PM / clk: Add support for adding a specific clock from device-tree
[deliverable/linux.git] / fs / btrfs / disk-io.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <asm/unaligned.h>
34 #include "ctree.h"
35 #include "disk-io.h"
36 #include "hash.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "locking.h"
42 #include "tree-log.h"
43 #include "free-space-cache.h"
44 #include "free-space-tree.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52 #include "compression.h"
53
54 #ifdef CONFIG_X86
55 #include <asm/cpufeature.h>
56 #endif
57
58 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
59 BTRFS_HEADER_FLAG_RELOC |\
60 BTRFS_SUPER_FLAG_ERROR |\
61 BTRFS_SUPER_FLAG_SEEDING |\
62 BTRFS_SUPER_FLAG_METADUMP)
63
64 static const struct extent_io_ops btree_extent_io_ops;
65 static void end_workqueue_fn(struct btrfs_work *work);
66 static void free_fs_root(struct btrfs_root *root);
67 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
68 int read_only);
69 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
70 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
71 struct btrfs_root *root);
72 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
73 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
74 struct extent_io_tree *dirty_pages,
75 int mark);
76 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
77 struct extent_io_tree *pinned_extents);
78 static int btrfs_cleanup_transaction(struct btrfs_root *root);
79 static void btrfs_error_commit_super(struct btrfs_root *root);
80
81 /*
82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
83 * is complete. This is used during reads to verify checksums, and it is used
84 * by writes to insert metadata for new file extents after IO is complete.
85 */
86 struct btrfs_end_io_wq {
87 struct bio *bio;
88 bio_end_io_t *end_io;
89 void *private;
90 struct btrfs_fs_info *info;
91 int error;
92 enum btrfs_wq_endio_type metadata;
93 struct list_head list;
94 struct btrfs_work work;
95 };
96
97 static struct kmem_cache *btrfs_end_io_wq_cache;
98
99 int __init btrfs_end_io_wq_init(void)
100 {
101 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
102 sizeof(struct btrfs_end_io_wq),
103 0,
104 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
105 NULL);
106 if (!btrfs_end_io_wq_cache)
107 return -ENOMEM;
108 return 0;
109 }
110
111 void btrfs_end_io_wq_exit(void)
112 {
113 kmem_cache_destroy(btrfs_end_io_wq_cache);
114 }
115
116 /*
117 * async submit bios are used to offload expensive checksumming
118 * onto the worker threads. They checksum file and metadata bios
119 * just before they are sent down the IO stack.
120 */
121 struct async_submit_bio {
122 struct inode *inode;
123 struct bio *bio;
124 struct list_head list;
125 extent_submit_bio_hook_t *submit_bio_start;
126 extent_submit_bio_hook_t *submit_bio_done;
127 int rw;
128 int mirror_num;
129 unsigned long bio_flags;
130 /*
131 * bio_offset is optional, can be used if the pages in the bio
132 * can't tell us where in the file the bio should go
133 */
134 u64 bio_offset;
135 struct btrfs_work work;
136 int error;
137 };
138
139 /*
140 * Lockdep class keys for extent_buffer->lock's in this root. For a given
141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
142 * the level the eb occupies in the tree.
143 *
144 * Different roots are used for different purposes and may nest inside each
145 * other and they require separate keysets. As lockdep keys should be
146 * static, assign keysets according to the purpose of the root as indicated
147 * by btrfs_root->objectid. This ensures that all special purpose roots
148 * have separate keysets.
149 *
150 * Lock-nesting across peer nodes is always done with the immediate parent
151 * node locked thus preventing deadlock. As lockdep doesn't know this, use
152 * subclass to avoid triggering lockdep warning in such cases.
153 *
154 * The key is set by the readpage_end_io_hook after the buffer has passed
155 * csum validation but before the pages are unlocked. It is also set by
156 * btrfs_init_new_buffer on freshly allocated blocks.
157 *
158 * We also add a check to make sure the highest level of the tree is the
159 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
160 * needs update as well.
161 */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 # error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168 u64 id; /* root objectid */
169 const char *name_stem; /* lock name stem */
170 char names[BTRFS_MAX_LEVEL + 1][20];
171 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
174 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
175 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
176 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
177 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
178 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
179 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
180 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
181 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
182 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
183 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
184 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185 { .id = 0, .name_stem = "tree" },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190 int i, j;
191
192 /* initialize lockdep class names */
193 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197 snprintf(ks->names[j], sizeof(ks->names[j]),
198 "btrfs-%s-%02d", ks->name_stem, j);
199 }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203 int level)
204 {
205 struct btrfs_lockdep_keyset *ks;
206
207 BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209 /* find the matching keyset, id 0 is the default entry */
210 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211 if (ks->id == objectid)
212 break;
213
214 lockdep_set_class_and_name(&eb->lock,
215 &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221 * extents on the btree inode are pretty simple, there's one extent
222 * that covers the entire device
223 */
224 static struct extent_map *btree_get_extent(struct inode *inode,
225 struct page *page, size_t pg_offset, u64 start, u64 len,
226 int create)
227 {
228 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
229 struct extent_map *em;
230 int ret;
231
232 read_lock(&em_tree->lock);
233 em = lookup_extent_mapping(em_tree, start, len);
234 if (em) {
235 em->bdev =
236 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
237 read_unlock(&em_tree->lock);
238 goto out;
239 }
240 read_unlock(&em_tree->lock);
241
242 em = alloc_extent_map();
243 if (!em) {
244 em = ERR_PTR(-ENOMEM);
245 goto out;
246 }
247 em->start = 0;
248 em->len = (u64)-1;
249 em->block_len = (u64)-1;
250 em->block_start = 0;
251 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
252
253 write_lock(&em_tree->lock);
254 ret = add_extent_mapping(em_tree, em, 0);
255 if (ret == -EEXIST) {
256 free_extent_map(em);
257 em = lookup_extent_mapping(em_tree, start, len);
258 if (!em)
259 em = ERR_PTR(-EIO);
260 } else if (ret) {
261 free_extent_map(em);
262 em = ERR_PTR(ret);
263 }
264 write_unlock(&em_tree->lock);
265
266 out:
267 return em;
268 }
269
270 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
271 {
272 return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, char *result)
276 {
277 put_unaligned_le32(~crc, result);
278 }
279
280 /*
281 * compute the csum for a btree block, and either verify it or write it
282 * into the csum field of the block.
283 */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285 struct extent_buffer *buf,
286 int verify)
287 {
288 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289 char *result = NULL;
290 unsigned long len;
291 unsigned long cur_len;
292 unsigned long offset = BTRFS_CSUM_SIZE;
293 char *kaddr;
294 unsigned long map_start;
295 unsigned long map_len;
296 int err;
297 u32 crc = ~(u32)0;
298 unsigned long inline_result;
299
300 len = buf->len - offset;
301 while (len > 0) {
302 err = map_private_extent_buffer(buf, offset, 32,
303 &kaddr, &map_start, &map_len);
304 if (err)
305 return err;
306 cur_len = min(len, map_len - (offset - map_start));
307 crc = btrfs_csum_data(kaddr + offset - map_start,
308 crc, cur_len);
309 len -= cur_len;
310 offset += cur_len;
311 }
312 if (csum_size > sizeof(inline_result)) {
313 result = kzalloc(csum_size, GFP_NOFS);
314 if (!result)
315 return -ENOMEM;
316 } else {
317 result = (char *)&inline_result;
318 }
319
320 btrfs_csum_final(crc, result);
321
322 if (verify) {
323 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324 u32 val;
325 u32 found = 0;
326 memcpy(&found, result, csum_size);
327
328 read_extent_buffer(buf, &val, 0, csum_size);
329 btrfs_warn_rl(fs_info,
330 "%s checksum verify failed on %llu wanted %X found %X "
331 "level %d",
332 fs_info->sb->s_id, buf->start,
333 val, found, btrfs_header_level(buf));
334 if (result != (char *)&inline_result)
335 kfree(result);
336 return -EUCLEAN;
337 }
338 } else {
339 write_extent_buffer(buf, result, 0, csum_size);
340 }
341 if (result != (char *)&inline_result)
342 kfree(result);
343 return 0;
344 }
345
346 /*
347 * we can't consider a given block up to date unless the transid of the
348 * block matches the transid in the parent node's pointer. This is how we
349 * detect blocks that either didn't get written at all or got written
350 * in the wrong place.
351 */
352 static int verify_parent_transid(struct extent_io_tree *io_tree,
353 struct extent_buffer *eb, u64 parent_transid,
354 int atomic)
355 {
356 struct extent_state *cached_state = NULL;
357 int ret;
358 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
359
360 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
361 return 0;
362
363 if (atomic)
364 return -EAGAIN;
365
366 if (need_lock) {
367 btrfs_tree_read_lock(eb);
368 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
369 }
370
371 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
372 &cached_state);
373 if (extent_buffer_uptodate(eb) &&
374 btrfs_header_generation(eb) == parent_transid) {
375 ret = 0;
376 goto out;
377 }
378 btrfs_err_rl(eb->fs_info,
379 "parent transid verify failed on %llu wanted %llu found %llu",
380 eb->start,
381 parent_transid, btrfs_header_generation(eb));
382 ret = 1;
383
384 /*
385 * Things reading via commit roots that don't have normal protection,
386 * like send, can have a really old block in cache that may point at a
387 * block that has been freed and re-allocated. So don't clear uptodate
388 * if we find an eb that is under IO (dirty/writeback) because we could
389 * end up reading in the stale data and then writing it back out and
390 * making everybody very sad.
391 */
392 if (!extent_buffer_under_io(eb))
393 clear_extent_buffer_uptodate(eb);
394 out:
395 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
396 &cached_state, GFP_NOFS);
397 if (need_lock)
398 btrfs_tree_read_unlock_blocking(eb);
399 return ret;
400 }
401
402 /*
403 * Return 0 if the superblock checksum type matches the checksum value of that
404 * algorithm. Pass the raw disk superblock data.
405 */
406 static int btrfs_check_super_csum(char *raw_disk_sb)
407 {
408 struct btrfs_super_block *disk_sb =
409 (struct btrfs_super_block *)raw_disk_sb;
410 u16 csum_type = btrfs_super_csum_type(disk_sb);
411 int ret = 0;
412
413 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414 u32 crc = ~(u32)0;
415 const int csum_size = sizeof(crc);
416 char result[csum_size];
417
418 /*
419 * The super_block structure does not span the whole
420 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421 * is filled with zeros and is included in the checksum.
422 */
423 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425 btrfs_csum_final(crc, result);
426
427 if (memcmp(raw_disk_sb, result, csum_size))
428 ret = 1;
429 }
430
431 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
433 csum_type);
434 ret = 1;
435 }
436
437 return ret;
438 }
439
440 /*
441 * helper to read a given tree block, doing retries as required when
442 * the checksums don't match and we have alternate mirrors to try.
443 */
444 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
445 struct extent_buffer *eb,
446 u64 start, u64 parent_transid)
447 {
448 struct extent_io_tree *io_tree;
449 int failed = 0;
450 int ret;
451 int num_copies = 0;
452 int mirror_num = 0;
453 int failed_mirror = 0;
454
455 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
457 while (1) {
458 ret = read_extent_buffer_pages(io_tree, eb, start,
459 WAIT_COMPLETE,
460 btree_get_extent, mirror_num);
461 if (!ret) {
462 if (!verify_parent_transid(io_tree, eb,
463 parent_transid, 0))
464 break;
465 else
466 ret = -EIO;
467 }
468
469 /*
470 * This buffer's crc is fine, but its contents are corrupted, so
471 * there is no reason to read the other copies, they won't be
472 * any less wrong.
473 */
474 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
475 break;
476
477 num_copies = btrfs_num_copies(root->fs_info,
478 eb->start, eb->len);
479 if (num_copies == 1)
480 break;
481
482 if (!failed_mirror) {
483 failed = 1;
484 failed_mirror = eb->read_mirror;
485 }
486
487 mirror_num++;
488 if (mirror_num == failed_mirror)
489 mirror_num++;
490
491 if (mirror_num > num_copies)
492 break;
493 }
494
495 if (failed && !ret && failed_mirror)
496 repair_eb_io_failure(root, eb, failed_mirror);
497
498 return ret;
499 }
500
501 /*
502 * checksum a dirty tree block before IO. This has extra checks to make sure
503 * we only fill in the checksum field in the first page of a multi-page block
504 */
505
506 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
507 {
508 u64 start = page_offset(page);
509 u64 found_start;
510 struct extent_buffer *eb;
511
512 eb = (struct extent_buffer *)page->private;
513 if (page != eb->pages[0])
514 return 0;
515
516 found_start = btrfs_header_bytenr(eb);
517 /*
518 * Please do not consolidate these warnings into a single if.
519 * It is useful to know what went wrong.
520 */
521 if (WARN_ON(found_start != start))
522 return -EUCLEAN;
523 if (WARN_ON(!PageUptodate(page)))
524 return -EUCLEAN;
525
526 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
527 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
528
529 return csum_tree_block(fs_info, eb, 0);
530 }
531
532 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
533 struct extent_buffer *eb)
534 {
535 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
536 u8 fsid[BTRFS_UUID_SIZE];
537 int ret = 1;
538
539 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
540 while (fs_devices) {
541 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
542 ret = 0;
543 break;
544 }
545 fs_devices = fs_devices->seed;
546 }
547 return ret;
548 }
549
550 #define CORRUPT(reason, eb, root, slot) \
551 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
552 "root=%llu, slot=%d", reason, \
553 btrfs_header_bytenr(eb), root->objectid, slot)
554
555 static noinline int check_leaf(struct btrfs_root *root,
556 struct extent_buffer *leaf)
557 {
558 struct btrfs_key key;
559 struct btrfs_key leaf_key;
560 u32 nritems = btrfs_header_nritems(leaf);
561 int slot;
562
563 if (nritems == 0)
564 return 0;
565
566 /* Check the 0 item */
567 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
568 BTRFS_LEAF_DATA_SIZE(root)) {
569 CORRUPT("invalid item offset size pair", leaf, root, 0);
570 return -EIO;
571 }
572
573 /*
574 * Check to make sure each items keys are in the correct order and their
575 * offsets make sense. We only have to loop through nritems-1 because
576 * we check the current slot against the next slot, which verifies the
577 * next slot's offset+size makes sense and that the current's slot
578 * offset is correct.
579 */
580 for (slot = 0; slot < nritems - 1; slot++) {
581 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
582 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
583
584 /* Make sure the keys are in the right order */
585 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
586 CORRUPT("bad key order", leaf, root, slot);
587 return -EIO;
588 }
589
590 /*
591 * Make sure the offset and ends are right, remember that the
592 * item data starts at the end of the leaf and grows towards the
593 * front.
594 */
595 if (btrfs_item_offset_nr(leaf, slot) !=
596 btrfs_item_end_nr(leaf, slot + 1)) {
597 CORRUPT("slot offset bad", leaf, root, slot);
598 return -EIO;
599 }
600
601 /*
602 * Check to make sure that we don't point outside of the leaf,
603 * just in case all the items are consistent to each other, but
604 * all point outside of the leaf.
605 */
606 if (btrfs_item_end_nr(leaf, slot) >
607 BTRFS_LEAF_DATA_SIZE(root)) {
608 CORRUPT("slot end outside of leaf", leaf, root, slot);
609 return -EIO;
610 }
611 }
612
613 return 0;
614 }
615
616 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
617 u64 phy_offset, struct page *page,
618 u64 start, u64 end, int mirror)
619 {
620 u64 found_start;
621 int found_level;
622 struct extent_buffer *eb;
623 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
624 struct btrfs_fs_info *fs_info = root->fs_info;
625 int ret = 0;
626 int reads_done;
627
628 if (!page->private)
629 goto out;
630
631 eb = (struct extent_buffer *)page->private;
632
633 /* the pending IO might have been the only thing that kept this buffer
634 * in memory. Make sure we have a ref for all this other checks
635 */
636 extent_buffer_get(eb);
637
638 reads_done = atomic_dec_and_test(&eb->io_pages);
639 if (!reads_done)
640 goto err;
641
642 eb->read_mirror = mirror;
643 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
644 ret = -EIO;
645 goto err;
646 }
647
648 found_start = btrfs_header_bytenr(eb);
649 if (found_start != eb->start) {
650 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
651 found_start, eb->start);
652 ret = -EIO;
653 goto err;
654 }
655 if (check_tree_block_fsid(fs_info, eb)) {
656 btrfs_err_rl(fs_info, "bad fsid on block %llu",
657 eb->start);
658 ret = -EIO;
659 goto err;
660 }
661 found_level = btrfs_header_level(eb);
662 if (found_level >= BTRFS_MAX_LEVEL) {
663 btrfs_err(fs_info, "bad tree block level %d",
664 (int)btrfs_header_level(eb));
665 ret = -EIO;
666 goto err;
667 }
668
669 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
670 eb, found_level);
671
672 ret = csum_tree_block(fs_info, eb, 1);
673 if (ret)
674 goto err;
675
676 /*
677 * If this is a leaf block and it is corrupt, set the corrupt bit so
678 * that we don't try and read the other copies of this block, just
679 * return -EIO.
