Merge tag 'ntb-4.8' of git://github.com/jonmason/ntb
[deliverable/linux.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71
72 int init_se_kmem_caches(void)
73 {
74 se_sess_cache = kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session), __alignof__(struct se_session),
76 0, NULL);
77 if (!se_sess_cache) {
78 pr_err("kmem_cache_create() for struct se_session"
79 " failed\n");
80 goto out;
81 }
82 se_ua_cache = kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua), __alignof__(struct se_ua),
84 0, NULL);
85 if (!se_ua_cache) {
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache;
88 }
89 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration),
91 __alignof__(struct t10_pr_registration), 0, NULL);
92 if (!t10_pr_reg_cache) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
94 " failed\n");
95 goto out_free_ua_cache;
96 }
97 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 0, NULL);
100 if (!t10_alua_lu_gp_cache) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 " failed\n");
103 goto out_free_pr_reg_cache;
104 }
105 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member),
107 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 if (!t10_alua_lu_gp_mem_cache) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 "cache failed\n");
111 goto out_free_lu_gp_cache;
112 }
113 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp),
115 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 if (!t10_alua_tg_pt_gp_cache) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 "cache failed\n");
119 goto out_free_lu_gp_mem_cache;
120 }
121 t10_alua_lba_map_cache = kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map),
124 __alignof__(struct t10_alua_lba_map), 0, NULL);
125 if (!t10_alua_lba_map_cache) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 "cache failed\n");
128 goto out_free_tg_pt_gp_cache;
129 }
130 t10_alua_lba_map_mem_cache = kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member),
133 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 if (!t10_alua_lba_map_mem_cache) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 "cache failed\n");
137 goto out_free_lba_map_cache;
138 }
139
140 target_completion_wq = alloc_workqueue("target_completion",
141 WQ_MEM_RECLAIM, 0);
142 if (!target_completion_wq)
143 goto out_free_lba_map_mem_cache;
144
145 return 0;
146
147 out_free_lba_map_mem_cache:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 kmem_cache_destroy(se_sess_cache);
163 out:
164 return -ENOMEM;
165 }
166
167 void release_se_kmem_caches(void)
168 {
169 destroy_workqueue(target_completion_wq);
170 kmem_cache_destroy(se_sess_cache);
171 kmem_cache_destroy(se_ua_cache);
172 kmem_cache_destroy(t10_pr_reg_cache);
173 kmem_cache_destroy(t10_alua_lu_gp_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 kmem_cache_destroy(t10_alua_lba_map_cache);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183
184 /*
185 * Allocate a new row index for the entry type specified
186 */
187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 u32 new_index;
190
191 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192
193 spin_lock(&scsi_mib_index_lock);
194 new_index = ++scsi_mib_index[type];
195 spin_unlock(&scsi_mib_index_lock);
196
197 return new_index;
198 }
199
200 void transport_subsystem_check_init(void)
201 {
202 int ret;
203 static int sub_api_initialized;
204
205 if (sub_api_initialized)
206 return;
207
208 ret = request_module("target_core_iblock");
209 if (ret != 0)
210 pr_err("Unable to load target_core_iblock\n");
211
212 ret = request_module("target_core_file");
213 if (ret != 0)
214 pr_err("Unable to load target_core_file\n");
215
216 ret = request_module("target_core_pscsi");
217 if (ret != 0)
218 pr_err("Unable to load target_core_pscsi\n");
219
220 ret = request_module("target_core_user");
221 if (ret != 0)
222 pr_err("Unable to load target_core_user\n");
223
224 sub_api_initialized = 1;
225 }
226
227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 struct se_session *se_sess;
230
231 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 if (!se_sess) {
233 pr_err("Unable to allocate struct se_session from"
234 " se_sess_cache\n");
235 return ERR_PTR(-ENOMEM);
236 }
237 INIT_LIST_HEAD(&se_sess->sess_list);
238 INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 spin_lock_init(&se_sess->sess_cmd_lock);
242 se_sess->sup_prot_ops = sup_prot_ops;
243
244 return se_sess;
245 }
246 EXPORT_SYMBOL(transport_init_session);
247
248 int transport_alloc_session_tags(struct se_session *se_sess,
249 unsigned int tag_num, unsigned int tag_size)
250 {
251 int rc;
252
253 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 if (!se_sess->sess_cmd_map) {
256 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 if (!se_sess->sess_cmd_map) {
258 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 return -ENOMEM;
260 }
261 }
262
263 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 if (rc < 0) {
265 pr_err("Unable to init se_sess->sess_tag_pool,"
266 " tag_num: %u\n", tag_num);
267 kvfree(se_sess->sess_cmd_map);
268 se_sess->sess_cmd_map = NULL;
269 return -ENOMEM;
270 }
271
272 return 0;
273 }
274 EXPORT_SYMBOL(transport_alloc_session_tags);
275
276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 unsigned int tag_size,
278 enum target_prot_op sup_prot_ops)
279 {
280 struct se_session *se_sess;
281 int rc;
282
283 if (tag_num != 0 && !tag_size) {
284 pr_err("init_session_tags called with percpu-ida tag_num:"
285 " %u, but zero tag_size\n", tag_num);
286 return ERR_PTR(-EINVAL);
287 }
288 if (!tag_num && tag_size) {
289 pr_err("init_session_tags called with percpu-ida tag_size:"
290 " %u, but zero tag_num\n", tag_size);
291 return ERR_PTR(-EINVAL);
292 }
293
294 se_sess = transport_init_session(sup_prot_ops);
295 if (IS_ERR(se_sess))
296 return se_sess;
297
298 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 if (rc < 0) {
300 transport_free_session(se_sess);
301 return ERR_PTR(-ENOMEM);
302 }
303
304 return se_sess;
305 }
306 EXPORT_SYMBOL(transport_init_session_tags);
307
308 /*
309 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
310 */
311 void __transport_register_session(
312 struct se_portal_group *se_tpg,
313 struct se_node_acl *se_nacl,
314 struct se_session *se_sess,
315 void *fabric_sess_ptr)
316 {
317 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 unsigned char buf[PR_REG_ISID_LEN];
319
320 se_sess->se_tpg = se_tpg;
321 se_sess->fabric_sess_ptr = fabric_sess_ptr;
322 /*
323 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
324 *
325 * Only set for struct se_session's that will actually be moving I/O.
326 * eg: *NOT* discovery sessions.
327 */
328 if (se_nacl) {
329 /*
330 *
331 * Determine if fabric allows for T10-PI feature bits exposed to
332 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
333 *
334 * If so, then always save prot_type on a per se_node_acl node
335 * basis and re-instate the previous sess_prot_type to avoid
336 * disabling PI from below any previously initiator side
337 * registered LUNs.
338 */
339 if (se_nacl->saved_prot_type)
340 se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 else if (tfo->tpg_check_prot_fabric_only)
342 se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 tfo->tpg_check_prot_fabric_only(se_tpg);
344 /*
345 * If the fabric module supports an ISID based TransportID,
346 * save this value in binary from the fabric I_T Nexus now.
347 */
348 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 memset(&buf[0], 0, PR_REG_ISID_LEN);
350 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 &buf[0], PR_REG_ISID_LEN);
352 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353 }
354
355 spin_lock_irq(&se_nacl->nacl_sess_lock);
356 /*
357 * The se_nacl->nacl_sess pointer will be set to the
358 * last active I_T Nexus for each struct se_node_acl.
359 */
360 se_nacl->nacl_sess = se_sess;
361
362 list_add_tail(&se_sess->sess_acl_list,
363 &se_nacl->acl_sess_list);
364 spin_unlock_irq(&se_nacl->nacl_sess_lock);
365 }
366 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
367
368 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
370 }
371 EXPORT_SYMBOL(__transport_register_session);
372
373 void transport_register_session(
374 struct se_portal_group *se_tpg,
375 struct se_node_acl *se_nacl,
376 struct se_session *se_sess,
377 void *fabric_sess_ptr)
378 {
379 unsigned long flags;
380
381 spin_lock_irqsave(&se_tpg->session_lock, flags);
382 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
384 }
385 EXPORT_SYMBOL(transport_register_session);
386
387 struct se_session *
388 target_alloc_session(struct se_portal_group *tpg,
389 unsigned int tag_num, unsigned int tag_size,
390 enum target_prot_op prot_op,
391 const char *initiatorname, void *private,
392 int (*callback)(struct se_portal_group *,
393 struct se_session *, void *))
394 {
395 struct se_session *sess;
396
397 /*
398 * If the fabric driver is using percpu-ida based pre allocation
399 * of I/O descriptor tags, go ahead and perform that setup now..
400 */
401 if (tag_num != 0)
402 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 else
404 sess = transport_init_session(prot_op);
405
406 if (IS_ERR(sess))
407 return sess;
408
409 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 (unsigned char *)initiatorname);
411 if (!sess->se_node_acl) {
412 transport_free_session(sess);
413 return ERR_PTR(-EACCES);
414 }
415 /*
416 * Go ahead and perform any remaining fabric setup that is
417 * required before transport_register_session().
418 */
419 if (callback != NULL) {
420 int rc = callback(tpg, sess, private);
421 if (rc) {
422 transport_free_session(sess);
423 return ERR_PTR(rc);
424 }
425 }
426
427 transport_register_session(tpg, sess->se_node_acl, sess, private);
428 return sess;
429 }
430 EXPORT_SYMBOL(target_alloc_session);
431
432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
433 {
434 struct se_session *se_sess;
435 ssize_t len = 0;
436
437 spin_lock_bh(&se_tpg->session_lock);
438 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 if (!se_sess->se_node_acl)
440 continue;
441 if (!se_sess->se_node_acl->dynamic_node_acl)
442 continue;
443 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 break;
445
446 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 se_sess->se_node_acl->initiatorname);
448 len += 1; /* Include NULL terminator */
449 }
450 spin_unlock_bh(&se_tpg->session_lock);
451
452 return len;
453 }
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
455
456 static void target_complete_nacl(struct kref *kref)
457 {
458 struct se_node_acl *nacl = container_of(kref,
459 struct se_node_acl, acl_kref);
460
461 complete(&nacl->acl_free_comp);
462 }
463
464 void target_put_nacl(struct se_node_acl *nacl)
465 {
466 kref_put(&nacl->acl_kref, target_complete_nacl);
467 }
468 EXPORT_SYMBOL(target_put_nacl);
469
470 void transport_deregister_session_configfs(struct se_session *se_sess)
471 {
472 struct se_node_acl *se_nacl;
473 unsigned long flags;
474 /*
475 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
476 */
477 se_nacl = se_sess->se_node_acl;
478 if (se_nacl) {
479 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
480 if (!list_empty(&se_sess->sess_acl_list))
481 list_del_init(&se_sess->sess_acl_list);
482 /*
483 * If the session list is empty, then clear the pointer.
484 * Otherwise, set the struct se_session pointer from the tail
485 * element of the per struct se_node_acl active session list.
