBA;
1317 if (ata_id_has_lba48(id)) {
1318 dev->flags |= ATA_DFLAG_LBA48;
1319 lba_desc = "LBA48";
1320 }
1321
1322 /* print device info to dmesg */
1323 if (print_info)
1324 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1325 "max %s, %Lu sectors: %s\n",
1326 ata_id_major_version(id),
1327 ata_mode_string(xfer_mask),
1328 (unsigned long long)dev->n_sectors,
1329 lba_desc);
1330 } else {
1331 /* CHS */
1332
1333 /* Default translation */
1334 dev->cylinders = id[1];
1335 dev->heads = id[3];
1336 dev->sectors = id[6];
1337
1338 if (ata_id_current_chs_valid(id)) {
1339 /* Current CHS translation is valid. */
1340 dev->cylinders = id[54];
1341 dev->heads = id[55];
1342 dev->sectors = id[56];
1343 }
1344
1345 /* print device info to dmesg */
1346 if (print_info)
1347 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1348 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1349 ata_id_major_version(id),
1350 ata_mode_string(xfer_mask),
1351 (unsigned long long)dev->n_sectors,
1352 dev->cylinders, dev->heads, dev->sectors);
1353 }
1354
1355 if (dev->id[59] & 0x100) {
1356 dev->multi_count = dev->id[59] & 0xff;
1357 DPRINTK("ata%u: dev %u multi count %u\n",
1358 ap->id, dev->devno, dev->multi_count);
1359 }
1360
1361 dev->cdb_len = 16;
1362 }
1363
1364 /* ATAPI-specific feature tests */
1365 else if (dev->class == ATA_DEV_ATAPI) {
1366 char *cdb_intr_string = "";
1367
1368 rc = atapi_cdb_len(id);
1369 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1370 ata_dev_printk(dev, KERN_WARNING,
1371 "unsupported CDB len\n");
1372 rc = -EINVAL;
1373 goto err_out_nosup;
1374 }
1375 dev->cdb_len = (unsigned int) rc;
1376
1377 if (ata_id_cdb_intr(dev->id)) {
1378 dev->flags |= ATA_DFLAG_CDB_INTR;
1379 cdb_intr_string = ", CDB intr";
1380 }
1381
1382 /* print device info to dmesg */
1383 if (print_info)
1384 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1385 ata_mode_string(xfer_mask),
1386 cdb_intr_string);
1387 }
1388
1389 ap->host->max_cmd_len = 0;
1390 for (i = 0; i < ATA_MAX_DEVICES; i++)
1391 ap->host->max_cmd_len = max_t(unsigned int,
1392 ap->host->max_cmd_len,
1393 ap->device[i].cdb_len);
1394
1395 /* limit bridge transfers to udma5, 200 sectors */
1396 if (ata_dev_knobble(dev)) {
1397 if (print_info)
1398 ata_dev_printk(dev, KERN_INFO,
1399 "applying bridge limits\n");
1400 dev->udma_mask &= ATA_UDMA5;
1401 dev->max_sectors = ATA_MAX_SECTORS;
1402 }
1403
1404 if (ap->ops->dev_config)
1405 ap->ops->dev_config(ap, dev);
1406
1407 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1408 return 0;
1409
1410 err_out_nosup:
1411 DPRINTK("EXIT, err\n");
1412 return rc;
1413 }
1414
1415 /**
1416 * ata_bus_probe - Reset and probe ATA bus
1417 * @ap: Bus to probe
1418 *
1419 * Master ATA bus probing function. Initiates a hardware-dependent
1420 * bus reset, then attempts to identify any devices found on
1421 * the bus.
1422 *
1423 * LOCKING:
1424 * PCI/etc. bus probe sem.
1425 *
1426 * RETURNS:
1427 * Zero on success, negative errno otherwise.
1428 */
1429
1430 static int ata_bus_probe(struct ata_port *ap)
1431 {
1432 unsigned int classes[ATA_MAX_DEVICES];
1433 int tries[ATA_MAX_DEVICES];
1434 int i, rc, down_xfermask;
1435 struct ata_device *dev;
1436
1437 ata_port_probe(ap);
1438
1439 for (i = 0; i < ATA_MAX_DEVICES; i++)
1440 tries[i] = ATA_PROBE_MAX_TRIES;
1441
1442 retry:
1443 down_xfermask = 0;
1444
1445 /* reset and determine device classes */
1446 for (i = 0; i < ATA_MAX_DEVICES; i++)
1447 classes[i] = ATA_DEV_UNKNOWN;
1448
1449 if (ap->ops->probe_reset) {
1450 rc = ap->ops->probe_reset(ap, classes);
1451 if (rc) {
1452 ata_port_printk(ap, KERN_ERR,
1453 "reset failed (errno=%d)\n", rc);
1454 return rc;
1455 }
1456 } else {
1457 ap->ops->phy_reset(ap);
1458
1459 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1460 if (!(ap->flags & ATA_FLAG_DISABLED))
1461 classes[i] = ap->device[i].class;
1462 ap->device[i].class = ATA_DEV_UNKNOWN;
1463 }
1464
1465 ata_port_probe(ap);
1466 }
1467
1468 for (i = 0; i < ATA_MAX_DEVICES; i++)
1469 if (classes[i] == ATA_DEV_UNKNOWN)
1470 classes[i] = ATA_DEV_NONE;
1471
1472 /* read IDENTIFY page and configure devices */
1473 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1474 dev = &ap->device[i];
1475
1476 if (tries[i])
1477 dev->class = classes[i];
1478
1479 if (!ata_dev_enabled(dev))
1480 continue;
1481
1482 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1483 if (rc)
1484 goto fail;
1485
1486 rc = ata_dev_configure(dev, 1);
1487 if (rc)
1488 goto fail;
1489 }
1490
1491 /* configure transfer mode */
1492 rc = ata_set_mode(ap, &dev);
1493 if (rc) {
1494 down_xfermask = 1;
1495 goto fail;
1496 }
1497
1498 for (i = 0; i < ATA_MAX_DEVICES; i++)
1499 if (ata_dev_enabled(&ap->device[i]))
1500 return 0;
1501
1502 /* no device present, disable port */
1503 ata_port_disable(ap);
1504 ap->ops->port_disable(ap);
1505 return -ENODEV;
1506
1507 fail:
1508 switch (rc) {
1509 case -EINVAL:
1510 case -ENODEV:
1511 tries[dev->devno] = 0;
1512 break;
1513 case -EIO:
1514 sata_down_spd_limit(ap);
1515 /* fall through */
1516 default:
1517 tries[dev->devno]--;
1518 if (down_xfermask &&
1519 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1520 tries[dev->devno] = 0;
1521 }
1522
1523 if (!tries[dev->devno]) {
1524 ata_down_xfermask_limit(dev, 1);
1525 ata_dev_disable(dev);
1526 }
1527
1528 goto retry;
1529 }
1530
1531 /**
1532 * ata_port_probe - Mark port as enabled
1533 * @ap: Port for which we indicate enablement
1534 *
1535 * Modify @ap data structure such that the system
1536 * thinks that the entire port is enabled.
1537 *
1538 * LOCKING: host_set lock, or some other form of
1539 * serialization.
1540 */
1541
1542 void ata_port_probe(struct ata_port *ap)
1543 {
1544 ap->flags &= ~ATA_FLAG_DISABLED;
1545 }
1546
1547 /**
1548 * sata_print_link_status - Print SATA link status
1549 * @ap: SATA port to printk link status about
1550 *
1551 * This function prints link speed and status of a SATA link.
1552 *
1553 * LOCKING:
1554 * None.
1555 */
1556 static void sata_print_link_status(struct ata_port *ap)
1557 {
1558 u32 sstatus, scontrol, tmp;
1559
1560 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1561 return;
1562 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1563
1564 if (ata_port_online(ap)) {
1565 tmp = (sstatus >> 4) & 0xf;
1566 ata_port_printk(ap, KERN_INFO,
1567 "SATA link up %s (SStatus %X SControl %X)\n",
1568 sata_spd_string(tmp), sstatus, scontrol);
1569 } else {
1570 ata_port_printk(ap, KERN_INFO,
1571 "SATA link down (SStatus %X SControl %X)\n",
1572 sstatus, scontrol);
1573 }
1574 }
1575
1576 /**
1577 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1578 * @ap: SATA port associated with target SATA PHY.
1579 *
1580 * This function issues commands to standard SATA Sxxx
1581 * PHY registers, to wake up the phy (and device), and
1582 * clear any reset condition.
1583 *
1584 * LOCKING:
1585 * PCI/etc. bus probe sem.
1586 *
1587 */
1588 void __sata_phy_reset(struct ata_port *ap)
1589 {
1590 u32 sstatus;
1591 unsigned long timeout = jiffies + (HZ * 5);
1592
1593 if (ap->flags & ATA_FLAG_SATA_RESET) {
1594 /* issue phy wake/reset */
1595 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1596 /* Couldn't find anything in SATA I/II specs, but
1597 * AHCI-1.1 10.4.2 says at least 1 ms. */
1598 mdelay(1);
1599 }
1600 /* phy wake/clear reset */
1601 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1602
1603 /* wait for phy to become ready, if necessary */
1604 do {
1605 msleep(200);
1606 sata_scr_read(ap, SCR_STATUS, &sstatus);
1607 if ((sstatus & 0xf) != 1)
1608 break;
1609 } while (time_before(jiffies, timeout));
1610
1611 /* print link status */
1612 sata_print_link_status(ap);
1613
1614 /* TODO: phy layer with polling, timeouts, etc. */
1615 if (!ata_port_offline(ap))
1616 ata_port_probe(ap);
1617 else
1618 ata_port_disable(ap);
1619
1620 if (ap->flags & ATA_FLAG_DISABLED)
1621 return;
1622
1623 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1624 ata_port_disable(ap);
1625 return;
1626 }
1627
1628 ap->cbl = ATA_CBL_SATA;
1629 }
1630
1631 /**
1632 * sata_phy_reset - Reset SATA bus.
1633 * @ap: SATA port associated with target SATA PHY.
1634 *
1635 * This function resets the SATA bus, and then probes
1636 * the bus for devices.
1637 *
1638 * LOCKING:
1639 * PCI/etc. bus probe sem.
1640 *
1641 */
1642 void sata_phy_reset(struct ata_port *ap)
1643 {
1644 __sata_phy_reset(ap);
1645 if (ap->flags & ATA_FLAG_DISABLED)
1646 return;
1647 ata_bus_reset(ap);
1648 }
1649
1650 /**
1651 * ata_dev_pair - return other device on cable
1652 * @adev: device
1653 *
1654 * Obtain the other device on the same cable, or if none is
1655 * present NULL is returned
1656 */
1657
1658 struct ata_device *ata_dev_pair(struct ata_device *adev)
1659 {
1660 struct ata_port *ap = adev->ap;
1661 struct ata_device *pair = &ap->device[1 - adev->devno];
1662 if (!ata_dev_enabled(pair))
1663 return NULL;
1664 return pair;
1665 }
1666
1667 /**
1668 * ata_port_disable - Disable port.
1669 * @ap: Port to be disabled.
1670 *
1671 * Modify @ap data structure such that the system
1672 * thinks that the entire port is disabled, and should
1673 * never attempt to probe or communicate with devices
1674 * on this port.
1675 *
1676 * LOCKING: host_set lock, or some other form of
1677 * serialization.
1678 */
1679
1680 void ata_port_disable(struct ata_port *ap)
1681 {
1682 ap->device[0].class = ATA_DEV_NONE;
1683 ap->device[1].class = ATA_DEV_NONE;
1684 ap->flags |= ATA_FLAG_DISABLED;
1685 }
1686
1687 /**
1688 * sata_down_spd_limit - adjust SATA spd limit downward
1689 * @ap: Port to adjust SATA spd limit for
1690 *
1691 * Adjust SATA spd limit of @ap downward. Note that this
1692 * function only adjusts the limit. The change must be applied
1693 * using sata_set_spd().
1694 *
1695 * LOCKING:
1696 * Inherited from caller.
1697 *
1698 * RETURNS:
1699 * 0 on success, negative errno on failure
1700 */
1701 int sata_down_spd_limit(struct ata_port *ap)
1702 {
1703 u32 sstatus, spd, mask;
1704 int rc, highbit;
1705
1706 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1707 if (rc)
1708 return rc;
1709
1710 mask = ap->sata_spd_limit;
1711 if (mask <= 1)
1712 return -EINVAL;
1713 highbit = fls(mask) - 1;
1714 mask &= ~(1 << highbit);
1715
1716 spd = (sstatus >> 4) & 0xf;
1717 if (spd <= 1)
1718 return -EINVAL;
1719 spd--;
1720 mask &= (1 << spd) - 1;
1721 if (!mask)
1722 return -EINVAL;
1723
1724 ap->sata_spd_limit = mask;
1725
1726 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1727 sata_spd_string(fls(mask)));
1728
1729 return 0;
1730 }
1731
1732 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1733 {
1734 u32 spd, limit;
1735
1736 if (ap->sata_spd_limit == UINT_MAX)
1737 limit = 0;
1738 else
1739 limit = fls(ap->sata_spd_limit);
1740
1741 spd = (*scontrol >> 4) & 0xf;
1742 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1743
1744 return spd != limit;
1745 }
1746
1747 /**
1748 * sata_set_spd_needed - is SATA spd configuration needed
1749 * @ap: Port in question
1750 *
1751 * Test whether the spd limit in SControl matches
1752 * @ap->sata_spd_limit. This function is used to determine
1753 * whether hardreset is necessary to apply SATA spd
1754 * configuration.
1755 *
1756 * LOCKING:
1757 * Inherited from caller.
1758 *
1759 * RETURNS:
1760 * 1 if SATA spd configuration is needed, 0 otherwise.
1761 */
1762 int sata_set_spd_needed(struct ata_port *ap)
1763 {
1764 u32 scontrol;
1765
1766 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1767 return 0;
1768
1769 return __sata_set_spd_needed(ap, &scontrol);
1770 }
1771
1772 /**
1773 * sata_set_spd - set SATA spd according to spd limit
1774 * @ap: Port to set SATA spd for
1775 *
1776 * Set SATA spd of @ap according to sata_spd_limit.
1777 *
1778 * LOCKING:
1779 * Inherited from caller.
1780 *
1781 * RETURNS:
1782 * 0 if spd doesn't need to be changed, 1 if spd has been
1783 * changed. Negative errno if SCR registers are inaccessible.
1784 */
1785 int sata_set_spd(struct ata_port *ap)
1786 {
1787 u32 scontrol;
1788 int rc;
1789
1790 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1791 return rc;
1792
1793 if (!__sata_set_spd_needed(ap, &scontrol))
1794 return 0;
1795
1796 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1797 return rc;
1798
1799 return 1;
1800 }
1801
1802 /*
1803 * This mode timing computation functionality is ported over from
1804 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1805 */
1806 /*
1807 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1808 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1809 * for PIO 5, which is a nonstandard extension and UDMA6, which
1810 * is currently supported only by Maxtor drives.
1811 */
1812
1813 static const struct ata_timing ata_timing[] = {
1814
1815 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1816 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1817 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1818 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1819
1820 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1821 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1822 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1823
1824 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1825
1826 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1827 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1828 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1829
1830 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1831 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1832 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1833
1834 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1835 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1836 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1837
1838 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1839 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1840 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1841
1842 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1843
1844 { 0xFF }
1845 };
1846
1847 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1848 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1849
1850 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1851 {
1852 q->setup = EZ(t->setup * 1000, T);
1853 q->act8b = EZ(t->act8b * 1000, T);
1854 q->rec8b = EZ(t->rec8b * 1000, T);
1855 q->cyc8b = EZ(t->cyc8b * 1000, T);
1856 q->active = EZ(t->active * 1000, T);
1857 q->recover = EZ(t->recover * 1000, T);
1858 q->cycle = EZ(t->cycle * 1000, T);
1859 q->udma = EZ(t->udma * 1000, UT);
1860 }
1861
1862 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1863 struct ata_timing *m, unsigned int what)
1864 {
1865 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1866 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1867 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1868 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1869 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1870 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1871 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1872 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1873 }
1874
1875 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1876 {
1877 const struct ata_timing *t;
1878
1879 for (t = ata_timing; t->mode != speed; t++)
1880 if (t->mode == 0xFF)
1881 return NULL;
1882 return t;
1883 }
1884
1885 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1886 struct ata_timing *t, int T, int UT)
1887 {
1888 const struct ata_timing *s;
1889 struct ata_timing p;
1890
1891 /*
1892 * Find the mode.
