ARM: tegra: fix erroneous address in dts
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 struct kmem_cache *scsi_sdb_cache;
42
43 /*
44 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45 * not change behaviour from the previous unplug mechanism, experimentation
46 * may prove this needs changing.
47 */
48 #define SCSI_QUEUE_DELAY 3
49
50 static void
51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
52 {
53 struct Scsi_Host *host = cmd->device->host;
54 struct scsi_device *device = cmd->device;
55 struct scsi_target *starget = scsi_target(device);
56
57 /*
58 * Set the appropriate busy bit for the device/host.
59 *
60 * If the host/device isn't busy, assume that something actually
61 * completed, and that we should be able to queue a command now.
62 *
63 * Note that the prior mid-layer assumption that any host could
64 * always queue at least one command is now broken. The mid-layer
65 * will implement a user specifiable stall (see
66 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67 * if a command is requeued with no other commands outstanding
68 * either for the device or for the host.
69 */
70 switch (reason) {
71 case SCSI_MLQUEUE_HOST_BUSY:
72 atomic_set(&host->host_blocked, host->max_host_blocked);
73 break;
74 case SCSI_MLQUEUE_DEVICE_BUSY:
75 case SCSI_MLQUEUE_EH_RETRY:
76 atomic_set(&device->device_blocked,
77 device->max_device_blocked);
78 break;
79 case SCSI_MLQUEUE_TARGET_BUSY:
80 atomic_set(&starget->target_blocked,
81 starget->max_target_blocked);
82 break;
83 }
84 }
85
86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
87 {
88 struct scsi_device *sdev = cmd->device;
89 struct request_queue *q = cmd->request->q;
90
91 blk_mq_requeue_request(cmd->request);
92 blk_mq_kick_requeue_list(q);
93 put_device(&sdev->sdev_gendev);
94 }
95
96 /**
97 * __scsi_queue_insert - private queue insertion
98 * @cmd: The SCSI command being requeued
99 * @reason: The reason for the requeue
100 * @unbusy: Whether the queue should be unbusied
101 *
102 * This is a private queue insertion. The public interface
103 * scsi_queue_insert() always assumes the queue should be unbusied
104 * because it's always called before the completion. This function is
105 * for a requeue after completion, which should only occur in this
106 * file.
107 */
108 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
109 {
110 struct scsi_device *device = cmd->device;
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
113
114 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
115 "Inserting command %p into mlqueue\n", cmd));
116
117 scsi_set_blocked(cmd, reason);
118
119 /*
120 * Decrement the counters, since these commands are no longer
121 * active on the host/device.
122 */
123 if (unbusy)
124 scsi_device_unbusy(device);
125
126 /*
127 * Requeue this command. It will go before all other commands
128 * that are already in the queue. Schedule requeue work under
129 * lock such that the kblockd_schedule_work() call happens
130 * before blk_cleanup_queue() finishes.
131 */
132 cmd->result = 0;
133 if (q->mq_ops) {
134 scsi_mq_requeue_cmd(cmd);
135 return;
136 }
137 spin_lock_irqsave(q->queue_lock, flags);
138 blk_requeue_request(q, cmd->request);
139 kblockd_schedule_work(&device->requeue_work);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141 }
142
143 /*
144 * Function: scsi_queue_insert()
145 *
146 * Purpose: Insert a command in the midlevel queue.
147 *
148 * Arguments: cmd - command that we are adding to queue.
149 * reason - why we are inserting command to queue.
150 *
151 * Lock status: Assumed that lock is not held upon entry.
152 *
153 * Returns: Nothing.
154 *
155 * Notes: We do this for one of two cases. Either the host is busy
156 * and it cannot accept any more commands for the time being,
157 * or the device returned QUEUE_FULL and can accept no more
158 * commands.
159 * Notes: This could be called either from an interrupt context or a
160 * normal process context.
161 */
162 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
163 {
164 __scsi_queue_insert(cmd, reason, 1);
165 }
166 /**
167 * scsi_execute - insert request and wait for the result
168 * @sdev: scsi device
169 * @cmd: scsi command
170 * @data_direction: data direction
171 * @buffer: data buffer
172 * @bufflen: len of buffer
173 * @sense: optional sense buffer
174 * @timeout: request timeout in seconds
175 * @retries: number of times to retry request
176 * @flags: or into request flags;
177 * @resid: optional residual length
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 int data_direction, void *buffer, unsigned bufflen,
184 unsigned char *sense, int timeout, int retries, u64 flags,
185 int *resid)
186 {
187 struct request *req;
188 int write = (data_direction == DMA_TO_DEVICE);
189 int ret = DRIVER_ERROR << 24;
190
191 req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
192 if (IS_ERR(req))
193 return ret;
194 blk_rq_set_block_pc(req);
195
196 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
197 buffer, bufflen, __GFP_RECLAIM))
198 goto out;
199
200 req->cmd_len = COMMAND_SIZE(cmd[0]);
201 memcpy(req->cmd, cmd, req->cmd_len);
202 req->sense = sense;
203 req->sense_len = 0;
204 req->retries = retries;
205 req->timeout = timeout;
206 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
207
208 /*
209 * head injection *required* here otherwise quiesce won't work
210 */
211 blk_execute_rq(req->q, NULL, req, 1);
212
213 /*
214 * Some devices (USB mass-storage in particular) may transfer
215 * garbage data together with a residue indicating that the data
216 * is invalid. Prevent the garbage from being misinterpreted
217 * and prevent security leaks by zeroing out the excess data.
218 */
219 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
220 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
221
222 if (resid)
223 *resid = req->resid_len;
224 ret = req->errors;
225 out:
226 blk_put_request(req);
227
228 return ret;
229 }
230 EXPORT_SYMBOL(scsi_execute);
231
232 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
233 int data_direction, void *buffer, unsigned bufflen,
234 struct scsi_sense_hdr *sshdr, int timeout, int retries,
235 int *resid, u64 flags)
236 {
237 char *sense = NULL;
238 int result;
239
240 if (sshdr) {
241 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
242 if (!sense)
243 return DRIVER_ERROR << 24;
244 }
245 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
246 sense, timeout, retries, flags, resid);
247 if (sshdr)
248 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
249
250 kfree(sense);
251 return result;
252 }
253 EXPORT_SYMBOL(scsi_execute_req_flags);
254
255 /*
256 * Function: scsi_init_cmd_errh()
257 *
258 * Purpose: Initialize cmd fields related to error handling.
259 *
260 * Arguments: cmd - command that is ready to be queued.
261 *
262 * Notes: This function has the job of initializing a number of
263 * fields related to error handling. Typically this will
264 * be called once for each command, as required.
265 */
266 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
267 {
268 cmd->serial_number = 0;
269 scsi_set_resid(cmd, 0);
270 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
271 if (cmd->cmd_len == 0)
272 cmd->cmd_len = scsi_command_size(cmd->cmnd);
273 }
274
275 void scsi_device_unbusy(struct scsi_device *sdev)
276 {
277 struct Scsi_Host *shost = sdev->host;
278 struct scsi_target *starget = scsi_target(sdev);
279 unsigned long flags;
280
281 atomic_dec(&shost->host_busy);
282 if (starget->can_queue > 0)
283 atomic_dec(&starget->target_busy);
284
285 if (unlikely(scsi_host_in_recovery(shost) &&
286 (shost->host_failed || shost->host_eh_scheduled))) {
287 spin_lock_irqsave(shost->host_lock, flags);
288 scsi_eh_wakeup(shost);
289 spin_unlock_irqrestore(shost->host_lock, flags);
290 }
291
292 atomic_dec(&sdev->device_busy);
293 }
294
295 static void scsi_kick_queue(struct request_queue *q)
296 {
297 if (q->mq_ops)
298 blk_mq_start_hw_queues(q);
299 else
300 blk_run_queue(q);
301 }
302
303 /*
304 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
305 * and call blk_run_queue for all the scsi_devices on the target -
306 * including current_sdev first.
307 *
308 * Called with *no* scsi locks held.
309 */
310 static void scsi_single_lun_run(struct scsi_device *current_sdev)
311 {
312 struct Scsi_Host *shost = current_sdev->host;
313 struct scsi_device *sdev, *tmp;
314 struct scsi_target *starget = scsi_target(current_sdev);
315 unsigned long flags;
316
317 spin_lock_irqsave(shost->host_lock, flags);
318 starget->starget_sdev_user = NULL;
319 spin_unlock_irqrestore(shost->host_lock, flags);
320
321 /*
322 * Call blk_run_queue for all LUNs on the target, starting with
323 * current_sdev. We race with others (to set starget_sdev_user),
324 * but in most cases, we will be first. Ideally, each LU on the
325 * target would get some limited time or requests on the target.
326 */
327 scsi_kick_queue(current_sdev->request_queue);
328
329 spin_lock_irqsave(shost->host_lock, flags);
330 if (starget->starget_sdev_user)
331 goto out;
332 list_for_each_entry_safe(sdev, tmp, &starget->devices,
333 same_target_siblings) {
334 if (sdev == current_sdev)
335 continue;
336 if (scsi_device_get(sdev))
337 continue;
338
339 spin_unlock_irqrestore(shost->host_lock, flags);
340 scsi_kick_queue(sdev->request_queue);
341 spin_lock_irqsave(shost->host_lock, flags);
342
343 scsi_device_put(sdev);
344 }
345 out:
346 spin_unlock_irqrestore(shost->host_lock, flags);
347 }
348
349 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
350 {
351 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
352 return true;
353 if (atomic_read(&sdev->device_blocked) > 0)
354 return true;
355 return false;
356 }
357
358 static inline bool scsi_target_is_busy(struct scsi_target *starget)
359 {
360 if (starget->can_queue > 0) {
361 if (atomic_read(&starget->target_busy) >= starget->can_queue)
362 return true;
363 if (atomic_read(&starget->target_blocked) > 0)
364 return true;
365 }
366 return false;
367 }
368
369 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
370 {
371 if (shost->can_queue > 0 &&
372 atomic_read(&shost->host_busy) >= shost->can_queue)
373 return true;
374 if (atomic_read(&shost->host_blocked) > 0)
375 return true;
376 if (shost->host_self_blocked)
377 return true;
378 return false;
379 }
380
381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383 LIST_HEAD(starved_list);
384 struct scsi_device *sdev;
385 unsigned long flags;
386
387 spin_lock_irqsave(shost->host_lock, flags);
388 list_splice_init(&shost->starved_list, &starved_list);
389
390 while (!list_empty(&starved_list)) {
391 struct request_queue *slq;
392
393 /*
394 * As long as shost is accepting commands and we have
395 * starved queues, call blk_run_queue. scsi_request_fn
396 * drops the queue_lock and can add us back to the
397 * starved_list.
398 *
399 * host_lock protects the starved_list and starved_entry.
400 * scsi_request_fn must get the host_lock before checking
401 * or modifying starved_list or starved_entry.
402 */
403 if (scsi_host_is_busy(shost))
404 break;
405
406 sdev = list_entry(starved_list.next,
407 struct scsi_device, starved_entry);
408 list_del_init(&sdev->starved_entry);
409 if (scsi_target_is_busy(scsi_target(sdev))) {
410 list_move_tail(&sdev->starved_entry,
411 &shost->starved_list);
412 continue;
413 }
414
415 /*
416 * Once we drop the host lock, a racing scsi_remove_device()
417 * call may remove the sdev from the starved list and destroy
418 * it and the queue. Mitigate by taking a reference to the
419 * queue and never touching the sdev again after we drop the
420 * host lock. Note: if __scsi_remove_device() invokes
421 * blk_cleanup_queue() before the queue is run from this
422 * function then blk_run_queue() will return immediately since
423 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
424 */
425 slq = sdev->request_queue;
426 if (!blk_get_queue(slq))
427 continue;
428 spin_unlock_irqrestore(shost->host_lock, flags);
429
430 scsi_kick_queue(slq);
431 blk_put_queue(slq);
432
433 spin_lock_irqsave(shost->host_lock, flags);
434 }
435 /* put any unprocessed entries back */
436 list_splice(&starved_list, &shost->starved_list);
437 spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439
440 /*
441 * Function: scsi_run_queue()
442 *
443 * Purpose: Select a proper request queue to serve next
444 *
445 * Arguments: q - last request's queue
446 *
447 * Returns: Nothing
448 *
449 * Notes: The previous command was completely finished, start
450 * a new one if possible.