486 */
487 if (list_empty(&se_nacl->acl_sess_list))
488 se_nacl->nacl_sess = NULL;
489 else {
490 se_nacl->nacl_sess = container_of(
491 se_nacl->acl_sess_list.prev,
492 struct se_session, sess_acl_list);
493 }
494 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
495 }
496 }
497 EXPORT_SYMBOL(transport_deregister_session_configfs);
498
499 void transport_free_session(struct se_session *se_sess)
500 {
501 struct se_node_acl *se_nacl = se_sess->se_node_acl;
502 /*
503 * Drop the se_node_acl->nacl_kref obtained from within
504 * core_tpg_get_initiator_node_acl().
505 */
506 if (se_nacl) {
507 se_sess->se_node_acl = NULL;
508 target_put_nacl(se_nacl);
509 }
510 if (se_sess->sess_cmd_map) {
511 percpu_ida_destroy(&se_sess->sess_tag_pool);
512 kvfree(se_sess->sess_cmd_map);
513 }
514 kmem_cache_free(se_sess_cache, se_sess);
515 }
516 EXPORT_SYMBOL(transport_free_session);
517
518 void transport_deregister_session(struct se_session *se_sess)
519 {
520 struct se_portal_group *se_tpg = se_sess->se_tpg;
521 const struct target_core_fabric_ops *se_tfo;
522 struct se_node_acl *se_nacl;
523 unsigned long flags;
524 bool drop_nacl = false;
525
526 if (!se_tpg) {
527 transport_free_session(se_sess);
528 return;
529 }
530 se_tfo = se_tpg->se_tpg_tfo;
531
532 spin_lock_irqsave(&se_tpg->session_lock, flags);
533 list_del(&se_sess->sess_list);
534 se_sess->se_tpg = NULL;
535 se_sess->fabric_sess_ptr = NULL;
536 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
537
538 /*
539 * Determine if we need to do extra work for this initiator node's
540 * struct se_node_acl if it had been previously dynamically generated.
541 */
542 se_nacl = se_sess->se_node_acl;
543
544 mutex_lock(&se_tpg->acl_node_mutex);
545 if (se_nacl && se_nacl->dynamic_node_acl) {
546 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
547 list_del(&se_nacl->acl_list);
548 drop_nacl = true;
549 }
550 }
551 mutex_unlock(&se_tpg->acl_node_mutex);
552
553 if (drop_nacl) {
554 core_tpg_wait_for_nacl_pr_ref(se_nacl);
555 core_free_device_list_for_node(se_nacl, se_tpg);
556 se_sess->se_node_acl = NULL;
557 kfree(se_nacl);
558 }
559 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
560 se_tpg->se_tpg_tfo->get_fabric_name());
561 /*
562 * If last kref is dropping now for an explicit NodeACL, awake sleeping
563 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
564 * removal context from within transport_free_session() code.
565 */
566
567 transport_free_session(se_sess);
568 }
569 EXPORT_SYMBOL(transport_deregister_session);
570
571 static void target_remove_from_state_list(struct se_cmd *cmd)
572 {
573 struct se_device *dev = cmd->se_dev;
574 unsigned long flags;
575
576 if (!dev)
577 return;
578
579 if (cmd->transport_state & CMD_T_BUSY)
580 return;
581
582 spin_lock_irqsave(&dev->execute_task_lock, flags);
583 if (cmd->state_active) {
584 list_del(&cmd->state_list);
585 cmd->state_active = false;
586 }
587 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
588 }
589
590 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
591 bool write_pending)
592 {
593 unsigned long flags;
594
595 if (remove_from_lists) {
596 target_remove_from_state_list(cmd);
597
598 /*
599 * Clear struct se_cmd->se_lun before the handoff to FE.
600 */
601 cmd->se_lun = NULL;
602 }
603
604 spin_lock_irqsave(&cmd->t_state_lock, flags);
605 if (write_pending)
606 cmd->t_state = TRANSPORT_WRITE_PENDING;
607
608 /*
609 * Determine if frontend context caller is requesting the stopping of
610 * this command for frontend exceptions.
611 */
612 if (cmd->transport_state & CMD_T_STOP) {
613 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
614 __func__, __LINE__, cmd->tag);
615
616 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
617
618 complete_all(&cmd->t_transport_stop_comp);
619 return 1;
620 }
621
622 cmd->transport_state &= ~CMD_T_ACTIVE;
623 if (remove_from_lists) {
624 /*
625 * Some fabric modules like tcm_loop can release
626 * their internally allocated I/O reference now and
627 * struct se_cmd now.
628 *
629 * Fabric modules are expected to return '1' here if the
630 * se_cmd being passed is released at this point,
631 * or zero if not being released.
632 */
633 if (cmd->se_tfo->check_stop_free != NULL) {
634 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
635 return cmd->se_tfo->check_stop_free(cmd);
636 }
637 }
638
639 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
640 return 0;
641 }
642
643 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
644 {
645 return transport_cmd_check_stop(cmd, true, false);
646 }
647
648 static void transport_lun_remove_cmd(struct se_cmd *cmd)
649 {
650 struct se_lun *lun = cmd->se_lun;
651
652 if (!lun)
653 return;
654
655 if (cmpxchg(&cmd->lun_ref_active, true, false))
656 percpu_ref_put(&lun->lun_ref);
657 }
658
659 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
660 {
661 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
662
663 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
664 transport_lun_remove_cmd(cmd);
665 /*
666 * Allow the fabric driver to unmap any resources before
667 * releasing the descriptor via TFO->release_cmd()
668 */
669 if (remove)
670 cmd->se_tfo->aborted_task(cmd);
671
672 if (transport_cmd_check_stop_to_fabric(cmd))
673 return;
674 if (remove && ack_kref)
675 transport_put_cmd(cmd);
676 }
677
678 static void target_complete_failure_work(struct work_struct *work)
679 {
680 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
681
682 transport_generic_request_failure(cmd,
683 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
684 }
685
686 /*
687 * Used when asking transport to copy Sense Data from the underlying
688 * Linux/SCSI struct scsi_cmnd
689 */
690 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
691 {
692 struct se_device *dev = cmd->se_dev;
693
694 WARN_ON(!cmd->se_lun);
695
696 if (!dev)
697 return NULL;
698
699 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
700 return NULL;
701
702 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
703
704 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
705 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
706 return cmd->sense_buffer;
707 }
708
709 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
710 {
711 struct se_device *dev = cmd->se_dev;
712 int success = scsi_status == GOOD;
713 unsigned long flags;
714
715 cmd->scsi_status = scsi_status;
716
717
718 spin_lock_irqsave(&cmd->t_state_lock, flags);
719 cmd->transport_state &= ~CMD_T_BUSY;
720
721 if (dev && dev->transport->transport_complete) {
722 dev->transport->transport_complete(cmd,
723 cmd->t_data_sg,
724 transport_get_sense_buffer(cmd));
725 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
726 success = 1;
727 }
728
729 /*
730 * Check for case where an explicit ABORT_TASK has been received
731 * and transport_wait_for_tasks() will be waiting for completion..
732 */
733 if (cmd->transport_state & CMD_T_ABORTED ||
734 cmd->transport_state & CMD_T_STOP) {
735 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
736 complete_all(&cmd->t_transport_stop_comp);
737 return;
738 } else if (!success) {
739 INIT_WORK(&cmd->work, target_complete_failure_work);
740 } else {
741 INIT_WORK(&cmd->work, target_complete_ok_work);
742 }
743
744 cmd->t_state = TRANSPORT_COMPLETE;
745 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
746 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
747
748 if (cmd->se_cmd_flags & SCF_USE_CPUID)
749 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
750 else
751 queue_work(target_completion_wq, &cmd->work);
752 }
753 EXPORT_SYMBOL(target_complete_cmd);
754
755 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
756 {
757 if (scsi_status != SAM_STAT_GOOD) {
758 return;
759 }
760
761 /*
762 * Calculate new residual count based upon length of SCSI data
763 * transferred.
764 */
765 if (length < cmd->data_length) {
766 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
767 cmd->residual_count += cmd->data_length - length;
768 } else {
769 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
770 cmd->residual_count = cmd->data_length - length;
771 }
772
773 cmd->data_length = length;
774 } else if (length > cmd->data_length) {
775 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
776 cmd->residual_count = length - cmd->data_length;
777 } else {
778 cmd->se_cmd_flags &= ~(SCF_OVERFLOW_BIT | SCF_UNDERFLOW_BIT);
779 cmd->residual_count = 0;
780 }
781
782 target_complete_cmd(cmd, scsi_status);
783 }
784 EXPORT_SYMBOL(target_complete_cmd_with_length);
785
786 static void target_add_to_state_list(struct se_cmd *cmd)
787 {
788 struct se_device *dev = cmd->se_dev;
789 unsigned long flags;
790
791 spin_lock_irqsave(&dev->execute_task_lock, flags);
792 if (!cmd->state_active) {
793 list_add_tail(&cmd->state_list, &dev->state_list);
794 cmd->state_active = true;
795 }
796 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
797 }
798
799 /*
800 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
801 */
802 static void transport_write_pending_qf(struct se_cmd *cmd);
803 static void transport_complete_qf(struct se_cmd *cmd);
804
805 void target_qf_do_work(struct work_struct *work)
806 {
807 struct se_device *dev = container_of(work, struct se_device,
808 qf_work_queue);
809 LIST_HEAD(qf_cmd_list);
810 struct se_cmd *cmd, *cmd_tmp;
811
812 spin_lock_irq(&dev->qf_cmd_lock);
813 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
814 spin_unlock_irq(&dev->qf_cmd_lock);
815
816 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
817 list_del(&cmd->se_qf_node);
818 atomic_dec_mb(&dev->dev_qf_count);
819
820 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
821 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
822 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
823 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
824 : "UNKNOWN");
825
826 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
827 transport_write_pending_qf(cmd);
828 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
829 transport_complete_qf(cmd);
830 }
831 }
832
833 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
834 {
835 switch (cmd->data_direction) {
836 case DMA_NONE:
837 return "NONE";
838 case DMA_FROM_DEVICE:
839 return "READ";
840 case DMA_TO_DEVICE:
841 return "WRITE";
842 case DMA_BIDIRECTIONAL:
843 return "BIDI";
844 default:
845 break;
846 }
847
848 return "UNKNOWN";
849 }
850
851 void transport_dump_dev_state(
852 struct se_device *dev,
853 char *b,
854 int *bl)
855 {
856 *bl += sprintf(b + *bl, "Status: ");
857 if (dev->export_count)
858 *bl += sprintf(b + *bl, "ACTIVATED");
859 else
860 *bl += sprintf(b + *bl, "DEACTIVATED");
861
862 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
863 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
864 dev->dev_attrib.block_size,
865 dev->dev_attrib.hw_max_sectors);
866 *bl += sprintf(b + *bl, " ");
867 }
868
869 void transport_dump_vpd_proto_id(
870 struct t10_vpd *vpd,
871 unsigned char *p_buf,
872 int p_buf_len)
873 {
874 unsigned char buf[VPD_TMP_BUF_SIZE];
875 int len;
876
877 memset(buf, 0, VPD_TMP_BUF_SIZE);
878 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
879
880 switch (vpd->protocol_identifier) {
881 case 0x00:
882 sprintf(buf+len, "Fibre Channel\n");
883 break;
884 case 0x10:
885 sprintf(buf+len, "Parallel SCSI\n");
886 break;
887 case 0x20:
888 sprintf(buf+len, "SSA\n");
889 break;
890 case 0x30:
891 sprintf(buf+len, "IEEE 1394\n");
892 break;
893 case 0x40:
894 sprintf(buf+len, "SCSI Remote Direct Memory Access"
895 " Protocol\n");
896 break;
897 case 0x50:
898 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
899 break;
900 case 0x60:
901 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
902 break;
903 case 0x70:
904 sprintf(buf+len, "Automation/Drive Interface Transport"
905 " Protocol\n");
906 break;
907 case 0x80:
908 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
909 break;
910 default:
911 sprintf(buf+len, "Unknown 0x%02x\n",
912 vpd->protocol_identifier);
913 break;
914 }
915
916 if (p_buf)
917 strncpy(p_buf, buf, p_buf_len);
918 else
919 pr_debug("%s", buf);
920 }
921
922 void
923 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
924 {
925 /*
926 * Check if the Protocol Identifier Valid (PIV) bit is set..