680 */
681 if (found_level == 0 && check_leaf(root, eb)) {
682 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
683 ret = -EIO;
684 }
685
686 if (!ret)
687 set_extent_buffer_uptodate(eb);
688 err:
689 if (reads_done &&
690 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
691 btree_readahead_hook(fs_info, eb, eb->start, ret);
692
693 if (ret) {
694 /*
695 * our io error hook is going to dec the io pages
696 * again, we have to make sure it has something
697 * to decrement
698 */
699 atomic_inc(&eb->io_pages);
700 clear_extent_buffer_uptodate(eb);
701 }
702 free_extent_buffer(eb);
703 out:
704 return ret;
705 }
706
707 static int btree_io_failed_hook(struct page *page, int failed_mirror)
708 {
709 struct extent_buffer *eb;
710
711 eb = (struct extent_buffer *)page->private;
712 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
713 eb->read_mirror = failed_mirror;
714 atomic_dec(&eb->io_pages);
715 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
716 btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
717 return -EIO; /* we fixed nothing */
718 }
719
720 static void end_workqueue_bio(struct bio *bio)
721 {
722 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
723 struct btrfs_fs_info *fs_info;
724 struct btrfs_workqueue *wq;
725 btrfs_work_func_t func;
726
727 fs_info = end_io_wq->info;
728 end_io_wq->error = bio->bi_error;
729
730 if (bio->bi_rw & REQ_WRITE) {
731 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
732 wq = fs_info->endio_meta_write_workers;
733 func = btrfs_endio_meta_write_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
735 wq = fs_info->endio_freespace_worker;
736 func = btrfs_freespace_write_helper;
737 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
738 wq = fs_info->endio_raid56_workers;
739 func = btrfs_endio_raid56_helper;
740 } else {
741 wq = fs_info->endio_write_workers;
742 func = btrfs_endio_write_helper;
743 }
744 } else {
745 if (unlikely(end_io_wq->metadata ==
746 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
747 wq = fs_info->endio_repair_workers;
748 func = btrfs_endio_repair_helper;
749 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
750 wq = fs_info->endio_raid56_workers;
751 func = btrfs_endio_raid56_helper;
752 } else if (end_io_wq->metadata) {
753 wq = fs_info->endio_meta_workers;
754 func = btrfs_endio_meta_helper;
755 } else {
756 wq = fs_info->endio_workers;
757 func = btrfs_endio_helper;
758 }
759 }
760
761 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
762 btrfs_queue_work(wq, &end_io_wq->work);
763 }
764
765 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
766 enum btrfs_wq_endio_type metadata)
767 {
768 struct btrfs_end_io_wq *end_io_wq;
769
770 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
771 if (!end_io_wq)
772 return -ENOMEM;
773
774 end_io_wq->private = bio->bi_private;
775 end_io_wq->end_io = bio->bi_end_io;
776 end_io_wq->info = info;
777 end_io_wq->error = 0;
778 end_io_wq->bio = bio;
779 end_io_wq->metadata = metadata;
780
781 bio->bi_private = end_io_wq;
782 bio->bi_end_io = end_workqueue_bio;
783 return 0;
784 }
785
786 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
787 {
788 unsigned long limit = min_t(unsigned long,
789 info->thread_pool_size,
790 info->fs_devices->open_devices);
791 return 256 * limit;
792 }
793
794 static void run_one_async_start(struct btrfs_work *work)
795 {
796 struct async_submit_bio *async;
797 int ret;
798
799 async = container_of(work, struct async_submit_bio, work);
800 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
801 async->mirror_num, async->bio_flags,
802 async->bio_offset);
803 if (ret)
804 async->error = ret;
805 }
806
807 static void run_one_async_done(struct btrfs_work *work)
808 {
809 struct btrfs_fs_info *fs_info;
810 struct async_submit_bio *async;
811 int limit;
812
813 async = container_of(work, struct async_submit_bio, work);
814 fs_info = BTRFS_I(async->inode)->root->fs_info;
815
816 limit = btrfs_async_submit_limit(fs_info);
817 limit = limit * 2 / 3;
818
819 /*
820 * atomic_dec_return implies a barrier for waitqueue_active
821 */
822 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
823 waitqueue_active(&fs_info->async_submit_wait))
824 wake_up(&fs_info->async_submit_wait);
825
826 /* If an error occurred we just want to clean up the bio and move on */
827 if (async->error) {
828 async->bio->bi_error = async->error;
829 bio_endio(async->bio);
830 return;
831 }
832
833 async->submit_bio_done(async->inode, async->rw, async->bio,
834 async->mirror_num, async->bio_flags,
835 async->bio_offset);
836 }
837
838 static void run_one_async_free(struct btrfs_work *work)
839 {
840 struct async_submit_bio *async;
841
842 async = container_of(work, struct async_submit_bio, work);
843 kfree(async);
844 }
845
846 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
847 int rw, struct bio *bio, int mirror_num,
848 unsigned long bio_flags,
849 u64 bio_offset,
850 extent_submit_bio_hook_t *submit_bio_start,
851 extent_submit_bio_hook_t *submit_bio_done)
852 {
853 struct async_submit_bio *async;
854
855 async = kmalloc(sizeof(*async), GFP_NOFS);
856 if (!async)
857 return -ENOMEM;
858
859 async->inode = inode;
860 async->rw = rw;
861 async->bio = bio;
862 async->mirror_num = mirror_num;
863 async->submit_bio_start = submit_bio_start;
864 async->submit_bio_done = submit_bio_done;
865
866 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
867 run_one_async_done, run_one_async_free);
868
869 async->bio_flags = bio_flags;
870 async->bio_offset = bio_offset;
871
872 async->error = 0;
873
874 atomic_inc(&fs_info->nr_async_submits);
875
876 if (rw & REQ_SYNC)
877 btrfs_set_work_high_priority(&async->work);
878
879 btrfs_queue_work(fs_info->workers, &async->work);
880
881 while (atomic_read(&fs_info->async_submit_draining) &&
882 atomic_read(&fs_info->nr_async_submits)) {
883 wait_event(fs_info->async_submit_wait,
884 (atomic_read(&fs_info->nr_async_submits) == 0));
885 }
886
887 return 0;
888 }
889
890 static int btree_csum_one_bio(struct bio *bio)
891 {
892 struct bio_vec *bvec;
893 struct btrfs_root *root;
894 int i, ret = 0;
895
896 bio_for_each_segment_all(bvec, bio, i) {
897 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
898 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
899 if (ret)
900 break;
901 }
902
903 return ret;
904 }
905
906 static int __btree_submit_bio_start(struct inode *inode, int rw,
907 struct bio *bio, int mirror_num,
908 unsigned long bio_flags,
909 u64 bio_offset)
910 {
911 /*
912 * when we're called for a write, we're already in the async
913 * submission context. Just jump into btrfs_map_bio
914 */
915 return btree_csum_one_bio(bio);
916 }
917
918 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
919 int mirror_num, unsigned long bio_flags,
920 u64 bio_offset)
921 {
922 int ret;
923
924 /*
925 * when we're called for a write, we're already in the async
926 * submission context. Just jump into btrfs_map_bio
927 */
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
929 if (ret) {
930 bio->bi_error = ret;
931 bio_endio(bio);
932 }
933 return ret;
934 }
935
936 static int check_async_write(struct inode *inode, unsigned long bio_flags)
937 {
938 if (bio_flags & EXTENT_BIO_TREE_LOG)
939 return 0;
940 #ifdef CONFIG_X86
941 if (static_cpu_has(X86_FEATURE_XMM4_2))
942 return 0;
943 #endif
944 return 1;
945 }
946
947 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
948 int mirror_num, unsigned long bio_flags,
949 u64 bio_offset)
950 {
951 int async = check_async_write(inode, bio_flags);
952 int ret;
953
954 if (!(rw & REQ_WRITE)) {
955 /*
956 * called for a read, do the setup so that checksum validation
957 * can happen in the async kernel threads
958 */
959 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
960 bio, BTRFS_WQ_ENDIO_METADATA);
961 if (ret)
962 goto out_w_error;
963 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
964 mirror_num, 0);
965 } else if (!async) {
966 ret = btree_csum_one_bio(bio);
967 if (ret)
968 goto out_w_error;
969 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
970 mirror_num, 0);
971 } else {
972 /*
973 * kthread helpers are used to submit writes so that
974 * checksumming can happen in parallel across all CPUs
975 */
976 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
977 inode, rw, bio, mirror_num, 0,
978 bio_offset,
979 __btree_submit_bio_start,
980 __btree_submit_bio_done);
981 }
982
983 if (ret)
984 goto out_w_error;
985 return 0;
986
987 out_w_error:
988 bio->bi_error = ret;
989 bio_endio(bio);
990 return ret;
991 }
992
993 #ifdef CONFIG_MIGRATION
994 static int btree_migratepage(struct address_space *mapping,
995 struct page *newpage, struct page *page,
996 enum migrate_mode mode)
997 {
998 /*
999 * we can't safely write a btree page from here,
1000 * we haven't done the locking hook
1001 */
1002 if (PageDirty(page))
1003 return -EAGAIN;
1004 /*
1005 * Buffers may be managed in a filesystem specific way.
1006 * We must have no buffers or drop them.
1007 */
1008 if (page_has_private(page) &&
1009 !try_to_release_page(page, GFP_KERNEL))
1010 return -EAGAIN;
1011 return migrate_page(mapping, newpage, page, mode);
1012 }
1013 #endif
1014
1015
1016 static int btree_writepages(struct address_space *mapping,
1017 struct writeback_control *wbc)
1018 {
1019 struct btrfs_fs_info *fs_info;
1020 int ret;
1021
1022 if (wbc->sync_mode == WB_SYNC_NONE) {
1023
1024 if (wbc->for_kupdate)
1025 return 0;
1026
1027 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028 /* this is a bit racy, but that's ok */
1029 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030 BTRFS_DIRTY_METADATA_THRESH);
1031 if (ret < 0)
1032 return 0;
1033 }
1034 return btree_write_cache_pages(mapping, wbc);
1035 }
1036
1037 static int btree_readpage(struct file *file, struct page *page)
1038 {
1039 struct extent_io_tree *tree;
1040 tree = &BTRFS_I(page->mapping->host)->io_tree;
1041 return extent_read_full_page(tree, page, btree_get_extent, 0);
1042 }
1043
1044 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045 {
1046 if (PageWriteback(page) || PageDirty(page))
1047 return 0;
1048
1049 return try_release_extent_buffer(page);
1050 }
1051
1052 static void btree_invalidatepage(struct page *page, unsigned int offset,
1053 unsigned int length)
1054 {
1055 struct extent_io_tree *tree;
1056 tree = &BTRFS_I(page->mapping->host)->io_tree;
1057 extent_invalidatepage(tree, page, offset);
1058 btree_releasepage(page, GFP_NOFS);
1059 if (PagePrivate(page)) {
1060 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061 "page private not zero on page %llu",
1062 (unsigned long long)page_offset(page));
1063 ClearPagePrivate(page);
1064 set_page_private(page, 0);
1065 put_page(page);
1066 }
1067 }
1068
1069 static int btree_set_page_dirty(struct page *page)
1070 {
1071 #ifdef DEBUG
1072 struct extent_buffer *eb;
1073
1074 BUG_ON(!PagePrivate(page));
1075 eb = (struct extent_buffer *)page->private;
1076 BUG_ON(!eb);
1077 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078 BUG_ON(!atomic_read(&eb->refs));
1079 btrfs_assert_tree_locked(eb);
1080 #endif
1081 return __set_page_dirty_nobuffers(page);
1082 }
1083
1084 static const struct address_space_operations btree_aops = {
1085 .readpage = btree_readpage,
1086 .writepages = btree_writepages,
1087 .releasepage = btree_releasepage,
1088 .invalidatepage = btree_invalidatepage,
1089 #ifdef CONFIG_MIGRATION
1090 .migratepage = btree_migratepage,
1091 #endif
1092 .set_page_dirty = btree_set_page_dirty,
1093 };
1094
1095 void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096 {
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100 buf = btrfs_find_create_tree_block(root, bytenr);
1101 if (!buf)
1102 return;
1103 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105 free_extent_buffer(buf);
1106 }
1107
1108 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109 int mirror_num, struct extent_buffer **eb)
1110 {
1111 struct extent_buffer *buf = NULL;
1112 struct inode *btree_inode = root->fs_info->btree_inode;
1113 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114 int ret;
1115
1116 buf = btrfs_find_create_tree_block(root, bytenr);
1117 if (!buf)
1118 return 0;
1119
1120 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1121
1122 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123 btree_get_extent, mirror_num);
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return ret;
1127 }
1128
1129 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130 free_extent_buffer(buf);
1131 return -EIO;
1132 } else if (extent_buffer_uptodate(buf)) {
1133 *eb = buf;
1134 } else {
1135 free_extent_buffer(buf);
1136 }
1137 return 0;
1138 }
1139
1140 struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141 u64 bytenr)
1142 {
1143 return find_extent_buffer(fs_info, bytenr);
1144 }
1145
1146 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147 u64 bytenr)
1148 {
1149 if (btrfs_test_is_dummy_root(root))
1150 return alloc_test_extent_buffer(root->fs_info, bytenr,
1151 root->nodesize);
1152 return alloc_extent_buffer(root->fs_info, bytenr);
1153 }
1154
1155
1156 int btrfs_write_tree_block(struct extent_buffer *buf)
1157 {
1158 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1159 buf->start + buf->len - 1);
1160 }
1161
1162 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1163 {
1164 return filemap_fdatawait_range(buf->pages[0]->mapping,
1165 buf->start, buf->start + buf->len - 1);
1166 }
1167
1168 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1169 u64 parent_transid)
1170 {
1171 struct extent_buffer *buf = NULL;
1172 int ret;
1173
1174 buf = btrfs_find_create_tree_block(root, bytenr);
1175 if (!buf)
1176 return ERR_PTR(-ENOMEM);
1177
1178 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1179 if (ret) {
1180 free_extent_buffer(buf);
1181 return ERR_PTR(ret);
1182 }
1183 return buf;
1184
1185 }
1186
1187 void clean_tree_block(struct btrfs_trans_handle *trans,
1188 struct btrfs_fs_info *fs_info,
1189 struct extent_buffer *buf)
1190 {
1191 if (btrfs_header_generation(buf) ==
1192 fs_info->running_transaction->transid) {
1193 btrfs_assert_tree_locked(buf);
1194
1195 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1196 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1197 -buf->len,
1198 fs_info->dirty_metadata_batch);
1199 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1200 btrfs_set_lock_blocking(buf);
1201 clear_extent_buffer_dirty(buf);
1202 }
1203 }
1204 }
1205
1206 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1207 {
1208 struct btrfs_subvolume_writers *writers;
1209 int ret;
1210
1211 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1212 if (!writers)
1213 return ERR_PTR(-ENOMEM);
1214
1215 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1216 if (ret < 0) {
1217 kfree(writers);
1218 return ERR_PTR(ret);
1219 }
1220
1221 init_waitqueue_head(&writers->wait);
1222 return writers;
1223 }
1224
1225 static void
1226 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1227 {
1228 percpu_counter_destroy(&writers->counter);
1229 kfree(writers);
1230 }
1231
1232 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1233 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1234 u64 objectid)
1235 {
1236 root->node = NULL;
1237 root->commit_root = NULL;
1238 root->sectorsize = sectorsize;
1239 root->nodesize = nodesize;
1240 root->stripesize = stripesize;
1241 root->state = 0;
1242 root->orphan_cleanup_state = 0;
1243
1244 root->objectid = objectid;
1245 root->last_trans = 0;
1246 root->highest_objectid = 0;
1247 root->nr_delalloc_inodes = 0;
1248 root->nr_ordered_extents = 0;
1249 root->name = NULL;
1250 root->inode_tree = RB_ROOT;
1251 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1252 root->block_rsv = NULL;
1253 root->orphan_block_rsv = NULL;
1254
1255 INIT_LIST_HEAD(&root->dirty_list);
1256 INIT_LIST_HEAD(&root->root_list);
1257 INIT_LIST_HEAD(&root->delalloc_inodes);
1258 INIT_LIST_HEAD(&root->delalloc_root);
1259 INIT_LIST_HEAD(&root->ordered_extents);
1260 INIT_LIST_HEAD(&root->ordered_root);
1261 INIT_LIST_HEAD(&root->logged_list[0]);
1262 INIT_LIST_HEAD(&root->logged_list[1]);
1263 spin_lock_init(&root->orphan_lock);
1264 spin_lock_init(&root->inode_lock);
1265 spin_lock_init(&root->delalloc_lock);
1266 spin_lock_init(&root->ordered_extent_lock);
1267 spin_lock_init(&root->accounting_lock);
1268 spin_lock_init(&root->log_extents_lock[0]);
1269 spin_lock_init(&root->log_extents_lock[1]);
1270 mutex_init(&root->objectid_mutex);
1271 mutex_init(&root->log_mutex);
1272 mutex_init(&root->ordered_extent_mutex);
1273 mutex_init(&root->delalloc_mutex);
1274 init_waitqueue_head(&root->log_writer_wait);
