Merge branches 'pm-core', 'pm-clk', 'pm-domains' and 'pm-pci'
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74 };
75
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101 };
102
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
115
116 static int btrfs_dirty_inode(struct inode *inode);
117
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
128 {
129 int err;
130
131 err = btrfs_init_acl(trans, inode, dir);
132 if (!err)
133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 return err;
135 }
136
137 /*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 struct btrfs_path *path, int extent_inserted,
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
146 int compress_type,
147 struct page **compressed_pages)
148 {
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
157 unsigned long offset;
158
159 if (compressed_size && compressed_pages)
160 cur_size = compressed_size;
161
162 inode_add_bytes(inode, size);
163
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
167
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
170 key.type = BTRFS_EXTENT_DATA_KEY;
171
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
191 if (compress_type != BTRFS_COMPRESS_NONE) {
192 struct page *cpage;
193 int i = 0;
194 while (compressed_size > 0) {
195 cpage = compressed_pages[i];
196 cur_size = min_t(unsigned long, compressed_size,
197 PAGE_SIZE);
198
199 kaddr = kmap_atomic(cpage);
200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 kunmap_atomic(kaddr);
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
208 compress_type);
209 } else {
210 page = find_get_page(inode->i_mapping,
211 start >> PAGE_SHIFT);
212 btrfs_set_file_extent_compression(leaf, ei, 0);
213 kaddr = kmap_atomic(page);
214 offset = start & (PAGE_SIZE - 1);
215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 kunmap_atomic(kaddr);
217 put_page(page);
218 }
219 btrfs_mark_buffer_dirty(leaf);
220 btrfs_release_path(path);
221
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
231 BTRFS_I(inode)->disk_i_size = inode->i_size;
232 ret = btrfs_update_inode(trans, root, inode);
233
234 return ret;
235 fail:
236 return err;
237 }
238
239
240 /*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
250 {
251 struct btrfs_trans_handle *trans;
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
255 u64 aligned_end = ALIGN(end, root->sectorsize);
256 u64 data_len = inline_len;
257 int ret;
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
266 actual_end > root->sectorsize ||
267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
279 trans = btrfs_join_transaction(root);
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
282 return PTR_ERR(trans);
283 }
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
305 inline_len, compressed_size,
306 compress_type, compressed_pages);
307 if (ret && ret != -ENOSPC) {
308 btrfs_abort_transaction(trans, root, ret);
309 goto out;
310 } else if (ret == -ENOSPC) {
311 ret = 1;
312 goto out;
313 }
314
315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
325 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
326 btrfs_free_path(path);
327 btrfs_end_transaction(trans, root);
328 return ret;
329 }
330
331 struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
337 int compress_type;
338 struct list_head list;
339 };
340
341 struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349 };
350
351 static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
355 unsigned long nr_pages,
356 int compress_type)
357 {
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 BUG_ON(!async_extent); /* -ENOMEM */
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
367 async_extent->compress_type = compress_type;
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370 }
371
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387 }
388
389 /*
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
393 *
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
399 *
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
403 * are written in the same order that the flusher thread sent them
404 * down.
405 */
406 static noinline void compress_file_range(struct inode *inode,
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
411 {
412 struct btrfs_root *root = BTRFS_I(inode)->root;
413 u64 num_bytes;
414 u64 blocksize = root->sectorsize;
415 u64 actual_end;
416 u64 isize = i_size_read(inode);
417 int ret = 0;
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
425 int i;
426 int will_compress;
427 int compress_type = root->fs_info->compress_type;
428 int redirty = 0;
429
430 /* if this is a small write inside eof, kick off a defrag */
431 if ((end - start + 1) < SZ_16K &&
432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
434
435 actual_end = min_t(u64, isize, end + 1);
436 again:
437 will_compress = 0;
438 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
440
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
454 total_compressed = actual_end - start;
455
456 /*
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it doesn't save disk space at all.
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
475 num_bytes = ALIGN(end - start + 1, blocksize);
476 num_bytes = max(blocksize, num_bytes);
477 total_in = 0;
478 ret = 0;
479
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
484 */
485 if (inode_need_compress(inode)) {
486 WARN_ON(pages);
487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
492
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
517 (PAGE_SIZE - 1);
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
525 kaddr = kmap_atomic(page);
526 memset(kaddr + offset, 0,
527 PAGE_SIZE - offset);
528 kunmap_atomic(kaddr);
529 }
530 will_compress = 1;
531 }
532 }
533 cont:
534 if (start == 0) {
535 /* lets try to make an inline extent */
536 if (ret || total_in < (actual_end - start)) {
537 /* we didn't compress the entire range, try
538 * to make an uncompressed inline extent.
539 */
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
542 } else {
543 /* try making a compressed inline extent */
544 ret = cow_file_range_inline(root, inode, start, end,
545 total_compressed,
546 compress_type, pages);
547 }
548 if (ret <= 0) {
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
551 unsigned long page_error_op;
552
553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555
556 /*
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
560 */
561 extent_clear_unlock_delalloc(inode, start, end, NULL,
562 clear_flags, PAGE_UNLOCK |
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
565 page_error_op |
566 PAGE_END_WRITEBACK);
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
577 total_compressed = ALIGN(total_compressed, blocksize);
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
583 total_in = ALIGN(total_in, PAGE_SIZE);
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
596 WARN_ON(pages[i]->mapping);
597 put_page(pages[i]);
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 }
609 }
610 if (will_compress) {
611 *num_added += 1;
612
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
620
621 if (start + num_bytes < end) {
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
628 cleanup_and_bail_uncompressed:
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 *num_added += 1;
646 }
647
648 return;
649
650 free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
653 put_page(pages[i]);
654 }
655 kfree(pages);
656 }
657
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
667 put_page(async_extent->pages[i]);
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
672 }
673
674 /*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 struct async_cow *async_cow)
682 {
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
690 int ret = 0;
691
692 again:
693 while (!list_empty(&async_cow->extents)) {
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
697
698 io_tree = &BTRFS_I(inode)->io_tree;
699
700 retry:
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1);
709
710 /* allocate blocks */
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
716
717 /* JDM XXX */
718
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
725 if (!page_started && !ret)
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
732 else if (ret)
733 unlock_page(async_cow->locked_page);
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
740 async_extent->start + async_extent->ram_size - 1);
741
742 ret = btrfs_reserve_extent(root,
743 async_extent->compressed_size,
744 async_extent->compressed_size,
745 0, alloc_hint, &ins, 1, 1);
746 if (ret) {
747 free_async_extent_pages(async_extent);
748
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
765 goto retry;
766 }
767 goto out_free;
768 }
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
777 em = alloc_extent_map();
778 if (!em) {
779 ret = -ENOMEM;
780 goto out_free_reserve;
781 }
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
784 em->orig_start = em->start;
785 em->mod_start = em->start;
786 em->mod_len = em->len;
787
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
790 em->orig_block_len = ins.offset;
791 em->ram_bytes = async_extent->ram_size;
792 em->bdev = root->fs_info->fs_devices->latest_bdev;
793 em->compress_type = async_extent->compress_type;
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 em->generation = -1;
797
798 while (1) {
799 write_lock(&em_tree->lock);
800 ret = add_extent_mapping(em_tree, em, 1);
801 write_unlock(&em_tree->lock);
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
811 if (ret)
812 goto out_free_reserve;
813
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
825 goto out_free_reserve;
826 }
827 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
828
829 /*
830 * clear dirty, set writeback and unlock the pages.
831 */
832 extent_clear_unlock_delalloc(inode, async_extent->start,
833 async_extent->start +
834 async_extent->ram_size - 1,
835 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
836 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
837 PAGE_SET_WRITEBACK);
838 ret = btrfs_submit_compressed_write(inode,
839 async_extent->start,
840 async_extent->ram_size,
841 ins.objectid,
842 ins.offset, async_extent->pages,
843 async_extent->nr_pages);
844 if (ret) {
845 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
846 struct page *p = async_extent->pages[0];
847 const u64 start = async_extent->start;
848 const u64 end = start + async_extent->ram_size - 1;
849
850 p->mapping = inode->i_mapping;
851 tree->ops->writepage_end_io_hook(p, start, end,
852 NULL, 0);
853 p->mapping = NULL;
854 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
855 PAGE_END_WRITEBACK |
856 PAGE_SET_ERROR);
857 free_async_extent_pages(async_extent);
858 }
859 alloc_hint = ins.objectid + ins.offset;
860 kfree(async_extent);
861 cond_resched();
862 }
863 return;
864 out_free_reserve:
865 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
866 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
867 out_free:
868 extent_clear_unlock_delalloc(inode, async_extent->start,
869 async_extent->start +
870 async_extent->ram_size - 1,
871 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
872 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
873 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
874 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
875 PAGE_SET_ERROR);
876 free_async_extent_pages(async_extent);
877 kfree(async_extent);
878 goto again;
879 }
880
881 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
882 u64 num_bytes)
883 {
884 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
885 struct extent_map *em;
886 u64 alloc_hint = 0;
887
888 read_lock(&em_tree->lock);
889 em = search_extent_mapping(em_tree, start, num_bytes);
890 if (em) {
891 /*
892 * if block start isn't an actual block number then find the
893 * first block in this inode and use that as a hint. If that
894 * block is also bogus then just don't worry about it.
895 */
896 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
897 free_extent_map(em);
898 em = search_extent_mapping(em_tree, 0, 0);
899 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
900 alloc_hint = em->block_start;
901 if (em)
902 free_extent_map(em);
903 } else {
904 alloc_hint = em->block_start;
905 free_extent_map(em);
906 }
907 }
908 read_unlock(&em_tree->lock);
909
910 return alloc_hint;
911 }
912
913 /*
914 * when extent_io.c finds a delayed allocation range in the file,
915 * the call backs end up in this code. The basic idea is to
916 * allocate extents on disk for the range, and create ordered data structs
917 * in ram to track those extents.
918 *
919 * locked_page is the page that writepage had locked already. We use
920 * it to make sure we don't do extra locks or unlocks.
921 *
922 * *page_started is set to one if we unlock locked_page and do everything
923 * required to start IO on it. It may be clean and already done with
924 * IO when we return.
925 */
926 static noinline int cow_file_range(struct inode *inode,
927 struct page *locked_page,
928 u64 start, u64 end, int *page_started,
929 unsigned long *nr_written,
930 int unlock)
931 {
932 struct btrfs_root *root = BTRFS_I(inode)->root;
933 u64 alloc_hint = 0;
934 u64 num_bytes;
935 unsigned long ram_size;
936 u64 disk_num_bytes;
937 u64 cur_alloc_size;
938 u64 blocksize = root->sectorsize;
939 struct btrfs_key ins;
940 struct extent_map *em;
941 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
942 int ret = 0;
943
944 if (btrfs_is_free_space_inode(inode)) {
945 WARN_ON_ONCE(1);
946 ret = -EINVAL;
947 goto out_unlock;
948 }
949
950 num_bytes = ALIGN(end - start + 1, blocksize);
951 num_bytes = max(blocksize, num_bytes);
952 disk_num_bytes = num_bytes;
953
954 /* if this is a small write inside eof, kick off defrag */
955 if (num_bytes < SZ_64K &&
956 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
957 btrfs_add_inode_defrag(NULL, inode);
958
959 if (start == 0) {
960 /* lets try to make an inline extent */
961 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
962 NULL);
963 if (ret == 0) {
964 extent_clear_unlock_delalloc(inode, start, end, NULL,
965 EXTENT_LOCKED | EXTENT_DELALLOC |
966 EXTENT_DEFRAG, PAGE_UNLOCK |
967 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
968 PAGE_END_WRITEBACK);
969
970 *nr_written = *nr_written +
971 (end - start + PAGE_SIZE) / PAGE_SIZE;
972 *page_started = 1;
973 goto out;
974 } else if (ret < 0) {
975 goto out_unlock;
976 }
977 }
978
979 BUG_ON(disk_num_bytes >
980 btrfs_super_total_bytes(root->fs_info->super_copy));
981
982 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
983 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
984
985 while (disk_num_bytes > 0) {
986 unsigned long op;
987
988 cur_alloc_size = disk_num_bytes;
989 ret = btrfs_reserve_extent(root, cur_alloc_size,
990 root->sectorsize, 0, alloc_hint,
991 &ins, 1, 1);
992 if (ret < 0)
993 goto out_unlock;
994
995 em = alloc_extent_map();
996 if (!em) {
997 ret = -ENOMEM;
998 goto out_reserve;
999 }
1000 em->start = start;
1001 em->orig_start = em->start;
1002 ram_size = ins.offset;
1003 em->len = ins.offset;
1004 em->mod_start = em->start;
1005 em->mod_len = em->len;
1006
1007 em->block_start = ins.objectid;
1008 em->block_len = ins.offset;
1009 em->orig_block_len = ins.offset;
1010 em->ram_bytes = ram_size;
1011 em->bdev = root->fs_info->fs_devices->latest_bdev;
1012 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1013 em->generation = -1;
1014
1015 while (1) {
1016 write_lock(&em_tree->lock);
1017 ret = add_extent_mapping(em_tree, em, 1);
1018 write_unlock(&em_tree->lock);
1019 if (ret != -EEXIST) {
1020 free_extent_map(em);
1021 break;
1022 }
1023 btrfs_drop_extent_cache(inode, start,
1024 start + ram_size - 1, 0);
1025 }
1026 if (ret)
1027 goto out_reserve;
1028
1029 cur_alloc_size = ins.offset;
1030 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1031 ram_size, cur_alloc_size, 0);
1032 if (ret)
1033 goto out_drop_extent_cache;
1034
1035 if (root->root_key.objectid ==
1036 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1037 ret = btrfs_reloc_clone_csums(inode, start,
1038 cur_alloc_size);
1039 if (ret)
1040 goto out_drop_extent_cache;
1041 }
1042
1043 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1044
1045 if (disk_num_bytes < cur_alloc_size)
1046 break;
1047
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
1051 *
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
1054 */
1055 op = unlock ? PAGE_UNLOCK : 0;
1056 op |= PAGE_SET_PRIVATE2;
1057
1058 extent_clear_unlock_delalloc(inode, start,
1059 start + ram_size - 1, locked_page,
1060 EXTENT_LOCKED | EXTENT_DELALLOC,
1061 op);
1062 disk_num_bytes -= cur_alloc_size;
1063 num_bytes -= cur_alloc_size;
1064 alloc_hint = ins.objectid + ins.offset;
1065 start += cur_alloc_size;
1066 }
1067 out:
1068 return ret;
1069
1070 out_drop_extent_cache:
1071 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1072 out_reserve:
1073 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1074 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1075 out_unlock:
1076 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1077 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1078 EXTENT_DELALLOC | EXTENT_DEFRAG,
1079 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1080 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1081 goto out;
1082 }
1083
1084 /*
1085 * work queue call back to started compression on a file and pages
1086 */
1087 static noinline void async_cow_start(struct btrfs_work *work)
1088 {
1089 struct async_cow *async_cow;
1090 int num_added = 0;
1091 async_cow = container_of(work, struct async_cow, work);
1092
1093 compress_file_range(async_cow->inode, async_cow->locked_page,
1094 async_cow->start, async_cow->end, async_cow,
1095 &num_added);
1096 if (num_added == 0) {
1097 btrfs_add_delayed_iput(async_cow->inode);
1098 async_cow->inode = NULL;
1099 }
1100 }
1101
1102 /*
1103 * work queue call back to submit previously compressed pages
1104 */
1105 static noinline void async_cow_submit(struct btrfs_work *work)
1106 {
1107 struct async_cow *async_cow;
1108 struct btrfs_root *root;
1109 unsigned long nr_pages;
1110
1111 async_cow = container_of(work, struct async_cow, work);
1112
1113 root = async_cow->root;
1114 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1115 PAGE_SHIFT;
1116
1117 /*
1118 * atomic_sub_return implies a barrier for waitqueue_active
1119 */
1120 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1121 5 * SZ_1M &&
1122 waitqueue_active(&root->fs_info->async_submit_wait))
1123 wake_up(&root->fs_info->async_submit_wait);
1124
1125 if (async_cow->inode)
1126 submit_compressed_extents(async_cow->inode, async_cow);
1127 }
1128
1129 static noinline void async_cow_free(struct btrfs_work *work)
1130 {
1131 struct async_cow *async_cow;
1132 async_cow = container_of(work, struct async_cow, work);
1133 if (async_cow->inode)
1134 btrfs_add_delayed_iput(async_cow->inode);
1135 kfree(async_cow);
1136 }
1137
1138 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written)
1141 {
1142 struct async_cow *async_cow;
1143 struct btrfs_root *root = BTRFS_I(inode)->root;
1144 unsigned long nr_pages;
1145 u64 cur_end;
1146 int limit = 10 * SZ_1M;
1147
1148 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1149 1, 0, NULL, GFP_NOFS);
1150 while (start < end) {
1151 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1152 BUG_ON(!async_cow); /* -ENOMEM */
1153 async_cow->inode = igrab(inode);
1154 async_cow->root = root;
1155 async_cow->locked_page = locked_page;
1156 async_cow->start = start;
1157
1158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1159 !btrfs_test_opt(root, FORCE_COMPRESS))
1160 cur_end = end;
1161 else
1162 cur_end = min(end, start + SZ_512K - 1);
1163
1164 async_cow->end = cur_end;
1165 INIT_LIST_HEAD(&async_cow->extents);
1166
1167 btrfs_init_work(&async_cow->work,
1168 btrfs_delalloc_helper,
1169 async_cow_start, async_cow_submit,
1170 async_cow_free);
1171
1172 nr_pages = (cur_end - start + PAGE_SIZE) >>
1173 PAGE_SHIFT;
1174 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1175
1176 btrfs_queue_work(root->fs_info->delalloc_workers,
1177 &async_cow->work);
1178
1179 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1180 wait_event(root->fs_info->async_submit_wait,
1181 (atomic_read(&root->fs_info->async_delalloc_pages) <
1182 limit));
1183 }
1184
1185 while (atomic_read(&root->fs_info->async_submit_draining) &&
1186 atomic_read(&root->fs_info->async_delalloc_pages)) {
1187 wait_event(root->fs_info->async_submit_wait,
1188 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1189 0));
1190 }
1191
1192 *nr_written += nr_pages;
1193 start = cur_end + 1;
1194 }
1195 *page_started = 1;
1196 return 0;
1197 }
1198
1199 static noinline int csum_exist_in_range(struct btrfs_root *root,
1200 u64 bytenr, u64 num_bytes)
1201 {
1202 int ret;
1203 struct btrfs_ordered_sum *sums;
1204 LIST_HEAD(list);
1205
1206 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1207 bytenr + num_bytes - 1, &list, 0);
1208 if (ret == 0 && list_empty(&list))
1209 return 0;
1210
1211 while (!list_empty(&list)) {
1212 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1213 list_del(&sums->list);
1214 kfree(sums);
1215 }
1216 return 1;
1217 }
1218
1219 /*
1220 * when nowcow writeback call back. This checks for snapshots or COW copies
1221 * of the extents that exist in the file, and COWs the file as required.
1222 *
1223 * If no cow copies or snapshots exist, we write directly to the existing
1224 * blocks on disk
1225 */
1226 static noinline int run_delalloc_nocow(struct inode *inode,
1227 struct page *locked_page,
1228 u64 start, u64 end, int *page_started, int force,
1229 unsigned long *nr_written)
1230 {
1231 struct btrfs_root *root = BTRFS_I(inode)->root;
1232 struct btrfs_trans_handle *trans;
1233 struct extent_buffer *leaf;
1234 struct btrfs_path *path;
1235 struct btrfs_file_extent_item *fi;
1236 struct btrfs_key found_key;
1237 u64 cow_start;
1238 u64 cur_offset;
1239 u64 extent_end;
1240 u64 extent_offset;
1241 u64 disk_bytenr;
1242 u64 num_bytes;
1243 u64 disk_num_bytes;
1244 u64 ram_bytes;
1245 int extent_type;
1246 int ret, err;
1247 int type;
1248 int nocow;
1249 int check_prev = 1;
1250 bool nolock;
1251 u64 ino = btrfs_ino(inode);
1252
1253 path = btrfs_alloc_path();
1254 if (!path) {
1255 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1256 EXTENT_LOCKED | EXTENT_DELALLOC |
1257 EXTENT_DO_ACCOUNTING |
1258 EXTENT_DEFRAG, PAGE_UNLOCK |
1259 PAGE_CLEAR_DIRTY |
1260 PAGE_SET_WRITEBACK |
1261 PAGE_END_WRITEBACK);
1262 return -ENOMEM;
1263 }
1264
1265 nolock = btrfs_is_free_space_inode(inode);
1266
1267 if (nolock)
1268 trans = btrfs_join_transaction_nolock(root);
1269 else
1270 trans = btrfs_join_transaction(root);
1271
1272 if (IS_ERR(trans)) {
1273 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1274 EXTENT_LOCKED | EXTENT_DELALLOC |
1275 EXTENT_DO_ACCOUNTING |
1276 EXTENT_DEFRAG, PAGE_UNLOCK |
1277 PAGE_CLEAR_DIRTY |
1278 PAGE_SET_WRITEBACK |
1279 PAGE_END_WRITEBACK);
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283
1284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1285
1286 cow_start = (u64)-1;
1287 cur_offset = start;
1288 while (1) {
1289 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1290 cur_offset, 0);
1291 if (ret < 0)
1292 goto error;
1293 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1294 leaf = path->nodes[0];
1295 btrfs_item_key_to_cpu(leaf, &found_key,
1296 path->slots[0] - 1);
1297 if (found_key.objectid == ino &&
1298 found_key.type == BTRFS_EXTENT_DATA_KEY)
1299 path->slots[0]--;
1300 }
1301 check_prev = 0;
1302 next_slot:
1303 leaf = path->nodes[0];
1304 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1305 ret = btrfs_next_leaf(root, path);
1306 if (ret < 0)
1307 goto error;
1308 if (ret > 0)
1309 break;
1310 leaf = path->nodes[0];
1311 }
1312
1313 nocow = 0;
1314 disk_bytenr = 0;
1315 num_bytes = 0;
1316 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1317
1318 if (found_key.objectid > ino)
1319 break;
1320 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1321 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1322 path->slots[0]++;
1323 goto next_slot;
1324 }
1325 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1326 found_key.offset > end)
1327 break;
1328
1329 if (found_key.offset > cur_offset) {
1330 extent_end = found_key.offset;
1331 extent_type = 0;
1332 goto out_check;
1333 }
1334
1335 fi = btrfs_item_ptr(leaf, path->slots[0],
1336 struct btrfs_file_extent_item);
1337 extent_type = btrfs_file_extent_type(leaf, fi);
1338
1339 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1340 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1341 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1342 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1343 extent_offset = btrfs_file_extent_offset(leaf, fi);
1344 extent_end = found_key.offset +
1345 btrfs_file_extent_num_bytes(leaf, fi);
1346 disk_num_bytes =
1347 btrfs_file_extent_disk_num_bytes(leaf, fi);
1348 if (extent_end <= start) {
1349 path->slots[0]++;
1350 goto next_slot;
1351 }
1352 if (disk_bytenr == 0)
1353 goto out_check;
1354 if (btrfs_file_extent_compression(leaf, fi) ||
1355 btrfs_file_extent_encryption(leaf, fi) ||
1356 btrfs_file_extent_other_encoding(leaf, fi))
1357 goto out_check;
1358 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1359 goto out_check;
1360 if (btrfs_extent_readonly(root, disk_bytenr))
1361 goto out_check;
1362 if (btrfs_cross_ref_exist(trans, root, ino,
1363 found_key.offset -
1364 extent_offset, disk_bytenr))
1365 goto out_check;
1366 disk_bytenr += extent_offset;
1367 disk_bytenr += cur_offset - found_key.offset;
1368 num_bytes = min(end + 1, extent_end) - cur_offset;
1369 /*
1370 * if there are pending snapshots for this root,
1371 * we fall into common COW way.
1372 */
1373 if (!nolock) {
1374 err = btrfs_start_write_no_snapshoting(root);
1375 if (!err)
1376 goto out_check;
1377 }
1378 /*
1379 * force cow if csum exists in the range.
1380 * this ensure that csum for a given extent are
1381 * either valid or do not exist.
1382 */
1383 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1384 goto out_check;
1385 if (!btrfs_inc_nocow_writers(root->fs_info,
1386 disk_bytenr))
1387 goto out_check;
1388 nocow = 1;
1389 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1390 extent_end = found_key.offset +
1391 btrfs_file_extent_inline_len(leaf,
1392 path->slots[0], fi);
1393 extent_end = ALIGN(extent_end, root->sectorsize);
1394 } else {
1395 BUG_ON(1);
1396 }
1397 out_check:
1398 if (extent_end <= start) {
1399 path->slots[0]++;
1400 if (!nolock && nocow)
1401 btrfs_end_write_no_snapshoting(root);
1402 if (nocow)
1403 btrfs_dec_nocow_writers(root->fs_info,
1404 disk_bytenr);
1405 goto next_slot;
1406 }
1407 if (!nocow) {
1408 if (cow_start == (u64)-1)
1409 cow_start = cur_offset;
1410 cur_offset = extent_end;
1411 if (cur_offset > end)
1412 break;
1413 path->slots[0]++;
1414 goto next_slot;
1415 }
1416
1417 btrfs_release_path(path);
1418 if (cow_start != (u64)-1) {
1419 ret = cow_file_range(inode, locked_page,
1420 cow_start, found_key.offset - 1,
1421 page_started, nr_written, 1);
1422 if (ret) {
1423 if (!nolock && nocow)
1424 btrfs_end_write_no_snapshoting(root);
1425 if (nocow)
1426 btrfs_dec_nocow_writers(root->fs_info,
1427 disk_bytenr);
1428 goto error;
1429 }
1430 cow_start = (u64)-1;
1431 }
1432
1433 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1434 struct extent_map *em;
1435 struct extent_map_tree *em_tree;
1436 em_tree = &BTRFS_I(inode)->extent_tree;
1437 em = alloc_extent_map();
1438 BUG_ON(!em); /* -ENOMEM */
1439 em->start = cur_offset;
1440 em->orig_start = found_key.offset - extent_offset;
1441 em->len = num_bytes;
1442 em->block_len = num_bytes;
1443 em->block_start = disk_bytenr;
1444 em->orig_block_len = disk_num_bytes;
1445 em->ram_bytes = ram_bytes;
1446 em->bdev = root->fs_info->fs_devices->latest_bdev;
1447 em->mod_start = em->start;
1448 em->mod_len = em->len;
1449 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1450 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1451 em->generation = -1;
1452 while (1) {
1453 write_lock(&em_tree->lock);
1454 ret = add_extent_mapping(em_tree, em, 1);
1455 write_unlock(&em_tree->lock);
1456 if (ret != -EEXIST) {
1457 free_extent_map(em);
1458 break;
1459 }
1460 btrfs_drop_extent_cache(inode, em->start,
1461 em->start + em->len - 1, 0);
1462 }
1463 type = BTRFS_ORDERED_PREALLOC;
1464 } else {
1465 type = BTRFS_ORDERED_NOCOW;
1466 }
1467
1468 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1469 num_bytes, num_bytes, type);
1470 if (nocow)
1471 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1472 BUG_ON(ret); /* -ENOMEM */
1473
1474 if (root->root_key.objectid ==
1475 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1476 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1477 num_bytes);
1478 if (ret) {
1479 if (!nolock && nocow)
1480 btrfs_end_write_no_snapshoting(root);
1481 goto error;
1482 }
1483 }
1484
1485 extent_clear_unlock_delalloc(inode, cur_offset,
1486 cur_offset + num_bytes - 1,
1487 locked_page, EXTENT_LOCKED |
1488 EXTENT_DELALLOC, PAGE_UNLOCK |
1489 PAGE_SET_PRIVATE2);
1490 if (!nolock && nocow)
1491 btrfs_end_write_no_snapshoting(root);
1492 cur_offset = extent_end;
1493 if (cur_offset > end)
1494 break;
1495 }
1496 btrfs_release_path(path);
1497
1498 if (cur_offset <= end && cow_start == (u64)-1) {
1499 cow_start = cur_offset;
1500 cur_offset = end;
1501 }
1502
1503 if (cow_start != (u64)-1) {
1504 ret = cow_file_range(inode, locked_page, cow_start, end,
1505 page_started, nr_written, 1);
1506 if (ret)
1507 goto error;
1508 }
1509
1510 error:
1511 err = btrfs_end_transaction(trans, root);
1512 if (!ret)
1513 ret = err;
1514
1515 if (ret && cur_offset < end)
1516 extent_clear_unlock_delalloc(inode, cur_offset, end,
1517 locked_page, EXTENT_LOCKED |
1518 EXTENT_DELALLOC | EXTENT_DEFRAG |
1519 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1520 PAGE_CLEAR_DIRTY |
1521 PAGE_SET_WRITEBACK |
1522 PAGE_END_WRITEBACK);
1523 btrfs_free_path(path);
1524 return ret;
1525 }
1526
1527 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1528 {
1529
1530 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1531 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1532 return 0;
1533
1534 /*
1535 * @defrag_bytes is a hint value, no spinlock held here,
1536 * if is not zero, it means the file is defragging.
1537 * Force cow if given extent needs to be defragged.
1538 */
1539 if (BTRFS_I(inode)->defrag_bytes &&
1540 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1541 EXTENT_DEFRAG, 0, NULL))
1542 return 1;
1543
1544 return 0;
1545 }
1546
1547 /*
1548 * extent_io.c call back to do delayed allocation processing
1549 */
1550 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1551 u64 start, u64 end, int *page_started,
1552 unsigned long *nr_written)
1553 {
1554 int ret;
1555 int force_cow = need_force_cow(inode, start, end);
1556
1557 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1558 ret = run_delalloc_nocow(inode, locked_page, start, end,
1559 page_started, 1, nr_written);
1560 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1561 ret = run_delalloc_nocow(inode, locked_page, start, end,
1562 page_started, 0, nr_written);
1563 } else if (!inode_need_compress(inode)) {
1564 ret = cow_file_range(inode, locked_page, start, end,
1565 page_started, nr_written, 1);
1566 } else {
1567 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1568 &BTRFS_I(inode)->runtime_flags);
1569 ret = cow_file_range_async(inode, locked_page, start, end,
1570 page_started, nr_written);
1571 }
1572 return ret;
1573 }
1574
1575 static void btrfs_split_extent_hook(struct inode *inode,
1576 struct extent_state *orig, u64 split)
1577 {
1578 u64 size;
1579
1580 /* not delalloc, ignore it */
1581 if (!(orig->state & EXTENT_DELALLOC))
1582 return;
1583
1584 size = orig->end - orig->start + 1;
1585 if (size > BTRFS_MAX_EXTENT_SIZE) {
1586 u64 num_extents;
1587 u64 new_size;
1588
1589 /*
1590 * See the explanation in btrfs_merge_extent_hook, the same
1591 * applies here, just in reverse.
1592 */
1593 new_size = orig->end - split + 1;
1594 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1595 BTRFS_MAX_EXTENT_SIZE);
1596 new_size = split - orig->start;
1597 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1598 BTRFS_MAX_EXTENT_SIZE);
1599 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1600 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1601 return;
1602 }
1603
1604 spin_lock(&BTRFS_I(inode)->lock);
1605 BTRFS_I(inode)->outstanding_extents++;
1606 spin_unlock(&BTRFS_I(inode)->lock);
1607 }
1608
1609 /*
1610 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1611 * extents so we can keep track of new extents that are just merged onto old
1612 * extents, such as when we are doing sequential writes, so we can properly
1613 * account for the metadata space we'll need.
1614 */
1615 static void btrfs_merge_extent_hook(struct inode *inode,
1616 struct extent_state *new,
1617 struct extent_state *other)
1618 {
1619 u64 new_size, old_size;
1620 u64 num_extents;
1621
1622 /* not delalloc, ignore it */
1623 if (!(other->state & EXTENT_DELALLOC))
1624 return;
1625
1626 if (new->start > other->start)
1627 new_size = new->end - other->start + 1;
1628 else
1629 new_size = other->end - new->start + 1;
1630
1631 /* we're not bigger than the max, unreserve the space and go */
1632 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1633 spin_lock(&BTRFS_I(inode)->lock);
1634 BTRFS_I(inode)->outstanding_extents--;
1635 spin_unlock(&BTRFS_I(inode)->lock);
1636 return;
1637 }
1638
1639 /*
1640 * We have to add up either side to figure out how many extents were
1641 * accounted for before we merged into one big extent. If the number of
1642 * extents we accounted for is <= the amount we need for the new range
1643 * then we can return, otherwise drop. Think of it like this
1644 *
1645 * [ 4k][MAX_SIZE]
1646 *
1647 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1648 * need 2 outstanding extents, on one side we have 1 and the other side
1649 * we have 1 so they are == and we can return. But in this case
1650 *
1651 * [MAX_SIZE+4k][MAX_SIZE+4k]
1652 *
1653 * Each range on their own accounts for 2 extents, but merged together
1654 * they are only 3 extents worth of accounting, so we need to drop in
1655 * this case.
1656 */
1657 old_size = other->end - other->start + 1;
1658 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1659 BTRFS_MAX_EXTENT_SIZE);
1660 old_size = new->end - new->start + 1;
1661 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1662 BTRFS_MAX_EXTENT_SIZE);
1663
1664 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1665 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1666 return;
1667
1668 spin_lock(&BTRFS_I(inode)->lock);
1669 BTRFS_I(inode)->outstanding_extents--;
1670 spin_unlock(&BTRFS_I(inode)->lock);
1671 }
1672
1673 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1674 struct inode *inode)
1675 {
1676 spin_lock(&root->delalloc_lock);
1677 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1678 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1679 &root->delalloc_inodes);
1680 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1681 &BTRFS_I(inode)->runtime_flags);
1682 root->nr_delalloc_inodes++;
1683 if (root->nr_delalloc_inodes == 1) {
1684 spin_lock(&root->fs_info->delalloc_root_lock);
1685 BUG_ON(!list_empty(&root->delalloc_root));
1686 list_add_tail(&root->delalloc_root,
1687 &root->fs_info->delalloc_roots);
1688 spin_unlock(&root->fs_info->delalloc_root_lock);
1689 }
1690 }
1691 spin_unlock(&root->delalloc_lock);
1692 }
1693
1694 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1695 struct inode *inode)
1696 {
1697 spin_lock(&root->delalloc_lock);
1698 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1699 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1700 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes--;
1703 if (!root->nr_delalloc_inodes) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(list_empty(&root->delalloc_root));
1706 list_del_init(&root->delalloc_root);
1707 spin_unlock(&root->fs_info->delalloc_root_lock);
1708 }
1709 }
1710 spin_unlock(&root->delalloc_lock);
1711 }
1712
1713 /*
1714 * extent_io.c set_bit_hook, used to track delayed allocation
1715 * bytes in this file, and to maintain the list of inodes that
1716 * have pending delalloc work to be done.
1717 */
1718 static void btrfs_set_bit_hook(struct inode *inode,
1719 struct extent_state *state, unsigned *bits)
1720 {
1721
1722 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1723 WARN_ON(1);
1724 /*
1725 * set_bit and clear bit hooks normally require _irqsave/restore
1726 * but in this case, we are only testing for the DELALLOC
1727 * bit, which is only set or cleared with irqs on
1728 */
1729 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1730 struct btrfs_root *root = BTRFS_I(inode)->root;
1731 u64 len = state->end + 1 - state->start;
1732 bool do_list = !btrfs_is_free_space_inode(inode);
1733
1734 if (*bits & EXTENT_FIRST_DELALLOC) {
1735 *bits &= ~EXTENT_FIRST_DELALLOC;
1736 } else {
1737 spin_lock(&BTRFS_I(inode)->lock);
1738 BTRFS_I(inode)->outstanding_extents++;
1739 spin_unlock(&BTRFS_I(inode)->lock);
1740 }
1741
1742 /* For sanity tests */
1743 if (btrfs_test_is_dummy_root(root))
1744 return;
1745
1746 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1747 root->fs_info->delalloc_batch);
1748 spin_lock(&BTRFS_I(inode)->lock);
1749 BTRFS_I(inode)->delalloc_bytes += len;
1750 if (*bits & EXTENT_DEFRAG)
1751 BTRFS_I(inode)->defrag_bytes += len;
1752 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1753 &BTRFS_I(inode)->runtime_flags))
1754 btrfs_add_delalloc_inodes(root, inode);
1755 spin_unlock(&BTRFS_I(inode)->lock);
1756 }
1757 }
1758
1759 /*
1760 * extent_io.c clear_bit_hook, see set_bit_hook for why
1761 */
1762 static void btrfs_clear_bit_hook(struct inode *inode,
1763 struct extent_state *state,
1764 unsigned *bits)
1765 {
1766 u64 len = state->end + 1 - state->start;
1767 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1768 BTRFS_MAX_EXTENT_SIZE);
1769
1770 spin_lock(&BTRFS_I(inode)->lock);
1771 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1772 BTRFS_I(inode)->defrag_bytes -= len;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774
1775 /*
1776 * set_bit and clear bit hooks normally require _irqsave/restore
1777 * but in this case, we are only testing for the DELALLOC
1778 * bit, which is only set or cleared with irqs on
1779 */
1780 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1781 struct btrfs_root *root = BTRFS_I(inode)->root;
1782 bool do_list = !btrfs_is_free_space_inode(inode);
1783
1784 if (*bits & EXTENT_FIRST_DELALLOC) {
1785 *bits &= ~EXTENT_FIRST_DELALLOC;
1786 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1787 spin_lock(&BTRFS_I(inode)->lock);
1788 BTRFS_I(inode)->outstanding_extents -= num_extents;
1789 spin_unlock(&BTRFS_I(inode)->lock);
1790 }
1791
1792 /*
1793 * We don't reserve metadata space for space cache inodes so we
1794 * don't need to call dellalloc_release_metadata if there is an
1795 * error.