927 *
928 * from spc3r23.pdf section 7.5.1
929 */
930 if (page_83[1] & 0x80) {
931 vpd->protocol_identifier = (page_83[0] & 0xf0);
932 vpd->protocol_identifier_set = 1;
933 transport_dump_vpd_proto_id(vpd, NULL, 0);
934 }
935 }
936 EXPORT_SYMBOL(transport_set_vpd_proto_id);
937
938 int transport_dump_vpd_assoc(
939 struct t10_vpd *vpd,
940 unsigned char *p_buf,
941 int p_buf_len)
942 {
943 unsigned char buf[VPD_TMP_BUF_SIZE];
944 int ret = 0;
945 int len;
946
947 memset(buf, 0, VPD_TMP_BUF_SIZE);
948 len = sprintf(buf, "T10 VPD Identifier Association: ");
949
950 switch (vpd->association) {
951 case 0x00:
952 sprintf(buf+len, "addressed logical unit\n");
953 break;
954 case 0x10:
955 sprintf(buf+len, "target port\n");
956 break;
957 case 0x20:
958 sprintf(buf+len, "SCSI target device\n");
959 break;
960 default:
961 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
962 ret = -EINVAL;
963 break;
964 }
965
966 if (p_buf)
967 strncpy(p_buf, buf, p_buf_len);
968 else
969 pr_debug("%s", buf);
970
971 return ret;
972 }
973
974 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
975 {
976 /*
977 * The VPD identification association..
978 *
979 * from spc3r23.pdf Section 7.6.3.1 Table 297
980 */
981 vpd->association = (page_83[1] & 0x30);
982 return transport_dump_vpd_assoc(vpd, NULL, 0);
983 }
984 EXPORT_SYMBOL(transport_set_vpd_assoc);
985
986 int transport_dump_vpd_ident_type(
987 struct t10_vpd *vpd,
988 unsigned char *p_buf,
989 int p_buf_len)
990 {
991 unsigned char buf[VPD_TMP_BUF_SIZE];
992 int ret = 0;
993 int len;
994
995 memset(buf, 0, VPD_TMP_BUF_SIZE);
996 len = sprintf(buf, "T10 VPD Identifier Type: ");
997
998 switch (vpd->device_identifier_type) {
999 case 0x00:
1000 sprintf(buf+len, "Vendor specific\n");
1001 break;
1002 case 0x01:
1003 sprintf(buf+len, "T10 Vendor ID based\n");
1004 break;
1005 case 0x02:
1006 sprintf(buf+len, "EUI-64 based\n");
1007 break;
1008 case 0x03:
1009 sprintf(buf+len, "NAA\n");
1010 break;
1011 case 0x04:
1012 sprintf(buf+len, "Relative target port identifier\n");
1013 break;
1014 case 0x08:
1015 sprintf(buf+len, "SCSI name string\n");
1016 break;
1017 default:
1018 sprintf(buf+len, "Unsupported: 0x%02x\n",
1019 vpd->device_identifier_type);
1020 ret = -EINVAL;
1021 break;
1022 }
1023
1024 if (p_buf) {
1025 if (p_buf_len < strlen(buf)+1)
1026 return -EINVAL;
1027 strncpy(p_buf, buf, p_buf_len);
1028 } else {
1029 pr_debug("%s", buf);
1030 }
1031
1032 return ret;
1033 }
1034
1035 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1036 {
1037 /*
1038 * The VPD identifier type..
1039 *
1040 * from spc3r23.pdf Section 7.6.3.1 Table 298
1041 */
1042 vpd->device_identifier_type = (page_83[1] & 0x0f);
1043 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1044 }
1045 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1046
1047 int transport_dump_vpd_ident(
1048 struct t10_vpd *vpd,
1049 unsigned char *p_buf,
1050 int p_buf_len)
1051 {
1052 unsigned char buf[VPD_TMP_BUF_SIZE];
1053 int ret = 0;
1054
1055 memset(buf, 0, VPD_TMP_BUF_SIZE);
1056
1057 switch (vpd->device_identifier_code_set) {
1058 case 0x01: /* Binary */
1059 snprintf(buf, sizeof(buf),
1060 "T10 VPD Binary Device Identifier: %s\n",
1061 &vpd->device_identifier[0]);
1062 break;
1063 case 0x02: /* ASCII */
1064 snprintf(buf, sizeof(buf),
1065 "T10 VPD ASCII Device Identifier: %s\n",
1066 &vpd->device_identifier[0]);
1067 break;
1068 case 0x03: /* UTF-8 */
1069 snprintf(buf, sizeof(buf),
1070 "T10 VPD UTF-8 Device Identifier: %s\n",
1071 &vpd->device_identifier[0]);
1072 break;
1073 default:
1074 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1075 " 0x%02x", vpd->device_identifier_code_set);
1076 ret = -EINVAL;
1077 break;
1078 }
1079
1080 if (p_buf)
1081 strncpy(p_buf, buf, p_buf_len);
1082 else
1083 pr_debug("%s", buf);
1084
1085 return ret;
1086 }
1087
1088 int
1089 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1090 {
1091 static const char hex_str[] = "0123456789abcdef";
1092 int j = 0, i = 4; /* offset to start of the identifier */
1093
1094 /*
1095 * The VPD Code Set (encoding)
1096 *
1097 * from spc3r23.pdf Section 7.6.3.1 Table 296
1098 */
1099 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1100 switch (vpd->device_identifier_code_set) {
1101 case 0x01: /* Binary */
1102 vpd->device_identifier[j++] =
1103 hex_str[vpd->device_identifier_type];
1104 while (i < (4 + page_83[3])) {
1105 vpd->device_identifier[j++] =
1106 hex_str[(page_83[i] & 0xf0) >> 4];
1107 vpd->device_identifier[j++] =
1108 hex_str[page_83[i] & 0x0f];
1109 i++;
1110 }
1111 break;
1112 case 0x02: /* ASCII */
1113 case 0x03: /* UTF-8 */
1114 while (i < (4 + page_83[3]))
1115 vpd->device_identifier[j++] = page_83[i++];
1116 break;
1117 default:
1118 break;
1119 }
1120
1121 return transport_dump_vpd_ident(vpd, NULL, 0);
1122 }
1123 EXPORT_SYMBOL(transport_set_vpd_ident);
1124
1125 static sense_reason_t
1126 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1127 unsigned int size)
1128 {
1129 u32 mtl;
1130
1131 if (!cmd->se_tfo->max_data_sg_nents)
1132 return TCM_NO_SENSE;
1133 /*
1134 * Check if fabric enforced maximum SGL entries per I/O descriptor
1135 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1136 * residual_count and reduce original cmd->data_length to maximum
1137 * length based on single PAGE_SIZE entry scatter-lists.
1138 */
1139 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1140 if (cmd->data_length > mtl) {
1141 /*
1142 * If an existing CDB overflow is present, calculate new residual
1143 * based on CDB size minus fabric maximum transfer length.
1144 *
1145 * If an existing CDB underflow is present, calculate new residual
1146 * based on original cmd->data_length minus fabric maximum transfer
1147 * length.
1148 *
1149 * Otherwise, set the underflow residual based on cmd->data_length
1150 * minus fabric maximum transfer length.
1151 */
1152 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1153 cmd->residual_count = (size - mtl);
1154 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1155 u32 orig_dl = size + cmd->residual_count;
1156 cmd->residual_count = (orig_dl - mtl);
1157 } else {
1158 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1159 cmd->residual_count = (cmd->data_length - mtl);
1160 }
1161 cmd->data_length = mtl;
1162 /*
1163 * Reset sbc_check_prot() calculated protection payload
1164 * length based upon the new smaller MTL.
1165 */
1166 if (cmd->prot_length) {
1167 u32 sectors = (mtl / dev->dev_attrib.block_size);
1168 cmd->prot_length = dev->prot_length * sectors;
1169 }
1170 }
1171 return TCM_NO_SENSE;
1172 }
1173
1174 sense_reason_t
1175 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1176 {
1177 struct se_device *dev = cmd->se_dev;
1178
1179 if (cmd->unknown_data_length) {
1180 cmd->data_length = size;
1181 } else if (size != cmd->data_length) {
1182 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1183 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1184 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1185 cmd->data_length, size, cmd->t_task_cdb[0]);
1186
1187 if (cmd->data_direction == DMA_TO_DEVICE &&
1188 cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1189 pr_err("Rejecting underflow/overflow WRITE data\n");
1190 return TCM_INVALID_CDB_FIELD;
1191 }
1192 /*
1193 * Reject READ_* or WRITE_* with overflow/underflow for
1194 * type SCF_SCSI_DATA_CDB.
1195 */
1196 if (dev->dev_attrib.block_size != 512) {
1197 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1198 " CDB on non 512-byte sector setup subsystem"
1199 " plugin: %s\n", dev->transport->name);
1200 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1201 return TCM_INVALID_CDB_FIELD;
1202 }
1203 /*
1204 * For the overflow case keep the existing fabric provided
1205 * ->data_length. Otherwise for the underflow case, reset
1206 * ->data_length to the smaller SCSI expected data transfer
1207 * length.
1208 */
1209 if (size > cmd->data_length) {
1210 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1211 cmd->residual_count = (size - cmd->data_length);
1212 } else {
1213 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1214 cmd->residual_count = (cmd->data_length - size);
1215 cmd->data_length = size;
1216 }
1217 }
1218
1219 return target_check_max_data_sg_nents(cmd, dev, size);
1220
1221 }
1222
1223 /*
1224 * Used by fabric modules containing a local struct se_cmd within their
1225 * fabric dependent per I/O descriptor.
1226 *
1227 * Preserves the value of @cmd->tag.