1275 init_waitqueue_head(&root->log_commit_wait[0]);
1276 init_waitqueue_head(&root->log_commit_wait[1]);
1277 INIT_LIST_HEAD(&root->log_ctxs[0]);
1278 INIT_LIST_HEAD(&root->log_ctxs[1]);
1279 atomic_set(&root->log_commit[0], 0);
1280 atomic_set(&root->log_commit[1], 0);
1281 atomic_set(&root->log_writers, 0);
1282 atomic_set(&root->log_batch, 0);
1283 atomic_set(&root->orphan_inodes, 0);
1284 atomic_set(&root->refs, 1);
1285 atomic_set(&root->will_be_snapshoted, 0);
1286 atomic_set(&root->qgroup_meta_rsv, 0);
1287 root->log_transid = 0;
1288 root->log_transid_committed = -1;
1289 root->last_log_commit = 0;
1290 if (fs_info)
1291 extent_io_tree_init(&root->dirty_log_pages,
1292 fs_info->btree_inode->i_mapping);
1293
1294 memset(&root->root_key, 0, sizeof(root->root_key));
1295 memset(&root->root_item, 0, sizeof(root->root_item));
1296 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1297 if (fs_info)
1298 root->defrag_trans_start = fs_info->generation;
1299 else
1300 root->defrag_trans_start = 0;
1301 root->root_key.objectid = objectid;
1302 root->anon_dev = 0;
1303
1304 spin_lock_init(&root->root_item_lock);
1305 }
1306
1307 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1308 gfp_t flags)
1309 {
1310 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1311 if (root)
1312 root->fs_info = fs_info;
1313 return root;
1314 }
1315
1316 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1317 /* Should only be used by the testing infrastructure */
1318 struct btrfs_root *btrfs_alloc_dummy_root(u32 sectorsize, u32 nodesize)
1319 {
1320 struct btrfs_root *root;
1321
1322 root = btrfs_alloc_root(NULL, GFP_KERNEL);
1323 if (!root)
1324 return ERR_PTR(-ENOMEM);
1325 /* We don't use the stripesize in selftest, set it as sectorsize */
1326 __setup_root(nodesize, sectorsize, sectorsize, root, NULL,
1327 BTRFS_ROOT_TREE_OBJECTID);
1328 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1329 root->alloc_bytenr = 0;
1330
1331 return root;
1332 }
1333 #endif
1334
1335 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1336 struct btrfs_fs_info *fs_info,
1337 u64 objectid)
1338 {
1339 struct extent_buffer *leaf;
1340 struct btrfs_root *tree_root = fs_info->tree_root;
1341 struct btrfs_root *root;
1342 struct btrfs_key key;
1343 int ret = 0;
1344 uuid_le uuid;
1345
1346 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1347 if (!root)
1348 return ERR_PTR(-ENOMEM);
1349
1350 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1351 tree_root->stripesize, root, fs_info, objectid);
1352 root->root_key.objectid = objectid;
1353 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354 root->root_key.offset = 0;
1355
1356 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1357 if (IS_ERR(leaf)) {
1358 ret = PTR_ERR(leaf);
1359 leaf = NULL;
1360 goto fail;
1361 }
1362
1363 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1364 btrfs_set_header_bytenr(leaf, leaf->start);
1365 btrfs_set_header_generation(leaf, trans->transid);
1366 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1367 btrfs_set_header_owner(leaf, objectid);
1368 root->node = leaf;
1369
1370 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1371 BTRFS_FSID_SIZE);
1372 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1373 btrfs_header_chunk_tree_uuid(leaf),
1374 BTRFS_UUID_SIZE);
1375 btrfs_mark_buffer_dirty(leaf);
1376
1377 root->commit_root = btrfs_root_node(root);
1378 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1379
1380 root->root_item.flags = 0;
1381 root->root_item.byte_limit = 0;
1382 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1383 btrfs_set_root_generation(&root->root_item, trans->transid);
1384 btrfs_set_root_level(&root->root_item, 0);
1385 btrfs_set_root_refs(&root->root_item, 1);
1386 btrfs_set_root_used(&root->root_item, leaf->len);
1387 btrfs_set_root_last_snapshot(&root->root_item, 0);
1388 btrfs_set_root_dirid(&root->root_item, 0);
1389 uuid_le_gen(&uuid);
1390 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1391 root->root_item.drop_level = 0;
1392
1393 key.objectid = objectid;
1394 key.type = BTRFS_ROOT_ITEM_KEY;
1395 key.offset = 0;
1396 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1397 if (ret)
1398 goto fail;
1399
1400 btrfs_tree_unlock(leaf);
1401
1402 return root;
1403
1404 fail:
1405 if (leaf) {
1406 btrfs_tree_unlock(leaf);
1407 free_extent_buffer(root->commit_root);
1408 free_extent_buffer(leaf);
1409 }
1410 kfree(root);
1411
1412 return ERR_PTR(ret);
1413 }
1414
1415 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1416 struct btrfs_fs_info *fs_info)
1417 {
1418 struct btrfs_root *root;
1419 struct btrfs_root *tree_root = fs_info->tree_root;
1420 struct extent_buffer *leaf;
1421
1422 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1423 if (!root)
1424 return ERR_PTR(-ENOMEM);
1425
1426 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1427 tree_root->stripesize, root, fs_info,
1428 BTRFS_TREE_LOG_OBJECTID);
1429
1430 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1431 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1432 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1433
1434 /*
1435 * DON'T set REF_COWS for log trees
1436 *
1437 * log trees do not get reference counted because they go away
1438 * before a real commit is actually done. They do store pointers
1439 * to file data extents, and those reference counts still get
1440 * updated (along with back refs to the log tree).
1441 */
1442
1443 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1444 NULL, 0, 0, 0);
1445 if (IS_ERR(leaf)) {
1446 kfree(root);
1447 return ERR_CAST(leaf);
1448 }
1449
1450 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1451 btrfs_set_header_bytenr(leaf, leaf->start);
1452 btrfs_set_header_generation(leaf, trans->transid);
1453 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1454 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1455 root->node = leaf;
1456
1457 write_extent_buffer(root->node, root->fs_info->fsid,
1458 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1459 btrfs_mark_buffer_dirty(root->node);
1460 btrfs_tree_unlock(root->node);
1461 return root;
1462 }
1463
1464 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1465 struct btrfs_fs_info *fs_info)
1466 {
1467 struct btrfs_root *log_root;
1468
1469 log_root = alloc_log_tree(trans, fs_info);
1470 if (IS_ERR(log_root))
1471 return PTR_ERR(log_root);
1472 WARN_ON(fs_info->log_root_tree);
1473 fs_info->log_root_tree = log_root;
1474 return 0;
1475 }
1476
1477 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1478 struct btrfs_root *root)
1479 {
1480 struct btrfs_root *log_root;
1481 struct btrfs_inode_item *inode_item;
1482
1483 log_root = alloc_log_tree(trans, root->fs_info);
1484 if (IS_ERR(log_root))
1485 return PTR_ERR(log_root);
1486
1487 log_root->last_trans = trans->transid;
1488 log_root->root_key.offset = root->root_key.objectid;
1489
1490 inode_item = &log_root->root_item.inode;
1491 btrfs_set_stack_inode_generation(inode_item, 1);
1492 btrfs_set_stack_inode_size(inode_item, 3);
1493 btrfs_set_stack_inode_nlink(inode_item, 1);
1494 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1495 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1496
1497 btrfs_set_root_node(&log_root->root_item, log_root->node);
1498
1499 WARN_ON(root->log_root);
1500 root->log_root = log_root;
1501 root->log_transid = 0;
1502 root->log_transid_committed = -1;
1503 root->last_log_commit = 0;
1504 return 0;
1505 }
1506
1507 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1508 struct btrfs_key *key)
1509 {
1510 struct btrfs_root *root;
1511 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1512 struct btrfs_path *path;
1513 u64 generation;
1514 int ret;
1515
1516 path = btrfs_alloc_path();
1517 if (!path)
1518 return ERR_PTR(-ENOMEM);
1519
1520 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1521 if (!root) {
1522 ret = -ENOMEM;
1523 goto alloc_fail;
1524 }
1525
1526 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1527 tree_root->stripesize, root, fs_info, key->objectid);
1528
1529 ret = btrfs_find_root(tree_root, key, path,
1530 &root->root_item, &root->root_key);
1531 if (ret) {
1532 if (ret > 0)
1533 ret = -ENOENT;
1534 goto find_fail;
1535 }
1536
1537 generation = btrfs_root_generation(&root->root_item);
1538 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1539 generation);
1540 if (IS_ERR(root->node)) {
1541 ret = PTR_ERR(root->node);
1542 goto find_fail;
1543 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1544 ret = -EIO;
1545 free_extent_buffer(root->node);
1546 goto find_fail;
1547 }
1548 root->commit_root = btrfs_root_node(root);
1549 out:
1550 btrfs_free_path(path);
1551 return root;
1552
1553 find_fail:
1554 kfree(root);
1555 alloc_fail:
1556 root = ERR_PTR(ret);
1557 goto out;
1558 }
1559
1560 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1561 struct btrfs_key *location)
1562 {
1563 struct btrfs_root *root;
1564
1565 root = btrfs_read_tree_root(tree_root, location);
1566 if (IS_ERR(root))
1567 return root;
1568
1569 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1570 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1571 btrfs_check_and_init_root_item(&root->root_item);
1572 }
1573
1574 return root;
1575 }
1576
1577 int btrfs_init_fs_root(struct btrfs_root *root)
1578 {
1579 int ret;
1580 struct btrfs_subvolume_writers *writers;
1581
1582 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1583 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1584 GFP_NOFS);
1585 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1586 ret = -ENOMEM;
1587 goto fail;
1588 }
1589
1590 writers = btrfs_alloc_subvolume_writers();
1591 if (IS_ERR(writers)) {
1592 ret = PTR_ERR(writers);
1593 goto fail;
1594 }
1595 root->subv_writers = writers;
1596
1597 btrfs_init_free_ino_ctl(root);
1598 spin_lock_init(&root->ino_cache_lock);
1599 init_waitqueue_head(&root->ino_cache_wait);
1600
1601 ret = get_anon_bdev(&root->anon_dev);
1602 if (ret)
1603 goto free_writers;
1604
1605 mutex_lock(&root->objectid_mutex);
1606 ret = btrfs_find_highest_objectid(root,
1607 &root->highest_objectid);
1608 if (ret) {
1609 mutex_unlock(&root->objectid_mutex);
1610 goto free_root_dev;
1611 }
1612
1613 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1614
1615 mutex_unlock(&root->objectid_mutex);
1616
1617 return 0;
1618
1619 free_root_dev:
1620 free_anon_bdev(root->anon_dev);
1621 free_writers:
1622 btrfs_free_subvolume_writers(root->subv_writers);
1623 fail:
1624 kfree(root->free_ino_ctl);
1625 kfree(root->free_ino_pinned);
1626 return ret;
1627 }
1628
1629 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1630 u64 root_id)
1631 {
1632 struct btrfs_root *root;
1633
1634 spin_lock(&fs_info->fs_roots_radix_lock);
1635 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1636 (unsigned long)root_id);
1637 spin_unlock(&fs_info->fs_roots_radix_lock);
1638 return root;
1639 }
1640
1641 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1642 struct btrfs_root *root)
1643 {
1644 int ret;
1645
1646 ret = radix_tree_preload(GFP_NOFS);
1647 if (ret)
1648 return ret;
1649
1650 spin_lock(&fs_info->fs_roots_radix_lock);
1651 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1652 (unsigned long)root->root_key.objectid,
1653 root);
1654 if (ret == 0)
1655 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1656 spin_unlock(&fs_info->fs_roots_radix_lock);
1657 radix_tree_preload_end();
1658
1659 return ret;
1660 }
1661
1662 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1663 struct btrfs_key *location,
1664 bool check_ref)
1665 {
1666 struct btrfs_root *root;
1667 struct btrfs_path *path;
1668 struct btrfs_key key;
1669 int ret;
1670
1671 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1672 return fs_info->tree_root;
1673 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1674 return fs_info->extent_root;
1675 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1676 return fs_info->chunk_root;
1677 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1678 return fs_info->dev_root;
1679 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1680 return fs_info->csum_root;
1681 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1682 return fs_info->quota_root ? fs_info->quota_root :
1683 ERR_PTR(-ENOENT);
1684 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1685 return fs_info->uuid_root ? fs_info->uuid_root :
1686 ERR_PTR(-ENOENT);
1687 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1688 return fs_info->free_space_root ? fs_info->free_space_root :
1689 ERR_PTR(-ENOENT);
1690 again:
1691 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1692 if (root) {
1693 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1694 return ERR_PTR(-ENOENT);
1695 return root;
1696 }
1697
1698 root = btrfs_read_fs_root(fs_info->tree_root, location);
1699 if (IS_ERR(root))
1700 return root;
1701
1702 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1703 ret = -ENOENT;
1704 goto fail;
1705 }
1706
1707 ret = btrfs_init_fs_root(root);
1708 if (ret)
1709 goto fail;
1710
1711 path = btrfs_alloc_path();
1712 if (!path) {
1713 ret = -ENOMEM;
1714 goto fail;
1715 }
1716 key.objectid = BTRFS_ORPHAN_OBJECTID;
1717 key.type = BTRFS_ORPHAN_ITEM_KEY;
1718 key.offset = location->objectid;
1719
1720 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1721 btrfs_free_path(path);
1722 if (ret < 0)
1723 goto fail;
1724 if (ret == 0)
1725 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1726
1727 ret = btrfs_insert_fs_root(fs_info, root);
1728 if (ret) {
1729 if (ret == -EEXIST) {
1730 free_fs_root(root);
1731 goto again;
1732 }
1733 goto fail;
1734 }
1735 return root;
1736 fail:
1737 free_fs_root(root);
1738 return ERR_PTR(ret);
1739 }
1740
1741 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1742 {
1743 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1744 int ret = 0;
1745 struct btrfs_device *device;
1746 struct backing_dev_info *bdi;
1747
1748 rcu_read_lock();
1749 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1750 if (!device->bdev)
1751 continue;
1752 bdi = blk_get_backing_dev_info(device->bdev);
1753 if (bdi_congested(bdi, bdi_bits)) {
1754 ret = 1;
1755 break;
1756 }
1757 }
1758 rcu_read_unlock();
1759 return ret;
1760 }
1761
1762 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1763 {
1764 int err;
1765
1766 err = bdi_setup_and_register(bdi, "btrfs");
1767 if (err)
1768 return err;
1769
1770 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1771 bdi->congested_fn = btrfs_congested_fn;
1772 bdi->congested_data = info;
1773 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1774 return 0;
1775 }
1776
1777 /*
1778 * called by the kthread helper functions to finally call the bio end_io
1779 * functions. This is where read checksum verification actually happens
1780 */
1781 static void end_workqueue_fn(struct btrfs_work *work)
1782 {
1783 struct bio *bio;
1784 struct btrfs_end_io_wq *end_io_wq;
1785
1786 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1787 bio = end_io_wq->bio;
1788
1789 bio->bi_error = end_io_wq->error;
1790 bio->bi_private = end_io_wq->private;
1791 bio->bi_end_io = end_io_wq->end_io;
1792 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1793 bio_endio(bio);
1794 }
1795
1796 static int cleaner_kthread(void *arg)
1797 {
1798 struct btrfs_root *root = arg;
1799 int again;
1800 struct btrfs_trans_handle *trans;
1801
1802 do {
1803 again = 0;
1804
1805 /* Make the cleaner go to sleep early. */
1806 if (btrfs_need_cleaner_sleep(root))
1807 goto sleep;
1808
1809 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1810 goto sleep;
1811
1812 /*
1813 * Avoid the problem that we change the status of the fs
1814 * during the above check and trylock.
1815 */
1816 if (btrfs_need_cleaner_sleep(root)) {
1817 mutex_unlock(&root->fs_info->cleaner_mutex);
1818 goto sleep;
1819 }
1820
1821 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1822 btrfs_run_delayed_iputs(root);
1823 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1824
1825 again = btrfs_clean_one_deleted_snapshot(root);
1826 mutex_unlock(&root->fs_info->cleaner_mutex);
1827
1828 /*
1829 * The defragger has dealt with the R/O remount and umount,
1830 * needn't do anything special here.
1831 */
1832 btrfs_run_defrag_inodes(root->fs_info);
1833
1834 /*
1835 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1836 * with relocation (btrfs_relocate_chunk) and relocation
1837 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1838 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1839 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1840 * unused block groups.