1796 */
1797 if (*bits & EXTENT_DO_ACCOUNTING &&
1798 root != root->fs_info->tree_root)
1799 btrfs_delalloc_release_metadata(inode, len);
1800
1801 /* For sanity tests. */
1802 if (btrfs_test_is_dummy_root(root))
1803 return;
1804
1805 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1806 && do_list && !(state->state & EXTENT_NORESERVE))
1807 btrfs_free_reserved_data_space_noquota(inode,
1808 state->start, len);
1809
1810 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1811 root->fs_info->delalloc_batch);
1812 spin_lock(&BTRFS_I(inode)->lock);
1813 BTRFS_I(inode)->delalloc_bytes -= len;
1814 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1815 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1816 &BTRFS_I(inode)->runtime_flags))
1817 btrfs_del_delalloc_inode(root, inode);
1818 spin_unlock(&BTRFS_I(inode)->lock);
1819 }
1820 }
1821
1822 /*
1823 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1824 * we don't create bios that span stripes or chunks
1825 */
1826 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1827 size_t size, struct bio *bio,
1828 unsigned long bio_flags)
1829 {
1830 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1831 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1832 u64 length = 0;
1833 u64 map_length;
1834 int ret;
1835
1836 if (bio_flags & EXTENT_BIO_COMPRESSED)
1837 return 0;
1838
1839 length = bio->bi_iter.bi_size;
1840 map_length = length;
1841 ret = btrfs_map_block(root->fs_info, rw, logical,
1842 &map_length, NULL, 0);
1843 /* Will always return 0 with map_multi == NULL */
1844 BUG_ON(ret < 0);
1845 if (map_length < length + size)
1846 return 1;
1847 return 0;
1848 }
1849
1850 /*
1851 * in order to insert checksums into the metadata in large chunks,
1852 * we wait until bio submission time. All the pages in the bio are
1853 * checksummed and sums are attached onto the ordered extent record.
1854 *
1855 * At IO completion time the cums attached on the ordered extent record
1856 * are inserted into the btree
1857 */
1858 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1859 struct bio *bio, int mirror_num,
1860 unsigned long bio_flags,
1861 u64 bio_offset)
1862 {
1863 struct btrfs_root *root = BTRFS_I(inode)->root;
1864 int ret = 0;
1865
1866 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1867 BUG_ON(ret); /* -ENOMEM */
1868 return 0;
1869 }
1870
1871 /*
1872 * in order to insert checksums into the metadata in large chunks,
1873 * we wait until bio submission time. All the pages in the bio are
1874 * checksummed and sums are attached onto the ordered extent record.
1875 *
1876 * At IO completion time the cums attached on the ordered extent record
1877 * are inserted into the btree
1878 */
1879 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1880 int mirror_num, unsigned long bio_flags,
1881 u64 bio_offset)
1882 {
1883 struct btrfs_root *root = BTRFS_I(inode)->root;
1884 int ret;
1885
1886 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1887 if (ret) {
1888 bio->bi_error = ret;
1889 bio_endio(bio);
1890 }
1891 return ret;
1892 }
1893
1894 /*
1895 * extent_io.c submission hook. This does the right thing for csum calculation
1896 * on write, or reading the csums from the tree before a read
1897 */
1898 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1899 int mirror_num, unsigned long bio_flags,
1900 u64 bio_offset)
1901 {
1902 struct btrfs_root *root = BTRFS_I(inode)->root;
1903 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1904 int ret = 0;
1905 int skip_sum;
1906 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1907
1908 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1909
1910 if (btrfs_is_free_space_inode(inode))
1911 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1912
1913 if (!(rw & REQ_WRITE)) {
1914 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1915 if (ret)
1916 goto out;
1917
1918 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1919 ret = btrfs_submit_compressed_read(inode, bio,
1920 mirror_num,
1921 bio_flags);
1922 goto out;
1923 } else if (!skip_sum) {
1924 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1925 if (ret)
1926 goto out;
1927 }
1928 goto mapit;
1929 } else if (async && !skip_sum) {
1930 /* csum items have already been cloned */
1931 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1932 goto mapit;
1933 /* we're doing a write, do the async checksumming */
1934 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1935 inode, rw, bio, mirror_num,
1936 bio_flags, bio_offset,
1937 __btrfs_submit_bio_start,
1938 __btrfs_submit_bio_done);
1939 goto out;
1940 } else if (!skip_sum) {
1941 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1942 if (ret)
1943 goto out;
1944 }
1945
1946 mapit:
1947 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1948
1949 out:
1950 if (ret < 0) {
1951 bio->bi_error = ret;
1952 bio_endio(bio);
1953 }
1954 return ret;
1955 }
1956
1957 /*
1958 * given a list of ordered sums record them in the inode. This happens
1959 * at IO completion time based on sums calculated at bio submission time.
1960 */
1961 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1962 struct inode *inode, u64 file_offset,
1963 struct list_head *list)
1964 {
1965 struct btrfs_ordered_sum *sum;
1966
1967 list_for_each_entry(sum, list, list) {
1968 trans->adding_csums = 1;
1969 btrfs_csum_file_blocks(trans,
1970 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1971 trans->adding_csums = 0;
1972 }
1973 return 0;
1974 }
1975
1976 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1977 struct extent_state **cached_state)
1978 {
1979 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
1980 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1981 cached_state);
1982 }
1983
1984 /* see btrfs_writepage_start_hook for details on why this is required */
1985 struct btrfs_writepage_fixup {
1986 struct page *page;
1987 struct btrfs_work work;
1988 };
1989
1990 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1991 {
1992 struct btrfs_writepage_fixup *fixup;
1993 struct btrfs_ordered_extent *ordered;
1994 struct extent_state *cached_state = NULL;
1995 struct page *page;
1996 struct inode *inode;
1997 u64 page_start;
1998 u64 page_end;
1999 int ret;
2000
2001 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2002 page = fixup->page;
2003 again:
2004 lock_page(page);
2005 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2006 ClearPageChecked(page);
2007 goto out_page;
2008 }
2009
2010 inode = page->mapping->host;
2011 page_start = page_offset(page);
2012 page_end = page_offset(page) + PAGE_SIZE - 1;
2013
2014 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2015 &cached_state);
2016
2017 /* already ordered? We're done */
2018 if (PagePrivate2(page))
2019 goto out;
2020
2021 ordered = btrfs_lookup_ordered_range(inode, page_start,
2022 PAGE_SIZE);
2023 if (ordered) {
2024 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2025 page_end, &cached_state, GFP_NOFS);
2026 unlock_page(page);
2027 btrfs_start_ordered_extent(inode, ordered, 1);
2028 btrfs_put_ordered_extent(ordered);
2029 goto again;
2030 }
2031
2032 ret = btrfs_delalloc_reserve_space(inode, page_start,
2033 PAGE_SIZE);
2034 if (ret) {
2035 mapping_set_error(page->mapping, ret);
2036 end_extent_writepage(page, ret, page_start, page_end);
2037 ClearPageChecked(page);
2038 goto out;
2039 }
2040
2041 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2042 ClearPageChecked(page);
2043 set_page_dirty(page);
2044 out:
2045 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2046 &cached_state, GFP_NOFS);
2047 out_page:
2048 unlock_page(page);
2049 put_page(page);
2050 kfree(fixup);
2051 }
2052
2053 /*
2054 * There are a few paths in the higher layers of the kernel that directly
2055 * set the page dirty bit without asking the filesystem if it is a
2056 * good idea. This causes problems because we want to make sure COW
2057 * properly happens and the data=ordered rules are followed.
2058 *
2059 * In our case any range that doesn't have the ORDERED bit set
2060 * hasn't been properly setup for IO. We kick off an async process
2061 * to fix it up. The async helper will wait for ordered extents, set
2062 * the delalloc bit and make it safe to write the page.
2063 */
2064 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2065 {
2066 struct inode *inode = page->mapping->host;
2067 struct btrfs_writepage_fixup *fixup;
2068 struct btrfs_root *root = BTRFS_I(inode)->root;
2069
2070 /* this page is properly in the ordered list */
2071 if (TestClearPagePrivate2(page))
2072 return 0;
2073
2074 if (PageChecked(page))
2075 return -EAGAIN;
2076
2077 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2078 if (!fixup)
2079 return -EAGAIN;
2080
2081 SetPageChecked(page);
2082 get_page(page);
2083 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2084 btrfs_writepage_fixup_worker, NULL, NULL);
2085 fixup->page = page;
2086 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2087 return -EBUSY;
2088 }
2089
2090 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2091 struct inode *inode, u64 file_pos,
2092 u64 disk_bytenr, u64 disk_num_bytes,
2093 u64 num_bytes, u64 ram_bytes,
2094 u8 compression, u8 encryption,
2095 u16 other_encoding, int extent_type)
2096 {
2097 struct btrfs_root *root = BTRFS_I(inode)->root;
2098 struct btrfs_file_extent_item *fi;
2099 struct btrfs_path *path;
2100 struct extent_buffer *leaf;
2101 struct btrfs_key ins;
2102 int extent_inserted = 0;
2103 int ret;
2104
2105 path = btrfs_alloc_path();
2106 if (!path)
2107 return -ENOMEM;
2108
2109 /*
2110 * we may be replacing one extent in the tree with another.
2111 * The new extent is pinned in the extent map, and we don't want
2112 * to drop it from the cache until it is completely in the btree.
2113 *
2114 * So, tell btrfs_drop_extents to leave this extent in the cache.
2115 * the caller is expected to unpin it and allow it to be merged
2116 * with the others.
2117 */
2118 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2119 file_pos + num_bytes, NULL, 0,
2120 1, sizeof(*fi), &extent_inserted);
2121 if (ret)
2122 goto out;
2123
2124 if (!extent_inserted) {
2125 ins.objectid = btrfs_ino(inode);
2126 ins.offset = file_pos;
2127 ins.type = BTRFS_EXTENT_DATA_KEY;
2128
2129 path->leave_spinning = 1;
2130 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2131 sizeof(*fi));
2132 if (ret)
2133 goto out;
2134 }
2135 leaf = path->nodes[0];
2136 fi = btrfs_item_ptr(leaf, path->slots[0],
2137 struct btrfs_file_extent_item);
2138 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2139 btrfs_set_file_extent_type(leaf, fi, extent_type);
2140 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2141 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2142 btrfs_set_file_extent_offset(leaf, fi, 0);
2143 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2144 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2145 btrfs_set_file_extent_compression(leaf, fi, compression);
2146 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2147 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2148
2149 btrfs_mark_buffer_dirty(leaf);
2150 btrfs_release_path(path);
2151
2152 inode_add_bytes(inode, num_bytes);
2153
2154 ins.objectid = disk_bytenr;
2155 ins.offset = disk_num_bytes;
2156 ins.type = BTRFS_EXTENT_ITEM_KEY;
2157 ret = btrfs_alloc_reserved_file_extent(trans, root,
2158 root->root_key.objectid,
2159 btrfs_ino(inode), file_pos,
2160 ram_bytes, &ins);
2161 /*
2162 * Release the reserved range from inode dirty range map, as it is
2163 * already moved into delayed_ref_head
2164 */
2165 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2166 out:
2167 btrfs_free_path(path);
2168
2169 return ret;
2170 }
2171
2172 /* snapshot-aware defrag */
2173 struct sa_defrag_extent_backref {
2174 struct rb_node node;
2175 struct old_sa_defrag_extent *old;
2176 u64 root_id;
2177 u64 inum;
2178 u64 file_pos;
2179 u64 extent_offset;
2180 u64 num_bytes;
2181 u64 generation;
2182 };
2183
2184 struct old_sa_defrag_extent {
2185 struct list_head list;
2186 struct new_sa_defrag_extent *new;
2187
2188 u64 extent_offset;
2189 u64 bytenr;
2190 u64 offset;
2191 u64 len;
2192 int count;
2193 };
2194
2195 struct new_sa_defrag_extent {
2196 struct rb_root root;
2197 struct list_head head;
2198 struct btrfs_path *path;
2199 struct inode *inode;
2200 u64 file_pos;
2201 u64 len;
2202 u64 bytenr;
2203 u64 disk_len;
2204 u8 compress_type;
2205 };
2206
2207 static int backref_comp(struct sa_defrag_extent_backref *b1,
2208 struct sa_defrag_extent_backref *b2)
2209 {
2210 if (b1->root_id < b2->root_id)
2211 return -1;
2212 else if (b1->root_id > b2->root_id)
2213 return 1;
2214
2215 if (b1->inum < b2->inum)
2216 return -1;
2217 else if (b1->inum > b2->inum)
2218 return 1;
2219
2220 if (b1->file_pos < b2->file_pos)
2221 return -1;
2222 else if (b1->file_pos > b2->file_pos)
2223 return 1;
2224
2225 /*
2226 * [------------------------------] ===> (a range of space)
2227 * |<--->| |<---->| =============> (fs/file tree A)
2228 * |<---------------------------->| ===> (fs/file tree B)
2229 *
2230 * A range of space can refer to two file extents in one tree while
2231 * refer to only one file extent in another tree.
2232 *
2233 * So we may process a disk offset more than one time(two extents in A)
2234 * and locate at the same extent(one extent in B), then insert two same
2235 * backrefs(both refer to the extent in B).
2236 */
2237 return 0;
2238 }
2239
2240 static void backref_insert(struct rb_root *root,
2241 struct sa_defrag_extent_backref *backref)
2242 {
2243 struct rb_node **p = &root->rb_node;
2244 struct rb_node *parent = NULL;
2245 struct sa_defrag_extent_backref *entry;
2246 int ret;
2247
2248 while (*p) {
2249 parent = *p;
2250 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2251
2252 ret = backref_comp(backref, entry);
2253 if (ret < 0)
2254 p = &(*p)->rb_left;
2255 else
2256 p = &(*p)->rb_right;
2257 }
2258
2259 rb_link_node(&backref->node, parent, p);
2260 rb_insert_color(&backref->node, root);
2261 }
2262
2263 /*
2264 * Note the backref might has changed, and in this case we just return 0.
2265 */
2266 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2267 void *ctx)
2268 {
2269 struct btrfs_file_extent_item *extent;
2270 struct btrfs_fs_info *fs_info;
2271 struct old_sa_defrag_extent *old = ctx;
2272 struct new_sa_defrag_extent *new = old->new;
2273 struct btrfs_path *path = new->path;
2274 struct btrfs_key key;
2275 struct btrfs_root *root;
2276 struct sa_defrag_extent_backref *backref;
2277 struct extent_buffer *leaf;
2278 struct inode *inode = new->inode;
2279 int slot;
2280 int ret;
2281 u64 extent_offset;
2282 u64 num_bytes;
2283
2284 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2285 inum == btrfs_ino(inode))
2286 return 0;
2287
2288 key.objectid = root_id;
2289 key.type = BTRFS_ROOT_ITEM_KEY;
2290 key.offset = (u64)-1;
2291
2292 fs_info = BTRFS_I(inode)->root->fs_info;
2293 root = btrfs_read_fs_root_no_name(fs_info, &key);
2294 if (IS_ERR(root)) {
2295 if (PTR_ERR(root) == -ENOENT)
2296 return 0;
2297 WARN_ON(1);
2298 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2299 inum, offset, root_id);
2300 return PTR_ERR(root);
2301 }
2302
2303 key.objectid = inum;
2304 key.type = BTRFS_EXTENT_DATA_KEY;
2305 if (offset > (u64)-1 << 32)
2306 key.offset = 0;
2307 else
2308 key.offset = offset;
2309
2310 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2311 if (WARN_ON(ret < 0))
2312 return ret;
2313 ret = 0;
2314
2315 while (1) {
2316 cond_resched();
2317
2318 leaf = path->nodes[0];
2319 slot = path->slots[0];
2320
2321 if (slot >= btrfs_header_nritems(leaf)) {
2322 ret = btrfs_next_leaf(root, path);
2323 if (ret < 0) {
2324 goto out;
2325 } else if (ret > 0) {
2326 ret = 0;
2327 goto out;
2328 }
2329 continue;
2330 }
2331
2332 path->slots[0]++;
2333
2334 btrfs_item_key_to_cpu(leaf, &key, slot);
2335
2336 if (key.objectid > inum)
2337 goto out;
2338
2339 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2340 continue;
2341
2342 extent = btrfs_item_ptr(leaf, slot,
2343 struct btrfs_file_extent_item);
2344
2345 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2346 continue;
2347
2348 /*
2349 * 'offset' refers to the exact key.offset,
2350 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2351 * (key.offset - extent_offset).
2352 */
2353 if (key.offset != offset)
2354 continue;
2355
2356 extent_offset = btrfs_file_extent_offset(leaf, extent);
2357 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2358
2359 if (extent_offset >= old->extent_offset + old->offset +
2360 old->len || extent_offset + num_bytes <=
2361 old->extent_offset + old->offset)
2362 continue;
2363 break;
2364 }
2365
2366 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2367 if (!backref) {
2368 ret = -ENOENT;
2369 goto out;
2370 }
2371
2372 backref->root_id = root_id;
2373 backref->inum = inum;
2374 backref->file_pos = offset;
2375 backref->num_bytes = num_bytes;
2376 backref->extent_offset = extent_offset;
2377 backref->generation = btrfs_file_extent_generation(leaf, extent);
2378 backref->old = old;
2379 backref_insert(&new->root, backref);
2380 old->count++;
2381 out:
2382 btrfs_release_path(path);
2383 WARN_ON(ret);
2384 return ret;
2385 }
2386
2387 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2388 struct new_sa_defrag_extent *new)
2389 {
2390 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2391 struct old_sa_defrag_extent *old, *tmp;
2392 int ret;
2393
2394 new->path = path;
2395
2396 list_for_each_entry_safe(old, tmp, &new->head, list) {
2397 ret = iterate_inodes_from_logical(old->bytenr +
2398 old->extent_offset, fs_info,
2399 path, record_one_backref,
2400 old);
2401 if (ret < 0 && ret != -ENOENT)
2402 return false;
2403
2404 /* no backref to be processed for this extent */
2405 if (!old->count) {
2406 list_del(&old->list);
2407 kfree(old);
2408 }
2409 }
2410
2411 if (list_empty(&new->head))
2412 return false;
2413
2414 return true;
2415 }
2416
2417 static int relink_is_mergable(struct extent_buffer *leaf,
2418 struct btrfs_file_extent_item *fi,
2419 struct new_sa_defrag_extent *new)
2420 {
2421 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2422 return 0;
2423
2424 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2425 return 0;
2426
2427 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2428 return 0;
2429
2430 if (btrfs_file_extent_encryption(leaf, fi) ||
2431 btrfs_file_extent_other_encoding(leaf, fi))
2432 return 0;
2433
2434 return 1;
2435 }
2436
2437 /*
2438 * Note the backref might has changed, and in this case we just return 0.
2439 */
2440 static noinline int relink_extent_backref(struct btrfs_path *path,
2441 struct sa_defrag_extent_backref *prev,
2442 struct sa_defrag_extent_backref *backref)
2443 {
2444 struct btrfs_file_extent_item *extent;
2445 struct btrfs_file_extent_item *item;
2446 struct btrfs_ordered_extent *ordered;
2447 struct btrfs_trans_handle *trans;
2448 struct btrfs_fs_info *fs_info;
2449 struct btrfs_root *root;
2450 struct btrfs_key key;
2451 struct extent_buffer *leaf;
2452 struct old_sa_defrag_extent *old = backref->old;
2453 struct new_sa_defrag_extent *new = old->new;
2454 struct inode *src_inode = new->inode;
2455 struct inode *inode;
2456 struct extent_state *cached = NULL;
2457 int ret = 0;
2458 u64 start;
2459 u64 len;
2460 u64 lock_start;
2461 u64 lock_end;
2462 bool merge = false;
2463 int index;
2464
2465 if (prev && prev->root_id == backref->root_id &&
2466 prev->inum == backref->inum &&
2467 prev->file_pos + prev->num_bytes == backref->file_pos)
2468 merge = true;
2469
2470 /* step 1: get root */
2471 key.objectid = backref->root_id;
2472 key.type = BTRFS_ROOT_ITEM_KEY;
2473 key.offset = (u64)-1;
2474
2475 fs_info = BTRFS_I(src_inode)->root->fs_info;
2476 index = srcu_read_lock(&fs_info->subvol_srcu);
2477
2478 root = btrfs_read_fs_root_no_name(fs_info, &key);
2479 if (IS_ERR(root)) {
2480 srcu_read_unlock(&fs_info->subvol_srcu, index);
2481 if (PTR_ERR(root) == -ENOENT)
2482 return 0;
2483 return PTR_ERR(root);
2484 }
2485
2486 if (btrfs_root_readonly(root)) {
2487 srcu_read_unlock(&fs_info->subvol_srcu, index);
2488 return 0;
2489 }
2490
2491 /* step 2: get inode */
2492 key.objectid = backref->inum;
2493 key.type = BTRFS_INODE_ITEM_KEY;
2494 key.offset = 0;
2495
2496 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2497 if (IS_ERR(inode)) {
2498 srcu_read_unlock(&fs_info->subvol_srcu, index);
2499 return 0;
2500 }
2501
2502 srcu_read_unlock(&fs_info->subvol_srcu, index);
2503
2504 /* step 3: relink backref */
2505 lock_start = backref->file_pos;
2506 lock_end = backref->file_pos + backref->num_bytes - 1;
2507 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2508 &cached);
2509
2510 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2511 if (ordered) {
2512 btrfs_put_ordered_extent(ordered);
2513 goto out_unlock;
2514 }
2515
2516 trans = btrfs_join_transaction(root);
2517 if (IS_ERR(trans)) {
2518 ret = PTR_ERR(trans);
2519 goto out_unlock;
2520 }
2521
2522 key.objectid = backref->inum;
2523 key.type = BTRFS_EXTENT_DATA_KEY;
2524 key.offset = backref->file_pos;
2525
2526 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2527 if (ret < 0) {
2528 goto out_free_path;
2529 } else if (ret > 0) {
2530 ret = 0;
2531 goto out_free_path;
2532 }
2533
2534 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2535 struct btrfs_file_extent_item);
2536
2537 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2538 backref->generation)
2539 goto out_free_path;
2540
2541 btrfs_release_path(path);
2542
2543 start = backref->file_pos;
2544 if (backref->extent_offset < old->extent_offset + old->offset)
2545 start += old->extent_offset + old->offset -
2546 backref->extent_offset;
2547
2548 len = min(backref->extent_offset + backref->num_bytes,
2549 old->extent_offset + old->offset + old->len);
2550 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2551
2552 ret = btrfs_drop_extents(trans, root, inode, start,
2553 start + len, 1);
2554 if (ret)
2555 goto out_free_path;
2556 again:
2557 key.objectid = btrfs_ino(inode);
2558 key.type = BTRFS_EXTENT_DATA_KEY;
2559 key.offset = start;
2560
2561 path->leave_spinning = 1;
2562 if (merge) {
2563 struct btrfs_file_extent_item *fi;
2564 u64 extent_len;
2565 struct btrfs_key found_key;
2566
2567 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2568 if (ret < 0)
2569 goto out_free_path;
2570
2571 path->slots[0]--;
2572 leaf = path->nodes[0];
2573 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2574
2575 fi = btrfs_item_ptr(leaf, path->slots[0],
2576 struct btrfs_file_extent_item);
2577 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2578
2579 if (extent_len + found_key.offset == start &&
2580 relink_is_mergable(leaf, fi, new)) {
2581 btrfs_set_file_extent_num_bytes(leaf, fi,
2582 extent_len + len);
2583 btrfs_mark_buffer_dirty(leaf);
2584 inode_add_bytes(inode, len);
2585
2586 ret = 1;
2587 goto out_free_path;
2588 } else {
2589 merge = false;
2590 btrfs_release_path(path);
2591 goto again;
2592 }
2593 }
2594
2595 ret = btrfs_insert_empty_item(trans, root, path, &key,
2596 sizeof(*extent));
2597 if (ret) {
2598 btrfs_abort_transaction(trans, root, ret);
2599 goto out_free_path;
2600 }
2601
2602 leaf = path->nodes[0];
2603 item = btrfs_item_ptr(leaf, path->slots[0],
2604 struct btrfs_file_extent_item);
2605 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2606 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2607 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2608 btrfs_set_file_extent_num_bytes(leaf, item, len);
2609 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2610 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2611 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2612 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2613 btrfs_set_file_extent_encryption(leaf, item, 0);
2614 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2615
2616 btrfs_mark_buffer_dirty(leaf);
2617 inode_add_bytes(inode, len);
2618 btrfs_release_path(path);
2619
2620 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2621 new->disk_len, 0,
2622 backref->root_id, backref->inum,
2623 new->file_pos); /* start - extent_offset */
2624 if (ret) {
2625 btrfs_abort_transaction(trans, root, ret);
2626 goto out_free_path;
2627 }
2628
2629 ret = 1;
2630 out_free_path:
2631 btrfs_release_path(path);
2632 path->leave_spinning = 0;
2633 btrfs_end_transaction(trans, root);
2634 out_unlock:
2635 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2636 &cached, GFP_NOFS);
2637 iput(inode);
2638 return ret;
2639 }
2640
2641 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2642 {
2643 struct old_sa_defrag_extent *old, *tmp;
2644
2645 if (!new)
2646 return;
2647
2648 list_for_each_entry_safe(old, tmp, &new->head, list) {
2649 kfree(old);
2650 }
2651 kfree(new);
2652 }
2653
2654 static void relink_file_extents(struct new_sa_defrag_extent *new)
2655 {
2656 struct btrfs_path *path;
2657 struct sa_defrag_extent_backref *backref;
2658 struct sa_defrag_extent_backref *prev = NULL;
2659 struct inode *inode;
2660 struct btrfs_root *root;
2661 struct rb_node *node;
2662 int ret;
2663
2664 inode = new->inode;
2665 root = BTRFS_I(inode)->root;
2666
2667 path = btrfs_alloc_path();
2668 if (!path)
2669 return;
2670
2671 if (!record_extent_backrefs(path, new)) {
2672 btrfs_free_path(path);
2673 goto out;
2674 }
2675 btrfs_release_path(path);
2676
2677 while (1) {
2678 node = rb_first(&new->root);
2679 if (!node)
2680 break;
2681 rb_erase(node, &new->root);
2682
2683 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2684
2685 ret = relink_extent_backref(path, prev, backref);
2686 WARN_ON(ret < 0);
2687
2688 kfree(prev);
2689
2690 if (ret == 1)
2691 prev = backref;
2692 else
2693 prev = NULL;
2694 cond_resched();
2695 }
2696 kfree(prev);
2697
2698 btrfs_free_path(path);
2699 out:
2700 free_sa_defrag_extent(new);
2701
2702 atomic_dec(&root->fs_info->defrag_running);
2703 wake_up(&root->fs_info->transaction_wait);
2704 }
2705
2706 static struct new_sa_defrag_extent *
2707 record_old_file_extents(struct inode *inode,
2708 struct btrfs_ordered_extent *ordered)
2709 {
2710 struct btrfs_root *root = BTRFS_I(inode)->root;
2711 struct btrfs_path *path;
2712 struct btrfs_key key;
2713 struct old_sa_defrag_extent *old;
2714 struct new_sa_defrag_extent *new;
2715 int ret;
2716
2717 new = kmalloc(sizeof(*new), GFP_NOFS);
2718 if (!new)
2719 return NULL;
2720
2721 new->inode = inode;
2722 new->file_pos = ordered->file_offset;
2723 new->len = ordered->len;
2724 new->bytenr = ordered->start;
2725 new->disk_len = ordered->disk_len;
2726 new->compress_type = ordered->compress_type;
2727 new->root = RB_ROOT;
2728 INIT_LIST_HEAD(&new->head);
2729
2730 path = btrfs_alloc_path();
2731 if (!path)
2732 goto out_kfree;
2733
2734 key.objectid = btrfs_ino(inode);
2735 key.type = BTRFS_EXTENT_DATA_KEY;
2736 key.offset = new->file_pos;
2737
2738 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2739 if (ret < 0)
2740 goto out_free_path;
2741 if (ret > 0 && path->slots[0] > 0)
2742 path->slots[0]--;
2743
2744 /* find out all the old extents for the file range */
2745 while (1) {
2746 struct btrfs_file_extent_item *extent;
2747 struct extent_buffer *l;
2748 int slot;
2749 u64 num_bytes;
2750 u64 offset;
2751 u64 end;
2752 u64 disk_bytenr;
2753 u64 extent_offset;
2754
2755 l = path->nodes[0];
2756 slot = path->slots[0];
2757
2758 if (slot >= btrfs_header_nritems(l)) {
2759 ret = btrfs_next_leaf(root, path);
2760 if (ret < 0)
2761 goto out_free_path;
2762 else if (ret > 0)
2763 break;
2764 continue;
2765 }
2766
2767 btrfs_item_key_to_cpu(l, &key, slot);
2768
2769 if (key.objectid != btrfs_ino(inode))
2770 break;
2771 if (key.type != BTRFS_EXTENT_DATA_KEY)
2772 break;
2773 if (key.offset >= new->file_pos + new->len)
2774 break;
2775
2776 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2777
2778 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2779 if (key.offset + num_bytes < new->file_pos)
2780 goto next;
2781
2782 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2783 if (!disk_bytenr)
2784 goto next;
2785
2786 extent_offset = btrfs_file_extent_offset(l, extent);
2787
2788 old = kmalloc(sizeof(*old), GFP_NOFS);
2789 if (!old)
2790 goto out_free_path;
2791
2792 offset = max(new->file_pos, key.offset);
2793 end = min(new->file_pos + new->len, key.offset + num_bytes);
2794
2795 old->bytenr = disk_bytenr;
2796 old->extent_offset = extent_offset;
2797 old->offset = offset - key.offset;
2798 old->len = end - offset;
2799 old->new = new;
2800 old->count = 0;
2801 list_add_tail(&old->list, &new->head);
2802 next:
2803 path->slots[0]++;
2804 cond_resched();
2805 }
2806
2807 btrfs_free_path(path);
2808 atomic_inc(&root->fs_info->defrag_running);
2809
2810 return new;
2811
2812 out_free_path:
2813 btrfs_free_path(path);
2814 out_kfree:
2815 free_sa_defrag_extent(new);
2816 return NULL;
2817 }
2818
2819 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2820 u64 start, u64 len)
2821 {
2822 struct btrfs_block_group_cache *cache;
2823
2824 cache = btrfs_lookup_block_group(root->fs_info, start);
2825 ASSERT(cache);
2826
2827 spin_lock(&cache->lock);
2828 cache->delalloc_bytes -= len;
2829 spin_unlock(&cache->lock);
2830
2831 btrfs_put_block_group(cache);
2832 }
2833
2834 /* as ordered data IO finishes, this gets called so we can finish
2835 * an ordered extent if the range of bytes in the file it covers are
2836 * fully written.
2837 */
2838 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2839 {
2840 struct inode *inode = ordered_extent->inode;
2841 struct btrfs_root *root = BTRFS_I(inode)->root;
2842 struct btrfs_trans_handle *trans = NULL;
2843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2844 struct extent_state *cached_state = NULL;
2845 struct new_sa_defrag_extent *new = NULL;
2846 int compress_type = 0;
2847 int ret = 0;
2848 u64 logical_len = ordered_extent->len;
2849 bool nolock;
2850 bool truncated = false;
2851
2852 nolock = btrfs_is_free_space_inode(inode);
2853
2854 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2855 ret = -EIO;
2856 goto out;
2857 }
2858
2859 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2860 ordered_extent->file_offset +
2861 ordered_extent->len - 1);
2862
2863 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2864 truncated = true;
2865 logical_len = ordered_extent->truncated_len;
2866 /* Truncated the entire extent, don't bother adding */
2867 if (!logical_len)
2868 goto out;
2869 }
2870
2871 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2872 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2873
2874 /*
2875 * For mwrite(mmap + memset to write) case, we still reserve
2876 * space for NOCOW range.
2877 * As NOCOW won't cause a new delayed ref, just free the space
2878 */
2879 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2880 ordered_extent->len);
2881 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2882 if (nolock)
2883 trans = btrfs_join_transaction_nolock(root);
2884 else
2885 trans = btrfs_join_transaction(root);
2886 if (IS_ERR(trans)) {
2887 ret = PTR_ERR(trans);
2888 trans = NULL;
2889 goto out;
2890 }
2891 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2892 ret = btrfs_update_inode_fallback(trans, root, inode);
2893 if (ret) /* -ENOMEM or corruption */
2894 btrfs_abort_transaction(trans, root, ret);
2895 goto out;
2896 }
2897
2898 lock_extent_bits(io_tree, ordered_extent->file_offset,
2899 ordered_extent->file_offset + ordered_extent->len - 1,
2900 &cached_state);
2901
2902 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2903 ordered_extent->file_offset + ordered_extent->len - 1,
2904 EXTENT_DEFRAG, 1, cached_state);
2905 if (ret) {
2906 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2907 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2908 /* the inode is shared */
2909 new = record_old_file_extents(inode, ordered_extent);
2910
2911 clear_extent_bit(io_tree, ordered_extent->file_offset,
2912 ordered_extent->file_offset + ordered_extent->len - 1,
2913 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2914 }
2915
2916 if (nolock)
2917 trans = btrfs_join_transaction_nolock(root);
2918 else
2919 trans = btrfs_join_transaction(root);
2920 if (IS_ERR(trans)) {
2921 ret = PTR_ERR(trans);
2922 trans = NULL;
2923 goto out_unlock;
2924 }
2925
2926 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2927
2928 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2929 compress_type = ordered_extent->compress_type;
2930 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2931 BUG_ON(compress_type);
2932 ret = btrfs_mark_extent_written(trans, inode,
2933 ordered_extent->file_offset,
2934 ordered_extent->file_offset +
2935 logical_len);
2936 } else {
2937 BUG_ON(root == root->fs_info->tree_root);
2938 ret = insert_reserved_file_extent(trans, inode,
2939 ordered_extent->file_offset,
2940 ordered_extent->start,
2941 ordered_extent->disk_len,
2942 logical_len, logical_len,
2943 compress_type, 0, 0,
2944 BTRFS_FILE_EXTENT_REG);
2945 if (!ret)
2946 btrfs_release_delalloc_bytes(root,
2947 ordered_extent->start,
2948 ordered_extent->disk_len);
2949 }
2950 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2951 ordered_extent->file_offset, ordered_extent->len,
2952 trans->transid);
2953 if (ret < 0) {
2954 btrfs_abort_transaction(trans, root, ret);
2955 goto out_unlock;
2956 }
2957
2958 add_pending_csums(trans, inode, ordered_extent->file_offset,
2959 &ordered_extent->list);
2960
2961 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2962 ret = btrfs_update_inode_fallback(trans, root, inode);
2963 if (ret) { /* -ENOMEM or corruption */
2964 btrfs_abort_transaction(trans, root, ret);
2965 goto out_unlock;
2966 }
2967 ret = 0;
2968 out_unlock:
2969 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2970 ordered_extent->file_offset +
2971 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2972 out:
2973 if (root != root->fs_info->tree_root)
2974 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2975 if (trans)
2976 btrfs_end_transaction(trans, root);
2977
2978 if (ret || truncated) {
2979 u64 start, end;
2980
2981 if (truncated)
2982 start = ordered_extent->file_offset + logical_len;
2983 else
2984 start = ordered_extent->file_offset;
2985 end = ordered_extent->file_offset + ordered_extent->len - 1;
2986 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2987
2988 /* Drop the cache for the part of the extent we didn't write. */
2989 btrfs_drop_extent_cache(inode, start, end, 0);
2990
2991 /*
2992 * If the ordered extent had an IOERR or something else went
2993 * wrong we need to return the space for this ordered extent
2994 * back to the allocator. We only free the extent in the
2995 * truncated case if we didn't write out the extent at all.
2996 */
2997 if ((ret || !logical_len) &&
2998 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2999 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3000 btrfs_free_reserved_extent(root, ordered_extent->start,
3001 ordered_extent->disk_len, 1);
3002 }
3003
3004
3005 /*
3006 * This needs to be done to make sure anybody waiting knows we are done
3007 * updating everything for this ordered extent.
