15eb4c3d793c2718bb7da61a79cc0c8e771c90de
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29
30 #include "xhci.h"
31
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
34
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
47 *
48 * Returns negative errno, or zero on success
49 *
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
53 */
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
56 {
57 u32 result;
58
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
70 }
71
72 /*
73 * Disable interrupts and begin the xHCI halting process.
74 */
75 void xhci_quiesce(struct xhci_hcd *xhci)
76 {
77 u32 halted;
78 u32 cmd;
79 u32 mask;
80
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
85
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
89 }
90
91 /*
92 * Force HC into halt state.
93 *
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
98 */
99 int xhci_halt(struct xhci_hcd *xhci)
100 {
101 int ret;
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
104
105 ret = handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 if (!ret)
108 xhci->xhc_state |= XHCI_STATE_HALTED;
109 return ret;
110 }
111
112 /*
113 * Set the run bit and wait for the host to be running.
114 */
115 static int xhci_start(struct xhci_hcd *xhci)
116 {
117 u32 temp;
118 int ret;
119
120 temp = xhci_readl(xhci, &xhci->op_regs->command);
121 temp |= (CMD_RUN);
122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 temp);
124 xhci_writel(xhci, temp, &xhci->op_regs->command);
125
126 /*
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 * running.
129 */
130 ret = handshake(xhci, &xhci->op_regs->status,
131 STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 if (ret == -ETIMEDOUT)
133 xhci_err(xhci, "Host took too long to start, "
134 "waited %u microseconds.\n",
135 XHCI_MAX_HALT_USEC);
136 if (!ret)
137 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 return ret;
139 }
140
141 /*
142 * Reset a halted HC.
143 *
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
147 */
148 int xhci_reset(struct xhci_hcd *xhci)
149 {
150 u32 command;
151 u32 state;
152 int ret;
153
154 state = xhci_readl(xhci, &xhci->op_regs->status);
155 if ((state & STS_HALT) == 0) {
156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 return 0;
158 }
159
160 xhci_dbg(xhci, "// Reset the HC\n");
161 command = xhci_readl(xhci, &xhci->op_regs->command);
162 command |= CMD_RESET;
163 xhci_writel(xhci, command, &xhci->op_regs->command);
164
165 ret = handshake(xhci, &xhci->op_regs->command,
166 CMD_RESET, 0, 250 * 1000);
167 if (ret)
168 return ret;
169
170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
171 /*
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
174 */
175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
176 }
177
178 /*
179 * Free IRQs
180 * free all IRQs request
181 */
182 static void xhci_free_irq(struct xhci_hcd *xhci)
183 {
184 int i;
185 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
186
187 /* return if using legacy interrupt */
188 if (xhci_to_hcd(xhci)->irq >= 0)
189 return;
190
191 if (xhci->msix_entries) {
192 for (i = 0; i < xhci->msix_count; i++)
193 if (xhci->msix_entries[i].vector)
194 free_irq(xhci->msix_entries[i].vector,
195 xhci_to_hcd(xhci));
196 } else if (pdev->irq >= 0)
197 free_irq(pdev->irq, xhci_to_hcd(xhci));
198
199 return;
200 }
201
202 /*
203 * Set up MSI
204 */
205 static int xhci_setup_msi(struct xhci_hcd *xhci)
206 {
207 int ret;
208 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
209
210 ret = pci_enable_msi(pdev);
211 if (ret) {
212 xhci_err(xhci, "failed to allocate MSI entry\n");
213 return ret;
214 }
215
216 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
217 0, "xhci_hcd", xhci_to_hcd(xhci));
218 if (ret) {
219 xhci_err(xhci, "disable MSI interrupt\n");
220 pci_disable_msi(pdev);
221 }
222
223 return ret;
224 }
225
226 /*
227 * Set up MSI-X
228 */
229 static int xhci_setup_msix(struct xhci_hcd *xhci)
230 {
231 int i, ret = 0;
232 struct usb_hcd *hcd = xhci_to_hcd(xhci);
233 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
234
235 /*
236 * calculate number of msi-x vectors supported.
237 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
238 * with max number of interrupters based on the xhci HCSPARAMS1.
239 * - num_online_cpus: maximum msi-x vectors per CPUs core.
240 * Add additional 1 vector to ensure always available interrupt.
241 */
242 xhci->msix_count = min(num_online_cpus() + 1,
243 HCS_MAX_INTRS(xhci->hcs_params1));
244
245 xhci->msix_entries =
246 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
247 GFP_KERNEL);
248 if (!xhci->msix_entries) {
249 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
250 return -ENOMEM;
251 }
252
253 for (i = 0; i < xhci->msix_count; i++) {
254 xhci->msix_entries[i].entry = i;
255 xhci->msix_entries[i].vector = 0;
256 }
257
258 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
259 if (ret) {
260 xhci_err(xhci, "Failed to enable MSI-X\n");
261 goto free_entries;
262 }
263
264 for (i = 0; i < xhci->msix_count; i++) {
265 ret = request_irq(xhci->msix_entries[i].vector,
266 (irq_handler_t)xhci_msi_irq,
267 0, "xhci_hcd", xhci_to_hcd(xhci));
268 if (ret)
269 goto disable_msix;
270 }
271
272 hcd->msix_enabled = 1;
273 return ret;
274
275 disable_msix:
276 xhci_err(xhci, "disable MSI-X interrupt\n");
277 xhci_free_irq(xhci);
278 pci_disable_msix(pdev);
279 free_entries:
280 kfree(xhci->msix_entries);
281 xhci->msix_entries = NULL;
282 return ret;
283 }
284
285 /* Free any IRQs and disable MSI-X */
286 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
287 {
288 struct usb_hcd *hcd = xhci_to_hcd(xhci);
289 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
290
291 xhci_free_irq(xhci);
292
293 if (xhci->msix_entries) {
294 pci_disable_msix(pdev);
295 kfree(xhci->msix_entries);
296 xhci->msix_entries = NULL;
297 } else {
298 pci_disable_msi(pdev);
299 }
300
301 hcd->msix_enabled = 0;
302 return;
303 }
304
305 /*
306 * Initialize memory for HCD and xHC (one-time init).
307 *
308 * Program the PAGESIZE register, initialize the device context array, create
309 * device contexts (?), set up a command ring segment (or two?), create event
310 * ring (one for now).
311 */
312 int xhci_init(struct usb_hcd *hcd)
313 {
314 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
315 int retval = 0;
316
317 xhci_dbg(xhci, "xhci_init\n");
318 spin_lock_init(&xhci->lock);
319 if (link_quirk) {
320 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
321 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
322 } else {
323 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
324 }
325 retval = xhci_mem_init(xhci, GFP_KERNEL);
326 xhci_dbg(xhci, "Finished xhci_init\n");
327
328 return retval;
329 }
330
331 /*-------------------------------------------------------------------------*/
332
333
334 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
335 static void xhci_event_ring_work(unsigned long arg)
336 {
337 unsigned long flags;
338 int temp;
339 u64 temp_64;
340 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
341 int i, j;
342
343 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
344
345 spin_lock_irqsave(&xhci->lock, flags);
346 temp = xhci_readl(xhci, &xhci->op_regs->status);
347 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
348 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
349 xhci_dbg(xhci, "HW died, polling stopped.\n");
350 spin_unlock_irqrestore(&xhci->lock, flags);
351 return;
352 }
353
354 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
355 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
356 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
357 xhci->error_bitmask = 0;
358 xhci_dbg(xhci, "Event ring:\n");
359 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
360 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
361 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
362 temp_64 &= ~ERST_PTR_MASK;
363 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
364 xhci_dbg(xhci, "Command ring:\n");
365 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
366 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
367 xhci_dbg_cmd_ptrs(xhci);
368 for (i = 0; i < MAX_HC_SLOTS; ++i) {
369 if (!xhci->devs[i])
370 continue;
371 for (j = 0; j < 31; ++j) {
372 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
373 }
374 }
375 spin_unlock_irqrestore(&xhci->lock, flags);
376
377 if (!xhci->zombie)
378 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
379 else
380 xhci_dbg(xhci, "Quit polling the event ring.\n");
381 }
382 #endif
383
384 static int xhci_run_finished(struct xhci_hcd *xhci)
385 {
386 if (xhci_start(xhci)) {
387 xhci_halt(xhci);
388 return -ENODEV;
389 }
390 xhci->shared_hcd->state = HC_STATE_RUNNING;
391
392 if (xhci->quirks & XHCI_NEC_HOST)
393 xhci_ring_cmd_db(xhci);
394
395 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
396 return 0;
397 }
398
399 /*
400 * Start the HC after it was halted.
401 *
402 * This function is called by the USB core when the HC driver is added.
403 * Its opposite is xhci_stop().
404 *
405 * xhci_init() must be called once before this function can be called.
406 * Reset the HC, enable device slot contexts, program DCBAAP, and
407 * set command ring pointer and event ring pointer.
408 *
409 * Setup MSI-X vectors and enable interrupts.
410 */
411 int xhci_run(struct usb_hcd *hcd)
412 {
413 u32 temp;
414 u64 temp_64;
415 u32 ret;
416 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
417 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418
419 /* Start the xHCI host controller running only after the USB 2.0 roothub
420 * is setup.
421 */
422
423 hcd->uses_new_polling = 1;
424 if (!usb_hcd_is_primary_hcd(hcd))
425 return xhci_run_finished(xhci);
426
427 xhci_dbg(xhci, "xhci_run\n");
428 /* unregister the legacy interrupt */
429 if (hcd->irq)
430 free_irq(hcd->irq, hcd);
431 hcd->irq = -1;
432
433 /* Some Fresco Logic host controllers advertise MSI, but fail to
434 * generate interrupts. Don't even try to enable MSI.
435 */
436 if (xhci->quirks & XHCI_BROKEN_MSI)
437 goto legacy_irq;
438
439 ret = xhci_setup_msix(xhci);
440 if (ret)
441 /* fall back to msi*/
442 ret = xhci_setup_msi(xhci);
443
444 if (ret) {
445 legacy_irq:
446 /* fall back to legacy interrupt*/
447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 hcd->irq_descr, hcd);
449 if (ret) {
450 xhci_err(xhci, "request interrupt %d failed\n",
451 pdev->irq);
452 return ret;
453 }
454 hcd->irq = pdev->irq;
455 }
456
457 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
458 init_timer(&xhci->event_ring_timer);
459 xhci->event_ring_timer.data = (unsigned long) xhci;
460 xhci->event_ring_timer.function = xhci_event_ring_work;
461 /* Poll the event ring */
462 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
463 xhci->zombie = 0;
464 xhci_dbg(xhci, "Setting event ring polling timer\n");
465 add_timer(&xhci->event_ring_timer);
466 #endif
467
468 xhci_dbg(xhci, "Command ring memory map follows:\n");
469 xhci_debug_ring(xhci, xhci->cmd_ring);
470 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
471 xhci_dbg_cmd_ptrs(xhci);
472
473 xhci_dbg(xhci, "ERST memory map follows:\n");
474 xhci_dbg_erst(xhci, &xhci->erst);
475 xhci_dbg(xhci, "Event ring:\n");
476 xhci_debug_ring(xhci, xhci->event_ring);
477 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
478 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
479 temp_64 &= ~ERST_PTR_MASK;
480 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
481
482 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
483 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
484 temp &= ~ER_IRQ_INTERVAL_MASK;
485 temp |= (u32) 160;
486 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
487
488 /* Set the HCD state before we enable the irqs */
489 temp = xhci_readl(xhci, &xhci->op_regs->command);
490 temp |= (CMD_EIE);
491 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
492 temp);
493 xhci_writel(xhci, temp, &xhci->op_regs->command);
494
495 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
496 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
497 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
498 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
499 &xhci->ir_set->irq_pending);
500 xhci_print_ir_set(xhci, 0);
501
502 if (xhci->quirks & XHCI_NEC_HOST)
503 xhci_queue_vendor_command(xhci, 0, 0, 0,
504 TRB_TYPE(TRB_NEC_GET_FW));
505
506 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
507 return 0;
508 }
509
510 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
511 {
512 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
513
514 spin_lock_irq(&xhci->lock);
515 xhci_halt(xhci);
516
517 /* The shared_hcd is going to be deallocated shortly (the USB core only
518 * calls this function when allocation fails in usb_add_hcd(), or
519 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
520 */
521 xhci->shared_hcd = NULL;
522 spin_unlock_irq(&xhci->lock);
523 }
524
525 /*
526 * Stop xHCI driver.