1893 */
1894
1895 if (!(s = ata_timing_find_mode(speed)))
1896 return -EINVAL;
1897
1898 memcpy(t, s, sizeof(*s));
1899
1900 /*
1901 * If the drive is an EIDE drive, it can tell us it needs extended
1902 * PIO/MW_DMA cycle timing.
1903 */
1904
1905 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1906 memset(&p, 0, sizeof(p));
1907 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1908 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1909 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1910 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1911 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1912 }
1913 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1914 }
1915
1916 /*
1917 * Convert the timing to bus clock counts.
1918 */
1919
1920 ata_timing_quantize(t, t, T, UT);
1921
1922 /*
1923 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1924 * S.M.A.R.T * and some other commands. We have to ensure that the
1925 * DMA cycle timing is slower/equal than the fastest PIO timing.
1926 */
1927
1928 if (speed > XFER_PIO_4) {
1929 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1930 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1931 }
1932
1933 /*
1934 * Lengthen active & recovery time so that cycle time is correct.
1935 */
1936
1937 if (t->act8b + t->rec8b < t->cyc8b) {
1938 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1939 t->rec8b = t->cyc8b - t->act8b;
1940 }
1941
1942 if (t->active + t->recover < t->cycle) {
1943 t->active += (t->cycle - (t->active + t->recover)) / 2;
1944 t->recover = t->cycle - t->active;
1945 }
1946
1947 return 0;
1948 }
1949
1950 /**
1951 * ata_down_xfermask_limit - adjust dev xfer masks downward
1952 * @dev: Device to adjust xfer masks
1953 * @force_pio0: Force PIO0
1954 *
1955 * Adjust xfer masks of @dev downward. Note that this function
1956 * does not apply the change. Invoking ata_set_mode() afterwards
1957 * will apply the limit.
1958 *
1959 * LOCKING:
1960 * Inherited from caller.
1961 *
1962 * RETURNS:
1963 * 0 on success, negative errno on failure
1964 */
1965 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
1966 {
1967 unsigned long xfer_mask;
1968 int highbit;
1969
1970 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1971 dev->udma_mask);
1972
1973 if (!xfer_mask)
1974 goto fail;
1975 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1976 if (xfer_mask & ATA_MASK_UDMA)
1977 xfer_mask &= ~ATA_MASK_MWDMA;
1978
1979 highbit = fls(xfer_mask) - 1;
1980 xfer_mask &= ~(1 << highbit);
1981 if (force_pio0)
1982 xfer_mask &= 1 << ATA_SHIFT_PIO;
1983 if (!xfer_mask)
1984 goto fail;
1985
1986 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1987 &dev->udma_mask);
1988
1989 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
1990 ata_mode_string(xfer_mask));
1991
1992 return 0;
1993
1994 fail:
1995 return -EINVAL;
1996 }
1997
1998 static int ata_dev_set_mode(struct ata_device *dev)
1999 {
2000 unsigned int err_mask;
2001 int rc;
2002
2003 dev->flags &= ~ATA_DFLAG_PIO;
2004 if (dev->xfer_shift == ATA_SHIFT_PIO)
2005 dev->flags |= ATA_DFLAG_PIO;
2006
2007 err_mask = ata_dev_set_xfermode(dev);
2008 if (err_mask) {
2009 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2010 "(err_mask=0x%x)\n", err_mask);
2011 return -EIO;
2012 }
2013
2014 rc = ata_dev_revalidate(dev, 0);
2015 if (rc)
2016 return rc;
2017
2018 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2019 dev->xfer_shift, (int)dev->xfer_mode);
2020
2021 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2022 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2023 return 0;
2024 }
2025
2026 /**
2027 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2028 * @ap: port on which timings will be programmed
2029 * @r_failed_dev: out paramter for failed device
2030 *
2031 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2032 * ata_set_mode() fails, pointer to the failing device is
2033 * returned in @r_failed_dev.
2034 *
2035 * LOCKING:
2036 * PCI/etc. bus probe sem.
2037 *
2038 * RETURNS:
2039 * 0 on success, negative errno otherwise
2040 */
2041 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2042 {
2043 struct ata_device *dev;
2044 int i, rc = 0, used_dma = 0, found = 0;
2045
2046 /* has private set_mode? */
2047 if (ap->ops->set_mode) {
2048 /* FIXME: make ->set_mode handle no device case and
2049 * return error code and failing device on failure.
2050 */
2051 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2052 if (ata_dev_enabled(&ap->device[i])) {
2053 ap->ops->set_mode(ap);
2054 break;
2055 }
2056 }
2057 return 0;
2058 }
2059
2060 /* step 1: calculate xfer_mask */
2061 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2062 unsigned int pio_mask, dma_mask;
2063
2064 dev = &ap->device[i];
2065
2066 if (!ata_dev_enabled(dev))
2067 continue;
2068
2069 ata_dev_xfermask(dev);
2070
2071 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2072 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2073 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2074 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2075
2076 found = 1;
2077 if (dev->dma_mode)
2078 used_dma = 1;
2079 }
2080 if (!found)
2081 goto out;
2082
2083 /* step 2: always set host PIO timings */
2084 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2085 dev = &ap->device[i];
2086 if (!ata_dev_enabled(dev))
2087 continue;
2088
2089 if (!dev->pio_mode) {
2090 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2091 rc = -EINVAL;
2092 goto out;
2093 }
2094
2095 dev->xfer_mode = dev->pio_mode;
2096 dev->xfer_shift = ATA_SHIFT_PIO;
2097 if (ap->ops->set_piomode)
2098 ap->ops->set_piomode(ap, dev);
2099 }
2100
2101 /* step 3: set host DMA timings */
2102 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2103 dev = &ap->device[i];
2104
2105 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2106 continue;
2107
2108 dev->xfer_mode = dev->dma_mode;
2109 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2110 if (ap->ops->set_dmamode)
2111 ap->ops->set_dmamode(ap, dev);
2112 }
2113
2114 /* step 4: update devices' xfer mode */
2115 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2116 dev = &ap->device[i];
2117
2118 if (!ata_dev_enabled(dev))
2119 continue;
2120
2121 rc = ata_dev_set_mode(dev);
2122 if (rc)
2123 goto out;
2124 }
2125
2126 /* Record simplex status. If we selected DMA then the other
2127 * host channels are not permitted to do so.
2128 */
2129 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2130 ap->host_set->simplex_claimed = 1;
2131
2132 /* step5: chip specific finalisation */
2133 if (ap->ops->post_set_mode)
2134 ap->ops->post_set_mode(ap);
2135
2136 out:
2137 if (rc)
2138 *r_failed_dev = dev;
2139 return rc;
2140 }
2141
2142 /**
2143 * ata_tf_to_host - issue ATA taskfile to host controller
2144 * @ap: port to which command is being issued
2145 * @tf: ATA taskfile register set
2146 *
2147 * Issues ATA taskfile register set to ATA host controller,
2148 * with proper synchronization with interrupt handler and
2149 * other threads.
2150 *
2151 * LOCKING:
2152 * spin_lock_irqsave(host_set lock)
2153 */
2154
2155 static inline void ata_tf_to_host(struct ata_port *ap,
2156 const struct ata_taskfile *tf)
2157 {
2158 ap->ops->tf_load(ap, tf);
2159 ap->ops->exec_command(ap, tf);
2160 }
2161
2162 /**
2163 * ata_busy_sleep - sleep until BSY clears, or timeout
2164 * @ap: port containing status register to be polled
2165 * @tmout_pat: impatience timeout
2166 * @tmout: overall timeout
2167 *
2168 * Sleep until ATA Status register bit BSY clears,
2169 * or a timeout occurs.
2170 *
2171 * LOCKING: None.
2172 */
2173
2174 unsigned int ata_busy_sleep (struct ata_port *ap,
2175 unsigned long tmout_pat, unsigned long tmout)
2176 {
2177 unsigned long timer_start, timeout;
2178 u8 status;
2179
2180 status = ata_busy_wait(ap, ATA_BUSY, 300);
2181 timer_start = jiffies;
2182 timeout = timer_start + tmout_pat;
2183 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2184 msleep(50);
2185 status = ata_busy_wait(ap, ATA_BUSY, 3);
2186 }
2187
2188 if (status & ATA_BUSY)
2189 ata_port_printk(ap, KERN_WARNING,
2190 "port is slow to respond, please be patient\n");
2191
2192 timeout = timer_start + tmout;
2193 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2194 msleep(50);
2195 status = ata_chk_status(ap);
2196 }
2197
2198 if (status & ATA_BUSY) {
2199 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2200 "(%lu secs)\n", tmout / HZ);
2201 return 1;
2202 }
2203
2204 return 0;
2205 }
2206
2207 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2208 {
2209 struct ata_ioports *ioaddr = &ap->ioaddr;
2210 unsigned int dev0 = devmask & (1 << 0);
2211 unsigned int dev1 = devmask & (1 << 1);
2212 unsigned long timeout;
2213
2214 /* if device 0 was found in ata_devchk, wait for its
2215 * BSY bit to clear
2216 */
2217 if (dev0)
2218 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2219
2220 /* if device 1 was found in ata_devchk, wait for
2221 * register access, then wait for BSY to clear
2222 */
2223 timeout = jiffies + ATA_TMOUT_BOOT;
2224 while (dev1) {
2225 u8 nsect, lbal;
2226
2227 ap->ops->dev_select(ap, 1);
2228 if (ap->flags & ATA_FLAG_MMIO) {
2229 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2230 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2231 } else {
2232 nsect = inb(ioaddr->nsect_addr);
2233 lbal = inb(ioaddr->lbal_addr);
2234 }
2235 if ((nsect == 1) && (lbal == 1))
2236 break;
2237 if (time_after(jiffies, timeout)) {
2238 dev1 = 0;
2239 break;
2240 }
2241 msleep(50); /* give drive a breather */
2242 }
2243 if (dev1)
2244 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2245
2246 /* is all this really necessary? */
2247 ap->ops->dev_select(ap, 0);
2248 if (dev1)
2249 ap->ops->dev_select(ap, 1);
2250 if (dev0)
2251 ap->ops->dev_select(ap, 0);
2252 }
2253
2254 static unsigned int ata_bus_softreset(struct ata_port *ap,
2255 unsigned int devmask)
2256 {
2257 struct ata_ioports *ioaddr = &ap->ioaddr;
2258
2259 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2260
2261 /* software reset. causes dev0 to be selected */
2262 if (ap->flags & ATA_FLAG_MMIO) {
2263 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2264 udelay(20); /* FIXME: flush */
2265 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2266 udelay(20); /* FIXME: flush */
2267 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2268 } else {
2269 outb(ap->ctl, ioaddr->ctl_addr);
2270 udelay(10);
2271 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2272 udelay(10);
2273 outb(ap->ctl, ioaddr->ctl_addr);
2274 }
2275
2276 /* spec mandates ">= 2ms" before checking status.
2277 * We wait 150ms, because that was the magic delay used for
2278 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2279 * between when the ATA command register is written, and then
2280 * status is checked. Because waiting for "a while" before
2281 * checking status is fine, post SRST, we perform this magic
2282 * delay here as well.
2283 *
2284 * Old drivers/ide uses the 2mS rule and then waits for ready
2285 */
2286 msleep(150);
2287
2288 /* Before we perform post reset processing we want to see if
2289 * the bus shows 0xFF because the odd clown forgets the D7
2290 * pulldown resistor.
2291 */
2292 if (ata_check_status(ap) == 0xFF) {
2293 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2294 return AC_ERR_OTHER;
2295 }
2296
2297 ata_bus_post_reset(ap, devmask);
2298
2299 return 0;
2300 }
2301
2302 /**
2303 * ata_bus_reset - reset host port and associated ATA channel
2304 * @ap: port to reset
2305 *
2306 * This is typically the first time we actually start issuing
2307 * commands to the ATA channel. We wait for BSY to clear, then
2308 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2309 * result. Determine what devices, if any, are on the channel
2310 * by looking at the device 0/1 error register. Look at the signature
2311 * stored in each device's taskfile registers, to determine if
2312 * the device is ATA or ATAPI.
2313 *
2314 * LOCKING:
2315 * PCI/etc. bus probe sem.
2316 * Obtains host_set lock.
2317 *
2318 * SIDE EFFECTS:
2319 * Sets ATA_FLAG_DISABLED if bus reset fails.
2320 */
2321
2322 void ata_bus_reset(struct ata_port *ap)
2323 {
2324 struct ata_ioports *ioaddr = &ap->ioaddr;
2325 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2326 u8 err;
2327 unsigned int dev0, dev1 = 0, devmask = 0;
2328
2329 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2330
2331 /* determine if device 0/1 are present */
2332 if (ap->flags & ATA_FLAG_SATA_RESET)
2333 dev0 = 1;
2334 else {
2335 dev0 = ata_devchk(ap, 0);
2336 if (slave_possible)
2337 dev1 = ata_devchk(ap, 1);
2338 }
2339
2340 if (dev0)
2341 devmask |= (1 << 0);
2342 if (dev1)
2343 devmask |= (1 << 1);
2344
2345 /* select device 0 again */
2346 ap->ops->dev_select(ap, 0);
2347
2348 /* issue bus reset */
2349 if (ap->flags & ATA_FLAG_SRST)
2350 if (ata_bus_softreset(ap, devmask))
2351 goto err_out;
2352
2353 /*
2354 * determine by signature whether we have ATA or ATAPI devices
2355 */
2356 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2357 if ((slave_possible) && (err != 0x81))
2358 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2359
2360 /* re-enable interrupts */
2361 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2362 ata_irq_on(ap);
2363
2364 /* is double-select really necessary? */
2365 if (ap->device[1].class != ATA_DEV_NONE)
2366 ap->ops->dev_select(ap, 1);
2367 if (ap->device[0].class != ATA_DEV_NONE)
2368 ap->ops->dev_select(ap, 0);
2369
2370 /* if no devices were detected, disable this port */
2371 if ((ap->device[0].class == ATA_DEV_NONE) &&
2372 (ap->device[1].class == ATA_DEV_NONE))
2373 goto err_out;
2374
2375 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2376 /* set up device control for ATA_FLAG_SATA_RESET */
2377 if (ap->flags & ATA_FLAG_MMIO)
2378 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2379 else
2380 outb(ap->ctl, ioaddr->ctl_addr);
2381 }
2382
2383 DPRINTK("EXIT\n");
2384 return;
2385
2386 err_out:
2387 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2388 ap->ops->port_disable(ap);
2389
2390 DPRINTK("EXIT\n");
2391 }
2392
2393 static int sata_phy_resume(struct ata_port *ap)
2394 {
2395 unsigned long timeout = jiffies + (HZ * 5);
2396 u32 scontrol, sstatus;
2397 int rc;
2398
2399 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2400 return rc;
2401
2402 scontrol = (scontrol & 0x0f0) | 0x300;
2403
2404 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2405 return rc;
2406
2407 /* Wait for phy to become ready, if necessary. */
2408 do {
2409 msleep(200);
2410 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2411 return rc;
2412 if ((sstatus & 0xf) != 1)
2413 return 0;
2414 } while (time_before(jiffies, timeout));
2415
2416 return -EBUSY;
2417 }
2418
2419 /**
2420 * ata_std_probeinit - initialize probing
2421 * @ap: port to be probed
2422 *
2423 * @ap is about to be probed. Initialize it. This function is
2424 * to be used as standard callback for ata_drive_probe_reset().