1228 */
1229 void transport_init_se_cmd(
1230 struct se_cmd *cmd,
1231 const struct target_core_fabric_ops *tfo,
1232 struct se_session *se_sess,
1233 u32 data_length,
1234 int data_direction,
1235 int task_attr,
1236 unsigned char *sense_buffer)
1237 {
1238 INIT_LIST_HEAD(&cmd->se_delayed_node);
1239 INIT_LIST_HEAD(&cmd->se_qf_node);
1240 INIT_LIST_HEAD(&cmd->se_cmd_list);
1241 INIT_LIST_HEAD(&cmd->state_list);
1242 init_completion(&cmd->t_transport_stop_comp);
1243 init_completion(&cmd->cmd_wait_comp);
1244 spin_lock_init(&cmd->t_state_lock);
1245 kref_init(&cmd->cmd_kref);
1246 cmd->transport_state = CMD_T_DEV_ACTIVE;
1247
1248 cmd->se_tfo = tfo;
1249 cmd->se_sess = se_sess;
1250 cmd->data_length = data_length;
1251 cmd->data_direction = data_direction;
1252 cmd->sam_task_attr = task_attr;
1253 cmd->sense_buffer = sense_buffer;
1254
1255 cmd->state_active = false;
1256 }
1257 EXPORT_SYMBOL(transport_init_se_cmd);
1258
1259 static sense_reason_t
1260 transport_check_alloc_task_attr(struct se_cmd *cmd)
1261 {
1262 struct se_device *dev = cmd->se_dev;
1263
1264 /*
1265 * Check if SAM Task Attribute emulation is enabled for this
1266 * struct se_device storage object
1267 */
1268 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1269 return 0;
1270
1271 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1272 pr_debug("SAM Task Attribute ACA"
1273 " emulation is not supported\n");
1274 return TCM_INVALID_CDB_FIELD;
1275 }
1276
1277 return 0;
1278 }
1279
1280 sense_reason_t
1281 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1282 {
1283 struct se_device *dev = cmd->se_dev;
1284 sense_reason_t ret;
1285
1286 /*
1287 * Ensure that the received CDB is less than the max (252 + 8) bytes
1288 * for VARIABLE_LENGTH_CMD
1289 */
1290 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1291 pr_err("Received SCSI CDB with command_size: %d that"
1292 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1293 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1294 return TCM_INVALID_CDB_FIELD;
1295 }
1296 /*
1297 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1298 * allocate the additional extended CDB buffer now.. Otherwise
1299 * setup the pointer from __t_task_cdb to t_task_cdb.
1300 */
1301 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1302 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1303 GFP_KERNEL);
1304 if (!cmd->t_task_cdb) {
1305 pr_err("Unable to allocate cmd->t_task_cdb"
1306 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1307 scsi_command_size(cdb),
1308 (unsigned long)sizeof(cmd->__t_task_cdb));
1309 return TCM_OUT_OF_RESOURCES;
1310 }
1311 } else
1312 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1313 /*
1314 * Copy the original CDB into cmd->
1315 */
1316 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1317
1318 trace_target_sequencer_start(cmd);
1319
1320 ret = dev->transport->parse_cdb(cmd);
1321 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1322 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1323 cmd->se_tfo->get_fabric_name(),
1324 cmd->se_sess->se_node_acl->initiatorname,
1325 cmd->t_task_cdb[0]);
1326 if (ret)
1327 return ret;
1328
1329 ret = transport_check_alloc_task_attr(cmd);
1330 if (ret)
1331 return ret;
1332
1333 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1334 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1335 return 0;
1336 }
1337 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1338
1339 /*
1340 * Used by fabric module frontends to queue tasks directly.
1341 * May only be used from process context.
1342 */
1343 int transport_handle_cdb_direct(
1344 struct se_cmd *cmd)
1345 {
1346 sense_reason_t ret;
1347
1348 if (!cmd->se_lun) {
1349 dump_stack();
1350 pr_err("cmd->se_lun is NULL\n");
1351 return -EINVAL;
1352 }
1353 if (in_interrupt()) {
1354 dump_stack();
1355 pr_err("transport_generic_handle_cdb cannot be called"
1356 " from interrupt context\n");
1357 return -EINVAL;
1358 }
1359 /*
1360 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1361 * outstanding descriptors are handled correctly during shutdown via
1362 * transport_wait_for_tasks()
1363 *
1364 * Also, we don't take cmd->t_state_lock here as we only expect
1365 * this to be called for initial descriptor submission.
1366 */
1367 cmd->t_state = TRANSPORT_NEW_CMD;
1368 cmd->transport_state |= CMD_T_ACTIVE;
1369
1370 /*
1371 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1372 * so follow TRANSPORT_NEW_CMD processing thread context usage
1373 * and call transport_generic_request_failure() if necessary..
1374 */
1375 ret = transport_generic_new_cmd(cmd);
1376 if (ret)
1377 transport_generic_request_failure(cmd, ret);
1378 return 0;
1379 }
1380 EXPORT_SYMBOL(transport_handle_cdb_direct);
1381
1382 sense_reason_t
1383 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1384 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1385 {
1386 if (!sgl || !sgl_count)
1387 return 0;
1388
1389 /*
1390 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1391 * scatterlists already have been set to follow what the fabric
1392 * passes for the original expected data transfer length.
1393 */
1394 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1395 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1396 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1397 return TCM_INVALID_CDB_FIELD;
1398 }
1399
1400 cmd->t_data_sg = sgl;
1401 cmd->t_data_nents = sgl_count;
1402 cmd->t_bidi_data_sg = sgl_bidi;
1403 cmd->t_bidi_data_nents = sgl_bidi_count;
1404
1405 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1406 return 0;
1407 }
1408
1409 /*
1410 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1411 * se_cmd + use pre-allocated SGL memory.
1412 *
1413 * @se_cmd: command descriptor to submit
1414 * @se_sess: associated se_sess for endpoint
1415 * @cdb: pointer to SCSI CDB
1416 * @sense: pointer to SCSI sense buffer
1417 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1418 * @data_length: fabric expected data transfer length
1419 * @task_addr: SAM task attribute
1420 * @data_dir: DMA data direction
1421 * @flags: flags for command submission from target_sc_flags_tables
1422 * @sgl: struct scatterlist memory for unidirectional mapping
1423 * @sgl_count: scatterlist count for unidirectional mapping
1424 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1425 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1426 * @sgl_prot: struct scatterlist memory protection information
1427 * @sgl_prot_count: scatterlist count for protection information
1428 *
1429 * Task tags are supported if the caller has set @se_cmd->tag.
1430 *
1431 * Returns non zero to signal active I/O shutdown failure. All other
1432 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1433 * but still return zero here.
1434 *
1435 * This may only be called from process context, and also currently
1436 * assumes internal allocation of fabric payload buffer by target-core.
1437 */
1438 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1439 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1440 u32 data_length, int task_attr, int data_dir, int flags,
1441 struct scatterlist *sgl, u32 sgl_count,
1442 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1443 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1444 {
1445 struct se_portal_group *se_tpg;
1446 sense_reason_t rc;
1447 int ret;
1448
1449 se_tpg = se_sess->se_tpg;
1450 BUG_ON(!se_tpg);
1451 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1452 BUG_ON(in_interrupt());
1453 /*
1454 * Initialize se_cmd for target operation. From this point
1455 * exceptions are handled by sending exception status via
1456 * target_core_fabric_ops->queue_status() callback
1457 */
1458 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1459 data_length, data_dir, task_attr, sense);
1460
1461 if (flags & TARGET_SCF_USE_CPUID)
1462 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1463 else
1464 se_cmd->cpuid = WORK_CPU_UNBOUND;
1465
1466 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1467 se_cmd->unknown_data_length = 1;
1468 /*
1469 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1470 * se_sess->sess_cmd_list. A second kref_get here is necessary
1471 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1472 * kref_put() to happen during fabric packet acknowledgement.
1473 */
1474 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1475 if (ret)
1476 return ret;
1477 /*
1478 * Signal bidirectional data payloads to target-core
1479 */
1480 if (flags & TARGET_SCF_BIDI_OP)
1481 se_cmd->se_cmd_flags |= SCF_BIDI;
1482 /*
1483 * Locate se_lun pointer and attach it to struct se_cmd
1484 */
1485 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1486 if (rc) {
1487 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1488 target_put_sess_cmd(se_cmd);
1489 return 0;
1490 }
1491
1492 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1493 if (rc != 0) {
1494 transport_generic_request_failure(se_cmd, rc);
1495 return 0;
1496 }
1497
1498 /*
1499 * Save pointers for SGLs containing protection information,
1500 * if present.
1501 */
1502 if (sgl_prot_count) {
1503 se_cmd->t_prot_sg = sgl_prot;
1504 se_cmd->t_prot_nents = sgl_prot_count;
1505 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1506 }
1507
1508 /*
1509 * When a non zero sgl_count has been passed perform SGL passthrough
1510 * mapping for pre-allocated fabric memory instead of having target
1511 * core perform an internal SGL allocation..
1512 */
1513 if (sgl_count != 0) {
1514 BUG_ON(!sgl);
1515
1516 /*
1517 * A work-around for tcm_loop as some userspace code via
1518 * scsi-generic do not memset their associated read buffers,
1519 * so go ahead and do that here for type non-data CDBs. Also
1520 * note that this is currently guaranteed to be a single SGL
1521 * for this case by target core in target_setup_cmd_from_cdb()
1522 * -> transport_generic_cmd_sequencer().
1523 */
1524 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1525 se_cmd->data_direction == DMA_FROM_DEVICE) {
1526 unsigned char *buf = NULL;
1527
1528 if (sgl)
1529 buf = kmap(sg_page(sgl)) + sgl->offset;
1530
1531 if (buf) {
1532 memset(buf, 0, sgl->length);
1533 kunmap(sg_page(sgl));
1534 }
1535 }
1536
1537 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1538 sgl_bidi, sgl_bidi_count);
1539 if (rc != 0) {
1540 transport_generic_request_failure(se_cmd, rc);
1541 return 0;
1542 }
1543 }
1544
1545 /*
1546 * Check if we need to delay processing because of ALUA
1547 * Active/NonOptimized primary access state..
1548 */
1549 core_alua_check_nonop_delay(se_cmd);
1550
1551 transport_handle_cdb_direct(se_cmd);
1552 return 0;
1553 }
1554 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1555
1556 /*
1557 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1558 *
1559 * @se_cmd: command descriptor to submit
1560 * @se_sess: associated se_sess for endpoint
1561 * @cdb: pointer to SCSI CDB
1562 * @sense: pointer to SCSI sense buffer
1563 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1564 * @data_length: fabric expected data transfer length
1565 * @task_addr: SAM task attribute
1566 * @data_dir: DMA data direction
1567 * @flags: flags for command submission from target_sc_flags_tables
1568 *
1569 * Task tags are supported if the caller has set @se_cmd->tag.
1570 *
1571 * Returns non zero to signal active I/O shutdown failure. All other
1572 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1573 * but still return zero here.
1574 *
1575 * This may only be called from process context, and also currently
1576 * assumes internal allocation of fabric payload buffer by target-core.
1577 *
1578 * It also assumes interal target core SGL memory allocation.
1579 */
1580 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1581 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1582 u32 data_length, int task_attr, int data_dir, int flags)
1583 {
1584 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1585 unpacked_lun, data_length, task_attr, data_dir,
1586 flags, NULL, 0, NULL, 0, NULL, 0);
1587 }
1588 EXPORT_SYMBOL(target_submit_cmd);
1589
1590 static void target_complete_tmr_failure(struct work_struct *work)
1591 {
1592 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1593
1594 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1595 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1596
1597 transport_cmd_check_stop_to_fabric(se_cmd);
1598 }
1599
1600 /**
1601 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1602 * for TMR CDBs
1603 *
1604 * @se_cmd: command descriptor to submit
1605 * @se_sess: associated se_sess for endpoint
1606 * @sense: pointer to SCSI sense buffer
1607 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1608 * @fabric_context: fabric context for TMR req
1609 * @tm_type: Type of TM request
1610 * @gfp: gfp type for caller
1611 * @tag: referenced task tag for TMR_ABORT_TASK
1612 * @flags: submit cmd flags
1613 *
1614 * Callable from all contexts.