451 */
452 static void scsi_run_queue(struct request_queue *q)
453 {
454 struct scsi_device *sdev = q->queuedata;
455
456 if (scsi_target(sdev)->single_lun)
457 scsi_single_lun_run(sdev);
458 if (!list_empty(&sdev->host->starved_list))
459 scsi_starved_list_run(sdev->host);
460
461 if (q->mq_ops)
462 blk_mq_start_stopped_hw_queues(q, false);
463 else
464 blk_run_queue(q);
465 }
466
467 void scsi_requeue_run_queue(struct work_struct *work)
468 {
469 struct scsi_device *sdev;
470 struct request_queue *q;
471
472 sdev = container_of(work, struct scsi_device, requeue_work);
473 q = sdev->request_queue;
474 scsi_run_queue(q);
475 }
476
477 /*
478 * Function: scsi_requeue_command()
479 *
480 * Purpose: Handle post-processing of completed commands.
481 *
482 * Arguments: q - queue to operate on
483 * cmd - command that may need to be requeued.
484 *
485 * Returns: Nothing
486 *
487 * Notes: After command completion, there may be blocks left
488 * over which weren't finished by the previous command
489 * this can be for a number of reasons - the main one is
490 * I/O errors in the middle of the request, in which case
491 * we need to request the blocks that come after the bad
492 * sector.
493 * Notes: Upon return, cmd is a stale pointer.
494 */
495 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
496 {
497 struct scsi_device *sdev = cmd->device;
498 struct request *req = cmd->request;
499 unsigned long flags;
500
501 spin_lock_irqsave(q->queue_lock, flags);
502 blk_unprep_request(req);
503 req->special = NULL;
504 scsi_put_command(cmd);
505 blk_requeue_request(q, req);
506 spin_unlock_irqrestore(q->queue_lock, flags);
507
508 scsi_run_queue(q);
509
510 put_device(&sdev->sdev_gendev);
511 }
512
513 void scsi_run_host_queues(struct Scsi_Host *shost)
514 {
515 struct scsi_device *sdev;
516
517 shost_for_each_device(sdev, shost)
518 scsi_run_queue(sdev->request_queue);
519 }
520
521 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
522 {
523 if (cmd->request->cmd_type == REQ_TYPE_FS) {
524 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
525
526 if (drv->uninit_command)
527 drv->uninit_command(cmd);
528 }
529 }
530
531 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
532 {
533 struct scsi_data_buffer *sdb;
534
535 if (cmd->sdb.table.nents)
536 sg_free_table_chained(&cmd->sdb.table, true);
537 if (cmd->request->next_rq) {
538 sdb = cmd->request->next_rq->special;
539 if (sdb)
540 sg_free_table_chained(&sdb->table, true);
541 }
542 if (scsi_prot_sg_count(cmd))
543 sg_free_table_chained(&cmd->prot_sdb->table, true);
544 }
545
546 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
547 {
548 struct scsi_device *sdev = cmd->device;
549 struct Scsi_Host *shost = sdev->host;
550 unsigned long flags;
551
552 scsi_mq_free_sgtables(cmd);
553 scsi_uninit_cmd(cmd);
554
555 if (shost->use_cmd_list) {
556 BUG_ON(list_empty(&cmd->list));
557 spin_lock_irqsave(&sdev->list_lock, flags);
558 list_del_init(&cmd->list);
559 spin_unlock_irqrestore(&sdev->list_lock, flags);
560 }
561 }
562
563 /*
564 * Function: scsi_release_buffers()
565 *
566 * Purpose: Free resources allocate for a scsi_command.
567 *
568 * Arguments: cmd - command that we are bailing.
569 *
570 * Lock status: Assumed that no lock is held upon entry.
571 *
572 * Returns: Nothing
573 *
574 * Notes: In the event that an upper level driver rejects a
575 * command, we must release resources allocated during
576 * the __init_io() function. Primarily this would involve
577 * the scatter-gather table.
578 */
579 static void scsi_release_buffers(struct scsi_cmnd *cmd)
580 {
581 if (cmd->sdb.table.nents)
582 sg_free_table_chained(&cmd->sdb.table, false);
583
584 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
585
586 if (scsi_prot_sg_count(cmd))
587 sg_free_table_chained(&cmd->prot_sdb->table, false);
588 }
589
590 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
591 {
592 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
593
594 sg_free_table_chained(&bidi_sdb->table, false);
595 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
596 cmd->request->next_rq->special = NULL;
597 }
598
599 static bool scsi_end_request(struct request *req, int error,
600 unsigned int bytes, unsigned int bidi_bytes)
601 {
602 struct scsi_cmnd *cmd = req->special;
603 struct scsi_device *sdev = cmd->device;
604 struct request_queue *q = sdev->request_queue;
605
606 if (blk_update_request(req, error, bytes))
607 return true;
608
609 /* Bidi request must be completed as a whole */
610 if (unlikely(bidi_bytes) &&
611 blk_update_request(req->next_rq, error, bidi_bytes))
612 return true;
613
614 if (blk_queue_add_random(q))
615 add_disk_randomness(req->rq_disk);
616
617 if (req->mq_ctx) {
618 /*
619 * In the MQ case the command gets freed by __blk_mq_end_request,
620 * so we have to do all cleanup that depends on it earlier.
621 *
622 * We also can't kick the queues from irq context, so we
623 * will have to defer it to a workqueue.
624 */
625 scsi_mq_uninit_cmd(cmd);
626
627 __blk_mq_end_request(req, error);
628
629 if (scsi_target(sdev)->single_lun ||
630 !list_empty(&sdev->host->starved_list))
631 kblockd_schedule_work(&sdev->requeue_work);
632 else
633 blk_mq_start_stopped_hw_queues(q, true);
634 } else {
635 unsigned long flags;
636
637 if (bidi_bytes)
638 scsi_release_bidi_buffers(cmd);
639
640 spin_lock_irqsave(q->queue_lock, flags);
641 blk_finish_request(req, error);
642 spin_unlock_irqrestore(q->queue_lock, flags);
643
644 scsi_release_buffers(cmd);
645
646 scsi_put_command(cmd);
647 scsi_run_queue(q);
648 }
649
650 put_device(&sdev->sdev_gendev);
651 return false;
652 }
653
654 /**
655 * __scsi_error_from_host_byte - translate SCSI error code into errno
656 * @cmd: SCSI command (unused)
657 * @result: scsi error code
658 *
659 * Translate SCSI error code into standard UNIX errno.
660 * Return values:
661 * -ENOLINK temporary transport failure
662 * -EREMOTEIO permanent target failure, do not retry
663 * -EBADE permanent nexus failure, retry on other path
664 * -ENOSPC No write space available
665 * -ENODATA Medium error
666 * -EIO unspecified I/O error
667 */
668 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
669 {
670 int error = 0;
671
672 switch(host_byte(result)) {
673 case DID_TRANSPORT_FAILFAST:
674 error = -ENOLINK;
675 break;
676 case DID_TARGET_FAILURE:
677 set_host_byte(cmd, DID_OK);
678 error = -EREMOTEIO;
679 break;
680 case DID_NEXUS_FAILURE:
681 set_host_byte(cmd, DID_OK);
682 error = -EBADE;
683 break;
684 case DID_ALLOC_FAILURE:
685 set_host_byte(cmd, DID_OK);
686 error = -ENOSPC;
687 break;
688 case DID_MEDIUM_ERROR:
689 set_host_byte(cmd, DID_OK);
690 error = -ENODATA;
691 break;
692 default:
693 error = -EIO;
694 break;
695 }
696
697 return error;
698 }
699
700 /*
701 * Function: scsi_io_completion()
702 *
703 * Purpose: Completion processing for block device I/O requests.
704 *
705 * Arguments: cmd - command that is finished.
706 *
707 * Lock status: Assumed that no lock is held upon entry.
708 *
709 * Returns: Nothing
710 *
711 * Notes: We will finish off the specified number of sectors. If we
712 * are done, the command block will be released and the queue
713 * function will be goosed. If we are not done then we have to
714 * figure out what to do next:
715 *
716 * a) We can call scsi_requeue_command(). The request
717 * will be unprepared and put back on the queue. Then
718 * a new command will be created for it. This should
719 * be used if we made forward progress, or if we want
720 * to switch from READ(10) to READ(6) for example.
721 *
722 * b) We can call __scsi_queue_insert(). The request will
723 * be put back on the queue and retried using the same
724 * command as before, possibly after a delay.
725 *
726 * c) We can call scsi_end_request() with -EIO to fail
727 * the remainder of the request.
728 */
729 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
730 {
731 int result = cmd->result;
732 struct request_queue *q = cmd->device->request_queue;
733 struct request *req = cmd->request;
734 int error = 0;
735 struct scsi_sense_hdr sshdr;
736 bool sense_valid = false;
737 int sense_deferred = 0, level = 0;
738 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
739 ACTION_DELAYED_RETRY} action;
740 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
741
742 if (result) {
743 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
744 if (sense_valid)
745 sense_deferred = scsi_sense_is_deferred(&sshdr);
746 }
747
748 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
749 if (result) {
750 if (sense_valid && req->sense) {
751 /*
752 * SG_IO wants current and deferred errors
753 */
754 int len = 8 + cmd->sense_buffer[7];
755
756 if (len > SCSI_SENSE_BUFFERSIZE)
757 len = SCSI_SENSE_BUFFERSIZE;
758 memcpy(req->sense, cmd->sense_buffer, len);
759 req->sense_len = len;
760 }
761 if (!sense_deferred)
762 error = __scsi_error_from_host_byte(cmd, result);
763 }
764 /*
765 * __scsi_error_from_host_byte may have reset the host_byte
766 */
767 req->errors = cmd->result;
768
769 req->resid_len = scsi_get_resid(cmd);
770
771 if (scsi_bidi_cmnd(cmd)) {
772 /*
773 * Bidi commands Must be complete as a whole,
774 * both sides at once.
775 */
776 req->next_rq->resid_len = scsi_in(cmd)->resid;
777 if (scsi_end_request(req, 0, blk_rq_bytes(req),
778 blk_rq_bytes(req->next_rq)))
779 BUG();
780 return;
781 }
782 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
783 /*
784 * Certain non BLOCK_PC requests are commands that don't
785 * actually transfer anything (FLUSH), so cannot use
786 * good_bytes != blk_rq_bytes(req) as the signal for an error.
787 * This sets the error explicitly for the problem case.
788 */
789 error = __scsi_error_from_host_byte(cmd, result);
790 }
791
792 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
793 BUG_ON(blk_bidi_rq(req));
794
795 /*
796 * Next deal with any sectors which we were able to correctly
797 * handle.
798 */
799 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
800 "%u sectors total, %d bytes done.\n",
801 blk_rq_sectors(req), good_bytes));
802
803 /*
804 * Recovered errors need reporting, but they're always treated
805 * as success, so fiddle the result code here. For BLOCK_PC
806 * we already took a copy of the original into rq->errors which
807 * is what gets returned to the user
808 */
809 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
810 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
811 * print since caller wants ATA registers. Only occurs on
812 * SCSI ATA PASS_THROUGH commands when CK_COND=1
813 */
814 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
815 ;
816 else if (!(req->cmd_flags & REQ_QUIET))
817 scsi_print_sense(cmd);
818 result = 0;
819 /* BLOCK_PC may have set error */
820 error = 0;
821 }
822
823 /*
824 * special case: failed zero length commands always need to
825 * drop down into the retry code. Otherwise, if we finished
826 * all bytes in the request we are done now.
827 */
828 if (!(blk_rq_bytes(req) == 0 && error) &&
829 !scsi_end_request(req, error, good_bytes, 0))
830 return;
831
832 /*
833 * Kill remainder if no retrys.
834 */
835 if (error && scsi_noretry_cmd(cmd)) {
836 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
837 BUG();
838 return;
839 }
840
841 /*
842 * If there had been no error, but we have leftover bytes in the
843 * requeues just queue the command up again.
844 */
845 if (result == 0)
846 goto requeue;
847
848 error = __scsi_error_from_host_byte(cmd, result);
849
850 if (host_byte(result) == DID_RESET) {
851 /* Third party bus reset or reset for error recovery
852 * reasons. Just retry the command and see what
853 * happens.