527 *
528 * This function is called by the USB core when the HC driver is removed.
529 * Its opposite is xhci_run().
530 *
531 * Disable device contexts, disable IRQs, and quiesce the HC.
532 * Reset the HC, finish any completed transactions, and cleanup memory.
533 */
534 void xhci_stop(struct usb_hcd *hcd)
535 {
536 u32 temp;
537 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
538
539 if (!usb_hcd_is_primary_hcd(hcd)) {
540 xhci_only_stop_hcd(xhci->shared_hcd);
541 return;
542 }
543
544 spin_lock_irq(&xhci->lock);
545 /* Make sure the xHC is halted for a USB3 roothub
546 * (xhci_stop() could be called as part of failed init).
547 */
548 xhci_halt(xhci);
549 xhci_reset(xhci);
550 spin_unlock_irq(&xhci->lock);
551
552 xhci_cleanup_msix(xhci);
553
554 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
555 /* Tell the event ring poll function not to reschedule */
556 xhci->zombie = 1;
557 del_timer_sync(&xhci->event_ring_timer);
558 #endif
559
560 if (xhci->quirks & XHCI_AMD_PLL_FIX)
561 usb_amd_dev_put();
562
563 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
564 temp = xhci_readl(xhci, &xhci->op_regs->status);
565 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
566 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
567 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
568 &xhci->ir_set->irq_pending);
569 xhci_print_ir_set(xhci, 0);
570
571 xhci_dbg(xhci, "cleaning up memory\n");
572 xhci_mem_cleanup(xhci);
573 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
574 xhci_readl(xhci, &xhci->op_regs->status));
575 }
576
577 /*
578 * Shutdown HC (not bus-specific)
579 *
580 * This is called when the machine is rebooting or halting. We assume that the
581 * machine will be powered off, and the HC's internal state will be reset.
582 * Don't bother to free memory.
583 *
584 * This will only ever be called with the main usb_hcd (the USB3 roothub).
585 */
586 void xhci_shutdown(struct usb_hcd *hcd)
587 {
588 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
589
590 spin_lock_irq(&xhci->lock);
591 xhci_halt(xhci);
592 spin_unlock_irq(&xhci->lock);
593
594 xhci_cleanup_msix(xhci);
595
596 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
597 xhci_readl(xhci, &xhci->op_regs->status));
598 }
599
600 #ifdef CONFIG_PM
601 static void xhci_save_registers(struct xhci_hcd *xhci)
602 {
603 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
604 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
605 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
606 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
607 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
608 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
609 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
610 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
611 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
612 }
613
614 static void xhci_restore_registers(struct xhci_hcd *xhci)
615 {
616 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
617 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
618 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
619 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
620 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
621 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
622 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
623 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
624 }
625
626 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
627 {
628 u64 val_64;
629
630 /* step 2: initialize command ring buffer */
631 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
632 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
633 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
634 xhci->cmd_ring->dequeue) &
635 (u64) ~CMD_RING_RSVD_BITS) |
636 xhci->cmd_ring->cycle_state;
637 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
638 (long unsigned long) val_64);
639 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
640 }
641
642 /*
643 * The whole command ring must be cleared to zero when we suspend the host.
644 *
645 * The host doesn't save the command ring pointer in the suspend well, so we
646 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
647 * aligned, because of the reserved bits in the command ring dequeue pointer
648 * register. Therefore, we can't just set the dequeue pointer back in the
649 * middle of the ring (TRBs are 16-byte aligned).
650 */
651 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
652 {
653 struct xhci_ring *ring;
654 struct xhci_segment *seg;
655
656 ring = xhci->cmd_ring;
657 seg = ring->deq_seg;
658 do {
659 memset(seg->trbs, 0, SEGMENT_SIZE);
660 seg = seg->next;
661 } while (seg != ring->deq_seg);
662
663 /* Reset the software enqueue and dequeue pointers */
664 ring->deq_seg = ring->first_seg;
665 ring->dequeue = ring->first_seg->trbs;
666 ring->enq_seg = ring->deq_seg;
667 ring->enqueue = ring->dequeue;
668
669 /*
670 * Ring is now zeroed, so the HW should look for change of ownership
671 * when the cycle bit is set to 1.
672 */
673 ring->cycle_state = 1;
674
675 /*
676 * Reset the hardware dequeue pointer.
677 * Yes, this will need to be re-written after resume, but we're paranoid
678 * and want to make sure the hardware doesn't access bogus memory
679 * because, say, the BIOS or an SMI started the host without changing
680 * the command ring pointers.
681 */
682 xhci_set_cmd_ring_deq(xhci);
683 }
684
685 /*
686 * Stop HC (not bus-specific)
687 *
688 * This is called when the machine transition into S3/S4 mode.
689 *
690 */
691 int xhci_suspend(struct xhci_hcd *xhci)
692 {
693 int rc = 0;
694 struct usb_hcd *hcd = xhci_to_hcd(xhci);
695 u32 command;
696 int i;
697
698 spin_lock_irq(&xhci->lock);
699 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
700 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
701 /* step 1: stop endpoint */
702 /* skipped assuming that port suspend has done */
703
704 /* step 2: clear Run/Stop bit */
705 command = xhci_readl(xhci, &xhci->op_regs->command);
706 command &= ~CMD_RUN;
707 xhci_writel(xhci, command, &xhci->op_regs->command);
708 if (handshake(xhci, &xhci->op_regs->status,
709 STS_HALT, STS_HALT, 100*100)) {
710 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
711 spin_unlock_irq(&xhci->lock);
712 return -ETIMEDOUT;
713 }
714 xhci_clear_command_ring(xhci);
715
716 /* step 3: save registers */
717 xhci_save_registers(xhci);
718
719 /* step 4: set CSS flag */
720 command = xhci_readl(xhci, &xhci->op_regs->command);
721 command |= CMD_CSS;
722 xhci_writel(xhci, command, &xhci->op_regs->command);
723 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
724 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
725 spin_unlock_irq(&xhci->lock);
726 return -ETIMEDOUT;
727 }
728 spin_unlock_irq(&xhci->lock);
729
730 /* step 5: remove core well power */
731 /* synchronize irq when using MSI-X */
732 if (xhci->msix_entries) {
733 for (i = 0; i < xhci->msix_count; i++)
734 synchronize_irq(xhci->msix_entries[i].vector);
735 }
736
737 return rc;
738 }
739
740 /*
741 * start xHC (not bus-specific)
742 *
743 * This is called when the machine transition from S3/S4 mode.
744 *
745 */
746 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
747 {
748 u32 command, temp = 0;
749 struct usb_hcd *hcd = xhci_to_hcd(xhci);
750 struct usb_hcd *secondary_hcd;
751 int retval;
752
753 /* Wait a bit if either of the roothubs need to settle from the
754 * transition into bus suspend.
755 */
756 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
757 time_before(jiffies,
758 xhci->bus_state[1].next_statechange))
759 msleep(100);
760
761 spin_lock_irq(&xhci->lock);
762
763 if (!hibernated) {
764 /* step 1: restore register */
765 xhci_restore_registers(xhci);
766 /* step 2: initialize command ring buffer */
767 xhci_set_cmd_ring_deq(xhci);
768 /* step 3: restore state and start state*/
769 /* step 3: set CRS flag */
770 command = xhci_readl(xhci, &xhci->op_regs->command);
771 command |= CMD_CRS;
772 xhci_writel(xhci, command, &xhci->op_regs->command);
773 if (handshake(xhci, &xhci->op_regs->status,
774 STS_RESTORE, 0, 10*100)) {
775 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
776 spin_unlock_irq(&xhci->lock);
777 return -ETIMEDOUT;
778 }
779 temp = xhci_readl(xhci, &xhci->op_regs->status);
780 }
781
782 /* If restore operation fails, re-initialize the HC during resume */
783 if ((temp & STS_SRE) || hibernated) {
784 /* Let the USB core know _both_ roothubs lost power. */
785 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
786 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
787
788 xhci_dbg(xhci, "Stop HCD\n");
789 xhci_halt(xhci);
790 xhci_reset(xhci);
791 spin_unlock_irq(&xhci->lock);
792 xhci_cleanup_msix(xhci);
793
794 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
795 /* Tell the event ring poll function not to reschedule */
796 xhci->zombie = 1;
797 del_timer_sync(&xhci->event_ring_timer);
798 #endif
799
800 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
801 temp = xhci_readl(xhci, &xhci->op_regs->status);
802 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
803 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
804 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
805 &xhci->ir_set->irq_pending);
806 xhci_print_ir_set(xhci, 0);
807
808 xhci_dbg(xhci, "cleaning up memory\n");
809 xhci_mem_cleanup(xhci);
810 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
811 xhci_readl(xhci, &xhci->op_regs->status));
812
813 /* USB core calls the PCI reinit and start functions twice:
814 * first with the primary HCD, and then with the secondary HCD.
815 * If we don't do the same, the host will never be started.
816 */
817 if (!usb_hcd_is_primary_hcd(hcd))
818 secondary_hcd = hcd;
819 else
820 secondary_hcd = xhci->shared_hcd;
821
822 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
823 retval = xhci_init(hcd->primary_hcd);
824 if (retval)
825 return retval;
826 xhci_dbg(xhci, "Start the primary HCD\n");
827 retval = xhci_run(hcd->primary_hcd);
828 if (retval)
829 goto failed_restart;
830
831 xhci_dbg(xhci, "Start the secondary HCD\n");
832 retval = xhci_run(secondary_hcd);
833 if (!retval) {
834 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
835 set_bit(HCD_FLAG_HW_ACCESSIBLE,
836 &xhci->shared_hcd->flags);
837 }
838 failed_restart:
839 hcd->state = HC_STATE_SUSPENDED;
840 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
841 return retval;
842 }
843
844 /* step 4: set Run/Stop bit */
845 command = xhci_readl(xhci, &xhci->op_regs->command);
846 command |= CMD_RUN;
847 xhci_writel(xhci, command, &xhci->op_regs->command);
848 handshake(xhci, &xhci->op_regs->status, STS_HALT,
849 0, 250 * 1000);
850
851 /* step 5: walk topology and initialize portsc,
852 * portpmsc and portli
853 */
854 /* this is done in bus_resume */
855
856 /* step 6: restart each of the previously
857 * Running endpoints by ringing their doorbells
858 */
859
860 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
861 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
862
863 spin_unlock_irq(&xhci->lock);
864 return 0;
865 }
866 #endif /* CONFIG_PM */
867
868 /*-------------------------------------------------------------------------*/
869
870 /**
871 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
872 * HCDs. Find the index for an endpoint given its descriptor. Use the return
873 * value to right shift 1 for the bitmask.
874 *
875 * Index = (epnum * 2) + direction - 1,
876 * where direction = 0 for OUT, 1 for IN.