3008 */
3009 btrfs_remove_ordered_extent(inode, ordered_extent);
3010
3011 /* for snapshot-aware defrag */
3012 if (new) {
3013 if (ret) {
3014 free_sa_defrag_extent(new);
3015 atomic_dec(&root->fs_info->defrag_running);
3016 } else {
3017 relink_file_extents(new);
3018 }
3019 }
3020
3021 /* once for us */
3022 btrfs_put_ordered_extent(ordered_extent);
3023 /* once for the tree */
3024 btrfs_put_ordered_extent(ordered_extent);
3025
3026 return ret;
3027 }
3028
3029 static void finish_ordered_fn(struct btrfs_work *work)
3030 {
3031 struct btrfs_ordered_extent *ordered_extent;
3032 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3033 btrfs_finish_ordered_io(ordered_extent);
3034 }
3035
3036 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3037 struct extent_state *state, int uptodate)
3038 {
3039 struct inode *inode = page->mapping->host;
3040 struct btrfs_root *root = BTRFS_I(inode)->root;
3041 struct btrfs_ordered_extent *ordered_extent = NULL;
3042 struct btrfs_workqueue *wq;
3043 btrfs_work_func_t func;
3044
3045 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3046
3047 ClearPagePrivate2(page);
3048 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3049 end - start + 1, uptodate))
3050 return 0;
3051
3052 if (btrfs_is_free_space_inode(inode)) {
3053 wq = root->fs_info->endio_freespace_worker;
3054 func = btrfs_freespace_write_helper;
3055 } else {
3056 wq = root->fs_info->endio_write_workers;
3057 func = btrfs_endio_write_helper;
3058 }
3059
3060 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3061 NULL);
3062 btrfs_queue_work(wq, &ordered_extent->work);
3063
3064 return 0;
3065 }
3066
3067 static int __readpage_endio_check(struct inode *inode,
3068 struct btrfs_io_bio *io_bio,
3069 int icsum, struct page *page,
3070 int pgoff, u64 start, size_t len)
3071 {
3072 char *kaddr;
3073 u32 csum_expected;
3074 u32 csum = ~(u32)0;
3075
3076 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3077
3078 kaddr = kmap_atomic(page);
3079 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3080 btrfs_csum_final(csum, (char *)&csum);
3081 if (csum != csum_expected)
3082 goto zeroit;
3083
3084 kunmap_atomic(kaddr);
3085 return 0;
3086 zeroit:
3087 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3088 "csum failed ino %llu off %llu csum %u expected csum %u",
3089 btrfs_ino(inode), start, csum, csum_expected);
3090 memset(kaddr + pgoff, 1, len);
3091 flush_dcache_page(page);
3092 kunmap_atomic(kaddr);
3093 if (csum_expected == 0)
3094 return 0;
3095 return -EIO;
3096 }
3097
3098 /*
3099 * when reads are done, we need to check csums to verify the data is correct
3100 * if there's a match, we allow the bio to finish. If not, the code in
3101 * extent_io.c will try to find good copies for us.
3102 */
3103 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3104 u64 phy_offset, struct page *page,
3105 u64 start, u64 end, int mirror)
3106 {
3107 size_t offset = start - page_offset(page);
3108 struct inode *inode = page->mapping->host;
3109 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3110 struct btrfs_root *root = BTRFS_I(inode)->root;
3111
3112 if (PageChecked(page)) {
3113 ClearPageChecked(page);
3114 return 0;
3115 }
3116
3117 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3118 return 0;
3119
3120 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3121 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3122 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3123 return 0;
3124 }
3125
3126 phy_offset >>= inode->i_sb->s_blocksize_bits;
3127 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3128 start, (size_t)(end - start + 1));
3129 }
3130
3131 void btrfs_add_delayed_iput(struct inode *inode)
3132 {
3133 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3134 struct btrfs_inode *binode = BTRFS_I(inode);
3135
3136 if (atomic_add_unless(&inode->i_count, -1, 1))
3137 return;
3138
3139 spin_lock(&fs_info->delayed_iput_lock);
3140 if (binode->delayed_iput_count == 0) {
3141 ASSERT(list_empty(&binode->delayed_iput));
3142 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3143 } else {
3144 binode->delayed_iput_count++;
3145 }
3146 spin_unlock(&fs_info->delayed_iput_lock);
3147 }
3148
3149 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3150 {
3151 struct btrfs_fs_info *fs_info = root->fs_info;
3152
3153 spin_lock(&fs_info->delayed_iput_lock);
3154 while (!list_empty(&fs_info->delayed_iputs)) {
3155 struct btrfs_inode *inode;
3156
3157 inode = list_first_entry(&fs_info->delayed_iputs,
3158 struct btrfs_inode, delayed_iput);
3159 if (inode->delayed_iput_count) {
3160 inode->delayed_iput_count--;
3161 list_move_tail(&inode->delayed_iput,
3162 &fs_info->delayed_iputs);
3163 } else {
3164 list_del_init(&inode->delayed_iput);
3165 }
3166 spin_unlock(&fs_info->delayed_iput_lock);
3167 iput(&inode->vfs_inode);
3168 spin_lock(&fs_info->delayed_iput_lock);
3169 }
3170 spin_unlock(&fs_info->delayed_iput_lock);
3171 }
3172
3173 /*
3174 * This is called in transaction commit time. If there are no orphan
3175 * files in the subvolume, it removes orphan item and frees block_rsv
3176 * structure.
3177 */
3178 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3179 struct btrfs_root *root)
3180 {
3181 struct btrfs_block_rsv *block_rsv;
3182 int ret;
3183
3184 if (atomic_read(&root->orphan_inodes) ||
3185 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3186 return;
3187
3188 spin_lock(&root->orphan_lock);
3189 if (atomic_read(&root->orphan_inodes)) {
3190 spin_unlock(&root->orphan_lock);
3191 return;
3192 }
3193
3194 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3195 spin_unlock(&root->orphan_lock);
3196 return;
3197 }
3198
3199 block_rsv = root->orphan_block_rsv;
3200 root->orphan_block_rsv = NULL;
3201 spin_unlock(&root->orphan_lock);
3202
3203 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3204 btrfs_root_refs(&root->root_item) > 0) {
3205 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3206 root->root_key.objectid);
3207 if (ret)
3208 btrfs_abort_transaction(trans, root, ret);
3209 else
3210 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3211 &root->state);
3212 }
3213
3214 if (block_rsv) {
3215 WARN_ON(block_rsv->size > 0);
3216 btrfs_free_block_rsv(root, block_rsv);
3217 }
3218 }
3219
3220 /*
3221 * This creates an orphan entry for the given inode in case something goes
3222 * wrong in the middle of an unlink/truncate.
3223 *
3224 * NOTE: caller of this function should reserve 5 units of metadata for
3225 * this function.
3226 */
3227 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3228 {
3229 struct btrfs_root *root = BTRFS_I(inode)->root;
3230 struct btrfs_block_rsv *block_rsv = NULL;
3231 int reserve = 0;
3232 int insert = 0;
3233 int ret;
3234
3235 if (!root->orphan_block_rsv) {
3236 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3237 if (!block_rsv)
3238 return -ENOMEM;
3239 }
3240
3241 spin_lock(&root->orphan_lock);
3242 if (!root->orphan_block_rsv) {
3243 root->orphan_block_rsv = block_rsv;
3244 } else if (block_rsv) {
3245 btrfs_free_block_rsv(root, block_rsv);
3246 block_rsv = NULL;
3247 }
3248
3249 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3250 &BTRFS_I(inode)->runtime_flags)) {
3251 #if 0
3252 /*
3253 * For proper ENOSPC handling, we should do orphan
3254 * cleanup when mounting. But this introduces backward
3255 * compatibility issue.
3256 */
3257 if (!xchg(&root->orphan_item_inserted, 1))
3258 insert = 2;
3259 else
3260 insert = 1;
3261 #endif
3262 insert = 1;
3263 atomic_inc(&root->orphan_inodes);
3264 }
3265
3266 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3267 &BTRFS_I(inode)->runtime_flags))
3268 reserve = 1;
3269 spin_unlock(&root->orphan_lock);
3270
3271 /* grab metadata reservation from transaction handle */
3272 if (reserve) {
3273 ret = btrfs_orphan_reserve_metadata(trans, inode);
3274 ASSERT(!ret);
3275 if (ret) {
3276 atomic_dec(&root->orphan_inodes);
3277 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3278 &BTRFS_I(inode)->runtime_flags);
3279 if (insert)
3280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3281 &BTRFS_I(inode)->runtime_flags);
3282 return ret;
3283 }
3284 }
3285
3286 /* insert an orphan item to track this unlinked/truncated file */
3287 if (insert >= 1) {
3288 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3289 if (ret) {
3290 atomic_dec(&root->orphan_inodes);
3291 if (reserve) {
3292 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 &BTRFS_I(inode)->runtime_flags);
3294 btrfs_orphan_release_metadata(inode);
3295 }
3296 if (ret != -EEXIST) {
3297 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3298 &BTRFS_I(inode)->runtime_flags);
3299 btrfs_abort_transaction(trans, root, ret);
3300 return ret;
3301 }
3302 }
3303 ret = 0;
3304 }
3305
3306 /* insert an orphan item to track subvolume contains orphan files */
3307 if (insert >= 2) {
3308 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3309 root->root_key.objectid);
3310 if (ret && ret != -EEXIST) {
3311 btrfs_abort_transaction(trans, root, ret);
3312 return ret;
3313 }
3314 }
3315 return 0;
3316 }
3317
3318 /*
3319 * We have done the truncate/delete so we can go ahead and remove the orphan
3320 * item for this particular inode.
3321 */
3322 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3323 struct inode *inode)
3324 {
3325 struct btrfs_root *root = BTRFS_I(inode)->root;
3326 int delete_item = 0;
3327 int release_rsv = 0;
3328 int ret = 0;
3329
3330 spin_lock(&root->orphan_lock);
3331 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3332 &BTRFS_I(inode)->runtime_flags))
3333 delete_item = 1;
3334
3335 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3336 &BTRFS_I(inode)->runtime_flags))
3337 release_rsv = 1;
3338 spin_unlock(&root->orphan_lock);
3339
3340 if (delete_item) {
3341 atomic_dec(&root->orphan_inodes);
3342 if (trans)
3343 ret = btrfs_del_orphan_item(trans, root,
3344 btrfs_ino(inode));
3345 }
3346
3347 if (release_rsv)
3348 btrfs_orphan_release_metadata(inode);
3349
3350 return ret;
3351 }
3352
3353 /*
3354 * this cleans up any orphans that may be left on the list from the last use
3355 * of this root.
3356 */
3357 int btrfs_orphan_cleanup(struct btrfs_root *root)
3358 {
3359 struct btrfs_path *path;
3360 struct extent_buffer *leaf;
3361 struct btrfs_key key, found_key;
3362 struct btrfs_trans_handle *trans;
3363 struct inode *inode;
3364 u64 last_objectid = 0;
3365 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3366
3367 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3368 return 0;
3369
3370 path = btrfs_alloc_path();
3371 if (!path) {
3372 ret = -ENOMEM;
3373 goto out;
3374 }
3375 path->reada = READA_BACK;
3376
3377 key.objectid = BTRFS_ORPHAN_OBJECTID;
3378 key.type = BTRFS_ORPHAN_ITEM_KEY;
3379 key.offset = (u64)-1;
3380
3381 while (1) {
3382 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3383 if (ret < 0)
3384 goto out;
3385
3386 /*
3387 * if ret == 0 means we found what we were searching for, which
3388 * is weird, but possible, so only screw with path if we didn't
3389 * find the key and see if we have stuff that matches
3390 */
3391 if (ret > 0) {
3392 ret = 0;
3393 if (path->slots[0] == 0)
3394 break;
3395 path->slots[0]--;
3396 }
3397
3398 /* pull out the item */
3399 leaf = path->nodes[0];
3400 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3401
3402 /* make sure the item matches what we want */
3403 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3404 break;
3405 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3406 break;
3407
3408 /* release the path since we're done with it */
3409 btrfs_release_path(path);
3410
3411 /*
3412 * this is where we are basically btrfs_lookup, without the
3413 * crossing root thing. we store the inode number in the
3414 * offset of the orphan item.
3415 */
3416
3417 if (found_key.offset == last_objectid) {
3418 btrfs_err(root->fs_info,
3419 "Error removing orphan entry, stopping orphan cleanup");
3420 ret = -EINVAL;
3421 goto out;
3422 }
3423
3424 last_objectid = found_key.offset;
3425
3426 found_key.objectid = found_key.offset;
3427 found_key.type = BTRFS_INODE_ITEM_KEY;
3428 found_key.offset = 0;
3429 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3430 ret = PTR_ERR_OR_ZERO(inode);
3431 if (ret && ret != -ESTALE)
3432 goto out;
3433
3434 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3435 struct btrfs_root *dead_root;
3436 struct btrfs_fs_info *fs_info = root->fs_info;
3437 int is_dead_root = 0;
3438
3439 /*
3440 * this is an orphan in the tree root. Currently these
3441 * could come from 2 sources:
3442 * a) a snapshot deletion in progress
3443 * b) a free space cache inode
3444 * We need to distinguish those two, as the snapshot
3445 * orphan must not get deleted.
3446 * find_dead_roots already ran before us, so if this
3447 * is a snapshot deletion, we should find the root
3448 * in the dead_roots list
3449 */
3450 spin_lock(&fs_info->trans_lock);
3451 list_for_each_entry(dead_root, &fs_info->dead_roots,
3452 root_list) {
3453 if (dead_root->root_key.objectid ==
3454 found_key.objectid) {
3455 is_dead_root = 1;
3456 break;
3457 }
3458 }
3459 spin_unlock(&fs_info->trans_lock);
3460 if (is_dead_root) {
3461 /* prevent this orphan from being found again */
3462 key.offset = found_key.objectid - 1;
3463 continue;
3464 }
3465 }
3466 /*
3467 * Inode is already gone but the orphan item is still there,
3468 * kill the orphan item.
3469 */
3470 if (ret == -ESTALE) {
3471 trans = btrfs_start_transaction(root, 1);
3472 if (IS_ERR(trans)) {
3473 ret = PTR_ERR(trans);
3474 goto out;
3475 }
3476 btrfs_debug(root->fs_info, "auto deleting %Lu",
3477 found_key.objectid);
3478 ret = btrfs_del_orphan_item(trans, root,
3479 found_key.objectid);
3480 btrfs_end_transaction(trans, root);
3481 if (ret)
3482 goto out;
3483 continue;
3484 }
3485
3486 /*
3487 * add this inode to the orphan list so btrfs_orphan_del does
3488 * the proper thing when we hit it
3489 */
3490 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3491 &BTRFS_I(inode)->runtime_flags);
3492 atomic_inc(&root->orphan_inodes);
3493
3494 /* if we have links, this was a truncate, lets do that */
3495 if (inode->i_nlink) {
3496 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3497 iput(inode);
3498 continue;
3499 }
3500 nr_truncate++;
3501
3502 /* 1 for the orphan item deletion. */
3503 trans = btrfs_start_transaction(root, 1);
3504 if (IS_ERR(trans)) {
3505 iput(inode);
3506 ret = PTR_ERR(trans);
3507 goto out;
3508 }
3509 ret = btrfs_orphan_add(trans, inode);
3510 btrfs_end_transaction(trans, root);
3511 if (ret) {
3512 iput(inode);
3513 goto out;
3514 }
3515
3516 ret = btrfs_truncate(inode);
3517 if (ret)
3518 btrfs_orphan_del(NULL, inode);
3519 } else {
3520 nr_unlink++;
3521 }
3522
3523 /* this will do delete_inode and everything for us */
3524 iput(inode);
3525 if (ret)
3526 goto out;
3527 }
3528 /* release the path since we're done with it */
3529 btrfs_release_path(path);
3530
3531 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3532
3533 if (root->orphan_block_rsv)
3534 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3535 (u64)-1);
3536
3537 if (root->orphan_block_rsv ||
3538 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3539 trans = btrfs_join_transaction(root);
3540 if (!IS_ERR(trans))
3541 btrfs_end_transaction(trans, root);
3542 }
3543
3544 if (nr_unlink)
3545 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3546 if (nr_truncate)
3547 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3548
3549 out:
3550 if (ret)
3551 btrfs_err(root->fs_info,
3552 "could not do orphan cleanup %d", ret);
3553 btrfs_free_path(path);
3554 return ret;
3555 }
3556
3557 /*
3558 * very simple check to peek ahead in the leaf looking for xattrs. If we
3559 * don't find any xattrs, we know there can't be any acls.
3560 *
3561 * slot is the slot the inode is in, objectid is the objectid of the inode
3562 */
3563 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3564 int slot, u64 objectid,
3565 int *first_xattr_slot)
3566 {
3567 u32 nritems = btrfs_header_nritems(leaf);
3568 struct btrfs_key found_key;
3569 static u64 xattr_access = 0;
3570 static u64 xattr_default = 0;
3571 int scanned = 0;
3572
3573 if (!xattr_access) {
3574 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3575 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3576 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3577 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3578 }
3579
3580 slot++;
3581 *first_xattr_slot = -1;
3582 while (slot < nritems) {
3583 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3584
3585 /* we found a different objectid, there must not be acls */
3586 if (found_key.objectid != objectid)
3587 return 0;
3588
3589 /* we found an xattr, assume we've got an acl */
3590 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3591 if (*first_xattr_slot == -1)
3592 *first_xattr_slot = slot;
3593 if (found_key.offset == xattr_access ||
3594 found_key.offset == xattr_default)
3595 return 1;
3596 }
3597
3598 /*
3599 * we found a key greater than an xattr key, there can't
3600 * be any acls later on
3601 */
3602 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3603 return 0;
3604
3605 slot++;
3606 scanned++;
3607
3608 /*
3609 * it goes inode, inode backrefs, xattrs, extents,
3610 * so if there are a ton of hard links to an inode there can
3611 * be a lot of backrefs. Don't waste time searching too hard,
3612 * this is just an optimization
3613 */
3614 if (scanned >= 8)
3615 break;
3616 }
3617 /* we hit the end of the leaf before we found an xattr or
3618 * something larger than an xattr. We have to assume the inode
3619 * has acls
3620 */
3621 if (*first_xattr_slot == -1)
3622 *first_xattr_slot = slot;
3623 return 1;
3624 }
3625
3626 /*
3627 * read an inode from the btree into the in-memory inode
3628 */
3629 static void btrfs_read_locked_inode(struct inode *inode)
3630 {
3631 struct btrfs_path *path;
3632 struct extent_buffer *leaf;
3633 struct btrfs_inode_item *inode_item;
3634 struct btrfs_root *root = BTRFS_I(inode)->root;
3635 struct btrfs_key location;
3636 unsigned long ptr;
3637 int maybe_acls;
3638 u32 rdev;
3639 int ret;
3640 bool filled = false;
3641 int first_xattr_slot;
3642
3643 ret = btrfs_fill_inode(inode, &rdev);
3644 if (!ret)
3645 filled = true;
3646
3647 path = btrfs_alloc_path();
3648 if (!path)
3649 goto make_bad;
3650
3651 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3652
3653 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3654 if (ret)
3655 goto make_bad;
3656
3657 leaf = path->nodes[0];
3658
3659 if (filled)
3660 goto cache_index;
3661
3662 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3663 struct btrfs_inode_item);
3664 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3665 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3666 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3667 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3668 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3669
3670 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3671 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3672
3673 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3674 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3675
3676 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3677 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3678
3679 BTRFS_I(inode)->i_otime.tv_sec =
3680 btrfs_timespec_sec(leaf, &inode_item->otime);
3681 BTRFS_I(inode)->i_otime.tv_nsec =
3682 btrfs_timespec_nsec(leaf, &inode_item->otime);
3683
3684 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3685 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3686 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3687
3688 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3689 inode->i_generation = BTRFS_I(inode)->generation;
3690 inode->i_rdev = 0;
3691 rdev = btrfs_inode_rdev(leaf, inode_item);
3692
3693 BTRFS_I(inode)->index_cnt = (u64)-1;
3694 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3695
3696 cache_index:
3697 /*
3698 * If we were modified in the current generation and evicted from memory
3699 * and then re-read we need to do a full sync since we don't have any
3700 * idea about which extents were modified before we were evicted from
3701 * cache.
3702 *
3703 * This is required for both inode re-read from disk and delayed inode
3704 * in delayed_nodes_tree.
3705 */
3706 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3707 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3708 &BTRFS_I(inode)->runtime_flags);
3709
3710 /*
3711 * We don't persist the id of the transaction where an unlink operation
3712 * against the inode was last made. So here we assume the inode might
3713 * have been evicted, and therefore the exact value of last_unlink_trans
3714 * lost, and set it to last_trans to avoid metadata inconsistencies
3715 * between the inode and its parent if the inode is fsync'ed and the log
3716 * replayed. For example, in the scenario:
3717 *
3718 * touch mydir/foo
3719 * ln mydir/foo mydir/bar
3720 * sync
3721 * unlink mydir/bar
3722 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3723 * xfs_io -c fsync mydir/foo
3724 * <power failure>
3725 * mount fs, triggers fsync log replay
3726 *
3727 * We must make sure that when we fsync our inode foo we also log its
3728 * parent inode, otherwise after log replay the parent still has the
3729 * dentry with the "bar" name but our inode foo has a link count of 1
3730 * and doesn't have an inode ref with the name "bar" anymore.
3731 *
3732 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3733 * but it guarantees correctness at the expense of occasional full
3734 * transaction commits on fsync if our inode is a directory, or if our
3735 * inode is not a directory, logging its parent unnecessarily.
3736 */
3737 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3738
3739 path->slots[0]++;
3740 if (inode->i_nlink != 1 ||
3741 path->slots[0] >= btrfs_header_nritems(leaf))
3742 goto cache_acl;
3743
3744 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3745 if (location.objectid != btrfs_ino(inode))
3746 goto cache_acl;
3747
3748 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3749 if (location.type == BTRFS_INODE_REF_KEY) {
3750 struct btrfs_inode_ref *ref;
3751
3752 ref = (struct btrfs_inode_ref *)ptr;
3753 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3754 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3755 struct btrfs_inode_extref *extref;
3756
3757 extref = (struct btrfs_inode_extref *)ptr;
3758 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3759 extref);
3760 }
3761 cache_acl:
3762 /*
3763 * try to precache a NULL acl entry for files that don't have
3764 * any xattrs or acls
3765 */
3766 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3767 btrfs_ino(inode), &first_xattr_slot);
3768 if (first_xattr_slot != -1) {
3769 path->slots[0] = first_xattr_slot;
3770 ret = btrfs_load_inode_props(inode, path);
3771 if (ret)
3772 btrfs_err(root->fs_info,
3773 "error loading props for ino %llu (root %llu): %d",
3774 btrfs_ino(inode),
3775 root->root_key.objectid, ret);
3776 }
3777 btrfs_free_path(path);
3778
3779 if (!maybe_acls)
3780 cache_no_acl(inode);
3781
3782 switch (inode->i_mode & S_IFMT) {
3783 case S_IFREG:
3784 inode->i_mapping->a_ops = &btrfs_aops;
3785 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3786 inode->i_fop = &btrfs_file_operations;
3787 inode->i_op = &btrfs_file_inode_operations;
3788 break;
3789 case S_IFDIR:
3790 inode->i_fop = &btrfs_dir_file_operations;
3791 if (root == root->fs_info->tree_root)
3792 inode->i_op = &btrfs_dir_ro_inode_operations;
3793 else
3794 inode->i_op = &btrfs_dir_inode_operations;
3795 break;
3796 case S_IFLNK:
3797 inode->i_op = &btrfs_symlink_inode_operations;
3798 inode_nohighmem(inode);
3799 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3800 break;
3801 default:
3802 inode->i_op = &btrfs_special_inode_operations;
3803 init_special_inode(inode, inode->i_mode, rdev);
3804 break;
3805 }
3806
3807 btrfs_update_iflags(inode);
3808 return;
3809
3810 make_bad:
3811 btrfs_free_path(path);
3812 make_bad_inode(inode);
3813 }
3814
3815 /*
3816 * given a leaf and an inode, copy the inode fields into the leaf
3817 */
3818 static void fill_inode_item(struct btrfs_trans_handle *trans,
3819 struct extent_buffer *leaf,
3820 struct btrfs_inode_item *item,
3821 struct inode *inode)
3822 {
3823 struct btrfs_map_token token;
3824
3825 btrfs_init_map_token(&token);
3826
3827 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3828 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3829 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3830 &token);
3831 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3832 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3833
3834 btrfs_set_token_timespec_sec(leaf, &item->atime,
3835 inode->i_atime.tv_sec, &token);
3836 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3837 inode->i_atime.tv_nsec, &token);
3838
3839 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3840 inode->i_mtime.tv_sec, &token);
3841 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3842 inode->i_mtime.tv_nsec, &token);
3843
3844 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3845 inode->i_ctime.tv_sec, &token);
3846 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3847 inode->i_ctime.tv_nsec, &token);
3848
3849 btrfs_set_token_timespec_sec(leaf, &item->otime,
3850 BTRFS_I(inode)->i_otime.tv_sec, &token);
3851 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3852 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3853
3854 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3855 &token);
3856 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3857 &token);
3858 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3859 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3860 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3861 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3862 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3863 }
3864
3865 /*
3866 * copy everything in the in-memory inode into the btree.
3867 */
3868 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3869 struct btrfs_root *root, struct inode *inode)
3870 {
3871 struct btrfs_inode_item *inode_item;
3872 struct btrfs_path *path;
3873 struct extent_buffer *leaf;
3874 int ret;
3875
3876 path = btrfs_alloc_path();
3877 if (!path)
3878 return -ENOMEM;
3879
3880 path->leave_spinning = 1;
3881 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3882 1);
3883 if (ret) {
3884 if (ret > 0)
3885 ret = -ENOENT;
3886 goto failed;
3887 }
3888
3889 leaf = path->nodes[0];
3890 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3891 struct btrfs_inode_item);
3892
3893 fill_inode_item(trans, leaf, inode_item, inode);
3894 btrfs_mark_buffer_dirty(leaf);
3895 btrfs_set_inode_last_trans(trans, inode);
3896 ret = 0;
3897 failed:
3898 btrfs_free_path(path);
3899 return ret;
3900 }
3901
3902 /*
3903 * copy everything in the in-memory inode into the btree.
3904 */
3905 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *root, struct inode *inode)
3907 {
3908 int ret;
3909
3910 /*
3911 * If the inode is a free space inode, we can deadlock during commit
3912 * if we put it into the delayed code.
3913 *
3914 * The data relocation inode should also be directly updated
3915 * without delay
3916 */
3917 if (!btrfs_is_free_space_inode(inode)
3918 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3919 && !root->fs_info->log_root_recovering) {
3920 btrfs_update_root_times(trans, root);
3921
3922 ret = btrfs_delayed_update_inode(trans, root, inode);
3923 if (!ret)
3924 btrfs_set_inode_last_trans(trans, inode);
3925 return ret;
3926 }
3927
3928 return btrfs_update_inode_item(trans, root, inode);
3929 }
3930
3931 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3932 struct btrfs_root *root,
3933 struct inode *inode)
3934 {
3935 int ret;
3936
3937 ret = btrfs_update_inode(trans, root, inode);
3938 if (ret == -ENOSPC)
3939 return btrfs_update_inode_item(trans, root, inode);
3940 return ret;
3941 }
3942
3943 /*
3944 * unlink helper that gets used here in inode.c and in the tree logging
3945 * recovery code. It remove a link in a directory with a given name, and
3946 * also drops the back refs in the inode to the directory
3947 */
3948 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3949 struct btrfs_root *root,
3950 struct inode *dir, struct inode *inode,
3951 const char *name, int name_len)
3952 {
3953 struct btrfs_path *path;
3954 int ret = 0;
3955 struct extent_buffer *leaf;
3956 struct btrfs_dir_item *di;
3957 struct btrfs_key key;
3958 u64 index;
3959 u64 ino = btrfs_ino(inode);
3960 u64 dir_ino = btrfs_ino(dir);
3961
3962 path = btrfs_alloc_path();
3963 if (!path) {
3964 ret = -ENOMEM;
3965 goto out;
3966 }
3967
3968 path->leave_spinning = 1;
3969 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3970 name, name_len, -1);
3971 if (IS_ERR(di)) {
3972 ret = PTR_ERR(di);
3973 goto err;
3974 }
3975 if (!di) {
3976 ret = -ENOENT;
3977 goto err;
3978 }
3979 leaf = path->nodes[0];
3980 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3981 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3982 if (ret)
3983 goto err;
3984 btrfs_release_path(path);
3985
3986 /*
3987 * If we don't have dir index, we have to get it by looking up
3988 * the inode ref, since we get the inode ref, remove it directly,
3989 * it is unnecessary to do delayed deletion.
3990 *
3991 * But if we have dir index, needn't search inode ref to get it.
3992 * Since the inode ref is close to the inode item, it is better
3993 * that we delay to delete it, and just do this deletion when
3994 * we update the inode item.
3995 */
3996 if (BTRFS_I(inode)->dir_index) {
3997 ret = btrfs_delayed_delete_inode_ref(inode);
3998 if (!ret) {
3999 index = BTRFS_I(inode)->dir_index;
4000 goto skip_backref;
4001 }
4002 }
4003
4004 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4005 dir_ino, &index);
4006 if (ret) {
4007 btrfs_info(root->fs_info,
4008 "failed to delete reference to %.*s, inode %llu parent %llu",
4009 name_len, name, ino, dir_ino);
4010 btrfs_abort_transaction(trans, root, ret);
4011 goto err;
4012 }
4013 skip_backref:
4014 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4015 if (ret) {
4016 btrfs_abort_transaction(trans, root, ret);
4017 goto err;
4018 }
4019
4020 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4021 inode, dir_ino);
4022 if (ret != 0 && ret != -ENOENT) {
4023 btrfs_abort_transaction(trans, root, ret);
4024 goto err;
4025 }
4026
4027 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4028 dir, index);
4029 if (ret == -ENOENT)
4030 ret = 0;
4031 else if (ret)
4032 btrfs_abort_transaction(trans, root, ret);
4033 err:
4034 btrfs_free_path(path);
4035 if (ret)
4036 goto out;
4037
4038 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4039 inode_inc_iversion(inode);
4040 inode_inc_iversion(dir);
4041 inode->i_ctime = dir->i_mtime =
4042 dir->i_ctime = current_fs_time(inode->i_sb);
4043 ret = btrfs_update_inode(trans, root, dir);
4044 out:
4045 return ret;
4046 }
4047
4048 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4049 struct btrfs_root *root,
4050 struct inode *dir, struct inode *inode,
4051 const char *name, int name_len)
4052 {
4053 int ret;
4054 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4055 if (!ret) {
4056 drop_nlink(inode);
4057 ret = btrfs_update_inode(trans, root, inode);
4058 }
4059 return ret;
4060 }
4061
4062 /*
4063 * helper to start transaction for unlink and rmdir.
4064 *
4065 * unlink and rmdir are special in btrfs, they do not always free space, so
4066 * if we cannot make our reservations the normal way try and see if there is
4067 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4068 * allow the unlink to occur.
4069 */
4070 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4071 {
4072 struct btrfs_root *root = BTRFS_I(dir)->root;
4073
4074 /*
4075 * 1 for the possible orphan item
4076 * 1 for the dir item
4077 * 1 for the dir index
4078 * 1 for the inode ref
4079 * 1 for the inode
4080 */
4081 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4082 }
4083
4084 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4085 {
4086 struct btrfs_root *root = BTRFS_I(dir)->root;
4087 struct btrfs_trans_handle *trans;
4088 struct inode *inode = d_inode(dentry);
4089 int ret;
4090
4091 trans = __unlink_start_trans(dir);
4092 if (IS_ERR(trans))
4093 return PTR_ERR(trans);
4094
4095 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4096
4097 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4098 dentry->d_name.name, dentry->d_name.len);
4099 if (ret)
4100 goto out;
4101
4102 if (inode->i_nlink == 0) {
4103 ret = btrfs_orphan_add(trans, inode);
4104 if (ret)
4105 goto out;
4106 }
4107
4108 out:
4109 btrfs_end_transaction(trans, root);
4110 btrfs_btree_balance_dirty(root);
4111 return ret;
4112 }
4113
4114 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4115 struct btrfs_root *root,
4116 struct inode *dir, u64 objectid,
4117 const char *name, int name_len)
4118 {
4119 struct btrfs_path *path;
4120 struct extent_buffer *leaf;
4121 struct btrfs_dir_item *di;
4122 struct btrfs_key key;
4123 u64 index;
4124 int ret;
4125 u64 dir_ino = btrfs_ino(dir);
4126
4127 path = btrfs_alloc_path();
4128 if (!path)
4129 return -ENOMEM;
4130
4131 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4132 name, name_len, -1);
4133 if (IS_ERR_OR_NULL(di)) {
4134 if (!di)
4135 ret = -ENOENT;
4136 else
4137 ret = PTR_ERR(di);
4138 goto out;
4139 }
4140
4141 leaf = path->nodes[0];
4142 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4143 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4144 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4145 if (ret) {
4146 btrfs_abort_transaction(trans, root, ret);
4147 goto out;
4148 }
4149 btrfs_release_path(path);
4150
4151 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4152 objectid, root->root_key.objectid,
4153 dir_ino, &index, name, name_len);
4154 if (ret < 0) {
4155 if (ret != -ENOENT) {
4156 btrfs_abort_transaction(trans, root, ret);
4157 goto out;
4158 }
4159 di = btrfs_search_dir_index_item(root, path, dir_ino,
4160 name, name_len);
4161 if (IS_ERR_OR_NULL(di)) {
4162 if (!di)
4163 ret = -ENOENT;
4164 else
4165 ret = PTR_ERR(di);
4166 btrfs_abort_transaction(trans, root, ret);
4167 goto out;
4168 }
4169
4170 leaf = path->nodes[0];
4171 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4172 btrfs_release_path(path);
4173 index = key.offset;
4174 }
4175 btrfs_release_path(path);
4176
4177 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4178 if (ret) {
4179 btrfs_abort_transaction(trans, root, ret);
4180 goto out;
4181 }
4182
4183 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4184 inode_inc_iversion(dir);
4185 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
4186 ret = btrfs_update_inode_fallback(trans, root, dir);
4187 if (ret)
4188 btrfs_abort_transaction(trans, root, ret);
4189 out:
4190 btrfs_free_path(path);
4191 return ret;
4192 }
4193
4194 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4195 {
4196 struct inode *inode = d_inode(dentry);
4197 int err = 0;
4198 struct btrfs_root *root = BTRFS_I(dir)->root;
4199 struct btrfs_trans_handle *trans;
4200
4201 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4202 return -ENOTEMPTY;
4203 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4204 return -EPERM;
4205
4206 trans = __unlink_start_trans(dir);
4207 if (IS_ERR(trans))
4208 return PTR_ERR(trans);
4209
4210 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4211 err = btrfs_unlink_subvol(trans, root, dir,
4212 BTRFS_I(inode)->location.objectid,
4213 dentry->d_name.name,
4214 dentry->d_name.len);
4215 goto out;
4216 }
4217
4218 err = btrfs_orphan_add(trans, inode);
4219 if (err)
4220 goto out;
4221
4222 /* now the directory is empty */
4223 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4224 dentry->d_name.name, dentry->d_name.len);
4225 if (!err)
4226 btrfs_i_size_write(inode, 0);
4227 out:
4228 btrfs_end_transaction(trans, root);
4229 btrfs_btree_balance_dirty(root);
4230
4231 return err;
4232 }
4233
4234 static int truncate_space_check(struct btrfs_trans_handle *trans,
4235 struct btrfs_root *root,
4236 u64 bytes_deleted)
4237 {
4238 int ret;
4239
4240 /*
4241 * This is only used to apply pressure to the enospc system, we don't
4242 * intend to use this reservation at all.
4243 */
4244 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4245 bytes_deleted *= root->nodesize;
4246 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4247 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4248 if (!ret) {
4249 trace_btrfs_space_reservation(root->fs_info, "transaction",
4250 trans->transid,
4251 bytes_deleted, 1);
4252 trans->bytes_reserved += bytes_deleted;
4253 }
4254 return ret;
4255
4256 }
4257
4258 static int truncate_inline_extent(struct inode *inode,
4259 struct btrfs_path *path,
4260 struct btrfs_key *found_key,
4261 const u64 item_end,
4262 const u64 new_size)
4263 {
4264 struct extent_buffer *leaf = path->nodes[0];
4265 int slot = path->slots[0];
4266 struct btrfs_file_extent_item *fi;
4267 u32 size = (u32)(new_size - found_key->offset);
4268 struct btrfs_root *root = BTRFS_I(inode)->root;
4269
4270 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4271
4272 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4273 loff_t offset = new_size;
4274 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4275
4276 /*
4277 * Zero out the remaining of the last page of our inline extent,
4278 * instead of directly truncating our inline extent here - that
4279 * would be much more complex (decompressing all the data, then
4280 * compressing the truncated data, which might be bigger than
4281 * the size of the inline extent, resize the extent, etc).
4282 * We release the path because to get the page we might need to
4283 * read the extent item from disk (data not in the page cache).