854 */
855 action = ACTION_RETRY;
856 } else if (sense_valid && !sense_deferred) {
857 switch (sshdr.sense_key) {
858 case UNIT_ATTENTION:
859 if (cmd->device->removable) {
860 /* Detected disc change. Set a bit
861 * and quietly refuse further access.
862 */
863 cmd->device->changed = 1;
864 action = ACTION_FAIL;
865 } else {
866 /* Must have been a power glitch, or a
867 * bus reset. Could not have been a
868 * media change, so we just retry the
869 * command and see what happens.
870 */
871 action = ACTION_RETRY;
872 }
873 break;
874 case ILLEGAL_REQUEST:
875 /* If we had an ILLEGAL REQUEST returned, then
876 * we may have performed an unsupported
877 * command. The only thing this should be
878 * would be a ten byte read where only a six
879 * byte read was supported. Also, on a system
880 * where READ CAPACITY failed, we may have
881 * read past the end of the disk.
882 */
883 if ((cmd->device->use_10_for_rw &&
884 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
885 (cmd->cmnd[0] == READ_10 ||
886 cmd->cmnd[0] == WRITE_10)) {
887 /* This will issue a new 6-byte command. */
888 cmd->device->use_10_for_rw = 0;
889 action = ACTION_REPREP;
890 } else if (sshdr.asc == 0x10) /* DIX */ {
891 action = ACTION_FAIL;
892 error = -EILSEQ;
893 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
894 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
895 action = ACTION_FAIL;
896 error = -EREMOTEIO;
897 } else
898 action = ACTION_FAIL;
899 break;
900 case ABORTED_COMMAND:
901 action = ACTION_FAIL;
902 if (sshdr.asc == 0x10) /* DIF */
903 error = -EILSEQ;
904 break;
905 case NOT_READY:
906 /* If the device is in the process of becoming
907 * ready, or has a temporary blockage, retry.
908 */
909 if (sshdr.asc == 0x04) {
910 switch (sshdr.ascq) {
911 case 0x01: /* becoming ready */
912 case 0x04: /* format in progress */
913 case 0x05: /* rebuild in progress */
914 case 0x06: /* recalculation in progress */
915 case 0x07: /* operation in progress */
916 case 0x08: /* Long write in progress */
917 case 0x09: /* self test in progress */
918 case 0x14: /* space allocation in progress */
919 action = ACTION_DELAYED_RETRY;
920 break;
921 default:
922 action = ACTION_FAIL;
923 break;
924 }
925 } else
926 action = ACTION_FAIL;
927 break;
928 case VOLUME_OVERFLOW:
929 /* See SSC3rXX or current. */
930 action = ACTION_FAIL;
931 break;
932 default:
933 action = ACTION_FAIL;
934 break;
935 }
936 } else
937 action = ACTION_FAIL;
938
939 if (action != ACTION_FAIL &&
940 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
941 action = ACTION_FAIL;
942
943 switch (action) {
944 case ACTION_FAIL:
945 /* Give up and fail the remainder of the request */
946 if (!(req->cmd_flags & REQ_QUIET)) {
947 static DEFINE_RATELIMIT_STATE(_rs,
948 DEFAULT_RATELIMIT_INTERVAL,
949 DEFAULT_RATELIMIT_BURST);
950
951 if (unlikely(scsi_logging_level))
952 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
953 SCSI_LOG_MLCOMPLETE_BITS);
954
955 /*
956 * if logging is enabled the failure will be printed
957 * in scsi_log_completion(), so avoid duplicate messages
958 */
959 if (!level && __ratelimit(&_rs)) {
960 scsi_print_result(cmd, NULL, FAILED);
961 if (driver_byte(result) & DRIVER_SENSE)
962 scsi_print_sense(cmd);
963 scsi_print_command(cmd);
964 }
965 }
966 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
967 return;
968 /*FALLTHRU*/
969 case ACTION_REPREP:
970 requeue:
971 /* Unprep the request and put it back at the head of the queue.
972 * A new command will be prepared and issued.
973 */
974 if (q->mq_ops) {
975 cmd->request->cmd_flags &= ~REQ_DONTPREP;
976 scsi_mq_uninit_cmd(cmd);
977 scsi_mq_requeue_cmd(cmd);
978 } else {
979 scsi_release_buffers(cmd);
980 scsi_requeue_command(q, cmd);
981 }
982 break;
983 case ACTION_RETRY:
984 /* Retry the same command immediately */
985 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
986 break;
987 case ACTION_DELAYED_RETRY:
988 /* Retry the same command after a delay */
989 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
990 break;
991 }
992 }
993
994 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
995 {
996 int count;
997
998 /*
999 * If sg table allocation fails, requeue request later.
1000 */
1001 if (unlikely(sg_alloc_table_chained(&sdb->table, req->nr_phys_segments,
1002 sdb->table.sgl)))
1003 return BLKPREP_DEFER;
1004
1005 /*
1006 * Next, walk the list, and fill in the addresses and sizes of
1007 * each segment.
1008 */
1009 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1010 BUG_ON(count > sdb->table.nents);
1011 sdb->table.nents = count;
1012 sdb->length = blk_rq_bytes(req);
1013 return BLKPREP_OK;
1014 }
1015
1016 /*
1017 * Function: scsi_init_io()
1018 *
1019 * Purpose: SCSI I/O initialize function.
1020 *
1021 * Arguments: cmd - Command descriptor we wish to initialize
1022 *
1023 * Returns: 0 on success
1024 * BLKPREP_DEFER if the failure is retryable
1025 * BLKPREP_KILL if the failure is fatal
1026 */
1027 int scsi_init_io(struct scsi_cmnd *cmd)
1028 {
1029 struct scsi_device *sdev = cmd->device;
1030 struct request *rq = cmd->request;
1031 bool is_mq = (rq->mq_ctx != NULL);
1032 int error;
1033
1034 BUG_ON(!rq->nr_phys_segments);
1035
1036 error = scsi_init_sgtable(rq, &cmd->sdb);
1037 if (error)
1038 goto err_exit;
1039
1040 if (blk_bidi_rq(rq)) {
1041 if (!rq->q->mq_ops) {
1042 struct scsi_data_buffer *bidi_sdb =
1043 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1044 if (!bidi_sdb) {
1045 error = BLKPREP_DEFER;
1046 goto err_exit;
1047 }
1048
1049 rq->next_rq->special = bidi_sdb;
1050 }
1051
1052 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1053 if (error)
1054 goto err_exit;
1055 }
1056
1057 if (blk_integrity_rq(rq)) {
1058 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1059 int ivecs, count;
1060
1061 if (prot_sdb == NULL) {
1062 /*
1063 * This can happen if someone (e.g. multipath)
1064 * queues a command to a device on an adapter
1065 * that does not support DIX.
1066 */
1067 WARN_ON_ONCE(1);
1068 error = BLKPREP_KILL;
1069 goto err_exit;
1070 }
1071
1072 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1073
1074 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1075 prot_sdb->table.sgl)) {
1076 error = BLKPREP_DEFER;
1077 goto err_exit;
1078 }
1079
1080 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1081 prot_sdb->table.sgl);
1082 BUG_ON(unlikely(count > ivecs));
1083 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1084
1085 cmd->prot_sdb = prot_sdb;
1086 cmd->prot_sdb->table.nents = count;
1087 }
1088
1089 return BLKPREP_OK;
1090 err_exit:
1091 if (is_mq) {
1092 scsi_mq_free_sgtables(cmd);
1093 } else {
1094 scsi_release_buffers(cmd);
1095 cmd->request->special = NULL;
1096 scsi_put_command(cmd);
1097 put_device(&sdev->sdev_gendev);
1098 }
1099 return error;
1100 }
1101 EXPORT_SYMBOL(scsi_init_io);
1102
1103 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1104 struct request *req)
1105 {
1106 struct scsi_cmnd *cmd;
1107
1108 if (!req->special) {
1109 /* Bail if we can't get a reference to the device */
1110 if (!get_device(&sdev->sdev_gendev))
1111 return NULL;
1112
1113 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1114 if (unlikely(!cmd)) {
1115 put_device(&sdev->sdev_gendev);
1116 return NULL;
1117 }
1118 req->special = cmd;
1119 } else {
1120 cmd = req->special;
1121 }
1122
1123 /* pull a tag out of the request if we have one */
1124 cmd->tag = req->tag;
1125 cmd->request = req;
1126
1127 cmd->cmnd = req->cmd;
1128 cmd->prot_op = SCSI_PROT_NORMAL;
1129
1130 return cmd;
1131 }
1132
1133 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1134 {
1135 struct scsi_cmnd *cmd = req->special;
1136
1137 /*
1138 * BLOCK_PC requests may transfer data, in which case they must
1139 * a bio attached to them. Or they might contain a SCSI command
1140 * that does not transfer data, in which case they may optionally
1141 * submit a request without an attached bio.
1142 */
1143 if (req->bio) {
1144 int ret = scsi_init_io(cmd);
1145 if (unlikely(ret))
1146 return ret;
1147 } else {
1148 BUG_ON(blk_rq_bytes(req));
1149
1150 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1151 }
1152
1153 cmd->cmd_len = req->cmd_len;
1154 cmd->transfersize = blk_rq_bytes(req);
1155 cmd->allowed = req->retries;
1156 return BLKPREP_OK;
1157 }
1158
1159 /*
1160 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1161 * that still need to be translated to SCSI CDBs from the ULD.
1162 */
1163 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1164 {
1165 struct scsi_cmnd *cmd = req->special;
1166
1167 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1168 int ret = sdev->handler->prep_fn(sdev, req);
1169 if (ret != BLKPREP_OK)
1170 return ret;
1171 }
1172
1173 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1174 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1175 }
1176
1177 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1178 {
1179 struct scsi_cmnd *cmd = req->special;
1180
1181 if (!blk_rq_bytes(req))
1182 cmd->sc_data_direction = DMA_NONE;
1183 else if (rq_data_dir(req) == WRITE)
1184 cmd->sc_data_direction = DMA_TO_DEVICE;
1185 else
1186 cmd->sc_data_direction = DMA_FROM_DEVICE;
1187
1188 switch (req->cmd_type) {
1189 case REQ_TYPE_FS:
1190 return scsi_setup_fs_cmnd(sdev, req);
1191 case REQ_TYPE_BLOCK_PC:
1192 return scsi_setup_blk_pc_cmnd(sdev, req);
1193 default:
1194 return BLKPREP_KILL;
1195 }
1196 }
1197
1198 static int
1199 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1200 {
1201 int ret = BLKPREP_OK;
1202
1203 /*
1204 * If the device is not in running state we will reject some
1205 * or all commands.
1206 */
1207 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1208 switch (sdev->sdev_state) {
1209 case SDEV_OFFLINE:
1210 case SDEV_TRANSPORT_OFFLINE:
1211 /*
1212 * If the device is offline we refuse to process any
1213 * commands. The device must be brought online
1214 * before trying any recovery commands.
1215 */
1216 sdev_printk(KERN_ERR, sdev,
1217 "rejecting I/O to offline device\n");
1218 ret = BLKPREP_KILL;
1219 break;
1220 case SDEV_DEL:
1221 /*
1222 * If the device is fully deleted, we refuse to
1223 * process any commands as well.
1224 */
1225 sdev_printk(KERN_ERR, sdev,
1226 "rejecting I/O to dead device\n");
1227 ret = BLKPREP_KILL;
1228 break;
1229 case SDEV_BLOCK:
1230 case SDEV_CREATED_BLOCK:
1231 ret = BLKPREP_DEFER;
1232 break;
1233 case SDEV_QUIESCE:
1234 /*
1235 * If the devices is blocked we defer normal commands.
1236 */
1237 if (!(req->cmd_flags & REQ_PREEMPT))
1238 ret = BLKPREP_DEFER;
1239 break;
1240 default:
1241 /*
1242 * For any other not fully online state we only allow
1243 * special commands. In particular any user initiated
1244 * command is not allowed.