877 * For control endpoints, the IN index is used (OUT index is unused), so
878 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
879 */
880 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
881 {
882 unsigned int index;
883 if (usb_endpoint_xfer_control(desc))
884 index = (unsigned int) (usb_endpoint_num(desc)*2);
885 else
886 index = (unsigned int) (usb_endpoint_num(desc)*2) +
887 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
888 return index;
889 }
890
891 /* Find the flag for this endpoint (for use in the control context). Use the
892 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
893 * bit 1, etc.
894 */
895 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
896 {
897 return 1 << (xhci_get_endpoint_index(desc) + 1);
898 }
899
900 /* Find the flag for this endpoint (for use in the control context). Use the
901 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
902 * bit 1, etc.
903 */
904 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
905 {
906 return 1 << (ep_index + 1);
907 }
908
909 /* Compute the last valid endpoint context index. Basically, this is the
910 * endpoint index plus one. For slot contexts with more than valid endpoint,
911 * we find the most significant bit set in the added contexts flags.
912 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
913 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
914 */
915 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
916 {
917 return fls(added_ctxs) - 1;
918 }
919
920 /* Returns 1 if the arguments are OK;
921 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
922 */
923 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
924 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
925 const char *func) {
926 struct xhci_hcd *xhci;
927 struct xhci_virt_device *virt_dev;
928
929 if (!hcd || (check_ep && !ep) || !udev) {
930 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
931 func);
932 return -EINVAL;
933 }
934 if (!udev->parent) {
935 printk(KERN_DEBUG "xHCI %s called for root hub\n",
936 func);
937 return 0;
938 }
939
940 if (check_virt_dev) {
941 xhci = hcd_to_xhci(hcd);
942 if (!udev->slot_id || !xhci->devs
943 || !xhci->devs[udev->slot_id]) {
944 printk(KERN_DEBUG "xHCI %s called with unaddressed "
945 "device\n", func);
946 return -EINVAL;
947 }
948
949 virt_dev = xhci->devs[udev->slot_id];
950 if (virt_dev->udev != udev) {
951 printk(KERN_DEBUG "xHCI %s called with udev and "
952 "virt_dev does not match\n", func);
953 return -EINVAL;
954 }
955 }
956
957 return 1;
958 }
959
960 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
961 struct usb_device *udev, struct xhci_command *command,
962 bool ctx_change, bool must_succeed);
963
964 /*
965 * Full speed devices may have a max packet size greater than 8 bytes, but the
966 * USB core doesn't know that until it reads the first 8 bytes of the
967 * descriptor. If the usb_device's max packet size changes after that point,
968 * we need to issue an evaluate context command and wait on it.
969 */
970 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
971 unsigned int ep_index, struct urb *urb)
972 {
973 struct xhci_container_ctx *in_ctx;
974 struct xhci_container_ctx *out_ctx;
975 struct xhci_input_control_ctx *ctrl_ctx;
976 struct xhci_ep_ctx *ep_ctx;
977 int max_packet_size;
978 int hw_max_packet_size;
979 int ret = 0;
980
981 out_ctx = xhci->devs[slot_id]->out_ctx;
982 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
983 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
984 max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
985 if (hw_max_packet_size != max_packet_size) {
986 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
987 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
988 max_packet_size);
989 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
990 hw_max_packet_size);
991 xhci_dbg(xhci, "Issuing evaluate context command.\n");
992
993 /* Set up the modified control endpoint 0 */
994 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
995 xhci->devs[slot_id]->out_ctx, ep_index);
996 in_ctx = xhci->devs[slot_id]->in_ctx;
997 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
998 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
999 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1000
1001 /* Set up the input context flags for the command */
1002 /* FIXME: This won't work if a non-default control endpoint
1003 * changes max packet sizes.
1004 */
1005 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1006 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1007 ctrl_ctx->drop_flags = 0;
1008
1009 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1010 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1011 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1012 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1013
1014 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1015 true, false);
1016
1017 /* Clean up the input context for later use by bandwidth
1018 * functions.
1019 */
1020 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1021 }
1022 return ret;
1023 }
1024
1025 /*
1026 * non-error returns are a promise to giveback() the urb later
1027 * we drop ownership so next owner (or urb unlink) can get it
1028 */
1029 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1030 {
1031 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1032 unsigned long flags;
1033 int ret = 0;
1034 unsigned int slot_id, ep_index;
1035 struct urb_priv *urb_priv;
1036 int size, i;
1037
1038 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1039 true, true, __func__) <= 0)
1040 return -EINVAL;
1041
1042 slot_id = urb->dev->slot_id;
1043 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1044
1045 if (!HCD_HW_ACCESSIBLE(hcd)) {
1046 if (!in_interrupt())
1047 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1048 ret = -ESHUTDOWN;
1049 goto exit;
1050 }
1051
1052 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1053 size = urb->number_of_packets;
1054 else
1055 size = 1;
1056
1057 urb_priv = kzalloc(sizeof(struct urb_priv) +
1058 size * sizeof(struct xhci_td *), mem_flags);
1059 if (!urb_priv)
1060 return -ENOMEM;
1061
1062 for (i = 0; i < size; i++) {
1063 urb_priv->td[i] = kzalloc(sizeof(struct xhci_td), mem_flags);
1064 if (!urb_priv->td[i]) {
1065 urb_priv->length = i;
1066 xhci_urb_free_priv(xhci, urb_priv);
1067 return -ENOMEM;
1068 }
1069 }
1070
1071 urb_priv->length = size;
1072 urb_priv->td_cnt = 0;
1073 urb->hcpriv = urb_priv;
1074
1075 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1076 /* Check to see if the max packet size for the default control
1077 * endpoint changed during FS device enumeration
1078 */
1079 if (urb->dev->speed == USB_SPEED_FULL) {
1080 ret = xhci_check_maxpacket(xhci, slot_id,
1081 ep_index, urb);
1082 if (ret < 0)
1083 return ret;
1084 }
1085
1086 /* We have a spinlock and interrupts disabled, so we must pass
1087 * atomic context to this function, which may allocate memory.
1088 */
1089 spin_lock_irqsave(&xhci->lock, flags);
1090 if (xhci->xhc_state & XHCI_STATE_DYING)
1091 goto dying;
1092 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1093 slot_id, ep_index);
1094 spin_unlock_irqrestore(&xhci->lock, flags);
1095 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1096 spin_lock_irqsave(&xhci->lock, flags);
1097 if (xhci->xhc_state & XHCI_STATE_DYING)
1098 goto dying;
1099 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1100 EP_GETTING_STREAMS) {
1101 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1102 "is transitioning to using streams.\n");
1103 ret = -EINVAL;
1104 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1105 EP_GETTING_NO_STREAMS) {
1106 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1107 "is transitioning to "
1108 "not having streams.\n");
1109 ret = -EINVAL;
1110 } else {
1111 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1112 slot_id, ep_index);
1113 }
1114 spin_unlock_irqrestore(&xhci->lock, flags);
1115 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1116 spin_lock_irqsave(&xhci->lock, flags);
1117 if (xhci->xhc_state & XHCI_STATE_DYING)
1118 goto dying;
1119 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1120 slot_id, ep_index);
1121 spin_unlock_irqrestore(&xhci->lock, flags);
1122 } else {
1123 spin_lock_irqsave(&xhci->lock, flags);
1124 if (xhci->xhc_state & XHCI_STATE_DYING)
1125 goto dying;
1126 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1127 slot_id, ep_index);
1128 spin_unlock_irqrestore(&xhci->lock, flags);
1129 }
1130 exit:
1131 return ret;
1132 dying:
1133 xhci_urb_free_priv(xhci, urb_priv);
1134 urb->hcpriv = NULL;
1135 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1136 "non-responsive xHCI host.\n",
1137 urb->ep->desc.bEndpointAddress, urb);
1138 spin_unlock_irqrestore(&xhci->lock, flags);
1139 return -ESHUTDOWN;
1140 }
1141
1142 /* Get the right ring for the given URB.
1143 * If the endpoint supports streams, boundary check the URB's stream ID.
1144 * If the endpoint doesn't support streams, return the singular endpoint ring.
1145 */
1146 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1147 struct urb *urb)
1148 {
1149 unsigned int slot_id;
1150 unsigned int ep_index;
1151 unsigned int stream_id;
1152 struct xhci_virt_ep *ep;
1153
1154 slot_id = urb->dev->slot_id;
1155 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1156 stream_id = urb->stream_id;
1157 ep = &xhci->devs[slot_id]->eps[ep_index];
1158 /* Common case: no streams */
1159 if (!(ep->ep_state & EP_HAS_STREAMS))
1160 return ep->ring;
1161
1162 if (stream_id == 0) {
1163 xhci_warn(xhci,
1164 "WARN: Slot ID %u, ep index %u has streams, "
1165 "but URB has no stream ID.\n",
1166 slot_id, ep_index);
1167 return NULL;
1168 }
1169
1170 if (stream_id < ep->stream_info->num_streams)
1171 return ep->stream_info->stream_rings[stream_id];
1172
1173 xhci_warn(xhci,
1174 "WARN: Slot ID %u, ep index %u has "
1175 "stream IDs 1 to %u allocated, "
1176 "but stream ID %u is requested.\n",
1177 slot_id, ep_index,
1178 ep->stream_info->num_streams - 1,
1179 stream_id);
1180 return NULL;
1181 }
1182
1183 /*
1184 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1185 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1186 * should pick up where it left off in the TD, unless a Set Transfer Ring
1187 * Dequeue Pointer is issued.
1188 *
1189 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1190 * the ring. Since the ring is a contiguous structure, they can't be physically
1191 * removed. Instead, there are two options:
1192 *
1193 * 1) If the HC is in the middle of processing the URB to be canceled, we
1194 * simply move the ring's dequeue pointer past those TRBs using the Set
1195 * Transfer Ring Dequeue Pointer command. This will be the common case,
1196 * when drivers timeout on the last submitted URB and attempt to cancel.
1197 *
1198 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1199 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1200 * HC will need to invalidate the any TRBs it has cached after the stop
1201 * endpoint command, as noted in the xHCI 0.95 errata.
1202 *
1203 * 3) The TD may have completed by the time the Stop Endpoint Command
1204 * completes, so software needs to handle that case too.
1205 *
1206 * This function should protect against the TD enqueueing code ringing the
1207 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1208 * It also needs to account for multiple cancellations on happening at the same
1209 * time for the same endpoint.
1210 *
1211 * Note that this function can be called in any context, or so says
1212 * usb_hcd_unlink_urb()
1213 */
1214 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1215 {
1216 unsigned long flags;
1217 int ret, i;
1218 u32 temp;
1219 struct xhci_hcd *xhci;
1220 struct urb_priv *urb_priv;
1221 struct xhci_td *td;
1222 unsigned int ep_index;
1223 struct xhci_ring *ep_ring;
1224 struct xhci_virt_ep *ep;
1225
1226 xhci = hcd_to_xhci(hcd);
1227 spin_lock_irqsave(&xhci->lock, flags);
1228 /* Make sure the URB hasn't completed or been unlinked already */
1229 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1230 if (ret || !urb->hcpriv)
1231 goto done;
1232 temp = xhci_readl(xhci, &xhci->op_regs->status);
1233 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1234 xhci_dbg(xhci, "HW died, freeing TD.\n");
1235 urb_priv = urb->hcpriv;
1236
1237 usb_hcd_unlink_urb_from_ep(hcd, urb);
1238 spin_unlock_irqrestore(&xhci->lock, flags);
1239 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1240 xhci_urb_free_priv(xhci, urb_priv);
1241 return ret;
1242 }
1243 if (xhci->xhc_state & XHCI_STATE_DYING) {
1244 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1245 "non-responsive xHCI host.\n",
1246 urb->ep->desc.bEndpointAddress, urb);
1247 /* Let the stop endpoint command watchdog timer (which set this
1248 * state) finish cleaning up the endpoint TD lists. We must
1249 * have caught it in the middle of dropping a lock and giving
1250 * back an URB.