4284 */
4285 btrfs_release_path(path);
4286 return btrfs_truncate_block(inode, offset, page_end - offset,
4287 0);
4288 }
4289
4290 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4291 size = btrfs_file_extent_calc_inline_size(size);
4292 btrfs_truncate_item(root, path, size, 1);
4293
4294 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4295 inode_sub_bytes(inode, item_end + 1 - new_size);
4296
4297 return 0;
4298 }
4299
4300 /*
4301 * this can truncate away extent items, csum items and directory items.
4302 * It starts at a high offset and removes keys until it can't find
4303 * any higher than new_size
4304 *
4305 * csum items that cross the new i_size are truncated to the new size
4306 * as well.
4307 *
4308 * min_type is the minimum key type to truncate down to. If set to 0, this
4309 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4310 */
4311 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4312 struct btrfs_root *root,
4313 struct inode *inode,
4314 u64 new_size, u32 min_type)
4315 {
4316 struct btrfs_path *path;
4317 struct extent_buffer *leaf;
4318 struct btrfs_file_extent_item *fi;
4319 struct btrfs_key key;
4320 struct btrfs_key found_key;
4321 u64 extent_start = 0;
4322 u64 extent_num_bytes = 0;
4323 u64 extent_offset = 0;
4324 u64 item_end = 0;
4325 u64 last_size = new_size;
4326 u32 found_type = (u8)-1;
4327 int found_extent;
4328 int del_item;
4329 int pending_del_nr = 0;
4330 int pending_del_slot = 0;
4331 int extent_type = -1;
4332 int ret;
4333 int err = 0;
4334 u64 ino = btrfs_ino(inode);
4335 u64 bytes_deleted = 0;
4336 bool be_nice = 0;
4337 bool should_throttle = 0;
4338 bool should_end = 0;
4339
4340 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4341
4342 /*
4343 * for non-free space inodes and ref cows, we want to back off from
4344 * time to time
4345 */
4346 if (!btrfs_is_free_space_inode(inode) &&
4347 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4348 be_nice = 1;
4349
4350 path = btrfs_alloc_path();
4351 if (!path)
4352 return -ENOMEM;
4353 path->reada = READA_BACK;
4354
4355 /*
4356 * We want to drop from the next block forward in case this new size is
4357 * not block aligned since we will be keeping the last block of the
4358 * extent just the way it is.
4359 */
4360 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4361 root == root->fs_info->tree_root)
4362 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4363 root->sectorsize), (u64)-1, 0);
4364
4365 /*
4366 * This function is also used to drop the items in the log tree before
4367 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4368 * it is used to drop the loged items. So we shouldn't kill the delayed
4369 * items.
4370 */
4371 if (min_type == 0 && root == BTRFS_I(inode)->root)
4372 btrfs_kill_delayed_inode_items(inode);
4373
4374 key.objectid = ino;
4375 key.offset = (u64)-1;
4376 key.type = (u8)-1;
4377
4378 search_again:
4379 /*
4380 * with a 16K leaf size and 128MB extents, you can actually queue
4381 * up a huge file in a single leaf. Most of the time that
4382 * bytes_deleted is > 0, it will be huge by the time we get here
4383 */
4384 if (be_nice && bytes_deleted > SZ_32M) {
4385 if (btrfs_should_end_transaction(trans, root)) {
4386 err = -EAGAIN;
4387 goto error;
4388 }
4389 }
4390
4391
4392 path->leave_spinning = 1;
4393 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4394 if (ret < 0) {
4395 err = ret;
4396 goto out;
4397 }
4398
4399 if (ret > 0) {
4400 /* there are no items in the tree for us to truncate, we're
4401 * done
4402 */
4403 if (path->slots[0] == 0)
4404 goto out;
4405 path->slots[0]--;
4406 }
4407
4408 while (1) {
4409 fi = NULL;
4410 leaf = path->nodes[0];
4411 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4412 found_type = found_key.type;
4413
4414 if (found_key.objectid != ino)
4415 break;
4416
4417 if (found_type < min_type)
4418 break;
4419
4420 item_end = found_key.offset;
4421 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4422 fi = btrfs_item_ptr(leaf, path->slots[0],
4423 struct btrfs_file_extent_item);
4424 extent_type = btrfs_file_extent_type(leaf, fi);
4425 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4426 item_end +=
4427 btrfs_file_extent_num_bytes(leaf, fi);
4428 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4429 item_end += btrfs_file_extent_inline_len(leaf,
4430 path->slots[0], fi);
4431 }
4432 item_end--;
4433 }
4434 if (found_type > min_type) {
4435 del_item = 1;
4436 } else {
4437 if (item_end < new_size)
4438 break;
4439 if (found_key.offset >= new_size)
4440 del_item = 1;
4441 else
4442 del_item = 0;
4443 }
4444 found_extent = 0;
4445 /* FIXME, shrink the extent if the ref count is only 1 */
4446 if (found_type != BTRFS_EXTENT_DATA_KEY)
4447 goto delete;
4448
4449 if (del_item)
4450 last_size = found_key.offset;
4451 else
4452 last_size = new_size;
4453
4454 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4455 u64 num_dec;
4456 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4457 if (!del_item) {
4458 u64 orig_num_bytes =
4459 btrfs_file_extent_num_bytes(leaf, fi);
4460 extent_num_bytes = ALIGN(new_size -
4461 found_key.offset,
4462 root->sectorsize);
4463 btrfs_set_file_extent_num_bytes(leaf, fi,
4464 extent_num_bytes);
4465 num_dec = (orig_num_bytes -
4466 extent_num_bytes);
4467 if (test_bit(BTRFS_ROOT_REF_COWS,
4468 &root->state) &&
4469 extent_start != 0)
4470 inode_sub_bytes(inode, num_dec);
4471 btrfs_mark_buffer_dirty(leaf);
4472 } else {
4473 extent_num_bytes =
4474 btrfs_file_extent_disk_num_bytes(leaf,
4475 fi);
4476 extent_offset = found_key.offset -
4477 btrfs_file_extent_offset(leaf, fi);
4478
4479 /* FIXME blocksize != 4096 */
4480 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4481 if (extent_start != 0) {
4482 found_extent = 1;
4483 if (test_bit(BTRFS_ROOT_REF_COWS,
4484 &root->state))
4485 inode_sub_bytes(inode, num_dec);
4486 }
4487 }
4488 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4489 /*
4490 * we can't truncate inline items that have had
4491 * special encodings
4492 */
4493 if (!del_item &&
4494 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4495 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4496
4497 /*
4498 * Need to release path in order to truncate a
4499 * compressed extent. So delete any accumulated
4500 * extent items so far.
4501 */
4502 if (btrfs_file_extent_compression(leaf, fi) !=
4503 BTRFS_COMPRESS_NONE && pending_del_nr) {
4504 err = btrfs_del_items(trans, root, path,
4505 pending_del_slot,
4506 pending_del_nr);
4507 if (err) {
4508 btrfs_abort_transaction(trans,
4509 root,
4510 err);
4511 goto error;
4512 }
4513 pending_del_nr = 0;
4514 }
4515
4516 err = truncate_inline_extent(inode, path,
4517 &found_key,
4518 item_end,
4519 new_size);
4520 if (err) {
4521 btrfs_abort_transaction(trans,
4522 root, err);
4523 goto error;
4524 }
4525 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4526 &root->state)) {
4527 inode_sub_bytes(inode, item_end + 1 - new_size);
4528 }
4529 }
4530 delete:
4531 if (del_item) {
4532 if (!pending_del_nr) {
4533 /* no pending yet, add ourselves */
4534 pending_del_slot = path->slots[0];
4535 pending_del_nr = 1;
4536 } else if (pending_del_nr &&
4537 path->slots[0] + 1 == pending_del_slot) {
4538 /* hop on the pending chunk */
4539 pending_del_nr++;
4540 pending_del_slot = path->slots[0];
4541 } else {
4542 BUG();
4543 }
4544 } else {
4545 break;
4546 }
4547 should_throttle = 0;
4548
4549 if (found_extent &&
4550 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4551 root == root->fs_info->tree_root)) {
4552 btrfs_set_path_blocking(path);
4553 bytes_deleted += extent_num_bytes;
4554 ret = btrfs_free_extent(trans, root, extent_start,
4555 extent_num_bytes, 0,
4556 btrfs_header_owner(leaf),
4557 ino, extent_offset);
4558 BUG_ON(ret);
4559 if (btrfs_should_throttle_delayed_refs(trans, root))
4560 btrfs_async_run_delayed_refs(root,
4561 trans->transid,
4562 trans->delayed_ref_updates * 2, 0);
4563 if (be_nice) {
4564 if (truncate_space_check(trans, root,
4565 extent_num_bytes)) {
4566 should_end = 1;
4567 }
4568 if (btrfs_should_throttle_delayed_refs(trans,
4569 root)) {
4570 should_throttle = 1;
4571 }
4572 }
4573 }
4574
4575 if (found_type == BTRFS_INODE_ITEM_KEY)
4576 break;
4577
4578 if (path->slots[0] == 0 ||
4579 path->slots[0] != pending_del_slot ||
4580 should_throttle || should_end) {
4581 if (pending_del_nr) {
4582 ret = btrfs_del_items(trans, root, path,
4583 pending_del_slot,
4584 pending_del_nr);
4585 if (ret) {
4586 btrfs_abort_transaction(trans,
4587 root, ret);
4588 goto error;
4589 }
4590 pending_del_nr = 0;
4591 }
4592 btrfs_release_path(path);
4593 if (should_throttle) {
4594 unsigned long updates = trans->delayed_ref_updates;
4595 if (updates) {
4596 trans->delayed_ref_updates = 0;
4597 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4598 if (ret && !err)
4599 err = ret;
4600 }
4601 }
4602 /*
4603 * if we failed to refill our space rsv, bail out
4604 * and let the transaction restart
4605 */
4606 if (should_end) {
4607 err = -EAGAIN;
4608 goto error;
4609 }
4610 goto search_again;
4611 } else {
4612 path->slots[0]--;
4613 }
4614 }
4615 out:
4616 if (pending_del_nr) {
4617 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4618 pending_del_nr);
4619 if (ret)
4620 btrfs_abort_transaction(trans, root, ret);
4621 }
4622 error:
4623 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4624 btrfs_ordered_update_i_size(inode, last_size, NULL);
4625
4626 btrfs_free_path(path);
4627
4628 if (be_nice && bytes_deleted > SZ_32M) {
4629 unsigned long updates = trans->delayed_ref_updates;
4630 if (updates) {
4631 trans->delayed_ref_updates = 0;
4632 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4633 if (ret && !err)
4634 err = ret;
4635 }
4636 }
4637 return err;
4638 }
4639
4640 /*
4641 * btrfs_truncate_block - read, zero a chunk and write a block
4642 * @inode - inode that we're zeroing
4643 * @from - the offset to start zeroing
4644 * @len - the length to zero, 0 to zero the entire range respective to the
4645 * offset
4646 * @front - zero up to the offset instead of from the offset on
4647 *
4648 * This will find the block for the "from" offset and cow the block and zero the
4649 * part we want to zero. This is used with truncate and hole punching.
4650 */
4651 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4652 int front)
4653 {
4654 struct address_space *mapping = inode->i_mapping;
4655 struct btrfs_root *root = BTRFS_I(inode)->root;
4656 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4657 struct btrfs_ordered_extent *ordered;
4658 struct extent_state *cached_state = NULL;
4659 char *kaddr;
4660 u32 blocksize = root->sectorsize;
4661 pgoff_t index = from >> PAGE_SHIFT;
4662 unsigned offset = from & (blocksize - 1);
4663 struct page *page;
4664 gfp_t mask = btrfs_alloc_write_mask(mapping);
4665 int ret = 0;
4666 u64 block_start;
4667 u64 block_end;
4668
4669 if ((offset & (blocksize - 1)) == 0 &&
4670 (!len || ((len & (blocksize - 1)) == 0)))
4671 goto out;
4672
4673 ret = btrfs_delalloc_reserve_space(inode,
4674 round_down(from, blocksize), blocksize);
4675 if (ret)
4676 goto out;
4677
4678 again:
4679 page = find_or_create_page(mapping, index, mask);
4680 if (!page) {
4681 btrfs_delalloc_release_space(inode,
4682 round_down(from, blocksize),
4683 blocksize);
4684 ret = -ENOMEM;
4685 goto out;
4686 }
4687
4688 block_start = round_down(from, blocksize);
4689 block_end = block_start + blocksize - 1;
4690
4691 if (!PageUptodate(page)) {
4692 ret = btrfs_readpage(NULL, page);
4693 lock_page(page);
4694 if (page->mapping != mapping) {
4695 unlock_page(page);
4696 put_page(page);
4697 goto again;
4698 }
4699 if (!PageUptodate(page)) {
4700 ret = -EIO;
4701 goto out_unlock;
4702 }
4703 }
4704 wait_on_page_writeback(page);
4705
4706 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4707 set_page_extent_mapped(page);
4708
4709 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4710 if (ordered) {
4711 unlock_extent_cached(io_tree, block_start, block_end,
4712 &cached_state, GFP_NOFS);
4713 unlock_page(page);
4714 put_page(page);
4715 btrfs_start_ordered_extent(inode, ordered, 1);
4716 btrfs_put_ordered_extent(ordered);
4717 goto again;
4718 }
4719
4720 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4721 EXTENT_DIRTY | EXTENT_DELALLOC |
4722 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4723 0, 0, &cached_state, GFP_NOFS);
4724
4725 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4726 &cached_state);
4727 if (ret) {
4728 unlock_extent_cached(io_tree, block_start, block_end,
4729 &cached_state, GFP_NOFS);
4730 goto out_unlock;
4731 }
4732
4733 if (offset != blocksize) {
4734 if (!len)
4735 len = blocksize - offset;
4736 kaddr = kmap(page);
4737 if (front)
4738 memset(kaddr + (block_start - page_offset(page)),
4739 0, offset);
4740 else
4741 memset(kaddr + (block_start - page_offset(page)) + offset,
4742 0, len);
4743 flush_dcache_page(page);
4744 kunmap(page);
4745 }
4746 ClearPageChecked(page);
4747 set_page_dirty(page);
4748 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4749 GFP_NOFS);
4750
4751 out_unlock:
4752 if (ret)
4753 btrfs_delalloc_release_space(inode, block_start,
4754 blocksize);
4755 unlock_page(page);
4756 put_page(page);
4757 out:
4758 return ret;
4759 }
4760
4761 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4762 u64 offset, u64 len)
4763 {
4764 struct btrfs_trans_handle *trans;
4765 int ret;
4766
4767 /*
4768 * Still need to make sure the inode looks like it's been updated so
4769 * that any holes get logged if we fsync.
4770 */
4771 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4772 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4773 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4774 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4775 return 0;
4776 }
4777
4778 /*
4779 * 1 - for the one we're dropping
4780 * 1 - for the one we're adding
4781 * 1 - for updating the inode.
4782 */
4783 trans = btrfs_start_transaction(root, 3);
4784 if (IS_ERR(trans))
4785 return PTR_ERR(trans);
4786
4787 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4788 if (ret) {
4789 btrfs_abort_transaction(trans, root, ret);
4790 btrfs_end_transaction(trans, root);
4791 return ret;
4792 }
4793
4794 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4795 0, 0, len, 0, len, 0, 0, 0);
4796 if (ret)
4797 btrfs_abort_transaction(trans, root, ret);
4798 else
4799 btrfs_update_inode(trans, root, inode);
4800 btrfs_end_transaction(trans, root);
4801 return ret;
4802 }
4803
4804 /*
4805 * This function puts in dummy file extents for the area we're creating a hole
4806 * for. So if we are truncating this file to a larger size we need to insert
4807 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4808 * the range between oldsize and size
4809 */
4810 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4811 {
4812 struct btrfs_root *root = BTRFS_I(inode)->root;
4813 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4814 struct extent_map *em = NULL;
4815 struct extent_state *cached_state = NULL;
4816 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4817 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4818 u64 block_end = ALIGN(size, root->sectorsize);
4819 u64 last_byte;
4820 u64 cur_offset;
4821 u64 hole_size;
4822 int err = 0;
4823
4824 /*
4825 * If our size started in the middle of a block we need to zero out the
4826 * rest of the block before we expand the i_size, otherwise we could
4827 * expose stale data.
4828 */
4829 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4830 if (err)
4831 return err;
4832
4833 if (size <= hole_start)
4834 return 0;
4835
4836 while (1) {
4837 struct btrfs_ordered_extent *ordered;
4838
4839 lock_extent_bits(io_tree, hole_start, block_end - 1,
4840 &cached_state);
4841 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4842 block_end - hole_start);
4843 if (!ordered)
4844 break;
4845 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4846 &cached_state, GFP_NOFS);
4847 btrfs_start_ordered_extent(inode, ordered, 1);
4848 btrfs_put_ordered_extent(ordered);
4849 }
4850
4851 cur_offset = hole_start;
4852 while (1) {
4853 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4854 block_end - cur_offset, 0);
4855 if (IS_ERR(em)) {
4856 err = PTR_ERR(em);
4857 em = NULL;
4858 break;
4859 }
4860 last_byte = min(extent_map_end(em), block_end);
4861 last_byte = ALIGN(last_byte , root->sectorsize);
4862 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4863 struct extent_map *hole_em;
4864 hole_size = last_byte - cur_offset;
4865
4866 err = maybe_insert_hole(root, inode, cur_offset,
4867 hole_size);
4868 if (err)
4869 break;
4870 btrfs_drop_extent_cache(inode, cur_offset,
4871 cur_offset + hole_size - 1, 0);
4872 hole_em = alloc_extent_map();
4873 if (!hole_em) {
4874 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4875 &BTRFS_I(inode)->runtime_flags);
4876 goto next;
4877 }
4878 hole_em->start = cur_offset;
4879 hole_em->len = hole_size;
4880 hole_em->orig_start = cur_offset;
4881
4882 hole_em->block_start = EXTENT_MAP_HOLE;
4883 hole_em->block_len = 0;
4884 hole_em->orig_block_len = 0;
4885 hole_em->ram_bytes = hole_size;
4886 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4887 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4888 hole_em->generation = root->fs_info->generation;
4889
4890 while (1) {
4891 write_lock(&em_tree->lock);
4892 err = add_extent_mapping(em_tree, hole_em, 1);
4893 write_unlock(&em_tree->lock);
4894 if (err != -EEXIST)
4895 break;
4896 btrfs_drop_extent_cache(inode, cur_offset,
4897 cur_offset +
4898 hole_size - 1, 0);
4899 }
4900 free_extent_map(hole_em);
4901 }
4902 next:
4903 free_extent_map(em);
4904 em = NULL;
4905 cur_offset = last_byte;
4906 if (cur_offset >= block_end)
4907 break;
4908 }
4909 free_extent_map(em);
4910 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4911 GFP_NOFS);
4912 return err;
4913 }
4914
4915 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4916 {
4917 struct btrfs_root *root = BTRFS_I(inode)->root;
4918 struct btrfs_trans_handle *trans;
4919 loff_t oldsize = i_size_read(inode);
4920 loff_t newsize = attr->ia_size;
4921 int mask = attr->ia_valid;
4922 int ret;
4923
4924 /*
4925 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4926 * special case where we need to update the times despite not having
4927 * these flags set. For all other operations the VFS set these flags
4928 * explicitly if it wants a timestamp update.
4929 */
4930 if (newsize != oldsize) {
4931 inode_inc_iversion(inode);
4932 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4933 inode->i_ctime = inode->i_mtime =
4934 current_fs_time(inode->i_sb);
4935 }
4936
4937 if (newsize > oldsize) {
4938 /*
4939 * Don't do an expanding truncate while snapshoting is ongoing.
4940 * This is to ensure the snapshot captures a fully consistent
4941 * state of this file - if the snapshot captures this expanding
4942 * truncation, it must capture all writes that happened before
4943 * this truncation.
4944 */
4945 btrfs_wait_for_snapshot_creation(root);
4946 ret = btrfs_cont_expand(inode, oldsize, newsize);
4947 if (ret) {
4948 btrfs_end_write_no_snapshoting(root);
4949 return ret;
4950 }
4951
4952 trans = btrfs_start_transaction(root, 1);
4953 if (IS_ERR(trans)) {
4954 btrfs_end_write_no_snapshoting(root);
4955 return PTR_ERR(trans);
4956 }
4957
4958 i_size_write(inode, newsize);
4959 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4960 pagecache_isize_extended(inode, oldsize, newsize);
4961 ret = btrfs_update_inode(trans, root, inode);
4962 btrfs_end_write_no_snapshoting(root);
4963 btrfs_end_transaction(trans, root);
4964 } else {
4965
4966 /*
4967 * We're truncating a file that used to have good data down to
4968 * zero. Make sure it gets into the ordered flush list so that
4969 * any new writes get down to disk quickly.
4970 */
4971 if (newsize == 0)
4972 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4973 &BTRFS_I(inode)->runtime_flags);
4974
4975 /*
4976 * 1 for the orphan item we're going to add
4977 * 1 for the orphan item deletion.
4978 */
4979 trans = btrfs_start_transaction(root, 2);
4980 if (IS_ERR(trans))
4981 return PTR_ERR(trans);
4982
4983 /*
4984 * We need to do this in case we fail at _any_ point during the
4985 * actual truncate. Once we do the truncate_setsize we could
4986 * invalidate pages which forces any outstanding ordered io to
4987 * be instantly completed which will give us extents that need
4988 * to be truncated. If we fail to get an orphan inode down we
4989 * could have left over extents that were never meant to live,
4990 * so we need to guarantee from this point on that everything
4991 * will be consistent.
4992 */
4993 ret = btrfs_orphan_add(trans, inode);
4994 btrfs_end_transaction(trans, root);
4995 if (ret)
4996 return ret;
4997
4998 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4999 truncate_setsize(inode, newsize);
5000
5001 /* Disable nonlocked read DIO to avoid the end less truncate */
5002 btrfs_inode_block_unlocked_dio(inode);
5003 inode_dio_wait(inode);
5004 btrfs_inode_resume_unlocked_dio(inode);
5005
5006 ret = btrfs_truncate(inode);
5007 if (ret && inode->i_nlink) {
5008 int err;
5009
5010 /*
5011 * failed to truncate, disk_i_size is only adjusted down
5012 * as we remove extents, so it should represent the true
5013 * size of the inode, so reset the in memory size and
5014 * delete our orphan entry.
5015 */
5016 trans = btrfs_join_transaction(root);
5017 if (IS_ERR(trans)) {
5018 btrfs_orphan_del(NULL, inode);
5019 return ret;
5020 }
5021 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5022 err = btrfs_orphan_del(trans, inode);
5023 if (err)
5024 btrfs_abort_transaction(trans, root, err);
5025 btrfs_end_transaction(trans, root);
5026 }
5027 }
5028
5029 return ret;
5030 }
5031
5032 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5033 {
5034 struct inode *inode = d_inode(dentry);
5035 struct btrfs_root *root = BTRFS_I(inode)->root;
5036 int err;
5037
5038 if (btrfs_root_readonly(root))
5039 return -EROFS;
5040
5041 err = inode_change_ok(inode, attr);
5042 if (err)
5043 return err;
5044
5045 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5046 err = btrfs_setsize(inode, attr);
5047 if (err)
5048 return err;
5049 }
5050
5051 if (attr->ia_valid) {
5052 setattr_copy(inode, attr);
5053 inode_inc_iversion(inode);
5054 err = btrfs_dirty_inode(inode);
5055
5056 if (!err && attr->ia_valid & ATTR_MODE)
5057 err = posix_acl_chmod(inode, inode->i_mode);
5058 }
5059
5060 return err;
5061 }
5062
5063 /*
5064 * While truncating the inode pages during eviction, we get the VFS calling
5065 * btrfs_invalidatepage() against each page of the inode. This is slow because
5066 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5067 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5068 * extent_state structures over and over, wasting lots of time.
5069 *
5070 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5071 * those expensive operations on a per page basis and do only the ordered io
5072 * finishing, while we release here the extent_map and extent_state structures,
5073 * without the excessive merging and splitting.
5074 */
5075 static void evict_inode_truncate_pages(struct inode *inode)
5076 {
5077 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5078 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5079 struct rb_node *node;
5080
5081 ASSERT(inode->i_state & I_FREEING);
5082 truncate_inode_pages_final(&inode->i_data);
5083
5084 write_lock(&map_tree->lock);
5085 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5086 struct extent_map *em;
5087
5088 node = rb_first(&map_tree->map);
5089 em = rb_entry(node, struct extent_map, rb_node);
5090 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5091 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5092 remove_extent_mapping(map_tree, em);
5093 free_extent_map(em);
5094 if (need_resched()) {
5095 write_unlock(&map_tree->lock);
5096 cond_resched();
5097 write_lock(&map_tree->lock);
5098 }
5099 }
5100 write_unlock(&map_tree->lock);
5101
5102 /*
5103 * Keep looping until we have no more ranges in the io tree.
5104 * We can have ongoing bios started by readpages (called from readahead)
5105 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5106 * still in progress (unlocked the pages in the bio but did not yet
5107 * unlocked the ranges in the io tree). Therefore this means some
5108 * ranges can still be locked and eviction started because before
5109 * submitting those bios, which are executed by a separate task (work
5110 * queue kthread), inode references (inode->i_count) were not taken
5111 * (which would be dropped in the end io callback of each bio).
5112 * Therefore here we effectively end up waiting for those bios and
5113 * anyone else holding locked ranges without having bumped the inode's
5114 * reference count - if we don't do it, when they access the inode's
5115 * io_tree to unlock a range it may be too late, leading to an
5116 * use-after-free issue.
5117 */
5118 spin_lock(&io_tree->lock);
5119 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5120 struct extent_state *state;
5121 struct extent_state *cached_state = NULL;
5122 u64 start;
5123 u64 end;
5124
5125 node = rb_first(&io_tree->state);
5126 state = rb_entry(node, struct extent_state, rb_node);
5127 start = state->start;
5128 end = state->end;
5129 spin_unlock(&io_tree->lock);
5130
5131 lock_extent_bits(io_tree, start, end, &cached_state);
5132
5133 /*
5134 * If still has DELALLOC flag, the extent didn't reach disk,
5135 * and its reserved space won't be freed by delayed_ref.
5136 * So we need to free its reserved space here.
5137 * (Refer to comment in btrfs_invalidatepage, case 2)
5138 *
5139 * Note, end is the bytenr of last byte, so we need + 1 here.
5140 */
5141 if (state->state & EXTENT_DELALLOC)
5142 btrfs_qgroup_free_data(inode, start, end - start + 1);
5143
5144 clear_extent_bit(io_tree, start, end,
5145 EXTENT_LOCKED | EXTENT_DIRTY |
5146 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5147 EXTENT_DEFRAG, 1, 1,
5148 &cached_state, GFP_NOFS);
5149
5150 cond_resched();
5151 spin_lock(&io_tree->lock);
5152 }
5153 spin_unlock(&io_tree->lock);
5154 }
5155
5156 void btrfs_evict_inode(struct inode *inode)
5157 {
5158 struct btrfs_trans_handle *trans;
5159 struct btrfs_root *root = BTRFS_I(inode)->root;
5160 struct btrfs_block_rsv *rsv, *global_rsv;
5161 int steal_from_global = 0;
5162 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5163 int ret;
5164
5165 trace_btrfs_inode_evict(inode);
5166
5167 evict_inode_truncate_pages(inode);
5168
5169 if (inode->i_nlink &&
5170 ((btrfs_root_refs(&root->root_item) != 0 &&
5171 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5172 btrfs_is_free_space_inode(inode)))
5173 goto no_delete;
5174
5175 if (is_bad_inode(inode)) {
5176 btrfs_orphan_del(NULL, inode);
5177 goto no_delete;
5178 }
5179 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5180 if (!special_file(inode->i_mode))
5181 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5182
5183 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5184
5185 if (root->fs_info->log_root_recovering) {
5186 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5187 &BTRFS_I(inode)->runtime_flags));
5188 goto no_delete;
5189 }
5190
5191 if (inode->i_nlink > 0) {
5192 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5193 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5194 goto no_delete;
5195 }
5196
5197 ret = btrfs_commit_inode_delayed_inode(inode);
5198 if (ret) {
5199 btrfs_orphan_del(NULL, inode);
5200 goto no_delete;
5201 }
5202
5203 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5204 if (!rsv) {
5205 btrfs_orphan_del(NULL, inode);
5206 goto no_delete;
5207 }
5208 rsv->size = min_size;
5209 rsv->failfast = 1;
5210 global_rsv = &root->fs_info->global_block_rsv;
5211
5212 btrfs_i_size_write(inode, 0);
5213
5214 /*
5215 * This is a bit simpler than btrfs_truncate since we've already
5216 * reserved our space for our orphan item in the unlink, so we just
5217 * need to reserve some slack space in case we add bytes and update
5218 * inode item when doing the truncate.
5219 */
5220 while (1) {
5221 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5222 BTRFS_RESERVE_FLUSH_LIMIT);
5223
5224 /*
5225 * Try and steal from the global reserve since we will
5226 * likely not use this space anyway, we want to try as
5227 * hard as possible to get this to work.
5228 */
5229 if (ret)
5230 steal_from_global++;
5231 else
5232 steal_from_global = 0;
5233 ret = 0;
5234
5235 /*
5236 * steal_from_global == 0: we reserved stuff, hooray!
5237 * steal_from_global == 1: we didn't reserve stuff, boo!
5238 * steal_from_global == 2: we've committed, still not a lot of
5239 * room but maybe we'll have room in the global reserve this
5240 * time.
5241 * steal_from_global == 3: abandon all hope!
5242 */
5243 if (steal_from_global > 2) {
5244 btrfs_warn(root->fs_info,
5245 "Could not get space for a delete, will truncate on mount %d",
5246 ret);
5247 btrfs_orphan_del(NULL, inode);
5248 btrfs_free_block_rsv(root, rsv);
5249 goto no_delete;
5250 }
5251
5252 trans = btrfs_join_transaction(root);
5253 if (IS_ERR(trans)) {
5254 btrfs_orphan_del(NULL, inode);
5255 btrfs_free_block_rsv(root, rsv);
5256 goto no_delete;
5257 }
5258
5259 /*
5260 * We can't just steal from the global reserve, we need to make
5261 * sure there is room to do it, if not we need to commit and try
5262 * again.
5263 */
5264 if (steal_from_global) {
5265 if (!btrfs_check_space_for_delayed_refs(trans, root))
5266 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5267 min_size);
5268 else
5269 ret = -ENOSPC;
5270 }
5271
5272 /*
5273 * Couldn't steal from the global reserve, we have too much
5274 * pending stuff built up, commit the transaction and try it
5275 * again.
5276 */
5277 if (ret) {
5278 ret = btrfs_commit_transaction(trans, root);
5279 if (ret) {
5280 btrfs_orphan_del(NULL, inode);
5281 btrfs_free_block_rsv(root, rsv);
5282 goto no_delete;
5283 }
5284 continue;
5285 } else {
5286 steal_from_global = 0;
5287 }
5288
5289 trans->block_rsv = rsv;
5290
5291 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5292 if (ret != -ENOSPC && ret != -EAGAIN)
5293 break;
5294
5295 trans->block_rsv = &root->fs_info->trans_block_rsv;
5296 btrfs_end_transaction(trans, root);
5297 trans = NULL;
5298 btrfs_btree_balance_dirty(root);
5299 }
5300
5301 btrfs_free_block_rsv(root, rsv);
5302
5303 /*
5304 * Errors here aren't a big deal, it just means we leave orphan items
5305 * in the tree. They will be cleaned up on the next mount.
5306 */
5307 if (ret == 0) {
5308 trans->block_rsv = root->orphan_block_rsv;
5309 btrfs_orphan_del(trans, inode);
5310 } else {
5311 btrfs_orphan_del(NULL, inode);
5312 }
5313
5314 trans->block_rsv = &root->fs_info->trans_block_rsv;
5315 if (!(root == root->fs_info->tree_root ||
5316 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5317 btrfs_return_ino(root, btrfs_ino(inode));
5318
5319 btrfs_end_transaction(trans, root);
5320 btrfs_btree_balance_dirty(root);
5321 no_delete:
5322 btrfs_remove_delayed_node(inode);
5323 clear_inode(inode);
5324 }
5325
5326 /*
5327 * this returns the key found in the dir entry in the location pointer.
5328 * If no dir entries were found, location->objectid is 0.
5329 */
5330 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5331 struct btrfs_key *location)
5332 {
5333 const char *name = dentry->d_name.name;
5334 int namelen = dentry->d_name.len;
5335 struct btrfs_dir_item *di;
5336 struct btrfs_path *path;
5337 struct btrfs_root *root = BTRFS_I(dir)->root;
5338 int ret = 0;
5339
5340 path = btrfs_alloc_path();
5341 if (!path)
5342 return -ENOMEM;
5343
5344 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5345 namelen, 0);
5346 if (IS_ERR(di))
5347 ret = PTR_ERR(di);
5348
5349 if (IS_ERR_OR_NULL(di))
5350 goto out_err;
5351
5352 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5353 out:
5354 btrfs_free_path(path);
5355 return ret;
5356 out_err:
5357 location->objectid = 0;
5358 goto out;
5359 }
5360
5361 /*
5362 * when we hit a tree root in a directory, the btrfs part of the inode
5363 * needs to be changed to reflect the root directory of the tree root. This
5364 * is kind of like crossing a mount point.
5365 */
5366 static int fixup_tree_root_location(struct btrfs_root *root,
5367 struct inode *dir,
5368 struct dentry *dentry,
5369 struct btrfs_key *location,
5370 struct btrfs_root **sub_root)
5371 {
5372 struct btrfs_path *path;
5373 struct btrfs_root *new_root;
5374 struct btrfs_root_ref *ref;
5375 struct extent_buffer *leaf;
5376 struct btrfs_key key;
5377 int ret;
5378 int err = 0;
5379
5380 path = btrfs_alloc_path();
5381 if (!path) {
5382 err = -ENOMEM;
5383 goto out;
5384 }
5385
5386 err = -ENOENT;
5387 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5388 key.type = BTRFS_ROOT_REF_KEY;
5389 key.offset = location->objectid;
5390
5391 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5392 0, 0);
5393 if (ret) {
5394 if (ret < 0)
5395 err = ret;
5396 goto out;
5397 }
5398
5399 leaf = path->nodes[0];
5400 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5401 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5402 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5403 goto out;
5404
5405 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5406 (unsigned long)(ref + 1),
5407 dentry->d_name.len);
5408 if (ret)
5409 goto out;
5410
5411 btrfs_release_path(path);
5412
5413 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5414 if (IS_ERR(new_root)) {
5415 err = PTR_ERR(new_root);
5416 goto out;
5417 }
5418
5419 *sub_root = new_root;
5420 location->objectid = btrfs_root_dirid(&new_root->root_item);
5421 location->type = BTRFS_INODE_ITEM_KEY;
5422 location->offset = 0;
5423 err = 0;
5424 out:
5425 btrfs_free_path(path);
5426 return err;
5427 }
5428
5429 static void inode_tree_add(struct inode *inode)
5430 {
5431 struct btrfs_root *root = BTRFS_I(inode)->root;
5432 struct btrfs_inode *entry;
5433 struct rb_node **p;
5434 struct rb_node *parent;
5435 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5436 u64 ino = btrfs_ino(inode);
5437
5438 if (inode_unhashed(inode))
5439 return;
5440 parent = NULL;
5441 spin_lock(&root->inode_lock);
5442 p = &root->inode_tree.rb_node;
5443 while (*p) {
5444 parent = *p;
5445 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5446
5447 if (ino < btrfs_ino(&entry->vfs_inode))
5448 p = &parent->rb_left;
5449 else if (ino > btrfs_ino(&entry->vfs_inode))
5450 p = &parent->rb_right;
5451 else {
5452 WARN_ON(!(entry->vfs_inode.i_state &
5453 (I_WILL_FREE | I_FREEING)));
5454 rb_replace_node(parent, new, &root->inode_tree);
5455 RB_CLEAR_NODE(parent);
5456 spin_unlock(&root->inode_lock);
5457 return;
5458 }
5459 }
5460 rb_link_node(new, parent, p);
5461 rb_insert_color(new, &root->inode_tree);
5462 spin_unlock(&root->inode_lock);
5463 }
5464
5465 static void inode_tree_del(struct inode *inode)
5466 {
5467 struct btrfs_root *root = BTRFS_I(inode)->root;
5468 int empty = 0;
5469
5470 spin_lock(&root->inode_lock);
5471 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5472 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5473 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5474 empty = RB_EMPTY_ROOT(&root->inode_tree);
5475 }
5476 spin_unlock(&root->inode_lock);
5477
5478 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5479 synchronize_srcu(&root->fs_info->subvol_srcu);
5480 spin_lock(&root->inode_lock);
5481 empty = RB_EMPTY_ROOT(&root->inode_tree);
5482 spin_unlock(&root->inode_lock);
5483 if (empty)
5484 btrfs_add_dead_root(root);
5485 }
5486 }
5487
5488 void btrfs_invalidate_inodes(struct btrfs_root *root)
5489 {
5490 struct rb_node *node;
5491 struct rb_node *prev;
5492 struct btrfs_inode *entry;
5493 struct inode *inode;
5494 u64 objectid = 0;
5495
5496 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5497 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5498
5499 spin_lock(&root->inode_lock);
5500 again:
5501 node = root->inode_tree.rb_node;
5502 prev = NULL;
5503 while (node) {
5504 prev = node;
5505 entry = rb_entry(node, struct btrfs_inode, rb_node);
5506
5507 if (objectid < btrfs_ino(&entry->vfs_inode))
5508 node = node->rb_left;
5509 else if (objectid > btrfs_ino(&entry->vfs_inode))
5510 node = node->rb_right;
5511 else
5512 break;
5513 }
5514 if (!node) {
5515 while (prev) {
5516 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5517 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5518 node = prev;
5519 break;
5520 }
5521 prev = rb_next(prev);
5522 }
5523 }
5524 while (node) {
5525 entry = rb_entry(node, struct btrfs_inode, rb_node);
5526 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5527 inode = igrab(&entry->vfs_inode);
5528 if (inode) {
5529 spin_unlock(&root->inode_lock);
5530 if (atomic_read(&inode->i_count) > 1)
5531 d_prune_aliases(inode);
5532 /*
5533 * btrfs_drop_inode will have it removed from
5534 * the inode cache when its usage count
5535 * hits zero.