1615 **/
1616
1617 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1618 unsigned char *sense, u64 unpacked_lun,
1619 void *fabric_tmr_ptr, unsigned char tm_type,
1620 gfp_t gfp, u64 tag, int flags)
1621 {
1622 struct se_portal_group *se_tpg;
1623 int ret;
1624
1625 se_tpg = se_sess->se_tpg;
1626 BUG_ON(!se_tpg);
1627
1628 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1629 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1630 /*
1631 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1632 * allocation failure.
1633 */
1634 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1635 if (ret < 0)
1636 return -ENOMEM;
1637
1638 if (tm_type == TMR_ABORT_TASK)
1639 se_cmd->se_tmr_req->ref_task_tag = tag;
1640
1641 /* See target_submit_cmd for commentary */
1642 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1643 if (ret) {
1644 core_tmr_release_req(se_cmd->se_tmr_req);
1645 return ret;
1646 }
1647
1648 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1649 if (ret) {
1650 /*
1651 * For callback during failure handling, push this work off
1652 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1653 */
1654 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1655 schedule_work(&se_cmd->work);
1656 return 0;
1657 }
1658 transport_generic_handle_tmr(se_cmd);
1659 return 0;
1660 }
1661 EXPORT_SYMBOL(target_submit_tmr);
1662
1663 /*
1664 * Handle SAM-esque emulation for generic transport request failures.
1665 */
1666 void transport_generic_request_failure(struct se_cmd *cmd,
1667 sense_reason_t sense_reason)
1668 {
1669 int ret = 0, post_ret = 0;
1670
1671 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1672 " CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1673 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1674 cmd->se_tfo->get_cmd_state(cmd),
1675 cmd->t_state, sense_reason);
1676 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1677 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1678 (cmd->transport_state & CMD_T_STOP) != 0,
1679 (cmd->transport_state & CMD_T_SENT) != 0);
1680
1681 /*
1682 * For SAM Task Attribute emulation for failed struct se_cmd
1683 */
1684 transport_complete_task_attr(cmd);
1685 /*
1686 * Handle special case for COMPARE_AND_WRITE failure, where the
1687 * callback is expected to drop the per device ->caw_sem.
1688 */
1689 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1690 cmd->transport_complete_callback)
1691 cmd->transport_complete_callback(cmd, false, &post_ret);
1692
1693 switch (sense_reason) {
1694 case TCM_NON_EXISTENT_LUN:
1695 case TCM_UNSUPPORTED_SCSI_OPCODE:
1696 case TCM_INVALID_CDB_FIELD:
1697 case TCM_INVALID_PARAMETER_LIST:
1698 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1699 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1700 case TCM_UNKNOWN_MODE_PAGE:
1701 case TCM_WRITE_PROTECTED:
1702 case TCM_ADDRESS_OUT_OF_RANGE:
1703 case TCM_CHECK_CONDITION_ABORT_CMD:
1704 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1705 case TCM_CHECK_CONDITION_NOT_READY:
1706 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1707 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1708 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1709 break;
1710 case TCM_OUT_OF_RESOURCES:
1711 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1712 break;
1713 case TCM_RESERVATION_CONFLICT:
1714 /*
1715 * No SENSE Data payload for this case, set SCSI Status
1716 * and queue the response to $FABRIC_MOD.
1717 *
1718 * Uses linux/include/scsi/scsi.h SAM status codes defs
1719 */
1720 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1721 /*
1722 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1723 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1724 * CONFLICT STATUS.
1725 *
1726 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1727 */
1728 if (cmd->se_sess &&
1729 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1730 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1731 cmd->orig_fe_lun, 0x2C,
1732 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1733 }
1734 trace_target_cmd_complete(cmd);
1735 ret = cmd->se_tfo->queue_status(cmd);
1736 if (ret == -EAGAIN || ret == -ENOMEM)
1737 goto queue_full;
1738 goto check_stop;
1739 default:
1740 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1741 cmd->t_task_cdb[0], sense_reason);
1742 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1743 break;
1744 }
1745
1746 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1747 if (ret == -EAGAIN || ret == -ENOMEM)
1748 goto queue_full;
1749
1750 check_stop:
1751 transport_lun_remove_cmd(cmd);
1752 transport_cmd_check_stop_to_fabric(cmd);
1753 return;
1754
1755 queue_full:
1756 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1757 transport_handle_queue_full(cmd, cmd->se_dev);
1758 }
1759 EXPORT_SYMBOL(transport_generic_request_failure);
1760
1761 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1762 {
1763 sense_reason_t ret;
1764
1765 if (!cmd->execute_cmd) {
1766 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1767 goto err;
1768 }
1769 if (do_checks) {
1770 /*
1771 * Check for an existing UNIT ATTENTION condition after
1772 * target_handle_task_attr() has done SAM task attr
1773 * checking, and possibly have already defered execution
1774 * out to target_restart_delayed_cmds() context.
1775 */
1776 ret = target_scsi3_ua_check(cmd);
1777 if (ret)
1778 goto err;
1779
1780 ret = target_alua_state_check(cmd);
1781 if (ret)
1782 goto err;
1783
1784 ret = target_check_reservation(cmd);
1785 if (ret) {
1786 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1787 goto err;
1788 }
1789 }
1790
1791 ret = cmd->execute_cmd(cmd);
1792 if (!ret)
1793 return;
1794 err:
1795 spin_lock_irq(&cmd->t_state_lock);
1796 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1797 spin_unlock_irq(&cmd->t_state_lock);
1798
1799 transport_generic_request_failure(cmd, ret);
1800 }
1801
1802 static int target_write_prot_action(struct se_cmd *cmd)
1803 {
1804 u32 sectors;
1805 /*
1806 * Perform WRITE_INSERT of PI using software emulation when backend
1807 * device has PI enabled, if the transport has not already generated
1808 * PI using hardware WRITE_INSERT offload.
1809 */
1810 switch (cmd->prot_op) {
1811 case TARGET_PROT_DOUT_INSERT:
1812 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1813 sbc_dif_generate(cmd);
1814 break;
1815 case TARGET_PROT_DOUT_STRIP:
1816 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1817 break;
1818
1819 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1820 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1821 sectors, 0, cmd->t_prot_sg, 0);
1822 if (unlikely(cmd->pi_err)) {
1823 spin_lock_irq(&cmd->t_state_lock);
1824 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1825 spin_unlock_irq(&cmd->t_state_lock);
1826 transport_generic_request_failure(cmd, cmd->pi_err);
1827 return -1;
1828 }
1829 break;
1830 default:
1831 break;
1832 }
1833
1834 return 0;
1835 }
1836
1837 static bool target_handle_task_attr(struct se_cmd *cmd)
1838 {
1839 struct se_device *dev = cmd->se_dev;
1840
1841 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1842 return false;
1843
1844 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1845
1846 /*
1847 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1848 * to allow the passed struct se_cmd list of tasks to the front of the list.
1849 */
1850 switch (cmd->sam_task_attr) {
1851 case TCM_HEAD_TAG:
1852 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1853 cmd->t_task_cdb[0]);
1854 return false;
1855 case TCM_ORDERED_TAG:
1856 atomic_inc_mb(&dev->dev_ordered_sync);
1857
1858 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1859 cmd->t_task_cdb[0]);
1860
1861 /*
1862 * Execute an ORDERED command if no other older commands
1863 * exist that need to be completed first.
1864 */
1865 if (!atomic_read(&dev->simple_cmds))
1866 return false;
1867 break;
1868 default:
1869 /*
1870 * For SIMPLE and UNTAGGED Task Attribute commands
1871 */
1872 atomic_inc_mb(&dev->simple_cmds);
1873 break;
1874 }
1875
1876 if (atomic_read(&dev->dev_ordered_sync) == 0)
1877 return false;
1878
1879 spin_lock(&dev->delayed_cmd_lock);
1880 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1881 spin_unlock(&dev->delayed_cmd_lock);
1882
1883 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1884 cmd->t_task_cdb[0], cmd->sam_task_attr);
1885 return true;
1886 }
1887
1888 static int __transport_check_aborted_status(struct se_cmd *, int);
1889
1890 void target_execute_cmd(struct se_cmd *cmd)
1891 {
1892 /*
1893 * Determine if frontend context caller is requesting the stopping of
1894 * this command for frontend exceptions.
1895 *
1896 * If the received CDB has aleady been aborted stop processing it here.
1897 */
1898 spin_lock_irq(&cmd->t_state_lock);
1899 if (__transport_check_aborted_status(cmd, 1)) {
1900 spin_unlock_irq(&cmd->t_state_lock);
1901 return;
1902 }
1903 if (cmd->transport_state & CMD_T_STOP) {
1904 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1905 __func__, __LINE__, cmd->tag);
1906
1907 spin_unlock_irq(&cmd->t_state_lock);
1908 complete_all(&cmd->t_transport_stop_comp);
1909 return;
1910 }
1911
1912 cmd->t_state = TRANSPORT_PROCESSING;
1913 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1914 spin_unlock_irq(&cmd->t_state_lock);
1915
1916 if (target_write_prot_action(cmd))
1917 return;
1918
1919 if (target_handle_task_attr(cmd)) {
1920 spin_lock_irq(&cmd->t_state_lock);
1921 cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1922 spin_unlock_irq(&cmd->t_state_lock);
1923 return;
1924 }
1925
1926 __target_execute_cmd(cmd, true);
1927 }
1928 EXPORT_SYMBOL(target_execute_cmd);
1929
1930 /*
1931 * Process all commands up to the last received ORDERED task attribute which
1932 * requires another blocking boundary
1933 */
1934 static void target_restart_delayed_cmds(struct se_device *dev)
1935 {
1936 for (;;) {
1937 struct se_cmd *cmd;
1938
1939 spin_lock(&dev->delayed_cmd_lock);
1940 if (list_empty(&dev->delayed_cmd_list)) {
1941 spin_unlock(&dev->delayed_cmd_lock);
1942 break;
1943 }
1944
1945 cmd = list_entry(dev->delayed_cmd_list.next,
1946 struct se_cmd, se_delayed_node);
1947 list_del(&cmd->se_delayed_node);
1948 spin_unlock(&dev->delayed_cmd_lock);
1949
1950 __target_execute_cmd(cmd, true);
1951
1952 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1953 break;
1954 }
1955 }
1956
1957 /*
1958 * Called from I/O completion to determine which dormant/delayed
1959 * and ordered cmds need to have their tasks added to the execution queue.