1251 */
1252 goto done;
1253 }
1254
1255 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1256 xhci_dbg(xhci, "Event ring:\n");
1257 xhci_debug_ring(xhci, xhci->event_ring);
1258 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1259 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1260 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1261 if (!ep_ring) {
1262 ret = -EINVAL;
1263 goto done;
1264 }
1265
1266 xhci_dbg(xhci, "Endpoint ring:\n");
1267 xhci_debug_ring(xhci, ep_ring);
1268
1269 urb_priv = urb->hcpriv;
1270
1271 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1272 td = urb_priv->td[i];
1273 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1274 }
1275
1276 /* Queue a stop endpoint command, but only if this is
1277 * the first cancellation to be handled.
1278 */
1279 if (!(ep->ep_state & EP_HALT_PENDING)) {
1280 ep->ep_state |= EP_HALT_PENDING;
1281 ep->stop_cmds_pending++;
1282 ep->stop_cmd_timer.expires = jiffies +
1283 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1284 add_timer(&ep->stop_cmd_timer);
1285 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1286 xhci_ring_cmd_db(xhci);
1287 }
1288 done:
1289 spin_unlock_irqrestore(&xhci->lock, flags);
1290 return ret;
1291 }
1292
1293 /* Drop an endpoint from a new bandwidth configuration for this device.
1294 * Only one call to this function is allowed per endpoint before
1295 * check_bandwidth() or reset_bandwidth() must be called.
1296 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1297 * add the endpoint to the schedule with possibly new parameters denoted by a
1298 * different endpoint descriptor in usb_host_endpoint.
1299 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1300 * not allowed.
1301 *
1302 * The USB core will not allow URBs to be queued to an endpoint that is being
1303 * disabled, so there's no need for mutual exclusion to protect
1304 * the xhci->devs[slot_id] structure.
1305 */
1306 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1307 struct usb_host_endpoint *ep)
1308 {
1309 struct xhci_hcd *xhci;
1310 struct xhci_container_ctx *in_ctx, *out_ctx;
1311 struct xhci_input_control_ctx *ctrl_ctx;
1312 struct xhci_slot_ctx *slot_ctx;
1313 unsigned int last_ctx;
1314 unsigned int ep_index;
1315 struct xhci_ep_ctx *ep_ctx;
1316 u32 drop_flag;
1317 u32 new_add_flags, new_drop_flags, new_slot_info;
1318 int ret;
1319
1320 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1321 if (ret <= 0)
1322 return ret;
1323 xhci = hcd_to_xhci(hcd);
1324 if (xhci->xhc_state & XHCI_STATE_DYING)
1325 return -ENODEV;
1326
1327 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1328 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1329 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1330 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1331 __func__, drop_flag);
1332 return 0;
1333 }
1334
1335 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1336 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1337 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1338 ep_index = xhci_get_endpoint_index(&ep->desc);
1339 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1340 /* If the HC already knows the endpoint is disabled,
1341 * or the HCD has noted it is disabled, ignore this request
1342 */
1343 if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
1344 EP_STATE_DISABLED ||
1345 le32_to_cpu(ctrl_ctx->drop_flags) &
1346 xhci_get_endpoint_flag(&ep->desc)) {
1347 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1348 __func__, ep);
1349 return 0;
1350 }
1351
1352 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1353 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1354
1355 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1356 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1357
1358 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1359 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1360 /* Update the last valid endpoint context, if we deleted the last one */
1361 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1362 LAST_CTX(last_ctx)) {
1363 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1364 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1365 }
1366 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1367
1368 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1369
1370 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1371 (unsigned int) ep->desc.bEndpointAddress,
1372 udev->slot_id,
1373 (unsigned int) new_drop_flags,
1374 (unsigned int) new_add_flags,
1375 (unsigned int) new_slot_info);
1376 return 0;
1377 }
1378
1379 /* Add an endpoint to a new possible bandwidth configuration for this device.
1380 * Only one call to this function is allowed per endpoint before
1381 * check_bandwidth() or reset_bandwidth() must be called.
1382 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1383 * add the endpoint to the schedule with possibly new parameters denoted by a
1384 * different endpoint descriptor in usb_host_endpoint.
1385 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1386 * not allowed.
1387 *
1388 * The USB core will not allow URBs to be queued to an endpoint until the
1389 * configuration or alt setting is installed in the device, so there's no need
1390 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1391 */
1392 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1393 struct usb_host_endpoint *ep)
1394 {
1395 struct xhci_hcd *xhci;
1396 struct xhci_container_ctx *in_ctx, *out_ctx;
1397 unsigned int ep_index;
1398 struct xhci_ep_ctx *ep_ctx;
1399 struct xhci_slot_ctx *slot_ctx;
1400 struct xhci_input_control_ctx *ctrl_ctx;
1401 u32 added_ctxs;
1402 unsigned int last_ctx;
1403 u32 new_add_flags, new_drop_flags, new_slot_info;
1404 struct xhci_virt_device *virt_dev;
1405 int ret = 0;
1406
1407 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1408 if (ret <= 0) {
1409 /* So we won't queue a reset ep command for a root hub */
1410 ep->hcpriv = NULL;
1411 return ret;
1412 }
1413 xhci = hcd_to_xhci(hcd);
1414 if (xhci->xhc_state & XHCI_STATE_DYING)
1415 return -ENODEV;
1416
1417 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1418 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1419 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1420 /* FIXME when we have to issue an evaluate endpoint command to
1421 * deal with ep0 max packet size changing once we get the
1422 * descriptors
1423 */
1424 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1425 __func__, added_ctxs);
1426 return 0;
1427 }
1428
1429 virt_dev = xhci->devs[udev->slot_id];
1430 in_ctx = virt_dev->in_ctx;
1431 out_ctx = virt_dev->out_ctx;
1432 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1433 ep_index = xhci_get_endpoint_index(&ep->desc);
1434 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1435
1436 /* If this endpoint is already in use, and the upper layers are trying
1437 * to add it again without dropping it, reject the addition.
1438 */
1439 if (virt_dev->eps[ep_index].ring &&
1440 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1441 xhci_get_endpoint_flag(&ep->desc))) {
1442 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1443 "without dropping it.\n",
1444 (unsigned int) ep->desc.bEndpointAddress);
1445 return -EINVAL;
1446 }
1447
1448 /* If the HCD has already noted the endpoint is enabled,
1449 * ignore this request.
1450 */
1451 if (le32_to_cpu(ctrl_ctx->add_flags) &
1452 xhci_get_endpoint_flag(&ep->desc)) {
1453 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1454 __func__, ep);
1455 return 0;
1456 }
1457
1458 /*
1459 * Configuration and alternate setting changes must be done in
1460 * process context, not interrupt context (or so documenation
1461 * for usb_set_interface() and usb_set_configuration() claim).
1462 */
1463 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1464 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1465 __func__, ep->desc.bEndpointAddress);
1466 return -ENOMEM;
1467 }
1468
1469 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1470 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1471
1472 /* If xhci_endpoint_disable() was called for this endpoint, but the
1473 * xHC hasn't been notified yet through the check_bandwidth() call,
1474 * this re-adds a new state for the endpoint from the new endpoint
1475 * descriptors. We must drop and re-add this endpoint, so we leave the
1476 * drop flags alone.
1477 */
1478 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1479
1480 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1481 /* Update the last valid endpoint context, if we just added one past */
1482 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1483 LAST_CTX(last_ctx)) {
1484 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1485 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1486 }
1487 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1488
1489 /* Store the usb_device pointer for later use */
1490 ep->hcpriv = udev;
1491
1492 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1493 (unsigned int) ep->desc.bEndpointAddress,
1494 udev->slot_id,
1495 (unsigned int) new_drop_flags,
1496 (unsigned int) new_add_flags,
1497 (unsigned int) new_slot_info);
1498 return 0;
1499 }
1500
1501 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1502 {
1503 struct xhci_input_control_ctx *ctrl_ctx;
1504 struct xhci_ep_ctx *ep_ctx;
1505 struct xhci_slot_ctx *slot_ctx;
1506 int i;
1507
1508 /* When a device's add flag and drop flag are zero, any subsequent
1509 * configure endpoint command will leave that endpoint's state
1510 * untouched. Make sure we don't leave any old state in the input
1511 * endpoint contexts.
1512 */
1513 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1514 ctrl_ctx->drop_flags = 0;
1515 ctrl_ctx->add_flags = 0;
1516 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1517 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1518 /* Endpoint 0 is always valid */
1519 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1520 for (i = 1; i < 31; ++i) {
1521 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1522 ep_ctx->ep_info = 0;
1523 ep_ctx->ep_info2 = 0;
1524 ep_ctx->deq = 0;
1525 ep_ctx->tx_info = 0;
1526 }
1527 }
1528
1529 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1530 struct usb_device *udev, u32 *cmd_status)
1531 {
1532 int ret;
1533
1534 switch (*cmd_status) {
1535 case COMP_ENOMEM:
1536 dev_warn(&udev->dev, "Not enough host controller resources "
1537 "for new device state.\n");
1538 ret = -ENOMEM;
1539 /* FIXME: can we allocate more resources for the HC? */
1540 break;
1541 case COMP_BW_ERR:
1542 dev_warn(&udev->dev, "Not enough bandwidth "
1543 "for new device state.\n");
1544 ret = -ENOSPC;
1545 /* FIXME: can we go back to the old state? */
1546 break;
1547 case COMP_TRB_ERR:
1548 /* the HCD set up something wrong */
1549 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1550 "add flag = 1, "
1551 "and endpoint is not disabled.\n");
1552 ret = -EINVAL;
1553 break;
1554 case COMP_DEV_ERR:
1555 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1556 "configure command.\n");
1557 ret = -ENODEV;
1558 break;
1559 case COMP_SUCCESS:
1560 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1561 ret = 0;
1562 break;
1563 default:
1564 xhci_err(xhci, "ERROR: unexpected command completion "
1565 "code 0x%x.\n", *cmd_status);
1566 ret = -EINVAL;
1567 break;
1568 }
1569 return ret;
1570 }
1571
1572 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1573 struct usb_device *udev, u32 *cmd_status)
1574 {
1575 int ret;
1576 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1577
1578 switch (*cmd_status) {
1579 case COMP_EINVAL:
1580 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1581 "context command.\n");
1582 ret = -EINVAL;
1583 break;
1584 case COMP_EBADSLT:
1585 dev_warn(&udev->dev, "WARN: slot not enabled for"
1586 "evaluate context command.\n");
1587 case COMP_CTX_STATE:
1588 dev_warn(&udev->dev, "WARN: invalid context state for "
1589 "evaluate context command.\n");
1590 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1591 ret = -EINVAL;
1592 break;
1593 case COMP_DEV_ERR:
1594 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1595 "context command.\n");
1596 ret = -ENODEV;
1597 break;
1598 case COMP_MEL_ERR:
1599 /* Max Exit Latency too large error */
1600 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1601 ret = -EINVAL;
1602 break;
1603 case COMP_SUCCESS:
1604 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1605 ret = 0;
1606 break;
1607 default:
1608 xhci_err(xhci, "ERROR: unexpected command completion "
1609 "code 0x%x.\n", *cmd_status);
1610 ret = -EINVAL;
1611 break;
1612 }
1613 return ret;
1614 }
1615
1616 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1617 struct xhci_container_ctx *in_ctx)
1618 {
1619 struct xhci_input_control_ctx *ctrl_ctx;
1620 u32 valid_add_flags;
1621 u32 valid_drop_flags;
1622
1623 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1624 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1625 * (bit 1). The default control endpoint is added during the Address
1626 * Device command and is never removed until the slot is disabled.