5536 */
5537 iput(inode);
5538 cond_resched();
5539 spin_lock(&root->inode_lock);
5540 goto again;
5541 }
5542
5543 if (cond_resched_lock(&root->inode_lock))
5544 goto again;
5545
5546 node = rb_next(node);
5547 }
5548 spin_unlock(&root->inode_lock);
5549 }
5550
5551 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5552 {
5553 struct btrfs_iget_args *args = p;
5554 inode->i_ino = args->location->objectid;
5555 memcpy(&BTRFS_I(inode)->location, args->location,
5556 sizeof(*args->location));
5557 BTRFS_I(inode)->root = args->root;
5558 return 0;
5559 }
5560
5561 static int btrfs_find_actor(struct inode *inode, void *opaque)
5562 {
5563 struct btrfs_iget_args *args = opaque;
5564 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5565 args->root == BTRFS_I(inode)->root;
5566 }
5567
5568 static struct inode *btrfs_iget_locked(struct super_block *s,
5569 struct btrfs_key *location,
5570 struct btrfs_root *root)
5571 {
5572 struct inode *inode;
5573 struct btrfs_iget_args args;
5574 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5575
5576 args.location = location;
5577 args.root = root;
5578
5579 inode = iget5_locked(s, hashval, btrfs_find_actor,
5580 btrfs_init_locked_inode,
5581 (void *)&args);
5582 return inode;
5583 }
5584
5585 /* Get an inode object given its location and corresponding root.
5586 * Returns in *is_new if the inode was read from disk
5587 */
5588 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5589 struct btrfs_root *root, int *new)
5590 {
5591 struct inode *inode;
5592
5593 inode = btrfs_iget_locked(s, location, root);
5594 if (!inode)
5595 return ERR_PTR(-ENOMEM);
5596
5597 if (inode->i_state & I_NEW) {
5598 btrfs_read_locked_inode(inode);
5599 if (!is_bad_inode(inode)) {
5600 inode_tree_add(inode);
5601 unlock_new_inode(inode);
5602 if (new)
5603 *new = 1;
5604 } else {
5605 unlock_new_inode(inode);
5606 iput(inode);
5607 inode = ERR_PTR(-ESTALE);
5608 }
5609 }
5610
5611 return inode;
5612 }
5613
5614 static struct inode *new_simple_dir(struct super_block *s,
5615 struct btrfs_key *key,
5616 struct btrfs_root *root)
5617 {
5618 struct inode *inode = new_inode(s);
5619
5620 if (!inode)
5621 return ERR_PTR(-ENOMEM);
5622
5623 BTRFS_I(inode)->root = root;
5624 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5625 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5626
5627 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5628 inode->i_op = &btrfs_dir_ro_inode_operations;
5629 inode->i_fop = &simple_dir_operations;
5630 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5631 inode->i_mtime = current_fs_time(inode->i_sb);
5632 inode->i_atime = inode->i_mtime;
5633 inode->i_ctime = inode->i_mtime;
5634 BTRFS_I(inode)->i_otime = inode->i_mtime;
5635
5636 return inode;
5637 }
5638
5639 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5640 {
5641 struct inode *inode;
5642 struct btrfs_root *root = BTRFS_I(dir)->root;
5643 struct btrfs_root *sub_root = root;
5644 struct btrfs_key location;
5645 int index;
5646 int ret = 0;
5647
5648 if (dentry->d_name.len > BTRFS_NAME_LEN)
5649 return ERR_PTR(-ENAMETOOLONG);
5650
5651 ret = btrfs_inode_by_name(dir, dentry, &location);
5652 if (ret < 0)
5653 return ERR_PTR(ret);
5654
5655 if (location.objectid == 0)
5656 return ERR_PTR(-ENOENT);
5657
5658 if (location.type == BTRFS_INODE_ITEM_KEY) {
5659 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5660 return inode;
5661 }
5662
5663 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5664
5665 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5666 ret = fixup_tree_root_location(root, dir, dentry,
5667 &location, &sub_root);
5668 if (ret < 0) {
5669 if (ret != -ENOENT)
5670 inode = ERR_PTR(ret);
5671 else
5672 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5673 } else {
5674 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5675 }
5676 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5677
5678 if (!IS_ERR(inode) && root != sub_root) {
5679 down_read(&root->fs_info->cleanup_work_sem);
5680 if (!(inode->i_sb->s_flags & MS_RDONLY))
5681 ret = btrfs_orphan_cleanup(sub_root);
5682 up_read(&root->fs_info->cleanup_work_sem);
5683 if (ret) {
5684 iput(inode);
5685 inode = ERR_PTR(ret);
5686 }
5687 }
5688
5689 return inode;
5690 }
5691
5692 static int btrfs_dentry_delete(const struct dentry *dentry)
5693 {
5694 struct btrfs_root *root;
5695 struct inode *inode = d_inode(dentry);
5696
5697 if (!inode && !IS_ROOT(dentry))
5698 inode = d_inode(dentry->d_parent);
5699
5700 if (inode) {
5701 root = BTRFS_I(inode)->root;
5702 if (btrfs_root_refs(&root->root_item) == 0)
5703 return 1;
5704
5705 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5706 return 1;
5707 }
5708 return 0;
5709 }
5710
5711 static void btrfs_dentry_release(struct dentry *dentry)
5712 {
5713 kfree(dentry->d_fsdata);
5714 }
5715
5716 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5717 unsigned int flags)
5718 {
5719 struct inode *inode;
5720
5721 inode = btrfs_lookup_dentry(dir, dentry);
5722 if (IS_ERR(inode)) {
5723 if (PTR_ERR(inode) == -ENOENT)
5724 inode = NULL;
5725 else
5726 return ERR_CAST(inode);
5727 }
5728
5729 return d_splice_alias(inode, dentry);
5730 }
5731
5732 unsigned char btrfs_filetype_table[] = {
5733 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5734 };
5735
5736 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5737 {
5738 struct inode *inode = file_inode(file);
5739 struct btrfs_root *root = BTRFS_I(inode)->root;
5740 struct btrfs_item *item;
5741 struct btrfs_dir_item *di;
5742 struct btrfs_key key;
5743 struct btrfs_key found_key;
5744 struct btrfs_path *path;
5745 struct list_head ins_list;
5746 struct list_head del_list;
5747 int ret;
5748 struct extent_buffer *leaf;
5749 int slot;
5750 unsigned char d_type;
5751 int over = 0;
5752 u32 di_cur;
5753 u32 di_total;
5754 u32 di_len;
5755 int key_type = BTRFS_DIR_INDEX_KEY;
5756 char tmp_name[32];
5757 char *name_ptr;
5758 int name_len;
5759 int is_curr = 0; /* ctx->pos points to the current index? */
5760 bool emitted;
5761 bool put = false;
5762
5763 /* FIXME, use a real flag for deciding about the key type */
5764 if (root->fs_info->tree_root == root)
5765 key_type = BTRFS_DIR_ITEM_KEY;
5766
5767 if (!dir_emit_dots(file, ctx))
5768 return 0;
5769
5770 path = btrfs_alloc_path();
5771 if (!path)
5772 return -ENOMEM;
5773
5774 path->reada = READA_FORWARD;
5775
5776 if (key_type == BTRFS_DIR_INDEX_KEY) {
5777 INIT_LIST_HEAD(&ins_list);
5778 INIT_LIST_HEAD(&del_list);
5779 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5780 &del_list);
5781 }
5782
5783 key.type = key_type;
5784 key.offset = ctx->pos;
5785 key.objectid = btrfs_ino(inode);
5786
5787 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5788 if (ret < 0)
5789 goto err;
5790
5791 emitted = false;
5792 while (1) {
5793 leaf = path->nodes[0];
5794 slot = path->slots[0];
5795 if (slot >= btrfs_header_nritems(leaf)) {
5796 ret = btrfs_next_leaf(root, path);
5797 if (ret < 0)
5798 goto err;
5799 else if (ret > 0)
5800 break;
5801 continue;
5802 }
5803
5804 item = btrfs_item_nr(slot);
5805 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5806
5807 if (found_key.objectid != key.objectid)
5808 break;
5809 if (found_key.type != key_type)
5810 break;
5811 if (found_key.offset < ctx->pos)
5812 goto next;
5813 if (key_type == BTRFS_DIR_INDEX_KEY &&
5814 btrfs_should_delete_dir_index(&del_list,
5815 found_key.offset))
5816 goto next;
5817
5818 ctx->pos = found_key.offset;
5819 is_curr = 1;
5820
5821 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5822 di_cur = 0;
5823 di_total = btrfs_item_size(leaf, item);
5824
5825 while (di_cur < di_total) {
5826 struct btrfs_key location;
5827
5828 if (verify_dir_item(root, leaf, di))
5829 break;
5830
5831 name_len = btrfs_dir_name_len(leaf, di);
5832 if (name_len <= sizeof(tmp_name)) {
5833 name_ptr = tmp_name;
5834 } else {
5835 name_ptr = kmalloc(name_len, GFP_KERNEL);
5836 if (!name_ptr) {
5837 ret = -ENOMEM;
5838 goto err;
5839 }
5840 }
5841 read_extent_buffer(leaf, name_ptr,
5842 (unsigned long)(di + 1), name_len);
5843
5844 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5845 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5846
5847
5848 /* is this a reference to our own snapshot? If so
5849 * skip it.
5850 *
5851 * In contrast to old kernels, we insert the snapshot's
5852 * dir item and dir index after it has been created, so
5853 * we won't find a reference to our own snapshot. We
5854 * still keep the following code for backward
5855 * compatibility.
5856 */
5857 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5858 location.objectid == root->root_key.objectid) {
5859 over = 0;
5860 goto skip;
5861 }
5862 over = !dir_emit(ctx, name_ptr, name_len,
5863 location.objectid, d_type);
5864
5865 skip:
5866 if (name_ptr != tmp_name)
5867 kfree(name_ptr);
5868
5869 if (over)
5870 goto nopos;
5871 emitted = true;
5872 di_len = btrfs_dir_name_len(leaf, di) +
5873 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5874 di_cur += di_len;
5875 di = (struct btrfs_dir_item *)((char *)di + di_len);
5876 }
5877 next:
5878 path->slots[0]++;
5879 }
5880
5881 if (key_type == BTRFS_DIR_INDEX_KEY) {
5882 if (is_curr)
5883 ctx->pos++;
5884 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5885 if (ret)
5886 goto nopos;
5887 }
5888
5889 /*
5890 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5891 * it was was set to the termination value in previous call. We assume
5892 * that "." and ".." were emitted if we reach this point and set the
5893 * termination value as well for an empty directory.
5894 */
5895 if (ctx->pos > 2 && !emitted)
5896 goto nopos;
5897
5898 /* Reached end of directory/root. Bump pos past the last item. */
5899 ctx->pos++;
5900
5901 /*
5902 * Stop new entries from being returned after we return the last
5903 * entry.
5904 *
5905 * New directory entries are assigned a strictly increasing
5906 * offset. This means that new entries created during readdir
5907 * are *guaranteed* to be seen in the future by that readdir.
5908 * This has broken buggy programs which operate on names as
5909 * they're returned by readdir. Until we re-use freed offsets
5910 * we have this hack to stop new entries from being returned
5911 * under the assumption that they'll never reach this huge
5912 * offset.
5913 *
5914 * This is being careful not to overflow 32bit loff_t unless the
5915 * last entry requires it because doing so has broken 32bit apps
5916 * in the past.
5917 */
5918 if (key_type == BTRFS_DIR_INDEX_KEY) {
5919 if (ctx->pos >= INT_MAX)
5920 ctx->pos = LLONG_MAX;
5921 else
5922 ctx->pos = INT_MAX;
5923 }
5924 nopos:
5925 ret = 0;
5926 err:
5927 if (put)
5928 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5929 btrfs_free_path(path);
5930 return ret;
5931 }
5932
5933 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5934 {
5935 struct btrfs_root *root = BTRFS_I(inode)->root;
5936 struct btrfs_trans_handle *trans;
5937 int ret = 0;
5938 bool nolock = false;
5939
5940 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5941 return 0;
5942
5943 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5944 nolock = true;
5945
5946 if (wbc->sync_mode == WB_SYNC_ALL) {
5947 if (nolock)
5948 trans = btrfs_join_transaction_nolock(root);
5949 else
5950 trans = btrfs_join_transaction(root);
5951 if (IS_ERR(trans))
5952 return PTR_ERR(trans);
5953 ret = btrfs_commit_transaction(trans, root);
5954 }
5955 return ret;
5956 }
5957
5958 /*
5959 * This is somewhat expensive, updating the tree every time the
5960 * inode changes. But, it is most likely to find the inode in cache.
5961 * FIXME, needs more benchmarking...there are no reasons other than performance
5962 * to keep or drop this code.
5963 */
5964 static int btrfs_dirty_inode(struct inode *inode)
5965 {
5966 struct btrfs_root *root = BTRFS_I(inode)->root;
5967 struct btrfs_trans_handle *trans;
5968 int ret;
5969
5970 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5971 return 0;
5972
5973 trans = btrfs_join_transaction(root);
5974 if (IS_ERR(trans))
5975 return PTR_ERR(trans);
5976
5977 ret = btrfs_update_inode(trans, root, inode);
5978 if (ret && ret == -ENOSPC) {
5979 /* whoops, lets try again with the full transaction */
5980 btrfs_end_transaction(trans, root);
5981 trans = btrfs_start_transaction(root, 1);
5982 if (IS_ERR(trans))
5983 return PTR_ERR(trans);
5984
5985 ret = btrfs_update_inode(trans, root, inode);
5986 }
5987 btrfs_end_transaction(trans, root);
5988 if (BTRFS_I(inode)->delayed_node)
5989 btrfs_balance_delayed_items(root);
5990
5991 return ret;
5992 }
5993
5994 /*
5995 * This is a copy of file_update_time. We need this so we can return error on
5996 * ENOSPC for updating the inode in the case of file write and mmap writes.
5997 */
5998 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5999 int flags)
6000 {
6001 struct btrfs_root *root = BTRFS_I(inode)->root;
6002
6003 if (btrfs_root_readonly(root))
6004 return -EROFS;
6005
6006 if (flags & S_VERSION)
6007 inode_inc_iversion(inode);
6008 if (flags & S_CTIME)
6009 inode->i_ctime = *now;
6010 if (flags & S_MTIME)
6011 inode->i_mtime = *now;
6012 if (flags & S_ATIME)
6013 inode->i_atime = *now;
6014 return btrfs_dirty_inode(inode);
6015 }
6016
6017 /*
6018 * find the highest existing sequence number in a directory
6019 * and then set the in-memory index_cnt variable to reflect
6020 * free sequence numbers
6021 */
6022 static int btrfs_set_inode_index_count(struct inode *inode)
6023 {
6024 struct btrfs_root *root = BTRFS_I(inode)->root;
6025 struct btrfs_key key, found_key;
6026 struct btrfs_path *path;
6027 struct extent_buffer *leaf;
6028 int ret;
6029
6030 key.objectid = btrfs_ino(inode);
6031 key.type = BTRFS_DIR_INDEX_KEY;
6032 key.offset = (u64)-1;
6033
6034 path = btrfs_alloc_path();
6035 if (!path)
6036 return -ENOMEM;
6037
6038 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6039 if (ret < 0)
6040 goto out;
6041 /* FIXME: we should be able to handle this */
6042 if (ret == 0)
6043 goto out;
6044 ret = 0;
6045
6046 /*
6047 * MAGIC NUMBER EXPLANATION:
6048 * since we search a directory based on f_pos we have to start at 2
6049 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6050 * else has to start at 2
6051 */
6052 if (path->slots[0] == 0) {
6053 BTRFS_I(inode)->index_cnt = 2;
6054 goto out;
6055 }
6056
6057 path->slots[0]--;
6058
6059 leaf = path->nodes[0];
6060 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6061
6062 if (found_key.objectid != btrfs_ino(inode) ||
6063 found_key.type != BTRFS_DIR_INDEX_KEY) {
6064 BTRFS_I(inode)->index_cnt = 2;
6065 goto out;
6066 }
6067
6068 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6069 out:
6070 btrfs_free_path(path);
6071 return ret;
6072 }
6073
6074 /*
6075 * helper to find a free sequence number in a given directory. This current
6076 * code is very simple, later versions will do smarter things in the btree
6077 */
6078 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6079 {
6080 int ret = 0;
6081
6082 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6083 ret = btrfs_inode_delayed_dir_index_count(dir);
6084 if (ret) {
6085 ret = btrfs_set_inode_index_count(dir);
6086 if (ret)
6087 return ret;
6088 }
6089 }
6090
6091 *index = BTRFS_I(dir)->index_cnt;
6092 BTRFS_I(dir)->index_cnt++;
6093
6094 return ret;
6095 }
6096
6097 static int btrfs_insert_inode_locked(struct inode *inode)
6098 {
6099 struct btrfs_iget_args args;
6100 args.location = &BTRFS_I(inode)->location;
6101 args.root = BTRFS_I(inode)->root;
6102
6103 return insert_inode_locked4(inode,
6104 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6105 btrfs_find_actor, &args);
6106 }
6107
6108 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6109 struct btrfs_root *root,
6110 struct inode *dir,
6111 const char *name, int name_len,
6112 u64 ref_objectid, u64 objectid,
6113 umode_t mode, u64 *index)
6114 {
6115 struct inode *inode;
6116 struct btrfs_inode_item *inode_item;
6117 struct btrfs_key *location;
6118 struct btrfs_path *path;
6119 struct btrfs_inode_ref *ref;
6120 struct btrfs_key key[2];
6121 u32 sizes[2];
6122 int nitems = name ? 2 : 1;
6123 unsigned long ptr;
6124 int ret;
6125
6126 path = btrfs_alloc_path();
6127 if (!path)
6128 return ERR_PTR(-ENOMEM);
6129
6130 inode = new_inode(root->fs_info->sb);
6131 if (!inode) {
6132 btrfs_free_path(path);
6133 return ERR_PTR(-ENOMEM);
6134 }
6135
6136 /*
6137 * O_TMPFILE, set link count to 0, so that after this point,
6138 * we fill in an inode item with the correct link count.
6139 */
6140 if (!name)
6141 set_nlink(inode, 0);
6142
6143 /*
6144 * we have to initialize this early, so we can reclaim the inode
6145 * number if we fail afterwards in this function.
6146 */
6147 inode->i_ino = objectid;
6148
6149 if (dir && name) {
6150 trace_btrfs_inode_request(dir);
6151
6152 ret = btrfs_set_inode_index(dir, index);
6153 if (ret) {
6154 btrfs_free_path(path);
6155 iput(inode);
6156 return ERR_PTR(ret);
6157 }
6158 } else if (dir) {
6159 *index = 0;
6160 }
6161 /*
6162 * index_cnt is ignored for everything but a dir,
6163 * btrfs_get_inode_index_count has an explanation for the magic
6164 * number
6165 */
6166 BTRFS_I(inode)->index_cnt = 2;
6167 BTRFS_I(inode)->dir_index = *index;
6168 BTRFS_I(inode)->root = root;
6169 BTRFS_I(inode)->generation = trans->transid;
6170 inode->i_generation = BTRFS_I(inode)->generation;
6171
6172 /*
6173 * We could have gotten an inode number from somebody who was fsynced
6174 * and then removed in this same transaction, so let's just set full
6175 * sync since it will be a full sync anyway and this will blow away the
6176 * old info in the log.
6177 */
6178 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6179
6180 key[0].objectid = objectid;
6181 key[0].type = BTRFS_INODE_ITEM_KEY;
6182 key[0].offset = 0;
6183
6184 sizes[0] = sizeof(struct btrfs_inode_item);
6185
6186 if (name) {
6187 /*
6188 * Start new inodes with an inode_ref. This is slightly more
6189 * efficient for small numbers of hard links since they will
6190 * be packed into one item. Extended refs will kick in if we
6191 * add more hard links than can fit in the ref item.
6192 */
6193 key[1].objectid = objectid;
6194 key[1].type = BTRFS_INODE_REF_KEY;
6195 key[1].offset = ref_objectid;
6196
6197 sizes[1] = name_len + sizeof(*ref);
6198 }
6199
6200 location = &BTRFS_I(inode)->location;
6201 location->objectid = objectid;
6202 location->offset = 0;
6203 location->type = BTRFS_INODE_ITEM_KEY;
6204
6205 ret = btrfs_insert_inode_locked(inode);
6206 if (ret < 0)
6207 goto fail;
6208
6209 path->leave_spinning = 1;
6210 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6211 if (ret != 0)
6212 goto fail_unlock;
6213
6214 inode_init_owner(inode, dir, mode);
6215 inode_set_bytes(inode, 0);
6216
6217 inode->i_mtime = current_fs_time(inode->i_sb);
6218 inode->i_atime = inode->i_mtime;
6219 inode->i_ctime = inode->i_mtime;
6220 BTRFS_I(inode)->i_otime = inode->i_mtime;
6221
6222 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6223 struct btrfs_inode_item);
6224 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6225 sizeof(*inode_item));
6226 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6227
6228 if (name) {
6229 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6230 struct btrfs_inode_ref);
6231 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6232 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6233 ptr = (unsigned long)(ref + 1);
6234 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6235 }
6236
6237 btrfs_mark_buffer_dirty(path->nodes[0]);
6238 btrfs_free_path(path);
6239
6240 btrfs_inherit_iflags(inode, dir);
6241
6242 if (S_ISREG(mode)) {
6243 if (btrfs_test_opt(root, NODATASUM))
6244 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6245 if (btrfs_test_opt(root, NODATACOW))
6246 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6247 BTRFS_INODE_NODATASUM;
6248 }
6249
6250 inode_tree_add(inode);
6251
6252 trace_btrfs_inode_new(inode);
6253 btrfs_set_inode_last_trans(trans, inode);
6254
6255 btrfs_update_root_times(trans, root);
6256
6257 ret = btrfs_inode_inherit_props(trans, inode, dir);
6258 if (ret)
6259 btrfs_err(root->fs_info,
6260 "error inheriting props for ino %llu (root %llu): %d",
6261 btrfs_ino(inode), root->root_key.objectid, ret);
6262
6263 return inode;
6264
6265 fail_unlock:
6266 unlock_new_inode(inode);
6267 fail:
6268 if (dir && name)
6269 BTRFS_I(dir)->index_cnt--;
6270 btrfs_free_path(path);
6271 iput(inode);
6272 return ERR_PTR(ret);
6273 }
6274
6275 static inline u8 btrfs_inode_type(struct inode *inode)
6276 {
6277 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6278 }
6279
6280 /*
6281 * utility function to add 'inode' into 'parent_inode' with
6282 * a give name and a given sequence number.
6283 * if 'add_backref' is true, also insert a backref from the
6284 * inode to the parent directory.
6285 */
6286 int btrfs_add_link(struct btrfs_trans_handle *trans,
6287 struct inode *parent_inode, struct inode *inode,
6288 const char *name, int name_len, int add_backref, u64 index)
6289 {
6290 int ret = 0;
6291 struct btrfs_key key;
6292 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6293 u64 ino = btrfs_ino(inode);
6294 u64 parent_ino = btrfs_ino(parent_inode);
6295
6296 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6297 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6298 } else {
6299 key.objectid = ino;
6300 key.type = BTRFS_INODE_ITEM_KEY;
6301 key.offset = 0;
6302 }
6303
6304 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6305 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6306 key.objectid, root->root_key.objectid,
6307 parent_ino, index, name, name_len);
6308 } else if (add_backref) {
6309 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6310 parent_ino, index);
6311 }
6312
6313 /* Nothing to clean up yet */
6314 if (ret)
6315 return ret;
6316
6317 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6318 parent_inode, &key,
6319 btrfs_inode_type(inode), index);
6320 if (ret == -EEXIST || ret == -EOVERFLOW)
6321 goto fail_dir_item;
6322 else if (ret) {
6323 btrfs_abort_transaction(trans, root, ret);
6324 return ret;
6325 }
6326
6327 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6328 name_len * 2);
6329 inode_inc_iversion(parent_inode);
6330 parent_inode->i_mtime = parent_inode->i_ctime =
6331 current_fs_time(parent_inode->i_sb);
6332 ret = btrfs_update_inode(trans, root, parent_inode);
6333 if (ret)
6334 btrfs_abort_transaction(trans, root, ret);
6335 return ret;
6336
6337 fail_dir_item:
6338 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6339 u64 local_index;
6340 int err;
6341 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6342 key.objectid, root->root_key.objectid,
6343 parent_ino, &local_index, name, name_len);
6344
6345 } else if (add_backref) {
6346 u64 local_index;
6347 int err;
6348
6349 err = btrfs_del_inode_ref(trans, root, name, name_len,
6350 ino, parent_ino, &local_index);
6351 }
6352 return ret;
6353 }
6354
6355 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6356 struct inode *dir, struct dentry *dentry,
6357 struct inode *inode, int backref, u64 index)
6358 {
6359 int err = btrfs_add_link(trans, dir, inode,
6360 dentry->d_name.name, dentry->d_name.len,
6361 backref, index);
6362 if (err > 0)
6363 err = -EEXIST;
6364 return err;
6365 }
6366
6367 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6368 umode_t mode, dev_t rdev)
6369 {
6370 struct btrfs_trans_handle *trans;
6371 struct btrfs_root *root = BTRFS_I(dir)->root;
6372 struct inode *inode = NULL;
6373 int err;
6374 int drop_inode = 0;
6375 u64 objectid;
6376 u64 index = 0;
6377
6378 /*
6379 * 2 for inode item and ref
6380 * 2 for dir items
6381 * 1 for xattr if selinux is on
6382 */
6383 trans = btrfs_start_transaction(root, 5);
6384 if (IS_ERR(trans))
6385 return PTR_ERR(trans);
6386
6387 err = btrfs_find_free_ino(root, &objectid);
6388 if (err)
6389 goto out_unlock;
6390
6391 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6392 dentry->d_name.len, btrfs_ino(dir), objectid,
6393 mode, &index);
6394 if (IS_ERR(inode)) {
6395 err = PTR_ERR(inode);
6396 goto out_unlock;
6397 }
6398
6399 /*
6400 * If the active LSM wants to access the inode during
6401 * d_instantiate it needs these. Smack checks to see
6402 * if the filesystem supports xattrs by looking at the
6403 * ops vector.
6404 */
6405 inode->i_op = &btrfs_special_inode_operations;
6406 init_special_inode(inode, inode->i_mode, rdev);
6407
6408 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6409 if (err)
6410 goto out_unlock_inode;
6411
6412 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6413 if (err) {
6414 goto out_unlock_inode;
6415 } else {
6416 btrfs_update_inode(trans, root, inode);
6417 unlock_new_inode(inode);
6418 d_instantiate(dentry, inode);
6419 }
6420
6421 out_unlock:
6422 btrfs_end_transaction(trans, root);
6423 btrfs_balance_delayed_items(root);
6424 btrfs_btree_balance_dirty(root);
6425 if (drop_inode) {
6426 inode_dec_link_count(inode);
6427 iput(inode);
6428 }
6429 return err;
6430
6431 out_unlock_inode:
6432 drop_inode = 1;
6433 unlock_new_inode(inode);
6434 goto out_unlock;
6435
6436 }
6437
6438 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6439 umode_t mode, bool excl)
6440 {
6441 struct btrfs_trans_handle *trans;
6442 struct btrfs_root *root = BTRFS_I(dir)->root;
6443 struct inode *inode = NULL;
6444 int drop_inode_on_err = 0;
6445 int err;
6446 u64 objectid;
6447 u64 index = 0;
6448
6449 /*
6450 * 2 for inode item and ref
6451 * 2 for dir items
6452 * 1 for xattr if selinux is on
6453 */
6454 trans = btrfs_start_transaction(root, 5);
6455 if (IS_ERR(trans))
6456 return PTR_ERR(trans);
6457
6458 err = btrfs_find_free_ino(root, &objectid);
6459 if (err)
6460 goto out_unlock;
6461
6462 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6463 dentry->d_name.len, btrfs_ino(dir), objectid,
6464 mode, &index);
6465 if (IS_ERR(inode)) {
6466 err = PTR_ERR(inode);
6467 goto out_unlock;
6468 }
6469 drop_inode_on_err = 1;
6470 /*
6471 * If the active LSM wants to access the inode during
6472 * d_instantiate it needs these. Smack checks to see
6473 * if the filesystem supports xattrs by looking at the
6474 * ops vector.
6475 */
6476 inode->i_fop = &btrfs_file_operations;
6477 inode->i_op = &btrfs_file_inode_operations;
6478 inode->i_mapping->a_ops = &btrfs_aops;
6479
6480 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6481 if (err)
6482 goto out_unlock_inode;
6483
6484 err = btrfs_update_inode(trans, root, inode);
6485 if (err)
6486 goto out_unlock_inode;
6487
6488 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6489 if (err)
6490 goto out_unlock_inode;
6491
6492 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6493 unlock_new_inode(inode);
6494 d_instantiate(dentry, inode);
6495
6496 out_unlock:
6497 btrfs_end_transaction(trans, root);
6498 if (err && drop_inode_on_err) {
6499 inode_dec_link_count(inode);
6500 iput(inode);
6501 }
6502 btrfs_balance_delayed_items(root);
6503 btrfs_btree_balance_dirty(root);
6504 return err;
6505
6506 out_unlock_inode:
6507 unlock_new_inode(inode);
6508 goto out_unlock;
6509
6510 }
6511
6512 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6513 struct dentry *dentry)
6514 {
6515 struct btrfs_trans_handle *trans = NULL;
6516 struct btrfs_root *root = BTRFS_I(dir)->root;
6517 struct inode *inode = d_inode(old_dentry);
6518 u64 index;
6519 int err;
6520 int drop_inode = 0;
6521
6522 /* do not allow sys_link's with other subvols of the same device */
6523 if (root->objectid != BTRFS_I(inode)->root->objectid)
6524 return -EXDEV;
6525
6526 if (inode->i_nlink >= BTRFS_LINK_MAX)
6527 return -EMLINK;
6528
6529 err = btrfs_set_inode_index(dir, &index);
6530 if (err)
6531 goto fail;
6532
6533 /*
6534 * 2 items for inode and inode ref
6535 * 2 items for dir items
6536 * 1 item for parent inode
6537 */
6538 trans = btrfs_start_transaction(root, 5);
6539 if (IS_ERR(trans)) {
6540 err = PTR_ERR(trans);
6541 trans = NULL;
6542 goto fail;
6543 }
6544
6545 /* There are several dir indexes for this inode, clear the cache. */
6546 BTRFS_I(inode)->dir_index = 0ULL;
6547 inc_nlink(inode);
6548 inode_inc_iversion(inode);
6549 inode->i_ctime = current_fs_time(inode->i_sb);
6550 ihold(inode);
6551 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6552
6553 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6554
6555 if (err) {
6556 drop_inode = 1;
6557 } else {
6558 struct dentry *parent = dentry->d_parent;
6559 err = btrfs_update_inode(trans, root, inode);
6560 if (err)
6561 goto fail;
6562 if (inode->i_nlink == 1) {
6563 /*
6564 * If new hard link count is 1, it's a file created
6565 * with open(2) O_TMPFILE flag.
6566 */
6567 err = btrfs_orphan_del(trans, inode);
6568 if (err)
6569 goto fail;
6570 }
6571 d_instantiate(dentry, inode);
6572 btrfs_log_new_name(trans, inode, NULL, parent);
6573 }
6574
6575 btrfs_balance_delayed_items(root);
6576 fail:
6577 if (trans)
6578 btrfs_end_transaction(trans, root);
6579 if (drop_inode) {
6580 inode_dec_link_count(inode);
6581 iput(inode);
6582 }
6583 btrfs_btree_balance_dirty(root);
6584 return err;
6585 }
6586
6587 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6588 {
6589 struct inode *inode = NULL;
6590 struct btrfs_trans_handle *trans;
6591 struct btrfs_root *root = BTRFS_I(dir)->root;
6592 int err = 0;
6593 int drop_on_err = 0;
6594 u64 objectid = 0;
6595 u64 index = 0;
6596
6597 /*
6598 * 2 items for inode and ref
6599 * 2 items for dir items
6600 * 1 for xattr if selinux is on
6601 */
6602 trans = btrfs_start_transaction(root, 5);
6603 if (IS_ERR(trans))
6604 return PTR_ERR(trans);
6605
6606 err = btrfs_find_free_ino(root, &objectid);
6607 if (err)
6608 goto out_fail;
6609
6610 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6611 dentry->d_name.len, btrfs_ino(dir), objectid,
6612 S_IFDIR | mode, &index);
6613 if (IS_ERR(inode)) {
6614 err = PTR_ERR(inode);
6615 goto out_fail;
6616 }
6617
6618 drop_on_err = 1;
6619 /* these must be set before we unlock the inode */
6620 inode->i_op = &btrfs_dir_inode_operations;
6621 inode->i_fop = &btrfs_dir_file_operations;
6622
6623 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6624 if (err)
6625 goto out_fail_inode;
6626
6627 btrfs_i_size_write(inode, 0);
6628 err = btrfs_update_inode(trans, root, inode);
6629 if (err)
6630 goto out_fail_inode;
6631
6632 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6633 dentry->d_name.len, 0, index);
6634 if (err)
6635 goto out_fail_inode;
6636
6637 d_instantiate(dentry, inode);
6638 /*
6639 * mkdir is special. We're unlocking after we call d_instantiate
6640 * to avoid a race with nfsd calling d_instantiate.
6641 */
6642 unlock_new_inode(inode);
6643 drop_on_err = 0;
6644
6645 out_fail:
6646 btrfs_end_transaction(trans, root);
6647 if (drop_on_err) {
6648 inode_dec_link_count(inode);
6649 iput(inode);
6650 }
6651 btrfs_balance_delayed_items(root);
6652 btrfs_btree_balance_dirty(root);
6653 return err;
6654
6655 out_fail_inode:
6656 unlock_new_inode(inode);
6657 goto out_fail;
6658 }
6659
6660 /* Find next extent map of a given extent map, caller needs to ensure locks */
6661 static struct extent_map *next_extent_map(struct extent_map *em)
6662 {
6663 struct rb_node *next;
6664
6665 next = rb_next(&em->rb_node);
6666 if (!next)
6667 return NULL;
6668 return container_of(next, struct extent_map, rb_node);
6669 }
6670
6671 static struct extent_map *prev_extent_map(struct extent_map *em)
6672 {
6673 struct rb_node *prev;
6674
6675 prev = rb_prev(&em->rb_node);
6676 if (!prev)
6677 return NULL;
6678 return container_of(prev, struct extent_map, rb_node);
6679 }
6680
6681 /* helper for btfs_get_extent. Given an existing extent in the tree,
6682 * the existing extent is the nearest extent to map_start,
6683 * and an extent that you want to insert, deal with overlap and insert
6684 * the best fitted new extent into the tree.