1841 */
1842 btrfs_delete_unused_bgs(root->fs_info);
1843 sleep:
1844 if (!again) {
1845 set_current_state(TASK_INTERRUPTIBLE);
1846 if (!kthread_should_stop())
1847 schedule();
1848 __set_current_state(TASK_RUNNING);
1849 }
1850 } while (!kthread_should_stop());
1851
1852 /*
1853 * Transaction kthread is stopped before us and wakes us up.
1854 * However we might have started a new transaction and COWed some
1855 * tree blocks when deleting unused block groups for example. So
1856 * make sure we commit the transaction we started to have a clean
1857 * shutdown when evicting the btree inode - if it has dirty pages
1858 * when we do the final iput() on it, eviction will trigger a
1859 * writeback for it which will fail with null pointer dereferences
1860 * since work queues and other resources were already released and
1861 * destroyed by the time the iput/eviction/writeback is made.
1862 */
1863 trans = btrfs_attach_transaction(root);
1864 if (IS_ERR(trans)) {
1865 if (PTR_ERR(trans) != -ENOENT)
1866 btrfs_err(root->fs_info,
1867 "cleaner transaction attach returned %ld",
1868 PTR_ERR(trans));
1869 } else {
1870 int ret;
1871
1872 ret = btrfs_commit_transaction(trans, root);
1873 if (ret)
1874 btrfs_err(root->fs_info,
1875 "cleaner open transaction commit returned %d",
1876 ret);
1877 }
1878
1879 return 0;
1880 }
1881
1882 static int transaction_kthread(void *arg)
1883 {
1884 struct btrfs_root *root = arg;
1885 struct btrfs_trans_handle *trans;
1886 struct btrfs_transaction *cur;
1887 u64 transid;
1888 unsigned long now;
1889 unsigned long delay;
1890 bool cannot_commit;
1891
1892 do {
1893 cannot_commit = false;
1894 delay = HZ * root->fs_info->commit_interval;
1895 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1896
1897 spin_lock(&root->fs_info->trans_lock);
1898 cur = root->fs_info->running_transaction;
1899 if (!cur) {
1900 spin_unlock(&root->fs_info->trans_lock);
1901 goto sleep;
1902 }
1903
1904 now = get_seconds();
1905 if (cur->state < TRANS_STATE_BLOCKED &&
1906 (now < cur->start_time ||
1907 now - cur->start_time < root->fs_info->commit_interval)) {
1908 spin_unlock(&root->fs_info->trans_lock);
1909 delay = HZ * 5;
1910 goto sleep;
1911 }
1912 transid = cur->transid;
1913 spin_unlock(&root->fs_info->trans_lock);
1914
1915 /* If the file system is aborted, this will always fail. */
1916 trans = btrfs_attach_transaction(root);
1917 if (IS_ERR(trans)) {
1918 if (PTR_ERR(trans) != -ENOENT)
1919 cannot_commit = true;
1920 goto sleep;
1921 }
1922 if (transid == trans->transid) {
1923 btrfs_commit_transaction(trans, root);
1924 } else {
1925 btrfs_end_transaction(trans, root);
1926 }
1927 sleep:
1928 wake_up_process(root->fs_info->cleaner_kthread);
1929 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1930
1931 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1932 &root->fs_info->fs_state)))
1933 btrfs_cleanup_transaction(root);
1934 set_current_state(TASK_INTERRUPTIBLE);
1935 if (!kthread_should_stop() &&
1936 (!btrfs_transaction_blocked(root->fs_info) ||
1937 cannot_commit))
1938 schedule_timeout(delay);
1939 __set_current_state(TASK_RUNNING);
1940 } while (!kthread_should_stop());
1941 return 0;
1942 }
1943
1944 /*
1945 * this will find the highest generation in the array of
1946 * root backups. The index of the highest array is returned,
1947 * or -1 if we can't find anything.
1948 *
1949 * We check to make sure the array is valid by comparing the
1950 * generation of the latest root in the array with the generation
1951 * in the super block. If they don't match we pitch it.
1952 */
1953 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1954 {
1955 u64 cur;
1956 int newest_index = -1;
1957 struct btrfs_root_backup *root_backup;
1958 int i;
1959
1960 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1961 root_backup = info->super_copy->super_roots + i;
1962 cur = btrfs_backup_tree_root_gen(root_backup);
1963 if (cur == newest_gen)
1964 newest_index = i;
1965 }
1966
1967 /* check to see if we actually wrapped around */
1968 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1969 root_backup = info->super_copy->super_roots;
1970 cur = btrfs_backup_tree_root_gen(root_backup);
1971 if (cur == newest_gen)
1972 newest_index = 0;
1973 }
1974 return newest_index;
1975 }
1976
1977
1978 /*
1979 * find the oldest backup so we know where to store new entries
1980 * in the backup array. This will set the backup_root_index
1981 * field in the fs_info struct
1982 */
1983 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1984 u64 newest_gen)
1985 {
1986 int newest_index = -1;
1987
1988 newest_index = find_newest_super_backup(info, newest_gen);
1989 /* if there was garbage in there, just move along */
1990 if (newest_index == -1) {
1991 info->backup_root_index = 0;
1992 } else {
1993 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1994 }
1995 }
1996
1997 /*
1998 * copy all the root pointers into the super backup array.
1999 * this will bump the backup pointer by one when it is
2000 * done
2001 */
2002 static void backup_super_roots(struct btrfs_fs_info *info)
2003 {
2004 int next_backup;
2005 struct btrfs_root_backup *root_backup;
2006 int last_backup;
2007
2008 next_backup = info->backup_root_index;
2009 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2010 BTRFS_NUM_BACKUP_ROOTS;
2011
2012 /*
2013 * just overwrite the last backup if we're at the same generation
2014 * this happens only at umount
2015 */
2016 root_backup = info->super_for_commit->super_roots + last_backup;
2017 if (btrfs_backup_tree_root_gen(root_backup) ==
2018 btrfs_header_generation(info->tree_root->node))
2019 next_backup = last_backup;
2020
2021 root_backup = info->super_for_commit->super_roots + next_backup;
2022
2023 /*
2024 * make sure all of our padding and empty slots get zero filled
2025 * regardless of which ones we use today
2026 */
2027 memset(root_backup, 0, sizeof(*root_backup));
2028
2029 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2030
2031 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2032 btrfs_set_backup_tree_root_gen(root_backup,
2033 btrfs_header_generation(info->tree_root->node));
2034
2035 btrfs_set_backup_tree_root_level(root_backup,
2036 btrfs_header_level(info->tree_root->node));
2037
2038 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2039 btrfs_set_backup_chunk_root_gen(root_backup,
2040 btrfs_header_generation(info->chunk_root->node));
2041 btrfs_set_backup_chunk_root_level(root_backup,
2042 btrfs_header_level(info->chunk_root->node));
2043
2044 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2045 btrfs_set_backup_extent_root_gen(root_backup,
2046 btrfs_header_generation(info->extent_root->node));
2047 btrfs_set_backup_extent_root_level(root_backup,
2048 btrfs_header_level(info->extent_root->node));
2049
2050 /*
2051 * we might commit during log recovery, which happens before we set
2052 * the fs_root. Make sure it is valid before we fill it in.
2053 */
2054 if (info->fs_root && info->fs_root->node) {
2055 btrfs_set_backup_fs_root(root_backup,
2056 info->fs_root->node->start);
2057 btrfs_set_backup_fs_root_gen(root_backup,
2058 btrfs_header_generation(info->fs_root->node));
2059 btrfs_set_backup_fs_root_level(root_backup,
2060 btrfs_header_level(info->fs_root->node));
2061 }
2062
2063 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2064 btrfs_set_backup_dev_root_gen(root_backup,
2065 btrfs_header_generation(info->dev_root->node));
2066 btrfs_set_backup_dev_root_level(root_backup,
2067 btrfs_header_level(info->dev_root->node));
2068
2069 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2070 btrfs_set_backup_csum_root_gen(root_backup,
2071 btrfs_header_generation(info->csum_root->node));
2072 btrfs_set_backup_csum_root_level(root_backup,
2073 btrfs_header_level(info->csum_root->node));
2074
2075 btrfs_set_backup_total_bytes(root_backup,
2076 btrfs_super_total_bytes(info->super_copy));
2077 btrfs_set_backup_bytes_used(root_backup,
2078 btrfs_super_bytes_used(info->super_copy));
2079 btrfs_set_backup_num_devices(root_backup,
2080 btrfs_super_num_devices(info->super_copy));
2081
2082 /*
2083 * if we don't copy this out to the super_copy, it won't get remembered
2084 * for the next commit
2085 */
2086 memcpy(&info->super_copy->super_roots,
2087 &info->super_for_commit->super_roots,
2088 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2089 }
2090
2091 /*
2092 * this copies info out of the root backup array and back into
2093 * the in-memory super block. It is meant to help iterate through
2094 * the array, so you send it the number of backups you've already
2095 * tried and the last backup index you used.
2096 *
2097 * this returns -1 when it has tried all the backups
2098 */
2099 static noinline int next_root_backup(struct btrfs_fs_info *info,
2100 struct btrfs_super_block *super,
2101 int *num_backups_tried, int *backup_index)
2102 {
2103 struct btrfs_root_backup *root_backup;
2104 int newest = *backup_index;
2105
2106 if (*num_backups_tried == 0) {
2107 u64 gen = btrfs_super_generation(super);
2108
2109 newest = find_newest_super_backup(info, gen);
2110 if (newest == -1)
2111 return -1;
2112
2113 *backup_index = newest;
2114 *num_backups_tried = 1;
2115 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2116 /* we've tried all the backups, all done */
2117 return -1;
2118 } else {
2119 /* jump to the next oldest backup */
2120 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2121 BTRFS_NUM_BACKUP_ROOTS;
2122 *backup_index = newest;
2123 *num_backups_tried += 1;
2124 }
2125 root_backup = super->super_roots + newest;
2126
2127 btrfs_set_super_generation(super,
2128 btrfs_backup_tree_root_gen(root_backup));
2129 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2130 btrfs_set_super_root_level(super,
2131 btrfs_backup_tree_root_level(root_backup));
2132 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2133
2134 /*
2135 * fixme: the total bytes and num_devices need to match or we should
2136 * need a fsck
2137 */
2138 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2139 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2140 return 0;
2141 }
2142
2143 /* helper to cleanup workers */
2144 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2145 {
2146 btrfs_destroy_workqueue(fs_info->fixup_workers);
2147 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2148 btrfs_destroy_workqueue(fs_info->workers);
2149 btrfs_destroy_workqueue(fs_info->endio_workers);
2150 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2151 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2152 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2153 btrfs_destroy_workqueue(fs_info->rmw_workers);
2154 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2155 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2156 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2157 btrfs_destroy_workqueue(fs_info->submit_workers);
2158 btrfs_destroy_workqueue(fs_info->delayed_workers);
2159 btrfs_destroy_workqueue(fs_info->caching_workers);
2160 btrfs_destroy_workqueue(fs_info->readahead_workers);
2161 btrfs_destroy_workqueue(fs_info->flush_workers);
2162 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2163 btrfs_destroy_workqueue(fs_info->extent_workers);
2164 }
2165
2166 static void free_root_extent_buffers(struct btrfs_root *root)
2167 {
2168 if (root) {
2169 free_extent_buffer(root->node);
2170 free_extent_buffer(root->commit_root);
2171 root->node = NULL;
2172 root->commit_root = NULL;
2173 }
2174 }
2175
2176 /* helper to cleanup tree roots */
2177 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2178 {
2179 free_root_extent_buffers(info->tree_root);
2180
2181 free_root_extent_buffers(info->dev_root);
2182 free_root_extent_buffers(info->extent_root);
2183 free_root_extent_buffers(info->csum_root);
2184 free_root_extent_buffers(info->quota_root);
2185 free_root_extent_buffers(info->uuid_root);
2186 if (chunk_root)
2187 free_root_extent_buffers(info->chunk_root);
2188 free_root_extent_buffers(info->free_space_root);
2189 }
2190
2191 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2192 {
2193 int ret;
2194 struct btrfs_root *gang[8];
2195 int i;
2196
2197 while (!list_empty(&fs_info->dead_roots)) {
2198 gang[0] = list_entry(fs_info->dead_roots.next,
2199 struct btrfs_root, root_list);
2200 list_del(&gang[0]->root_list);
2201
2202 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2203 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2204 } else {
2205 free_extent_buffer(gang[0]->node);
2206 free_extent_buffer(gang[0]->commit_root);
2207 btrfs_put_fs_root(gang[0]);
2208 }
2209 }
2210
2211 while (1) {
2212 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2213 (void **)gang, 0,
2214 ARRAY_SIZE(gang));
2215 if (!ret)
2216 break;
2217 for (i = 0; i < ret; i++)
2218 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2219 }
2220
2221 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2222 btrfs_free_log_root_tree(NULL, fs_info);
2223 btrfs_destroy_pinned_extent(fs_info->tree_root,
2224 fs_info->pinned_extents);
2225 }
2226 }
2227
2228 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2229 {
2230 mutex_init(&fs_info->scrub_lock);
2231 atomic_set(&fs_info->scrubs_running, 0);
2232 atomic_set(&fs_info->scrub_pause_req, 0);
2233 atomic_set(&fs_info->scrubs_paused, 0);
2234 atomic_set(&fs_info->scrub_cancel_req, 0);
2235 init_waitqueue_head(&fs_info->scrub_pause_wait);
2236 fs_info->scrub_workers_refcnt = 0;
2237 }
2238
2239 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2240 {
2241 spin_lock_init(&fs_info->balance_lock);
2242 mutex_init(&fs_info->balance_mutex);
2243 atomic_set(&fs_info->balance_running, 0);
2244 atomic_set(&fs_info->balance_pause_req, 0);
2245 atomic_set(&fs_info->balance_cancel_req, 0);
2246 fs_info->balance_ctl = NULL;
2247 init_waitqueue_head(&fs_info->balance_wait_q);
2248 }
2249
2250 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2251 struct btrfs_root *tree_root)
2252 {
2253 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2254 set_nlink(fs_info->btree_inode, 1);
2255 /*
2256 * we set the i_size on the btree inode to the max possible int.
