Merge tag 'media/v4.8-6' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / drivers / spi / spi-pxa2xx-dma.c
1 /*
2 * PXA2xx SPI DMA engine support.
3 *
4 * Copyright (C) 2013, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20
21 #include "spi-pxa2xx.h"
22
23 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
24 bool error)
25 {
26 struct spi_message *msg = drv_data->cur_msg;
27
28 /*
29 * It is possible that one CPU is handling ROR interrupt and other
30 * just gets DMA completion. Calling pump_transfers() twice for the
31 * same transfer leads to problems thus we prevent concurrent calls
32 * by using ->dma_running.
33 */
34 if (atomic_dec_and_test(&drv_data->dma_running)) {
35 /*
36 * If the other CPU is still handling the ROR interrupt we
37 * might not know about the error yet. So we re-check the
38 * ROR bit here before we clear the status register.
39 */
40 if (!error) {
41 u32 status = pxa2xx_spi_read(drv_data, SSSR)
42 & drv_data->mask_sr;
43 error = status & SSSR_ROR;
44 }
45
46 /* Clear status & disable interrupts */
47 pxa2xx_spi_write(drv_data, SSCR1,
48 pxa2xx_spi_read(drv_data, SSCR1)
49 & ~drv_data->dma_cr1);
50 write_SSSR_CS(drv_data, drv_data->clear_sr);
51 if (!pxa25x_ssp_comp(drv_data))
52 pxa2xx_spi_write(drv_data, SSTO, 0);
53
54 if (!error) {
55 msg->actual_length += drv_data->len;
56 msg->state = pxa2xx_spi_next_transfer(drv_data);
57 } else {
58 /* In case we got an error we disable the SSP now */
59 pxa2xx_spi_write(drv_data, SSCR0,
60 pxa2xx_spi_read(drv_data, SSCR0)
61 & ~SSCR0_SSE);
62
63 msg->state = ERROR_STATE;
64 }
65
66 tasklet_schedule(&drv_data->pump_transfers);
67 }
68 }
69
70 static void pxa2xx_spi_dma_callback(void *data)
71 {
72 pxa2xx_spi_dma_transfer_complete(data, false);
73 }
74
75 static struct dma_async_tx_descriptor *
76 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
77 enum dma_transfer_direction dir)
78 {
79 struct chip_data *chip = drv_data->cur_chip;
80 struct spi_transfer *xfer = drv_data->cur_transfer;
81 enum dma_slave_buswidth width;
82 struct dma_slave_config cfg;
83 struct dma_chan *chan;
84 struct sg_table *sgt;
85 int ret;
86
87 switch (drv_data->n_bytes) {
88 case 1:
89 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
90 break;
91 case 2:
92 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
93 break;
94 default:
95 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
96 break;
97 }
98
99 memset(&cfg, 0, sizeof(cfg));
100 cfg.direction = dir;
101
102 if (dir == DMA_MEM_TO_DEV) {
103 cfg.dst_addr = drv_data->ssdr_physical;
104 cfg.dst_addr_width = width;
105 cfg.dst_maxburst = chip->dma_burst_size;
106
107 sgt = &xfer->tx_sg;
108 chan = drv_data->master->dma_tx;
109 } else {
110 cfg.src_addr = drv_data->ssdr_physical;
111 cfg.src_addr_width = width;
112 cfg.src_maxburst = chip->dma_burst_size;
113
114 sgt = &xfer->rx_sg;
115 chan = drv_data->master->dma_rx;
116 }
117
118 ret = dmaengine_slave_config(chan, &cfg);
119 if (ret) {
120 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
121 return NULL;
122 }
123
124 return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
125 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
126 }
127
128 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
129 {
130 u32 status;
131
132 status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
133 if (status & SSSR_ROR) {
134 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
135
136 dmaengine_terminate_async(drv_data->master->dma_rx);
137 dmaengine_terminate_async(drv_data->master->dma_tx);
138
139 pxa2xx_spi_dma_transfer_complete(drv_data, true);
140 return IRQ_HANDLED;
141 }
142
143 return IRQ_NONE;
144 }
145
146 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
147 {
148 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
149 int err = 0;
150
151 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
152 if (!tx_desc) {
153 dev_err(&drv_data->pdev->dev,
154 "failed to get DMA TX descriptor\n");
155 err = -EBUSY;
156 goto err_tx;
157 }
158
159 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
160 if (!rx_desc) {
161 dev_err(&drv_data->pdev->dev,
162 "failed to get DMA RX descriptor\n");
163 err = -EBUSY;
164 goto err_rx;
165 }
166
167 /* We are ready when RX completes */
168 rx_desc->callback = pxa2xx_spi_dma_callback;
169 rx_desc->callback_param = drv_data;
170
171 dmaengine_submit(rx_desc);
172 dmaengine_submit(tx_desc);
173 return 0;
174
175 err_rx:
176 dmaengine_terminate_async(drv_data->master->dma_tx);
177 err_tx:
178 return err;
179 }
180
181 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
182 {
183 dma_async_issue_pending(drv_data->master->dma_rx);
184 dma_async_issue_pending(drv_data->master->dma_tx);
185
186 atomic_set(&drv_data->dma_running, 1);
187 }
188
189 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
190 {
191 struct pxa2xx_spi_master *pdata = drv_data->master_info;
192 struct device *dev = &drv_data->pdev->dev;
193 struct spi_master *master = drv_data->master;
194 dma_cap_mask_t mask;
195
196 dma_cap_zero(mask);
197 dma_cap_set(DMA_SLAVE, mask);
198
199 master->dma_tx = dma_request_slave_channel_compat(mask,
200 pdata->dma_filter, pdata->tx_param, dev, "tx");
201 if (!master->dma_tx)
202 return -ENODEV;
203
204 master->dma_rx = dma_request_slave_channel_compat(mask,
205 pdata->dma_filter, pdata->rx_param, dev, "rx");
206 if (!master->dma_rx) {
207 dma_release_channel(master->dma_tx);
208 master->dma_tx = NULL;
209 return -ENODEV;
210 }
211
212 return 0;
213 }
214
215 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
216 {
217 struct spi_master *master = drv_data->master;
218
219 if (master->dma_rx) {
220 dmaengine_terminate_sync(master->dma_rx);
221 dma_release_channel(master->dma_rx);
222 master->dma_rx = NULL;
223 }
224 if (master->dma_tx) {
225 dmaengine_terminate_sync(master->dma_tx);
226 dma_release_channel(master->dma_tx);
227 master->dma_tx = NULL;
228 }
229 }
230
231 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
232 struct spi_device *spi,
233 u8 bits_per_word, u32 *burst_code,
234 u32 *threshold)
235 {
236 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
237
238 /*
239 * If the DMA burst size is given in chip_info we use that,
240 * otherwise we use the default. Also we use the default FIFO
241 * thresholds for now.
242 */
243 *burst_code = chip_info ? chip_info->dma_burst_size : 1;
244 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
245 | SSCR1_TxTresh(TX_THRESH_DFLT);
246
247 return 0;
248 }
This page took 0.066902 seconds and 5 git commands to generate.