6685 */
6686 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6687 struct extent_map *existing,
6688 struct extent_map *em,
6689 u64 map_start)
6690 {
6691 struct extent_map *prev;
6692 struct extent_map *next;
6693 u64 start;
6694 u64 end;
6695 u64 start_diff;
6696
6697 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6698
6699 if (existing->start > map_start) {
6700 next = existing;
6701 prev = prev_extent_map(next);
6702 } else {
6703 prev = existing;
6704 next = next_extent_map(prev);
6705 }
6706
6707 start = prev ? extent_map_end(prev) : em->start;
6708 start = max_t(u64, start, em->start);
6709 end = next ? next->start : extent_map_end(em);
6710 end = min_t(u64, end, extent_map_end(em));
6711 start_diff = start - em->start;
6712 em->start = start;
6713 em->len = end - start;
6714 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6715 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6716 em->block_start += start_diff;
6717 em->block_len -= start_diff;
6718 }
6719 return add_extent_mapping(em_tree, em, 0);
6720 }
6721
6722 static noinline int uncompress_inline(struct btrfs_path *path,
6723 struct page *page,
6724 size_t pg_offset, u64 extent_offset,
6725 struct btrfs_file_extent_item *item)
6726 {
6727 int ret;
6728 struct extent_buffer *leaf = path->nodes[0];
6729 char *tmp;
6730 size_t max_size;
6731 unsigned long inline_size;
6732 unsigned long ptr;
6733 int compress_type;
6734
6735 WARN_ON(pg_offset != 0);
6736 compress_type = btrfs_file_extent_compression(leaf, item);
6737 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6738 inline_size = btrfs_file_extent_inline_item_len(leaf,
6739 btrfs_item_nr(path->slots[0]));
6740 tmp = kmalloc(inline_size, GFP_NOFS);
6741 if (!tmp)
6742 return -ENOMEM;
6743 ptr = btrfs_file_extent_inline_start(item);
6744
6745 read_extent_buffer(leaf, tmp, ptr, inline_size);
6746
6747 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6748 ret = btrfs_decompress(compress_type, tmp, page,
6749 extent_offset, inline_size, max_size);
6750 kfree(tmp);
6751 return ret;
6752 }
6753
6754 /*
6755 * a bit scary, this does extent mapping from logical file offset to the disk.
6756 * the ugly parts come from merging extents from the disk with the in-ram
6757 * representation. This gets more complex because of the data=ordered code,
6758 * where the in-ram extents might be locked pending data=ordered completion.
6759 *
6760 * This also copies inline extents directly into the page.
6761 */
6762
6763 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6764 size_t pg_offset, u64 start, u64 len,
6765 int create)
6766 {
6767 int ret;
6768 int err = 0;
6769 u64 extent_start = 0;
6770 u64 extent_end = 0;
6771 u64 objectid = btrfs_ino(inode);
6772 u32 found_type;
6773 struct btrfs_path *path = NULL;
6774 struct btrfs_root *root = BTRFS_I(inode)->root;
6775 struct btrfs_file_extent_item *item;
6776 struct extent_buffer *leaf;
6777 struct btrfs_key found_key;
6778 struct extent_map *em = NULL;
6779 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6781 struct btrfs_trans_handle *trans = NULL;
6782 const bool new_inline = !page || create;
6783
6784 again:
6785 read_lock(&em_tree->lock);
6786 em = lookup_extent_mapping(em_tree, start, len);
6787 if (em)
6788 em->bdev = root->fs_info->fs_devices->latest_bdev;
6789 read_unlock(&em_tree->lock);
6790
6791 if (em) {
6792 if (em->start > start || em->start + em->len <= start)
6793 free_extent_map(em);
6794 else if (em->block_start == EXTENT_MAP_INLINE && page)
6795 free_extent_map(em);
6796 else
6797 goto out;
6798 }
6799 em = alloc_extent_map();
6800 if (!em) {
6801 err = -ENOMEM;
6802 goto out;
6803 }
6804 em->bdev = root->fs_info->fs_devices->latest_bdev;
6805 em->start = EXTENT_MAP_HOLE;
6806 em->orig_start = EXTENT_MAP_HOLE;
6807 em->len = (u64)-1;
6808 em->block_len = (u64)-1;
6809
6810 if (!path) {
6811 path = btrfs_alloc_path();
6812 if (!path) {
6813 err = -ENOMEM;
6814 goto out;
6815 }
6816 /*
6817 * Chances are we'll be called again, so go ahead and do
6818 * readahead
6819 */
6820 path->reada = READA_FORWARD;
6821 }
6822
6823 ret = btrfs_lookup_file_extent(trans, root, path,
6824 objectid, start, trans != NULL);
6825 if (ret < 0) {
6826 err = ret;
6827 goto out;
6828 }
6829
6830 if (ret != 0) {
6831 if (path->slots[0] == 0)
6832 goto not_found;
6833 path->slots[0]--;
6834 }
6835
6836 leaf = path->nodes[0];
6837 item = btrfs_item_ptr(leaf, path->slots[0],
6838 struct btrfs_file_extent_item);
6839 /* are we inside the extent that was found? */
6840 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6841 found_type = found_key.type;
6842 if (found_key.objectid != objectid ||
6843 found_type != BTRFS_EXTENT_DATA_KEY) {
6844 /*
6845 * If we backup past the first extent we want to move forward
6846 * and see if there is an extent in front of us, otherwise we'll
6847 * say there is a hole for our whole search range which can
6848 * cause problems.
6849 */
6850 extent_end = start;
6851 goto next;
6852 }
6853
6854 found_type = btrfs_file_extent_type(leaf, item);
6855 extent_start = found_key.offset;
6856 if (found_type == BTRFS_FILE_EXTENT_REG ||
6857 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6858 extent_end = extent_start +
6859 btrfs_file_extent_num_bytes(leaf, item);
6860 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6861 size_t size;
6862 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6863 extent_end = ALIGN(extent_start + size, root->sectorsize);
6864 }
6865 next:
6866 if (start >= extent_end) {
6867 path->slots[0]++;
6868 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6869 ret = btrfs_next_leaf(root, path);
6870 if (ret < 0) {
6871 err = ret;
6872 goto out;
6873 }
6874 if (ret > 0)
6875 goto not_found;
6876 leaf = path->nodes[0];
6877 }
6878 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6879 if (found_key.objectid != objectid ||
6880 found_key.type != BTRFS_EXTENT_DATA_KEY)
6881 goto not_found;
6882 if (start + len <= found_key.offset)
6883 goto not_found;
6884 if (start > found_key.offset)
6885 goto next;
6886 em->start = start;
6887 em->orig_start = start;
6888 em->len = found_key.offset - start;
6889 goto not_found_em;
6890 }
6891
6892 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6893
6894 if (found_type == BTRFS_FILE_EXTENT_REG ||
6895 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6896 goto insert;
6897 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6898 unsigned long ptr;
6899 char *map;
6900 size_t size;
6901 size_t extent_offset;
6902 size_t copy_size;
6903
6904 if (new_inline)
6905 goto out;
6906
6907 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6908 extent_offset = page_offset(page) + pg_offset - extent_start;
6909 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6910 size - extent_offset);
6911 em->start = extent_start + extent_offset;
6912 em->len = ALIGN(copy_size, root->sectorsize);
6913 em->orig_block_len = em->len;
6914 em->orig_start = em->start;
6915 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6916 if (create == 0 && !PageUptodate(page)) {
6917 if (btrfs_file_extent_compression(leaf, item) !=
6918 BTRFS_COMPRESS_NONE) {
6919 ret = uncompress_inline(path, page, pg_offset,
6920 extent_offset, item);
6921 if (ret) {
6922 err = ret;
6923 goto out;
6924 }
6925 } else {
6926 map = kmap(page);
6927 read_extent_buffer(leaf, map + pg_offset, ptr,
6928 copy_size);
6929 if (pg_offset + copy_size < PAGE_SIZE) {
6930 memset(map + pg_offset + copy_size, 0,
6931 PAGE_SIZE - pg_offset -
6932 copy_size);
6933 }
6934 kunmap(page);
6935 }
6936 flush_dcache_page(page);
6937 } else if (create && PageUptodate(page)) {
6938 BUG();
6939 if (!trans) {
6940 kunmap(page);
6941 free_extent_map(em);
6942 em = NULL;
6943
6944 btrfs_release_path(path);
6945 trans = btrfs_join_transaction(root);
6946
6947 if (IS_ERR(trans))
6948 return ERR_CAST(trans);
6949 goto again;
6950 }
6951 map = kmap(page);
6952 write_extent_buffer(leaf, map + pg_offset, ptr,
6953 copy_size);
6954 kunmap(page);
6955 btrfs_mark_buffer_dirty(leaf);
6956 }
6957 set_extent_uptodate(io_tree, em->start,
6958 extent_map_end(em) - 1, NULL, GFP_NOFS);
6959 goto insert;
6960 }
6961 not_found:
6962 em->start = start;
6963 em->orig_start = start;
6964 em->len = len;
6965 not_found_em:
6966 em->block_start = EXTENT_MAP_HOLE;
6967 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6968 insert:
6969 btrfs_release_path(path);
6970 if (em->start > start || extent_map_end(em) <= start) {
6971 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6972 em->start, em->len, start, len);
6973 err = -EIO;
6974 goto out;
6975 }
6976
6977 err = 0;
6978 write_lock(&em_tree->lock);
6979 ret = add_extent_mapping(em_tree, em, 0);
6980 /* it is possible that someone inserted the extent into the tree
6981 * while we had the lock dropped. It is also possible that
6982 * an overlapping map exists in the tree
6983 */
6984 if (ret == -EEXIST) {
6985 struct extent_map *existing;
6986
6987 ret = 0;
6988
6989 existing = search_extent_mapping(em_tree, start, len);
6990 /*
6991 * existing will always be non-NULL, since there must be
6992 * extent causing the -EEXIST.
6993 */
6994 if (existing->start == em->start &&
6995 extent_map_end(existing) == extent_map_end(em) &&
6996 em->block_start == existing->block_start) {
6997 /*
6998 * these two extents are the same, it happens
6999 * with inlines especially
7000 */
7001 free_extent_map(em);
7002 em = existing;
7003 err = 0;
7004
7005 } else if (start >= extent_map_end(existing) ||
7006 start <= existing->start) {
7007 /*
7008 * The existing extent map is the one nearest to
7009 * the [start, start + len) range which overlaps
7010 */
7011 err = merge_extent_mapping(em_tree, existing,
7012 em, start);
7013 free_extent_map(existing);
7014 if (err) {
7015 free_extent_map(em);
7016 em = NULL;
7017 }
7018 } else {
7019 free_extent_map(em);
7020 em = existing;
7021 err = 0;
7022 }
7023 }
7024 write_unlock(&em_tree->lock);
7025 out:
7026
7027 trace_btrfs_get_extent(root, em);
7028
7029 btrfs_free_path(path);
7030 if (trans) {
7031 ret = btrfs_end_transaction(trans, root);
7032 if (!err)
7033 err = ret;
7034 }
7035 if (err) {
7036 free_extent_map(em);
7037 return ERR_PTR(err);
7038 }
7039 BUG_ON(!em); /* Error is always set */
7040 return em;
7041 }
7042
7043 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7044 size_t pg_offset, u64 start, u64 len,
7045 int create)
7046 {
7047 struct extent_map *em;
7048 struct extent_map *hole_em = NULL;
7049 u64 range_start = start;
7050 u64 end;
7051 u64 found;
7052 u64 found_end;
7053 int err = 0;
7054
7055 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7056 if (IS_ERR(em))
7057 return em;
7058 if (em) {
7059 /*
7060 * if our em maps to
7061 * - a hole or
7062 * - a pre-alloc extent,
7063 * there might actually be delalloc bytes behind it.
7064 */
7065 if (em->block_start != EXTENT_MAP_HOLE &&
7066 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7067 return em;
7068 else
7069 hole_em = em;
7070 }
7071
7072 /* check to see if we've wrapped (len == -1 or similar) */
7073 end = start + len;
7074 if (end < start)
7075 end = (u64)-1;
7076 else
7077 end -= 1;
7078
7079 em = NULL;
7080
7081 /* ok, we didn't find anything, lets look for delalloc */
7082 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7083 end, len, EXTENT_DELALLOC, 1);
7084 found_end = range_start + found;
7085 if (found_end < range_start)
7086 found_end = (u64)-1;
7087
7088 /*
7089 * we didn't find anything useful, return
7090 * the original results from get_extent()
7091 */
7092 if (range_start > end || found_end <= start) {
7093 em = hole_em;
7094 hole_em = NULL;
7095 goto out;
7096 }
7097
7098 /* adjust the range_start to make sure it doesn't
7099 * go backwards from the start they passed in
7100 */
7101 range_start = max(start, range_start);
7102 found = found_end - range_start;
7103
7104 if (found > 0) {
7105 u64 hole_start = start;
7106 u64 hole_len = len;
7107
7108 em = alloc_extent_map();
7109 if (!em) {
7110 err = -ENOMEM;
7111 goto out;
7112 }
7113 /*
7114 * when btrfs_get_extent can't find anything it
7115 * returns one huge hole
7116 *
7117 * make sure what it found really fits our range, and
7118 * adjust to make sure it is based on the start from
7119 * the caller
7120 */
7121 if (hole_em) {
7122 u64 calc_end = extent_map_end(hole_em);
7123
7124 if (calc_end <= start || (hole_em->start > end)) {
7125 free_extent_map(hole_em);
7126 hole_em = NULL;
7127 } else {
7128 hole_start = max(hole_em->start, start);
7129 hole_len = calc_end - hole_start;
7130 }
7131 }
7132 em->bdev = NULL;
7133 if (hole_em && range_start > hole_start) {
7134 /* our hole starts before our delalloc, so we
7135 * have to return just the parts of the hole
7136 * that go until the delalloc starts
7137 */
7138 em->len = min(hole_len,
7139 range_start - hole_start);
7140 em->start = hole_start;
7141 em->orig_start = hole_start;
7142 /*
7143 * don't adjust block start at all,
7144 * it is fixed at EXTENT_MAP_HOLE
7145 */
7146 em->block_start = hole_em->block_start;
7147 em->block_len = hole_len;
7148 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7149 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7150 } else {
7151 em->start = range_start;
7152 em->len = found;
7153 em->orig_start = range_start;
7154 em->block_start = EXTENT_MAP_DELALLOC;
7155 em->block_len = found;
7156 }
7157 } else if (hole_em) {
7158 return hole_em;
7159 }
7160 out:
7161
7162 free_extent_map(hole_em);
7163 if (err) {
7164 free_extent_map(em);
7165 return ERR_PTR(err);
7166 }
7167 return em;
7168 }
7169
7170 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7171 const u64 start,
7172 const u64 len,
7173 const u64 orig_start,
7174 const u64 block_start,
7175 const u64 block_len,
7176 const u64 orig_block_len,
7177 const u64 ram_bytes,
7178 const int type)
7179 {
7180 struct extent_map *em = NULL;
7181 int ret;
7182
7183 down_read(&BTRFS_I(inode)->dio_sem);
7184 if (type != BTRFS_ORDERED_NOCOW) {
7185 em = create_pinned_em(inode, start, len, orig_start,
7186 block_start, block_len, orig_block_len,
7187 ram_bytes, type);
7188 if (IS_ERR(em))
7189 goto out;
7190 }
7191 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7192 len, block_len, type);
7193 if (ret) {
7194 if (em) {
7195 free_extent_map(em);
7196 btrfs_drop_extent_cache(inode, start,
7197 start + len - 1, 0);
7198 }
7199 em = ERR_PTR(ret);
7200 }
7201 out:
7202 up_read(&BTRFS_I(inode)->dio_sem);
7203
7204 return em;
7205 }
7206
7207 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7208 u64 start, u64 len)
7209 {
7210 struct btrfs_root *root = BTRFS_I(inode)->root;
7211 struct extent_map *em;
7212 struct btrfs_key ins;
7213 u64 alloc_hint;
7214 int ret;
7215
7216 alloc_hint = get_extent_allocation_hint(inode, start, len);
7217 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7218 alloc_hint, &ins, 1, 1);
7219 if (ret)
7220 return ERR_PTR(ret);
7221
7222 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7223 ins.objectid, ins.offset, ins.offset,
7224 ins.offset, 0);
7225 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7226 if (IS_ERR(em))
7227 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7228
7229 return em;
7230 }
7231
7232 /*
7233 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7234 * block must be cow'd
7235 */
7236 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7237 u64 *orig_start, u64 *orig_block_len,
7238 u64 *ram_bytes)
7239 {
7240 struct btrfs_trans_handle *trans;
7241 struct btrfs_path *path;
7242 int ret;
7243 struct extent_buffer *leaf;
7244 struct btrfs_root *root = BTRFS_I(inode)->root;
7245 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7246 struct btrfs_file_extent_item *fi;
7247 struct btrfs_key key;
7248 u64 disk_bytenr;
7249 u64 backref_offset;
7250 u64 extent_end;
7251 u64 num_bytes;
7252 int slot;
7253 int found_type;
7254 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7255
7256 path = btrfs_alloc_path();
7257 if (!path)
7258 return -ENOMEM;
7259
7260 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7261 offset, 0);
7262 if (ret < 0)
7263 goto out;
7264
7265 slot = path->slots[0];
7266 if (ret == 1) {
7267 if (slot == 0) {
7268 /* can't find the item, must cow */
7269 ret = 0;
7270 goto out;
7271 }
7272 slot--;
7273 }
7274 ret = 0;
7275 leaf = path->nodes[0];
7276 btrfs_item_key_to_cpu(leaf, &key, slot);
7277 if (key.objectid != btrfs_ino(inode) ||
7278 key.type != BTRFS_EXTENT_DATA_KEY) {
7279 /* not our file or wrong item type, must cow */
7280 goto out;
7281 }
7282
7283 if (key.offset > offset) {
7284 /* Wrong offset, must cow */
7285 goto out;
7286 }
7287
7288 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7289 found_type = btrfs_file_extent_type(leaf, fi);
7290 if (found_type != BTRFS_FILE_EXTENT_REG &&
7291 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7292 /* not a regular extent, must cow */
7293 goto out;
7294 }
7295
7296 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7297 goto out;
7298
7299 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7300 if (extent_end <= offset)
7301 goto out;
7302
7303 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7304 if (disk_bytenr == 0)
7305 goto out;
7306
7307 if (btrfs_file_extent_compression(leaf, fi) ||
7308 btrfs_file_extent_encryption(leaf, fi) ||
7309 btrfs_file_extent_other_encoding(leaf, fi))
7310 goto out;
7311
7312 backref_offset = btrfs_file_extent_offset(leaf, fi);
7313
7314 if (orig_start) {
7315 *orig_start = key.offset - backref_offset;
7316 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7317 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7318 }
7319
7320 if (btrfs_extent_readonly(root, disk_bytenr))
7321 goto out;
7322
7323 num_bytes = min(offset + *len, extent_end) - offset;
7324 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7325 u64 range_end;
7326
7327 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7328 ret = test_range_bit(io_tree, offset, range_end,
7329 EXTENT_DELALLOC, 0, NULL);
7330 if (ret) {
7331 ret = -EAGAIN;
7332 goto out;
7333 }
7334 }
7335
7336 btrfs_release_path(path);
7337
7338 /*
7339 * look for other files referencing this extent, if we
7340 * find any we must cow
7341 */
7342 trans = btrfs_join_transaction(root);
7343 if (IS_ERR(trans)) {
7344 ret = 0;
7345 goto out;
7346 }
7347
7348 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7349 key.offset - backref_offset, disk_bytenr);
7350 btrfs_end_transaction(trans, root);
7351 if (ret) {
7352 ret = 0;
7353 goto out;
7354 }
7355
7356 /*
7357 * adjust disk_bytenr and num_bytes to cover just the bytes
7358 * in this extent we are about to write. If there
7359 * are any csums in that range we have to cow in order
7360 * to keep the csums correct
7361 */
7362 disk_bytenr += backref_offset;
7363 disk_bytenr += offset - key.offset;
7364 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7365 goto out;
7366 /*
7367 * all of the above have passed, it is safe to overwrite this extent
7368 * without cow
7369 */
7370 *len = num_bytes;
7371 ret = 1;
7372 out:
7373 btrfs_free_path(path);
7374 return ret;
7375 }
7376
7377 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7378 {
7379 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7380 int found = false;
7381 void **pagep = NULL;
7382 struct page *page = NULL;
7383 int start_idx;
7384 int end_idx;
7385
7386 start_idx = start >> PAGE_SHIFT;
7387
7388 /*
7389 * end is the last byte in the last page. end == start is legal
7390 */
7391 end_idx = end >> PAGE_SHIFT;
7392
7393 rcu_read_lock();
7394
7395 /* Most of the code in this while loop is lifted from
7396 * find_get_page. It's been modified to begin searching from a
7397 * page and return just the first page found in that range. If the
7398 * found idx is less than or equal to the end idx then we know that
7399 * a page exists. If no pages are found or if those pages are
7400 * outside of the range then we're fine (yay!) */
7401 while (page == NULL &&
7402 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7403 page = radix_tree_deref_slot(pagep);
7404 if (unlikely(!page))
7405 break;
7406
7407 if (radix_tree_exception(page)) {
7408 if (radix_tree_deref_retry(page)) {
7409 page = NULL;
7410 continue;
7411 }
7412 /*
7413 * Otherwise, shmem/tmpfs must be storing a swap entry
7414 * here as an exceptional entry: so return it without
7415 * attempting to raise page count.
7416 */
7417 page = NULL;
7418 break; /* TODO: Is this relevant for this use case? */
7419 }
7420
7421 if (!page_cache_get_speculative(page)) {
7422 page = NULL;
7423 continue;
7424 }
7425
7426 /*
7427 * Has the page moved?
7428 * This is part of the lockless pagecache protocol. See
7429 * include/linux/pagemap.h for details.
7430 */
7431 if (unlikely(page != *pagep)) {
7432 put_page(page);
7433 page = NULL;
7434 }
7435 }
7436
7437 if (page) {
7438 if (page->index <= end_idx)
7439 found = true;
7440 put_page(page);
7441 }
7442
7443 rcu_read_unlock();
7444 return found;
7445 }
7446
7447 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7448 struct extent_state **cached_state, int writing)
7449 {
7450 struct btrfs_ordered_extent *ordered;
7451 int ret = 0;
7452
7453 while (1) {
7454 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7455 cached_state);
7456 /*
7457 * We're concerned with the entire range that we're going to be
7458 * doing DIO to, so we need to make sure there's no ordered
7459 * extents in this range.
7460 */
7461 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7462 lockend - lockstart + 1);
7463
7464 /*
7465 * We need to make sure there are no buffered pages in this
7466 * range either, we could have raced between the invalidate in
7467 * generic_file_direct_write and locking the extent. The
7468 * invalidate needs to happen so that reads after a write do not
7469 * get stale data.
7470 */
7471 if (!ordered &&
7472 (!writing ||
7473 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7474 break;
7475
7476 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7477 cached_state, GFP_NOFS);
7478
7479 if (ordered) {
7480 /*
7481 * If we are doing a DIO read and the ordered extent we
7482 * found is for a buffered write, we can not wait for it
7483 * to complete and retry, because if we do so we can
7484 * deadlock with concurrent buffered writes on page
7485 * locks. This happens only if our DIO read covers more
7486 * than one extent map, if at this point has already
7487 * created an ordered extent for a previous extent map
7488 * and locked its range in the inode's io tree, and a
7489 * concurrent write against that previous extent map's
7490 * range and this range started (we unlock the ranges
7491 * in the io tree only when the bios complete and
7492 * buffered writes always lock pages before attempting
7493 * to lock range in the io tree).
7494 */
7495 if (writing ||
7496 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7497 btrfs_start_ordered_extent(inode, ordered, 1);
7498 else
7499 ret = -ENOTBLK;
7500 btrfs_put_ordered_extent(ordered);
7501 } else {
7502 /*
7503 * We could trigger writeback for this range (and wait
7504 * for it to complete) and then invalidate the pages for
7505 * this range (through invalidate_inode_pages2_range()),
7506 * but that can lead us to a deadlock with a concurrent
7507 * call to readpages() (a buffered read or a defrag call
7508 * triggered a readahead) on a page lock due to an
7509 * ordered dio extent we created before but did not have
7510 * yet a corresponding bio submitted (whence it can not
7511 * complete), which makes readpages() wait for that
7512 * ordered extent to complete while holding a lock on
7513 * that page.
7514 */
7515 ret = -ENOTBLK;
7516 }
7517
7518 if (ret)
7519 break;
7520
7521 cond_resched();
7522 }
7523
7524 return ret;
7525 }
7526
7527 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7528 u64 len, u64 orig_start,
7529 u64 block_start, u64 block_len,
7530 u64 orig_block_len, u64 ram_bytes,
7531 int type)
7532 {
7533 struct extent_map_tree *em_tree;
7534 struct extent_map *em;
7535 struct btrfs_root *root = BTRFS_I(inode)->root;
7536 int ret;
7537
7538 em_tree = &BTRFS_I(inode)->extent_tree;
7539 em = alloc_extent_map();
7540 if (!em)
7541 return ERR_PTR(-ENOMEM);
7542
7543 em->start = start;
7544 em->orig_start = orig_start;
7545 em->mod_start = start;
7546 em->mod_len = len;
7547 em->len = len;
7548 em->block_len = block_len;
7549 em->block_start = block_start;
7550 em->bdev = root->fs_info->fs_devices->latest_bdev;
7551 em->orig_block_len = orig_block_len;
7552 em->ram_bytes = ram_bytes;
7553 em->generation = -1;
7554 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7555 if (type == BTRFS_ORDERED_PREALLOC)
7556 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7557
7558 do {
7559 btrfs_drop_extent_cache(inode, em->start,
7560 em->start + em->len - 1, 0);
7561 write_lock(&em_tree->lock);
7562 ret = add_extent_mapping(em_tree, em, 1);
7563 write_unlock(&em_tree->lock);
7564 } while (ret == -EEXIST);
7565
7566 if (ret) {
7567 free_extent_map(em);
7568 return ERR_PTR(ret);
7569 }
7570
7571 return em;
7572 }
7573
7574 static void adjust_dio_outstanding_extents(struct inode *inode,
7575 struct btrfs_dio_data *dio_data,
7576 const u64 len)
7577 {
7578 unsigned num_extents;
7579
7580 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7581 BTRFS_MAX_EXTENT_SIZE);
7582 /*
7583 * If we have an outstanding_extents count still set then we're
7584 * within our reservation, otherwise we need to adjust our inode
7585 * counter appropriately.
7586 */
7587 if (dio_data->outstanding_extents) {
7588 dio_data->outstanding_extents -= num_extents;
7589 } else {
7590 spin_lock(&BTRFS_I(inode)->lock);
7591 BTRFS_I(inode)->outstanding_extents += num_extents;
7592 spin_unlock(&BTRFS_I(inode)->lock);
7593 }
7594 }
7595
7596 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7597 struct buffer_head *bh_result, int create)
7598 {
7599 struct extent_map *em;
7600 struct btrfs_root *root = BTRFS_I(inode)->root;
7601 struct extent_state *cached_state = NULL;
7602 struct btrfs_dio_data *dio_data = NULL;
7603 u64 start = iblock << inode->i_blkbits;
7604 u64 lockstart, lockend;
7605 u64 len = bh_result->b_size;
7606 int unlock_bits = EXTENT_LOCKED;
7607 int ret = 0;
7608
7609 if (create)
7610 unlock_bits |= EXTENT_DIRTY;
7611 else
7612 len = min_t(u64, len, root->sectorsize);
7613
7614 lockstart = start;
7615 lockend = start + len - 1;
7616
7617 if (current->journal_info) {
7618 /*
7619 * Need to pull our outstanding extents and set journal_info to NULL so
7620 * that anything that needs to check if there's a transaction doesn't get
7621 * confused.
7622 */
7623 dio_data = current->journal_info;
7624 current->journal_info = NULL;
7625 }
7626
7627 /*
7628 * If this errors out it's because we couldn't invalidate pagecache for
7629 * this range and we need to fallback to buffered.
7630 */
7631 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7632 create)) {
7633 ret = -ENOTBLK;
7634 goto err;
7635 }
7636
7637 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7638 if (IS_ERR(em)) {
7639 ret = PTR_ERR(em);
7640 goto unlock_err;
7641 }
7642
7643 /*
7644 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7645 * io. INLINE is special, and we could probably kludge it in here, but
7646 * it's still buffered so for safety lets just fall back to the generic
7647 * buffered path.
7648 *
7649 * For COMPRESSED we _have_ to read the entire extent in so we can
7650 * decompress it, so there will be buffering required no matter what we
7651 * do, so go ahead and fallback to buffered.
7652 *
7653 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7654 * to buffered IO. Don't blame me, this is the price we pay for using
7655 * the generic code.
7656 */
7657 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7658 em->block_start == EXTENT_MAP_INLINE) {
7659 free_extent_map(em);
7660 ret = -ENOTBLK;
7661 goto unlock_err;
7662 }
7663
7664 /* Just a good old fashioned hole, return */
7665 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7666 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7667 free_extent_map(em);
7668 goto unlock_err;
7669 }
7670
7671 /*
7672 * We don't allocate a new extent in the following cases
7673 *
7674 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7675 * existing extent.
7676 * 2) The extent is marked as PREALLOC. We're good to go here and can
7677 * just use the extent.
7678 *
7679 */
7680 if (!create) {
7681 len = min(len, em->len - (start - em->start));
7682 lockstart = start + len;
7683 goto unlock;
7684 }
7685
7686 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7687 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7688 em->block_start != EXTENT_MAP_HOLE)) {
7689 int type;
7690 u64 block_start, orig_start, orig_block_len, ram_bytes;
7691
7692 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7693 type = BTRFS_ORDERED_PREALLOC;
7694 else
7695 type = BTRFS_ORDERED_NOCOW;
7696 len = min(len, em->len - (start - em->start));
7697 block_start = em->block_start + (start - em->start);
7698
7699 if (can_nocow_extent(inode, start, &len, &orig_start,
7700 &orig_block_len, &ram_bytes) == 1 &&
7701 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7702 struct extent_map *em2;
7703
7704 em2 = btrfs_create_dio_extent(inode, start, len,
7705 orig_start, block_start,
7706 len, orig_block_len,
7707 ram_bytes, type);
7708 btrfs_dec_nocow_writers(root->fs_info, block_start);
7709 if (type == BTRFS_ORDERED_PREALLOC) {
7710 free_extent_map(em);
7711 em = em2;
7712 }
7713 if (em2 && IS_ERR(em2)) {
7714 ret = PTR_ERR(em2);
7715 goto unlock_err;
7716 }
7717 goto unlock;
7718 }
7719 }
7720
7721 /*
7722 * this will cow the extent, reset the len in case we changed
7723 * it above
7724 */
7725 len = bh_result->b_size;
7726 free_extent_map(em);
7727 em = btrfs_new_extent_direct(inode, start, len);
7728 if (IS_ERR(em)) {
7729 ret = PTR_ERR(em);
7730 goto unlock_err;
7731 }
7732 len = min(len, em->len - (start - em->start));
7733 unlock:
7734 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7735 inode->i_blkbits;
7736 bh_result->b_size = len;
7737 bh_result->b_bdev = em->bdev;
7738 set_buffer_mapped(bh_result);
7739 if (create) {
7740 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7741 set_buffer_new(bh_result);
7742
7743 /*
7744 * Need to update the i_size under the extent lock so buffered
7745 * readers will get the updated i_size when we unlock.
7746 */
7747 if (start + len > i_size_read(inode))
7748 i_size_write(inode, start + len);
7749
7750 adjust_dio_outstanding_extents(inode, dio_data, len);
7751 btrfs_free_reserved_data_space(inode, start, len);
7752 WARN_ON(dio_data->reserve < len);
7753 dio_data->reserve -= len;
7754 dio_data->unsubmitted_oe_range_end = start + len;
7755 current->journal_info = dio_data;
7756 }
7757
7758 /*
7759 * In the case of write we need to clear and unlock the entire range,
7760 * in the case of read we need to unlock only the end area that we
7761 * aren't using if there is any left over space.
7762 */
7763 if (lockstart < lockend) {
7764 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7765 lockend, unlock_bits, 1, 0,
7766 &cached_state, GFP_NOFS);
7767 } else {
7768 free_extent_state(cached_state);
7769 }
7770
7771 free_extent_map(em);
7772
7773 return 0;
7774
7775 unlock_err:
7776 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7777 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7778 err:
7779 if (dio_data)
7780 current->journal_info = dio_data;
7781 /*
7782 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7783 * write less data then expected, so that we don't underflow our inode's
7784 * outstanding extents counter.
7785 */
7786 if (create && dio_data)
7787 adjust_dio_outstanding_extents(inode, dio_data, len);
7788
7789 return ret;
7790 }
7791
7792 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7793 int rw, int mirror_num)
7794 {
7795 struct btrfs_root *root = BTRFS_I(inode)->root;
7796 int ret;
7797
7798 BUG_ON(rw & REQ_WRITE);
7799
7800 bio_get(bio);
7801
7802 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7803 BTRFS_WQ_ENDIO_DIO_REPAIR);
7804 if (ret)
7805 goto err;
7806
7807 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7808 err:
7809 bio_put(bio);
7810 return ret;
7811 }
7812
7813 static int btrfs_check_dio_repairable(struct inode *inode,
7814 struct bio *failed_bio,
7815 struct io_failure_record *failrec,
7816 int failed_mirror)
7817 {
7818 int num_copies;
7819
7820 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7821 failrec->logical, failrec->len);
7822 if (num_copies == 1) {
7823 /*
7824 * we only have a single copy of the data, so don't bother with
7825 * all the retry and error correction code that follows. no
7826 * matter what the error is, it is very likely to persist.