2257 * the real end of the address space is determined by all of
2258 * the devices in the system
2259 */
2260 fs_info->btree_inode->i_size = OFFSET_MAX;
2261 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2262
2263 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2264 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2265 fs_info->btree_inode->i_mapping);
2266 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2267 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2268
2269 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2270
2271 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2272 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2273 sizeof(struct btrfs_key));
2274 set_bit(BTRFS_INODE_DUMMY,
2275 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2276 btrfs_insert_inode_hash(fs_info->btree_inode);
2277 }
2278
2279 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2280 {
2281 fs_info->dev_replace.lock_owner = 0;
2282 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2283 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2284 rwlock_init(&fs_info->dev_replace.lock);
2285 atomic_set(&fs_info->dev_replace.read_locks, 0);
2286 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2287 init_waitqueue_head(&fs_info->replace_wait);
2288 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2289 }
2290
2291 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2292 {
2293 spin_lock_init(&fs_info->qgroup_lock);
2294 mutex_init(&fs_info->qgroup_ioctl_lock);
2295 fs_info->qgroup_tree = RB_ROOT;
2296 fs_info->qgroup_op_tree = RB_ROOT;
2297 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2298 fs_info->qgroup_seq = 1;
2299 fs_info->quota_enabled = 0;
2300 fs_info->pending_quota_state = 0;
2301 fs_info->qgroup_ulist = NULL;
2302 mutex_init(&fs_info->qgroup_rescan_lock);
2303 }
2304
2305 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2306 struct btrfs_fs_devices *fs_devices)
2307 {
2308 int max_active = fs_info->thread_pool_size;
2309 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2310
2311 fs_info->workers =
2312 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2313 max_active, 16);
2314
2315 fs_info->delalloc_workers =
2316 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2317
2318 fs_info->flush_workers =
2319 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2320
2321 fs_info->caching_workers =
2322 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2323
2324 /*
2325 * a higher idle thresh on the submit workers makes it much more
2326 * likely that bios will be send down in a sane order to the
2327 * devices
2328 */
2329 fs_info->submit_workers =
2330 btrfs_alloc_workqueue("submit", flags,
2331 min_t(u64, fs_devices->num_devices,
2332 max_active), 64);
2333
2334 fs_info->fixup_workers =
2335 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2336
2337 /*
2338 * endios are largely parallel and should have a very
2339 * low idle thresh
2340 */
2341 fs_info->endio_workers =
2342 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2343 fs_info->endio_meta_workers =
2344 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2345 fs_info->endio_meta_write_workers =
2346 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2347 fs_info->endio_raid56_workers =
2348 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2349 fs_info->endio_repair_workers =
2350 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2351 fs_info->rmw_workers =
2352 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2353 fs_info->endio_write_workers =
2354 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2355 fs_info->endio_freespace_worker =
2356 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2357 fs_info->delayed_workers =
2358 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2359 fs_info->readahead_workers =
2360 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2361 fs_info->qgroup_rescan_workers =
2362 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2363 fs_info->extent_workers =
2364 btrfs_alloc_workqueue("extent-refs", flags,
2365 min_t(u64, fs_devices->num_devices,
2366 max_active), 8);
2367
2368 if (!(fs_info->workers && fs_info->delalloc_workers &&
2369 fs_info->submit_workers && fs_info->flush_workers &&
2370 fs_info->endio_workers && fs_info->endio_meta_workers &&
2371 fs_info->endio_meta_write_workers &&
2372 fs_info->endio_repair_workers &&
2373 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2374 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2375 fs_info->caching_workers && fs_info->readahead_workers &&
2376 fs_info->fixup_workers && fs_info->delayed_workers &&
2377 fs_info->extent_workers &&
2378 fs_info->qgroup_rescan_workers)) {
2379 return -ENOMEM;
2380 }
2381
2382 return 0;
2383 }
2384
2385 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2386 struct btrfs_fs_devices *fs_devices)
2387 {
2388 int ret;
2389 struct btrfs_root *tree_root = fs_info->tree_root;
2390 struct btrfs_root *log_tree_root;
2391 struct btrfs_super_block *disk_super = fs_info->super_copy;
2392 u64 bytenr = btrfs_super_log_root(disk_super);
2393
2394 if (fs_devices->rw_devices == 0) {
2395 btrfs_warn(fs_info, "log replay required on RO media");
2396 return -EIO;
2397 }
2398
2399 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2400 if (!log_tree_root)
2401 return -ENOMEM;
2402
2403 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2404 tree_root->stripesize, log_tree_root, fs_info,
2405 BTRFS_TREE_LOG_OBJECTID);
2406
2407 log_tree_root->node = read_tree_block(tree_root, bytenr,
2408 fs_info->generation + 1);
2409 if (IS_ERR(log_tree_root->node)) {
2410 btrfs_warn(fs_info, "failed to read log tree");
2411 ret = PTR_ERR(log_tree_root->node);
2412 kfree(log_tree_root);
2413 return ret;
2414 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2415 btrfs_err(fs_info, "failed to read log tree");
2416 free_extent_buffer(log_tree_root->node);
2417 kfree(log_tree_root);
2418 return -EIO;
2419 }
2420 /* returns with log_tree_root freed on success */
2421 ret = btrfs_recover_log_trees(log_tree_root);
2422 if (ret) {
2423 btrfs_handle_fs_error(tree_root->fs_info, ret,
2424 "Failed to recover log tree");
2425 free_extent_buffer(log_tree_root->node);
2426 kfree(log_tree_root);
2427 return ret;
2428 }
2429
2430 if (fs_info->sb->s_flags & MS_RDONLY) {
2431 ret = btrfs_commit_super(tree_root);
2432 if (ret)
2433 return ret;
2434 }
2435
2436 return 0;
2437 }
2438
2439 static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2440 struct btrfs_root *tree_root)
2441 {
2442 struct btrfs_root *root;
2443 struct btrfs_key location;
2444 int ret;
2445
2446 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2447 location.type = BTRFS_ROOT_ITEM_KEY;
2448 location.offset = 0;
2449
2450 root = btrfs_read_tree_root(tree_root, &location);
2451 if (IS_ERR(root))
2452 return PTR_ERR(root);
2453 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2454 fs_info->extent_root = root;
2455
2456 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2457 root = btrfs_read_tree_root(tree_root, &location);
2458 if (IS_ERR(root))
2459 return PTR_ERR(root);
2460 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2461 fs_info->dev_root = root;
2462 btrfs_init_devices_late(fs_info);
2463
2464 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2465 root = btrfs_read_tree_root(tree_root, &location);
2466 if (IS_ERR(root))
2467 return PTR_ERR(root);
2468 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2469 fs_info->csum_root = root;
2470
2471 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2472 root = btrfs_read_tree_root(tree_root, &location);
2473 if (!IS_ERR(root)) {
2474 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2475 fs_info->quota_enabled = 1;
2476 fs_info->pending_quota_state = 1;
2477 fs_info->quota_root = root;
2478 }
2479
2480 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2481 root = btrfs_read_tree_root(tree_root, &location);
2482 if (IS_ERR(root)) {
2483 ret = PTR_ERR(root);
2484 if (ret != -ENOENT)
2485 return ret;
2486 } else {
2487 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2488 fs_info->uuid_root = root;
2489 }
2490
2491 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2492 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2493 root = btrfs_read_tree_root(tree_root, &location);
2494 if (IS_ERR(root))
2495 return PTR_ERR(root);
2496 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2497 fs_info->free_space_root = root;
2498 }
2499
2500 return 0;
2501 }
2502
2503 int open_ctree(struct super_block *sb,
2504 struct btrfs_fs_devices *fs_devices,
2505 char *options)
2506 {
2507 u32 sectorsize;
2508 u32 nodesize;
2509 u32 stripesize;
2510 u64 generation;
2511 u64 features;
2512 struct btrfs_key location;
2513 struct buffer_head *bh;
2514 struct btrfs_super_block *disk_super;
2515 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2516 struct btrfs_root *tree_root;
2517 struct btrfs_root *chunk_root;
2518 int ret;
2519 int err = -EINVAL;
2520 int num_backups_tried = 0;
2521 int backup_index = 0;
2522 int max_active;
2523 bool cleaner_mutex_locked = false;
2524
2525 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2526 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2527 if (!tree_root || !chunk_root) {
2528 err = -ENOMEM;
2529 goto fail;
2530 }
2531
2532 ret = init_srcu_struct(&fs_info->subvol_srcu);
2533 if (ret) {
2534 err = ret;
2535 goto fail;
2536 }
2537
2538 ret = setup_bdi(fs_info, &fs_info->bdi);
2539 if (ret) {
2540 err = ret;
2541 goto fail_srcu;
2542 }
2543
2544 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2545 if (ret) {
2546 err = ret;
2547 goto fail_bdi;
2548 }
2549 fs_info->dirty_metadata_batch = PAGE_SIZE *
2550 (1 + ilog2(nr_cpu_ids));
2551
2552 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2553 if (ret) {
2554 err = ret;
2555 goto fail_dirty_metadata_bytes;
2556 }
2557
2558 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2559 if (ret) {
2560 err = ret;
2561 goto fail_delalloc_bytes;
2562 }
2563
2564 fs_info->btree_inode = new_inode(sb);
2565 if (!fs_info->btree_inode) {
2566 err = -ENOMEM;
2567 goto fail_bio_counter;
2568 }
2569
2570 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2571
2572 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2573 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2574 INIT_LIST_HEAD(&fs_info->trans_list);
2575 INIT_LIST_HEAD(&fs_info->dead_roots);
2576 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2577 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2578 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2579 spin_lock_init(&fs_info->delalloc_root_lock);
2580 spin_lock_init(&fs_info->trans_lock);
2581 spin_lock_init(&fs_info->fs_roots_radix_lock);
2582 spin_lock_init(&fs_info->delayed_iput_lock);
2583 spin_lock_init(&fs_info->defrag_inodes_lock);
2584 spin_lock_init(&fs_info->free_chunk_lock);
2585 spin_lock_init(&fs_info->tree_mod_seq_lock);
2586 spin_lock_init(&fs_info->super_lock);
2587 spin_lock_init(&fs_info->qgroup_op_lock);
2588 spin_lock_init(&fs_info->buffer_lock);
2589 spin_lock_init(&fs_info->unused_bgs_lock);
2590 rwlock_init(&fs_info->tree_mod_log_lock);
2591 mutex_init(&fs_info->unused_bg_unpin_mutex);
2592 mutex_init(&fs_info->delete_unused_bgs_mutex);
2593 mutex_init(&fs_info->reloc_mutex);
2594 mutex_init(&fs_info->delalloc_root_mutex);
2595 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2596 seqlock_init(&fs_info->profiles_lock);
2597
2598 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2599 INIT_LIST_HEAD(&fs_info->space_info);
2600 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2601 INIT_LIST_HEAD(&fs_info->unused_bgs);
2602 btrfs_mapping_init(&fs_info->mapping_tree);
2603 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2604 BTRFS_BLOCK_RSV_GLOBAL);
2605 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2606 BTRFS_BLOCK_RSV_DELALLOC);
2607 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2608 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2609 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2610 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2611 BTRFS_BLOCK_RSV_DELOPS);
2612 atomic_set(&fs_info->nr_async_submits, 0);
2613 atomic_set(&fs_info->async_delalloc_pages, 0);
2614 atomic_set(&fs_info->async_submit_draining, 0);
2615 atomic_set(&fs_info->nr_async_bios, 0);
2616 atomic_set(&fs_info->defrag_running, 0);
2617 atomic_set(&fs_info->qgroup_op_seq, 0);
2618 atomic_set(&fs_info->reada_works_cnt, 0);
2619 atomic64_set(&fs_info->tree_mod_seq, 0);
2620 fs_info->sb = sb;
2621 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2622 fs_info->metadata_ratio = 0;
2623 fs_info->defrag_inodes = RB_ROOT;
2624 fs_info->free_chunk_space = 0;
2625 fs_info->tree_mod_log = RB_ROOT;
2626 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2627 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2628 /* readahead state */
2629 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2630 spin_lock_init(&fs_info->reada_lock);
2631
2632 fs_info->thread_pool_size = min_t(unsigned long,
2633 num_online_cpus() + 2, 8);
2634
2635 INIT_LIST_HEAD(&fs_info->ordered_roots);
2636 spin_lock_init(&fs_info->ordered_root_lock);
2637 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2638 GFP_KERNEL);
2639 if (!fs_info->delayed_root) {
2640 err = -ENOMEM;
2641 goto fail_iput;
2642 }
2643 btrfs_init_delayed_root(fs_info->delayed_root);
2644
2645 btrfs_init_scrub(fs_info);
2646 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2647 fs_info->check_integrity_print_mask = 0;
2648 #endif
2649 btrfs_init_balance(fs_info);
2650 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2651
2652 sb->s_blocksize = 4096;
2653 sb->s_blocksize_bits = blksize_bits(4096);
2654 sb->s_bdi = &fs_info->bdi;
2655
2656 btrfs_init_btree_inode(fs_info, tree_root);
2657
2658 spin_lock_init(&fs_info->block_group_cache_lock);
2659 fs_info->block_group_cache_tree = RB_ROOT;
2660 fs_info->first_logical_byte = (u64)-1;
2661
2662 extent_io_tree_init(&fs_info->freed_extents[0],
2663 fs_info->btree_inode->i_mapping);
2664 extent_io_tree_init(&fs_info->freed_extents[1],
2665 fs_info->btree_inode->i_mapping);
2666 fs_info->pinned_extents = &fs_info->freed_extents[0];
2667 fs_info->do_barriers = 1;
2668
2669
2670 mutex_init(&fs_info->ordered_operations_mutex);
2671 mutex_init(&fs_info->tree_log_mutex);
2672 mutex_init(&fs_info->chunk_mutex);
2673 mutex_init(&fs_info->transaction_kthread_mutex);
2674 mutex_init(&fs_info->cleaner_mutex);
2675 mutex_init(&fs_info->volume_mutex);
2676 mutex_init(&fs_info->ro_block_group_mutex);
2677 init_rwsem(&fs_info->commit_root_sem);
2678 init_rwsem(&fs_info->cleanup_work_sem);
2679 init_rwsem(&fs_info->subvol_sem);
2680 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2681
2682 btrfs_init_dev_replace_locks(fs_info);
2683 btrfs_init_qgroup(fs_info);
2684
2685 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2686 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2687
2688 init_waitqueue_head(&fs_info->transaction_throttle);
2689 init_waitqueue_head(&fs_info->transaction_wait);
2690 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2691 init_waitqueue_head(&fs_info->async_submit_wait);
2692
2693 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2694
2695 ret = btrfs_alloc_stripe_hash_table(fs_info);
2696 if (ret) {
2697 err = ret;
2698 goto fail_alloc;
2699 }
2700
2701 __setup_root(4096, 4096, 4096, tree_root,
2702 fs_info, BTRFS_ROOT_TREE_OBJECTID);
2703
2704 invalidate_bdev(fs_devices->latest_bdev);
2705
2706 /*
2707 * Read super block and check the signature bytes only
2708 */
2709 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2710 if (IS_ERR(bh)) {
2711 err = PTR_ERR(bh);
2712 goto fail_alloc;
2713 }
2714
2715 /*
2716 * We want to check superblock checksum, the type is stored inside.
2717 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2718 */
2719 if (btrfs_check_super_csum(bh->b_data)) {
2720 btrfs_err(fs_info, "superblock checksum mismatch");
2721 err = -EINVAL;
2722 brelse(bh);
2723 goto fail_alloc;
2724 }
2725
2726 /*
2727 * super_copy is zeroed at allocation time and we never touch the
2728 * following bytes up to INFO_SIZE, the checksum is calculated from
2729 * the whole block of INFO_SIZE
2730 */
2731 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2732 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2733 sizeof(*fs_info->super_for_commit));
2734 brelse(bh);
2735
2736 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2737
2738 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2739 if (ret) {
2740 btrfs_err(fs_info, "superblock contains fatal errors");
2741 err = -EINVAL;
2742 goto fail_alloc;
2743 }
2744
2745 disk_super = fs_info->super_copy;
2746 if (!btrfs_super_root(disk_super))
2747 goto fail_alloc;
2748
2749 /* check FS state, whether FS is broken. */
2750 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2751 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2752
2753 /*
2754 * run through our array of backup supers and setup
2755 * our ring pointer to the oldest one
2756 */
2757 generation = btrfs_super_generation(disk_super);
2758 find_oldest_super_backup(fs_info, generation);
2759
2760 /*
2761 * In the long term, we'll store the compression type in the super
2762 * block, and it'll be used for per file compression control.
2763 */
2764 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2765
2766 ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2767 if (ret) {
2768 err = ret;
2769 goto fail_alloc;
2770 }
2771
2772 features = btrfs_super_incompat_flags(disk_super) &
2773 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2774 if (features) {
2775 btrfs_err(fs_info,
2776 "cannot mount because of unsupported optional features (%llx)",
2777 features);
2778 err = -EINVAL;
2779 goto fail_alloc;
2780 }
2781
2782 features = btrfs_super_incompat_flags(disk_super);
2783 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2784 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2785 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2786
2787 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2788 btrfs_info(fs_info, "has skinny extents");
2789
2790 /*
2791 * flag our filesystem as having big metadata blocks if
2792 * they are bigger than the page size
2793 */
2794 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2795 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2796 btrfs_info(fs_info,
2797 "flagging fs with big metadata feature");
2798 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2799 }
2800
2801 nodesize = btrfs_super_nodesize(disk_super);
2802 sectorsize = btrfs_super_sectorsize(disk_super);
2803 stripesize = btrfs_super_stripesize(disk_super);
2804 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2805 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2806
2807 /*
2808 * mixed block groups end up with duplicate but slightly offset
2809 * extent buffers for the same range. It leads to corruptions
2810 */
2811 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2812 (sectorsize != nodesize)) {
2813 btrfs_err(fs_info,
2814 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2815 nodesize, sectorsize);
2816 goto fail_alloc;
2817 }
2818
2819 /*
2820 * Needn't use the lock because there is no other task which will
2821 * update the flag.