2425 *
2426 * NOTE!!! Do not use this function as probeinit if a low level
2427 * driver implements only hardreset. Just pass NULL as probeinit
2428 * in that case. Using this function is probably okay but doing
2429 * so makes reset sequence different from the original
2430 * ->phy_reset implementation and Jeff nervous. :-P
2431 */
2432 void ata_std_probeinit(struct ata_port *ap)
2433 {
2434 u32 scontrol;
2435
2436 /* resume link */
2437 sata_phy_resume(ap);
2438
2439 /* init sata_spd_limit to the current value */
2440 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2441 int spd = (scontrol >> 4) & 0xf;
2442 ap->sata_spd_limit &= (1 << spd) - 1;
2443 }
2444
2445 /* wait for device */
2446 if (ata_port_online(ap))
2447 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2448 }
2449
2450 /**
2451 * ata_std_softreset - reset host port via ATA SRST
2452 * @ap: port to reset
2453 * @classes: resulting classes of attached devices
2454 *
2455 * Reset host port using ATA SRST. This function is to be used
2456 * as standard callback for ata_drive_*_reset() functions.
2457 *
2458 * LOCKING:
2459 * Kernel thread context (may sleep)
2460 *
2461 * RETURNS:
2462 * 0 on success, -errno otherwise.
2463 */
2464 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2465 {
2466 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2467 unsigned int devmask = 0, err_mask;
2468 u8 err;
2469
2470 DPRINTK("ENTER\n");
2471
2472 if (ata_port_offline(ap)) {
2473 classes[0] = ATA_DEV_NONE;
2474 goto out;
2475 }
2476
2477 /* determine if device 0/1 are present */
2478 if (ata_devchk(ap, 0))
2479 devmask |= (1 << 0);
2480 if (slave_possible && ata_devchk(ap, 1))
2481 devmask |= (1 << 1);
2482
2483 /* select device 0 again */
2484 ap->ops->dev_select(ap, 0);
2485
2486 /* issue bus reset */
2487 DPRINTK("about to softreset, devmask=%x\n", devmask);
2488 err_mask = ata_bus_softreset(ap, devmask);
2489 if (err_mask) {
2490 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2491 err_mask);
2492 return -EIO;
2493 }
2494
2495 /* determine by signature whether we have ATA or ATAPI devices */
2496 classes[0] = ata_dev_try_classify(ap, 0, &err);
2497 if (slave_possible && err != 0x81)
2498 classes[1] = ata_dev_try_classify(ap, 1, &err);
2499
2500 out:
2501 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2502 return 0;
2503 }
2504
2505 /**
2506 * sata_std_hardreset - reset host port via SATA phy reset
2507 * @ap: port to reset
2508 * @class: resulting class of attached device
2509 *
2510 * SATA phy-reset host port using DET bits of SControl register.
2511 * This function is to be used as standard callback for
2512 * ata_drive_*_reset().
2513 *
2514 * LOCKING:
2515 * Kernel thread context (may sleep)
2516 *
2517 * RETURNS:
2518 * 0 on success, -errno otherwise.
2519 */
2520 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2521 {
2522 u32 scontrol;
2523 int rc;
2524
2525 DPRINTK("ENTER\n");
2526
2527 if (sata_set_spd_needed(ap)) {
2528 /* SATA spec says nothing about how to reconfigure
2529 * spd. To be on the safe side, turn off phy during
2530 * reconfiguration. This works for at least ICH7 AHCI
2531 * and Sil3124.
2532 */
2533 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2534 return rc;
2535
2536 scontrol = (scontrol & 0x0f0) | 0x302;
2537
2538 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2539 return rc;
2540
2541 sata_set_spd(ap);
2542 }
2543
2544 /* issue phy wake/reset */
2545 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2546 return rc;
2547
2548 scontrol = (scontrol & 0x0f0) | 0x301;
2549
2550 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2551 return rc;
2552
2553 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2554 * 10.4.2 says at least 1 ms.
2555 */
2556 msleep(1);
2557
2558 /* bring phy back */
2559 sata_phy_resume(ap);
2560
2561 /* TODO: phy layer with polling, timeouts, etc. */
2562 if (ata_port_offline(ap)) {
2563 *class = ATA_DEV_NONE;
2564 DPRINTK("EXIT, link offline\n");
2565 return 0;
2566 }
2567
2568 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2569 ata_port_printk(ap, KERN_ERR,
2570 "COMRESET failed (device not ready)\n");
2571 return -EIO;
2572 }
2573
2574 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2575
2576 *class = ata_dev_try_classify(ap, 0, NULL);
2577
2578 DPRINTK("EXIT, class=%u\n", *class);
2579 return 0;
2580 }
2581
2582 /**
2583 * ata_std_postreset - standard postreset callback
2584 * @ap: the target ata_port
2585 * @classes: classes of attached devices
2586 *
2587 * This function is invoked after a successful reset. Note that
2588 * the device might have been reset more than once using
2589 * different reset methods before postreset is invoked.
2590 *
2591 * This function is to be used as standard callback for
2592 * ata_drive_*_reset().
2593 *
2594 * LOCKING:
2595 * Kernel thread context (may sleep)
2596 */
2597 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2598 {
2599 u32 serror;
2600
2601 DPRINTK("ENTER\n");
2602
2603 /* print link status */
2604 sata_print_link_status(ap);
2605
2606 /* clear SError */
2607 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2608 sata_scr_write(ap, SCR_ERROR, serror);
2609
2610 /* re-enable interrupts */
2611 if (!ap->ops->error_handler) {
2612 /* FIXME: hack. create a hook instead */
2613 if (ap->ioaddr.ctl_addr)
2614 ata_irq_on(ap);
2615 }
2616
2617 /* is double-select really necessary? */
2618 if (classes[0] != ATA_DEV_NONE)
2619 ap->ops->dev_select(ap, 1);
2620 if (classes[1] != ATA_DEV_NONE)
2621 ap->ops->dev_select(ap, 0);
2622
2623 /* bail out if no device is present */
2624 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2625 DPRINTK("EXIT, no device\n");
2626 return;
2627 }
2628
2629 /* set up device control */
2630 if (ap->ioaddr.ctl_addr) {
2631 if (ap->flags & ATA_FLAG_MMIO)
2632 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2633 else
2634 outb(ap->ctl, ap->ioaddr.ctl_addr);
2635 }
2636
2637 DPRINTK("EXIT\n");
2638 }
2639
2640 /**
2641 * ata_std_probe_reset - standard probe reset method
2642 * @ap: prot to perform probe-reset
2643 * @classes: resulting classes of attached devices
2644 *
2645 * The stock off-the-shelf ->probe_reset method.
2646 *
2647 * LOCKING:
2648 * Kernel thread context (may sleep)
2649 *
2650 * RETURNS:
2651 * 0 on success, -errno otherwise.
2652 */
2653 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2654 {
2655 ata_reset_fn_t hardreset;
2656
2657 hardreset = NULL;
2658 if (sata_scr_valid(ap))
2659 hardreset = sata_std_hardreset;
2660
2661 return ata_drive_probe_reset(ap, ata_std_probeinit,
2662 ata_std_softreset, hardreset,
2663 ata_std_postreset, classes);
2664 }
2665
2666 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2667 unsigned int *classes)
2668 {
2669 int i, rc;
2670
2671 for (i = 0; i < ATA_MAX_DEVICES; i++)
2672 classes[i] = ATA_DEV_UNKNOWN;
2673
2674 rc = reset(ap, classes);
2675 if (rc)
2676 return rc;
2677
2678 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2679 * is complete and convert all ATA_DEV_UNKNOWN to
2680 * ATA_DEV_NONE.
2681 */
2682 for (i = 0; i < ATA_MAX_DEVICES; i++)
2683 if (classes[i] != ATA_DEV_UNKNOWN)
2684 break;
2685
2686 if (i < ATA_MAX_DEVICES)
2687 for (i = 0; i < ATA_MAX_DEVICES; i++)
2688 if (classes[i] == ATA_DEV_UNKNOWN)
2689 classes[i] = ATA_DEV_NONE;
2690
2691 return 0;
2692 }
2693
2694 /**
2695 * ata_drive_probe_reset - Perform probe reset with given methods
2696 * @ap: port to reset
2697 * @probeinit: probeinit method (can be NULL)
2698 * @softreset: softreset method (can be NULL)
2699 * @hardreset: hardreset method (can be NULL)
2700 * @postreset: postreset method (can be NULL)
2701 * @classes: resulting classes of attached devices
2702 *
2703 * Reset the specified port and classify attached devices using
2704 * given methods. This function prefers softreset but tries all
2705 * possible reset sequences to reset and classify devices. This
2706 * function is intended to be used for constructing ->probe_reset
2707 * callback by low level drivers.
2708 *
2709 * Reset methods should follow the following rules.
2710 *
2711 * - Return 0 on sucess, -errno on failure.
2712 * - If classification is supported, fill classes[] with
2713 * recognized class codes.
2714 * - If classification is not supported, leave classes[] alone.
2715 *
2716 * LOCKING:
2717 * Kernel thread context (may sleep)
2718 *
2719 * RETURNS:
2720 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2721 * if classification fails, and any error code from reset
2722 * methods.
2723 */
2724 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2725 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2726 ata_postreset_fn_t postreset, unsigned int *classes)
2727 {
2728 int rc = -EINVAL;
2729
2730 ata_eh_freeze_port(ap);
2731
2732 if (probeinit)
2733 probeinit(ap);
2734
2735 if (softreset && !sata_set_spd_needed(ap)) {
2736 rc = ata_do_reset(ap, softreset, classes);
2737 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2738 goto done;
2739 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2740 "will try hardreset in 5 secs\n");
2741 ssleep(5);
2742 }
2743
2744 if (!hardreset)
2745 goto done;
2746
2747 while (1) {
2748 rc = ata_do_reset(ap, hardreset, classes);
2749 if (rc == 0) {
2750 if (classes[0] != ATA_DEV_UNKNOWN)
2751 goto done;
2752 break;
2753 }
2754
2755 if (sata_down_spd_limit(ap))
2756 goto done;
2757
2758 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2759 "will retry in 5 secs\n");
2760 ssleep(5);
2761 }
2762
2763 if (softreset) {
2764 ata_port_printk(ap, KERN_INFO,
2765 "hardreset succeeded without classification, "
2766 "will retry softreset in 5 secs\n");
2767 ssleep(5);
2768
2769 rc = ata_do_reset(ap, softreset, classes);
2770 }
2771
2772 done:
2773 if (rc == 0) {
2774 if (postreset)
2775 postreset(ap, classes);
2776
2777 ata_eh_thaw_port(ap);
2778
2779 if (classes[0] == ATA_DEV_UNKNOWN)
2780 rc = -ENODEV;
2781 }
2782 return rc;
2783 }
2784
2785 /**
2786 * ata_dev_same_device - Determine whether new ID matches configured device
2787 * @dev: device to compare against
2788 * @new_class: class of the new device
2789 * @new_id: IDENTIFY page of the new device
2790 *
2791 * Compare @new_class and @new_id against @dev and determine
2792 * whether @dev is the device indicated by @new_class and
2793 * @new_id.
2794 *
2795 * LOCKING:
2796 * None.
2797 *
2798 * RETURNS:
2799 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2800 */
2801 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2802 const u16 *new_id)
2803 {
2804 const u16 *old_id = dev->id;
2805 unsigned char model[2][41], serial[2][21];
2806 u64 new_n_sectors;
2807
2808 if (dev->class != new_class) {
2809 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2810 dev->class, new_class);
2811 return 0;
2812 }
2813
2814 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2815 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2816 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2817 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2818 new_n_sectors = ata_id_n_sectors(new_id);
2819
2820 if (strcmp(model[0], model[1])) {
2821 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2822 "'%s' != '%s'\n", model[0], model[1]);
2823 return 0;
2824 }
2825
2826 if (strcmp(serial[0], serial[1])) {
2827 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2828 "'%s' != '%s'\n", serial[0], serial[1]);
2829 return 0;
2830 }
2831
2832 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2833 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2834 "%llu != %llu\n",
2835 (unsigned long long)dev->n_sectors,
2836 (unsigned long long)new_n_sectors);
2837 return 0;
2838 }
2839
2840 return 1;
2841 }
2842
2843 /**
2844 * ata_dev_revalidate - Revalidate ATA device
2845 * @dev: device to revalidate
2846 * @post_reset: is this revalidation after reset?
2847 *
2848 * Re-read IDENTIFY page and make sure @dev is still attached to
2849 * the port.
2850 *
2851 * LOCKING:
2852 * Kernel thread context (may sleep)
2853 *
2854 * RETURNS:
2855 * 0 on success, negative errno otherwise
2856 */
2857 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2858 {
2859 unsigned int class = dev->class;
2860 u16 *id = (void *)dev->ap->sector_buf;
2861 int rc;
2862
2863 if (!ata_dev_enabled(dev)) {
2864 rc = -ENODEV;
2865 goto fail;
2866 }
2867
2868 /* read ID data */
2869 rc = ata_dev_read_id(dev, &class, post_reset, id);
2870 if (rc)
2871 goto fail;
2872
2873 /* is the device still there? */
2874 if (!ata_dev_same_device(dev, class, id)) {
2875 rc = -ENODEV;
2876 goto fail;
2877 }
2878
2879 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2880
2881 /* configure device according to the new ID */
2882 rc = ata_dev_configure(dev, 0);
2883 if (rc == 0)
2884 return 0;
2885
2886 fail:
2887 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2888 return rc;
2889 }
2890
2891 static const char * const ata_dma_blacklist [] = {
2892 "WDC AC11000H", NULL,
2893 "WDC AC22100H", NULL,
2894 "WDC AC32500H", NULL,
2895 "WDC AC33100H", NULL,
2896 "WDC AC31600H", NULL,
2897 "WDC AC32100H", "24.09P07",
2898 "WDC AC23200L", "21.10N21",
2899 "Compaq CRD-8241B", NULL,
2900 "CRD-8400B", NULL,
2901 "CRD-8480B", NULL,
2902 "CRD-8482B", NULL,
2903 "CRD-84", NULL,
2904 "SanDisk SDP3B", NULL,
2905 "SanDisk SDP3B-64", NULL,
2906 "SANYO CD-ROM CRD", NULL,
2907 "HITACHI CDR-8", NULL,
2908 "HITACHI CDR-8335", NULL,
2909 "HITACHI CDR-8435", NULL,
2910 "Toshiba CD-ROM XM-6202B", NULL,
2911 "TOSHIBA CD-ROM XM-1702BC", NULL,
2912 "CD-532E-A", NULL,
2913 "E-IDE CD-ROM CR-840", NULL,
2914 "CD-ROM Drive/F5A", NULL,
2915 "WPI CDD-820", NULL,
2916 "SAMSUNG CD-ROM SC-148C", NULL,
2917 "SAMSUNG CD-ROM SC", NULL,
2918 "SanDisk SDP3B-64", NULL,
2919 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2920 "_NEC DV5800A", NULL,
2921 "SAMSUNG CD-ROM SN-124", "N001"
2922 };
2923
2924 static int ata_strim(char *s, size_t len)
2925 {
2926 len = strnlen(s, len);
2927
2928 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2929 while ((len > 0) && (s[len - 1] == ' ')) {
2930 len--;
2931 s[len] = 0;
2932 }
2933 return len;
2934 }
2935
2936 static int ata_dma_blacklisted(const struct ata_device *dev)
2937 {
2938 unsigned char model_num[40];
2939 unsigned char model_rev[16];
2940 unsigned int nlen, rlen;
2941 int i;
2942
2943 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2944 sizeof(model_num));
2945 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2946 sizeof(model_rev));
2947 nlen = ata_strim(model_num, sizeof(model_num));
2948 rlen = ata_strim(model_rev, sizeof(model_rev));
2949
2950 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2951 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2952 if (ata_dma_blacklist[i+1] == NULL)
2953 return 1;
2954 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2955 return 1;
2956 }
2957 }
2958 return 0;
2959 }
2960
2961 /**
2962 * ata_dev_xfermask - Compute supported xfermask of the given device
2963 * @dev: Device to compute xfermask for
2964 *
2965 * Compute supported xfermask of @dev and store it in
2966 * dev->*_mask. This function is responsible for applying all
2967 * known limits including host controller limits, device
2968 * blacklist, etc...
2969 *
2970 * FIXME: The current implementation limits all transfer modes to
2971 * the fastest of the lowested device on the port. This is not
2972 * required on most controllers.
2973 *
2974 * LOCKING:
2975 * None.
2976 */
2977 static void ata_dev_xfermask(struct ata_device *dev)
2978 {
2979 struct ata_port *ap = dev->ap;
2980 struct ata_host_set *hs = ap->host_set;
2981 unsigned long xfer_mask;
2982 int i;
2983
2984 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2985 ap->mwdma_mask, ap->udma_mask);
2986
2987 /* Apply cable rule here. Don't apply it early because when
2988 * we handle hot plug the cable type can itself change.