1245 */
1246 if (!(req->cmd_flags & REQ_PREEMPT))
1247 ret = BLKPREP_KILL;
1248 break;
1249 }
1250 }
1251 return ret;
1252 }
1253
1254 static int
1255 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1256 {
1257 struct scsi_device *sdev = q->queuedata;
1258
1259 switch (ret) {
1260 case BLKPREP_KILL:
1261 case BLKPREP_INVALID:
1262 req->errors = DID_NO_CONNECT << 16;
1263 /* release the command and kill it */
1264 if (req->special) {
1265 struct scsi_cmnd *cmd = req->special;
1266 scsi_release_buffers(cmd);
1267 scsi_put_command(cmd);
1268 put_device(&sdev->sdev_gendev);
1269 req->special = NULL;
1270 }
1271 break;
1272 case BLKPREP_DEFER:
1273 /*
1274 * If we defer, the blk_peek_request() returns NULL, but the
1275 * queue must be restarted, so we schedule a callback to happen
1276 * shortly.
1277 */
1278 if (atomic_read(&sdev->device_busy) == 0)
1279 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1280 break;
1281 default:
1282 req->cmd_flags |= REQ_DONTPREP;
1283 }
1284
1285 return ret;
1286 }
1287
1288 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1289 {
1290 struct scsi_device *sdev = q->queuedata;
1291 struct scsi_cmnd *cmd;
1292 int ret;
1293
1294 ret = scsi_prep_state_check(sdev, req);
1295 if (ret != BLKPREP_OK)
1296 goto out;
1297
1298 cmd = scsi_get_cmd_from_req(sdev, req);
1299 if (unlikely(!cmd)) {
1300 ret = BLKPREP_DEFER;
1301 goto out;
1302 }
1303
1304 ret = scsi_setup_cmnd(sdev, req);
1305 out:
1306 return scsi_prep_return(q, req, ret);
1307 }
1308
1309 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1310 {
1311 scsi_uninit_cmd(req->special);
1312 }
1313
1314 /*
1315 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1316 * return 0.
1317 *
1318 * Called with the queue_lock held.
1319 */
1320 static inline int scsi_dev_queue_ready(struct request_queue *q,
1321 struct scsi_device *sdev)
1322 {
1323 unsigned int busy;
1324
1325 busy = atomic_inc_return(&sdev->device_busy) - 1;
1326 if (atomic_read(&sdev->device_blocked)) {
1327 if (busy)
1328 goto out_dec;
1329
1330 /*
1331 * unblock after device_blocked iterates to zero
1332 */
1333 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1334 /*
1335 * For the MQ case we take care of this in the caller.
1336 */
1337 if (!q->mq_ops)
1338 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1339 goto out_dec;
1340 }
1341 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1342 "unblocking device at zero depth\n"));
1343 }
1344
1345 if (busy >= sdev->queue_depth)
1346 goto out_dec;
1347
1348 return 1;
1349 out_dec:
1350 atomic_dec(&sdev->device_busy);
1351 return 0;
1352 }
1353
1354 /*
1355 * scsi_target_queue_ready: checks if there we can send commands to target
1356 * @sdev: scsi device on starget to check.
1357 */
1358 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1359 struct scsi_device *sdev)
1360 {
1361 struct scsi_target *starget = scsi_target(sdev);
1362 unsigned int busy;
1363
1364 if (starget->single_lun) {
1365 spin_lock_irq(shost->host_lock);
1366 if (starget->starget_sdev_user &&
1367 starget->starget_sdev_user != sdev) {
1368 spin_unlock_irq(shost->host_lock);
1369 return 0;
1370 }
1371 starget->starget_sdev_user = sdev;
1372 spin_unlock_irq(shost->host_lock);
1373 }
1374
1375 if (starget->can_queue <= 0)
1376 return 1;
1377
1378 busy = atomic_inc_return(&starget->target_busy) - 1;
1379 if (atomic_read(&starget->target_blocked) > 0) {
1380 if (busy)
1381 goto starved;
1382
1383 /*
1384 * unblock after target_blocked iterates to zero
1385 */
1386 if (atomic_dec_return(&starget->target_blocked) > 0)
1387 goto out_dec;
1388
1389 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1390 "unblocking target at zero depth\n"));
1391 }
1392
1393 if (busy >= starget->can_queue)
1394 goto starved;
1395
1396 return 1;
1397
1398 starved:
1399 spin_lock_irq(shost->host_lock);
1400 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1401 spin_unlock_irq(shost->host_lock);
1402 out_dec:
1403 if (starget->can_queue > 0)
1404 atomic_dec(&starget->target_busy);
1405 return 0;
1406 }
1407
1408 /*
1409 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1410 * return 0. We must end up running the queue again whenever 0 is
1411 * returned, else IO can hang.
1412 */
1413 static inline int scsi_host_queue_ready(struct request_queue *q,
1414 struct Scsi_Host *shost,
1415 struct scsi_device *sdev)
1416 {
1417 unsigned int busy;
1418
1419 if (scsi_host_in_recovery(shost))
1420 return 0;
1421
1422 busy = atomic_inc_return(&shost->host_busy) - 1;
1423 if (atomic_read(&shost->host_blocked) > 0) {
1424 if (busy)
1425 goto starved;
1426
1427 /*
1428 * unblock after host_blocked iterates to zero
1429 */
1430 if (atomic_dec_return(&shost->host_blocked) > 0)
1431 goto out_dec;
1432
1433 SCSI_LOG_MLQUEUE(3,
1434 shost_printk(KERN_INFO, shost,
1435 "unblocking host at zero depth\n"));
1436 }
1437
1438 if (shost->can_queue > 0 && busy >= shost->can_queue)
1439 goto starved;
1440 if (shost->host_self_blocked)
1441 goto starved;
1442
1443 /* We're OK to process the command, so we can't be starved */
1444 if (!list_empty(&sdev->starved_entry)) {
1445 spin_lock_irq(shost->host_lock);
1446 if (!list_empty(&sdev->starved_entry))
1447 list_del_init(&sdev->starved_entry);
1448 spin_unlock_irq(shost->host_lock);
1449 }
1450
1451 return 1;
1452
1453 starved:
1454 spin_lock_irq(shost->host_lock);
1455 if (list_empty(&sdev->starved_entry))
1456 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1457 spin_unlock_irq(shost->host_lock);
1458 out_dec:
1459 atomic_dec(&shost->host_busy);
1460 return 0;
1461 }
1462
1463 /*
1464 * Busy state exporting function for request stacking drivers.
1465 *
1466 * For efficiency, no lock is taken to check the busy state of
1467 * shost/starget/sdev, since the returned value is not guaranteed and
1468 * may be changed after request stacking drivers call the function,
1469 * regardless of taking lock or not.
1470 *
1471 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1472 * needs to return 'not busy'. Otherwise, request stacking drivers
1473 * may hold requests forever.
1474 */
1475 static int scsi_lld_busy(struct request_queue *q)
1476 {
1477 struct scsi_device *sdev = q->queuedata;
1478 struct Scsi_Host *shost;
1479
1480 if (blk_queue_dying(q))
1481 return 0;
1482
1483 shost = sdev->host;
1484
1485 /*
1486 * Ignore host/starget busy state.
1487 * Since block layer does not have a concept of fairness across
1488 * multiple queues, congestion of host/starget needs to be handled
1489 * in SCSI layer.
1490 */
1491 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1492 return 1;
1493
1494 return 0;
1495 }
1496
1497 /*
1498 * Kill a request for a dead device
1499 */
1500 static void scsi_kill_request(struct request *req, struct request_queue *q)
1501 {
1502 struct scsi_cmnd *cmd = req->special;
1503 struct scsi_device *sdev;
1504 struct scsi_target *starget;
1505 struct Scsi_Host *shost;
1506
1507 blk_start_request(req);
1508
1509 scmd_printk(KERN_INFO, cmd, "killing request\n");
1510
1511 sdev = cmd->device;
1512 starget = scsi_target(sdev);
1513 shost = sdev->host;
1514 scsi_init_cmd_errh(cmd);
1515 cmd->result = DID_NO_CONNECT << 16;
1516 atomic_inc(&cmd->device->iorequest_cnt);
1517
1518 /*
1519 * SCSI request completion path will do scsi_device_unbusy(),
1520 * bump busy counts. To bump the counters, we need to dance
1521 * with the locks as normal issue path does.
1522 */
1523 atomic_inc(&sdev->device_busy);
1524 atomic_inc(&shost->host_busy);
1525 if (starget->can_queue > 0)
1526 atomic_inc(&starget->target_busy);
1527
1528 blk_complete_request(req);
1529 }
1530
1531 static void scsi_softirq_done(struct request *rq)
1532 {
1533 struct scsi_cmnd *cmd = rq->special;
1534 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1535 int disposition;
1536
1537 INIT_LIST_HEAD(&cmd->eh_entry);
1538
1539 atomic_inc(&cmd->device->iodone_cnt);
1540 if (cmd->result)
1541 atomic_inc(&cmd->device->ioerr_cnt);
1542
1543 disposition = scsi_decide_disposition(cmd);
1544 if (disposition != SUCCESS &&
1545 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1546 sdev_printk(KERN_ERR, cmd->device,
1547 "timing out command, waited %lus\n",
1548 wait_for/HZ);
1549 disposition = SUCCESS;
1550 }
1551
1552 scsi_log_completion(cmd, disposition);
1553
1554 switch (disposition) {
1555 case SUCCESS:
1556 scsi_finish_command(cmd);
1557 break;
1558 case NEEDS_RETRY:
1559 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1560 break;
1561 case ADD_TO_MLQUEUE:
1562 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1563 break;
1564 default:
1565 if (!scsi_eh_scmd_add(cmd, 0))
1566 scsi_finish_command(cmd);
1567 }
1568 }
1569
1570 /**
1571 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1572 * @cmd: command block we are dispatching.
1573 *
1574 * Return: nonzero return request was rejected and device's queue needs to be
1575 * plugged.
1576 */
1577 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1578 {
1579 struct Scsi_Host *host = cmd->device->host;
1580 int rtn = 0;
1581
1582 atomic_inc(&cmd->device->iorequest_cnt);
1583
1584 /* check if the device is still usable */
1585 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1586 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1587 * returns an immediate error upwards, and signals
1588 * that the device is no longer present */
1589 cmd->result = DID_NO_CONNECT << 16;
1590 goto done;
1591 }
1592
1593 /* Check to see if the scsi lld made this device blocked. */
1594 if (unlikely(scsi_device_blocked(cmd->device))) {
1595 /*
1596 * in blocked state, the command is just put back on
1597 * the device queue. The suspend state has already
1598 * blocked the queue so future requests should not
1599 * occur until the device transitions out of the
1600 * suspend state.
1601 */
1602 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1603 "queuecommand : device blocked\n"));
1604 return SCSI_MLQUEUE_DEVICE_BUSY;
1605 }
1606
1607 /* Store the LUN value in cmnd, if needed. */
1608 if (cmd->device->lun_in_cdb)
1609 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1610 (cmd->device->lun << 5 & 0xe0);
1611
1612 scsi_log_send(cmd);
1613
1614 /*
1615 * Before we queue this command, check if the command
1616 * length exceeds what the host adapter can handle.
1617 */
1618 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1619 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1620 "queuecommand : command too long. "
1621 "cdb_size=%d host->max_cmd_len=%d\n",
1622 cmd->cmd_len, cmd->device->host->max_cmd_len));
1623 cmd->result = (DID_ABORT << 16);
1624 goto done;
1625 }
1626
1627 if (unlikely(host->shost_state == SHOST_DEL)) {
1628 cmd->result = (DID_NO_CONNECT << 16);
1629 goto done;
1630
1631 }
1632
1633 trace_scsi_dispatch_cmd_start(cmd);
1634 rtn = host->hostt->queuecommand(host, cmd);
1635 if (rtn) {
1636 trace_scsi_dispatch_cmd_error(cmd, rtn);
1637 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1638 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1639 rtn = SCSI_MLQUEUE_HOST_BUSY;
1640
1641 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1642 "queuecommand : request rejected\n"));
1643 }
1644
1645 return rtn;
1646 done:
1647 cmd->scsi_done(cmd);
1648 return 0;
1649 }
1650
1651 /**
1652 * scsi_done - Invoke completion on finished SCSI command.
1653 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1654 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1655 *
1656 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1657 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1658 * calls blk_complete_request() for further processing.