2822 */
2823 btrfs_set_super_incompat_flags(disk_super, features);
2824
2825 features = btrfs_super_compat_ro_flags(disk_super) &
2826 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2827 if (!(sb->s_flags & MS_RDONLY) && features) {
2828 btrfs_err(fs_info,
2829 "cannot mount read-write because of unsupported optional features (%llx)",
2830 features);
2831 err = -EINVAL;
2832 goto fail_alloc;
2833 }
2834
2835 max_active = fs_info->thread_pool_size;
2836
2837 ret = btrfs_init_workqueues(fs_info, fs_devices);
2838 if (ret) {
2839 err = ret;
2840 goto fail_sb_buffer;
2841 }
2842
2843 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2844 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2845 SZ_4M / PAGE_SIZE);
2846
2847 tree_root->nodesize = nodesize;
2848 tree_root->sectorsize = sectorsize;
2849 tree_root->stripesize = stripesize;
2850
2851 sb->s_blocksize = sectorsize;
2852 sb->s_blocksize_bits = blksize_bits(sectorsize);
2853
2854 mutex_lock(&fs_info->chunk_mutex);
2855 ret = btrfs_read_sys_array(tree_root);
2856 mutex_unlock(&fs_info->chunk_mutex);
2857 if (ret) {
2858 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2859 goto fail_sb_buffer;
2860 }
2861
2862 generation = btrfs_super_chunk_root_generation(disk_super);
2863
2864 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2865 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2866
2867 chunk_root->node = read_tree_block(chunk_root,
2868 btrfs_super_chunk_root(disk_super),
2869 generation);
2870 if (IS_ERR(chunk_root->node) ||
2871 !extent_buffer_uptodate(chunk_root->node)) {
2872 btrfs_err(fs_info, "failed to read chunk root");
2873 if (!IS_ERR(chunk_root->node))
2874 free_extent_buffer(chunk_root->node);
2875 chunk_root->node = NULL;
2876 goto fail_tree_roots;
2877 }
2878 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2879 chunk_root->commit_root = btrfs_root_node(chunk_root);
2880
2881 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2882 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2883
2884 ret = btrfs_read_chunk_tree(chunk_root);
2885 if (ret) {
2886 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2887 goto fail_tree_roots;
2888 }
2889
2890 /*
2891 * keep the device that is marked to be the target device for the
2892 * dev_replace procedure
2893 */
2894 btrfs_close_extra_devices(fs_devices, 0);
2895
2896 if (!fs_devices->latest_bdev) {
2897 btrfs_err(fs_info, "failed to read devices");
2898 goto fail_tree_roots;
2899 }
2900
2901 retry_root_backup:
2902 generation = btrfs_super_generation(disk_super);
2903
2904 tree_root->node = read_tree_block(tree_root,
2905 btrfs_super_root(disk_super),
2906 generation);
2907 if (IS_ERR(tree_root->node) ||
2908 !extent_buffer_uptodate(tree_root->node)) {
2909 btrfs_warn(fs_info, "failed to read tree root");
2910 if (!IS_ERR(tree_root->node))
2911 free_extent_buffer(tree_root->node);
2912 tree_root->node = NULL;
2913 goto recovery_tree_root;
2914 }
2915
2916 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917 tree_root->commit_root = btrfs_root_node(tree_root);
2918 btrfs_set_root_refs(&tree_root->root_item, 1);
2919
2920 mutex_lock(&tree_root->objectid_mutex);
2921 ret = btrfs_find_highest_objectid(tree_root,
2922 &tree_root->highest_objectid);
2923 if (ret) {
2924 mutex_unlock(&tree_root->objectid_mutex);
2925 goto recovery_tree_root;
2926 }
2927
2928 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929
2930 mutex_unlock(&tree_root->objectid_mutex);
2931
2932 ret = btrfs_read_roots(fs_info, tree_root);
2933 if (ret)
2934 goto recovery_tree_root;
2935
2936 fs_info->generation = generation;
2937 fs_info->last_trans_committed = generation;
2938
2939 ret = btrfs_recover_balance(fs_info);
2940 if (ret) {
2941 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2942 goto fail_block_groups;
2943 }
2944
2945 ret = btrfs_init_dev_stats(fs_info);
2946 if (ret) {
2947 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2948 goto fail_block_groups;
2949 }
2950
2951 ret = btrfs_init_dev_replace(fs_info);
2952 if (ret) {
2953 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2954 goto fail_block_groups;
2955 }
2956
2957 btrfs_close_extra_devices(fs_devices, 1);
2958
2959 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2960 if (ret) {
2961 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2962 ret);
2963 goto fail_block_groups;
2964 }
2965
2966 ret = btrfs_sysfs_add_device(fs_devices);
2967 if (ret) {
2968 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2969 ret);
2970 goto fail_fsdev_sysfs;
2971 }
2972
2973 ret = btrfs_sysfs_add_mounted(fs_info);
2974 if (ret) {
2975 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2976 goto fail_fsdev_sysfs;
2977 }
2978
2979 ret = btrfs_init_space_info(fs_info);
2980 if (ret) {
2981 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2982 goto fail_sysfs;
2983 }
2984
2985 ret = btrfs_read_block_groups(fs_info->extent_root);
2986 if (ret) {
2987 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2988 goto fail_sysfs;
2989 }
2990 fs_info->num_tolerated_disk_barrier_failures =
2991 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2992 if (fs_info->fs_devices->missing_devices >
2993 fs_info->num_tolerated_disk_barrier_failures &&
2994 !(sb->s_flags & MS_RDONLY)) {
2995 btrfs_warn(fs_info,
2996 "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
2997 fs_info->fs_devices->missing_devices,
2998 fs_info->num_tolerated_disk_barrier_failures);
2999 goto fail_sysfs;
3000 }
3001
3002 /*
3003 * Hold the cleaner_mutex thread here so that we don't block
3004 * for a long time on btrfs_recover_relocation. cleaner_kthread
3005 * will wait for us to finish mounting the filesystem.
3006 */
3007 mutex_lock(&fs_info->cleaner_mutex);
3008 cleaner_mutex_locked = true;
3009 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3010 "btrfs-cleaner");
3011 if (IS_ERR(fs_info->cleaner_kthread))
3012 goto fail_sysfs;
3013
3014 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3015 tree_root,
3016 "btrfs-transaction");
3017 if (IS_ERR(fs_info->transaction_kthread))
3018 goto fail_cleaner;
3019
3020 if (!btrfs_test_opt(tree_root, SSD) &&
3021 !btrfs_test_opt(tree_root, NOSSD) &&
3022 !fs_info->fs_devices->rotating) {
3023 btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3024 btrfs_set_opt(fs_info->mount_opt, SSD);
3025 }
3026
3027 /*
3028 * Mount does not set all options immediately, we can do it now and do
3029 * not have to wait for transaction commit
3030 */
3031 btrfs_apply_pending_changes(fs_info);
3032
3033 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3034 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3035 ret = btrfsic_mount(tree_root, fs_devices,
3036 btrfs_test_opt(tree_root,
3037 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3038 1 : 0,
3039 fs_info->check_integrity_print_mask);
3040 if (ret)
3041 btrfs_warn(fs_info,
3042 "failed to initialize integrity check module: %d",
3043 ret);
3044 }
3045 #endif
3046 ret = btrfs_read_qgroup_config(fs_info);
3047 if (ret)
3048 goto fail_trans_kthread;
3049
3050 /* do not make disk changes in broken FS or nologreplay is given */
3051 if (btrfs_super_log_root(disk_super) != 0 &&
3052 !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
3053 ret = btrfs_replay_log(fs_info, fs_devices);
3054 if (ret) {
3055 err = ret;
3056 goto fail_qgroup;
3057 }
3058 }
3059
3060 ret = btrfs_find_orphan_roots(tree_root);
3061 if (ret)
3062 goto fail_qgroup;
3063
3064 if (!(sb->s_flags & MS_RDONLY)) {
3065 ret = btrfs_cleanup_fs_roots(fs_info);
3066 if (ret)
3067 goto fail_qgroup;
3068 /* We locked cleaner_mutex before creating cleaner_kthread. */
3069 ret = btrfs_recover_relocation(tree_root);
3070 if (ret < 0) {
3071 btrfs_warn(fs_info, "failed to recover relocation: %d",
3072 ret);
3073 err = -EINVAL;
3074 goto fail_qgroup;
3075 }
3076 }
3077 mutex_unlock(&fs_info->cleaner_mutex);
3078 cleaner_mutex_locked = false;
3079
3080 location.objectid = BTRFS_FS_TREE_OBJECTID;
3081 location.type = BTRFS_ROOT_ITEM_KEY;
3082 location.offset = 0;
3083
3084 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3085 if (IS_ERR(fs_info->fs_root)) {
3086 err = PTR_ERR(fs_info->fs_root);
3087 goto fail_qgroup;
3088 }
3089
3090 if (sb->s_flags & MS_RDONLY)
3091 return 0;
3092
3093 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3094 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3095 btrfs_info(fs_info, "creating free space tree");
3096 ret = btrfs_create_free_space_tree(fs_info);
3097 if (ret) {
3098 btrfs_warn(fs_info,
3099 "failed to create free space tree: %d", ret);
3100 close_ctree(tree_root);
3101 return ret;
3102 }
3103 }
3104
3105 down_read(&fs_info->cleanup_work_sem);
3106 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3107 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3108 up_read(&fs_info->cleanup_work_sem);
3109 close_ctree(tree_root);
3110 return ret;
3111 }
3112 up_read(&fs_info->cleanup_work_sem);
3113
3114 ret = btrfs_resume_balance_async(fs_info);
3115 if (ret) {
3116 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3117 close_ctree(tree_root);
3118 return ret;
3119 }
3120
3121 ret = btrfs_resume_dev_replace_async(fs_info);
3122 if (ret) {
3123 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3124 close_ctree(tree_root);
3125 return ret;
3126 }
3127
3128 btrfs_qgroup_rescan_resume(fs_info);
3129
3130 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3131 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3132 btrfs_info(fs_info, "clearing free space tree");
3133 ret = btrfs_clear_free_space_tree(fs_info);
3134 if (ret) {
3135 btrfs_warn(fs_info,
3136 "failed to clear free space tree: %d", ret);
3137 close_ctree(tree_root);
3138 return ret;
3139 }
3140 }
3141
3142 if (!fs_info->uuid_root) {
3143 btrfs_info(fs_info, "creating UUID tree");
3144 ret = btrfs_create_uuid_tree(fs_info);
3145 if (ret) {
3146 btrfs_warn(fs_info,
3147 "failed to create the UUID tree: %d", ret);
3148 close_ctree(tree_root);
3149 return ret;
3150 }
3151 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3152 fs_info->generation !=
3153 btrfs_super_uuid_tree_generation(disk_super)) {
3154 btrfs_info(fs_info, "checking UUID tree");
3155 ret = btrfs_check_uuid_tree(fs_info);
3156 if (ret) {
3157 btrfs_warn(fs_info,
3158 "failed to check the UUID tree: %d", ret);
3159 close_ctree(tree_root);
3160 return ret;
3161 }
3162 } else {
3163 fs_info->update_uuid_tree_gen = 1;
3164 }
3165
3166 fs_info->open = 1;
3167
3168 /*
3169 * backuproot only affect mount behavior, and if open_ctree succeeded,
3170 * no need to keep the flag
3171 */
3172 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3173
3174 return 0;
3175
3176 fail_qgroup:
3177 btrfs_free_qgroup_config(fs_info);
3178 fail_trans_kthread:
3179 kthread_stop(fs_info->transaction_kthread);
3180 btrfs_cleanup_transaction(fs_info->tree_root);
3181 btrfs_free_fs_roots(fs_info);
3182 fail_cleaner:
3183 kthread_stop(fs_info->cleaner_kthread);
3184
3185 /*
3186 * make sure we're done with the btree inode before we stop our
3187 * kthreads
3188 */
3189 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3190
3191 fail_sysfs:
3192 if (cleaner_mutex_locked) {
3193 mutex_unlock(&fs_info->cleaner_mutex);
3194 cleaner_mutex_locked = false;
3195 }
3196 btrfs_sysfs_remove_mounted(fs_info);
3197
3198 fail_fsdev_sysfs:
3199 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3200
3201 fail_block_groups:
3202 btrfs_put_block_group_cache(fs_info);
3203 btrfs_free_block_groups(fs_info);
3204
3205 fail_tree_roots:
3206 free_root_pointers(fs_info, 1);
3207 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3208
3209 fail_sb_buffer:
3210 btrfs_stop_all_workers(fs_info);
3211 fail_alloc:
3212 fail_iput:
3213 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3214
3215 iput(fs_info->btree_inode);
3216 fail_bio_counter:
3217 percpu_counter_destroy(&fs_info->bio_counter);
3218 fail_delalloc_bytes:
3219 percpu_counter_destroy(&fs_info->delalloc_bytes);
3220 fail_dirty_metadata_bytes:
3221 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3222 fail_bdi:
3223 bdi_destroy(&fs_info->bdi);
3224 fail_srcu:
3225 cleanup_srcu_struct(&fs_info->subvol_srcu);
3226 fail:
3227 btrfs_free_stripe_hash_table(fs_info);
3228 btrfs_close_devices(fs_info->fs_devices);
3229 return err;
3230
3231 recovery_tree_root:
3232 if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3233 goto fail_tree_roots;
3234
3235 free_root_pointers(fs_info, 0);
3236
3237 /* don't use the log in recovery mode, it won't be valid */
3238 btrfs_set_super_log_root(disk_super, 0);
3239
3240 /* we can't trust the free space cache either */
3241 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3242
3243 ret = next_root_backup(fs_info, fs_info->super_copy,
3244 &num_backups_tried, &backup_index);
3245 if (ret == -1)
3246 goto fail_block_groups;
3247 goto retry_root_backup;
3248 }
3249
3250 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3251 {
3252 if (uptodate) {
3253 set_buffer_uptodate(bh);
3254 } else {
3255 struct btrfs_device *device = (struct btrfs_device *)
3256 bh->b_private;
3257
3258 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3259 "lost page write due to IO error on %s",
3260 rcu_str_deref(device->name));
3261 /* note, we don't set_buffer_write_io_error because we have
3262 * our own ways of dealing with the IO errors
3263 */
3264 clear_buffer_uptodate(bh);
3265 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3266 }
3267 unlock_buffer(bh);
3268 put_bh(bh);
3269 }
3270
3271 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3272 struct buffer_head **bh_ret)
3273 {
3274 struct buffer_head *bh;
3275 struct btrfs_super_block *super;
3276 u64 bytenr;
3277
3278 bytenr = btrfs_sb_offset(copy_num);
3279 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3280 return -EINVAL;
3281
3282 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3283 /*
3284 * If we fail to read from the underlying devices, as of now
3285 * the best option we have is to mark it EIO.
3286 */
3287 if (!bh)
3288 return -EIO;
3289
3290 super = (struct btrfs_super_block *)bh->b_data;
3291 if (btrfs_super_bytenr(super) != bytenr ||
3292 btrfs_super_magic(super) != BTRFS_MAGIC) {
3293 brelse(bh);
3294 return -EINVAL;
3295 }
3296
3297 *bh_ret = bh;
3298 return 0;
3299 }
3300
3301
3302 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3303 {
3304 struct buffer_head *bh;
3305 struct buffer_head *latest = NULL;
3306 struct btrfs_super_block *super;
3307 int i;
3308 u64 transid = 0;
3309 int ret = -EINVAL;
3310
3311 /* we would like to check all the supers, but that would make
3312 * a btrfs mount succeed after a mkfs from a different FS.
3313 * So, we need to add a special mount option to scan for
3314 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3315 */
3316 for (i = 0; i < 1; i++) {
3317 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3318 if (ret)
3319 continue;
3320
3321 super = (struct btrfs_super_block *)bh->b_data;
3322
3323 if (!latest || btrfs_super_generation(super) > transid) {
3324 brelse(latest);
3325 latest = bh;
3326 transid = btrfs_super_generation(super);
3327 } else {
3328 brelse(bh);
3329 }
3330 }
3331
3332 if (!latest)
3333 return ERR_PTR(ret);
3334
3335 return latest;
3336 }
3337
3338 /*
3339 * this should be called twice, once with wait == 0 and
3340 * once with wait == 1. When wait == 0 is done, all the buffer heads
3341 * we write are pinned.
3342 *
3343 * They are released when wait == 1 is done.
3344 * max_mirrors must be the same for both runs, and it indicates how
3345 * many supers on this one device should be written.
3346 *
3347 * max_mirrors == 0 means to write them all.
3348 */
3349 static int write_dev_supers(struct btrfs_device *device,
3350 struct btrfs_super_block *sb,
3351 int do_barriers, int wait, int max_mirrors)
3352 {
3353 struct buffer_head *bh;
3354 int i;
3355 int ret;
3356 int errors = 0;
3357 u32 crc;
3358 u64 bytenr;
3359
3360 if (max_mirrors == 0)
3361 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3362
3363 for (i = 0; i < max_mirrors; i++) {
3364 bytenr = btrfs_sb_offset(i);
3365 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3366 device->commit_total_bytes)
3367 break;
3368
3369 if (wait) {
3370 bh = __find_get_block(device->bdev, bytenr / 4096,
3371 BTRFS_SUPER_INFO_SIZE);
3372 if (!bh) {
3373 errors++;
3374 continue;
3375 }
3376 wait_on_buffer(bh);
3377 if (!buffer_uptodate(bh))
3378 errors++;
3379
3380 /* drop our reference */
3381 brelse(bh);
3382
3383 /* drop the reference from the wait == 0 run */
3384 brelse(bh);
3385 continue;
3386 } else {
3387 btrfs_set_super_bytenr(sb, bytenr);
3388
3389 crc = ~(u32)0;
3390 crc = btrfs_csum_data((char *)sb +
3391 BTRFS_CSUM_SIZE, crc,
3392 BTRFS_SUPER_INFO_SIZE -
3393 BTRFS_CSUM_SIZE);
3394 btrfs_csum_final(crc, sb->csum);
3395
3396 /*
3397 * one reference for us, and we leave it for the
3398 * caller
3399 */
3400 bh = __getblk(device->bdev, bytenr / 4096,
3401 BTRFS_SUPER_INFO_SIZE);
3402 if (!bh) {
3403 btrfs_err(device->dev_root->fs_info,
3404 "couldn't get super buffer head for bytenr %llu",
3405 bytenr);
3406 errors++;
3407 continue;
3408 }
3409
3410 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3411
3412 /* one reference for submit_bh */
3413 get_bh(bh);
3414
3415 set_buffer_uptodate(bh);
3416 lock_buffer(bh);
3417 bh->b_end_io = btrfs_end_buffer_write_sync;
3418 bh->b_private = device;
3419 }
3420
3421 /*
3422 * we fua the first super. The others we allow
3423 * to go down lazy.