1960 */
1961 static void transport_complete_task_attr(struct se_cmd *cmd)
1962 {
1963 struct se_device *dev = cmd->se_dev;
1964
1965 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1966 return;
1967
1968 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
1969 goto restart;
1970
1971 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1972 atomic_dec_mb(&dev->simple_cmds);
1973 dev->dev_cur_ordered_id++;
1974 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1975 dev->dev_cur_ordered_id);
1976 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1977 dev->dev_cur_ordered_id++;
1978 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1979 dev->dev_cur_ordered_id);
1980 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1981 atomic_dec_mb(&dev->dev_ordered_sync);
1982
1983 dev->dev_cur_ordered_id++;
1984 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1985 dev->dev_cur_ordered_id);
1986 }
1987 restart:
1988 target_restart_delayed_cmds(dev);
1989 }
1990
1991 static void transport_complete_qf(struct se_cmd *cmd)
1992 {
1993 int ret = 0;
1994
1995 transport_complete_task_attr(cmd);
1996
1997 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1998 trace_target_cmd_complete(cmd);
1999 ret = cmd->se_tfo->queue_status(cmd);
2000 goto out;
2001 }
2002
2003 switch (cmd->data_direction) {
2004 case DMA_FROM_DEVICE:
2005 if (cmd->scsi_status)
2006 goto queue_status;
2007
2008 trace_target_cmd_complete(cmd);
2009 ret = cmd->se_tfo->queue_data_in(cmd);
2010 break;
2011 case DMA_TO_DEVICE:
2012 if (cmd->se_cmd_flags & SCF_BIDI) {
2013 ret = cmd->se_tfo->queue_data_in(cmd);
2014 break;
2015 }
2016 /* Fall through for DMA_TO_DEVICE */
2017 case DMA_NONE:
2018 queue_status:
2019 trace_target_cmd_complete(cmd);
2020 ret = cmd->se_tfo->queue_status(cmd);
2021 break;
2022 default:
2023 break;
2024 }
2025
2026 out:
2027 if (ret < 0) {
2028 transport_handle_queue_full(cmd, cmd->se_dev);
2029 return;
2030 }
2031 transport_lun_remove_cmd(cmd);
2032 transport_cmd_check_stop_to_fabric(cmd);
2033 }
2034
2035 static void transport_handle_queue_full(
2036 struct se_cmd *cmd,
2037 struct se_device *dev)
2038 {
2039 spin_lock_irq(&dev->qf_cmd_lock);
2040 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2041 atomic_inc_mb(&dev->dev_qf_count);
2042 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2043
2044 schedule_work(&cmd->se_dev->qf_work_queue);
2045 }
2046
2047 static bool target_read_prot_action(struct se_cmd *cmd)
2048 {
2049 switch (cmd->prot_op) {
2050 case TARGET_PROT_DIN_STRIP:
2051 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2052 u32 sectors = cmd->data_length >>
2053 ilog2(cmd->se_dev->dev_attrib.block_size);
2054
2055 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2056 sectors, 0, cmd->t_prot_sg,
2057 0);
2058 if (cmd->pi_err)
2059 return true;
2060 }
2061 break;
2062 case TARGET_PROT_DIN_INSERT:
2063 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2064 break;
2065
2066 sbc_dif_generate(cmd);
2067 break;
2068 default:
2069 break;
2070 }
2071
2072 return false;
2073 }
2074
2075 static void target_complete_ok_work(struct work_struct *work)
2076 {
2077 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2078 int ret;
2079
2080 /*
2081 * Check if we need to move delayed/dormant tasks from cmds on the
2082 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2083 * Attribute.
2084 */
2085 transport_complete_task_attr(cmd);
2086
2087 /*
2088 * Check to schedule QUEUE_FULL work, or execute an existing
2089 * cmd->transport_qf_callback()
2090 */
2091 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2092 schedule_work(&cmd->se_dev->qf_work_queue);
2093
2094 /*
2095 * Check if we need to send a sense buffer from
2096 * the struct se_cmd in question.
2097 */
2098 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2099 WARN_ON(!cmd->scsi_status);
2100 ret = transport_send_check_condition_and_sense(
2101 cmd, 0, 1);
2102 if (ret == -EAGAIN || ret == -ENOMEM)
2103 goto queue_full;
2104
2105 transport_lun_remove_cmd(cmd);
2106 transport_cmd_check_stop_to_fabric(cmd);
2107 return;
2108 }
2109 /*
2110 * Check for a callback, used by amongst other things
2111 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2112 */
2113 if (cmd->transport_complete_callback) {
2114 sense_reason_t rc;
2115 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2116 bool zero_dl = !(cmd->data_length);
2117 int post_ret = 0;
2118
2119 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2120 if (!rc && !post_ret) {
2121 if (caw && zero_dl)
2122 goto queue_rsp;
2123
2124 return;
2125 } else if (rc) {
2126 ret = transport_send_check_condition_and_sense(cmd,
2127 rc, 0);
2128 if (ret == -EAGAIN || ret == -ENOMEM)
2129 goto queue_full;
2130
2131 transport_lun_remove_cmd(cmd);
2132 transport_cmd_check_stop_to_fabric(cmd);
2133 return;
2134 }
2135 }
2136
2137 queue_rsp:
2138 switch (cmd->data_direction) {
2139 case DMA_FROM_DEVICE:
2140 if (cmd->scsi_status)
2141 goto queue_status;
2142
2143 atomic_long_add(cmd->data_length,
2144 &cmd->se_lun->lun_stats.tx_data_octets);
2145 /*
2146 * Perform READ_STRIP of PI using software emulation when
2147 * backend had PI enabled, if the transport will not be
2148 * performing hardware READ_STRIP offload.
2149 */
2150 if (target_read_prot_action(cmd)) {
2151 ret = transport_send_check_condition_and_sense(cmd,
2152 cmd->pi_err, 0);
2153 if (ret == -EAGAIN || ret == -ENOMEM)
2154 goto queue_full;
2155
2156 transport_lun_remove_cmd(cmd);
2157 transport_cmd_check_stop_to_fabric(cmd);
2158 return;
2159 }
2160
2161 trace_target_cmd_complete(cmd);
2162 ret = cmd->se_tfo->queue_data_in(cmd);
2163 if (ret == -EAGAIN || ret == -ENOMEM)
2164 goto queue_full;
2165 break;
2166 case DMA_TO_DEVICE:
2167 atomic_long_add(cmd->data_length,
2168 &cmd->se_lun->lun_stats.rx_data_octets);
2169 /*
2170 * Check if we need to send READ payload for BIDI-COMMAND
2171 */
2172 if (cmd->se_cmd_flags & SCF_BIDI) {
2173 atomic_long_add(cmd->data_length,
2174 &cmd->se_lun->lun_stats.tx_data_octets);
2175 ret = cmd->se_tfo->queue_data_in(cmd);
2176 if (ret == -EAGAIN || ret == -ENOMEM)
2177 goto queue_full;
2178 break;
2179 }
2180 /* Fall through for DMA_TO_DEVICE */
2181 case DMA_NONE:
2182 queue_status:
2183 trace_target_cmd_complete(cmd);
2184 ret = cmd->se_tfo->queue_status(cmd);
2185 if (ret == -EAGAIN || ret == -ENOMEM)
2186 goto queue_full;
2187 break;
2188 default:
2189 break;
2190 }
2191
2192 transport_lun_remove_cmd(cmd);
2193 transport_cmd_check_stop_to_fabric(cmd);
2194 return;
2195
2196 queue_full:
2197 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2198 " data_direction: %d\n", cmd, cmd->data_direction);
2199 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2200 transport_handle_queue_full(cmd, cmd->se_dev);
2201 }
2202
2203 void target_free_sgl(struct scatterlist *sgl, int nents)
2204 {
2205 struct scatterlist *sg;
2206 int count;
2207
2208 for_each_sg(sgl, sg, nents, count)
2209 __free_page(sg_page(sg));
2210
2211 kfree(sgl);
2212 }
2213 EXPORT_SYMBOL(target_free_sgl);
2214
2215 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2216 {
2217 /*
2218 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2219 * emulation, and free + reset pointers if necessary..
2220 */
2221 if (!cmd->t_data_sg_orig)
2222 return;
2223
2224 kfree(cmd->t_data_sg);
2225 cmd->t_data_sg = cmd->t_data_sg_orig;
2226 cmd->t_data_sg_orig = NULL;
2227 cmd->t_data_nents = cmd->t_data_nents_orig;
2228 cmd->t_data_nents_orig = 0;
2229 }
2230
2231 static inline void transport_free_pages(struct se_cmd *cmd)
2232 {
2233 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2234 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2235 cmd->t_prot_sg = NULL;
2236 cmd->t_prot_nents = 0;
2237 }
2238
2239 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2240 /*
2241 * Release special case READ buffer payload required for
2242 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2243 */
2244 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2245 target_free_sgl(cmd->t_bidi_data_sg,
2246 cmd->t_bidi_data_nents);
2247 cmd->t_bidi_data_sg = NULL;
2248 cmd->t_bidi_data_nents = 0;
2249 }
2250 transport_reset_sgl_orig(cmd);
2251 return;
2252 }
2253 transport_reset_sgl_orig(cmd);
2254
2255 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2256 cmd->t_data_sg = NULL;
2257 cmd->t_data_nents = 0;
2258
2259 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2260 cmd->t_bidi_data_sg = NULL;
2261 cmd->t_bidi_data_nents = 0;
2262 }
2263
2264 /**
2265 * transport_put_cmd - release a reference to a command
2266 * @cmd: command to release
2267 *
2268 * This routine releases our reference to the command and frees it if possible.
2269 */
2270 static int transport_put_cmd(struct se_cmd *cmd)
2271 {
2272 BUG_ON(!cmd->se_tfo);
2273 /*
2274 * If this cmd has been setup with target_get_sess_cmd(), drop
2275 * the kref and call ->release_cmd() in kref callback.
2276 */
2277 return target_put_sess_cmd(cmd);
2278 }
2279
2280 void *transport_kmap_data_sg(struct se_cmd *cmd)
2281 {
2282 struct scatterlist *sg = cmd->t_data_sg;
2283 struct page **pages;
2284 int i;
2285
2286 /*
2287 * We need to take into account a possible offset here for fabrics like
2288 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2289 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2290 */
2291 if (!cmd->t_data_nents)
2292 return NULL;
2293
2294 BUG_ON(!sg);
2295 if (cmd->t_data_nents == 1)
2296 return kmap(sg_page(sg)) + sg->offset;
2297
2298 /* >1 page. use vmap */
2299 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2300 if (!pages)
2301 return NULL;
2302
2303 /* convert sg[] to pages[] */
2304 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2305 pages[i] = sg_page(sg);
2306 }
2307
2308 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2309 kfree(pages);
2310 if (!cmd->t_data_vmap)
2311 return NULL;
2312
2313 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2314 }
2315 EXPORT_SYMBOL(transport_kmap_data_sg);
2316
2317 void transport_kunmap_data_sg(struct se_cmd *cmd)
2318 {
2319 if (!cmd->t_data_nents) {
2320 return;
2321 } else if (cmd->t_data_nents == 1) {
2322 kunmap(sg_page(cmd->t_data_sg));
2323 return;
2324 }
2325
2326 vunmap(cmd->t_data_vmap);
2327 cmd->t_data_vmap = NULL;
2328 }
2329 EXPORT_SYMBOL(transport_kunmap_data_sg);
2330
2331 int
2332 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2333 bool zero_page, bool chainable)
2334 {
2335 struct scatterlist *sg;
2336 struct page *page;
2337 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2338 unsigned int nalloc, nent;
2339 int i = 0;
2340
2341 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2342 if (chainable)
2343 nalloc++;
2344 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2345 if (!sg)
2346 return -ENOMEM;
2347
2348 sg_init_table(sg, nalloc);
2349
2350 while (length) {
2351 u32 page_len = min_t(u32, length, PAGE_SIZE);
2352 page = alloc_page(GFP_KERNEL | zero_flag);
2353 if (!page)
2354 goto out;
2355
2356 sg_set_page(&sg[i], page, page_len, 0);
2357 length -= page_len;
2358 i++;
2359 }
2360 *sgl = sg;
2361 *nents = nent;
2362 return 0;
2363
2364 out:
2365 while (i > 0) {
2366 i--;
2367 __free_page(sg_page(&sg[i]));
2368 }
2369 kfree(sg);
2370 return -ENOMEM;
2371 }
2372 EXPORT_SYMBOL(target_alloc_sgl);
2373
2374 /*
2375 * Allocate any required resources to execute the command. For writes we
2376 * might not have the payload yet, so notify the fabric via a call to
2377 * ->write_pending instead. Otherwise place it on the execution queue.