2989 */
2990 if (ap->cbl == ATA_CBL_PATA40)
2991 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2992
2993 /* FIXME: Use port-wide xfermask for now */
2994 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2995 struct ata_device *d = &ap->device[i];
2996
2997 if (ata_dev_absent(d))
2998 continue;
2999
3000 if (ata_dev_disabled(d)) {
3001 /* to avoid violating device selection timing */
3002 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3003 UINT_MAX, UINT_MAX);
3004 continue;
3005 }
3006
3007 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3008 d->mwdma_mask, d->udma_mask);
3009 xfer_mask &= ata_id_xfermask(d->id);
3010 if (ata_dma_blacklisted(d))
3011 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3012 }
3013
3014 if (ata_dma_blacklisted(dev))
3015 ata_dev_printk(dev, KERN_WARNING,
3016 "device is on DMA blacklist, disabling DMA\n");
3017
3018 if (hs->flags & ATA_HOST_SIMPLEX) {
3019 if (hs->simplex_claimed)
3020 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3021 }
3022
3023 if (ap->ops->mode_filter)
3024 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3025
3026 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3027 &dev->mwdma_mask, &dev->udma_mask);
3028 }
3029
3030 /**
3031 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3032 * @dev: Device to which command will be sent
3033 *
3034 * Issue SET FEATURES - XFER MODE command to device @dev
3035 * on port @ap.
3036 *
3037 * LOCKING:
3038 * PCI/etc. bus probe sem.
3039 *
3040 * RETURNS:
3041 * 0 on success, AC_ERR_* mask otherwise.
3042 */
3043
3044 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3045 {
3046 struct ata_taskfile tf;
3047 unsigned int err_mask;
3048
3049 /* set up set-features taskfile */
3050 DPRINTK("set features - xfer mode\n");
3051
3052 ata_tf_init(dev, &tf);
3053 tf.command = ATA_CMD_SET_FEATURES;
3054 tf.feature = SETFEATURES_XFER;
3055 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3056 tf.protocol = ATA_PROT_NODATA;
3057 tf.nsect = dev->xfer_mode;
3058
3059 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3060
3061 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3062 return err_mask;
3063 }
3064
3065 /**
3066 * ata_dev_init_params - Issue INIT DEV PARAMS command
3067 * @dev: Device to which command will be sent
3068 * @heads: Number of heads
3069 * @sectors: Number of sectors
3070 *
3071 * LOCKING:
3072 * Kernel thread context (may sleep)
3073 *
3074 * RETURNS:
3075 * 0 on success, AC_ERR_* mask otherwise.
3076 */
3077 static unsigned int ata_dev_init_params(struct ata_device *dev,
3078 u16 heads, u16 sectors)
3079 {
3080 struct ata_taskfile tf;
3081 unsigned int err_mask;
3082
3083 /* Number of sectors per track 1-255. Number of heads 1-16 */
3084 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3085 return AC_ERR_INVALID;
3086
3087 /* set up init dev params taskfile */
3088 DPRINTK("init dev params \n");
3089
3090 ata_tf_init(dev, &tf);
3091 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3092 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3093 tf.protocol = ATA_PROT_NODATA;
3094 tf.nsect = sectors;
3095 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3096
3097 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3098
3099 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3100 return err_mask;
3101 }
3102
3103 /**
3104 * ata_sg_clean - Unmap DMA memory associated with command
3105 * @qc: Command containing DMA memory to be released
3106 *
3107 * Unmap all mapped DMA memory associated with this command.
3108 *
3109 * LOCKING:
3110 * spin_lock_irqsave(host_set lock)
3111 */
3112
3113 static void ata_sg_clean(struct ata_queued_cmd *qc)
3114 {
3115 struct ata_port *ap = qc->ap;
3116 struct scatterlist *sg = qc->__sg;
3117 int dir = qc->dma_dir;
3118 void *pad_buf = NULL;
3119
3120 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3121 WARN_ON(sg == NULL);
3122
3123 if (qc->flags & ATA_QCFLAG_SINGLE)
3124 WARN_ON(qc->n_elem > 1);
3125
3126 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3127
3128 /* if we padded the buffer out to 32-bit bound, and data
3129 * xfer direction is from-device, we must copy from the
3130 * pad buffer back into the supplied buffer
3131 */
3132 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3133 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3134
3135 if (qc->flags & ATA_QCFLAG_SG) {
3136 if (qc->n_elem)
3137 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3138 /* restore last sg */
3139 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3140 if (pad_buf) {
3141 struct scatterlist *psg = &qc->pad_sgent;
3142 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3143 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3144 kunmap_atomic(addr, KM_IRQ0);
3145 }
3146 } else {
3147 if (qc->n_elem)
3148 dma_unmap_single(ap->dev,
3149 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3150 dir);
3151 /* restore sg */
3152 sg->length += qc->pad_len;
3153 if (pad_buf)
3154 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3155 pad_buf, qc->pad_len);
3156 }
3157
3158 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3159 qc->__sg = NULL;
3160 }
3161
3162 /**
3163 * ata_fill_sg - Fill PCI IDE PRD table
3164 * @qc: Metadata associated with taskfile to be transferred
3165 *
3166 * Fill PCI IDE PRD (scatter-gather) table with segments
3167 * associated with the current disk command.
3168 *
3169 * LOCKING:
3170 * spin_lock_irqsave(host_set lock)
3171 *
3172 */
3173 static void ata_fill_sg(struct ata_queued_cmd *qc)
3174 {
3175 struct ata_port *ap = qc->ap;
3176 struct scatterlist *sg;
3177 unsigned int idx;
3178
3179 WARN_ON(qc->__sg == NULL);
3180 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3181
3182 idx = 0;
3183 ata_for_each_sg(sg, qc) {
3184 u32 addr, offset;
3185 u32 sg_len, len;
3186
3187 /* determine if physical DMA addr spans 64K boundary.
3188 * Note h/w doesn't support 64-bit, so we unconditionally
3189 * truncate dma_addr_t to u32.
3190 */
3191 addr = (u32) sg_dma_address(sg);
3192 sg_len = sg_dma_len(sg);
3193
3194 while (sg_len) {
3195 offset = addr & 0xffff;
3196 len = sg_len;
3197 if ((offset + sg_len) > 0x10000)
3198 len = 0x10000 - offset;
3199
3200 ap->prd[idx].addr = cpu_to_le32(addr);
3201 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3202 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3203
3204 idx++;
3205 sg_len -= len;
3206 addr += len;
3207 }
3208 }
3209
3210 if (idx)
3211 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3212 }
3213 /**
3214 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3215 * @qc: Metadata associated with taskfile to check
3216 *
3217 * Allow low-level driver to filter ATA PACKET commands, returning
3218 * a status indicating whether or not it is OK to use DMA for the
3219 * supplied PACKET command.
3220 *
3221 * LOCKING:
3222 * spin_lock_irqsave(host_set lock)
3223 *
3224 * RETURNS: 0 when ATAPI DMA can be used
3225 * nonzero otherwise
3226 */
3227 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3228 {
3229 struct ata_port *ap = qc->ap;
3230 int rc = 0; /* Assume ATAPI DMA is OK by default */
3231
3232 if (ap->ops->check_atapi_dma)
3233 rc = ap->ops->check_atapi_dma(qc);
3234
3235 /* We don't support polling DMA.
3236 * Use PIO if the LLDD handles only interrupts in
3237 * the HSM_ST_LAST state and the ATAPI device
3238 * generates CDB interrupts.
3239 */
3240 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3241 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3242 rc = 1;
3243
3244 return rc;
3245 }
3246 /**
3247 * ata_qc_prep - Prepare taskfile for submission
3248 * @qc: Metadata associated with taskfile to be prepared
3249 *
3250 * Prepare ATA taskfile for submission.
3251 *
3252 * LOCKING:
3253 * spin_lock_irqsave(host_set lock)
3254 */
3255 void ata_qc_prep(struct ata_queued_cmd *qc)
3256 {
3257 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3258 return;
3259
3260 ata_fill_sg(qc);
3261 }
3262
3263 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3264
3265 /**
3266 * ata_sg_init_one - Associate command with memory buffer
3267 * @qc: Command to be associated
3268 * @buf: Memory buffer
3269 * @buflen: Length of memory buffer, in bytes.
3270 *
3271 * Initialize the data-related elements of queued_cmd @qc
3272 * to point to a single memory buffer, @buf of byte length @buflen.
3273 *
3274 * LOCKING:
3275 * spin_lock_irqsave(host_set lock)
3276 */
3277
3278 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3279 {
3280 struct scatterlist *sg;
3281
3282 qc->flags |= ATA_QCFLAG_SINGLE;
3283
3284 memset(&qc->sgent, 0, sizeof(qc->sgent));
3285 qc->__sg = &qc->sgent;
3286 qc->n_elem = 1;
3287 qc->orig_n_elem = 1;
3288 qc->buf_virt = buf;
3289
3290 sg = qc->__sg;
3291 sg_init_one(sg, buf, buflen);
3292 }
3293
3294 /**
3295 * ata_sg_init - Associate command with scatter-gather table.
3296 * @qc: Command to be associated
3297 * @sg: Scatter-gather table.
3298 * @n_elem: Number of elements in s/g table.
3299 *
3300 * Initialize the data-related elements of queued_cmd @qc
3301 * to point to a scatter-gather table @sg, containing @n_elem
3302 * elements.
3303 *
3304 * LOCKING:
3305 * spin_lock_irqsave(host_set lock)
3306 */
3307
3308 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3309 unsigned int n_elem)
3310 {
3311 qc->flags |= ATA_QCFLAG_SG;
3312 qc->__sg = sg;
3313 qc->n_elem = n_elem;
3314 qc->orig_n_elem = n_elem;
3315 }
3316
3317 /**
3318 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3319 * @qc: Command with memory buffer to be mapped.
3320 *
3321 * DMA-map the memory buffer associated with queued_cmd @qc.
3322 *
3323 * LOCKING:
3324 * spin_lock_irqsave(host_set lock)
3325 *
3326 * RETURNS:
3327 * Zero on success, negative on error.
3328 */
3329
3330 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3331 {
3332 struct ata_port *ap = qc->ap;
3333 int dir = qc->dma_dir;
3334 struct scatterlist *sg = qc->__sg;
3335 dma_addr_t dma_address;
3336 int trim_sg = 0;
3337
3338 /* we must lengthen transfers to end on a 32-bit boundary */
3339 qc->pad_len = sg->length & 3;
3340 if (qc->pad_len) {
3341 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3342 struct scatterlist *psg = &qc->pad_sgent;
3343
3344 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3345
3346 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3347
3348 if (qc->tf.flags & ATA_TFLAG_WRITE)
3349 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3350 qc->pad_len);
3351
3352 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3353 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3354 /* trim sg */
3355 sg->length -= qc->pad_len;
3356 if (sg->length == 0)
3357 trim_sg = 1;
3358
3359 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3360 sg->length, qc->pad_len);
3361 }
3362
3363 if (trim_sg) {
3364 qc->n_elem--;
3365 goto skip_map;
3366 }
3367
3368 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3369 sg->length, dir);
3370 if (dma_mapping_error(dma_address)) {
3371 /* restore sg */
3372 sg->length += qc->pad_len;
3373 return -1;
3374 }
3375
3376 sg_dma_address(sg) = dma_address;
3377 sg_dma_len(sg) = sg->length;
3378
3379 skip_map:
3380 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3381 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3382
3383 return 0;
3384 }
3385
3386 /**
3387 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3388 * @qc: Command with scatter-gather table to be mapped.
3389 *
3390 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3391 *
3392 * LOCKING:
3393 * spin_lock_irqsave(host_set lock)
3394 *
3395 * RETURNS:
3396 * Zero on success, negative on error.
3397 *
3398 */
3399
3400 static int ata_sg_setup(struct ata_queued_cmd *qc)
3401 {
3402 struct ata_port *ap = qc->ap;
3403 struct scatterlist *sg = qc->__sg;
3404 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3405 int n_elem, pre_n_elem, dir, trim_sg = 0;
3406
3407 VPRINTK("ENTER, ata%u\n", ap->id);
3408 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3409
3410 /* we must lengthen transfers to end on a 32-bit boundary */
3411 qc->pad_len = lsg->length & 3;
3412 if (qc->pad_len) {
3413 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3414 struct scatterlist *psg = &qc->pad_sgent;
3415 unsigned int offset;
3416
3417 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3418
3419 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3420
3421 /*
3422 * psg->page/offset are used to copy to-be-written
3423 * data in this function or read data in ata_sg_clean.
3424 */
3425 offset = lsg->offset + lsg->length - qc->pad_len;
3426 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3427 psg->offset = offset_in_page(offset);
3428
3429 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3430 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3431 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3432 kunmap_atomic(addr, KM_IRQ0);
3433 }
3434
3435 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3436 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3437 /* trim last sg */
3438 lsg->length -= qc->pad_len;
3439 if (lsg->length == 0)
3440 trim_sg = 1;
3441
3442 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3443 qc->n_elem - 1, lsg->length, qc->pad_len);
3444 }
3445
3446 pre_n_elem = qc->n_elem;
3447 if (trim_sg && pre_n_elem)
3448 pre_n_elem--;
3449
3450 if (!pre_n_elem) {
3451 n_elem = 0;
3452 goto skip_map;
3453 }
3454
3455 dir = qc->dma_dir;
3456 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3457 if (n_elem < 1) {
3458 /* restore last sg */
3459 lsg->length += qc->pad_len;
3460 return -1;
3461 }
3462
3463 DPRINTK("%d sg elements mapped\n", n_elem);
3464
3465 skip_map:
3466 qc->n_elem = n_elem;
3467
3468 return 0;
3469 }
3470
3471 /**
3472 * swap_buf_le16 - swap halves of 16-bit words in place
3473 * @buf: Buffer to swap
3474 * @buf_words: Number of 16-bit words in buffer.
3475 *
3476 * Swap halves of 16-bit words if needed to convert from
3477 * little-endian byte order to native cpu byte order, or
3478 * vice-versa.
3479 *
3480 * LOCKING:
3481 * Inherited from caller.
3482 */
3483 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3484 {
3485 #ifdef __BIG_ENDIAN
3486 unsigned int i;
3487
3488 for (i = 0; i < buf_words; i++)
3489 buf[i] = le16_to_cpu(buf[i]);
3490 #endif /* __BIG_ENDIAN */
3491 }
3492
3493 /**
3494 * ata_mmio_data_xfer - Transfer data by MMIO
3495 * @ap: port to read/write
3496 * @buf: data buffer
3497 * @buflen: buffer length
3498 * @write_data: read/write
3499 *
3500 * Transfer data from/to the device data register by MMIO.
3501 *
3502 * LOCKING:
3503 * Inherited from caller.
3504 */
3505
3506 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3507 unsigned int buflen, int write_data)
3508 {
3509 unsigned int i;
3510 unsigned int words = buflen >> 1;
3511 u16 *buf16 = (u16 *) buf;
3512 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3513
3514 /* Transfer multiple of 2 bytes */
3515 if (write_data) {
3516 for (i = 0; i < words; i++)
3517 writew(le16_to_cpu(buf16[i]), mmio);
3518 } else {
3519 for (i = 0; i < words; i++)
3520 buf16[i] = cpu_to_le16(readw(mmio));
3521 }
3522
3523 /* Transfer trailing 1 byte, if any. */
3524 if (unlikely(buflen & 0x01)) {
3525 u16 align_buf[1] = { 0 };
3526 unsigned char *trailing_buf = buf + buflen - 1;
3527
3528 if (write_data) {
3529 memcpy(align_buf, trailing_buf, 1);
3530 writew(le16_to_cpu(align_buf[0]), mmio);
3531 } else {
3532 align_buf[0] = cpu_to_le16(readw(mmio));
3533 memcpy(trailing_buf, align_buf, 1);
3534 }
3535 }
3536 }
3537
3538 /**
3539 * ata_pio_data_xfer - Transfer data by PIO
3540 * @ap: port to read/write
3541 * @buf: data buffer
3542 * @buflen: buffer length
3543 * @write_data: read/write
3544 *
3545 * Transfer data from/to the device data register by PIO.