3424 */
3425 if (i == 0)
3426 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3427 else
3428 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3429 if (ret)
3430 errors++;
3431 }
3432 return errors < i ? 0 : -1;
3433 }
3434
3435 /*
3436 * endio for the write_dev_flush, this will wake anyone waiting
3437 * for the barrier when it is done
3438 */
3439 static void btrfs_end_empty_barrier(struct bio *bio)
3440 {
3441 if (bio->bi_private)
3442 complete(bio->bi_private);
3443 bio_put(bio);
3444 }
3445
3446 /*
3447 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3448 * sent down. With wait == 1, it waits for the previous flush.
3449 *
3450 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3451 * capable
3452 */
3453 static int write_dev_flush(struct btrfs_device *device, int wait)
3454 {
3455 struct bio *bio;
3456 int ret = 0;
3457
3458 if (device->nobarriers)
3459 return 0;
3460
3461 if (wait) {
3462 bio = device->flush_bio;
3463 if (!bio)
3464 return 0;
3465
3466 wait_for_completion(&device->flush_wait);
3467
3468 if (bio->bi_error) {
3469 ret = bio->bi_error;
3470 btrfs_dev_stat_inc_and_print(device,
3471 BTRFS_DEV_STAT_FLUSH_ERRS);
3472 }
3473
3474 /* drop the reference from the wait == 0 run */
3475 bio_put(bio);
3476 device->flush_bio = NULL;
3477
3478 return ret;
3479 }
3480
3481 /*
3482 * one reference for us, and we leave it for the
3483 * caller
3484 */
3485 device->flush_bio = NULL;
3486 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3487 if (!bio)
3488 return -ENOMEM;
3489
3490 bio->bi_end_io = btrfs_end_empty_barrier;
3491 bio->bi_bdev = device->bdev;
3492 init_completion(&device->flush_wait);
3493 bio->bi_private = &device->flush_wait;
3494 device->flush_bio = bio;
3495
3496 bio_get(bio);
3497 btrfsic_submit_bio(WRITE_FLUSH, bio);
3498
3499 return 0;
3500 }
3501
3502 /*
3503 * send an empty flush down to each device in parallel,
3504 * then wait for them
3505 */
3506 static int barrier_all_devices(struct btrfs_fs_info *info)
3507 {
3508 struct list_head *head;
3509 struct btrfs_device *dev;
3510 int errors_send = 0;
3511 int errors_wait = 0;
3512 int ret;
3513
3514 /* send down all the barriers */
3515 head = &info->fs_devices->devices;
3516 list_for_each_entry_rcu(dev, head, dev_list) {
3517 if (dev->missing)
3518 continue;
3519 if (!dev->bdev) {
3520 errors_send++;
3521 continue;
3522 }
3523 if (!dev->in_fs_metadata || !dev->writeable)
3524 continue;
3525
3526 ret = write_dev_flush(dev, 0);
3527 if (ret)
3528 errors_send++;
3529 }
3530
3531 /* wait for all the barriers */
3532 list_for_each_entry_rcu(dev, head, dev_list) {
3533 if (dev->missing)
3534 continue;
3535 if (!dev->bdev) {
3536 errors_wait++;
3537 continue;
3538 }
3539 if (!dev->in_fs_metadata || !dev->writeable)
3540 continue;
3541
3542 ret = write_dev_flush(dev, 1);
3543 if (ret)
3544 errors_wait++;
3545 }
3546 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3547 errors_wait > info->num_tolerated_disk_barrier_failures)
3548 return -EIO;
3549 return 0;
3550 }
3551
3552 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3553 {
3554 int raid_type;
3555 int min_tolerated = INT_MAX;
3556
3557 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3558 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3559 min_tolerated = min(min_tolerated,
3560 btrfs_raid_array[BTRFS_RAID_SINGLE].
3561 tolerated_failures);
3562
3563 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3564 if (raid_type == BTRFS_RAID_SINGLE)
3565 continue;
3566 if (!(flags & btrfs_raid_group[raid_type]))
3567 continue;
3568 min_tolerated = min(min_tolerated,
3569 btrfs_raid_array[raid_type].
3570 tolerated_failures);
3571 }
3572
3573 if (min_tolerated == INT_MAX) {
3574 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3575 min_tolerated = 0;
3576 }
3577
3578 return min_tolerated;
3579 }
3580
3581 int btrfs_calc_num_tolerated_disk_barrier_failures(
3582 struct btrfs_fs_info *fs_info)
3583 {
3584 struct btrfs_ioctl_space_info space;
3585 struct btrfs_space_info *sinfo;
3586 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3587 BTRFS_BLOCK_GROUP_SYSTEM,
3588 BTRFS_BLOCK_GROUP_METADATA,
3589 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3590 int i;
3591 int c;
3592 int num_tolerated_disk_barrier_failures =
3593 (int)fs_info->fs_devices->num_devices;
3594
3595 for (i = 0; i < ARRAY_SIZE(types); i++) {
3596 struct btrfs_space_info *tmp;
3597
3598 sinfo = NULL;
3599 rcu_read_lock();
3600 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3601 if (tmp->flags == types[i]) {
3602 sinfo = tmp;
3603 break;
3604 }
3605 }
3606 rcu_read_unlock();
3607
3608 if (!sinfo)
3609 continue;
3610
3611 down_read(&sinfo->groups_sem);
3612 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3613 u64 flags;
3614
3615 if (list_empty(&sinfo->block_groups[c]))
3616 continue;
3617
3618 btrfs_get_block_group_info(&sinfo->block_groups[c],
3619 &space);
3620 if (space.total_bytes == 0 || space.used_bytes == 0)
3621 continue;
3622 flags = space.flags;
3623
3624 num_tolerated_disk_barrier_failures = min(
3625 num_tolerated_disk_barrier_failures,
3626 btrfs_get_num_tolerated_disk_barrier_failures(
3627 flags));
3628 }
3629 up_read(&sinfo->groups_sem);
3630 }
3631
3632 return num_tolerated_disk_barrier_failures;
3633 }
3634
3635 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3636 {
3637 struct list_head *head;
3638 struct btrfs_device *dev;
3639 struct btrfs_super_block *sb;
3640 struct btrfs_dev_item *dev_item;
3641 int ret;
3642 int do_barriers;
3643 int max_errors;
3644 int total_errors = 0;
3645 u64 flags;
3646
3647 do_barriers = !btrfs_test_opt(root, NOBARRIER);
3648 backup_super_roots(root->fs_info);
3649
3650 sb = root->fs_info->super_for_commit;
3651 dev_item = &sb->dev_item;
3652
3653 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3654 head = &root->fs_info->fs_devices->devices;
3655 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3656
3657 if (do_barriers) {
3658 ret = barrier_all_devices(root->fs_info);
3659 if (ret) {
3660 mutex_unlock(
3661 &root->fs_info->fs_devices->device_list_mutex);
3662 btrfs_handle_fs_error(root->fs_info, ret,
3663 "errors while submitting device barriers.");
3664 return ret;
3665 }
3666 }
3667
3668 list_for_each_entry_rcu(dev, head, dev_list) {
3669 if (!dev->bdev) {
3670 total_errors++;
3671 continue;
3672 }
3673 if (!dev->in_fs_metadata || !dev->writeable)
3674 continue;
3675
3676 btrfs_set_stack_device_generation(dev_item, 0);
3677 btrfs_set_stack_device_type(dev_item, dev->type);
3678 btrfs_set_stack_device_id(dev_item, dev->devid);
3679 btrfs_set_stack_device_total_bytes(dev_item,
3680 dev->commit_total_bytes);
3681 btrfs_set_stack_device_bytes_used(dev_item,
3682 dev->commit_bytes_used);
3683 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3684 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3685 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3686 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3687 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3688
3689 flags = btrfs_super_flags(sb);
3690 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3691
3692 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3693 if (ret)
3694 total_errors++;
3695 }
3696 if (total_errors > max_errors) {
3697 btrfs_err(root->fs_info, "%d errors while writing supers",
3698 total_errors);
3699 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3700
3701 /* FUA is masked off if unsupported and can't be the reason */
3702 btrfs_handle_fs_error(root->fs_info, -EIO,
3703 "%d errors while writing supers", total_errors);
3704 return -EIO;
3705 }
3706
3707 total_errors = 0;
3708 list_for_each_entry_rcu(dev, head, dev_list) {
3709 if (!dev->bdev)
3710 continue;
3711 if (!dev->in_fs_metadata || !dev->writeable)
3712 continue;
3713
3714 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3715 if (ret)
3716 total_errors++;
3717 }
3718 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3719 if (total_errors > max_errors) {
3720 btrfs_handle_fs_error(root->fs_info, -EIO,
3721 "%d errors while writing supers", total_errors);
3722 return -EIO;
3723 }
3724 return 0;
3725 }
3726
3727 int write_ctree_super(struct btrfs_trans_handle *trans,
3728 struct btrfs_root *root, int max_mirrors)
3729 {
3730 return write_all_supers(root, max_mirrors);
3731 }
3732
3733 /* Drop a fs root from the radix tree and free it. */
3734 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3735 struct btrfs_root *root)
3736 {
3737 spin_lock(&fs_info->fs_roots_radix_lock);
3738 radix_tree_delete(&fs_info->fs_roots_radix,
3739 (unsigned long)root->root_key.objectid);
3740 spin_unlock(&fs_info->fs_roots_radix_lock);
3741
3742 if (btrfs_root_refs(&root->root_item) == 0)
3743 synchronize_srcu(&fs_info->subvol_srcu);
3744
3745 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3746 btrfs_free_log(NULL, root);
3747
3748 if (root->free_ino_pinned)
3749 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3750 if (root->free_ino_ctl)
3751 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3752 free_fs_root(root);
3753 }
3754
3755 static void free_fs_root(struct btrfs_root *root)
3756 {
3757 iput(root->ino_cache_inode);
3758 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3759 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3760 root->orphan_block_rsv = NULL;
3761 if (root->anon_dev)
3762 free_anon_bdev(root->anon_dev);
3763 if (root->subv_writers)
3764 btrfs_free_subvolume_writers(root->subv_writers);
3765 free_extent_buffer(root->node);
3766 free_extent_buffer(root->commit_root);
3767 kfree(root->free_ino_ctl);
3768 kfree(root->free_ino_pinned);
3769 kfree(root->name);
3770 btrfs_put_fs_root(root);
3771 }
3772
3773 void btrfs_free_fs_root(struct btrfs_root *root)
3774 {
3775 free_fs_root(root);
3776 }
3777
3778 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3779 {
3780 u64 root_objectid = 0;
3781 struct btrfs_root *gang[8];
3782 int i = 0;
3783 int err = 0;
3784 unsigned int ret = 0;
3785 int index;
3786
3787 while (1) {
3788 index = srcu_read_lock(&fs_info->subvol_srcu);
3789 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3790 (void **)gang, root_objectid,
3791 ARRAY_SIZE(gang));
3792 if (!ret) {
3793 srcu_read_unlock(&fs_info->subvol_srcu, index);
3794 break;
3795 }
3796 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3797
3798 for (i = 0; i < ret; i++) {
3799 /* Avoid to grab roots in dead_roots */
3800 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3801 gang[i] = NULL;
3802 continue;
3803 }
3804 /* grab all the search result for later use */
3805 gang[i] = btrfs_grab_fs_root(gang[i]);
3806 }
3807 srcu_read_unlock(&fs_info->subvol_srcu, index);
3808
3809 for (i = 0; i < ret; i++) {
3810 if (!gang[i])
3811 continue;
3812 root_objectid = gang[i]->root_key.objectid;
3813 err = btrfs_orphan_cleanup(gang[i]);
3814 if (err)
3815 break;
3816 btrfs_put_fs_root(gang[i]);
3817 }
3818 root_objectid++;
3819 }
3820
3821 /* release the uncleaned roots due to error */
3822 for (; i < ret; i++) {
3823 if (gang[i])
3824 btrfs_put_fs_root(gang[i]);
3825 }
3826 return err;
3827 }
3828
3829 int btrfs_commit_super(struct btrfs_root *root)
3830 {
3831 struct btrfs_trans_handle *trans;
3832
3833 mutex_lock(&root->fs_info->cleaner_mutex);
3834 btrfs_run_delayed_iputs(root);
3835 mutex_unlock(&root->fs_info->cleaner_mutex);
3836 wake_up_process(root->fs_info->cleaner_kthread);
3837
3838 /* wait until ongoing cleanup work done */
3839 down_write(&root->fs_info->cleanup_work_sem);
3840 up_write(&root->fs_info->cleanup_work_sem);
3841
3842 trans = btrfs_join_transaction(root);
3843 if (IS_ERR(trans))
3844 return PTR_ERR(trans);
3845 return btrfs_commit_transaction(trans, root);
3846 }
3847
3848 void close_ctree(struct btrfs_root *root)
3849 {
3850 struct btrfs_fs_info *fs_info = root->fs_info;
3851 int ret;
3852
3853 fs_info->closing = 1;
3854 smp_mb();
3855
3856 /* wait for the qgroup rescan worker to stop */
3857 btrfs_qgroup_wait_for_completion(fs_info);
3858
3859 /* wait for the uuid_scan task to finish */
3860 down(&fs_info->uuid_tree_rescan_sem);
3861 /* avoid complains from lockdep et al., set sem back to initial state */
3862 up(&fs_info->uuid_tree_rescan_sem);
3863
3864 /* pause restriper - we want to resume on mount */
3865 btrfs_pause_balance(fs_info);
3866
3867 btrfs_dev_replace_suspend_for_unmount(fs_info);
3868
3869 btrfs_scrub_cancel(fs_info);
3870
3871 /* wait for any defraggers to finish */
3872 wait_event(fs_info->transaction_wait,
3873 (atomic_read(&fs_info->defrag_running) == 0));
3874
3875 /* clear out the rbtree of defraggable inodes */
3876 btrfs_cleanup_defrag_inodes(fs_info);
3877
3878 cancel_work_sync(&fs_info->async_reclaim_work);
3879
3880 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3881 /*
3882 * If the cleaner thread is stopped and there are
3883 * block groups queued for removal, the deletion will be
3884 * skipped when we quit the cleaner thread.
3885 */
3886 btrfs_delete_unused_bgs(root->fs_info);
3887
3888 ret = btrfs_commit_super(root);
3889 if (ret)
3890 btrfs_err(fs_info, "commit super ret %d", ret);
3891 }
3892
3893 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3894 btrfs_error_commit_super(root);
3895
3896 kthread_stop(fs_info->transaction_kthread);
3897 kthread_stop(fs_info->cleaner_kthread);
3898
3899 fs_info->closing = 2;
3900 smp_mb();
3901
3902 btrfs_free_qgroup_config(fs_info);
3903
3904 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3905 btrfs_info(fs_info, "at unmount delalloc count %lld",
3906 percpu_counter_sum(&fs_info->delalloc_bytes));
3907 }
3908
3909 btrfs_sysfs_remove_mounted(fs_info);
3910 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3911
3912 btrfs_free_fs_roots(fs_info);
3913
3914 btrfs_put_block_group_cache(fs_info);
3915
3916 btrfs_free_block_groups(fs_info);
3917
3918 /*
3919 * we must make sure there is not any read request to
3920 * submit after we stopping all workers.
3921 */
3922 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3923 btrfs_stop_all_workers(fs_info);
3924
3925 fs_info->open = 0;
3926 free_root_pointers(fs_info, 1);
3927
3928 iput(fs_info->btree_inode);
3929
3930 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3931 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3932 btrfsic_unmount(root, fs_info->fs_devices);
3933 #endif
3934
3935 btrfs_close_devices(fs_info->fs_devices);
3936 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3937
3938 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3939 percpu_counter_destroy(&fs_info->delalloc_bytes);
3940 percpu_counter_destroy(&fs_info->bio_counter);
3941 bdi_destroy(&fs_info->bdi);
3942 cleanup_srcu_struct(&fs_info->subvol_srcu);
3943
3944 btrfs_free_stripe_hash_table(fs_info);
3945
3946 __btrfs_free_block_rsv(root->orphan_block_rsv);
3947 root->orphan_block_rsv = NULL;
3948
3949 lock_chunks(root);
3950 while (!list_empty(&fs_info->pinned_chunks)) {
3951 struct extent_map *em;
3952
3953 em = list_first_entry(&fs_info->pinned_chunks,
3954 struct extent_map, list);
3955 list_del_init(&em->list);
3956 free_extent_map(em);
3957 }
3958 unlock_chunks(root);
3959 }
3960
3961 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3962 int atomic)
3963 {
3964 int ret;
3965 struct inode *btree_inode = buf->pages[0]->mapping->host;
3966
3967 ret = extent_buffer_uptodate(buf);
3968 if (!ret)
3969 return ret;
3970
3971 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3972 parent_transid, atomic);
3973 if (ret == -EAGAIN)
3974 return ret;
3975 return !ret;
3976 }
3977
3978 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3979 {
3980 struct btrfs_root *root;
3981 u64 transid = btrfs_header_generation(buf);
3982 int was_dirty;
3983
3984 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3985 /*
3986 * This is a fast path so only do this check if we have sanity tests
3987 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3988 * outside of the sanity tests.