1627 */
1628 valid_add_flags = ctrl_ctx->add_flags >> 2;
1629 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1630
1631 /* Use hweight32 to count the number of ones in the add flags, or
1632 * number of endpoints added. Don't count endpoints that are changed
1633 * (both added and dropped).
1634 */
1635 return hweight32(valid_add_flags) -
1636 hweight32(valid_add_flags & valid_drop_flags);
1637 }
1638
1639 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1640 struct xhci_container_ctx *in_ctx)
1641 {
1642 struct xhci_input_control_ctx *ctrl_ctx;
1643 u32 valid_add_flags;
1644 u32 valid_drop_flags;
1645
1646 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1647 valid_add_flags = ctrl_ctx->add_flags >> 2;
1648 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1649
1650 return hweight32(valid_drop_flags) -
1651 hweight32(valid_add_flags & valid_drop_flags);
1652 }
1653
1654 /*
1655 * We need to reserve the new number of endpoints before the configure endpoint
1656 * command completes. We can't subtract the dropped endpoints from the number
1657 * of active endpoints until the command completes because we can oversubscribe
1658 * the host in this case:
1659 *
1660 * - the first configure endpoint command drops more endpoints than it adds
1661 * - a second configure endpoint command that adds more endpoints is queued
1662 * - the first configure endpoint command fails, so the config is unchanged
1663 * - the second command may succeed, even though there isn't enough resources
1664 *
1665 * Must be called with xhci->lock held.
1666 */
1667 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1668 struct xhci_container_ctx *in_ctx)
1669 {
1670 u32 added_eps;
1671
1672 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1673 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1674 xhci_dbg(xhci, "Not enough ep ctxs: "
1675 "%u active, need to add %u, limit is %u.\n",
1676 xhci->num_active_eps, added_eps,
1677 xhci->limit_active_eps);
1678 return -ENOMEM;
1679 }
1680 xhci->num_active_eps += added_eps;
1681 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1682 xhci->num_active_eps);
1683 return 0;
1684 }
1685
1686 /*
1687 * The configure endpoint was failed by the xHC for some other reason, so we
1688 * need to revert the resources that failed configuration would have used.
1689 *
1690 * Must be called with xhci->lock held.
1691 */
1692 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1693 struct xhci_container_ctx *in_ctx)
1694 {
1695 u32 num_failed_eps;
1696
1697 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1698 xhci->num_active_eps -= num_failed_eps;
1699 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1700 num_failed_eps,
1701 xhci->num_active_eps);
1702 }
1703
1704 /*
1705 * Now that the command has completed, clean up the active endpoint count by
1706 * subtracting out the endpoints that were dropped (but not changed).
1707 *
1708 * Must be called with xhci->lock held.
1709 */
1710 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1711 struct xhci_container_ctx *in_ctx)
1712 {
1713 u32 num_dropped_eps;
1714
1715 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1716 xhci->num_active_eps -= num_dropped_eps;
1717 if (num_dropped_eps)
1718 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1719 num_dropped_eps,
1720 xhci->num_active_eps);
1721 }
1722
1723 /* Issue a configure endpoint command or evaluate context command
1724 * and wait for it to finish.
1725 */
1726 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1727 struct usb_device *udev,
1728 struct xhci_command *command,
1729 bool ctx_change, bool must_succeed)
1730 {
1731 int ret;
1732 int timeleft;
1733 unsigned long flags;
1734 struct xhci_container_ctx *in_ctx;
1735 struct completion *cmd_completion;
1736 u32 *cmd_status;
1737 struct xhci_virt_device *virt_dev;
1738
1739 spin_lock_irqsave(&xhci->lock, flags);
1740 virt_dev = xhci->devs[udev->slot_id];
1741 if (command) {
1742 in_ctx = command->in_ctx;
1743 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1744 xhci_reserve_host_resources(xhci, in_ctx)) {
1745 spin_unlock_irqrestore(&xhci->lock, flags);
1746 xhci_warn(xhci, "Not enough host resources, "
1747 "active endpoint contexts = %u\n",
1748 xhci->num_active_eps);
1749 return -ENOMEM;
1750 }
1751
1752 cmd_completion = command->completion;
1753 cmd_status = &command->status;
1754 command->command_trb = xhci->cmd_ring->enqueue;
1755
1756 /* Enqueue pointer can be left pointing to the link TRB,
1757 * we must handle that
1758 */
1759 if ((le32_to_cpu(command->command_trb->link.control)
1760 & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
1761 command->command_trb =
1762 xhci->cmd_ring->enq_seg->next->trbs;
1763
1764 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
1765 } else {
1766 in_ctx = virt_dev->in_ctx;
1767 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
1768 xhci_reserve_host_resources(xhci, in_ctx)) {
1769 spin_unlock_irqrestore(&xhci->lock, flags);
1770 xhci_warn(xhci, "Not enough host resources, "
1771 "active endpoint contexts = %u\n",
1772 xhci->num_active_eps);
1773 return -ENOMEM;
1774 }
1775 cmd_completion = &virt_dev->cmd_completion;
1776 cmd_status = &virt_dev->cmd_status;
1777 }
1778 init_completion(cmd_completion);
1779
1780 if (!ctx_change)
1781 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
1782 udev->slot_id, must_succeed);
1783 else
1784 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
1785 udev->slot_id);
1786 if (ret < 0) {
1787 if (command)
1788 list_del(&command->cmd_list);
1789 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
1790 xhci_free_host_resources(xhci, in_ctx);
1791 spin_unlock_irqrestore(&xhci->lock, flags);
1792 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
1793 return -ENOMEM;
1794 }
1795 xhci_ring_cmd_db(xhci);
1796 spin_unlock_irqrestore(&xhci->lock, flags);
1797
1798 /* Wait for the configure endpoint command to complete */
1799 timeleft = wait_for_completion_interruptible_timeout(
1800 cmd_completion,
1801 USB_CTRL_SET_TIMEOUT);
1802 if (timeleft <= 0) {
1803 xhci_warn(xhci, "%s while waiting for %s command\n",
1804 timeleft == 0 ? "Timeout" : "Signal",
1805 ctx_change == 0 ?
1806 "configure endpoint" :
1807 "evaluate context");
1808 /* FIXME cancel the configure endpoint command */
1809 return -ETIME;
1810 }
1811
1812 if (!ctx_change)
1813 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
1814 else
1815 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
1816
1817 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
1818 spin_lock_irqsave(&xhci->lock, flags);
1819 /* If the command failed, remove the reserved resources.
1820 * Otherwise, clean up the estimate to include dropped eps.
1821 */
1822 if (ret)
1823 xhci_free_host_resources(xhci, in_ctx);
1824 else
1825 xhci_finish_resource_reservation(xhci, in_ctx);
1826 spin_unlock_irqrestore(&xhci->lock, flags);
1827 }
1828 return ret;
1829 }
1830
1831 /* Called after one or more calls to xhci_add_endpoint() or
1832 * xhci_drop_endpoint(). If this call fails, the USB core is expected
1833 * to call xhci_reset_bandwidth().
1834 *
1835 * Since we are in the middle of changing either configuration or
1836 * installing a new alt setting, the USB core won't allow URBs to be
1837 * enqueued for any endpoint on the old config or interface. Nothing
1838 * else should be touching the xhci->devs[slot_id] structure, so we
1839 * don't need to take the xhci->lock for manipulating that.
1840 */
1841 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1842 {
1843 int i;
1844 int ret = 0;
1845 struct xhci_hcd *xhci;
1846 struct xhci_virt_device *virt_dev;
1847 struct xhci_input_control_ctx *ctrl_ctx;
1848 struct xhci_slot_ctx *slot_ctx;
1849
1850 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1851 if (ret <= 0)
1852 return ret;
1853 xhci = hcd_to_xhci(hcd);
1854 if (xhci->xhc_state & XHCI_STATE_DYING)
1855 return -ENODEV;
1856
1857 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1858 virt_dev = xhci->devs[udev->slot_id];
1859
1860 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
1861 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1862 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1863 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
1864 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
1865 xhci_dbg(xhci, "New Input Control Context:\n");
1866 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1867 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
1868 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1869
1870 ret = xhci_configure_endpoint(xhci, udev, NULL,
1871 false, false);
1872 if (ret) {
1873 /* Callee should call reset_bandwidth() */
1874 return ret;
1875 }
1876
1877 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
1878 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
1879 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
1880
1881 /* Free any rings that were dropped, but not changed. */
1882 for (i = 1; i < 31; ++i) {
1883 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
1884 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
1885 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1886 }
1887 xhci_zero_in_ctx(xhci, virt_dev);
1888 /*
1889 * Install any rings for completely new endpoints or changed endpoints,
1890 * and free or cache any old rings from changed endpoints.
1891 */
1892 for (i = 1; i < 31; ++i) {
1893 if (!virt_dev->eps[i].new_ring)
1894 continue;
1895 /* Only cache or free the old ring if it exists.
1896 * It may not if this is the first add of an endpoint.
1897 */
1898 if (virt_dev->eps[i].ring) {
1899 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
1900 }
1901 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
1902 virt_dev->eps[i].new_ring = NULL;
1903 }
1904
1905 return ret;
1906 }
1907
1908 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
1909 {
1910 struct xhci_hcd *xhci;
1911 struct xhci_virt_device *virt_dev;
1912 int i, ret;
1913
1914 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
1915 if (ret <= 0)
1916 return;
1917 xhci = hcd_to_xhci(hcd);
1918
1919 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1920 virt_dev = xhci->devs[udev->slot_id];
1921 /* Free any rings allocated for added endpoints */
1922 for (i = 0; i < 31; ++i) {
1923 if (virt_dev->eps[i].new_ring) {
1924 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
1925 virt_dev->eps[i].new_ring = NULL;
1926 }
1927 }
1928 xhci_zero_in_ctx(xhci, virt_dev);
1929 }
1930
1931 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
1932 struct xhci_container_ctx *in_ctx,
1933 struct xhci_container_ctx *out_ctx,
1934 u32 add_flags, u32 drop_flags)
1935 {
1936 struct xhci_input_control_ctx *ctrl_ctx;
1937 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1938 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
1939 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
1940 xhci_slot_copy(xhci, in_ctx, out_ctx);
1941 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
1942
1943 xhci_dbg(xhci, "Input Context:\n");
1944 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
1945 }
1946
1947 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
1948 unsigned int slot_id, unsigned int ep_index,
1949 struct xhci_dequeue_state *deq_state)
1950 {
1951 struct xhci_container_ctx *in_ctx;
1952 struct xhci_ep_ctx *ep_ctx;
1953 u32 added_ctxs;
1954 dma_addr_t addr;
1955
1956 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1957 xhci->devs[slot_id]->out_ctx, ep_index);
1958 in_ctx = xhci->devs[slot_id]->in_ctx;
1959 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1960 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
1961 deq_state->new_deq_ptr);
1962 if (addr == 0) {
1963 xhci_warn(xhci, "WARN Cannot submit config ep after "
1964 "reset ep command\n");
1965 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
1966 deq_state->new_deq_seg,
1967 deq_state->new_deq_ptr);
1968 return;
1969 }
1970 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
1971
1972 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
1973 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
1974 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
1975 }
1976
1977 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
1978 struct usb_device *udev, unsigned int ep_index)
1979 {
1980 struct xhci_dequeue_state deq_state;
1981 struct xhci_virt_ep *ep;
1982
1983 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
1984 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
1985 /* We need to move the HW's dequeue pointer past this TD,
1986 * or it will attempt to resend it on the next doorbell ring.