3546 *
3547 * LOCKING:
3548 * Inherited from caller.
3549 */
3550
3551 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3552 unsigned int buflen, int write_data)
3553 {
3554 unsigned int words = buflen >> 1;
3555
3556 /* Transfer multiple of 2 bytes */
3557 if (write_data)
3558 outsw(ap->ioaddr.data_addr, buf, words);
3559 else
3560 insw(ap->ioaddr.data_addr, buf, words);
3561
3562 /* Transfer trailing 1 byte, if any. */
3563 if (unlikely(buflen & 0x01)) {
3564 u16 align_buf[1] = { 0 };
3565 unsigned char *trailing_buf = buf + buflen - 1;
3566
3567 if (write_data) {
3568 memcpy(align_buf, trailing_buf, 1);
3569 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3570 } else {
3571 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3572 memcpy(trailing_buf, align_buf, 1);
3573 }
3574 }
3575 }
3576
3577 /**
3578 * ata_data_xfer - Transfer data from/to the data register.
3579 * @ap: port to read/write
3580 * @buf: data buffer
3581 * @buflen: buffer length
3582 * @do_write: read/write
3583 *
3584 * Transfer data from/to the device data register.
3585 *
3586 * LOCKING:
3587 * Inherited from caller.
3588 */
3589
3590 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3591 unsigned int buflen, int do_write)
3592 {
3593 /* Make the crap hardware pay the costs not the good stuff */
3594 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3595 unsigned long flags;
3596 local_irq_save(flags);
3597 if (ap->flags & ATA_FLAG_MMIO)
3598 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3599 else
3600 ata_pio_data_xfer(ap, buf, buflen, do_write);
3601 local_irq_restore(flags);
3602 } else {
3603 if (ap->flags & ATA_FLAG_MMIO)
3604 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3605 else
3606 ata_pio_data_xfer(ap, buf, buflen, do_write);
3607 }
3608 }
3609
3610 /**
3611 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3612 * @qc: Command on going
3613 *
3614 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3615 *
3616 * LOCKING:
3617 * Inherited from caller.
3618 */
3619
3620 static void ata_pio_sector(struct ata_queued_cmd *qc)
3621 {
3622 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3623 struct scatterlist *sg = qc->__sg;
3624 struct ata_port *ap = qc->ap;
3625 struct page *page;
3626 unsigned int offset;
3627 unsigned char *buf;
3628
3629 if (qc->cursect == (qc->nsect - 1))
3630 ap->hsm_task_state = HSM_ST_LAST;
3631
3632 page = sg[qc->cursg].page;
3633 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3634
3635 /* get the current page and offset */
3636 page = nth_page(page, (offset >> PAGE_SHIFT));
3637 offset %= PAGE_SIZE;
3638
3639 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3640
3641 if (PageHighMem(page)) {
3642 unsigned long flags;
3643
3644 local_irq_save(flags);
3645 buf = kmap_atomic(page, KM_IRQ0);
3646
3647 /* do the actual data transfer */
3648 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3649
3650 kunmap_atomic(buf, KM_IRQ0);
3651 local_irq_restore(flags);
3652 } else {
3653 buf = page_address(page);
3654 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3655 }
3656
3657 qc->cursect++;
3658 qc->cursg_ofs++;
3659
3660 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3661 qc->cursg++;
3662 qc->cursg_ofs = 0;
3663 }
3664 }
3665
3666 /**
3667 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3668 * @qc: Command on going
3669 *
3670 * Transfer one or many ATA_SECT_SIZE of data from/to the
3671 * ATA device for the DRQ request.
3672 *
3673 * LOCKING:
3674 * Inherited from caller.
3675 */
3676
3677 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3678 {
3679 if (is_multi_taskfile(&qc->tf)) {
3680 /* READ/WRITE MULTIPLE */
3681 unsigned int nsect;
3682
3683 WARN_ON(qc->dev->multi_count == 0);
3684
3685 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3686 while (nsect--)
3687 ata_pio_sector(qc);
3688 } else
3689 ata_pio_sector(qc);
3690 }
3691
3692 /**
3693 * atapi_send_cdb - Write CDB bytes to hardware
3694 * @ap: Port to which ATAPI device is attached.
3695 * @qc: Taskfile currently active
3696 *
3697 * When device has indicated its readiness to accept
3698 * a CDB, this function is called. Send the CDB.
3699 *
3700 * LOCKING:
3701 * caller.
3702 */
3703
3704 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3705 {
3706 /* send SCSI cdb */
3707 DPRINTK("send cdb\n");
3708 WARN_ON(qc->dev->cdb_len < 12);
3709
3710 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3711 ata_altstatus(ap); /* flush */
3712
3713 switch (qc->tf.protocol) {
3714 case ATA_PROT_ATAPI:
3715 ap->hsm_task_state = HSM_ST;
3716 break;
3717 case ATA_PROT_ATAPI_NODATA:
3718 ap->hsm_task_state = HSM_ST_LAST;
3719 break;
3720 case ATA_PROT_ATAPI_DMA:
3721 ap->hsm_task_state = HSM_ST_LAST;
3722 /* initiate bmdma */
3723 ap->ops->bmdma_start(qc);
3724 break;
3725 }
3726 }
3727
3728 /**
3729 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3730 * @qc: Command on going
3731 * @bytes: number of bytes
3732 *
3733 * Transfer Transfer data from/to the ATAPI device.
3734 *
3735 * LOCKING:
3736 * Inherited from caller.
3737 *
3738 */
3739
3740 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3741 {
3742 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3743 struct scatterlist *sg = qc->__sg;
3744 struct ata_port *ap = qc->ap;
3745 struct page *page;
3746 unsigned char *buf;
3747 unsigned int offset, count;
3748
3749 if (qc->curbytes + bytes >= qc->nbytes)
3750 ap->hsm_task_state = HSM_ST_LAST;
3751
3752 next_sg:
3753 if (unlikely(qc->cursg >= qc->n_elem)) {
3754 /*
3755 * The end of qc->sg is reached and the device expects
3756 * more data to transfer. In order not to overrun qc->sg
3757 * and fulfill length specified in the byte count register,
3758 * - for read case, discard trailing data from the device
3759 * - for write case, padding zero data to the device
3760 */
3761 u16 pad_buf[1] = { 0 };
3762 unsigned int words = bytes >> 1;
3763 unsigned int i;
3764
3765 if (words) /* warning if bytes > 1 */
3766 ata_dev_printk(qc->dev, KERN_WARNING,
3767 "%u bytes trailing data\n", bytes);
3768
3769 for (i = 0; i < words; i++)
3770 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3771
3772 ap->hsm_task_state = HSM_ST_LAST;
3773 return;
3774 }
3775
3776 sg = &qc->__sg[qc->cursg];
3777
3778 page = sg->page;
3779 offset = sg->offset + qc->cursg_ofs;
3780
3781 /* get the current page and offset */
3782 page = nth_page(page, (offset >> PAGE_SHIFT));
3783 offset %= PAGE_SIZE;
3784
3785 /* don't overrun current sg */
3786 count = min(sg->length - qc->cursg_ofs, bytes);
3787
3788 /* don't cross page boundaries */
3789 count = min(count, (unsigned int)PAGE_SIZE - offset);
3790
3791 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3792
3793 if (PageHighMem(page)) {
3794 unsigned long flags;
3795
3796 local_irq_save(flags);
3797 buf = kmap_atomic(page, KM_IRQ0);
3798
3799 /* do the actual data transfer */
3800 ata_data_xfer(ap, buf + offset, count, do_write);
3801
3802 kunmap_atomic(buf, KM_IRQ0);
3803 local_irq_restore(flags);
3804 } else {
3805 buf = page_address(page);
3806 ata_data_xfer(ap, buf + offset, count, do_write);
3807 }
3808
3809 bytes -= count;
3810 qc->curbytes += count;
3811 qc->cursg_ofs += count;
3812
3813 if (qc->cursg_ofs == sg->length) {
3814 qc->cursg++;
3815 qc->cursg_ofs = 0;
3816 }
3817
3818 if (bytes)
3819 goto next_sg;
3820 }
3821
3822 /**
3823 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3824 * @qc: Command on going
3825 *
3826 * Transfer Transfer data from/to the ATAPI device.
3827 *
3828 * LOCKING:
3829 * Inherited from caller.
3830 */
3831
3832 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3833 {
3834 struct ata_port *ap = qc->ap;
3835 struct ata_device *dev = qc->dev;
3836 unsigned int ireason, bc_lo, bc_hi, bytes;
3837 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3838
3839 ap->ops->tf_read(ap, &qc->tf);
3840 ireason = qc->tf.nsect;
3841 bc_lo = qc->tf.lbam;
3842 bc_hi = qc->tf.lbah;
3843 bytes = (bc_hi << 8) | bc_lo;
3844
3845 /* shall be cleared to zero, indicating xfer of data */
3846 if (ireason & (1 << 0))
3847 goto err_out;
3848
3849 /* make sure transfer direction matches expected */
3850 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3851 if (do_write != i_write)
3852 goto err_out;
3853
3854 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3855
3856 __atapi_pio_bytes(qc, bytes);
3857
3858 return;
3859
3860 err_out:
3861 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3862 qc->err_mask |= AC_ERR_HSM;
3863 ap->hsm_task_state = HSM_ST_ERR;
3864 }
3865
3866 /**
3867 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3868 * @ap: the target ata_port
3869 * @qc: qc on going
3870 *
3871 * RETURNS:
3872 * 1 if ok in workqueue, 0 otherwise.
3873 */
3874
3875 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3876 {
3877 if (qc->tf.flags & ATA_TFLAG_POLLING)
3878 return 1;
3879
3880 if (ap->hsm_task_state == HSM_ST_FIRST) {
3881 if (qc->tf.protocol == ATA_PROT_PIO &&
3882 (qc->tf.flags & ATA_TFLAG_WRITE))
3883 return 1;
3884
3885 if (is_atapi_taskfile(&qc->tf) &&
3886 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3887 return 1;
3888 }
3889
3890 return 0;
3891 }
3892
3893 /**
3894 * ata_hsm_qc_complete - finish a qc running on standard HSM
3895 * @qc: Command to complete
3896 * @in_wq: 1 if called from workqueue, 0 otherwise
3897 *
3898 * Finish @qc which is running on standard HSM.
3899 *
3900 * LOCKING:
3901 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3902 * Otherwise, none on entry and grabs host lock.
3903 */
3904 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3905 {
3906 struct ata_port *ap = qc->ap;
3907 unsigned long flags;
3908
3909 if (ap->ops->error_handler) {
3910 if (in_wq) {
3911 spin_lock_irqsave(&ap->host_set->lock, flags);
3912
3913 /* EH might have kicked in while host_set lock
3914 * is released.
3915 */
3916 qc = ata_qc_from_tag(ap, qc->tag);
3917 if (qc) {
3918 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3919 ata_irq_on(ap);
3920 ata_qc_complete(qc);
3921 } else
3922 ata_port_freeze(ap);
3923 }
3924
3925 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3926 } else {
3927 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3928 ata_qc_complete(qc);
3929 else
3930 ata_port_freeze(ap);
3931 }
3932 } else {
3933 if (in_wq) {
3934 spin_lock_irqsave(&ap->host_set->lock, flags);
3935 ata_irq_on(ap);
3936 ata_qc_complete(qc);
3937 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3938 } else
3939 ata_qc_complete(qc);
3940 }
3941 }
3942
3943 /**
3944 * ata_hsm_move - move the HSM to the next state.
3945 * @ap: the target ata_port
3946 * @qc: qc on going
3947 * @status: current device status
3948 * @in_wq: 1 if called from workqueue, 0 otherwise
3949 *
3950 * RETURNS:
3951 * 1 when poll next status needed, 0 otherwise.
3952 */
3953
3954 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3955 u8 status, int in_wq)
3956 {
3957 unsigned long flags = 0;
3958 int poll_next;
3959
3960 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3961
3962 /* Make sure ata_qc_issue_prot() does not throw things
3963 * like DMA polling into the workqueue. Notice that
3964 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3965 */
3966 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
3967
3968 fsm_start:
3969 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3970 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3971
3972 switch (ap->hsm_task_state) {
3973 case HSM_ST_FIRST:
3974 /* Send first data block or PACKET CDB */
3975
3976 /* If polling, we will stay in the work queue after
3977 * sending the data. Otherwise, interrupt handler
3978 * takes over after sending the data.
3979 */
3980 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3981
3982 /* check device status */
3983 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
3984 /* Wrong status. Let EH handle this */
3985 qc->err_mask |= AC_ERR_HSM;
3986 ap->hsm_task_state = HSM_ST_ERR;
3987 goto fsm_start;
3988 }
3989
3990 /* Device should not ask for data transfer (DRQ=1)
3991 * when it finds something wrong.
3992 * We ignore DRQ here and stop the HSM by
3993 * changing hsm_task_state to HSM_ST_ERR and
3994 * let the EH abort the command or reset the device.
3995 */
3996 if (unlikely(status & (ATA_ERR | ATA_DF))) {
3997 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
3998 ap->id, status);
3999 qc->err_mask |= AC_ERR_DEV;
4000 ap->hsm_task_state = HSM_ST_ERR;
4001 goto fsm_start;
4002 }
4003
4004 /* Send the CDB (atapi) or the first data block (ata pio out).
4005 * During the state transition, interrupt handler shouldn't
4006 * be invoked before the data transfer is complete and
4007 * hsm_task_state is changed. Hence, the following locking.
4008 */
4009 if (in_wq)
4010 spin_lock_irqsave(&ap->host_set->lock, flags);
4011
4012 if (qc->tf.protocol == ATA_PROT_PIO) {
4013 /* PIO data out protocol.
4014 * send first data block.
4015 */
4016
4017 /* ata_pio_sectors() might change the state
4018 * to HSM_ST_LAST. so, the state is changed here
4019 * before ata_pio_sectors().
4020 */
4021 ap->hsm_task_state = HSM_ST;
4022 ata_pio_sectors(qc);
4023 ata_altstatus(ap); /* flush */
4024 } else
4025 /* send CDB */
4026 atapi_send_cdb(ap, qc);
4027
4028 if (in_wq)
4029 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4030
4031 /* if polling, ata_pio_task() handles the rest.
4032 * otherwise, interrupt handler takes over from here.
4033 */
4034 break;
4035
4036 case HSM_ST:
4037 /* complete command or read/write the data register */
4038 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4039 /* ATAPI PIO protocol */
4040 if ((status & ATA_DRQ) == 0) {
4041 /* no more data to transfer */
4042 ap->hsm_task_state = HSM_ST_LAST;
4043 goto fsm_start;
4044 }
4045
4046 /* Device should not ask for data transfer (DRQ=1)
4047 * when it finds something wrong.
4048 * We ignore DRQ here and stop the HSM by
4049 * changing hsm_task_state to HSM_ST_ERR and
4050 * let the EH abort the command or reset the device.
4051 */
4052 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4053 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4054 ap->id, status);
4055 qc->err_mask |= AC_ERR_DEV;
4056 ap->hsm_task_state = HSM_ST_ERR;
4057 goto fsm_start;
4058 }
4059
4060 atapi_pio_bytes(qc);
4061
4062 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4063 /* bad ireason reported by device */
4064 goto fsm_start;
4065
4066 } else {
4067 /* ATA PIO protocol */
4068 if (unlikely((status & ATA_DRQ) == 0)) {
4069 /* handle BSY=0, DRQ=0 as error */
4070 qc->err_mask |= AC_ERR_HSM;
4071 ap->hsm_task_state = HSM_ST_ERR;
4072 goto fsm_start;
4073 }
4074
4075 /* For PIO reads, some devices may ask for
4076 * data transfer (DRQ=1) alone with ERR=1.
4077 * We respect DRQ here and transfer one
4078 * block of junk data before changing the
4079 * hsm_task_state to HSM_ST_ERR.
4080 *
4081 * For PIO writes, ERR=1 DRQ=1 doesn't make
4082 * sense since the data block has been
4083 * transferred to the device.