3989 */
3990 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3991 return;
3992 #endif
3993 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3994 btrfs_assert_tree_locked(buf);
3995 if (transid != root->fs_info->generation)
3996 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3997 "found %llu running %llu\n",
3998 buf->start, transid, root->fs_info->generation);
3999 was_dirty = set_extent_buffer_dirty(buf);
4000 if (!was_dirty)
4001 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
4002 buf->len,
4003 root->fs_info->dirty_metadata_batch);
4004 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4005 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4006 btrfs_print_leaf(root, buf);
4007 ASSERT(0);
4008 }
4009 #endif
4010 }
4011
4012 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4013 int flush_delayed)
4014 {
4015 /*
4016 * looks as though older kernels can get into trouble with
4017 * this code, they end up stuck in balance_dirty_pages forever
4018 */
4019 int ret;
4020
4021 if (current->flags & PF_MEMALLOC)
4022 return;
4023
4024 if (flush_delayed)
4025 btrfs_balance_delayed_items(root);
4026
4027 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4028 BTRFS_DIRTY_METADATA_THRESH);
4029 if (ret > 0) {
4030 balance_dirty_pages_ratelimited(
4031 root->fs_info->btree_inode->i_mapping);
4032 }
4033 }
4034
4035 void btrfs_btree_balance_dirty(struct btrfs_root *root)
4036 {
4037 __btrfs_btree_balance_dirty(root, 1);
4038 }
4039
4040 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4041 {
4042 __btrfs_btree_balance_dirty(root, 0);
4043 }
4044
4045 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4046 {
4047 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4048 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4049 }
4050
4051 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4052 int read_only)
4053 {
4054 struct btrfs_super_block *sb = fs_info->super_copy;
4055 u64 nodesize = btrfs_super_nodesize(sb);
4056 u64 sectorsize = btrfs_super_sectorsize(sb);
4057 int ret = 0;
4058
4059 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4060 printk(KERN_ERR "BTRFS: no valid FS found\n");
4061 ret = -EINVAL;
4062 }
4063 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4064 printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4065 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4066 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4067 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4068 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4069 ret = -EINVAL;
4070 }
4071 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4072 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4073 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4074 ret = -EINVAL;
4075 }
4076 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4077 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4078 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4079 ret = -EINVAL;
4080 }
4081
4082 /*
4083 * Check sectorsize and nodesize first, other check will need it.
4084 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4085 */
4086 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4087 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4088 printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4089 ret = -EINVAL;
4090 }
4091 /* Only PAGE SIZE is supported yet */
4092 if (sectorsize != PAGE_SIZE) {
4093 printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4094 sectorsize, PAGE_SIZE);
4095 ret = -EINVAL;
4096 }
4097 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4098 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4099 printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4100 ret = -EINVAL;
4101 }
4102 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4103 printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4104 le32_to_cpu(sb->__unused_leafsize),
4105 nodesize);
4106 ret = -EINVAL;
4107 }
4108
4109 /* Root alignment check */
4110 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4111 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4112 btrfs_super_root(sb));
4113 ret = -EINVAL;
4114 }
4115 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4116 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4117 btrfs_super_chunk_root(sb));
4118 ret = -EINVAL;
4119 }
4120 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4121 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4122 btrfs_super_log_root(sb));
4123 ret = -EINVAL;
4124 }
4125
4126 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4127 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4128 fs_info->fsid, sb->dev_item.fsid);
4129 ret = -EINVAL;
4130 }
4131
4132 /*
4133 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4134 * done later
4135 */
4136 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4137 btrfs_err(fs_info, "bytes_used is too small %llu",
4138 btrfs_super_bytes_used(sb));
4139 ret = -EINVAL;
4140 }
4141 if (!is_power_of_2(btrfs_super_stripesize(sb)) ||
4142 btrfs_super_stripesize(sb) != sectorsize) {
4143 btrfs_err(fs_info, "invalid stripesize %u",
4144 btrfs_super_stripesize(sb));
4145 ret = -EINVAL;
4146 }
4147 if (btrfs_super_num_devices(sb) > (1UL << 31))
4148 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4149 btrfs_super_num_devices(sb));
4150 if (btrfs_super_num_devices(sb) == 0) {
4151 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4152 ret = -EINVAL;
4153 }
4154
4155 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4156 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4157 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4158 ret = -EINVAL;
4159 }
4160
4161 /*
4162 * Obvious sys_chunk_array corruptions, it must hold at least one key
4163 * and one chunk
4164 */
4165 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4166 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4167 btrfs_super_sys_array_size(sb),
4168 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4169 ret = -EINVAL;
4170 }
4171 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4172 + sizeof(struct btrfs_chunk)) {
4173 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4174 btrfs_super_sys_array_size(sb),
4175 sizeof(struct btrfs_disk_key)
4176 + sizeof(struct btrfs_chunk));
4177 ret = -EINVAL;
4178 }
4179
4180 /*
4181 * The generation is a global counter, we'll trust it more than the others
4182 * but it's still possible that it's the one that's wrong.
4183 */
4184 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4185 printk(KERN_WARNING
4186 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4187 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4188 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4189 && btrfs_super_cache_generation(sb) != (u64)-1)
4190 printk(KERN_WARNING
4191 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4192 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4193
4194 return ret;
4195 }
4196
4197 static void btrfs_error_commit_super(struct btrfs_root *root)
4198 {
4199 mutex_lock(&root->fs_info->cleaner_mutex);
4200 btrfs_run_delayed_iputs(root);
4201 mutex_unlock(&root->fs_info->cleaner_mutex);
4202
4203 down_write(&root->fs_info->cleanup_work_sem);
4204 up_write(&root->fs_info->cleanup_work_sem);
4205
4206 /* cleanup FS via transaction */
4207 btrfs_cleanup_transaction(root);
4208 }
4209
4210 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4211 {
4212 struct btrfs_ordered_extent *ordered;
4213
4214 spin_lock(&root->ordered_extent_lock);
4215 /*
4216 * This will just short circuit the ordered completion stuff which will
4217 * make sure the ordered extent gets properly cleaned up.
4218 */
4219 list_for_each_entry(ordered, &root->ordered_extents,
4220 root_extent_list)
4221 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4222 spin_unlock(&root->ordered_extent_lock);
4223 }
4224
4225 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4226 {
4227 struct btrfs_root *root;
4228 struct list_head splice;
4229
4230 INIT_LIST_HEAD(&splice);
4231
4232 spin_lock(&fs_info->ordered_root_lock);
4233 list_splice_init(&fs_info->ordered_roots, &splice);
4234 while (!list_empty(&splice)) {
4235 root = list_first_entry(&splice, struct btrfs_root,
4236 ordered_root);
4237 list_move_tail(&root->ordered_root,
4238 &fs_info->ordered_roots);
4239
4240 spin_unlock(&fs_info->ordered_root_lock);
4241 btrfs_destroy_ordered_extents(root);
4242
4243 cond_resched();
4244 spin_lock(&fs_info->ordered_root_lock);
4245 }
4246 spin_unlock(&fs_info->ordered_root_lock);
4247 }
4248
4249 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4250 struct btrfs_root *root)
4251 {
4252 struct rb_node *node;
4253 struct btrfs_delayed_ref_root *delayed_refs;
4254 struct btrfs_delayed_ref_node *ref;
4255 int ret = 0;
4256
4257 delayed_refs = &trans->delayed_refs;
4258
4259 spin_lock(&delayed_refs->lock);
4260 if (atomic_read(&delayed_refs->num_entries) == 0) {
4261 spin_unlock(&delayed_refs->lock);
4262 btrfs_info(root->fs_info, "delayed_refs has NO entry");
4263 return ret;
4264 }
4265
4266 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4267 struct btrfs_delayed_ref_head *head;
4268 struct btrfs_delayed_ref_node *tmp;
4269 bool pin_bytes = false;
4270
4271 head = rb_entry(node, struct btrfs_delayed_ref_head,
4272 href_node);
4273 if (!mutex_trylock(&head->mutex)) {
4274 atomic_inc(&head->node.refs);
4275 spin_unlock(&delayed_refs->lock);
4276
4277 mutex_lock(&head->mutex);
4278 mutex_unlock(&head->mutex);
4279 btrfs_put_delayed_ref(&head->node);
4280 spin_lock(&delayed_refs->lock);
4281 continue;
4282 }
4283 spin_lock(&head->lock);
4284 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4285 list) {
4286 ref->in_tree = 0;
4287 list_del(&ref->list);
4288 atomic_dec(&delayed_refs->num_entries);
4289 btrfs_put_delayed_ref(ref);
4290 }
4291 if (head->must_insert_reserved)
4292 pin_bytes = true;
4293 btrfs_free_delayed_extent_op(head->extent_op);
4294 delayed_refs->num_heads--;
4295 if (head->processing == 0)
4296 delayed_refs->num_heads_ready--;
4297 atomic_dec(&delayed_refs->num_entries);
4298 head->node.in_tree = 0;
4299 rb_erase(&head->href_node, &delayed_refs->href_root);
4300 spin_unlock(&head->lock);
4301 spin_unlock(&delayed_refs->lock);
4302 mutex_unlock(&head->mutex);
4303
4304 if (pin_bytes)
4305 btrfs_pin_extent(root, head->node.bytenr,
4306 head->node.num_bytes, 1);
4307 btrfs_put_delayed_ref(&head->node);
4308 cond_resched();
4309 spin_lock(&delayed_refs->lock);
4310 }
4311
4312 spin_unlock(&delayed_refs->lock);
4313
4314 return ret;
4315 }
4316
4317 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4318 {
4319 struct btrfs_inode *btrfs_inode;
4320 struct list_head splice;
4321
4322 INIT_LIST_HEAD(&splice);
4323
4324 spin_lock(&root->delalloc_lock);
4325 list_splice_init(&root->delalloc_inodes, &splice);
4326
4327 while (!list_empty(&splice)) {
4328 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4329 delalloc_inodes);
4330
4331 list_del_init(&btrfs_inode->delalloc_inodes);
4332 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4333 &btrfs_inode->runtime_flags);
4334 spin_unlock(&root->delalloc_lock);
4335
4336 btrfs_invalidate_inodes(btrfs_inode->root);
4337
4338 spin_lock(&root->delalloc_lock);
4339 }
4340
4341 spin_unlock(&root->delalloc_lock);
4342 }
4343
4344 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4345 {
4346 struct btrfs_root *root;
4347 struct list_head splice;
4348
4349 INIT_LIST_HEAD(&splice);
4350
4351 spin_lock(&fs_info->delalloc_root_lock);
4352 list_splice_init(&fs_info->delalloc_roots, &splice);
4353 while (!list_empty(&splice)) {
4354 root = list_first_entry(&splice, struct btrfs_root,
4355 delalloc_root);
4356 list_del_init(&root->delalloc_root);
4357 root = btrfs_grab_fs_root(root);
4358 BUG_ON(!root);
4359 spin_unlock(&fs_info->delalloc_root_lock);
4360
4361 btrfs_destroy_delalloc_inodes(root);
4362 btrfs_put_fs_root(root);
4363
4364 spin_lock(&fs_info->delalloc_root_lock);
4365 }
4366 spin_unlock(&fs_info->delalloc_root_lock);
4367 }
4368
4369 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4370 struct extent_io_tree *dirty_pages,
4371 int mark)
4372 {
4373 int ret;
4374 struct extent_buffer *eb;
4375 u64 start = 0;
4376 u64 end;
4377
4378 while (1) {
4379 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4380 mark, NULL);
4381 if (ret)
4382 break;
4383
4384 clear_extent_bits(dirty_pages, start, end, mark);
4385 while (start <= end) {
4386 eb = btrfs_find_tree_block(root->fs_info, start);
4387 start += root->nodesize;
4388 if (!eb)
4389 continue;
4390 wait_on_extent_buffer_writeback(eb);
4391
4392 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4393 &eb->bflags))
4394 clear_extent_buffer_dirty(eb);
4395 free_extent_buffer_stale(eb);
4396 }
4397 }
4398
4399 return ret;
4400 }
4401
4402 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4403 struct extent_io_tree *pinned_extents)
4404 {
4405 struct extent_io_tree *unpin;
4406 u64 start;
4407 u64 end;
4408 int ret;
4409 bool loop = true;
4410
4411 unpin = pinned_extents;
4412 again:
4413 while (1) {
4414 ret = find_first_extent_bit(unpin, 0, &start, &end,
4415 EXTENT_DIRTY, NULL);
4416 if (ret)
4417 break;
4418
4419 clear_extent_dirty(unpin, start, end);
4420 btrfs_error_unpin_extent_range(root, start, end);
4421 cond_resched();
4422 }
4423
4424 if (loop) {
4425 if (unpin == &root->fs_info->freed_extents[0])
4426 unpin = &root->fs_info->freed_extents[1];
4427 else
4428 unpin = &root->fs_info->freed_extents[0];
4429 loop = false;
4430 goto again;
4431 }
4432
4433 return 0;
4434 }
4435
4436 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4437 struct btrfs_root *root)
4438 {
4439 btrfs_destroy_delayed_refs(cur_trans, root);
4440
4441 cur_trans->state = TRANS_STATE_COMMIT_START;
4442 wake_up(&root->fs_info->transaction_blocked_wait);
4443
4444 cur_trans->state = TRANS_STATE_UNBLOCKED;
4445 wake_up(&root->fs_info->transaction_wait);
4446
4447 btrfs_destroy_delayed_inodes(root);
4448 btrfs_assert_delayed_root_empty(root);
4449
4450 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4451 EXTENT_DIRTY);
4452 btrfs_destroy_pinned_extent(root,
4453 root->fs_info->pinned_extents);
4454
4455 cur_trans->state =TRANS_STATE_COMPLETED;
4456 wake_up(&cur_trans->commit_wait);
4457
4458 /*
4459 memset(cur_trans, 0, sizeof(*cur_trans));
4460 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4461 */
4462 }
4463
4464 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4465 {
4466 struct btrfs_transaction *t;
4467
4468 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4469
4470 spin_lock(&root->fs_info->trans_lock);
4471 while (!list_empty(&root->fs_info->trans_list)) {
4472 t = list_first_entry(&root->fs_info->trans_list,
4473 struct btrfs_transaction, list);
4474 if (t->state >= TRANS_STATE_COMMIT_START) {
4475 atomic_inc(&t->use_count);
4476 spin_unlock(&root->fs_info->trans_lock);
4477 btrfs_wait_for_commit(root, t->transid);
4478 btrfs_put_transaction(t);
4479 spin_lock(&root->fs_info->trans_lock);
4480 continue;
4481 }
4482 if (t == root->fs_info->running_transaction) {
4483 t->state = TRANS_STATE_COMMIT_DOING;
4484 spin_unlock(&root->fs_info->trans_lock);
4485 /*
4486 * We wait for 0 num_writers since we don't hold a trans
4487 * handle open currently for this transaction.
4488 */
4489 wait_event(t->writer_wait,
4490 atomic_read(&t->num_writers) == 0);
4491 } else {
4492 spin_unlock(&root->fs_info->trans_lock);
4493 }
4494 btrfs_cleanup_one_transaction(t, root);
4495
4496 spin_lock(&root->fs_info->trans_lock);
4497 if (t == root->fs_info->running_transaction)
4498 root->fs_info->running_transaction = NULL;
4499 list_del_init(&t->list);
4500 spin_unlock(&root->fs_info->trans_lock);
4501
4502 btrfs_put_transaction(t);
4503 trace_btrfs_transaction_commit(root);
4504 spin_lock(&root->fs_info->trans_lock);
4505 }
4506 spin_unlock(&root->fs_info->trans_lock);
4507 btrfs_destroy_all_ordered_extents(root->fs_info);
4508 btrfs_destroy_delayed_inodes(root);
4509 btrfs_assert_delayed_root_empty(root);
4510 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4511 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4512 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4513
4514 return 0;
4515 }
4516
4517 static const struct extent_io_ops btree_extent_io_ops = {
4518 .readpage_end_io_hook = btree_readpage_end_io_hook,
4519 .readpage_io_failed_hook = btree_io_failed_hook,
4520 .submit_bio_hook = btree_submit_bio_hook,
4521 /* note we're sharing with inode.c for the merge bio hook */
4522 .merge_bio_hook = btrfs_merge_bio_hook,
4523 };
This page took 0.140629 seconds and 5 git commands to generate.