1987 */
1988 xhci_find_new_dequeue_state(xhci, udev->slot_id,
1989 ep_index, ep->stopped_stream, ep->stopped_td,
1990 &deq_state);
1991
1992 /* HW with the reset endpoint quirk will use the saved dequeue state to
1993 * issue a configure endpoint command later.
1994 */
1995 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
1996 xhci_dbg(xhci, "Queueing new dequeue state\n");
1997 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
1998 ep_index, ep->stopped_stream, &deq_state);
1999 } else {
2000 /* Better hope no one uses the input context between now and the
2001 * reset endpoint completion!
2002 * XXX: No idea how this hardware will react when stream rings
2003 * are enabled.
2004 */
2005 xhci_dbg(xhci, "Setting up input context for "
2006 "configure endpoint command\n");
2007 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2008 ep_index, &deq_state);
2009 }
2010 }
2011
2012 /* Deal with stalled endpoints. The core should have sent the control message
2013 * to clear the halt condition. However, we need to make the xHCI hardware
2014 * reset its sequence number, since a device will expect a sequence number of
2015 * zero after the halt condition is cleared.
2016 * Context: in_interrupt
2017 */
2018 void xhci_endpoint_reset(struct usb_hcd *hcd,
2019 struct usb_host_endpoint *ep)
2020 {
2021 struct xhci_hcd *xhci;
2022 struct usb_device *udev;
2023 unsigned int ep_index;
2024 unsigned long flags;
2025 int ret;
2026 struct xhci_virt_ep *virt_ep;
2027
2028 xhci = hcd_to_xhci(hcd);
2029 udev = (struct usb_device *) ep->hcpriv;
2030 /* Called with a root hub endpoint (or an endpoint that wasn't added
2031 * with xhci_add_endpoint()
2032 */
2033 if (!ep->hcpriv)
2034 return;
2035 ep_index = xhci_get_endpoint_index(&ep->desc);
2036 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2037 if (!virt_ep->stopped_td) {
2038 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2039 ep->desc.bEndpointAddress);
2040 return;
2041 }
2042 if (usb_endpoint_xfer_control(&ep->desc)) {
2043 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2044 return;
2045 }
2046
2047 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2048 spin_lock_irqsave(&xhci->lock, flags);
2049 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2050 /*
2051 * Can't change the ring dequeue pointer until it's transitioned to the
2052 * stopped state, which is only upon a successful reset endpoint
2053 * command. Better hope that last command worked!
2054 */
2055 if (!ret) {
2056 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2057 kfree(virt_ep->stopped_td);
2058 xhci_ring_cmd_db(xhci);
2059 }
2060 virt_ep->stopped_td = NULL;
2061 virt_ep->stopped_trb = NULL;
2062 virt_ep->stopped_stream = 0;
2063 spin_unlock_irqrestore(&xhci->lock, flags);
2064
2065 if (ret)
2066 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2067 }
2068
2069 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2070 struct usb_device *udev, struct usb_host_endpoint *ep,
2071 unsigned int slot_id)
2072 {
2073 int ret;
2074 unsigned int ep_index;
2075 unsigned int ep_state;
2076
2077 if (!ep)
2078 return -EINVAL;
2079 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2080 if (ret <= 0)
2081 return -EINVAL;
2082 if (ep->ss_ep_comp.bmAttributes == 0) {
2083 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2084 " descriptor for ep 0x%x does not support streams\n",
2085 ep->desc.bEndpointAddress);
2086 return -EINVAL;
2087 }
2088
2089 ep_index = xhci_get_endpoint_index(&ep->desc);
2090 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2091 if (ep_state & EP_HAS_STREAMS ||
2092 ep_state & EP_GETTING_STREAMS) {
2093 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2094 "already has streams set up.\n",
2095 ep->desc.bEndpointAddress);
2096 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2097 "dynamic stream context array reallocation.\n");
2098 return -EINVAL;
2099 }
2100 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2101 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2102 "endpoint 0x%x; URBs are pending.\n",
2103 ep->desc.bEndpointAddress);
2104 return -EINVAL;
2105 }
2106 return 0;
2107 }
2108
2109 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2110 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2111 {
2112 unsigned int max_streams;
2113
2114 /* The stream context array size must be a power of two */
2115 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2116 /*
2117 * Find out how many primary stream array entries the host controller
2118 * supports. Later we may use secondary stream arrays (similar to 2nd
2119 * level page entries), but that's an optional feature for xHCI host
2120 * controllers. xHCs must support at least 4 stream IDs.
2121 */
2122 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2123 if (*num_stream_ctxs > max_streams) {
2124 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2125 max_streams);
2126 *num_stream_ctxs = max_streams;
2127 *num_streams = max_streams;
2128 }
2129 }
2130
2131 /* Returns an error code if one of the endpoint already has streams.
2132 * This does not change any data structures, it only checks and gathers
2133 * information.
2134 */
2135 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2136 struct usb_device *udev,
2137 struct usb_host_endpoint **eps, unsigned int num_eps,
2138 unsigned int *num_streams, u32 *changed_ep_bitmask)
2139 {
2140 unsigned int max_streams;
2141 unsigned int endpoint_flag;
2142 int i;
2143 int ret;
2144
2145 for (i = 0; i < num_eps; i++) {
2146 ret = xhci_check_streams_endpoint(xhci, udev,
2147 eps[i], udev->slot_id);
2148 if (ret < 0)
2149 return ret;
2150
2151 max_streams = USB_SS_MAX_STREAMS(
2152 eps[i]->ss_ep_comp.bmAttributes);
2153 if (max_streams < (*num_streams - 1)) {
2154 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2155 eps[i]->desc.bEndpointAddress,
2156 max_streams);
2157 *num_streams = max_streams+1;
2158 }
2159
2160 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2161 if (*changed_ep_bitmask & endpoint_flag)
2162 return -EINVAL;
2163 *changed_ep_bitmask |= endpoint_flag;
2164 }
2165 return 0;
2166 }
2167
2168 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2169 struct usb_device *udev,
2170 struct usb_host_endpoint **eps, unsigned int num_eps)
2171 {
2172 u32 changed_ep_bitmask = 0;
2173 unsigned int slot_id;
2174 unsigned int ep_index;
2175 unsigned int ep_state;
2176 int i;
2177
2178 slot_id = udev->slot_id;
2179 if (!xhci->devs[slot_id])
2180 return 0;
2181
2182 for (i = 0; i < num_eps; i++) {
2183 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2184 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2185 /* Are streams already being freed for the endpoint? */
2186 if (ep_state & EP_GETTING_NO_STREAMS) {
2187 xhci_warn(xhci, "WARN Can't disable streams for "
2188 "endpoint 0x%x\n, "
2189 "streams are being disabled already.",
2190 eps[i]->desc.bEndpointAddress);
2191 return 0;
2192 }
2193 /* Are there actually any streams to free? */
2194 if (!(ep_state & EP_HAS_STREAMS) &&
2195 !(ep_state & EP_GETTING_STREAMS)) {
2196 xhci_warn(xhci, "WARN Can't disable streams for "
2197 "endpoint 0x%x\n, "
2198 "streams are already disabled!",
2199 eps[i]->desc.bEndpointAddress);
2200 xhci_warn(xhci, "WARN xhci_free_streams() called "
2201 "with non-streams endpoint\n");
2202 return 0;
2203 }
2204 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2205 }
2206 return changed_ep_bitmask;
2207 }
2208
2209 /*
2210 * The USB device drivers use this function (though the HCD interface in USB
2211 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2212 * coordinate mass storage command queueing across multiple endpoints (basically
2213 * a stream ID == a task ID).
2214 *
2215 * Setting up streams involves allocating the same size stream context array
2216 * for each endpoint and issuing a configure endpoint command for all endpoints.
2217 *
2218 * Don't allow the call to succeed if one endpoint only supports one stream
2219 * (which means it doesn't support streams at all).
2220 *
2221 * Drivers may get less stream IDs than they asked for, if the host controller
2222 * hardware or endpoints claim they can't support the number of requested
2223 * stream IDs.
2224 */
2225 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2226 struct usb_host_endpoint **eps, unsigned int num_eps,
2227 unsigned int num_streams, gfp_t mem_flags)
2228 {
2229 int i, ret;
2230 struct xhci_hcd *xhci;
2231 struct xhci_virt_device *vdev;
2232 struct xhci_command *config_cmd;
2233 unsigned int ep_index;
2234 unsigned int num_stream_ctxs;
2235 unsigned long flags;
2236 u32 changed_ep_bitmask = 0;
2237
2238 if (!eps)
2239 return -EINVAL;
2240
2241 /* Add one to the number of streams requested to account for
2242 * stream 0 that is reserved for xHCI usage.
2243 */
2244 num_streams += 1;
2245 xhci = hcd_to_xhci(hcd);
2246 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2247 num_streams);
2248
2249 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2250 if (!config_cmd) {
2251 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2252 return -ENOMEM;
2253 }
2254
2255 /* Check to make sure all endpoints are not already configured for
2256 * streams. While we're at it, find the maximum number of streams that
2257 * all the endpoints will support and check for duplicate endpoints.
2258 */
2259 spin_lock_irqsave(&xhci->lock, flags);
2260 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2261 num_eps, &num_streams, &changed_ep_bitmask);
2262 if (ret < 0) {
2263 xhci_free_command(xhci, config_cmd);
2264 spin_unlock_irqrestore(&xhci->lock, flags);
2265 return ret;
2266 }
2267 if (num_streams <= 1) {
2268 xhci_warn(xhci, "WARN: endpoints can't handle "
2269 "more than one stream.\n");
2270 xhci_free_command(xhci, config_cmd);
2271 spin_unlock_irqrestore(&xhci->lock, flags);
2272 return -EINVAL;
2273 }
2274 vdev = xhci->devs[udev->slot_id];
2275 /* Mark each endpoint as being in transition, so
2276 * xhci_urb_enqueue() will reject all URBs.
2277 */
2278 for (i = 0; i < num_eps; i++) {
2279 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2280 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2281 }
2282 spin_unlock_irqrestore(&xhci->lock, flags);
2283
2284 /* Setup internal data structures and allocate HW data structures for
2285 * streams (but don't install the HW structures in the input context
2286 * until we're sure all memory allocation succeeded).
2287 */
2288 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2289 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2290 num_stream_ctxs, num_streams);
2291
2292 for (i = 0; i < num_eps; i++) {
2293 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2294 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2295 num_stream_ctxs,
2296 num_streams, mem_flags);
2297 if (!vdev->eps[ep_index].stream_info)
2298 goto cleanup;
2299 /* Set maxPstreams in endpoint context and update deq ptr to
2300 * point to stream context array. FIXME
2301 */
2302 }
2303
2304 /* Set up the input context for a configure endpoint command. */
2305 for (i = 0; i < num_eps; i++) {
2306 struct xhci_ep_ctx *ep_ctx;
2307
2308 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2309 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2310
2311 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2312 vdev->out_ctx, ep_index);
2313 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2314 vdev->eps[ep_index].stream_info);
2315 }
2316 /* Tell the HW to drop its old copy of the endpoint context info
2317 * and add the updated copy from the input context.
2318 */
2319 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2320 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2321
2322 /* Issue and wait for the configure endpoint command */
2323 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2324 false, false);
2325
2326 /* xHC rejected the configure endpoint command for some reason, so we
2327 * leave the old ring intact and free our internal streams data
2328 * structure.