1659 *
1660 * This function is interrupt context safe.
1661 */
1662 static void scsi_done(struct scsi_cmnd *cmd)
1663 {
1664 trace_scsi_dispatch_cmd_done(cmd);
1665 blk_complete_request(cmd->request);
1666 }
1667
1668 /*
1669 * Function: scsi_request_fn()
1670 *
1671 * Purpose: Main strategy routine for SCSI.
1672 *
1673 * Arguments: q - Pointer to actual queue.
1674 *
1675 * Returns: Nothing
1676 *
1677 * Lock status: IO request lock assumed to be held when called.
1678 */
1679 static void scsi_request_fn(struct request_queue *q)
1680 __releases(q->queue_lock)
1681 __acquires(q->queue_lock)
1682 {
1683 struct scsi_device *sdev = q->queuedata;
1684 struct Scsi_Host *shost;
1685 struct scsi_cmnd *cmd;
1686 struct request *req;
1687
1688 /*
1689 * To start with, we keep looping until the queue is empty, or until
1690 * the host is no longer able to accept any more requests.
1691 */
1692 shost = sdev->host;
1693 for (;;) {
1694 int rtn;
1695 /*
1696 * get next queueable request. We do this early to make sure
1697 * that the request is fully prepared even if we cannot
1698 * accept it.
1699 */
1700 req = blk_peek_request(q);
1701 if (!req)
1702 break;
1703
1704 if (unlikely(!scsi_device_online(sdev))) {
1705 sdev_printk(KERN_ERR, sdev,
1706 "rejecting I/O to offline device\n");
1707 scsi_kill_request(req, q);
1708 continue;
1709 }
1710
1711 if (!scsi_dev_queue_ready(q, sdev))
1712 break;
1713
1714 /*
1715 * Remove the request from the request list.
1716 */
1717 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1718 blk_start_request(req);
1719
1720 spin_unlock_irq(q->queue_lock);
1721 cmd = req->special;
1722 if (unlikely(cmd == NULL)) {
1723 printk(KERN_CRIT "impossible request in %s.\n"
1724 "please mail a stack trace to "
1725 "linux-scsi@vger.kernel.org\n",
1726 __func__);
1727 blk_dump_rq_flags(req, "foo");
1728 BUG();
1729 }
1730
1731 /*
1732 * We hit this when the driver is using a host wide
1733 * tag map. For device level tag maps the queue_depth check
1734 * in the device ready fn would prevent us from trying
1735 * to allocate a tag. Since the map is a shared host resource
1736 * we add the dev to the starved list so it eventually gets
1737 * a run when a tag is freed.
1738 */
1739 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1740 spin_lock_irq(shost->host_lock);
1741 if (list_empty(&sdev->starved_entry))
1742 list_add_tail(&sdev->starved_entry,
1743 &shost->starved_list);
1744 spin_unlock_irq(shost->host_lock);
1745 goto not_ready;
1746 }
1747
1748 if (!scsi_target_queue_ready(shost, sdev))
1749 goto not_ready;
1750
1751 if (!scsi_host_queue_ready(q, shost, sdev))
1752 goto host_not_ready;
1753
1754 if (sdev->simple_tags)
1755 cmd->flags |= SCMD_TAGGED;
1756 else
1757 cmd->flags &= ~SCMD_TAGGED;
1758
1759 /*
1760 * Finally, initialize any error handling parameters, and set up
1761 * the timers for timeouts.
1762 */
1763 scsi_init_cmd_errh(cmd);
1764
1765 /*
1766 * Dispatch the command to the low-level driver.
1767 */
1768 cmd->scsi_done = scsi_done;
1769 rtn = scsi_dispatch_cmd(cmd);
1770 if (rtn) {
1771 scsi_queue_insert(cmd, rtn);
1772 spin_lock_irq(q->queue_lock);
1773 goto out_delay;
1774 }
1775 spin_lock_irq(q->queue_lock);
1776 }
1777
1778 return;
1779
1780 host_not_ready:
1781 if (scsi_target(sdev)->can_queue > 0)
1782 atomic_dec(&scsi_target(sdev)->target_busy);
1783 not_ready:
1784 /*
1785 * lock q, handle tag, requeue req, and decrement device_busy. We
1786 * must return with queue_lock held.
1787 *
1788 * Decrementing device_busy without checking it is OK, as all such
1789 * cases (host limits or settings) should run the queue at some
1790 * later time.
1791 */
1792 spin_lock_irq(q->queue_lock);
1793 blk_requeue_request(q, req);
1794 atomic_dec(&sdev->device_busy);
1795 out_delay:
1796 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1797 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1798 }
1799
1800 static inline int prep_to_mq(int ret)
1801 {
1802 switch (ret) {
1803 case BLKPREP_OK:
1804 return 0;
1805 case BLKPREP_DEFER:
1806 return BLK_MQ_RQ_QUEUE_BUSY;
1807 default:
1808 return BLK_MQ_RQ_QUEUE_ERROR;
1809 }
1810 }
1811
1812 static int scsi_mq_prep_fn(struct request *req)
1813 {
1814 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1815 struct scsi_device *sdev = req->q->queuedata;
1816 struct Scsi_Host *shost = sdev->host;
1817 unsigned char *sense_buf = cmd->sense_buffer;
1818 struct scatterlist *sg;
1819
1820 memset(cmd, 0, sizeof(struct scsi_cmnd));
1821
1822 req->special = cmd;
1823
1824 cmd->request = req;
1825 cmd->device = sdev;
1826 cmd->sense_buffer = sense_buf;
1827
1828 cmd->tag = req->tag;
1829
1830 cmd->cmnd = req->cmd;
1831 cmd->prot_op = SCSI_PROT_NORMAL;
1832
1833 INIT_LIST_HEAD(&cmd->list);
1834 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1835 cmd->jiffies_at_alloc = jiffies;
1836
1837 if (shost->use_cmd_list) {
1838 spin_lock_irq(&sdev->list_lock);
1839 list_add_tail(&cmd->list, &sdev->cmd_list);
1840 spin_unlock_irq(&sdev->list_lock);
1841 }
1842
1843 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1844 cmd->sdb.table.sgl = sg;
1845
1846 if (scsi_host_get_prot(shost)) {
1847 cmd->prot_sdb = (void *)sg +
1848 min_t(unsigned int,
1849 shost->sg_tablesize, SG_CHUNK_SIZE) *
1850 sizeof(struct scatterlist);
1851 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1852
1853 cmd->prot_sdb->table.sgl =
1854 (struct scatterlist *)(cmd->prot_sdb + 1);
1855 }
1856
1857 if (blk_bidi_rq(req)) {
1858 struct request *next_rq = req->next_rq;
1859 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1860
1861 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1862 bidi_sdb->table.sgl =
1863 (struct scatterlist *)(bidi_sdb + 1);
1864
1865 next_rq->special = bidi_sdb;
1866 }
1867
1868 blk_mq_start_request(req);
1869
1870 return scsi_setup_cmnd(sdev, req);
1871 }
1872
1873 static void scsi_mq_done(struct scsi_cmnd *cmd)
1874 {
1875 trace_scsi_dispatch_cmd_done(cmd);
1876 blk_mq_complete_request(cmd->request, cmd->request->errors);
1877 }
1878
1879 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1880 const struct blk_mq_queue_data *bd)
1881 {
1882 struct request *req = bd->rq;
1883 struct request_queue *q = req->q;
1884 struct scsi_device *sdev = q->queuedata;
1885 struct Scsi_Host *shost = sdev->host;
1886 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1887 int ret;
1888 int reason;
1889
1890 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1891 if (ret)
1892 goto out;
1893
1894 ret = BLK_MQ_RQ_QUEUE_BUSY;
1895 if (!get_device(&sdev->sdev_gendev))
1896 goto out;
1897
1898 if (!scsi_dev_queue_ready(q, sdev))
1899 goto out_put_device;
1900 if (!scsi_target_queue_ready(shost, sdev))
1901 goto out_dec_device_busy;
1902 if (!scsi_host_queue_ready(q, shost, sdev))
1903 goto out_dec_target_busy;
1904
1905
1906 if (!(req->cmd_flags & REQ_DONTPREP)) {
1907 ret = prep_to_mq(scsi_mq_prep_fn(req));
1908 if (ret)
1909 goto out_dec_host_busy;
1910 req->cmd_flags |= REQ_DONTPREP;
1911 } else {
1912 blk_mq_start_request(req);
1913 }
1914
1915 if (sdev->simple_tags)
1916 cmd->flags |= SCMD_TAGGED;
1917 else
1918 cmd->flags &= ~SCMD_TAGGED;
1919
1920 scsi_init_cmd_errh(cmd);
1921 cmd->scsi_done = scsi_mq_done;
1922
1923 reason = scsi_dispatch_cmd(cmd);
1924 if (reason) {
1925 scsi_set_blocked(cmd, reason);
1926 ret = BLK_MQ_RQ_QUEUE_BUSY;
1927 goto out_dec_host_busy;
1928 }
1929
1930 return BLK_MQ_RQ_QUEUE_OK;
1931
1932 out_dec_host_busy:
1933 atomic_dec(&shost->host_busy);
1934 out_dec_target_busy:
1935 if (scsi_target(sdev)->can_queue > 0)
1936 atomic_dec(&scsi_target(sdev)->target_busy);
1937 out_dec_device_busy:
1938 atomic_dec(&sdev->device_busy);
1939 out_put_device:
1940 put_device(&sdev->sdev_gendev);
1941 out:
1942 switch (ret) {
1943 case BLK_MQ_RQ_QUEUE_BUSY:
1944 blk_mq_stop_hw_queue(hctx);
1945 if (atomic_read(&sdev->device_busy) == 0 &&
1946 !scsi_device_blocked(sdev))
1947 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1948 break;
1949 case BLK_MQ_RQ_QUEUE_ERROR:
1950 /*
1951 * Make sure to release all allocated ressources when
1952 * we hit an error, as we will never see this command
1953 * again.
1954 */
1955 if (req->cmd_flags & REQ_DONTPREP)
1956 scsi_mq_uninit_cmd(cmd);
1957 break;
1958 default:
1959 break;
1960 }
1961 return ret;
1962 }
1963
1964 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1965 bool reserved)
1966 {
1967 if (reserved)
1968 return BLK_EH_RESET_TIMER;
1969 return scsi_times_out(req);
1970 }
1971
1972 static int scsi_init_request(void *data, struct request *rq,
1973 unsigned int hctx_idx, unsigned int request_idx,
1974 unsigned int numa_node)
1975 {
1976 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1977
1978 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1979 numa_node);
1980 if (!cmd->sense_buffer)
1981 return -ENOMEM;
1982 return 0;
1983 }
1984
1985 static void scsi_exit_request(void *data, struct request *rq,
1986 unsigned int hctx_idx, unsigned int request_idx)
1987 {
1988 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1989
1990 kfree(cmd->sense_buffer);
1991 }
1992
1993 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1994 {
1995 struct device *host_dev;
1996 u64 bounce_limit = 0xffffffff;
1997
1998 if (shost->unchecked_isa_dma)
1999 return BLK_BOUNCE_ISA;
2000 /*
2001 * Platforms with virtual-DMA translation
2002 * hardware have no practical limit.
2003 */
2004 if (!PCI_DMA_BUS_IS_PHYS)
2005 return BLK_BOUNCE_ANY;
2006
2007 host_dev = scsi_get_device(shost);
2008 if (host_dev && host_dev->dma_mask)
2009 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2010
2011 return bounce_limit;
2012 }
2013
2014 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2015 {
2016 struct device *dev = shost->dma_dev;
2017
2018 /*
2019 * this limit is imposed by hardware restrictions
2020 */
2021 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2022 SG_MAX_SEGMENTS));
2023
2024 if (scsi_host_prot_dma(shost)) {
2025 shost->sg_prot_tablesize =
2026 min_not_zero(shost->sg_prot_tablesize,
2027 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2028 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2029 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2030 }
2031
2032 blk_queue_max_hw_sectors(q, shost->max_sectors);
2033 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2034 blk_queue_segment_boundary(q, shost->dma_boundary);
2035 dma_set_seg_boundary(dev, shost->dma_boundary);
2036
2037 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2038
2039 if (!shost->use_clustering)
2040 q->limits.cluster = 0;
2041
2042 /*
2043 * set a reasonable default alignment on word boundaries: the
2044 * host and device may alter it using
2045 * blk_queue_update_dma_alignment() later.