7827 */
7828 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7829 num_copies, failrec->this_mirror, failed_mirror);
7830 return 0;
7831 }
7832
7833 failrec->failed_mirror = failed_mirror;
7834 failrec->this_mirror++;
7835 if (failrec->this_mirror == failed_mirror)
7836 failrec->this_mirror++;
7837
7838 if (failrec->this_mirror > num_copies) {
7839 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7840 num_copies, failrec->this_mirror, failed_mirror);
7841 return 0;
7842 }
7843
7844 return 1;
7845 }
7846
7847 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7848 struct page *page, unsigned int pgoff,
7849 u64 start, u64 end, int failed_mirror,
7850 bio_end_io_t *repair_endio, void *repair_arg)
7851 {
7852 struct io_failure_record *failrec;
7853 struct bio *bio;
7854 int isector;
7855 int read_mode;
7856 int ret;
7857
7858 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7859
7860 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7861 if (ret)
7862 return ret;
7863
7864 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7865 failed_mirror);
7866 if (!ret) {
7867 free_io_failure(inode, failrec);
7868 return -EIO;
7869 }
7870
7871 if ((failed_bio->bi_vcnt > 1)
7872 || (failed_bio->bi_io_vec->bv_len
7873 > BTRFS_I(inode)->root->sectorsize))
7874 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7875 else
7876 read_mode = READ_SYNC;
7877
7878 isector = start - btrfs_io_bio(failed_bio)->logical;
7879 isector >>= inode->i_sb->s_blocksize_bits;
7880 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7881 pgoff, isector, repair_endio, repair_arg);
7882 if (!bio) {
7883 free_io_failure(inode, failrec);
7884 return -EIO;
7885 }
7886
7887 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7888 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7889 read_mode, failrec->this_mirror, failrec->in_validation);
7890
7891 ret = submit_dio_repair_bio(inode, bio, read_mode,
7892 failrec->this_mirror);
7893 if (ret) {
7894 free_io_failure(inode, failrec);
7895 bio_put(bio);
7896 }
7897
7898 return ret;
7899 }
7900
7901 struct btrfs_retry_complete {
7902 struct completion done;
7903 struct inode *inode;
7904 u64 start;
7905 int uptodate;
7906 };
7907
7908 static void btrfs_retry_endio_nocsum(struct bio *bio)
7909 {
7910 struct btrfs_retry_complete *done = bio->bi_private;
7911 struct inode *inode;
7912 struct bio_vec *bvec;
7913 int i;
7914
7915 if (bio->bi_error)
7916 goto end;
7917
7918 ASSERT(bio->bi_vcnt == 1);
7919 inode = bio->bi_io_vec->bv_page->mapping->host;
7920 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7921
7922 done->uptodate = 1;
7923 bio_for_each_segment_all(bvec, bio, i)
7924 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7925 end:
7926 complete(&done->done);
7927 bio_put(bio);
7928 }
7929
7930 static int __btrfs_correct_data_nocsum(struct inode *inode,
7931 struct btrfs_io_bio *io_bio)
7932 {
7933 struct btrfs_fs_info *fs_info;
7934 struct bio_vec *bvec;
7935 struct btrfs_retry_complete done;
7936 u64 start;
7937 unsigned int pgoff;
7938 u32 sectorsize;
7939 int nr_sectors;
7940 int i;
7941 int ret;
7942
7943 fs_info = BTRFS_I(inode)->root->fs_info;
7944 sectorsize = BTRFS_I(inode)->root->sectorsize;
7945
7946 start = io_bio->logical;
7947 done.inode = inode;
7948
7949 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7950 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7951 pgoff = bvec->bv_offset;
7952
7953 next_block_or_try_again:
7954 done.uptodate = 0;
7955 done.start = start;
7956 init_completion(&done.done);
7957
7958 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7959 pgoff, start, start + sectorsize - 1,
7960 io_bio->mirror_num,
7961 btrfs_retry_endio_nocsum, &done);
7962 if (ret)
7963 return ret;
7964
7965 wait_for_completion(&done.done);
7966
7967 if (!done.uptodate) {
7968 /* We might have another mirror, so try again */
7969 goto next_block_or_try_again;
7970 }
7971
7972 start += sectorsize;
7973
7974 if (nr_sectors--) {
7975 pgoff += sectorsize;
7976 goto next_block_or_try_again;
7977 }
7978 }
7979
7980 return 0;
7981 }
7982
7983 static void btrfs_retry_endio(struct bio *bio)
7984 {
7985 struct btrfs_retry_complete *done = bio->bi_private;
7986 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7987 struct inode *inode;
7988 struct bio_vec *bvec;
7989 u64 start;
7990 int uptodate;
7991 int ret;
7992 int i;
7993
7994 if (bio->bi_error)
7995 goto end;
7996
7997 uptodate = 1;
7998
7999 start = done->start;
8000
8001 ASSERT(bio->bi_vcnt == 1);
8002 inode = bio->bi_io_vec->bv_page->mapping->host;
8003 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8004
8005 bio_for_each_segment_all(bvec, bio, i) {
8006 ret = __readpage_endio_check(done->inode, io_bio, i,
8007 bvec->bv_page, bvec->bv_offset,
8008 done->start, bvec->bv_len);
8009 if (!ret)
8010 clean_io_failure(done->inode, done->start,
8011 bvec->bv_page, bvec->bv_offset);
8012 else
8013 uptodate = 0;
8014 }
8015
8016 done->uptodate = uptodate;
8017 end:
8018 complete(&done->done);
8019 bio_put(bio);
8020 }
8021
8022 static int __btrfs_subio_endio_read(struct inode *inode,
8023 struct btrfs_io_bio *io_bio, int err)
8024 {
8025 struct btrfs_fs_info *fs_info;
8026 struct bio_vec *bvec;
8027 struct btrfs_retry_complete done;
8028 u64 start;
8029 u64 offset = 0;
8030 u32 sectorsize;
8031 int nr_sectors;
8032 unsigned int pgoff;
8033 int csum_pos;
8034 int i;
8035 int ret;
8036
8037 fs_info = BTRFS_I(inode)->root->fs_info;
8038 sectorsize = BTRFS_I(inode)->root->sectorsize;
8039
8040 err = 0;
8041 start = io_bio->logical;
8042 done.inode = inode;
8043
8044 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8045 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8046
8047 pgoff = bvec->bv_offset;
8048 next_block:
8049 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8050 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8051 bvec->bv_page, pgoff, start,
8052 sectorsize);
8053 if (likely(!ret))
8054 goto next;
8055 try_again:
8056 done.uptodate = 0;
8057 done.start = start;
8058 init_completion(&done.done);
8059
8060 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8061 pgoff, start, start + sectorsize - 1,
8062 io_bio->mirror_num,
8063 btrfs_retry_endio, &done);
8064 if (ret) {
8065 err = ret;
8066 goto next;
8067 }
8068
8069 wait_for_completion(&done.done);
8070
8071 if (!done.uptodate) {
8072 /* We might have another mirror, so try again */
8073 goto try_again;
8074 }
8075 next:
8076 offset += sectorsize;
8077 start += sectorsize;
8078
8079 ASSERT(nr_sectors);
8080
8081 if (--nr_sectors) {
8082 pgoff += sectorsize;
8083 goto next_block;
8084 }
8085 }
8086
8087 return err;
8088 }
8089
8090 static int btrfs_subio_endio_read(struct inode *inode,
8091 struct btrfs_io_bio *io_bio, int err)
8092 {
8093 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8094
8095 if (skip_csum) {
8096 if (unlikely(err))
8097 return __btrfs_correct_data_nocsum(inode, io_bio);
8098 else
8099 return 0;
8100 } else {
8101 return __btrfs_subio_endio_read(inode, io_bio, err);
8102 }
8103 }
8104
8105 static void btrfs_endio_direct_read(struct bio *bio)
8106 {
8107 struct btrfs_dio_private *dip = bio->bi_private;
8108 struct inode *inode = dip->inode;
8109 struct bio *dio_bio;
8110 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8111 int err = bio->bi_error;
8112
8113 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8114 err = btrfs_subio_endio_read(inode, io_bio, err);
8115
8116 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8117 dip->logical_offset + dip->bytes - 1);
8118 dio_bio = dip->dio_bio;
8119
8120 kfree(dip);
8121
8122 dio_bio->bi_error = bio->bi_error;
8123 dio_end_io(dio_bio, bio->bi_error);
8124
8125 if (io_bio->end_io)
8126 io_bio->end_io(io_bio, err);
8127 bio_put(bio);
8128 }
8129
8130 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8131 const u64 offset,
8132 const u64 bytes,
8133 const int uptodate)
8134 {
8135 struct btrfs_root *root = BTRFS_I(inode)->root;
8136 struct btrfs_ordered_extent *ordered = NULL;
8137 u64 ordered_offset = offset;
8138 u64 ordered_bytes = bytes;
8139 int ret;
8140
8141 again:
8142 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8143 &ordered_offset,
8144 ordered_bytes,
8145 uptodate);
8146 if (!ret)
8147 goto out_test;
8148
8149 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8150 finish_ordered_fn, NULL, NULL);
8151 btrfs_queue_work(root->fs_info->endio_write_workers,
8152 &ordered->work);
8153 out_test:
8154 /*
8155 * our bio might span multiple ordered extents. If we haven't
8156 * completed the accounting for the whole dio, go back and try again
8157 */
8158 if (ordered_offset < offset + bytes) {
8159 ordered_bytes = offset + bytes - ordered_offset;
8160 ordered = NULL;
8161 goto again;
8162 }
8163 }
8164
8165 static void btrfs_endio_direct_write(struct bio *bio)
8166 {
8167 struct btrfs_dio_private *dip = bio->bi_private;
8168 struct bio *dio_bio = dip->dio_bio;
8169
8170 btrfs_endio_direct_write_update_ordered(dip->inode,
8171 dip->logical_offset,
8172 dip->bytes,
8173 !bio->bi_error);
8174
8175 kfree(dip);
8176
8177 dio_bio->bi_error = bio->bi_error;
8178 dio_end_io(dio_bio, bio->bi_error);
8179 bio_put(bio);
8180 }
8181
8182 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8183 struct bio *bio, int mirror_num,
8184 unsigned long bio_flags, u64 offset)
8185 {
8186 int ret;
8187 struct btrfs_root *root = BTRFS_I(inode)->root;
8188 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8189 BUG_ON(ret); /* -ENOMEM */
8190 return 0;
8191 }
8192
8193 static void btrfs_end_dio_bio(struct bio *bio)
8194 {
8195 struct btrfs_dio_private *dip = bio->bi_private;
8196 int err = bio->bi_error;
8197
8198 if (err)
8199 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8200 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8201 btrfs_ino(dip->inode), bio->bi_rw,
8202 (unsigned long long)bio->bi_iter.bi_sector,
8203 bio->bi_iter.bi_size, err);
8204
8205 if (dip->subio_endio)
8206 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8207
8208 if (err) {
8209 dip->errors = 1;
8210
8211 /*
8212 * before atomic variable goto zero, we must make sure
8213 * dip->errors is perceived to be set.
8214 */
8215 smp_mb__before_atomic();
8216 }
8217
8218 /* if there are more bios still pending for this dio, just exit */
8219 if (!atomic_dec_and_test(&dip->pending_bios))
8220 goto out;
8221
8222 if (dip->errors) {
8223 bio_io_error(dip->orig_bio);
8224 } else {
8225 dip->dio_bio->bi_error = 0;
8226 bio_endio(dip->orig_bio);
8227 }
8228 out:
8229 bio_put(bio);
8230 }
8231
8232 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8233 u64 first_sector, gfp_t gfp_flags)
8234 {
8235 struct bio *bio;
8236 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8237 if (bio)
8238 bio_associate_current(bio);
8239 return bio;
8240 }
8241
8242 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8243 struct inode *inode,
8244 struct btrfs_dio_private *dip,
8245 struct bio *bio,
8246 u64 file_offset)
8247 {
8248 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8249 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8250 int ret;
8251
8252 /*
8253 * We load all the csum data we need when we submit
8254 * the first bio to reduce the csum tree search and
8255 * contention.
8256 */
8257 if (dip->logical_offset == file_offset) {
8258 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8259 file_offset);
8260 if (ret)
8261 return ret;
8262 }
8263
8264 if (bio == dip->orig_bio)
8265 return 0;
8266
8267 file_offset -= dip->logical_offset;
8268 file_offset >>= inode->i_sb->s_blocksize_bits;
8269 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8270
8271 return 0;
8272 }
8273
8274 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8275 int rw, u64 file_offset, int skip_sum,
8276 int async_submit)
8277 {
8278 struct btrfs_dio_private *dip = bio->bi_private;
8279 int write = rw & REQ_WRITE;
8280 struct btrfs_root *root = BTRFS_I(inode)->root;
8281 int ret;
8282
8283 if (async_submit)
8284 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8285
8286 bio_get(bio);
8287
8288 if (!write) {
8289 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8290 BTRFS_WQ_ENDIO_DATA);
8291 if (ret)
8292 goto err;
8293 }
8294
8295 if (skip_sum)
8296 goto map;
8297
8298 if (write && async_submit) {
8299 ret = btrfs_wq_submit_bio(root->fs_info,
8300 inode, rw, bio, 0, 0,
8301 file_offset,
8302 __btrfs_submit_bio_start_direct_io,
8303 __btrfs_submit_bio_done);
8304 goto err;
8305 } else if (write) {
8306 /*
8307 * If we aren't doing async submit, calculate the csum of the
8308 * bio now.
8309 */
8310 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8311 if (ret)
8312 goto err;
8313 } else {
8314 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8315 file_offset);
8316 if (ret)
8317 goto err;
8318 }
8319 map:
8320 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8321 err:
8322 bio_put(bio);
8323 return ret;
8324 }
8325
8326 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8327 int skip_sum)
8328 {
8329 struct inode *inode = dip->inode;
8330 struct btrfs_root *root = BTRFS_I(inode)->root;
8331 struct bio *bio;
8332 struct bio *orig_bio = dip->orig_bio;
8333 struct bio_vec *bvec = orig_bio->bi_io_vec;
8334 u64 start_sector = orig_bio->bi_iter.bi_sector;
8335 u64 file_offset = dip->logical_offset;
8336 u64 submit_len = 0;
8337 u64 map_length;
8338 u32 blocksize = root->sectorsize;
8339 int async_submit = 0;
8340 int nr_sectors;
8341 int ret;
8342 int i;
8343
8344 map_length = orig_bio->bi_iter.bi_size;
8345 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8346 &map_length, NULL, 0);
8347 if (ret)
8348 return -EIO;
8349
8350 if (map_length >= orig_bio->bi_iter.bi_size) {
8351 bio = orig_bio;
8352 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8353 goto submit;
8354 }
8355
8356 /* async crcs make it difficult to collect full stripe writes. */
8357 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8358 async_submit = 0;
8359 else
8360 async_submit = 1;
8361
8362 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8363 if (!bio)
8364 return -ENOMEM;
8365
8366 bio->bi_private = dip;
8367 bio->bi_end_io = btrfs_end_dio_bio;
8368 btrfs_io_bio(bio)->logical = file_offset;
8369 atomic_inc(&dip->pending_bios);
8370
8371 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8372 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8373 i = 0;
8374 next_block:
8375 if (unlikely(map_length < submit_len + blocksize ||
8376 bio_add_page(bio, bvec->bv_page, blocksize,
8377 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8378 /*
8379 * inc the count before we submit the bio so
8380 * we know the end IO handler won't happen before
8381 * we inc the count. Otherwise, the dip might get freed
8382 * before we're done setting it up
8383 */
8384 atomic_inc(&dip->pending_bios);
8385 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8386 file_offset, skip_sum,
8387 async_submit);
8388 if (ret) {
8389 bio_put(bio);
8390 atomic_dec(&dip->pending_bios);
8391 goto out_err;
8392 }
8393
8394 start_sector += submit_len >> 9;
8395 file_offset += submit_len;
8396
8397 submit_len = 0;
8398
8399 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8400 start_sector, GFP_NOFS);
8401 if (!bio)
8402 goto out_err;
8403 bio->bi_private = dip;
8404 bio->bi_end_io = btrfs_end_dio_bio;
8405 btrfs_io_bio(bio)->logical = file_offset;
8406
8407 map_length = orig_bio->bi_iter.bi_size;
8408 ret = btrfs_map_block(root->fs_info, rw,
8409 start_sector << 9,
8410 &map_length, NULL, 0);
8411 if (ret) {
8412 bio_put(bio);
8413 goto out_err;
8414 }
8415
8416 goto next_block;
8417 } else {
8418 submit_len += blocksize;
8419 if (--nr_sectors) {
8420 i++;
8421 goto next_block;
8422 }
8423 bvec++;
8424 }
8425 }
8426
8427 submit:
8428 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8429 async_submit);
8430 if (!ret)
8431 return 0;
8432
8433 bio_put(bio);
8434 out_err:
8435 dip->errors = 1;
8436 /*
8437 * before atomic variable goto zero, we must
8438 * make sure dip->errors is perceived to be set.
8439 */
8440 smp_mb__before_atomic();
8441 if (atomic_dec_and_test(&dip->pending_bios))
8442 bio_io_error(dip->orig_bio);
8443
8444 /* bio_end_io() will handle error, so we needn't return it */
8445 return 0;
8446 }
8447
8448 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8449 struct inode *inode, loff_t file_offset)
8450 {
8451 struct btrfs_dio_private *dip = NULL;
8452 struct bio *io_bio = NULL;
8453 struct btrfs_io_bio *btrfs_bio;
8454 int skip_sum;
8455 int write = rw & REQ_WRITE;
8456 int ret = 0;
8457
8458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8459
8460 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8461 if (!io_bio) {
8462 ret = -ENOMEM;
8463 goto free_ordered;
8464 }
8465
8466 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8467 if (!dip) {
8468 ret = -ENOMEM;
8469 goto free_ordered;
8470 }
8471
8472 dip->private = dio_bio->bi_private;
8473 dip->inode = inode;
8474 dip->logical_offset = file_offset;
8475 dip->bytes = dio_bio->bi_iter.bi_size;
8476 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8477 io_bio->bi_private = dip;
8478 dip->orig_bio = io_bio;
8479 dip->dio_bio = dio_bio;
8480 atomic_set(&dip->pending_bios, 0);
8481 btrfs_bio = btrfs_io_bio(io_bio);
8482 btrfs_bio->logical = file_offset;
8483
8484 if (write) {
8485 io_bio->bi_end_io = btrfs_endio_direct_write;
8486 } else {
8487 io_bio->bi_end_io = btrfs_endio_direct_read;
8488 dip->subio_endio = btrfs_subio_endio_read;
8489 }
8490
8491 /*
8492 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8493 * even if we fail to submit a bio, because in such case we do the
8494 * corresponding error handling below and it must not be done a second
8495 * time by btrfs_direct_IO().
8496 */
8497 if (write) {
8498 struct btrfs_dio_data *dio_data = current->journal_info;
8499
8500 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8501 dip->bytes;
8502 dio_data->unsubmitted_oe_range_start =
8503 dio_data->unsubmitted_oe_range_end;
8504 }
8505
8506 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8507 if (!ret)
8508 return;
8509
8510 if (btrfs_bio->end_io)
8511 btrfs_bio->end_io(btrfs_bio, ret);
8512
8513 free_ordered:
8514 /*
8515 * If we arrived here it means either we failed to submit the dip
8516 * or we either failed to clone the dio_bio or failed to allocate the
8517 * dip. If we cloned the dio_bio and allocated the dip, we can just
8518 * call bio_endio against our io_bio so that we get proper resource
8519 * cleanup if we fail to submit the dip, otherwise, we must do the
8520 * same as btrfs_endio_direct_[write|read] because we can't call these
8521 * callbacks - they require an allocated dip and a clone of dio_bio.
8522 */
8523 if (io_bio && dip) {
8524 io_bio->bi_error = -EIO;
8525 bio_endio(io_bio);
8526 /*
8527 * The end io callbacks free our dip, do the final put on io_bio
8528 * and all the cleanup and final put for dio_bio (through
8529 * dio_end_io()).
8530 */
8531 dip = NULL;
8532 io_bio = NULL;
8533 } else {
8534 if (write)
8535 btrfs_endio_direct_write_update_ordered(inode,
8536 file_offset,
8537 dio_bio->bi_iter.bi_size,
8538 0);
8539 else
8540 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8541 file_offset + dio_bio->bi_iter.bi_size - 1);
8542
8543 dio_bio->bi_error = -EIO;
8544 /*
8545 * Releases and cleans up our dio_bio, no need to bio_put()
8546 * nor bio_endio()/bio_io_error() against dio_bio.
8547 */
8548 dio_end_io(dio_bio, ret);
8549 }
8550 if (io_bio)
8551 bio_put(io_bio);
8552 kfree(dip);
8553 }
8554
8555 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8556 const struct iov_iter *iter, loff_t offset)
8557 {
8558 int seg;
8559 int i;
8560 unsigned blocksize_mask = root->sectorsize - 1;
8561 ssize_t retval = -EINVAL;
8562
8563 if (offset & blocksize_mask)
8564 goto out;
8565
8566 if (iov_iter_alignment(iter) & blocksize_mask)
8567 goto out;
8568
8569 /* If this is a write we don't need to check anymore */
8570 if (iov_iter_rw(iter) == WRITE)
8571 return 0;
8572 /*
8573 * Check to make sure we don't have duplicate iov_base's in this
8574 * iovec, if so return EINVAL, otherwise we'll get csum errors
8575 * when reading back.
8576 */
8577 for (seg = 0; seg < iter->nr_segs; seg++) {
8578 for (i = seg + 1; i < iter->nr_segs; i++) {
8579 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8580 goto out;
8581 }
8582 }
8583 retval = 0;
8584 out:
8585 return retval;
8586 }
8587
8588 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8589 {
8590 struct file *file = iocb->ki_filp;
8591 struct inode *inode = file->f_mapping->host;
8592 struct btrfs_root *root = BTRFS_I(inode)->root;
8593 struct btrfs_dio_data dio_data = { 0 };
8594 loff_t offset = iocb->ki_pos;
8595 size_t count = 0;
8596 int flags = 0;
8597 bool wakeup = true;
8598 bool relock = false;
8599 ssize_t ret;
8600
8601 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8602 return 0;
8603
8604 inode_dio_begin(inode);
8605 smp_mb__after_atomic();
8606
8607 /*
8608 * The generic stuff only does filemap_write_and_wait_range, which
8609 * isn't enough if we've written compressed pages to this area, so
8610 * we need to flush the dirty pages again to make absolutely sure
8611 * that any outstanding dirty pages are on disk.
8612 */
8613 count = iov_iter_count(iter);
8614 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8615 &BTRFS_I(inode)->runtime_flags))
8616 filemap_fdatawrite_range(inode->i_mapping, offset,
8617 offset + count - 1);
8618
8619 if (iov_iter_rw(iter) == WRITE) {
8620 /*
8621 * If the write DIO is beyond the EOF, we need update
8622 * the isize, but it is protected by i_mutex. So we can
8623 * not unlock the i_mutex at this case.
8624 */
8625 if (offset + count <= inode->i_size) {
8626 inode_unlock(inode);
8627 relock = true;
8628 }
8629 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8630 if (ret)
8631 goto out;
8632 dio_data.outstanding_extents = div64_u64(count +
8633 BTRFS_MAX_EXTENT_SIZE - 1,
8634 BTRFS_MAX_EXTENT_SIZE);
8635
8636 /*
8637 * We need to know how many extents we reserved so that we can
8638 * do the accounting properly if we go over the number we
8639 * originally calculated. Abuse current->journal_info for this.
8640 */
8641 dio_data.reserve = round_up(count, root->sectorsize);
8642 dio_data.unsubmitted_oe_range_start = (u64)offset;
8643 dio_data.unsubmitted_oe_range_end = (u64)offset;
8644 current->journal_info = &dio_data;
8645 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8646 &BTRFS_I(inode)->runtime_flags)) {
8647 inode_dio_end(inode);
8648 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8649 wakeup = false;
8650 }
8651
8652 ret = __blockdev_direct_IO(iocb, inode,
8653 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8654 iter, btrfs_get_blocks_direct, NULL,
8655 btrfs_submit_direct, flags);
8656 if (iov_iter_rw(iter) == WRITE) {
8657 current->journal_info = NULL;
8658 if (ret < 0 && ret != -EIOCBQUEUED) {
8659 if (dio_data.reserve)
8660 btrfs_delalloc_release_space(inode, offset,
8661 dio_data.reserve);
8662 /*
8663 * On error we might have left some ordered extents
8664 * without submitting corresponding bios for them, so
8665 * cleanup them up to avoid other tasks getting them
8666 * and waiting for them to complete forever.
8667 */
8668 if (dio_data.unsubmitted_oe_range_start <
8669 dio_data.unsubmitted_oe_range_end)
8670 btrfs_endio_direct_write_update_ordered(inode,
8671 dio_data.unsubmitted_oe_range_start,
8672 dio_data.unsubmitted_oe_range_end -
8673 dio_data.unsubmitted_oe_range_start,
8674 0);
8675 } else if (ret >= 0 && (size_t)ret < count)
8676 btrfs_delalloc_release_space(inode, offset,
8677 count - (size_t)ret);
8678 }
8679 out:
8680 if (wakeup)
8681 inode_dio_end(inode);
8682 if (relock)
8683 inode_lock(inode);
8684
8685 return ret;
8686 }
8687
8688 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8689
8690 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8691 __u64 start, __u64 len)
8692 {
8693 int ret;
8694
8695 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8696 if (ret)
8697 return ret;
8698
8699 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8700 }
8701
8702 int btrfs_readpage(struct file *file, struct page *page)
8703 {
8704 struct extent_io_tree *tree;
8705 tree = &BTRFS_I(page->mapping->host)->io_tree;
8706 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8707 }
8708
8709 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8710 {
8711 struct extent_io_tree *tree;
8712 struct inode *inode = page->mapping->host;
8713 int ret;
8714
8715 if (current->flags & PF_MEMALLOC) {
8716 redirty_page_for_writepage(wbc, page);
8717 unlock_page(page);
8718 return 0;
8719 }
8720
8721 /*
8722 * If we are under memory pressure we will call this directly from the
8723 * VM, we need to make sure we have the inode referenced for the ordered
8724 * extent. If not just return like we didn't do anything.
8725 */
8726 if (!igrab(inode)) {
8727 redirty_page_for_writepage(wbc, page);
8728 return AOP_WRITEPAGE_ACTIVATE;
8729 }
8730 tree = &BTRFS_I(page->mapping->host)->io_tree;
8731 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8732 btrfs_add_delayed_iput(inode);
8733 return ret;
8734 }
8735
8736 static int btrfs_writepages(struct address_space *mapping,
8737 struct writeback_control *wbc)
8738 {
8739 struct extent_io_tree *tree;
8740
8741 tree = &BTRFS_I(mapping->host)->io_tree;
8742 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8743 }
8744
8745 static int
8746 btrfs_readpages(struct file *file, struct address_space *mapping,
8747 struct list_head *pages, unsigned nr_pages)
8748 {
8749 struct extent_io_tree *tree;
8750 tree = &BTRFS_I(mapping->host)->io_tree;
8751 return extent_readpages(tree, mapping, pages, nr_pages,
8752 btrfs_get_extent);
8753 }
8754 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8755 {
8756 struct extent_io_tree *tree;
8757 struct extent_map_tree *map;
8758 int ret;
8759
8760 tree = &BTRFS_I(page->mapping->host)->io_tree;
8761 map = &BTRFS_I(page->mapping->host)->extent_tree;
8762 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8763 if (ret == 1) {
8764 ClearPagePrivate(page);
8765 set_page_private(page, 0);
8766 put_page(page);
8767 }
8768 return ret;
8769 }
8770
8771 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8772 {
8773 if (PageWriteback(page) || PageDirty(page))
8774 return 0;
8775 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8776 }
8777
8778 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8779 unsigned int length)
8780 {
8781 struct inode *inode = page->mapping->host;
8782 struct extent_io_tree *tree;
8783 struct btrfs_ordered_extent *ordered;
8784 struct extent_state *cached_state = NULL;
8785 u64 page_start = page_offset(page);
8786 u64 page_end = page_start + PAGE_SIZE - 1;
8787 u64 start;
8788 u64 end;
8789 int inode_evicting = inode->i_state & I_FREEING;
8790
8791 /*
8792 * we have the page locked, so new writeback can't start,
8793 * and the dirty bit won't be cleared while we are here.
8794 *
8795 * Wait for IO on this page so that we can safely clear
8796 * the PagePrivate2 bit and do ordered accounting
8797 */
8798 wait_on_page_writeback(page);
8799
8800 tree = &BTRFS_I(inode)->io_tree;
8801 if (offset) {
8802 btrfs_releasepage(page, GFP_NOFS);
8803 return;
8804 }
8805
8806 if (!inode_evicting)
8807 lock_extent_bits(tree, page_start, page_end, &cached_state);
8808 again:
8809 start = page_start;
8810 ordered = btrfs_lookup_ordered_range(inode, start,
8811 page_end - start + 1);
8812 if (ordered) {
8813 end = min(page_end, ordered->file_offset + ordered->len - 1);
8814 /*
8815 * IO on this page will never be started, so we need
8816 * to account for any ordered extents now
8817 */
8818 if (!inode_evicting)
8819 clear_extent_bit(tree, start, end,
8820 EXTENT_DIRTY | EXTENT_DELALLOC |
8821 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8822 EXTENT_DEFRAG, 1, 0, &cached_state,
8823 GFP_NOFS);
8824 /*
8825 * whoever cleared the private bit is responsible
8826 * for the finish_ordered_io
8827 */
8828 if (TestClearPagePrivate2(page)) {
8829 struct btrfs_ordered_inode_tree *tree;
8830 u64 new_len;
8831
8832 tree = &BTRFS_I(inode)->ordered_tree;
8833
8834 spin_lock_irq(&tree->lock);
8835 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8836 new_len = start - ordered->file_offset;
8837 if (new_len < ordered->truncated_len)
8838 ordered->truncated_len = new_len;
8839 spin_unlock_irq(&tree->lock);
8840
8841 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8842 start,
8843 end - start + 1, 1))
8844 btrfs_finish_ordered_io(ordered);
8845 }
8846 btrfs_put_ordered_extent(ordered);
8847 if (!inode_evicting) {
8848 cached_state = NULL;
8849 lock_extent_bits(tree, start, end,
8850 &cached_state);
8851 }
8852
8853 start = end + 1;
8854 if (start < page_end)
8855 goto again;
8856 }
8857
8858 /*
8859 * Qgroup reserved space handler
8860 * Page here will be either
8861 * 1) Already written to disk
8862 * In this case, its reserved space is released from data rsv map
8863 * and will be freed by delayed_ref handler finally.
8864 * So even we call qgroup_free_data(), it won't decrease reserved
8865 * space.
8866 * 2) Not written to disk
8867 * This means the reserved space should be freed here.
8868 */
8869 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8870 if (!inode_evicting) {
8871 clear_extent_bit(tree, page_start, page_end,
8872 EXTENT_LOCKED | EXTENT_DIRTY |
8873 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8874 EXTENT_DEFRAG, 1, 1,
8875 &cached_state, GFP_NOFS);
8876
8877 __btrfs_releasepage(page, GFP_NOFS);
8878 }
8879
8880 ClearPageChecked(page);
8881 if (PagePrivate(page)) {
8882 ClearPagePrivate(page);
8883 set_page_private(page, 0);
8884 put_page(page);
8885 }
8886 }
8887
8888 /*
8889 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8890 * called from a page fault handler when a page is first dirtied. Hence we must
8891 * be careful to check for EOF conditions here. We set the page up correctly
8892 * for a written page which means we get ENOSPC checking when writing into
8893 * holes and correct delalloc and unwritten extent mapping on filesystems that
8894 * support these features.
8895 *
8896 * We are not allowed to take the i_mutex here so we have to play games to
8897 * protect against truncate races as the page could now be beyond EOF. Because
8898 * vmtruncate() writes the inode size before removing pages, once we have the
8899 * page lock we can determine safely if the page is beyond EOF. If it is not
8900 * beyond EOF, then the page is guaranteed safe against truncation until we
8901 * unlock the page.
8902 */
8903 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8904 {
8905 struct page *page = vmf->page;
8906 struct inode *inode = file_inode(vma->vm_file);
8907 struct btrfs_root *root = BTRFS_I(inode)->root;
8908 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8909 struct btrfs_ordered_extent *ordered;
8910 struct extent_state *cached_state = NULL;
8911 char *kaddr;
8912 unsigned long zero_start;
8913 loff_t size;
8914 int ret;
8915 int reserved = 0;
8916 u64 reserved_space;
8917 u64 page_start;
8918 u64 page_end;
8919 u64 end;
8920
8921 reserved_space = PAGE_SIZE;
8922
8923 sb_start_pagefault(inode->i_sb);
8924 page_start = page_offset(page);
8925 page_end = page_start + PAGE_SIZE - 1;
8926 end = page_end;
8927
8928 /*
8929 * Reserving delalloc space after obtaining the page lock can lead to
8930 * deadlock. For example, if a dirty page is locked by this function
8931 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8932 * dirty page write out, then the btrfs_writepage() function could
8933 * end up waiting indefinitely to get a lock on the page currently
8934 * being processed by btrfs_page_mkwrite() function.
8935 */
8936 ret = btrfs_delalloc_reserve_space(inode, page_start,
8937 reserved_space);
8938 if (!ret) {
8939 ret = file_update_time(vma->vm_file);
8940 reserved = 1;
8941 }
8942 if (ret) {
8943 if (ret == -ENOMEM)
8944 ret = VM_FAULT_OOM;
8945 else /* -ENOSPC, -EIO, etc */
8946 ret = VM_FAULT_SIGBUS;
8947 if (reserved)
8948 goto out;
8949 goto out_noreserve;
8950 }
8951
8952 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8953 again:
8954 lock_page(page);
8955 size = i_size_read(inode);
8956
8957 if ((page->mapping != inode->i_mapping) ||
8958 (page_start >= size)) {
8959 /* page got truncated out from underneath us */
8960 goto out_unlock;
8961 }
8962 wait_on_page_writeback(page);
8963
8964 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8965 set_page_extent_mapped(page);
8966
8967 /*
8968 * we can't set the delalloc bits if there are pending ordered
8969 * extents. Drop our locks and wait for them to finish
8970 */
8971 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
8972 if (ordered) {
8973 unlock_extent_cached(io_tree, page_start, page_end,
8974 &cached_state, GFP_NOFS);
8975 unlock_page(page);
8976 btrfs_start_ordered_extent(inode, ordered, 1);
8977 btrfs_put_ordered_extent(ordered);
8978 goto again;
8979 }
8980
8981 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8982 reserved_space = round_up(size - page_start, root->sectorsize);
8983 if (reserved_space < PAGE_SIZE) {
8984 end = page_start + reserved_space - 1;
8985 spin_lock(&BTRFS_I(inode)->lock);
8986 BTRFS_I(inode)->outstanding_extents++;
8987 spin_unlock(&BTRFS_I(inode)->lock);
8988 btrfs_delalloc_release_space(inode, page_start,
8989 PAGE_SIZE - reserved_space);
8990 }
8991 }
8992
8993 /*
8994 * XXX - page_mkwrite gets called every time the page is dirtied, even
8995 * if it was already dirty, so for space accounting reasons we need to
8996 * clear any delalloc bits for the range we are fixing to save. There
8997 * is probably a better way to do this, but for now keep consistent with
8998 * prepare_pages in the normal write path.
8999 */
9000 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9001 EXTENT_DIRTY | EXTENT_DELALLOC |
9002 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9003 0, 0, &cached_state, GFP_NOFS);
9004
9005 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9006 &cached_state);
9007 if (ret) {
9008 unlock_extent_cached(io_tree, page_start, page_end,
9009 &cached_state, GFP_NOFS);
9010 ret = VM_FAULT_SIGBUS;
9011 goto out_unlock;
9012 }
9013 ret = 0;
9014
9015 /* page is wholly or partially inside EOF */
9016 if (page_start + PAGE_SIZE > size)
9017 zero_start = size & ~PAGE_MASK;
9018 else
9019 zero_start = PAGE_SIZE;
9020
9021 if (zero_start != PAGE_SIZE) {
9022 kaddr = kmap(page);
9023 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9024 flush_dcache_page(page);
9025 kunmap(page);
9026 }
9027 ClearPageChecked(page);
9028 set_page_dirty(page);
9029 SetPageUptodate(page);
9030
9031 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9032 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9033 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9034
9035 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9036
9037 out_unlock:
9038 if (!ret) {
9039 sb_end_pagefault(inode->i_sb);
9040 return VM_FAULT_LOCKED;
9041 }
9042 unlock_page(page);
9043 out:
9044 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9045 out_noreserve:
9046 sb_end_pagefault(inode->i_sb);
9047 return ret;
9048 }
9049
9050 static int btrfs_truncate(struct inode *inode)
9051 {
9052 struct btrfs_root *root = BTRFS_I(inode)->root;
9053 struct btrfs_block_rsv *rsv;
9054 int ret = 0;
9055 int err = 0;
9056 struct btrfs_trans_handle *trans;
9057 u64 mask = root->sectorsize - 1;
9058 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9059
9060 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9061 (u64)-1);
9062 if (ret)
9063 return ret;
9064
9065 /*
9066 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9067 * 3 things going on here
9068 *
9069 * 1) We need to reserve space for our orphan item and the space to
9070 * delete our orphan item. Lord knows we don't want to have a dangling
9071 * orphan item because we didn't reserve space to remove it.
9072 *
9073 * 2) We need to reserve space to update our inode.
9074 *
9075 * 3) We need to have something to cache all the space that is going to
9076 * be free'd up by the truncate operation, but also have some slack
9077 * space reserved in case it uses space during the truncate (thank you
9078 * very much snapshotting).
9079 *
9080 * And we need these to all be separate. The fact is we can use a lot of
9081 * space doing the truncate, and we have no earthly idea how much space
9082 * we will use, so we need the truncate reservation to be separate so it
9083 * doesn't end up using space reserved for updating the inode or
9084 * removing the orphan item. We also need to be able to stop the
9085 * transaction and start a new one, which means we need to be able to
9086 * update the inode several times, and we have no idea of knowing how
9087 * many times that will be, so we can't just reserve 1 item for the
9088 * entirety of the operation, so that has to be done separately as well.
9089 * Then there is the orphan item, which does indeed need to be held on
9090 * to for the whole operation, and we need nobody to touch this reserved
9091 * space except the orphan code.
9092 *
9093 * So that leaves us with
9094 *
9095 * 1) root->orphan_block_rsv - for the orphan deletion.
9096 * 2) rsv - for the truncate reservation, which we will steal from the
9097 * transaction reservation.
9098 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9099 * updating the inode.
9100 */
9101 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9102 if (!rsv)
9103 return -ENOMEM;
9104 rsv->size = min_size;
9105 rsv->failfast = 1;
9106
9107 /*
9108 * 1 for the truncate slack space
9109 * 1 for updating the inode.
9110 */
9111 trans = btrfs_start_transaction(root, 2);
9112 if (IS_ERR(trans)) {
9113 err = PTR_ERR(trans);
9114 goto out;
9115 }
9116
9117 /* Migrate the slack space for the truncate to our reserve */
9118 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9119 min_size);
9120 BUG_ON(ret);
9121
9122 /*
9123 * So if we truncate and then write and fsync we normally would just
9124 * write the extents that changed, which is a problem if we need to
9125 * first truncate that entire inode. So set this flag so we write out
9126 * all of the extents in the inode to the sync log so we're completely
9127 * safe.
9128 */
9129 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9130 trans->block_rsv = rsv;
9131
9132 while (1) {
9133 ret = btrfs_truncate_inode_items(trans, root, inode,
9134 inode->i_size,
9135 BTRFS_EXTENT_DATA_KEY);
9136 if (ret != -ENOSPC && ret != -EAGAIN) {
9137 err = ret;
9138 break;
9139 }
9140
9141 trans->block_rsv = &root->fs_info->trans_block_rsv;
9142 ret = btrfs_update_inode(trans, root, inode);
9143 if (ret) {
9144 err = ret;
9145 break;
9146 }
9147
9148 btrfs_end_transaction(trans, root);
9149 btrfs_btree_balance_dirty(root);
9150
9151 trans = btrfs_start_transaction(root, 2);
9152 if (IS_ERR(trans)) {
9153 ret = err = PTR_ERR(trans);
9154 trans = NULL;
9155 break;
9156 }
9157
9158 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9159 rsv, min_size);
9160 BUG_ON(ret); /* shouldn't happen */
9161 trans->block_rsv = rsv;
9162 }
9163
9164 if (ret == 0 && inode->i_nlink > 0) {
9165 trans->block_rsv = root->orphan_block_rsv;
9166 ret = btrfs_orphan_del(trans, inode);
9167 if (ret)
9168 err = ret;
9169 }
9170
9171 if (trans) {
9172 trans->block_rsv = &root->fs_info->trans_block_rsv;
9173 ret = btrfs_update_inode(trans, root, inode);
9174 if (ret && !err)
9175 err = ret;
9176
9177 ret = btrfs_end_transaction(trans, root);
9178 btrfs_btree_balance_dirty(root);
9179 }
9180
9181 out:
9182 btrfs_free_block_rsv(root, rsv);
9183
9184 if (ret && !err)
9185 err = ret;
9186
9187 return err;
9188 }
9189
9190 /*
9191 * create a new subvolume directory/inode (helper for the ioctl).