2329 */
2330 if (ret < 0)
2331 goto cleanup;
2332
2333 spin_lock_irqsave(&xhci->lock, flags);
2334 for (i = 0; i < num_eps; i++) {
2335 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2336 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2337 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2338 udev->slot_id, ep_index);
2339 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2340 }
2341 xhci_free_command(xhci, config_cmd);
2342 spin_unlock_irqrestore(&xhci->lock, flags);
2343
2344 /* Subtract 1 for stream 0, which drivers can't use */
2345 return num_streams - 1;
2346
2347 cleanup:
2348 /* If it didn't work, free the streams! */
2349 for (i = 0; i < num_eps; i++) {
2350 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2351 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2352 vdev->eps[ep_index].stream_info = NULL;
2353 /* FIXME Unset maxPstreams in endpoint context and
2354 * update deq ptr to point to normal string ring.
2355 */
2356 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2357 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2358 xhci_endpoint_zero(xhci, vdev, eps[i]);
2359 }
2360 xhci_free_command(xhci, config_cmd);
2361 return -ENOMEM;
2362 }
2363
2364 /* Transition the endpoint from using streams to being a "normal" endpoint
2365 * without streams.
2366 *
2367 * Modify the endpoint context state, submit a configure endpoint command,
2368 * and free all endpoint rings for streams if that completes successfully.
2369 */
2370 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
2371 struct usb_host_endpoint **eps, unsigned int num_eps,
2372 gfp_t mem_flags)
2373 {
2374 int i, ret;
2375 struct xhci_hcd *xhci;
2376 struct xhci_virt_device *vdev;
2377 struct xhci_command *command;
2378 unsigned int ep_index;
2379 unsigned long flags;
2380 u32 changed_ep_bitmask;
2381
2382 xhci = hcd_to_xhci(hcd);
2383 vdev = xhci->devs[udev->slot_id];
2384
2385 /* Set up a configure endpoint command to remove the streams rings */
2386 spin_lock_irqsave(&xhci->lock, flags);
2387 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
2388 udev, eps, num_eps);
2389 if (changed_ep_bitmask == 0) {
2390 spin_unlock_irqrestore(&xhci->lock, flags);
2391 return -EINVAL;
2392 }
2393
2394 /* Use the xhci_command structure from the first endpoint. We may have
2395 * allocated too many, but the driver may call xhci_free_streams() for
2396 * each endpoint it grouped into one call to xhci_alloc_streams().
2397 */
2398 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
2399 command = vdev->eps[ep_index].stream_info->free_streams_command;
2400 for (i = 0; i < num_eps; i++) {
2401 struct xhci_ep_ctx *ep_ctx;
2402
2403 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2404 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
2405 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
2406 EP_GETTING_NO_STREAMS;
2407
2408 xhci_endpoint_copy(xhci, command->in_ctx,
2409 vdev->out_ctx, ep_index);
2410 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
2411 &vdev->eps[ep_index]);
2412 }
2413 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
2414 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2415 spin_unlock_irqrestore(&xhci->lock, flags);
2416
2417 /* Issue and wait for the configure endpoint command,
2418 * which must succeed.
2419 */
2420 ret = xhci_configure_endpoint(xhci, udev, command,
2421 false, true);
2422
2423 /* xHC rejected the configure endpoint command for some reason, so we
2424 * leave the streams rings intact.
2425 */
2426 if (ret < 0)
2427 return ret;
2428
2429 spin_lock_irqsave(&xhci->lock, flags);
2430 for (i = 0; i < num_eps; i++) {
2431 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2432 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
2433 vdev->eps[ep_index].stream_info = NULL;
2434 /* FIXME Unset maxPstreams in endpoint context and
2435 * update deq ptr to point to normal string ring.
2436 */
2437 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
2438 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
2439 }
2440 spin_unlock_irqrestore(&xhci->lock, flags);
2441
2442 return 0;
2443 }
2444
2445 /*
2446 * Deletes endpoint resources for endpoints that were active before a Reset
2447 * Device command, or a Disable Slot command. The Reset Device command leaves
2448 * the control endpoint intact, whereas the Disable Slot command deletes it.
2449 *
2450 * Must be called with xhci->lock held.
2451 */
2452 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
2453 struct xhci_virt_device *virt_dev, bool drop_control_ep)
2454 {
2455 int i;
2456 unsigned int num_dropped_eps = 0;
2457 unsigned int drop_flags = 0;
2458
2459 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
2460 if (virt_dev->eps[i].ring) {
2461 drop_flags |= 1 << i;
2462 num_dropped_eps++;
2463 }
2464 }
2465 xhci->num_active_eps -= num_dropped_eps;
2466 if (num_dropped_eps)
2467 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
2468 "%u now active.\n",
2469 num_dropped_eps, drop_flags,
2470 xhci->num_active_eps);
2471 }
2472
2473 /*
2474 * This submits a Reset Device Command, which will set the device state to 0,
2475 * set the device address to 0, and disable all the endpoints except the default
2476 * control endpoint. The USB core should come back and call
2477 * xhci_address_device(), and then re-set up the configuration. If this is
2478 * called because of a usb_reset_and_verify_device(), then the old alternate
2479 * settings will be re-installed through the normal bandwidth allocation
2480 * functions.
2481 *
2482 * Wait for the Reset Device command to finish. Remove all structures
2483 * associated with the endpoints that were disabled. Clear the input device
2484 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
2485 *
2486 * If the virt_dev to be reset does not exist or does not match the udev,
2487 * it means the device is lost, possibly due to the xHC restore error and
2488 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
2489 * re-allocate the device.
2490 */
2491 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
2492 {
2493 int ret, i;
2494 unsigned long flags;
2495 struct xhci_hcd *xhci;
2496 unsigned int slot_id;
2497 struct xhci_virt_device *virt_dev;
2498 struct xhci_command *reset_device_cmd;
2499 int timeleft;
2500 int last_freed_endpoint;
2501 struct xhci_slot_ctx *slot_ctx;
2502
2503 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
2504 if (ret <= 0)
2505 return ret;
2506 xhci = hcd_to_xhci(hcd);
2507 slot_id = udev->slot_id;
2508 virt_dev = xhci->devs[slot_id];
2509 if (!virt_dev) {
2510 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2511 "not exist. Re-allocate the device\n", slot_id);
2512 ret = xhci_alloc_dev(hcd, udev);
2513 if (ret == 1)
2514 return 0;
2515 else
2516 return -EINVAL;
2517 }
2518
2519 if (virt_dev->udev != udev) {
2520 /* If the virt_dev and the udev does not match, this virt_dev
2521 * may belong to another udev.
2522 * Re-allocate the device.
2523 */
2524 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
2525 "not match the udev. Re-allocate the device\n",
2526 slot_id);
2527 ret = xhci_alloc_dev(hcd, udev);
2528 if (ret == 1)
2529 return 0;
2530 else
2531 return -EINVAL;
2532 }
2533
2534 /* If device is not setup, there is no point in resetting it */
2535 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2536 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
2537 SLOT_STATE_DISABLED)
2538 return 0;
2539
2540 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
2541 /* Allocate the command structure that holds the struct completion.
2542 * Assume we're in process context, since the normal device reset
2543 * process has to wait for the device anyway. Storage devices are
2544 * reset as part of error handling, so use GFP_NOIO instead of
2545 * GFP_KERNEL.
2546 */
2547 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
2548 if (!reset_device_cmd) {
2549 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
2550 return -ENOMEM;
2551 }
2552
2553 /* Attempt to submit the Reset Device command to the command ring */
2554 spin_lock_irqsave(&xhci->lock, flags);
2555 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
2556
2557 /* Enqueue pointer can be left pointing to the link TRB,
2558 * we must handle that
2559 */
2560 if ((le32_to_cpu(reset_device_cmd->command_trb->link.control)
2561 & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
2562 reset_device_cmd->command_trb =
2563 xhci->cmd_ring->enq_seg->next->trbs;
2564
2565 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
2566 ret = xhci_queue_reset_device(xhci, slot_id);
2567 if (ret) {
2568 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2569 list_del(&reset_device_cmd->cmd_list);
2570 spin_unlock_irqrestore(&xhci->lock, flags);
2571 goto command_cleanup;
2572 }
2573 xhci_ring_cmd_db(xhci);
2574 spin_unlock_irqrestore(&xhci->lock, flags);
2575
2576 /* Wait for the Reset Device command to finish */
2577 timeleft = wait_for_completion_interruptible_timeout(
2578 reset_device_cmd->completion,
2579 USB_CTRL_SET_TIMEOUT);
2580 if (timeleft <= 0) {
2581 xhci_warn(xhci, "%s while waiting for reset device command\n",
2582 timeleft == 0 ? "Timeout" : "Signal");
2583 spin_lock_irqsave(&xhci->lock, flags);
2584 /* The timeout might have raced with the event ring handler, so
2585 * only delete from the list if the item isn't poisoned.
2586 */
2587 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
2588 list_del(&reset_device_cmd->cmd_list);
2589 spin_unlock_irqrestore(&xhci->lock, flags);
2590 ret = -ETIME;
2591 goto command_cleanup;
2592 }
2593
2594 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
2595 * unless we tried to reset a slot ID that wasn't enabled,
2596 * or the device wasn't in the addressed or configured state.
2597 */
2598 ret = reset_device_cmd->status;
2599 switch (ret) {
2600 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
2601 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
2602 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
2603 slot_id,
2604 xhci_get_slot_state(xhci, virt_dev->out_ctx));
2605 xhci_info(xhci, "Not freeing device rings.\n");
2606 /* Don't treat this as an error. May change my mind later. */
2607 ret = 0;
2608 goto command_cleanup;
2609 case COMP_SUCCESS:
2610 xhci_dbg(xhci, "Successful reset device command.\n");
2611 break;
2612 default:
2613 if (xhci_is_vendor_info_code(xhci, ret))
2614 break;
2615 xhci_warn(xhci, "Unknown completion code %u for "
2616 "reset device command.\n", ret);
2617 ret = -EINVAL;
2618 goto command_cleanup;
2619 }
2620
2621 /* Free up host controller endpoint resources */
2622 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2623 spin_lock_irqsave(&xhci->lock, flags);
2624 /* Don't delete the default control endpoint resources */
2625 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
2626 spin_unlock_irqrestore(&xhci->lock, flags);
2627 }
2628
2629 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
2630 last_freed_endpoint = 1;
2631 for (i = 1; i < 31; ++i) {
2632 struct xhci_virt_ep *ep = &virt_dev->eps[i];
2633
2634 if (ep->ep_state & EP_HAS_STREAMS) {
2635 xhci_free_stream_info(xhci, ep->stream_info);
2636 ep->stream_info = NULL;
2637 ep->ep_state &= ~EP_HAS_STREAMS;
2638 }
2639
2640 if (ep->ring) {
2641 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2642 last_freed_endpoint = i;
2643 }
2644 }
2645 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
2646 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
2647 ret = 0;
2648
2649 command_cleanup:
2650 xhci_free_command(xhci, reset_device_cmd);
2651 return ret;
2652 }
2653
2654 /*
2655 * At this point, the struct usb_device is about to go away, the device has
2656 * disconnected, and all traffic has been stopped and the endpoints have been
2657 * disabled. Free any HC data structures associated with that device.
2658 */
2659 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
2660 {
2661 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2662 struct xhci_virt_device *virt_dev;
2663 unsigned long flags;
2664 u32 state;
2665 int i, ret;
2666
2667 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2668 if (ret <= 0)
2669 return;
2670
2671 virt_dev = xhci->devs[udev->slot_id];
2672
2673 /* Stop any wayward timer functions (which may grab the lock) */
2674 for (i = 0; i < 31; ++i) {
2675 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
2676 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
2677 }
2678
2679 spin_lock_irqsave(&xhci->lock, flags);
2680 /* Don't disable the slot if the host controller is dead. */
2681 state = xhci_readl(xhci, &xhci->op_regs->status);
2682 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING)) {
2683 xhci_free_virt_device(xhci, udev->slot_id);
2684 spin_unlock_irqrestore(&xhci->lock, flags);
2685 return;
2686 }
2687
2688 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
2689 spin_unlock_irqrestore(&xhci->lock, flags);
2690 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2691 return;
2692 }
2693 xhci_ring_cmd_db(xhci);
2694 spin_unlock_irqrestore(&xhci->lock, flags);
2695 /*
2696 * Event command completion handler will free any data structures
2697 * associated with the slot. XXX Can free sleep?