2046 */
2047 blk_queue_dma_alignment(q, 0x03);
2048 }
2049
2050 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2051 request_fn_proc *request_fn)
2052 {
2053 struct request_queue *q;
2054
2055 q = blk_init_queue(request_fn, NULL);
2056 if (!q)
2057 return NULL;
2058 __scsi_init_queue(shost, q);
2059 return q;
2060 }
2061 EXPORT_SYMBOL(__scsi_alloc_queue);
2062
2063 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2064 {
2065 struct request_queue *q;
2066
2067 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2068 if (!q)
2069 return NULL;
2070
2071 blk_queue_prep_rq(q, scsi_prep_fn);
2072 blk_queue_unprep_rq(q, scsi_unprep_fn);
2073 blk_queue_softirq_done(q, scsi_softirq_done);
2074 blk_queue_rq_timed_out(q, scsi_times_out);
2075 blk_queue_lld_busy(q, scsi_lld_busy);
2076 return q;
2077 }
2078
2079 static struct blk_mq_ops scsi_mq_ops = {
2080 .map_queue = blk_mq_map_queue,
2081 .queue_rq = scsi_queue_rq,
2082 .complete = scsi_softirq_done,
2083 .timeout = scsi_timeout,
2084 .init_request = scsi_init_request,
2085 .exit_request = scsi_exit_request,
2086 };
2087
2088 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2089 {
2090 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2091 if (IS_ERR(sdev->request_queue))
2092 return NULL;
2093
2094 sdev->request_queue->queuedata = sdev;
2095 __scsi_init_queue(sdev->host, sdev->request_queue);
2096 return sdev->request_queue;
2097 }
2098
2099 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2100 {
2101 unsigned int cmd_size, sgl_size, tbl_size;
2102
2103 tbl_size = shost->sg_tablesize;
2104 if (tbl_size > SG_CHUNK_SIZE)
2105 tbl_size = SG_CHUNK_SIZE;
2106 sgl_size = tbl_size * sizeof(struct scatterlist);
2107 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2108 if (scsi_host_get_prot(shost))
2109 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2110
2111 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2112 shost->tag_set.ops = &scsi_mq_ops;
2113 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2114 shost->tag_set.queue_depth = shost->can_queue;
2115 shost->tag_set.cmd_size = cmd_size;
2116 shost->tag_set.numa_node = NUMA_NO_NODE;
2117 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2118 shost->tag_set.flags |=
2119 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2120 shost->tag_set.driver_data = shost;
2121
2122 return blk_mq_alloc_tag_set(&shost->tag_set);
2123 }
2124
2125 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2126 {
2127 blk_mq_free_tag_set(&shost->tag_set);
2128 }
2129
2130 /*
2131 * Function: scsi_block_requests()
2132 *
2133 * Purpose: Utility function used by low-level drivers to prevent further
2134 * commands from being queued to the device.
2135 *
2136 * Arguments: shost - Host in question
2137 *
2138 * Returns: Nothing
2139 *
2140 * Lock status: No locks are assumed held.
2141 *
2142 * Notes: There is no timer nor any other means by which the requests
2143 * get unblocked other than the low-level driver calling
2144 * scsi_unblock_requests().
2145 */
2146 void scsi_block_requests(struct Scsi_Host *shost)
2147 {
2148 shost->host_self_blocked = 1;
2149 }
2150 EXPORT_SYMBOL(scsi_block_requests);
2151
2152 /*
2153 * Function: scsi_unblock_requests()
2154 *
2155 * Purpose: Utility function used by low-level drivers to allow further
2156 * commands from being queued to the device.
2157 *
2158 * Arguments: shost - Host in question
2159 *
2160 * Returns: Nothing
2161 *
2162 * Lock status: No locks are assumed held.
2163 *
2164 * Notes: There is no timer nor any other means by which the requests
2165 * get unblocked other than the low-level driver calling
2166 * scsi_unblock_requests().
2167 *
2168 * This is done as an API function so that changes to the
2169 * internals of the scsi mid-layer won't require wholesale
2170 * changes to drivers that use this feature.
2171 */
2172 void scsi_unblock_requests(struct Scsi_Host *shost)
2173 {
2174 shost->host_self_blocked = 0;
2175 scsi_run_host_queues(shost);
2176 }
2177 EXPORT_SYMBOL(scsi_unblock_requests);
2178
2179 int __init scsi_init_queue(void)
2180 {
2181 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2182 sizeof(struct scsi_data_buffer),
2183 0, 0, NULL);
2184 if (!scsi_sdb_cache) {
2185 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2186 return -ENOMEM;
2187 }
2188
2189 return 0;
2190 }
2191
2192 void scsi_exit_queue(void)
2193 {
2194 kmem_cache_destroy(scsi_sdb_cache);
2195 }
2196
2197 /**
2198 * scsi_mode_select - issue a mode select
2199 * @sdev: SCSI device to be queried
2200 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2201 * @sp: Save page bit (0 == don't save, 1 == save)
2202 * @modepage: mode page being requested
2203 * @buffer: request buffer (may not be smaller than eight bytes)
2204 * @len: length of request buffer.
2205 * @timeout: command timeout
2206 * @retries: number of retries before failing
2207 * @data: returns a structure abstracting the mode header data
2208 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2209 * must be SCSI_SENSE_BUFFERSIZE big.
2210 *
2211 * Returns zero if successful; negative error number or scsi
2212 * status on error
2213 *
2214 */
2215 int
2216 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2217 unsigned char *buffer, int len, int timeout, int retries,
2218 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2219 {
2220 unsigned char cmd[10];
2221 unsigned char *real_buffer;
2222 int ret;
2223
2224 memset(cmd, 0, sizeof(cmd));
2225 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2226
2227 if (sdev->use_10_for_ms) {
2228 if (len > 65535)
2229 return -EINVAL;
2230 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2231 if (!real_buffer)
2232 return -ENOMEM;
2233 memcpy(real_buffer + 8, buffer, len);
2234 len += 8;
2235 real_buffer[0] = 0;
2236 real_buffer[1] = 0;
2237 real_buffer[2] = data->medium_type;
2238 real_buffer[3] = data->device_specific;
2239 real_buffer[4] = data->longlba ? 0x01 : 0;
2240 real_buffer[5] = 0;
2241 real_buffer[6] = data->block_descriptor_length >> 8;
2242 real_buffer[7] = data->block_descriptor_length;
2243
2244 cmd[0] = MODE_SELECT_10;
2245 cmd[7] = len >> 8;
2246 cmd[8] = len;
2247 } else {
2248 if (len > 255 || data->block_descriptor_length > 255 ||
2249 data->longlba)
2250 return -EINVAL;
2251
2252 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2253 if (!real_buffer)
2254 return -ENOMEM;
2255 memcpy(real_buffer + 4, buffer, len);
2256 len += 4;
2257 real_buffer[0] = 0;
2258 real_buffer[1] = data->medium_type;
2259 real_buffer[2] = data->device_specific;
2260 real_buffer[3] = data->block_descriptor_length;
2261
2262
2263 cmd[0] = MODE_SELECT;
2264 cmd[4] = len;
2265 }
2266
2267 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2268 sshdr, timeout, retries, NULL);
2269 kfree(real_buffer);
2270 return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(scsi_mode_select);
2273
2274 /**
2275 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2276 * @sdev: SCSI device to be queried
2277 * @dbd: set if mode sense will allow block descriptors to be returned
2278 * @modepage: mode page being requested
2279 * @buffer: request buffer (may not be smaller than eight bytes)
2280 * @len: length of request buffer.
2281 * @timeout: command timeout
2282 * @retries: number of retries before failing
2283 * @data: returns a structure abstracting the mode header data
2284 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2285 * must be SCSI_SENSE_BUFFERSIZE big.
2286 *
2287 * Returns zero if unsuccessful, or the header offset (either 4
2288 * or 8 depending on whether a six or ten byte command was
2289 * issued) if successful.
2290 */
2291 int
2292 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2293 unsigned char *buffer, int len, int timeout, int retries,
2294 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2295 {
2296 unsigned char cmd[12];
2297 int use_10_for_ms;
2298 int header_length;
2299 int result, retry_count = retries;
2300 struct scsi_sense_hdr my_sshdr;
2301
2302 memset(data, 0, sizeof(*data));
2303 memset(&cmd[0], 0, 12);
2304 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2305 cmd[2] = modepage;
2306
2307 /* caller might not be interested in sense, but we need it */
2308 if (!sshdr)
2309 sshdr = &my_sshdr;
2310
2311 retry:
2312 use_10_for_ms = sdev->use_10_for_ms;
2313
2314 if (use_10_for_ms) {
2315 if (len < 8)
2316 len = 8;
2317
2318 cmd[0] = MODE_SENSE_10;
2319 cmd[8] = len;
2320 header_length = 8;
2321 } else {
2322 if (len < 4)
2323 len = 4;
2324
2325 cmd[0] = MODE_SENSE;
2326 cmd[4] = len;
2327 header_length = 4;
2328 }
2329
2330 memset(buffer, 0, len);
2331
2332 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2333 sshdr, timeout, retries, NULL);
2334
2335 /* This code looks awful: what it's doing is making sure an
2336 * ILLEGAL REQUEST sense return identifies the actual command
2337 * byte as the problem. MODE_SENSE commands can return
2338 * ILLEGAL REQUEST if the code page isn't supported */
2339
2340 if (use_10_for_ms && !scsi_status_is_good(result) &&
2341 (driver_byte(result) & DRIVER_SENSE)) {
2342 if (scsi_sense_valid(sshdr)) {
2343 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2344 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2345 /*
2346 * Invalid command operation code
2347 */
2348 sdev->use_10_for_ms = 0;
2349 goto retry;
2350 }
2351 }
2352 }
2353
2354 if(scsi_status_is_good(result)) {
2355 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2356 (modepage == 6 || modepage == 8))) {
2357 /* Initio breakage? */
2358 header_length = 0;
2359 data->length = 13;
2360 data->medium_type = 0;
2361 data->device_specific = 0;
2362 data->longlba = 0;
2363 data->block_descriptor_length = 0;
2364 } else if(use_10_for_ms) {
2365 data->length = buffer[0]*256 + buffer[1] + 2;
2366 data->medium_type = buffer[2];
2367 data->device_specific = buffer[3];
2368 data->longlba = buffer[4] & 0x01;
2369 data->block_descriptor_length = buffer[6]*256
2370 + buffer[7];
2371 } else {
2372 data->length = buffer[0] + 1;
2373 data->medium_type = buffer[1];
2374 data->device_specific = buffer[2];
2375 data->block_descriptor_length = buffer[3];
2376 }
2377 data->header_length = header_length;
2378 } else if ((status_byte(result) == CHECK_CONDITION) &&
2379 scsi_sense_valid(sshdr) &&
2380 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2381 retry_count--;
2382 goto retry;
2383 }
2384
2385 return result;
2386 }
2387 EXPORT_SYMBOL(scsi_mode_sense);
2388
2389 /**
2390 * scsi_test_unit_ready - test if unit is ready
2391 * @sdev: scsi device to change the state of.
2392 * @timeout: command timeout
2393 * @retries: number of retries before failing
2394 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2395 * returning sense. Make sure that this is cleared before passing
2396 * in.
2397 *
2398 * Returns zero if unsuccessful or an error if TUR failed. For
2399 * removable media, UNIT_ATTENTION sets ->changed flag.
2400 **/
2401 int
2402 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2403 struct scsi_sense_hdr *sshdr_external)
2404 {
2405 char cmd[] = {
2406 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2407 };
2408 struct scsi_sense_hdr *sshdr;
2409 int result;
2410
2411 if (!sshdr_external)
2412 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2413 else
2414 sshdr = sshdr_external;
2415
2416 /* try to eat the UNIT_ATTENTION if there are enough retries */
2417 do {
2418 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2419 timeout, retries, NULL);
2420 if (sdev->removable && scsi_sense_valid(sshdr) &&
2421 sshdr->sense_key == UNIT_ATTENTION)
2422 sdev->changed = 1;
2423 } while (scsi_sense_valid(sshdr) &&
2424 sshdr->sense_key == UNIT_ATTENTION && --retries);
2425
2426 if (!sshdr_external)
2427 kfree(sshdr);
2428 return result;
2429 }
2430 EXPORT_SYMBOL(scsi_test_unit_ready);
2431
2432 /**
2433 * scsi_device_set_state - Take the given device through the device state model.