4084 */
4085 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4086 /* data might be corrputed */
4087 qc->err_mask |= AC_ERR_DEV;
4088
4089 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4090 ata_pio_sectors(qc);
4091 ata_altstatus(ap);
4092 status = ata_wait_idle(ap);
4093 }
4094
4095 /* ata_pio_sectors() might change the
4096 * state to HSM_ST_LAST. so, the state
4097 * is changed after ata_pio_sectors().
4098 */
4099 ap->hsm_task_state = HSM_ST_ERR;
4100 goto fsm_start;
4101 }
4102
4103 ata_pio_sectors(qc);
4104
4105 if (ap->hsm_task_state == HSM_ST_LAST &&
4106 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4107 /* all data read */
4108 ata_altstatus(ap);
4109 status = ata_wait_idle(ap);
4110 goto fsm_start;
4111 }
4112 }
4113
4114 ata_altstatus(ap); /* flush */
4115 poll_next = 1;
4116 break;
4117
4118 case HSM_ST_LAST:
4119 if (unlikely(!ata_ok(status))) {
4120 qc->err_mask |= __ac_err_mask(status);
4121 ap->hsm_task_state = HSM_ST_ERR;
4122 goto fsm_start;
4123 }
4124
4125 /* no more data to transfer */
4126 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4127 ap->id, qc->dev->devno, status);
4128
4129 WARN_ON(qc->err_mask);
4130
4131 ap->hsm_task_state = HSM_ST_IDLE;
4132
4133 /* complete taskfile transaction */
4134 ata_hsm_qc_complete(qc, in_wq);
4135
4136 poll_next = 0;
4137 break;
4138
4139 case HSM_ST_ERR:
4140 /* make sure qc->err_mask is available to
4141 * know what's wrong and recover
4142 */
4143 WARN_ON(qc->err_mask == 0);
4144
4145 ap->hsm_task_state = HSM_ST_IDLE;
4146
4147 /* complete taskfile transaction */
4148 ata_hsm_qc_complete(qc, in_wq);
4149
4150 poll_next = 0;
4151 break;
4152 default:
4153 poll_next = 0;
4154 BUG();
4155 }
4156
4157 return poll_next;
4158 }
4159
4160 static void ata_pio_task(void *_data)
4161 {
4162 struct ata_queued_cmd *qc = _data;
4163 struct ata_port *ap = qc->ap;
4164 u8 status;
4165 int poll_next;
4166
4167 fsm_start:
4168 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4169
4170 /*
4171 * This is purely heuristic. This is a fast path.
4172 * Sometimes when we enter, BSY will be cleared in
4173 * a chk-status or two. If not, the drive is probably seeking
4174 * or something. Snooze for a couple msecs, then
4175 * chk-status again. If still busy, queue delayed work.
4176 */
4177 status = ata_busy_wait(ap, ATA_BUSY, 5);
4178 if (status & ATA_BUSY) {
4179 msleep(2);
4180 status = ata_busy_wait(ap, ATA_BUSY, 10);
4181 if (status & ATA_BUSY) {
4182 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4183 return;
4184 }
4185 }
4186
4187 /* move the HSM */
4188 poll_next = ata_hsm_move(ap, qc, status, 1);
4189
4190 /* another command or interrupt handler
4191 * may be running at this point.
4192 */
4193 if (poll_next)
4194 goto fsm_start;
4195 }
4196
4197 /**
4198 * ata_qc_new - Request an available ATA command, for queueing
4199 * @ap: Port associated with device @dev
4200 * @dev: Device from whom we request an available command structure
4201 *
4202 * LOCKING:
4203 * None.
4204 */
4205
4206 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4207 {
4208 struct ata_queued_cmd *qc = NULL;
4209 unsigned int i;
4210
4211 /* no command while frozen */
4212 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4213 return NULL;
4214
4215 /* the last tag is reserved for internal command. */
4216 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4217 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4218 qc = __ata_qc_from_tag(ap, i);
4219 break;
4220 }
4221
4222 if (qc)
4223 qc->tag = i;
4224
4225 return qc;
4226 }
4227
4228 /**
4229 * ata_qc_new_init - Request an available ATA command, and initialize it
4230 * @dev: Device from whom we request an available command structure
4231 *
4232 * LOCKING:
4233 * None.
4234 */
4235
4236 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4237 {
4238 struct ata_port *ap = dev->ap;
4239 struct ata_queued_cmd *qc;
4240
4241 qc = ata_qc_new(ap);
4242 if (qc) {
4243 qc->scsicmd = NULL;
4244 qc->ap = ap;
4245 qc->dev = dev;
4246
4247 ata_qc_reinit(qc);
4248 }
4249
4250 return qc;
4251 }
4252
4253 /**
4254 * ata_qc_free - free unused ata_queued_cmd
4255 * @qc: Command to complete
4256 *
4257 * Designed to free unused ata_queued_cmd object
4258 * in case something prevents using it.
4259 *
4260 * LOCKING:
4261 * spin_lock_irqsave(host_set lock)
4262 */
4263 void ata_qc_free(struct ata_queued_cmd *qc)
4264 {
4265 struct ata_port *ap = qc->ap;
4266 unsigned int tag;
4267
4268 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4269
4270 qc->flags = 0;
4271 tag = qc->tag;
4272 if (likely(ata_tag_valid(tag))) {
4273 qc->tag = ATA_TAG_POISON;
4274 clear_bit(tag, &ap->qc_allocated);
4275 }
4276 }
4277
4278 void __ata_qc_complete(struct ata_queued_cmd *qc)
4279 {
4280 struct ata_port *ap = qc->ap;
4281
4282 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4283 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4284
4285 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4286 ata_sg_clean(qc);
4287
4288 /* command should be marked inactive atomically with qc completion */
4289 if (qc->tf.protocol == ATA_PROT_NCQ)
4290 ap->sactive &= ~(1 << qc->tag);
4291 else
4292 ap->active_tag = ATA_TAG_POISON;
4293
4294 /* atapi: mark qc as inactive to prevent the interrupt handler
4295 * from completing the command twice later, before the error handler
4296 * is called. (when rc != 0 and atapi request sense is needed)
4297 */
4298 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4299 ap->qc_active &= ~(1 << qc->tag);
4300
4301 /* call completion callback */
4302 qc->complete_fn(qc);
4303 }
4304
4305 /**
4306 * ata_qc_complete - Complete an active ATA command
4307 * @qc: Command to complete
4308 * @err_mask: ATA Status register contents
4309 *
4310 * Indicate to the mid and upper layers that an ATA
4311 * command has completed, with either an ok or not-ok status.
4312 *
4313 * LOCKING:
4314 * spin_lock_irqsave(host_set lock)
4315 */
4316 void ata_qc_complete(struct ata_queued_cmd *qc)
4317 {
4318 struct ata_port *ap = qc->ap;
4319
4320 /* XXX: New EH and old EH use different mechanisms to
4321 * synchronize EH with regular execution path.
4322 *
4323 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4324 * Normal execution path is responsible for not accessing a
4325 * failed qc. libata core enforces the rule by returning NULL
4326 * from ata_qc_from_tag() for failed qcs.
4327 *
4328 * Old EH depends on ata_qc_complete() nullifying completion
4329 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4330 * not synchronize with interrupt handler. Only PIO task is
4331 * taken care of.
4332 */
4333 if (ap->ops->error_handler) {
4334 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4335
4336 if (unlikely(qc->err_mask))
4337 qc->flags |= ATA_QCFLAG_FAILED;
4338
4339 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4340 if (!ata_tag_internal(qc->tag)) {
4341 /* always fill result TF for failed qc */
4342 ap->ops->tf_read(ap, &qc->result_tf);
4343 ata_qc_schedule_eh(qc);
4344 return;
4345 }
4346 }
4347
4348 /* read result TF if requested */
4349 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4350 ap->ops->tf_read(ap, &qc->result_tf);
4351
4352 __ata_qc_complete(qc);
4353 } else {
4354 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4355 return;
4356
4357 /* read result TF if failed or requested */
4358 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4359 ap->ops->tf_read(ap, &qc->result_tf);
4360
4361 __ata_qc_complete(qc);
4362 }
4363 }
4364
4365 /**
4366 * ata_qc_complete_multiple - Complete multiple qcs successfully
4367 * @ap: port in question
4368 * @qc_active: new qc_active mask
4369 * @finish_qc: LLDD callback invoked before completing a qc
4370 *
4371 * Complete in-flight commands. This functions is meant to be
4372 * called from low-level driver's interrupt routine to complete
4373 * requests normally. ap->qc_active and @qc_active is compared
4374 * and commands are completed accordingly.
4375 *
4376 * LOCKING:
4377 * spin_lock_irqsave(host_set lock)
4378 *
4379 * RETURNS:
4380 * Number of completed commands on success, -errno otherwise.
4381 */
4382 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4383 void (*finish_qc)(struct ata_queued_cmd *))
4384 {
4385 int nr_done = 0;
4386 u32 done_mask;
4387 int i;
4388
4389 done_mask = ap->qc_active ^ qc_active;
4390
4391 if (unlikely(done_mask & qc_active)) {
4392 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4393 "(%08x->%08x)\n", ap->qc_active, qc_active);
4394 return -EINVAL;
4395 }
4396
4397 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4398 struct ata_queued_cmd *qc;
4399
4400 if (!(done_mask & (1 << i)))
4401 continue;
4402
4403 if ((qc = ata_qc_from_tag(ap, i))) {
4404 if (finish_qc)
4405 finish_qc(qc);
4406 ata_qc_complete(qc);
4407 nr_done++;
4408 }
4409 }
4410
4411 return nr_done;
4412 }
4413
4414 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4415 {
4416 struct ata_port *ap = qc->ap;
4417
4418 switch (qc->tf.protocol) {
4419 case ATA_PROT_DMA:
4420 case ATA_PROT_ATAPI_DMA:
4421 return 1;
4422
4423 case ATA_PROT_ATAPI:
4424 case ATA_PROT_PIO:
4425 if (ap->flags & ATA_FLAG_PIO_DMA)
4426 return 1;
4427
4428 /* fall through */
4429
4430 default:
4431 return 0;
4432 }
4433
4434 /* never reached */
4435 }
4436
4437 /**
4438 * ata_qc_issue - issue taskfile to device
4439 * @qc: command to issue to device
4440 *
4441 * Prepare an ATA command to submission to device.
4442 * This includes mapping the data into a DMA-able
4443 * area, filling in the S/G table, and finally
4444 * writing the taskfile to hardware, starting the command.
4445 *
4446 * LOCKING:
4447 * spin_lock_irqsave(host_set lock)
4448 */
4449 void ata_qc_issue(struct ata_queued_cmd *qc)
4450 {
4451 struct ata_port *ap = qc->ap;
4452
4453 /* Make sure only one non-NCQ command is outstanding. The
4454 * check is skipped for old EH because it reuses active qc to
4455 * request ATAPI sense.
4456 */
4457 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4458
4459 if (qc->tf.protocol == ATA_PROT_NCQ) {
4460 WARN_ON(ap->sactive & (1 << qc->tag));
4461 ap->sactive |= 1 << qc->tag;
4462 } else {
4463 WARN_ON(ap->sactive);
4464 ap->active_tag = qc->tag;
4465 }
4466
4467 qc->flags |= ATA_QCFLAG_ACTIVE;
4468 ap->qc_active |= 1 << qc->tag;
4469
4470 if (ata_should_dma_map(qc)) {
4471 if (qc->flags & ATA_QCFLAG_SG) {
4472 if (ata_sg_setup(qc))
4473 goto sg_err;
4474 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4475 if (ata_sg_setup_one(qc))
4476 goto sg_err;
4477 }
4478 } else {
4479 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4480 }
4481
4482 ap->ops->qc_prep(qc);
4483
4484 qc->err_mask |= ap->ops->qc_issue(qc);
4485 if (unlikely(qc->err_mask))
4486 goto err;
4487 return;
4488
4489 sg_err:
4490 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4491 qc->err_mask |= AC_ERR_SYSTEM;
4492 err:
4493 ata_qc_complete(qc);
4494 }
4495
4496 /**
4497 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4498 * @qc: command to issue to device
4499 *
4500 * Using various libata functions and hooks, this function
4501 * starts an ATA command. ATA commands are grouped into
4502 * classes called "protocols", and issuing each type of protocol
4503 * is slightly different.
4504 *
4505 * May be used as the qc_issue() entry in ata_port_operations.
4506 *
4507 * LOCKING:
4508 * spin_lock_irqsave(host_set lock)
4509 *
4510 * RETURNS:
4511 * Zero on success, AC_ERR_* mask on failure
4512 */
4513
4514 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4515 {
4516 struct ata_port *ap = qc->ap;
4517
4518 /* Use polling pio if the LLD doesn't handle
4519 * interrupt driven pio and atapi CDB interrupt.
4520 */
4521 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4522 switch (qc->tf.protocol) {
4523 case ATA_PROT_PIO:
4524 case ATA_PROT_ATAPI:
4525 case ATA_PROT_ATAPI_NODATA:
4526 qc->tf.flags |= ATA_TFLAG_POLLING;
4527 break;
4528 case ATA_PROT_ATAPI_DMA:
4529 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4530 /* see ata_check_atapi_dma() */
4531 BUG();
4532 break;
4533 default:
4534 break;
4535 }
4536 }
4537
4538 /* select the device */
4539 ata_dev_select(ap, qc->dev->devno, 1, 0);
4540
4541 /* start the command */
4542 switch (qc->tf.protocol) {
4543 case ATA_PROT_NODATA:
4544 if (qc->tf.flags & ATA_TFLAG_POLLING)
4545 ata_qc_set_polling(qc);
4546
4547 ata_tf_to_host(ap, &qc->tf);
4548 ap->hsm_task_state = HSM_ST_LAST;
4549
4550 if (qc->tf.flags & ATA_TFLAG_POLLING)
4551 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4552
4553 break;
4554
4555 case ATA_PROT_DMA:
4556 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4557
4558 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4559 ap->ops->bmdma_setup(qc); /* set up bmdma */
4560 ap->ops->bmdma_start(qc); /* initiate bmdma */
4561 ap->hsm_task_state = HSM_ST_LAST;
4562 break;
4563
4564 case ATA_PROT_PIO:
4565 if (qc->tf.flags & ATA_TFLAG_POLLING)
4566 ata_qc_set_polling(qc);
4567
4568 ata_tf_to_host(ap, &qc->tf);
4569
4570 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4571 /* PIO data out protocol */
4572 ap->hsm_task_state = HSM_ST_FIRST;
4573 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4574
4575 /* always send first data block using
4576 * the ata_pio_task() codepath.
4577 */
4578 } else {
4579 /* PIO data in protocol */
4580 ap->hsm_task_state = HSM_ST;
4581
4582 if (qc->tf.flags & ATA_TFLAG_POLLING)
4583 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4584
4585 /* if polling, ata_pio_task() handles the rest.
4586 * otherwise, interrupt handler takes over from here.
4587 */
4588 }
4589
4590 break;
4591
4592 case ATA_PROT_ATAPI:
4593 case ATA_PROT_ATAPI_NODATA:
4594 if (qc->tf.flags & ATA_TFLAG_POLLING)
4595 ata_qc_set_polling(qc);
4596
4597 ata_tf_to_host(ap, &qc->tf);
4598
4599 ap->hsm_task_state = HSM_ST_FIRST;
4600
4601 /* send cdb by polling if no cdb interrupt */
4602 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4603 (qc->tf.flags & ATA_TFLAG_POLLING))
4604 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4605 break;
4606
4607 case ATA_PROT_ATAPI_DMA:
4608 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4609
4610 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4611 ap->ops->bmdma_setup(qc); /* set up bmdma */
4612 ap->hsm_task_state = HSM_ST_FIRST;
4613
4614 /* send cdb by polling if no cdb interrupt */
4615 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4616 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4617 break;
4618
4619 default:
4620 WARN_ON(1);
4621 return AC_ERR_SYSTEM;
4622 }
4623
4624 return 0;
4625 }
4626
4627 /**
4628 * ata_host_intr - Handle host interrupt for given (port, task)
4629 * @ap: Port on which interrupt arrived (possibly...)
4630 * @qc: Taskfile currently active in engine
4631 *
4632 * Handle host interrupt for given queued command. Currently,
4633 * only DMA interrupts are handled. All other commands are
4634 * handled via polling with interrupts disabled (nIEN bit).