2698 */
2699 }
2700
2701 /*
2702 * Checks if we have enough host controller resources for the default control
2703 * endpoint.
2704 *
2705 * Must be called with xhci->lock held.
2706 */
2707 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
2708 {
2709 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
2710 xhci_dbg(xhci, "Not enough ep ctxs: "
2711 "%u active, need to add 1, limit is %u.\n",
2712 xhci->num_active_eps, xhci->limit_active_eps);
2713 return -ENOMEM;
2714 }
2715 xhci->num_active_eps += 1;
2716 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
2717 xhci->num_active_eps);
2718 return 0;
2719 }
2720
2721
2722 /*
2723 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
2724 * timed out, or allocating memory failed. Returns 1 on success.
2725 */
2726 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
2727 {
2728 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2729 unsigned long flags;
2730 int timeleft;
2731 int ret;
2732
2733 spin_lock_irqsave(&xhci->lock, flags);
2734 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
2735 if (ret) {
2736 spin_unlock_irqrestore(&xhci->lock, flags);
2737 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2738 return 0;
2739 }
2740 xhci_ring_cmd_db(xhci);
2741 spin_unlock_irqrestore(&xhci->lock, flags);
2742
2743 /* XXX: how much time for xHC slot assignment? */
2744 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2745 USB_CTRL_SET_TIMEOUT);
2746 if (timeleft <= 0) {
2747 xhci_warn(xhci, "%s while waiting for a slot\n",
2748 timeleft == 0 ? "Timeout" : "Signal");
2749 /* FIXME cancel the enable slot request */
2750 return 0;
2751 }
2752
2753 if (!xhci->slot_id) {
2754 xhci_err(xhci, "Error while assigning device slot ID\n");
2755 return 0;
2756 }
2757
2758 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2759 spin_lock_irqsave(&xhci->lock, flags);
2760 ret = xhci_reserve_host_control_ep_resources(xhci);
2761 if (ret) {
2762 spin_unlock_irqrestore(&xhci->lock, flags);
2763 xhci_warn(xhci, "Not enough host resources, "
2764 "active endpoint contexts = %u\n",
2765 xhci->num_active_eps);
2766 goto disable_slot;
2767 }
2768 spin_unlock_irqrestore(&xhci->lock, flags);
2769 }
2770 /* Use GFP_NOIO, since this function can be called from
2771 * xhci_discover_or_reset_device(), which may be called as part of
2772 * mass storage driver error handling.
2773 */
2774 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
2775 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
2776 goto disable_slot;
2777 }
2778 udev->slot_id = xhci->slot_id;
2779 /* Is this a LS or FS device under a HS hub? */
2780 /* Hub or peripherial? */
2781 return 1;
2782
2783 disable_slot:
2784 /* Disable slot, if we can do it without mem alloc */
2785 spin_lock_irqsave(&xhci->lock, flags);
2786 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
2787 xhci_ring_cmd_db(xhci);
2788 spin_unlock_irqrestore(&xhci->lock, flags);
2789 return 0;
2790 }
2791
2792 /*
2793 * Issue an Address Device command (which will issue a SetAddress request to
2794 * the device).
2795 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
2796 * we should only issue and wait on one address command at the same time.
2797 *
2798 * We add one to the device address issued by the hardware because the USB core
2799 * uses address 1 for the root hubs (even though they're not really devices).
2800 */
2801 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
2802 {
2803 unsigned long flags;
2804 int timeleft;
2805 struct xhci_virt_device *virt_dev;
2806 int ret = 0;
2807 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2808 struct xhci_slot_ctx *slot_ctx;
2809 struct xhci_input_control_ctx *ctrl_ctx;
2810 u64 temp_64;
2811
2812 if (!udev->slot_id) {
2813 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
2814 return -EINVAL;
2815 }
2816
2817 virt_dev = xhci->devs[udev->slot_id];
2818
2819 if (WARN_ON(!virt_dev)) {
2820 /*
2821 * In plug/unplug torture test with an NEC controller,
2822 * a zero-dereference was observed once due to virt_dev = 0.
2823 * Print useful debug rather than crash if it is observed again!
2824 */
2825 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
2826 udev->slot_id);
2827 return -EINVAL;
2828 }
2829
2830 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2831 /*
2832 * If this is the first Set Address since device plug-in or
2833 * virt_device realloaction after a resume with an xHCI power loss,
2834 * then set up the slot context.
2835 */
2836 if (!slot_ctx->dev_info)
2837 xhci_setup_addressable_virt_dev(xhci, udev);
2838 /* Otherwise, update the control endpoint ring enqueue pointer. */
2839 else
2840 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
2841 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2842 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2843
2844 spin_lock_irqsave(&xhci->lock, flags);
2845 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
2846 udev->slot_id);
2847 if (ret) {
2848 spin_unlock_irqrestore(&xhci->lock, flags);
2849 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
2850 return ret;
2851 }
2852 xhci_ring_cmd_db(xhci);
2853 spin_unlock_irqrestore(&xhci->lock, flags);
2854
2855 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
2856 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
2857 USB_CTRL_SET_TIMEOUT);
2858 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
2859 * the SetAddress() "recovery interval" required by USB and aborting the
2860 * command on a timeout.
2861 */
2862 if (timeleft <= 0) {
2863 xhci_warn(xhci, "%s while waiting for a slot\n",
2864 timeleft == 0 ? "Timeout" : "Signal");
2865 /* FIXME cancel the address device command */
2866 return -ETIME;
2867 }
2868
2869 switch (virt_dev->cmd_status) {
2870 case COMP_CTX_STATE:
2871 case COMP_EBADSLT:
2872 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
2873 udev->slot_id);
2874 ret = -EINVAL;
2875 break;
2876 case COMP_TX_ERR:
2877 dev_warn(&udev->dev, "Device not responding to set address.\n");
2878 ret = -EPROTO;
2879 break;
2880 case COMP_DEV_ERR:
2881 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
2882 "device command.\n");
2883 ret = -ENODEV;
2884 break;
2885 case COMP_SUCCESS:
2886 xhci_dbg(xhci, "Successful Address Device command\n");
2887 break;
2888 default:
2889 xhci_err(xhci, "ERROR: unexpected command completion "
2890 "code 0x%x.\n", virt_dev->cmd_status);
2891 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2892 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2893 ret = -EINVAL;
2894 break;
2895 }
2896 if (ret) {
2897 return ret;
2898 }
2899 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
2900 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
2901 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
2902 udev->slot_id,
2903 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
2904 (unsigned long long)
2905 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
2906 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
2907 (unsigned long long)virt_dev->out_ctx->dma);
2908 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
2909 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
2910 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
2911 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
2912 /*
2913 * USB core uses address 1 for the roothubs, so we add one to the
2914 * address given back to us by the HC.
2915 */
2916 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
2917 /* Use kernel assigned address for devices; store xHC assigned
2918 * address locally. */
2919 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
2920 + 1;
2921 /* Zero the input context control for later use */
2922 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2923 ctrl_ctx->add_flags = 0;
2924 ctrl_ctx->drop_flags = 0;
2925
2926 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
2927
2928 return 0;
2929 }
2930
2931 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
2932 * internal data structures for the device.
2933 */
2934 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
2935 struct usb_tt *tt, gfp_t mem_flags)
2936 {
2937 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2938 struct xhci_virt_device *vdev;
2939 struct xhci_command *config_cmd;
2940 struct xhci_input_control_ctx *ctrl_ctx;
2941 struct xhci_slot_ctx *slot_ctx;
2942 unsigned long flags;
2943 unsigned think_time;
2944 int ret;
2945
2946 /* Ignore root hubs */
2947 if (!hdev->parent)
2948 return 0;
2949
2950 vdev = xhci->devs[hdev->slot_id];
2951 if (!vdev) {
2952 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
2953 return -EINVAL;
2954 }
2955 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2956 if (!config_cmd) {
2957 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2958 return -ENOMEM;
2959 }
2960
2961 spin_lock_irqsave(&xhci->lock, flags);
2962 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
2963 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
2964 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2965 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
2966 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
2967 if (tt->multi)
2968 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
2969 if (xhci->hci_version > 0x95) {
2970 xhci_dbg(xhci, "xHCI version %x needs hub "
2971 "TT think time and number of ports\n",
2972 (unsigned int) xhci->hci_version);
2973 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
2974 /* Set TT think time - convert from ns to FS bit times.
2975 * 0 = 8 FS bit times, 1 = 16 FS bit times,
2976 * 2 = 24 FS bit times, 3 = 32 FS bit times.
2977 *
2978 * xHCI 1.0: this field shall be 0 if the device is not a
2979 * High-spped hub.
2980 */
2981 think_time = tt->think_time;
2982 if (think_time != 0)
2983 think_time = (think_time / 666) - 1;
2984 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
2985 slot_ctx->tt_info |=
2986 cpu_to_le32(TT_THINK_TIME(think_time));
2987 } else {
2988 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
2989 "TT think time or number of ports\n",
2990 (unsigned int) xhci->hci_version);
2991 }
2992 slot_ctx->dev_state = 0;
2993 spin_unlock_irqrestore(&xhci->lock, flags);
2994
2995 xhci_dbg(xhci, "Set up %s for hub device.\n",
2996 (xhci->hci_version > 0x95) ?
2997 "configure endpoint" : "evaluate context");
2998 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
2999 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3000
3001 /* Issue and wait for the configure endpoint or
3002 * evaluate context command.
3003 */
3004 if (xhci->hci_version > 0x95)
3005 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3006 false, false);
3007 else
3008 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3009 true, false);
3010
3011 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3012 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3013
3014 xhci_free_command(xhci, config_cmd);
3015 return ret;
3016 }
3017
3018 int xhci_get_frame(struct usb_hcd *hcd)
3019 {
3020 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3021 /* EHCI mods by the periodic size. Why? */
3022 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3023 }
3024
3025 MODULE_DESCRIPTION(DRIVER_DESC);
3026 MODULE_AUTHOR(DRIVER_AUTHOR);
3027 MODULE_LICENSE("GPL");
3028
3029 static int __init xhci_hcd_init(void)
3030 {
3031 #ifdef CONFIG_PCI
3032 int retval = 0;
3033
3034 retval = xhci_register_pci();
3035
3036 if (retval < 0) {
3037 printk(KERN_DEBUG "Problem registering PCI driver.");
3038 return retval;
3039 }
3040 #endif
3041 /*
3042 * Check the compiler generated sizes of structures that must be laid
3043 * out in specific ways for hardware access.
3044 */
3045 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3046 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
3047 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
3048 /* xhci_device_control has eight fields, and also
3049 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
3050 */
3051 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
3052 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
3053 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
3054 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
3055 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
3056 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
3057 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
3058 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
3059 return 0;
3060 }
3061 module_init(xhci_hcd_init);
3062
3063 static void __exit xhci_hcd_cleanup(void)
3064 {
3065 #ifdef CONFIG_PCI
3066 xhci_unregister_pci();
3067 #endif
3068 }
3069 module_exit(xhci_hcd_cleanup);
This page took 0.151334 seconds and 4 git commands to generate.