2434 * @sdev: scsi device to change the state of.
2435 * @state: state to change to.
2436 *
2437 * Returns zero if unsuccessful or an error if the requested
2438 * transition is illegal.
2439 */
2440 int
2441 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2442 {
2443 enum scsi_device_state oldstate = sdev->sdev_state;
2444
2445 if (state == oldstate)
2446 return 0;
2447
2448 switch (state) {
2449 case SDEV_CREATED:
2450 switch (oldstate) {
2451 case SDEV_CREATED_BLOCK:
2452 break;
2453 default:
2454 goto illegal;
2455 }
2456 break;
2457
2458 case SDEV_RUNNING:
2459 switch (oldstate) {
2460 case SDEV_CREATED:
2461 case SDEV_OFFLINE:
2462 case SDEV_TRANSPORT_OFFLINE:
2463 case SDEV_QUIESCE:
2464 case SDEV_BLOCK:
2465 break;
2466 default:
2467 goto illegal;
2468 }
2469 break;
2470
2471 case SDEV_QUIESCE:
2472 switch (oldstate) {
2473 case SDEV_RUNNING:
2474 case SDEV_OFFLINE:
2475 case SDEV_TRANSPORT_OFFLINE:
2476 break;
2477 default:
2478 goto illegal;
2479 }
2480 break;
2481
2482 case SDEV_OFFLINE:
2483 case SDEV_TRANSPORT_OFFLINE:
2484 switch (oldstate) {
2485 case SDEV_CREATED:
2486 case SDEV_RUNNING:
2487 case SDEV_QUIESCE:
2488 case SDEV_BLOCK:
2489 break;
2490 default:
2491 goto illegal;
2492 }
2493 break;
2494
2495 case SDEV_BLOCK:
2496 switch (oldstate) {
2497 case SDEV_RUNNING:
2498 case SDEV_CREATED_BLOCK:
2499 break;
2500 default:
2501 goto illegal;
2502 }
2503 break;
2504
2505 case SDEV_CREATED_BLOCK:
2506 switch (oldstate) {
2507 case SDEV_CREATED:
2508 break;
2509 default:
2510 goto illegal;
2511 }
2512 break;
2513
2514 case SDEV_CANCEL:
2515 switch (oldstate) {
2516 case SDEV_CREATED:
2517 case SDEV_RUNNING:
2518 case SDEV_QUIESCE:
2519 case SDEV_OFFLINE:
2520 case SDEV_TRANSPORT_OFFLINE:
2521 case SDEV_BLOCK:
2522 break;
2523 default:
2524 goto illegal;
2525 }
2526 break;
2527
2528 case SDEV_DEL:
2529 switch (oldstate) {
2530 case SDEV_CREATED:
2531 case SDEV_RUNNING:
2532 case SDEV_OFFLINE:
2533 case SDEV_TRANSPORT_OFFLINE:
2534 case SDEV_CANCEL:
2535 case SDEV_CREATED_BLOCK:
2536 break;
2537 default:
2538 goto illegal;
2539 }
2540 break;
2541
2542 }
2543 sdev->sdev_state = state;
2544 return 0;
2545
2546 illegal:
2547 SCSI_LOG_ERROR_RECOVERY(1,
2548 sdev_printk(KERN_ERR, sdev,
2549 "Illegal state transition %s->%s",
2550 scsi_device_state_name(oldstate),
2551 scsi_device_state_name(state))
2552 );
2553 return -EINVAL;
2554 }
2555 EXPORT_SYMBOL(scsi_device_set_state);
2556
2557 /**
2558 * sdev_evt_emit - emit a single SCSI device uevent
2559 * @sdev: associated SCSI device
2560 * @evt: event to emit
2561 *
2562 * Send a single uevent (scsi_event) to the associated scsi_device.
2563 */
2564 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2565 {
2566 int idx = 0;
2567 char *envp[3];
2568
2569 switch (evt->evt_type) {
2570 case SDEV_EVT_MEDIA_CHANGE:
2571 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2572 break;
2573 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2574 scsi_rescan_device(&sdev->sdev_gendev);
2575 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2576 break;
2577 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2578 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2579 break;
2580 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2581 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2582 break;
2583 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2584 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2585 break;
2586 case SDEV_EVT_LUN_CHANGE_REPORTED:
2587 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2588 break;
2589 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2590 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2591 break;
2592 default:
2593 /* do nothing */
2594 break;
2595 }
2596
2597 envp[idx++] = NULL;
2598
2599 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2600 }
2601
2602 /**
2603 * sdev_evt_thread - send a uevent for each scsi event
2604 * @work: work struct for scsi_device
2605 *
2606 * Dispatch queued events to their associated scsi_device kobjects
2607 * as uevents.
2608 */
2609 void scsi_evt_thread(struct work_struct *work)
2610 {
2611 struct scsi_device *sdev;
2612 enum scsi_device_event evt_type;
2613 LIST_HEAD(event_list);
2614
2615 sdev = container_of(work, struct scsi_device, event_work);
2616
2617 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2618 if (test_and_clear_bit(evt_type, sdev->pending_events))
2619 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2620
2621 while (1) {
2622 struct scsi_event *evt;
2623 struct list_head *this, *tmp;
2624 unsigned long flags;
2625
2626 spin_lock_irqsave(&sdev->list_lock, flags);
2627 list_splice_init(&sdev->event_list, &event_list);
2628 spin_unlock_irqrestore(&sdev->list_lock, flags);
2629
2630 if (list_empty(&event_list))
2631 break;
2632
2633 list_for_each_safe(this, tmp, &event_list) {
2634 evt = list_entry(this, struct scsi_event, node);
2635 list_del(&evt->node);
2636 scsi_evt_emit(sdev, evt);
2637 kfree(evt);
2638 }
2639 }
2640 }
2641
2642 /**
2643 * sdev_evt_send - send asserted event to uevent thread
2644 * @sdev: scsi_device event occurred on
2645 * @evt: event to send
2646 *
2647 * Assert scsi device event asynchronously.
2648 */
2649 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2650 {
2651 unsigned long flags;
2652
2653 #if 0
2654 /* FIXME: currently this check eliminates all media change events
2655 * for polled devices. Need to update to discriminate between AN
2656 * and polled events */
2657 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2658 kfree(evt);
2659 return;
2660 }
2661 #endif
2662
2663 spin_lock_irqsave(&sdev->list_lock, flags);
2664 list_add_tail(&evt->node, &sdev->event_list);
2665 schedule_work(&sdev->event_work);
2666 spin_unlock_irqrestore(&sdev->list_lock, flags);
2667 }
2668 EXPORT_SYMBOL_GPL(sdev_evt_send);
2669
2670 /**
2671 * sdev_evt_alloc - allocate a new scsi event
2672 * @evt_type: type of event to allocate
2673 * @gfpflags: GFP flags for allocation
2674 *
2675 * Allocates and returns a new scsi_event.
2676 */
2677 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2678 gfp_t gfpflags)
2679 {
2680 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2681 if (!evt)
2682 return NULL;
2683
2684 evt->evt_type = evt_type;
2685 INIT_LIST_HEAD(&evt->node);
2686
2687 /* evt_type-specific initialization, if any */
2688 switch (evt_type) {
2689 case SDEV_EVT_MEDIA_CHANGE:
2690 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2691 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2692 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2693 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2694 case SDEV_EVT_LUN_CHANGE_REPORTED:
2695 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2696 default:
2697 /* do nothing */
2698 break;
2699 }
2700
2701 return evt;
2702 }
2703 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2704
2705 /**
2706 * sdev_evt_send_simple - send asserted event to uevent thread
2707 * @sdev: scsi_device event occurred on
2708 * @evt_type: type of event to send
2709 * @gfpflags: GFP flags for allocation
2710 *
2711 * Assert scsi device event asynchronously, given an event type.
2712 */
2713 void sdev_evt_send_simple(struct scsi_device *sdev,
2714 enum scsi_device_event evt_type, gfp_t gfpflags)
2715 {
2716 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2717 if (!evt) {
2718 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2719 evt_type);
2720 return;
2721 }
2722
2723 sdev_evt_send(sdev, evt);
2724 }
2725 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2726
2727 /**
2728 * scsi_device_quiesce - Block user issued commands.
2729 * @sdev: scsi device to quiesce.
2730 *
2731 * This works by trying to transition to the SDEV_QUIESCE state
2732 * (which must be a legal transition). When the device is in this
2733 * state, only special requests will be accepted, all others will
2734 * be deferred. Since special requests may also be requeued requests,
2735 * a successful return doesn't guarantee the device will be
2736 * totally quiescent.
2737 *
2738 * Must be called with user context, may sleep.
2739 *
2740 * Returns zero if unsuccessful or an error if not.
2741 */
2742 int
2743 scsi_device_quiesce(struct scsi_device *sdev)
2744 {
2745 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2746 if (err)
2747 return err;
2748
2749 scsi_run_queue(sdev->request_queue);
2750 while (atomic_read(&sdev->device_busy)) {
2751 msleep_interruptible(200);
2752 scsi_run_queue(sdev->request_queue);
2753 }
2754 return 0;
2755 }
2756 EXPORT_SYMBOL(scsi_device_quiesce);
2757
2758 /**
2759 * scsi_device_resume - Restart user issued commands to a quiesced device.
2760 * @sdev: scsi device to resume.
2761 *
2762 * Moves the device from quiesced back to running and restarts the
2763 * queues.
2764 *
2765 * Must be called with user context, may sleep.
2766 */
2767 void scsi_device_resume(struct scsi_device *sdev)
2768 {
2769 /* check if the device state was mutated prior to resume, and if
2770 * so assume the state is being managed elsewhere (for example
2771 * device deleted during suspend)
2772 */
2773 if (sdev->sdev_state != SDEV_QUIESCE ||
2774 scsi_device_set_state(sdev, SDEV_RUNNING))
2775 return;
2776 scsi_run_queue(sdev->request_queue);
2777 }
2778 EXPORT_SYMBOL(scsi_device_resume);
2779
2780 static void
2781 device_quiesce_fn(struct scsi_device *sdev, void *data)
2782 {
2783 scsi_device_quiesce(sdev);
2784 }
2785
2786 void
2787 scsi_target_quiesce(struct scsi_target *starget)
2788 {
2789 starget_for_each_device(starget, NULL, device_quiesce_fn);
2790 }
2791 EXPORT_SYMBOL(scsi_target_quiesce);
2792
2793 static void
2794 device_resume_fn(struct scsi_device *sdev, void *data)
2795 {
2796 scsi_device_resume(sdev);
2797 }
2798
2799 void
2800 scsi_target_resume(struct scsi_target *starget)
2801 {
2802 starget_for_each_device(starget, NULL, device_resume_fn);
2803 }
2804 EXPORT_SYMBOL(scsi_target_resume);
2805
2806 /**
2807 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2808 * @sdev: device to block
2809 *
2810 * Block request made by scsi lld's to temporarily stop all
2811 * scsi commands on the specified device. Called from interrupt
2812 * or normal process context.
2813 *
2814 * Returns zero if successful or error if not
2815 *
2816 * Notes:
2817 * This routine transitions the device to the SDEV_BLOCK state
2818 * (which must be a legal transition). When the device is in this
2819 * state, all commands are deferred until the scsi lld reenables
2820 * the device with scsi_device_unblock or device_block_tmo fires.
2821 */
2822 int
2823 scsi_internal_device_block(struct scsi_device *sdev)
2824 {
2825 struct request_queue *q = sdev->request_queue;
2826 unsigned long flags;
2827 int err = 0;
2828
2829 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2830 if (err) {
2831 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2832
2833 if (err)
2834 return err;
2835 }
2836
2837 /*
2838 * The device has transitioned to SDEV_BLOCK. Stop the
2839 * block layer from calling the midlayer with this device's
2840 * request queue.