2378 */
2379 sense_reason_t
2380 transport_generic_new_cmd(struct se_cmd *cmd)
2381 {
2382 int ret = 0;
2383 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2384
2385 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2386 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2387 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2388 cmd->prot_length, true, false);
2389 if (ret < 0)
2390 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2391 }
2392
2393 /*
2394 * Determine is the TCM fabric module has already allocated physical
2395 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2396 * beforehand.
2397 */
2398 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2399 cmd->data_length) {
2400
2401 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2402 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2403 u32 bidi_length;
2404
2405 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2406 bidi_length = cmd->t_task_nolb *
2407 cmd->se_dev->dev_attrib.block_size;
2408 else
2409 bidi_length = cmd->data_length;
2410
2411 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2412 &cmd->t_bidi_data_nents,
2413 bidi_length, zero_flag, false);
2414 if (ret < 0)
2415 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2416 }
2417
2418 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2419 cmd->data_length, zero_flag, false);
2420 if (ret < 0)
2421 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2422 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2423 cmd->data_length) {
2424 /*
2425 * Special case for COMPARE_AND_WRITE with fabrics
2426 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2427 */
2428 u32 caw_length = cmd->t_task_nolb *
2429 cmd->se_dev->dev_attrib.block_size;
2430
2431 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2432 &cmd->t_bidi_data_nents,
2433 caw_length, zero_flag, false);
2434 if (ret < 0)
2435 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2436 }
2437 /*
2438 * If this command is not a write we can execute it right here,
2439 * for write buffers we need to notify the fabric driver first
2440 * and let it call back once the write buffers are ready.
2441 */
2442 target_add_to_state_list(cmd);
2443 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2444 target_execute_cmd(cmd);
2445 return 0;
2446 }
2447 transport_cmd_check_stop(cmd, false, true);
2448
2449 ret = cmd->se_tfo->write_pending(cmd);
2450 if (ret == -EAGAIN || ret == -ENOMEM)
2451 goto queue_full;
2452
2453 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2454 WARN_ON(ret);
2455
2456 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2457
2458 queue_full:
2459 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2460 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2461 transport_handle_queue_full(cmd, cmd->se_dev);
2462 return 0;
2463 }
2464 EXPORT_SYMBOL(transport_generic_new_cmd);
2465
2466 static void transport_write_pending_qf(struct se_cmd *cmd)
2467 {
2468 int ret;
2469
2470 ret = cmd->se_tfo->write_pending(cmd);
2471 if (ret == -EAGAIN || ret == -ENOMEM) {
2472 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2473 cmd);
2474 transport_handle_queue_full(cmd, cmd->se_dev);
2475 }
2476 }
2477
2478 static bool
2479 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2480 unsigned long *flags);
2481
2482 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2483 {
2484 unsigned long flags;
2485
2486 spin_lock_irqsave(&cmd->t_state_lock, flags);
2487 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2488 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2489 }
2490
2491 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2492 {
2493 int ret = 0;
2494 bool aborted = false, tas = false;
2495
2496 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2497 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2498 target_wait_free_cmd(cmd, &aborted, &tas);
2499
2500 if (!aborted || tas)
2501 ret = transport_put_cmd(cmd);
2502 } else {
2503 if (wait_for_tasks)
2504 target_wait_free_cmd(cmd, &aborted, &tas);
2505 /*
2506 * Handle WRITE failure case where transport_generic_new_cmd()
2507 * has already added se_cmd to state_list, but fabric has
2508 * failed command before I/O submission.
2509 */
2510 if (cmd->state_active)
2511 target_remove_from_state_list(cmd);
2512
2513 if (cmd->se_lun)
2514 transport_lun_remove_cmd(cmd);
2515
2516 if (!aborted || tas)
2517 ret = transport_put_cmd(cmd);
2518 }
2519 /*
2520 * If the task has been internally aborted due to TMR ABORT_TASK
2521 * or LUN_RESET, target_core_tmr.c is responsible for performing
2522 * the remaining calls to target_put_sess_cmd(), and not the
2523 * callers of this function.
2524 */
2525 if (aborted) {
2526 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2527 wait_for_completion(&cmd->cmd_wait_comp);
2528 cmd->se_tfo->release_cmd(cmd);
2529 ret = 1;
2530 }
2531 return ret;
2532 }
2533 EXPORT_SYMBOL(transport_generic_free_cmd);
2534
2535 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2536 * @se_cmd: command descriptor to add
2537 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2538 */
2539 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2540 {
2541 struct se_session *se_sess = se_cmd->se_sess;
2542 unsigned long flags;
2543 int ret = 0;
2544
2545 /*
2546 * Add a second kref if the fabric caller is expecting to handle
2547 * fabric acknowledgement that requires two target_put_sess_cmd()
2548 * invocations before se_cmd descriptor release.
2549 */
2550 if (ack_kref)
2551 kref_get(&se_cmd->cmd_kref);
2552
2553 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2554 if (se_sess->sess_tearing_down) {
2555 ret = -ESHUTDOWN;
2556 goto out;
2557 }
2558 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2559 out:
2560 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2561
2562 if (ret && ack_kref)
2563 target_put_sess_cmd(se_cmd);
2564
2565 return ret;
2566 }
2567 EXPORT_SYMBOL(target_get_sess_cmd);
2568
2569 static void target_free_cmd_mem(struct se_cmd *cmd)
2570 {
2571 transport_free_pages(cmd);
2572
2573 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2574 core_tmr_release_req(cmd->se_tmr_req);
2575 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2576 kfree(cmd->t_task_cdb);
2577 }
2578
2579 static void target_release_cmd_kref(struct kref *kref)
2580 {
2581 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2582 struct se_session *se_sess = se_cmd->se_sess;
2583 unsigned long flags;
2584 bool fabric_stop;
2585
2586 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2587
2588 spin_lock(&se_cmd->t_state_lock);
2589 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2590 (se_cmd->transport_state & CMD_T_ABORTED);
2591 spin_unlock(&se_cmd->t_state_lock);
2592
2593 if (se_cmd->cmd_wait_set || fabric_stop) {
2594 list_del_init(&se_cmd->se_cmd_list);
2595 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2596 target_free_cmd_mem(se_cmd);
2597 complete(&se_cmd->cmd_wait_comp);
2598 return;
2599 }
2600 list_del_init(&se_cmd->se_cmd_list);
2601 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2602
2603 target_free_cmd_mem(se_cmd);
2604 se_cmd->se_tfo->release_cmd(se_cmd);
2605 }
2606
2607 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2608 * @se_cmd: command descriptor to drop
2609 */
2610 int target_put_sess_cmd(struct se_cmd *se_cmd)
2611 {
2612 struct se_session *se_sess = se_cmd->se_sess;
2613
2614 if (!se_sess) {
2615 target_free_cmd_mem(se_cmd);
2616 se_cmd->se_tfo->release_cmd(se_cmd);
2617 return 1;
2618 }
2619 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2620 }
2621 EXPORT_SYMBOL(target_put_sess_cmd);
2622
2623 /* target_sess_cmd_list_set_waiting - Flag all commands in
2624 * sess_cmd_list to complete cmd_wait_comp. Set
2625 * sess_tearing_down so no more commands are queued.
2626 * @se_sess: session to flag
2627 */
2628 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2629 {
2630 struct se_cmd *se_cmd;
2631 unsigned long flags;
2632 int rc;
2633
2634 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2635 if (se_sess->sess_tearing_down) {
2636 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2637 return;
2638 }
2639 se_sess->sess_tearing_down = 1;
2640 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2641
2642 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2643 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2644 if (rc) {
2645 se_cmd->cmd_wait_set = 1;
2646 spin_lock(&se_cmd->t_state_lock);
2647 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2648 spin_unlock(&se_cmd->t_state_lock);
2649 }
2650 }
2651
2652 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2653 }
2654 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2655
2656 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2657 * @se_sess: session to wait for active I/O
2658 */
2659 void target_wait_for_sess_cmds(struct se_session *se_sess)
2660 {
2661 struct se_cmd *se_cmd, *tmp_cmd;
2662 unsigned long flags;
2663 bool tas;
2664
2665 list_for_each_entry_safe(se_cmd, tmp_cmd,
2666 &se_sess->sess_wait_list, se_cmd_list) {
2667 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2668 " %d\n", se_cmd, se_cmd->t_state,
2669 se_cmd->se_tfo->get_cmd_state(se_cmd));
2670
2671 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2672 tas = (se_cmd->transport_state & CMD_T_TAS);
2673 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2674
2675 if (!target_put_sess_cmd(se_cmd)) {
2676 if (tas)
2677 target_put_sess_cmd(se_cmd);
2678 }
2679
2680 wait_for_completion(&se_cmd->cmd_wait_comp);
2681 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2682 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2683 se_cmd->se_tfo->get_cmd_state(se_cmd));
2684
2685 se_cmd->se_tfo->release_cmd(se_cmd);
2686 }
2687
2688 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2689 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2690 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2691
2692 }
2693 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2694
2695 void transport_clear_lun_ref(struct se_lun *lun)
2696 {
2697 percpu_ref_kill(&lun->lun_ref);
2698 wait_for_completion(&lun->lun_ref_comp);
2699 }
2700
2701 static bool
2702 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2703 bool *aborted, bool *tas, unsigned long *flags)
2704 __releases(&cmd->t_state_lock)
2705 __acquires(&cmd->t_state_lock)
2706 {
2707
2708 assert_spin_locked(&cmd->t_state_lock);
2709 WARN_ON_ONCE(!irqs_disabled());
2710
2711 if (fabric_stop)
2712 cmd->transport_state |= CMD_T_FABRIC_STOP;
2713
2714 if (cmd->transport_state & CMD_T_ABORTED)
2715 *aborted = true;
2716
2717 if (cmd->transport_state & CMD_T_TAS)
2718 *tas = true;
2719
2720 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2721 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2722 return false;
2723
2724 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2725 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2726 return false;
2727
2728 if (!(cmd->transport_state & CMD_T_ACTIVE))
2729 return false;
2730
2731 if (fabric_stop && *aborted)
2732 return false;
2733
2734 cmd->transport_state |= CMD_T_STOP;
2735
2736 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2737 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2738 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2739
2740 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2741
2742 wait_for_completion(&cmd->t_transport_stop_comp);
2743
2744 spin_lock_irqsave(&cmd->t_state_lock, *flags);
2745 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2746
2747 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2748 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2749
2750 return true;
2751 }
2752
2753 /**
2754 * transport_wait_for_tasks - wait for completion to occur
2755 * @cmd: command to wait
2756 *
2757 * Called from frontend fabric context to wait for storage engine
2758 * to pause and/or release frontend generated struct se_cmd.