4635 *
4636 * LOCKING:
4637 * spin_lock_irqsave(host_set lock)
4638 *
4639 * RETURNS:
4640 * One if interrupt was handled, zero if not (shared irq).
4641 */
4642
4643 inline unsigned int ata_host_intr (struct ata_port *ap,
4644 struct ata_queued_cmd *qc)
4645 {
4646 u8 status, host_stat = 0;
4647
4648 VPRINTK("ata%u: protocol %d task_state %d\n",
4649 ap->id, qc->tf.protocol, ap->hsm_task_state);
4650
4651 /* Check whether we are expecting interrupt in this state */
4652 switch (ap->hsm_task_state) {
4653 case HSM_ST_FIRST:
4654 /* Some pre-ATAPI-4 devices assert INTRQ
4655 * at this state when ready to receive CDB.
4656 */
4657
4658 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4659 * The flag was turned on only for atapi devices.
4660 * No need to check is_atapi_taskfile(&qc->tf) again.
4661 */
4662 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4663 goto idle_irq;
4664 break;
4665 case HSM_ST_LAST:
4666 if (qc->tf.protocol == ATA_PROT_DMA ||
4667 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4668 /* check status of DMA engine */
4669 host_stat = ap->ops->bmdma_status(ap);
4670 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4671
4672 /* if it's not our irq... */
4673 if (!(host_stat & ATA_DMA_INTR))
4674 goto idle_irq;
4675
4676 /* before we do anything else, clear DMA-Start bit */
4677 ap->ops->bmdma_stop(qc);
4678
4679 if (unlikely(host_stat & ATA_DMA_ERR)) {
4680 /* error when transfering data to/from memory */
4681 qc->err_mask |= AC_ERR_HOST_BUS;
4682 ap->hsm_task_state = HSM_ST_ERR;
4683 }
4684 }
4685 break;
4686 case HSM_ST:
4687 break;
4688 default:
4689 goto idle_irq;
4690 }
4691
4692 /* check altstatus */
4693 status = ata_altstatus(ap);
4694 if (status & ATA_BUSY)
4695 goto idle_irq;
4696
4697 /* check main status, clearing INTRQ */
4698 status = ata_chk_status(ap);
4699 if (unlikely(status & ATA_BUSY))
4700 goto idle_irq;
4701
4702 /* ack bmdma irq events */
4703 ap->ops->irq_clear(ap);
4704
4705 ata_hsm_move(ap, qc, status, 0);
4706 return 1; /* irq handled */
4707
4708 idle_irq:
4709 ap->stats.idle_irq++;
4710
4711 #ifdef ATA_IRQ_TRAP
4712 if ((ap->stats.idle_irq % 1000) == 0) {
4713 ata_irq_ack(ap, 0); /* debug trap */
4714 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4715 return 1;
4716 }
4717 #endif
4718 return 0; /* irq not handled */
4719 }
4720
4721 /**
4722 * ata_interrupt - Default ATA host interrupt handler
4723 * @irq: irq line (unused)
4724 * @dev_instance: pointer to our ata_host_set information structure
4725 * @regs: unused
4726 *
4727 * Default interrupt handler for PCI IDE devices. Calls
4728 * ata_host_intr() for each port that is not disabled.
4729 *
4730 * LOCKING:
4731 * Obtains host_set lock during operation.
4732 *
4733 * RETURNS:
4734 * IRQ_NONE or IRQ_HANDLED.
4735 */
4736
4737 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4738 {
4739 struct ata_host_set *host_set = dev_instance;
4740 unsigned int i;
4741 unsigned int handled = 0;
4742 unsigned long flags;
4743
4744 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4745 spin_lock_irqsave(&host_set->lock, flags);
4746
4747 for (i = 0; i < host_set->n_ports; i++) {
4748 struct ata_port *ap;
4749
4750 ap = host_set->ports[i];
4751 if (ap &&
4752 !(ap->flags & ATA_FLAG_DISABLED)) {
4753 struct ata_queued_cmd *qc;
4754
4755 qc = ata_qc_from_tag(ap, ap->active_tag);
4756 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4757 (qc->flags & ATA_QCFLAG_ACTIVE))
4758 handled |= ata_host_intr(ap, qc);
4759 }
4760 }
4761
4762 spin_unlock_irqrestore(&host_set->lock, flags);
4763
4764 return IRQ_RETVAL(handled);
4765 }
4766
4767 /**
4768 * sata_scr_valid - test whether SCRs are accessible
4769 * @ap: ATA port to test SCR accessibility for
4770 *
4771 * Test whether SCRs are accessible for @ap.
4772 *
4773 * LOCKING:
4774 * None.
4775 *
4776 * RETURNS:
4777 * 1 if SCRs are accessible, 0 otherwise.
4778 */
4779 int sata_scr_valid(struct ata_port *ap)
4780 {
4781 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4782 }
4783
4784 /**
4785 * sata_scr_read - read SCR register of the specified port
4786 * @ap: ATA port to read SCR for
4787 * @reg: SCR to read
4788 * @val: Place to store read value
4789 *
4790 * Read SCR register @reg of @ap into *@val. This function is
4791 * guaranteed to succeed if the cable type of the port is SATA
4792 * and the port implements ->scr_read.
4793 *
4794 * LOCKING:
4795 * None.
4796 *
4797 * RETURNS:
4798 * 0 on success, negative errno on failure.
4799 */
4800 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4801 {
4802 if (sata_scr_valid(ap)) {
4803 *val = ap->ops->scr_read(ap, reg);
4804 return 0;
4805 }
4806 return -EOPNOTSUPP;
4807 }
4808
4809 /**
4810 * sata_scr_write - write SCR register of the specified port
4811 * @ap: ATA port to write SCR for
4812 * @reg: SCR to write
4813 * @val: value to write
4814 *
4815 * Write @val to SCR register @reg of @ap. This function is
4816 * guaranteed to succeed if the cable type of the port is SATA
4817 * and the port implements ->scr_read.
4818 *
4819 * LOCKING:
4820 * None.
4821 *
4822 * RETURNS:
4823 * 0 on success, negative errno on failure.
4824 */
4825 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4826 {
4827 if (sata_scr_valid(ap)) {
4828 ap->ops->scr_write(ap, reg, val);
4829 return 0;
4830 }
4831 return -EOPNOTSUPP;
4832 }
4833
4834 /**
4835 * sata_scr_write_flush - write SCR register of the specified port and flush
4836 * @ap: ATA port to write SCR for
4837 * @reg: SCR to write
4838 * @val: value to write
4839 *
4840 * This function is identical to sata_scr_write() except that this
4841 * function performs flush after writing to the register.
4842 *
4843 * LOCKING:
4844 * None.
4845 *
4846 * RETURNS:
4847 * 0 on success, negative errno on failure.
4848 */
4849 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4850 {
4851 if (sata_scr_valid(ap)) {
4852 ap->ops->scr_write(ap, reg, val);
4853 ap->ops->scr_read(ap, reg);
4854 return 0;
4855 }
4856 return -EOPNOTSUPP;
4857 }
4858
4859 /**
4860 * ata_port_online - test whether the given port is online
4861 * @ap: ATA port to test
4862 *
4863 * Test whether @ap is online. Note that this function returns 0
4864 * if online status of @ap cannot be obtained, so
4865 * ata_port_online(ap) != !ata_port_offline(ap).
4866 *
4867 * LOCKING:
4868 * None.
4869 *
4870 * RETURNS:
4871 * 1 if the port online status is available and online.
4872 */
4873 int ata_port_online(struct ata_port *ap)
4874 {
4875 u32 sstatus;
4876
4877 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4878 return 1;
4879 return 0;
4880 }
4881
4882 /**
4883 * ata_port_offline - test whether the given port is offline
4884 * @ap: ATA port to test
4885 *
4886 * Test whether @ap is offline. Note that this function returns
4887 * 0 if offline status of @ap cannot be obtained, so
4888 * ata_port_online(ap) != !ata_port_offline(ap).
4889 *
4890 * LOCKING:
4891 * None.
4892 *
4893 * RETURNS:
4894 * 1 if the port offline status is available and offline.
4895 */
4896 int ata_port_offline(struct ata_port *ap)
4897 {
4898 u32 sstatus;
4899
4900 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4901 return 1;
4902 return 0;
4903 }
4904
4905 /*
4906 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4907 * without filling any other registers
4908 */
4909 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4910 {
4911 struct ata_taskfile tf;
4912 int err;
4913
4914 ata_tf_init(dev, &tf);
4915
4916 tf.command = cmd;
4917 tf.flags |= ATA_TFLAG_DEVICE;
4918 tf.protocol = ATA_PROT_NODATA;
4919
4920 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4921 if (err)
4922 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4923 __FUNCTION__, err);
4924
4925 return err;
4926 }
4927
4928 static int ata_flush_cache(struct ata_device *dev)
4929 {
4930 u8 cmd;
4931
4932 if (!ata_try_flush_cache(dev))
4933 return 0;
4934
4935 if (ata_id_has_flush_ext(dev->id))
4936 cmd = ATA_CMD_FLUSH_EXT;
4937 else
4938 cmd = ATA_CMD_FLUSH;
4939
4940 return ata_do_simple_cmd(dev, cmd);
4941 }
4942
4943 static int ata_standby_drive(struct ata_device *dev)
4944 {
4945 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4946 }
4947
4948 static int ata_start_drive(struct ata_device *dev)
4949 {
4950 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4951 }
4952
4953 /**
4954 * ata_device_resume - wakeup a previously suspended devices
4955 * @dev: the device to resume
4956 *
4957 * Kick the drive back into action, by sending it an idle immediate
4958 * command and making sure its transfer mode matches between drive
4959 * and host.
4960 *
4961 */
4962 int ata_device_resume(struct ata_device *dev)
4963 {
4964 struct ata_port *ap = dev->ap;
4965
4966 if (ap->flags & ATA_FLAG_SUSPENDED) {
4967 struct ata_device *failed_dev;
4968 ap->flags &= ~ATA_FLAG_SUSPENDED;
4969 while (ata_set_mode(ap, &failed_dev))
4970 ata_dev_disable(failed_dev);
4971 }
4972 if (!ata_dev_enabled(dev))
4973 return 0;
4974 if (dev->class == ATA_DEV_ATA)
4975 ata_start_drive(dev);
4976
4977 return 0;
4978 }
4979
4980 /**
4981 * ata_device_suspend - prepare a device for suspend
4982 * @dev: the device to suspend
4983 *
4984 * Flush the cache on the drive, if appropriate, then issue a
4985 * standbynow command.
4986 */
4987 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
4988 {
4989 struct ata_port *ap = dev->ap;
4990
4991 if (!ata_dev_enabled(dev))
4992 return 0;
4993 if (dev->class == ATA_DEV_ATA)
4994 ata_flush_cache(dev);
4995
4996 if (state.event != PM_EVENT_FREEZE)
4997 ata_standby_drive(dev);
4998 ap->flags |= ATA_FLAG_SUSPENDED;
4999 return 0;
5000 }
5001
5002 /**
5003 * ata_port_start - Set port up for dma.
5004 * @ap: Port to initialize
5005 *
5006 * Called just after data structures for each port are
5007 * initialized. Allocates space for PRD table.
5008 *
5009 * May be used as the port_start() entry in ata_port_operations.
5010 *
5011 * LOCKING:
5012 * Inherited from caller.
5013 */
5014
5015 int ata_port_start (struct ata_port *ap)
5016 {
5017 struct device *dev = ap->dev;
5018 int rc;
5019
5020 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5021 if (!ap->prd)
5022 return -ENOMEM;
5023
5024 rc = ata_pad_alloc(ap, dev);
5025 if (rc) {
5026 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5027 return rc;
5028 }
5029
5030 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5031
5032 return 0;
5033 }
5034
5035
5036 /**
5037 * ata_port_stop - Undo ata_port_start()
5038 * @ap: Port to shut down
5039 *
5040 * Frees the PRD table.
5041 *
5042 * May be used as the port_stop() entry in ata_port_operations.
5043 *
5044 * LOCKING:
5045 * Inherited from caller.
5046 */
5047
5048 void ata_port_stop (struct ata_port *ap)
5049 {
5050 struct device *dev = ap->dev;
5051
5052 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5053 ata_pad_free(ap, dev);
5054 }
5055
5056 void ata_host_stop (struct ata_host_set *host_set)
5057 {
5058 if (host_set->mmio_base)
5059 iounmap(host_set->mmio_base);
5060 }
5061
5062
5063 /**
5064 * ata_host_remove - Unregister SCSI host structure with upper layers
5065 * @ap: Port to unregister
5066 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5067 *
5068 * LOCKING:
5069 * Inherited from caller.
5070 */
5071
5072 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5073 {
5074 struct Scsi_Host *sh = ap->host;
5075
5076 DPRINTK("ENTER\n");
5077
5078 if (do_unregister)
5079 scsi_remove_host(sh);
5080
5081 ap->ops->port_stop(ap);
5082 }
5083
5084 /**
5085 * ata_host_init - Initialize an ata_port structure
5086 * @ap: Structure to initialize
5087 * @host: associated SCSI mid-layer structure
5088 * @host_set: Collection of hosts to which @ap belongs
5089 * @ent: Probe information provided by low-level driver
5090 * @port_no: Port number associated with this ata_port
5091 *
5092 * Initialize a new ata_port structure, and its associated
5093 * scsi_host.
5094 *
5095 * LOCKING:
5096 * Inherited from caller.
5097 */
5098
5099 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5100 struct ata_host_set *host_set,
5101 const struct ata_probe_ent *ent, unsigned int port_no)
5102 {
5103 unsigned int i;
5104
5105 host->max_id = 16;
5106 host->max_lun = 1;
5107 host->max_channel = 1;
5108 host->unique_id = ata_unique_id++;
5109 host->max_cmd_len = 12;
5110
5111 ap->flags = ATA_FLAG_DISABLED;
5112 ap->id = host->unique_id;
5113 ap->host = host;
5114 ap->ctl = ATA_DEVCTL_OBS;
5115 ap->host_set = host_set;
5116 ap->dev = ent->dev;
5117 ap->port_no = port_no;
5118 ap->hard_port_no =
5119 ent->legacy_mode ? ent->hard_port_no : port_no;
5120 ap->pio_mask = ent->pio_mask;
5121 ap->mwdma_mask = ent->mwdma_mask;
5122 ap->udma_mask = ent->udma_mask;
5123 ap->flags |= ent->host_flags;
5124 ap->ops = ent->port_ops;
5125 ap->sata_spd_limit = UINT_MAX;
5126 ap->active_tag = ATA_TAG_POISON;
5127 ap->last_ctl = 0xFF;
5128
5129 INIT_WORK(&ap->port_task, NULL, NULL);
5130 INIT_LIST_HEAD(&ap->eh_done_q);
5131
5132 /* set cable type */
5133 ap->cbl = ATA_CBL_NONE;
5134 if (ap->flags & ATA_FLAG_SATA)
5135 ap->cbl = ATA_CBL_SATA;
5136
5137 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5138 struct ata_device *dev = &ap->device[i];
5139 dev->ap = ap;
5140 dev->devno = i;
5141 dev->pio_mask = UINT_MAX;
5142 dev->mwdma_mask = UINT_MAX;
5143 dev->udma_mask = UINT_MAX;
5144 }
5145
5146 #ifdef ATA_IRQ_TRAP
5147 ap->stats.unhandled_irq = 1;
5148 ap->stats.idle_irq = 1;
5149 #endif
5150
5151 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5152 }
5153
5154 /**
5155 * ata_host_add - Attach low-level ATA driver to system
5156 * @ent: Information provided by low-level driver
5157 * @host_set: Collections of ports to which we add
5158 * @port_no: Port number associated with this host
5159 *
5160 * Attach low-level ATA driver to system.
5161 *
5162 * LOCKING:
5163 * PCI/etc. bus probe sem.
5164 *
5165 * RETURNS:
5166 * New ata_port on success, for NULL on error.