2841 */
2842 if (q->mq_ops) {
2843 blk_mq_stop_hw_queues(q);
2844 } else {
2845 spin_lock_irqsave(q->queue_lock, flags);
2846 blk_stop_queue(q);
2847 spin_unlock_irqrestore(q->queue_lock, flags);
2848 }
2849
2850 return 0;
2851 }
2852 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2853
2854 /**
2855 * scsi_internal_device_unblock - resume a device after a block request
2856 * @sdev: device to resume
2857 * @new_state: state to set devices to after unblocking
2858 *
2859 * Called by scsi lld's or the midlayer to restart the device queue
2860 * for the previously suspended scsi device. Called from interrupt or
2861 * normal process context.
2862 *
2863 * Returns zero if successful or error if not.
2864 *
2865 * Notes:
2866 * This routine transitions the device to the SDEV_RUNNING state
2867 * or to one of the offline states (which must be a legal transition)
2868 * allowing the midlayer to goose the queue for this device.
2869 */
2870 int
2871 scsi_internal_device_unblock(struct scsi_device *sdev,
2872 enum scsi_device_state new_state)
2873 {
2874 struct request_queue *q = sdev->request_queue;
2875 unsigned long flags;
2876
2877 /*
2878 * Try to transition the scsi device to SDEV_RUNNING or one of the
2879 * offlined states and goose the device queue if successful.
2880 */
2881 if ((sdev->sdev_state == SDEV_BLOCK) ||
2882 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2883 sdev->sdev_state = new_state;
2884 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2885 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2886 new_state == SDEV_OFFLINE)
2887 sdev->sdev_state = new_state;
2888 else
2889 sdev->sdev_state = SDEV_CREATED;
2890 } else if (sdev->sdev_state != SDEV_CANCEL &&
2891 sdev->sdev_state != SDEV_OFFLINE)
2892 return -EINVAL;
2893
2894 if (q->mq_ops) {
2895 blk_mq_start_stopped_hw_queues(q, false);
2896 } else {
2897 spin_lock_irqsave(q->queue_lock, flags);
2898 blk_start_queue(q);
2899 spin_unlock_irqrestore(q->queue_lock, flags);
2900 }
2901
2902 return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2905
2906 static void
2907 device_block(struct scsi_device *sdev, void *data)
2908 {
2909 scsi_internal_device_block(sdev);
2910 }
2911
2912 static int
2913 target_block(struct device *dev, void *data)
2914 {
2915 if (scsi_is_target_device(dev))
2916 starget_for_each_device(to_scsi_target(dev), NULL,
2917 device_block);
2918 return 0;
2919 }
2920
2921 void
2922 scsi_target_block(struct device *dev)
2923 {
2924 if (scsi_is_target_device(dev))
2925 starget_for_each_device(to_scsi_target(dev), NULL,
2926 device_block);
2927 else
2928 device_for_each_child(dev, NULL, target_block);
2929 }
2930 EXPORT_SYMBOL_GPL(scsi_target_block);
2931
2932 static void
2933 device_unblock(struct scsi_device *sdev, void *data)
2934 {
2935 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2936 }
2937
2938 static int
2939 target_unblock(struct device *dev, void *data)
2940 {
2941 if (scsi_is_target_device(dev))
2942 starget_for_each_device(to_scsi_target(dev), data,
2943 device_unblock);
2944 return 0;
2945 }
2946
2947 void
2948 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2949 {
2950 if (scsi_is_target_device(dev))
2951 starget_for_each_device(to_scsi_target(dev), &new_state,
2952 device_unblock);
2953 else
2954 device_for_each_child(dev, &new_state, target_unblock);
2955 }
2956 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2957
2958 /**
2959 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2960 * @sgl: scatter-gather list
2961 * @sg_count: number of segments in sg
2962 * @offset: offset in bytes into sg, on return offset into the mapped area
2963 * @len: bytes to map, on return number of bytes mapped
2964 *
2965 * Returns virtual address of the start of the mapped page
2966 */
2967 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2968 size_t *offset, size_t *len)
2969 {
2970 int i;
2971 size_t sg_len = 0, len_complete = 0;
2972 struct scatterlist *sg;
2973 struct page *page;
2974
2975 WARN_ON(!irqs_disabled());
2976
2977 for_each_sg(sgl, sg, sg_count, i) {
2978 len_complete = sg_len; /* Complete sg-entries */
2979 sg_len += sg->length;
2980 if (sg_len > *offset)
2981 break;
2982 }
2983
2984 if (unlikely(i == sg_count)) {
2985 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2986 "elements %d\n",
2987 __func__, sg_len, *offset, sg_count);
2988 WARN_ON(1);
2989 return NULL;
2990 }
2991
2992 /* Offset starting from the beginning of first page in this sg-entry */
2993 *offset = *offset - len_complete + sg->offset;
2994
2995 /* Assumption: contiguous pages can be accessed as "page + i" */
2996 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2997 *offset &= ~PAGE_MASK;
2998
2999 /* Bytes in this sg-entry from *offset to the end of the page */
3000 sg_len = PAGE_SIZE - *offset;
3001 if (*len > sg_len)
3002 *len = sg_len;
3003
3004 return kmap_atomic(page);
3005 }
3006 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3007
3008 /**
3009 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3010 * @virt: virtual address to be unmapped
3011 */
3012 void scsi_kunmap_atomic_sg(void *virt)
3013 {
3014 kunmap_atomic(virt);
3015 }
3016 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3017
3018 void sdev_disable_disk_events(struct scsi_device *sdev)
3019 {
3020 atomic_inc(&sdev->disk_events_disable_depth);
3021 }
3022 EXPORT_SYMBOL(sdev_disable_disk_events);
3023
3024 void sdev_enable_disk_events(struct scsi_device *sdev)
3025 {
3026 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3027 return;
3028 atomic_dec(&sdev->disk_events_disable_depth);
3029 }
3030 EXPORT_SYMBOL(sdev_enable_disk_events);
3031
3032 /**
3033 * scsi_vpd_lun_id - return a unique device identification
3034 * @sdev: SCSI device
3035 * @id: buffer for the identification
3036 * @id_len: length of the buffer
3037 *
3038 * Copies a unique device identification into @id based
3039 * on the information in the VPD page 0x83 of the device.
3040 * The string will be formatted as a SCSI name string.
3041 *
3042 * Returns the length of the identification or error on failure.
3043 * If the identifier is longer than the supplied buffer the actual
3044 * identifier length is returned and the buffer is not zero-padded.
3045 */
3046 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3047 {
3048 u8 cur_id_type = 0xff;
3049 u8 cur_id_size = 0;
3050 unsigned char *d, *cur_id_str;
3051 unsigned char __rcu *vpd_pg83;
3052 int id_size = -EINVAL;
3053
3054 rcu_read_lock();
3055 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3056 if (!vpd_pg83) {
3057 rcu_read_unlock();
3058 return -ENXIO;
3059 }
3060
3061 /*
3062 * Look for the correct descriptor.
3063 * Order of preference for lun descriptor:
3064 * - SCSI name string
3065 * - NAA IEEE Registered Extended
3066 * - EUI-64 based 16-byte
3067 * - EUI-64 based 12-byte
3068 * - NAA IEEE Registered
3069 * - NAA IEEE Extended
3070 * - T10 Vendor ID
3071 * as longer descriptors reduce the likelyhood
3072 * of identification clashes.
3073 */
3074
3075 /* The id string must be at least 20 bytes + terminating NULL byte */
3076 if (id_len < 21) {
3077 rcu_read_unlock();
3078 return -EINVAL;
3079 }
3080
3081 memset(id, 0, id_len);
3082 d = vpd_pg83 + 4;
3083 while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3084 /* Skip designators not referring to the LUN */
3085 if ((d[1] & 0x30) != 0x00)
3086 goto next_desig;
3087
3088 switch (d[1] & 0xf) {
3089 case 0x1:
3090 /* T10 Vendor ID */
3091 if (cur_id_size > d[3])
3092 break;
3093 /* Prefer anything */
3094 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3095 break;
3096 cur_id_size = d[3];
3097 if (cur_id_size + 4 > id_len)
3098 cur_id_size = id_len - 4;
3099 cur_id_str = d + 4;
3100 cur_id_type = d[1] & 0xf;
3101 id_size = snprintf(id, id_len, "t10.%*pE",
3102 cur_id_size, cur_id_str);
3103 break;
3104 case 0x2:
3105 /* EUI-64 */
3106 if (cur_id_size > d[3])
3107 break;
3108 /* Prefer NAA IEEE Registered Extended */
3109 if (cur_id_type == 0x3 &&
3110 cur_id_size == d[3])
3111 break;
3112 cur_id_size = d[3];
3113 cur_id_str = d + 4;
3114 cur_id_type = d[1] & 0xf;
3115 switch (cur_id_size) {
3116 case 8:
3117 id_size = snprintf(id, id_len,
3118 "eui.%8phN",
3119 cur_id_str);
3120 break;
3121 case 12:
3122 id_size = snprintf(id, id_len,
3123 "eui.%12phN",
3124 cur_id_str);
3125 break;
3126 case 16:
3127 id_size = snprintf(id, id_len,
3128 "eui.%16phN",
3129 cur_id_str);
3130 break;
3131 default:
3132 cur_id_size = 0;
3133 break;
3134 }
3135 break;
3136 case 0x3:
3137 /* NAA */
3138 if (cur_id_size > d[3])
3139 break;
3140 cur_id_size = d[3];
3141 cur_id_str = d + 4;
3142 cur_id_type = d[1] & 0xf;
3143 switch (cur_id_size) {
3144 case 8:
3145 id_size = snprintf(id, id_len,
3146 "naa.%8phN",
3147 cur_id_str);
3148 break;
3149 case 16:
3150 id_size = snprintf(id, id_len,
3151 "naa.%16phN",
3152 cur_id_str);
3153 break;
3154 default:
3155 cur_id_size = 0;
3156 break;
3157 }
3158 break;
3159 case 0x8:
3160 /* SCSI name string */
3161 if (cur_id_size + 4 > d[3])
3162 break;
3163 /* Prefer others for truncated descriptor */
3164 if (cur_id_size && d[3] > id_len)
3165 break;
3166 cur_id_size = id_size = d[3];
3167 cur_id_str = d + 4;
3168 cur_id_type = d[1] & 0xf;
3169 if (cur_id_size >= id_len)
3170 cur_id_size = id_len - 1;
3171 memcpy(id, cur_id_str, cur_id_size);
3172 /* Decrease priority for truncated descriptor */
3173 if (cur_id_size != id_size)
3174 cur_id_size = 6;
3175 break;
3176 default:
3177 break;
3178 }
3179 next_desig:
3180 d += d[3] + 4;
3181 }
3182 rcu_read_unlock();
3183
3184 return id_size;
3185 }
3186 EXPORT_SYMBOL(scsi_vpd_lun_id);
3187
3188 /*
3189 * scsi_vpd_tpg_id - return a target port group identifier
3190 * @sdev: SCSI device
3191 *
3192 * Returns the Target Port Group identifier from the information
3193 * froom VPD page 0x83 of the device.
3194 *
3195 * Returns the identifier or error on failure.
3196 */
3197 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3198 {
3199 unsigned char *d;
3200 unsigned char __rcu *vpd_pg83;
3201 int group_id = -EAGAIN, rel_port = -1;
3202
3203 rcu_read_lock();
3204 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3205 if (!vpd_pg83) {
3206 rcu_read_unlock();
3207 return -ENXIO;
3208 }
3209
3210 d = sdev->vpd_pg83 + 4;
3211 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3212 switch (d[1] & 0xf) {
3213 case 0x4:
3214 /* Relative target port */
3215 rel_port = get_unaligned_be16(&d[6]);
3216 break;
3217 case 0x5:
3218 /* Target port group */
3219 group_id = get_unaligned_be16(&d[6]);
3220 break;
3221 default:
3222 break;
3223 }
3224 d += d[3] + 4;
3225 }
3226 rcu_read_unlock();
3227
3228 if (group_id >= 0 && rel_id && rel_port != -1)
3229 *rel_id = rel_port;
3230
3231 return group_id;
3232 }
3233 EXPORT_SYMBOL(scsi_vpd_tpg_id);
This page took 0.097581 seconds and 5 git commands to generate.