2759 */
2760 bool transport_wait_for_tasks(struct se_cmd *cmd)
2761 {
2762 unsigned long flags;
2763 bool ret, aborted = false, tas = false;
2764
2765 spin_lock_irqsave(&cmd->t_state_lock, flags);
2766 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2767 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2768
2769 return ret;
2770 }
2771 EXPORT_SYMBOL(transport_wait_for_tasks);
2772
2773 struct sense_info {
2774 u8 key;
2775 u8 asc;
2776 u8 ascq;
2777 bool add_sector_info;
2778 };
2779
2780 static const struct sense_info sense_info_table[] = {
2781 [TCM_NO_SENSE] = {
2782 .key = NOT_READY
2783 },
2784 [TCM_NON_EXISTENT_LUN] = {
2785 .key = ILLEGAL_REQUEST,
2786 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2787 },
2788 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
2789 .key = ILLEGAL_REQUEST,
2790 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2791 },
2792 [TCM_SECTOR_COUNT_TOO_MANY] = {
2793 .key = ILLEGAL_REQUEST,
2794 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2795 },
2796 [TCM_UNKNOWN_MODE_PAGE] = {
2797 .key = ILLEGAL_REQUEST,
2798 .asc = 0x24, /* INVALID FIELD IN CDB */
2799 },
2800 [TCM_CHECK_CONDITION_ABORT_CMD] = {
2801 .key = ABORTED_COMMAND,
2802 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2803 .ascq = 0x03,
2804 },
2805 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
2806 .key = ABORTED_COMMAND,
2807 .asc = 0x0c, /* WRITE ERROR */
2808 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2809 },
2810 [TCM_INVALID_CDB_FIELD] = {
2811 .key = ILLEGAL_REQUEST,
2812 .asc = 0x24, /* INVALID FIELD IN CDB */
2813 },
2814 [TCM_INVALID_PARAMETER_LIST] = {
2815 .key = ILLEGAL_REQUEST,
2816 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2817 },
2818 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2819 .key = ILLEGAL_REQUEST,
2820 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2821 },
2822 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2823 .key = ILLEGAL_REQUEST,
2824 .asc = 0x0c, /* WRITE ERROR */
2825 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2826 },
2827 [TCM_SERVICE_CRC_ERROR] = {
2828 .key = ABORTED_COMMAND,
2829 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2830 .ascq = 0x05, /* N/A */
2831 },
2832 [TCM_SNACK_REJECTED] = {
2833 .key = ABORTED_COMMAND,
2834 .asc = 0x11, /* READ ERROR */
2835 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2836 },
2837 [TCM_WRITE_PROTECTED] = {
2838 .key = DATA_PROTECT,
2839 .asc = 0x27, /* WRITE PROTECTED */
2840 },
2841 [TCM_ADDRESS_OUT_OF_RANGE] = {
2842 .key = ILLEGAL_REQUEST,
2843 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2844 },
2845 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2846 .key = UNIT_ATTENTION,
2847 },
2848 [TCM_CHECK_CONDITION_NOT_READY] = {
2849 .key = NOT_READY,
2850 },
2851 [TCM_MISCOMPARE_VERIFY] = {
2852 .key = MISCOMPARE,
2853 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2854 .ascq = 0x00,
2855 },
2856 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2857 .key = ABORTED_COMMAND,
2858 .asc = 0x10,
2859 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2860 .add_sector_info = true,
2861 },
2862 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2863 .key = ABORTED_COMMAND,
2864 .asc = 0x10,
2865 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2866 .add_sector_info = true,
2867 },
2868 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2869 .key = ABORTED_COMMAND,
2870 .asc = 0x10,
2871 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2872 .add_sector_info = true,
2873 },
2874 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2875 /*
2876 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2877 * Solaris initiators. Returning NOT READY instead means the
2878 * operations will be retried a finite number of times and we
2879 * can survive intermittent errors.
2880 */
2881 .key = NOT_READY,
2882 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2883 },
2884 };
2885
2886 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2887 {
2888 const struct sense_info *si;
2889 u8 *buffer = cmd->sense_buffer;
2890 int r = (__force int)reason;
2891 u8 asc, ascq;
2892 bool desc_format = target_sense_desc_format(cmd->se_dev);
2893
2894 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2895 si = &sense_info_table[r];
2896 else
2897 si = &sense_info_table[(__force int)
2898 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2899
2900 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2901 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2902 WARN_ON_ONCE(asc == 0);
2903 } else if (si->asc == 0) {
2904 WARN_ON_ONCE(cmd->scsi_asc == 0);
2905 asc = cmd->scsi_asc;
2906 ascq = cmd->scsi_ascq;
2907 } else {
2908 asc = si->asc;
2909 ascq = si->ascq;
2910 }
2911
2912 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2913 if (si->add_sector_info)
2914 return scsi_set_sense_information(buffer,
2915 cmd->scsi_sense_length,
2916 cmd->bad_sector);
2917
2918 return 0;
2919 }
2920
2921 int
2922 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2923 sense_reason_t reason, int from_transport)
2924 {
2925 unsigned long flags;
2926
2927 spin_lock_irqsave(&cmd->t_state_lock, flags);
2928 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2929 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2930 return 0;
2931 }
2932 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2933 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2934
2935 if (!from_transport) {
2936 int rc;
2937
2938 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2939 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2940 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2941 rc = translate_sense_reason(cmd, reason);
2942 if (rc)
2943 return rc;
2944 }
2945
2946 trace_target_cmd_complete(cmd);
2947 return cmd->se_tfo->queue_status(cmd);
2948 }
2949 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2950
2951 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2952 __releases(&cmd->t_state_lock)
2953 __acquires(&cmd->t_state_lock)
2954 {
2955 assert_spin_locked(&cmd->t_state_lock);
2956 WARN_ON_ONCE(!irqs_disabled());
2957
2958 if (!(cmd->transport_state & CMD_T_ABORTED))
2959 return 0;
2960 /*
2961 * If cmd has been aborted but either no status is to be sent or it has
2962 * already been sent, just return
2963 */
2964 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2965 if (send_status)
2966 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2967 return 1;
2968 }
2969
2970 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2971 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
2972
2973 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2974 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2975 trace_target_cmd_complete(cmd);
2976
2977 spin_unlock_irq(&cmd->t_state_lock);
2978 cmd->se_tfo->queue_status(cmd);
2979 spin_lock_irq(&cmd->t_state_lock);
2980
2981 return 1;
2982 }
2983
2984 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2985 {
2986 int ret;
2987
2988 spin_lock_irq(&cmd->t_state_lock);
2989 ret = __transport_check_aborted_status(cmd, send_status);
2990 spin_unlock_irq(&cmd->t_state_lock);
2991
2992 return ret;
2993 }
2994 EXPORT_SYMBOL(transport_check_aborted_status);
2995
2996 void transport_send_task_abort(struct se_cmd *cmd)
2997 {
2998 unsigned long flags;
2999
3000 spin_lock_irqsave(&cmd->t_state_lock, flags);
3001 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3002 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3003 return;
3004 }
3005 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3006
3007 /*
3008 * If there are still expected incoming fabric WRITEs, we wait
3009 * until until they have completed before sending a TASK_ABORTED
3010 * response. This response with TASK_ABORTED status will be
3011 * queued back to fabric module by transport_check_aborted_status().
3012 */
3013 if (cmd->data_direction == DMA_TO_DEVICE) {
3014 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3015 spin_lock_irqsave(&cmd->t_state_lock, flags);
3016 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3017 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3018 goto send_abort;
3019 }
3020 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3021 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3022 return;
3023 }
3024 }
3025 send_abort:
3026 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3027
3028 transport_lun_remove_cmd(cmd);
3029
3030 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3031 cmd->t_task_cdb[0], cmd->tag);
3032
3033 trace_target_cmd_complete(cmd);
3034 cmd->se_tfo->queue_status(cmd);
3035 }
3036
3037 static void target_tmr_work(struct work_struct *work)
3038 {
3039 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3040 struct se_device *dev = cmd->se_dev;
3041 struct se_tmr_req *tmr = cmd->se_tmr_req;
3042 unsigned long flags;
3043 int ret;
3044
3045 spin_lock_irqsave(&cmd->t_state_lock, flags);
3046 if (cmd->transport_state & CMD_T_ABORTED) {
3047 tmr->response = TMR_FUNCTION_REJECTED;
3048 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3049 goto check_stop;
3050 }
3051 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3052
3053 switch (tmr->function) {
3054 case TMR_ABORT_TASK:
3055 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3056 break;
3057 case TMR_ABORT_TASK_SET:
3058 case TMR_CLEAR_ACA:
3059 case TMR_CLEAR_TASK_SET:
3060 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3061 break;
3062 case TMR_LUN_RESET:
3063 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3064 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3065 TMR_FUNCTION_REJECTED;
3066 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3067 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3068 cmd->orig_fe_lun, 0x29,
3069 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3070 }
3071 break;
3072 case TMR_TARGET_WARM_RESET:
3073 tmr->response = TMR_FUNCTION_REJECTED;
3074 break;
3075 case TMR_TARGET_COLD_RESET:
3076 tmr->response = TMR_FUNCTION_REJECTED;
3077 break;
3078 default:
3079 pr_err("Uknown TMR function: 0x%02x.\n",
3080 tmr->function);
3081 tmr->response = TMR_FUNCTION_REJECTED;
3082 break;
3083 }
3084
3085 spin_lock_irqsave(&cmd->t_state_lock, flags);
3086 if (cmd->transport_state & CMD_T_ABORTED) {
3087 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3088 goto check_stop;
3089 }
3090 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3091 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3092
3093 cmd->se_tfo->queue_tm_rsp(cmd);
3094
3095 check_stop:
3096 transport_cmd_check_stop_to_fabric(cmd);
3097 }
3098
3099 int transport_generic_handle_tmr(
3100 struct se_cmd *cmd)
3101 {
3102 unsigned long flags;
3103
3104 spin_lock_irqsave(&cmd->t_state_lock, flags);
3105 cmd->transport_state |= CMD_T_ACTIVE;
3106 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3107
3108 INIT_WORK(&cmd->work, target_tmr_work);
3109 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3110 return 0;
3111 }
3112 EXPORT_SYMBOL(transport_generic_handle_tmr);
3113
3114 bool
3115 target_check_wce(struct se_device *dev)
3116 {
3117 bool wce = false;
3118
3119 if (dev->transport->get_write_cache)
3120 wce = dev->transport->get_write_cache(dev);
3121 else if (dev->dev_attrib.emulate_write_cache > 0)
3122 wce = true;
3123
3124 return wce;
3125 }
3126
3127 bool
3128 target_check_fua(struct se_device *dev)
3129 {
3130 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3131 }
This page took 0.135169 seconds and 6 git commands to generate.