5167 */
5168
5169 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5170 struct ata_host_set *host_set,
5171 unsigned int port_no)
5172 {
5173 struct Scsi_Host *host;
5174 struct ata_port *ap;
5175 int rc;
5176
5177 DPRINTK("ENTER\n");
5178
5179 if (!ent->port_ops->probe_reset &&
5180 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5181 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5182 port_no);
5183 return NULL;
5184 }
5185
5186 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5187 if (!host)
5188 return NULL;
5189
5190 host->transportt = &ata_scsi_transport_template;
5191
5192 ap = ata_shost_to_port(host);
5193
5194 ata_host_init(ap, host, host_set, ent, port_no);
5195
5196 rc = ap->ops->port_start(ap);
5197 if (rc)
5198 goto err_out;
5199
5200 return ap;
5201
5202 err_out:
5203 scsi_host_put(host);
5204 return NULL;
5205 }
5206
5207 /**
5208 * ata_device_add - Register hardware device with ATA and SCSI layers
5209 * @ent: Probe information describing hardware device to be registered
5210 *
5211 * This function processes the information provided in the probe
5212 * information struct @ent, allocates the necessary ATA and SCSI
5213 * host information structures, initializes them, and registers
5214 * everything with requisite kernel subsystems.
5215 *
5216 * This function requests irqs, probes the ATA bus, and probes
5217 * the SCSI bus.
5218 *
5219 * LOCKING:
5220 * PCI/etc. bus probe sem.
5221 *
5222 * RETURNS:
5223 * Number of ports registered. Zero on error (no ports registered).
5224 */
5225
5226 int ata_device_add(const struct ata_probe_ent *ent)
5227 {
5228 unsigned int count = 0, i;
5229 struct device *dev = ent->dev;
5230 struct ata_host_set *host_set;
5231
5232 DPRINTK("ENTER\n");
5233 /* alloc a container for our list of ATA ports (buses) */
5234 host_set = kzalloc(sizeof(struct ata_host_set) +
5235 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5236 if (!host_set)
5237 return 0;
5238 spin_lock_init(&host_set->lock);
5239
5240 host_set->dev = dev;
5241 host_set->n_ports = ent->n_ports;
5242 host_set->irq = ent->irq;
5243 host_set->mmio_base = ent->mmio_base;
5244 host_set->private_data = ent->private_data;
5245 host_set->ops = ent->port_ops;
5246 host_set->flags = ent->host_set_flags;
5247
5248 /* register each port bound to this device */
5249 for (i = 0; i < ent->n_ports; i++) {
5250 struct ata_port *ap;
5251 unsigned long xfer_mode_mask;
5252
5253 ap = ata_host_add(ent, host_set, i);
5254 if (!ap)
5255 goto err_out;
5256
5257 host_set->ports[i] = ap;
5258 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5259 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5260 (ap->pio_mask << ATA_SHIFT_PIO);
5261
5262 /* print per-port info to dmesg */
5263 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5264 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5265 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5266 ata_mode_string(xfer_mode_mask),
5267 ap->ioaddr.cmd_addr,
5268 ap->ioaddr.ctl_addr,
5269 ap->ioaddr.bmdma_addr,
5270 ent->irq);
5271
5272 ata_chk_status(ap);
5273 host_set->ops->irq_clear(ap);
5274 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5275 count++;
5276 }
5277
5278 if (!count)
5279 goto err_free_ret;
5280
5281 /* obtain irq, that is shared between channels */
5282 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5283 DRV_NAME, host_set))
5284 goto err_out;
5285
5286 /* perform each probe synchronously */
5287 DPRINTK("probe begin\n");
5288 for (i = 0; i < count; i++) {
5289 struct ata_port *ap;
5290 int rc;
5291
5292 ap = host_set->ports[i];
5293
5294 DPRINTK("ata%u: bus probe begin\n", ap->id);
5295 rc = ata_bus_probe(ap);
5296 DPRINTK("ata%u: bus probe end\n", ap->id);
5297
5298 if (rc) {
5299 /* FIXME: do something useful here?
5300 * Current libata behavior will
5301 * tear down everything when
5302 * the module is removed
5303 * or the h/w is unplugged.
5304 */
5305 }
5306
5307 rc = scsi_add_host(ap->host, dev);
5308 if (rc) {
5309 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5310 /* FIXME: do something useful here */
5311 /* FIXME: handle unconditional calls to
5312 * scsi_scan_host and ata_host_remove, below,
5313 * at the very least
5314 */
5315 }
5316 }
5317
5318 /* probes are done, now scan each port's disk(s) */
5319 DPRINTK("host probe begin\n");
5320 for (i = 0; i < count; i++) {
5321 struct ata_port *ap = host_set->ports[i];
5322
5323 ata_scsi_scan_host(ap);
5324 }
5325
5326 dev_set_drvdata(dev, host_set);
5327
5328 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5329 return ent->n_ports; /* success */
5330
5331 err_out:
5332 for (i = 0; i < count; i++) {
5333 ata_host_remove(host_set->ports[i], 1);
5334 scsi_host_put(host_set->ports[i]->host);
5335 }
5336 err_free_ret:
5337 kfree(host_set);
5338 VPRINTK("EXIT, returning 0\n");
5339 return 0;
5340 }
5341
5342 /**
5343 * ata_host_set_remove - PCI layer callback for device removal
5344 * @host_set: ATA host set that was removed
5345 *
5346 * Unregister all objects associated with this host set. Free those
5347 * objects.
5348 *
5349 * LOCKING:
5350 * Inherited from calling layer (may sleep).
5351 */
5352
5353 void ata_host_set_remove(struct ata_host_set *host_set)
5354 {
5355 struct ata_port *ap;
5356 unsigned int i;
5357
5358 for (i = 0; i < host_set->n_ports; i++) {
5359 ap = host_set->ports[i];
5360 scsi_remove_host(ap->host);
5361 }
5362
5363 free_irq(host_set->irq, host_set);
5364
5365 for (i = 0; i < host_set->n_ports; i++) {
5366 ap = host_set->ports[i];
5367
5368 ata_scsi_release(ap->host);
5369
5370 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5371 struct ata_ioports *ioaddr = &ap->ioaddr;
5372
5373 if (ioaddr->cmd_addr == 0x1f0)
5374 release_region(0x1f0, 8);
5375 else if (ioaddr->cmd_addr == 0x170)
5376 release_region(0x170, 8);
5377 }
5378
5379 scsi_host_put(ap->host);
5380 }
5381
5382 if (host_set->ops->host_stop)
5383 host_set->ops->host_stop(host_set);
5384
5385 kfree(host_set);
5386 }
5387
5388 /**
5389 * ata_scsi_release - SCSI layer callback hook for host unload
5390 * @host: libata host to be unloaded
5391 *
5392 * Performs all duties necessary to shut down a libata port...
5393 * Kill port kthread, disable port, and release resources.
5394 *
5395 * LOCKING:
5396 * Inherited from SCSI layer.
5397 *
5398 * RETURNS:
5399 * One.
5400 */
5401
5402 int ata_scsi_release(struct Scsi_Host *host)
5403 {
5404 struct ata_port *ap = ata_shost_to_port(host);
5405
5406 DPRINTK("ENTER\n");
5407
5408 ap->ops->port_disable(ap);
5409 ata_host_remove(ap, 0);
5410
5411 DPRINTK("EXIT\n");
5412 return 1;
5413 }
5414
5415 /**
5416 * ata_std_ports - initialize ioaddr with standard port offsets.
5417 * @ioaddr: IO address structure to be initialized
5418 *
5419 * Utility function which initializes data_addr, error_addr,
5420 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5421 * device_addr, status_addr, and command_addr to standard offsets
5422 * relative to cmd_addr.
5423 *
5424 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5425 */
5426
5427 void ata_std_ports(struct ata_ioports *ioaddr)
5428 {
5429 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5430 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5431 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5432 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5433 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5434 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5435 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5436 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5437 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5438 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5439 }
5440
5441
5442 #ifdef CONFIG_PCI
5443
5444 void ata_pci_host_stop (struct ata_host_set *host_set)
5445 {
5446 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5447
5448 pci_iounmap(pdev, host_set->mmio_base);
5449 }
5450
5451 /**
5452 * ata_pci_remove_one - PCI layer callback for device removal
5453 * @pdev: PCI device that was removed
5454 *
5455 * PCI layer indicates to libata via this hook that
5456 * hot-unplug or module unload event has occurred.
5457 * Handle this by unregistering all objects associated
5458 * with this PCI device. Free those objects. Then finally
5459 * release PCI resources and disable device.
5460 *
5461 * LOCKING:
5462 * Inherited from PCI layer (may sleep).
5463 */
5464
5465 void ata_pci_remove_one (struct pci_dev *pdev)
5466 {
5467 struct device *dev = pci_dev_to_dev(pdev);
5468 struct ata_host_set *host_set = dev_get_drvdata(dev);
5469
5470 ata_host_set_remove(host_set);
5471 pci_release_regions(pdev);
5472 pci_disable_device(pdev);
5473 dev_set_drvdata(dev, NULL);
5474 }
5475
5476 /* move to PCI subsystem */
5477 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5478 {
5479 unsigned long tmp = 0;
5480
5481 switch (bits->width) {
5482 case 1: {
5483 u8 tmp8 = 0;
5484 pci_read_config_byte(pdev, bits->reg, &tmp8);
5485 tmp = tmp8;
5486 break;
5487 }
5488 case 2: {
5489 u16 tmp16 = 0;
5490 pci_read_config_word(pdev, bits->reg, &tmp16);
5491 tmp = tmp16;
5492 break;
5493 }
5494 case 4: {
5495 u32 tmp32 = 0;
5496 pci_read_config_dword(pdev, bits->reg, &tmp32);
5497 tmp = tmp32;
5498 break;
5499 }
5500
5501 default:
5502 return -EINVAL;
5503 }
5504
5505 tmp &= bits->mask;
5506
5507 return (tmp == bits->val) ? 1 : 0;
5508 }
5509
5510 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5511 {
5512 pci_save_state(pdev);
5513 pci_disable_device(pdev);
5514 pci_set_power_state(pdev, PCI_D3hot);
5515 return 0;
5516 }
5517
5518 int ata_pci_device_resume(struct pci_dev *pdev)
5519 {
5520 pci_set_power_state(pdev, PCI_D0);
5521 pci_restore_state(pdev);
5522 pci_enable_device(pdev);
5523 pci_set_master(pdev);
5524 return 0;
5525 }
5526 #endif /* CONFIG_PCI */
5527
5528
5529 static int __init ata_init(void)
5530 {
5531 ata_wq = create_workqueue("ata");
5532 if (!ata_wq)
5533 return -ENOMEM;
5534
5535 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5536 return 0;
5537 }
5538
5539 static void __exit ata_exit(void)
5540 {
5541 destroy_workqueue(ata_wq);
5542 }
5543
5544 module_init(ata_init);
5545 module_exit(ata_exit);
5546
5547 static unsigned long ratelimit_time;
5548 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5549
5550 int ata_ratelimit(void)
5551 {
5552 int rc;
5553 unsigned long flags;
5554
5555 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5556
5557 if (time_after(jiffies, ratelimit_time)) {
5558 rc = 1;
5559 ratelimit_time = jiffies + (HZ/5);
5560 } else
5561 rc = 0;
5562
5563 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5564
5565 return rc;
5566 }
5567
5568 /**
5569 * ata_wait_register - wait until register value changes
5570 * @reg: IO-mapped register
5571 * @mask: Mask to apply to read register value
5572 * @val: Wait condition
5573 * @interval_msec: polling interval in milliseconds
5574 * @timeout_msec: timeout in milliseconds
5575 *
5576 * Waiting for some bits of register to change is a common
5577 * operation for ATA controllers. This function reads 32bit LE
5578 * IO-mapped register @reg and tests for the following condition.
5579 *
5580 * (*@reg & mask) != val
5581 *
5582 * If the condition is met, it returns; otherwise, the process is
5583 * repeated after @interval_msec until timeout.
5584 *
5585 * LOCKING:
5586 * Kernel thread context (may sleep)
5587 *
5588 * RETURNS:
5589 * The final register value.
5590 */
5591 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5592 unsigned long interval_msec,
5593 unsigned long timeout_msec)
5594 {
5595 unsigned long timeout;
5596 u32 tmp;
5597
5598 tmp = ioread32(reg);
5599
5600 /* Calculate timeout _after_ the first read to make sure
5601 * preceding writes reach the controller before starting to
5602 * eat away the timeout.
5603 */
5604 timeout = jiffies + (timeout_msec * HZ) / 1000;
5605
5606 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5607 msleep(interval_msec);
5608 tmp = ioread32(reg);
5609 }
5610
5611 return tmp;
5612 }
5613
5614 /*
5615 * libata is essentially a library of internal helper functions for
5616 * low-level ATA host controller drivers. As such, the API/ABI is
5617 * likely to change as new drivers are added and updated.
5618 * Do not depend on ABI/API stability.
5619 */
5620
5621 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5622 EXPORT_SYMBOL_GPL(ata_std_ports);
5623 EXPORT_SYMBOL_GPL(ata_device_add);
5624 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5625 EXPORT_SYMBOL_GPL(ata_sg_init);
5626 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5627 EXPORT_SYMBOL_GPL(ata_qc_complete);
5628 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5629 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5630 EXPORT_SYMBOL_GPL(ata_tf_load);
5631 EXPORT_SYMBOL_GPL(ata_tf_read);
5632 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5633 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5634 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5635 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5636 EXPORT_SYMBOL_GPL(ata_check_status);
5637 EXPORT_SYMBOL_GPL(ata_altstatus);
5638 EXPORT_SYMBOL_GPL(ata_exec_command);
5639 EXPORT_SYMBOL_GPL(ata_port_start);
5640 EXPORT_SYMBOL_GPL(ata_port_stop);
5641 EXPORT_SYMBOL_GPL(ata_host_stop);
5642 EXPORT_SYMBOL_GPL(ata_interrupt);
5643 EXPORT_SYMBOL_GPL(ata_qc_prep);
5644 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5645 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5646 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5647 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5648 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5649 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5650 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5651 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5652 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5653 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5654 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5655 EXPORT_SYMBOL_GPL(ata_port_probe);
5656 EXPORT_SYMBOL_GPL(sata_set_spd);
5657 EXPORT_SYMBOL_GPL(sata_phy_reset);
5658 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5659 EXPORT_SYMBOL_GPL(ata_bus_reset);
5660 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5661 EXPORT_SYMBOL_GPL(ata_std_softreset);
5662 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5663 EXPORT_SYMBOL_GPL(ata_std_postreset);
5664 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5665 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5666 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5667 EXPORT_SYMBOL_GPL(ata_dev_classify);
5668 EXPORT_SYMBOL_GPL(ata_dev_pair);
5669 EXPORT_SYMBOL_GPL(ata_port_disable);
5670 EXPORT_SYMBOL_GPL(ata_ratelimit);
5671 EXPORT_SYMBOL_GPL(ata_wait_register);
5672 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5673 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5674 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5675 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5676 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5677 EXPORT_SYMBOL_GPL(ata_scsi_release);
5678 EXPORT_SYMBOL_GPL(ata_host_intr);
5679 EXPORT_SYMBOL_GPL(sata_scr_valid);
5680 EXPORT_SYMBOL_GPL(sata_scr_read);
5681 EXPORT_SYMBOL_GPL(sata_scr_write);
5682 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5683 EXPORT_SYMBOL_GPL(ata_port_online);
5684 EXPORT_SYMBOL_GPL(ata_port_offline);
5685 EXPORT_SYMBOL_GPL(ata_id_string);
5686 EXPORT_SYMBOL_GPL(ata_id_c_string);
5687 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5688
5689 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5690 EXPORT_SYMBOL_GPL(ata_timing_compute);
5691 EXPORT_SYMBOL_GPL(ata_timing_merge);
5692
5693 #ifdef CONFIG_PCI
5694 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5695 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5696 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5697 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5698 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5699 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5700 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5701 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5702 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5703 #endif /* CONFIG_PCI */
5704
5705 EXPORT_SYMBOL_GPL(ata_device_suspend);
5706 EXPORT_SYMBOL_GPL(ata_device_resume);
5707 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5708 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5709
5710 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5711 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5712 EXPORT_SYMBOL_GPL(ata_port_abort);
5713 EXPORT_SYMBOL_GPL(ata_port_freeze);
5714 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5715 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5716 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5717 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5718 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.15918 seconds and 6 git commands to generate.