9192 */
9193 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9194 struct btrfs_root *new_root,
9195 struct btrfs_root *parent_root,
9196 u64 new_dirid)
9197 {
9198 struct inode *inode;
9199 int err;
9200 u64 index = 0;
9201
9202 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9203 new_dirid, new_dirid,
9204 S_IFDIR | (~current_umask() & S_IRWXUGO),
9205 &index);
9206 if (IS_ERR(inode))
9207 return PTR_ERR(inode);
9208 inode->i_op = &btrfs_dir_inode_operations;
9209 inode->i_fop = &btrfs_dir_file_operations;
9210
9211 set_nlink(inode, 1);
9212 btrfs_i_size_write(inode, 0);
9213 unlock_new_inode(inode);
9214
9215 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9216 if (err)
9217 btrfs_err(new_root->fs_info,
9218 "error inheriting subvolume %llu properties: %d",
9219 new_root->root_key.objectid, err);
9220
9221 err = btrfs_update_inode(trans, new_root, inode);
9222
9223 iput(inode);
9224 return err;
9225 }
9226
9227 struct inode *btrfs_alloc_inode(struct super_block *sb)
9228 {
9229 struct btrfs_inode *ei;
9230 struct inode *inode;
9231
9232 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9233 if (!ei)
9234 return NULL;
9235
9236 ei->root = NULL;
9237 ei->generation = 0;
9238 ei->last_trans = 0;
9239 ei->last_sub_trans = 0;
9240 ei->logged_trans = 0;
9241 ei->delalloc_bytes = 0;
9242 ei->defrag_bytes = 0;
9243 ei->disk_i_size = 0;
9244 ei->flags = 0;
9245 ei->csum_bytes = 0;
9246 ei->index_cnt = (u64)-1;
9247 ei->dir_index = 0;
9248 ei->last_unlink_trans = 0;
9249 ei->last_log_commit = 0;
9250 ei->delayed_iput_count = 0;
9251
9252 spin_lock_init(&ei->lock);
9253 ei->outstanding_extents = 0;
9254 ei->reserved_extents = 0;
9255
9256 ei->runtime_flags = 0;
9257 ei->force_compress = BTRFS_COMPRESS_NONE;
9258
9259 ei->delayed_node = NULL;
9260
9261 ei->i_otime.tv_sec = 0;
9262 ei->i_otime.tv_nsec = 0;
9263
9264 inode = &ei->vfs_inode;
9265 extent_map_tree_init(&ei->extent_tree);
9266 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9267 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9268 ei->io_tree.track_uptodate = 1;
9269 ei->io_failure_tree.track_uptodate = 1;
9270 atomic_set(&ei->sync_writers, 0);
9271 mutex_init(&ei->log_mutex);
9272 mutex_init(&ei->delalloc_mutex);
9273 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9274 INIT_LIST_HEAD(&ei->delalloc_inodes);
9275 INIT_LIST_HEAD(&ei->delayed_iput);
9276 RB_CLEAR_NODE(&ei->rb_node);
9277 init_rwsem(&ei->dio_sem);
9278
9279 return inode;
9280 }
9281
9282 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9283 void btrfs_test_destroy_inode(struct inode *inode)
9284 {
9285 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9286 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9287 }
9288 #endif
9289
9290 static void btrfs_i_callback(struct rcu_head *head)
9291 {
9292 struct inode *inode = container_of(head, struct inode, i_rcu);
9293 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9294 }
9295
9296 void btrfs_destroy_inode(struct inode *inode)
9297 {
9298 struct btrfs_ordered_extent *ordered;
9299 struct btrfs_root *root = BTRFS_I(inode)->root;
9300
9301 WARN_ON(!hlist_empty(&inode->i_dentry));
9302 WARN_ON(inode->i_data.nrpages);
9303 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9304 WARN_ON(BTRFS_I(inode)->reserved_extents);
9305 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9306 WARN_ON(BTRFS_I(inode)->csum_bytes);
9307 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9308
9309 /*
9310 * This can happen where we create an inode, but somebody else also
9311 * created the same inode and we need to destroy the one we already
9312 * created.
9313 */
9314 if (!root)
9315 goto free;
9316
9317 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9318 &BTRFS_I(inode)->runtime_flags)) {
9319 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9320 btrfs_ino(inode));
9321 atomic_dec(&root->orphan_inodes);
9322 }
9323
9324 while (1) {
9325 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9326 if (!ordered)
9327 break;
9328 else {
9329 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9330 ordered->file_offset, ordered->len);
9331 btrfs_remove_ordered_extent(inode, ordered);
9332 btrfs_put_ordered_extent(ordered);
9333 btrfs_put_ordered_extent(ordered);
9334 }
9335 }
9336 btrfs_qgroup_check_reserved_leak(inode);
9337 inode_tree_del(inode);
9338 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9339 free:
9340 call_rcu(&inode->i_rcu, btrfs_i_callback);
9341 }
9342
9343 int btrfs_drop_inode(struct inode *inode)
9344 {
9345 struct btrfs_root *root = BTRFS_I(inode)->root;
9346
9347 if (root == NULL)
9348 return 1;
9349
9350 /* the snap/subvol tree is on deleting */
9351 if (btrfs_root_refs(&root->root_item) == 0)
9352 return 1;
9353 else
9354 return generic_drop_inode(inode);
9355 }
9356
9357 static void init_once(void *foo)
9358 {
9359 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9360
9361 inode_init_once(&ei->vfs_inode);
9362 }
9363
9364 void btrfs_destroy_cachep(void)
9365 {
9366 /*
9367 * Make sure all delayed rcu free inodes are flushed before we
9368 * destroy cache.
9369 */
9370 rcu_barrier();
9371 kmem_cache_destroy(btrfs_inode_cachep);
9372 kmem_cache_destroy(btrfs_trans_handle_cachep);
9373 kmem_cache_destroy(btrfs_transaction_cachep);
9374 kmem_cache_destroy(btrfs_path_cachep);
9375 kmem_cache_destroy(btrfs_free_space_cachep);
9376 }
9377
9378 int btrfs_init_cachep(void)
9379 {
9380 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9381 sizeof(struct btrfs_inode), 0,
9382 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9383 init_once);
9384 if (!btrfs_inode_cachep)
9385 goto fail;
9386
9387 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9388 sizeof(struct btrfs_trans_handle), 0,
9389 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9390 if (!btrfs_trans_handle_cachep)
9391 goto fail;
9392
9393 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9394 sizeof(struct btrfs_transaction), 0,
9395 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9396 if (!btrfs_transaction_cachep)
9397 goto fail;
9398
9399 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9400 sizeof(struct btrfs_path), 0,
9401 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9402 if (!btrfs_path_cachep)
9403 goto fail;
9404
9405 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9406 sizeof(struct btrfs_free_space), 0,
9407 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9408 if (!btrfs_free_space_cachep)
9409 goto fail;
9410
9411 return 0;
9412 fail:
9413 btrfs_destroy_cachep();
9414 return -ENOMEM;
9415 }
9416
9417 static int btrfs_getattr(struct vfsmount *mnt,
9418 struct dentry *dentry, struct kstat *stat)
9419 {
9420 u64 delalloc_bytes;
9421 struct inode *inode = d_inode(dentry);
9422 u32 blocksize = inode->i_sb->s_blocksize;
9423
9424 generic_fillattr(inode, stat);
9425 stat->dev = BTRFS_I(inode)->root->anon_dev;
9426
9427 spin_lock(&BTRFS_I(inode)->lock);
9428 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9429 spin_unlock(&BTRFS_I(inode)->lock);
9430 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9431 ALIGN(delalloc_bytes, blocksize)) >> 9;
9432 return 0;
9433 }
9434
9435 static int btrfs_rename_exchange(struct inode *old_dir,
9436 struct dentry *old_dentry,
9437 struct inode *new_dir,
9438 struct dentry *new_dentry)
9439 {
9440 struct btrfs_trans_handle *trans;
9441 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9442 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9443 struct inode *new_inode = new_dentry->d_inode;
9444 struct inode *old_inode = old_dentry->d_inode;
9445 struct timespec ctime = CURRENT_TIME;
9446 struct dentry *parent;
9447 u64 old_ino = btrfs_ino(old_inode);
9448 u64 new_ino = btrfs_ino(new_inode);
9449 u64 old_idx = 0;
9450 u64 new_idx = 0;
9451 u64 root_objectid;
9452 int ret;
9453 bool root_log_pinned = false;
9454 bool dest_log_pinned = false;
9455
9456 /* we only allow rename subvolume link between subvolumes */
9457 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9458 return -EXDEV;
9459
9460 /* close the race window with snapshot create/destroy ioctl */
9461 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9462 down_read(&root->fs_info->subvol_sem);
9463 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9464 down_read(&dest->fs_info->subvol_sem);
9465
9466 /*
9467 * We want to reserve the absolute worst case amount of items. So if
9468 * both inodes are subvols and we need to unlink them then that would
9469 * require 4 item modifications, but if they are both normal inodes it
9470 * would require 5 item modifications, so we'll assume their normal
9471 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9472 * should cover the worst case number of items we'll modify.
9473 */
9474 trans = btrfs_start_transaction(root, 12);
9475 if (IS_ERR(trans)) {
9476 ret = PTR_ERR(trans);
9477 goto out_notrans;
9478 }
9479
9480 /*
9481 * We need to find a free sequence number both in the source and
9482 * in the destination directory for the exchange.
9483 */
9484 ret = btrfs_set_inode_index(new_dir, &old_idx);
9485 if (ret)
9486 goto out_fail;
9487 ret = btrfs_set_inode_index(old_dir, &new_idx);
9488 if (ret)
9489 goto out_fail;
9490
9491 BTRFS_I(old_inode)->dir_index = 0ULL;
9492 BTRFS_I(new_inode)->dir_index = 0ULL;
9493
9494 /* Reference for the source. */
9495 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9496 /* force full log commit if subvolume involved. */
9497 btrfs_set_log_full_commit(root->fs_info, trans);
9498 } else {
9499 btrfs_pin_log_trans(root);
9500 root_log_pinned = true;
9501 ret = btrfs_insert_inode_ref(trans, dest,
9502 new_dentry->d_name.name,
9503 new_dentry->d_name.len,
9504 old_ino,
9505 btrfs_ino(new_dir), old_idx);
9506 if (ret)
9507 goto out_fail;
9508 }
9509
9510 /* And now for the dest. */
9511 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9512 /* force full log commit if subvolume involved. */
9513 btrfs_set_log_full_commit(dest->fs_info, trans);
9514 } else {
9515 btrfs_pin_log_trans(dest);
9516 dest_log_pinned = true;
9517 ret = btrfs_insert_inode_ref(trans, root,
9518 old_dentry->d_name.name,
9519 old_dentry->d_name.len,
9520 new_ino,
9521 btrfs_ino(old_dir), new_idx);
9522 if (ret)
9523 goto out_fail;
9524 }
9525
9526 /* Update inode version and ctime/mtime. */
9527 inode_inc_iversion(old_dir);
9528 inode_inc_iversion(new_dir);
9529 inode_inc_iversion(old_inode);
9530 inode_inc_iversion(new_inode);
9531 old_dir->i_ctime = old_dir->i_mtime = ctime;
9532 new_dir->i_ctime = new_dir->i_mtime = ctime;
9533 old_inode->i_ctime = ctime;
9534 new_inode->i_ctime = ctime;
9535
9536 if (old_dentry->d_parent != new_dentry->d_parent) {
9537 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9538 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9539 }
9540
9541 /* src is a subvolume */
9542 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9543 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9544 ret = btrfs_unlink_subvol(trans, root, old_dir,
9545 root_objectid,
9546 old_dentry->d_name.name,
9547 old_dentry->d_name.len);
9548 } else { /* src is an inode */
9549 ret = __btrfs_unlink_inode(trans, root, old_dir,
9550 old_dentry->d_inode,
9551 old_dentry->d_name.name,
9552 old_dentry->d_name.len);
9553 if (!ret)
9554 ret = btrfs_update_inode(trans, root, old_inode);
9555 }
9556 if (ret) {
9557 btrfs_abort_transaction(trans, root, ret);
9558 goto out_fail;
9559 }
9560
9561 /* dest is a subvolume */
9562 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9563 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9564 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9565 root_objectid,
9566 new_dentry->d_name.name,
9567 new_dentry->d_name.len);
9568 } else { /* dest is an inode */
9569 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9570 new_dentry->d_inode,
9571 new_dentry->d_name.name,
9572 new_dentry->d_name.len);
9573 if (!ret)
9574 ret = btrfs_update_inode(trans, dest, new_inode);
9575 }
9576 if (ret) {
9577 btrfs_abort_transaction(trans, root, ret);
9578 goto out_fail;
9579 }
9580
9581 ret = btrfs_add_link(trans, new_dir, old_inode,
9582 new_dentry->d_name.name,
9583 new_dentry->d_name.len, 0, old_idx);
9584 if (ret) {
9585 btrfs_abort_transaction(trans, root, ret);
9586 goto out_fail;
9587 }
9588
9589 ret = btrfs_add_link(trans, old_dir, new_inode,
9590 old_dentry->d_name.name,
9591 old_dentry->d_name.len, 0, new_idx);
9592 if (ret) {
9593 btrfs_abort_transaction(trans, root, ret);
9594 goto out_fail;
9595 }
9596
9597 if (old_inode->i_nlink == 1)
9598 BTRFS_I(old_inode)->dir_index = old_idx;
9599 if (new_inode->i_nlink == 1)
9600 BTRFS_I(new_inode)->dir_index = new_idx;
9601
9602 if (root_log_pinned) {
9603 parent = new_dentry->d_parent;
9604 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9605 btrfs_end_log_trans(root);
9606 root_log_pinned = false;
9607 }
9608 if (dest_log_pinned) {
9609 parent = old_dentry->d_parent;
9610 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9611 btrfs_end_log_trans(dest);
9612 dest_log_pinned = false;
9613 }
9614 out_fail:
9615 /*
9616 * If we have pinned a log and an error happened, we unpin tasks
9617 * trying to sync the log and force them to fallback to a transaction
9618 * commit if the log currently contains any of the inodes involved in
9619 * this rename operation (to ensure we do not persist a log with an
9620 * inconsistent state for any of these inodes or leading to any
9621 * inconsistencies when replayed). If the transaction was aborted, the
9622 * abortion reason is propagated to userspace when attempting to commit
9623 * the transaction. If the log does not contain any of these inodes, we
9624 * allow the tasks to sync it.
9625 */
9626 if (ret && (root_log_pinned || dest_log_pinned)) {
9627 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9628 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9629 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9630 (new_inode &&
9631 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9632 btrfs_set_log_full_commit(root->fs_info, trans);
9633
9634 if (root_log_pinned) {
9635 btrfs_end_log_trans(root);
9636 root_log_pinned = false;
9637 }
9638 if (dest_log_pinned) {
9639 btrfs_end_log_trans(dest);
9640 dest_log_pinned = false;
9641 }
9642 }
9643 ret = btrfs_end_transaction(trans, root);
9644 out_notrans:
9645 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9646 up_read(&dest->fs_info->subvol_sem);
9647 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9648 up_read(&root->fs_info->subvol_sem);
9649
9650 return ret;
9651 }
9652
9653 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9654 struct btrfs_root *root,
9655 struct inode *dir,
9656 struct dentry *dentry)
9657 {
9658 int ret;
9659 struct inode *inode;
9660 u64 objectid;
9661 u64 index;
9662
9663 ret = btrfs_find_free_ino(root, &objectid);
9664 if (ret)
9665 return ret;
9666
9667 inode = btrfs_new_inode(trans, root, dir,
9668 dentry->d_name.name,
9669 dentry->d_name.len,
9670 btrfs_ino(dir),
9671 objectid,
9672 S_IFCHR | WHITEOUT_MODE,
9673 &index);
9674
9675 if (IS_ERR(inode)) {
9676 ret = PTR_ERR(inode);
9677 return ret;
9678 }
9679
9680 inode->i_op = &btrfs_special_inode_operations;
9681 init_special_inode(inode, inode->i_mode,
9682 WHITEOUT_DEV);
9683
9684 ret = btrfs_init_inode_security(trans, inode, dir,
9685 &dentry->d_name);
9686 if (ret)
9687 goto out;
9688
9689 ret = btrfs_add_nondir(trans, dir, dentry,
9690 inode, 0, index);
9691 if (ret)
9692 goto out;
9693
9694 ret = btrfs_update_inode(trans, root, inode);
9695 out:
9696 unlock_new_inode(inode);
9697 if (ret)
9698 inode_dec_link_count(inode);
9699 iput(inode);
9700
9701 return ret;
9702 }
9703
9704 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9705 struct inode *new_dir, struct dentry *new_dentry,
9706 unsigned int flags)
9707 {
9708 struct btrfs_trans_handle *trans;
9709 unsigned int trans_num_items;
9710 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9711 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9712 struct inode *new_inode = d_inode(new_dentry);
9713 struct inode *old_inode = d_inode(old_dentry);
9714 u64 index = 0;
9715 u64 root_objectid;
9716 int ret;
9717 u64 old_ino = btrfs_ino(old_inode);
9718 bool log_pinned = false;
9719
9720 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9721 return -EPERM;
9722
9723 /* we only allow rename subvolume link between subvolumes */
9724 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9725 return -EXDEV;
9726
9727 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9728 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9729 return -ENOTEMPTY;
9730
9731 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9732 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9733 return -ENOTEMPTY;
9734
9735
9736 /* check for collisions, even if the name isn't there */
9737 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9738 new_dentry->d_name.name,
9739 new_dentry->d_name.len);
9740
9741 if (ret) {
9742 if (ret == -EEXIST) {
9743 /* we shouldn't get
9744 * eexist without a new_inode */
9745 if (WARN_ON(!new_inode)) {
9746 return ret;
9747 }
9748 } else {
9749 /* maybe -EOVERFLOW */
9750 return ret;
9751 }
9752 }
9753 ret = 0;
9754
9755 /*
9756 * we're using rename to replace one file with another. Start IO on it
9757 * now so we don't add too much work to the end of the transaction
9758 */
9759 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9760 filemap_flush(old_inode->i_mapping);
9761
9762 /* close the racy window with snapshot create/destroy ioctl */
9763 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9764 down_read(&root->fs_info->subvol_sem);
9765 /*
9766 * We want to reserve the absolute worst case amount of items. So if
9767 * both inodes are subvols and we need to unlink them then that would
9768 * require 4 item modifications, but if they are both normal inodes it
9769 * would require 5 item modifications, so we'll assume they are normal
9770 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9771 * should cover the worst case number of items we'll modify.
9772 * If our rename has the whiteout flag, we need more 5 units for the
9773 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9774 * when selinux is enabled).
9775 */
9776 trans_num_items = 11;
9777 if (flags & RENAME_WHITEOUT)
9778 trans_num_items += 5;
9779 trans = btrfs_start_transaction(root, trans_num_items);
9780 if (IS_ERR(trans)) {
9781 ret = PTR_ERR(trans);
9782 goto out_notrans;
9783 }
9784
9785 if (dest != root)
9786 btrfs_record_root_in_trans(trans, dest);
9787
9788 ret = btrfs_set_inode_index(new_dir, &index);
9789 if (ret)
9790 goto out_fail;
9791
9792 BTRFS_I(old_inode)->dir_index = 0ULL;
9793 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9794 /* force full log commit if subvolume involved. */
9795 btrfs_set_log_full_commit(root->fs_info, trans);
9796 } else {
9797 btrfs_pin_log_trans(root);
9798 log_pinned = true;
9799 ret = btrfs_insert_inode_ref(trans, dest,
9800 new_dentry->d_name.name,
9801 new_dentry->d_name.len,
9802 old_ino,
9803 btrfs_ino(new_dir), index);
9804 if (ret)
9805 goto out_fail;
9806 }
9807
9808 inode_inc_iversion(old_dir);
9809 inode_inc_iversion(new_dir);
9810 inode_inc_iversion(old_inode);
9811 old_dir->i_ctime = old_dir->i_mtime =
9812 new_dir->i_ctime = new_dir->i_mtime =
9813 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
9814
9815 if (old_dentry->d_parent != new_dentry->d_parent)
9816 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9817
9818 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9819 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9820 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9821 old_dentry->d_name.name,
9822 old_dentry->d_name.len);
9823 } else {
9824 ret = __btrfs_unlink_inode(trans, root, old_dir,
9825 d_inode(old_dentry),
9826 old_dentry->d_name.name,
9827 old_dentry->d_name.len);
9828 if (!ret)
9829 ret = btrfs_update_inode(trans, root, old_inode);
9830 }
9831 if (ret) {
9832 btrfs_abort_transaction(trans, root, ret);
9833 goto out_fail;
9834 }
9835
9836 if (new_inode) {
9837 inode_inc_iversion(new_inode);
9838 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
9839 if (unlikely(btrfs_ino(new_inode) ==
9840 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9841 root_objectid = BTRFS_I(new_inode)->location.objectid;
9842 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9843 root_objectid,
9844 new_dentry->d_name.name,
9845 new_dentry->d_name.len);
9846 BUG_ON(new_inode->i_nlink == 0);
9847 } else {
9848 ret = btrfs_unlink_inode(trans, dest, new_dir,
9849 d_inode(new_dentry),
9850 new_dentry->d_name.name,
9851 new_dentry->d_name.len);
9852 }
9853 if (!ret && new_inode->i_nlink == 0)
9854 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9855 if (ret) {
9856 btrfs_abort_transaction(trans, root, ret);
9857 goto out_fail;
9858 }
9859 }
9860
9861 ret = btrfs_add_link(trans, new_dir, old_inode,
9862 new_dentry->d_name.name,
9863 new_dentry->d_name.len, 0, index);
9864 if (ret) {
9865 btrfs_abort_transaction(trans, root, ret);
9866 goto out_fail;
9867 }
9868
9869 if (old_inode->i_nlink == 1)
9870 BTRFS_I(old_inode)->dir_index = index;
9871
9872 if (log_pinned) {
9873 struct dentry *parent = new_dentry->d_parent;
9874
9875 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9876 btrfs_end_log_trans(root);
9877 log_pinned = false;
9878 }
9879
9880 if (flags & RENAME_WHITEOUT) {
9881 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9882 old_dentry);
9883
9884 if (ret) {
9885 btrfs_abort_transaction(trans, root, ret);
9886 goto out_fail;
9887 }
9888 }
9889 out_fail:
9890 /*
9891 * If we have pinned the log and an error happened, we unpin tasks
9892 * trying to sync the log and force them to fallback to a transaction
9893 * commit if the log currently contains any of the inodes involved in
9894 * this rename operation (to ensure we do not persist a log with an
9895 * inconsistent state for any of these inodes or leading to any
9896 * inconsistencies when replayed). If the transaction was aborted, the
9897 * abortion reason is propagated to userspace when attempting to commit
9898 * the transaction. If the log does not contain any of these inodes, we
9899 * allow the tasks to sync it.
9900 */
9901 if (ret && log_pinned) {
9902 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9903 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9904 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9905 (new_inode &&
9906 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9907 btrfs_set_log_full_commit(root->fs_info, trans);
9908
9909 btrfs_end_log_trans(root);
9910 log_pinned = false;
9911 }
9912 btrfs_end_transaction(trans, root);
9913 out_notrans:
9914 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9915 up_read(&root->fs_info->subvol_sem);
9916
9917 return ret;
9918 }
9919
9920 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9921 struct inode *new_dir, struct dentry *new_dentry,
9922 unsigned int flags)
9923 {
9924 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9925 return -EINVAL;
9926
9927 if (flags & RENAME_EXCHANGE)
9928 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9929 new_dentry);
9930
9931 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9932 }
9933
9934 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9935 {
9936 struct btrfs_delalloc_work *delalloc_work;
9937 struct inode *inode;
9938
9939 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9940 work);
9941 inode = delalloc_work->inode;
9942 filemap_flush(inode->i_mapping);
9943 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9944 &BTRFS_I(inode)->runtime_flags))
9945 filemap_flush(inode->i_mapping);
9946
9947 if (delalloc_work->delay_iput)
9948 btrfs_add_delayed_iput(inode);
9949 else
9950 iput(inode);
9951 complete(&delalloc_work->completion);
9952 }
9953
9954 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9955 int delay_iput)
9956 {
9957 struct btrfs_delalloc_work *work;
9958
9959 work = kmalloc(sizeof(*work), GFP_NOFS);
9960 if (!work)
9961 return NULL;
9962
9963 init_completion(&work->completion);
9964 INIT_LIST_HEAD(&work->list);
9965 work->inode = inode;
9966 work->delay_iput = delay_iput;
9967 WARN_ON_ONCE(!inode);
9968 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9969 btrfs_run_delalloc_work, NULL, NULL);
9970
9971 return work;
9972 }
9973
9974 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9975 {
9976 wait_for_completion(&work->completion);
9977 kfree(work);
9978 }
9979
9980 /*
9981 * some fairly slow code that needs optimization. This walks the list
9982 * of all the inodes with pending delalloc and forces them to disk.
9983 */
9984 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9985 int nr)
9986 {
9987 struct btrfs_inode *binode;
9988 struct inode *inode;
9989 struct btrfs_delalloc_work *work, *next;
9990 struct list_head works;
9991 struct list_head splice;
9992 int ret = 0;
9993
9994 INIT_LIST_HEAD(&works);
9995 INIT_LIST_HEAD(&splice);
9996
9997 mutex_lock(&root->delalloc_mutex);
9998 spin_lock(&root->delalloc_lock);
9999 list_splice_init(&root->delalloc_inodes, &splice);
10000 while (!list_empty(&splice)) {
10001 binode = list_entry(splice.next, struct btrfs_inode,
10002 delalloc_inodes);
10003
10004 list_move_tail(&binode->delalloc_inodes,
10005 &root->delalloc_inodes);
10006 inode = igrab(&binode->vfs_inode);
10007 if (!inode) {
10008 cond_resched_lock(&root->delalloc_lock);
10009 continue;
10010 }
10011 spin_unlock(&root->delalloc_lock);
10012
10013 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10014 if (!work) {
10015 if (delay_iput)
10016 btrfs_add_delayed_iput(inode);
10017 else
10018 iput(inode);
10019 ret = -ENOMEM;
10020 goto out;
10021 }
10022 list_add_tail(&work->list, &works);
10023 btrfs_queue_work(root->fs_info->flush_workers,
10024 &work->work);
10025 ret++;
10026 if (nr != -1 && ret >= nr)
10027 goto out;
10028 cond_resched();
10029 spin_lock(&root->delalloc_lock);
10030 }
10031 spin_unlock(&root->delalloc_lock);
10032
10033 out:
10034 list_for_each_entry_safe(work, next, &works, list) {
10035 list_del_init(&work->list);
10036 btrfs_wait_and_free_delalloc_work(work);
10037 }
10038
10039 if (!list_empty_careful(&splice)) {
10040 spin_lock(&root->delalloc_lock);
10041 list_splice_tail(&splice, &root->delalloc_inodes);
10042 spin_unlock(&root->delalloc_lock);
10043 }
10044 mutex_unlock(&root->delalloc_mutex);
10045 return ret;
10046 }
10047
10048 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10049 {
10050 int ret;
10051
10052 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10053 return -EROFS;
10054
10055 ret = __start_delalloc_inodes(root, delay_iput, -1);
10056 if (ret > 0)
10057 ret = 0;
10058 /*
10059 * the filemap_flush will queue IO into the worker threads, but
10060 * we have to make sure the IO is actually started and that
10061 * ordered extents get created before we return
10062 */
10063 atomic_inc(&root->fs_info->async_submit_draining);
10064 while (atomic_read(&root->fs_info->nr_async_submits) ||
10065 atomic_read(&root->fs_info->async_delalloc_pages)) {
10066 wait_event(root->fs_info->async_submit_wait,
10067 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10068 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10069 }
10070 atomic_dec(&root->fs_info->async_submit_draining);
10071 return ret;
10072 }
10073
10074 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10075 int nr)
10076 {
10077 struct btrfs_root *root;
10078 struct list_head splice;
10079 int ret;
10080
10081 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10082 return -EROFS;
10083
10084 INIT_LIST_HEAD(&splice);
10085
10086 mutex_lock(&fs_info->delalloc_root_mutex);
10087 spin_lock(&fs_info->delalloc_root_lock);
10088 list_splice_init(&fs_info->delalloc_roots, &splice);
10089 while (!list_empty(&splice) && nr) {
10090 root = list_first_entry(&splice, struct btrfs_root,
10091 delalloc_root);
10092 root = btrfs_grab_fs_root(root);
10093 BUG_ON(!root);
10094 list_move_tail(&root->delalloc_root,
10095 &fs_info->delalloc_roots);
10096 spin_unlock(&fs_info->delalloc_root_lock);
10097
10098 ret = __start_delalloc_inodes(root, delay_iput, nr);
10099 btrfs_put_fs_root(root);
10100 if (ret < 0)
10101 goto out;
10102
10103 if (nr != -1) {
10104 nr -= ret;
10105 WARN_ON(nr < 0);
10106 }
10107 spin_lock(&fs_info->delalloc_root_lock);
10108 }
10109 spin_unlock(&fs_info->delalloc_root_lock);
10110
10111 ret = 0;
10112 atomic_inc(&fs_info->async_submit_draining);
10113 while (atomic_read(&fs_info->nr_async_submits) ||
10114 atomic_read(&fs_info->async_delalloc_pages)) {
10115 wait_event(fs_info->async_submit_wait,
10116 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10117 atomic_read(&fs_info->async_delalloc_pages) == 0));
10118 }
10119 atomic_dec(&fs_info->async_submit_draining);
10120 out:
10121 if (!list_empty_careful(&splice)) {
10122 spin_lock(&fs_info->delalloc_root_lock);
10123 list_splice_tail(&splice, &fs_info->delalloc_roots);
10124 spin_unlock(&fs_info->delalloc_root_lock);
10125 }
10126 mutex_unlock(&fs_info->delalloc_root_mutex);
10127 return ret;
10128 }
10129
10130 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10131 const char *symname)
10132 {
10133 struct btrfs_trans_handle *trans;
10134 struct btrfs_root *root = BTRFS_I(dir)->root;
10135 struct btrfs_path *path;
10136 struct btrfs_key key;
10137 struct inode *inode = NULL;
10138 int err;
10139 int drop_inode = 0;
10140 u64 objectid;
10141 u64 index = 0;
10142 int name_len;
10143 int datasize;
10144 unsigned long ptr;
10145 struct btrfs_file_extent_item *ei;
10146 struct extent_buffer *leaf;
10147
10148 name_len = strlen(symname);
10149 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10150 return -ENAMETOOLONG;
10151
10152 /*
10153 * 2 items for inode item and ref
10154 * 2 items for dir items
10155 * 1 item for updating parent inode item
10156 * 1 item for the inline extent item
10157 * 1 item for xattr if selinux is on
10158 */
10159 trans = btrfs_start_transaction(root, 7);
10160 if (IS_ERR(trans))
10161 return PTR_ERR(trans);
10162
10163 err = btrfs_find_free_ino(root, &objectid);
10164 if (err)
10165 goto out_unlock;
10166
10167 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10168 dentry->d_name.len, btrfs_ino(dir), objectid,
10169 S_IFLNK|S_IRWXUGO, &index);
10170 if (IS_ERR(inode)) {
10171 err = PTR_ERR(inode);
10172 goto out_unlock;
10173 }
10174
10175 /*
10176 * If the active LSM wants to access the inode during
10177 * d_instantiate it needs these. Smack checks to see
10178 * if the filesystem supports xattrs by looking at the
10179 * ops vector.
10180 */
10181 inode->i_fop = &btrfs_file_operations;
10182 inode->i_op = &btrfs_file_inode_operations;
10183 inode->i_mapping->a_ops = &btrfs_aops;
10184 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10185
10186 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10187 if (err)
10188 goto out_unlock_inode;
10189
10190 path = btrfs_alloc_path();
10191 if (!path) {
10192 err = -ENOMEM;
10193 goto out_unlock_inode;
10194 }
10195 key.objectid = btrfs_ino(inode);
10196 key.offset = 0;
10197 key.type = BTRFS_EXTENT_DATA_KEY;
10198 datasize = btrfs_file_extent_calc_inline_size(name_len);
10199 err = btrfs_insert_empty_item(trans, root, path, &key,
10200 datasize);
10201 if (err) {
10202 btrfs_free_path(path);
10203 goto out_unlock_inode;
10204 }
10205 leaf = path->nodes[0];
10206 ei = btrfs_item_ptr(leaf, path->slots[0],
10207 struct btrfs_file_extent_item);
10208 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10209 btrfs_set_file_extent_type(leaf, ei,
10210 BTRFS_FILE_EXTENT_INLINE);
10211 btrfs_set_file_extent_encryption(leaf, ei, 0);
10212 btrfs_set_file_extent_compression(leaf, ei, 0);
10213 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10214 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10215
10216 ptr = btrfs_file_extent_inline_start(ei);
10217 write_extent_buffer(leaf, symname, ptr, name_len);
10218 btrfs_mark_buffer_dirty(leaf);
10219 btrfs_free_path(path);
10220
10221 inode->i_op = &btrfs_symlink_inode_operations;
10222 inode_nohighmem(inode);
10223 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10224 inode_set_bytes(inode, name_len);
10225 btrfs_i_size_write(inode, name_len);
10226 err = btrfs_update_inode(trans, root, inode);
10227 /*
10228 * Last step, add directory indexes for our symlink inode. This is the
10229 * last step to avoid extra cleanup of these indexes if an error happens
10230 * elsewhere above.
10231 */
10232 if (!err)
10233 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10234 if (err) {
10235 drop_inode = 1;
10236 goto out_unlock_inode;
10237 }
10238
10239 unlock_new_inode(inode);
10240 d_instantiate(dentry, inode);
10241
10242 out_unlock:
10243 btrfs_end_transaction(trans, root);
10244 if (drop_inode) {
10245 inode_dec_link_count(inode);
10246 iput(inode);
10247 }
10248 btrfs_btree_balance_dirty(root);
10249 return err;
10250
10251 out_unlock_inode:
10252 drop_inode = 1;
10253 unlock_new_inode(inode);
10254 goto out_unlock;
10255 }
10256
10257 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10258 u64 start, u64 num_bytes, u64 min_size,
10259 loff_t actual_len, u64 *alloc_hint,
10260 struct btrfs_trans_handle *trans)
10261 {
10262 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10263 struct extent_map *em;
10264 struct btrfs_root *root = BTRFS_I(inode)->root;
10265 struct btrfs_key ins;
10266 u64 cur_offset = start;
10267 u64 i_size;
10268 u64 cur_bytes;
10269 u64 last_alloc = (u64)-1;
10270 int ret = 0;
10271 bool own_trans = true;
10272
10273 if (trans)
10274 own_trans = false;
10275 while (num_bytes > 0) {
10276 if (own_trans) {
10277 trans = btrfs_start_transaction(root, 3);
10278 if (IS_ERR(trans)) {
10279 ret = PTR_ERR(trans);
10280 break;
10281 }
10282 }
10283
10284 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10285 cur_bytes = max(cur_bytes, min_size);
10286 /*
10287 * If we are severely fragmented we could end up with really
10288 * small allocations, so if the allocator is returning small
10289 * chunks lets make its job easier by only searching for those
10290 * sized chunks.
10291 */
10292 cur_bytes = min(cur_bytes, last_alloc);
10293 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
10294 *alloc_hint, &ins, 1, 0);
10295 if (ret) {
10296 if (own_trans)
10297 btrfs_end_transaction(trans, root);
10298 break;
10299 }
10300 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10301
10302 last_alloc = ins.offset;
10303 ret = insert_reserved_file_extent(trans, inode,
10304 cur_offset, ins.objectid,
10305 ins.offset, ins.offset,
10306 ins.offset, 0, 0, 0,
10307 BTRFS_FILE_EXTENT_PREALLOC);
10308 if (ret) {
10309 btrfs_free_reserved_extent(root, ins.objectid,
10310 ins.offset, 0);
10311 btrfs_abort_transaction(trans, root, ret);
10312 if (own_trans)
10313 btrfs_end_transaction(trans, root);
10314 break;
10315 }
10316
10317 btrfs_drop_extent_cache(inode, cur_offset,
10318 cur_offset + ins.offset -1, 0);
10319
10320 em = alloc_extent_map();
10321 if (!em) {
10322 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10323 &BTRFS_I(inode)->runtime_flags);
10324 goto next;
10325 }
10326
10327 em->start = cur_offset;
10328 em->orig_start = cur_offset;
10329 em->len = ins.offset;
10330 em->block_start = ins.objectid;
10331 em->block_len = ins.offset;
10332 em->orig_block_len = ins.offset;
10333 em->ram_bytes = ins.offset;
10334 em->bdev = root->fs_info->fs_devices->latest_bdev;
10335 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10336 em->generation = trans->transid;
10337
10338 while (1) {
10339 write_lock(&em_tree->lock);
10340 ret = add_extent_mapping(em_tree, em, 1);
10341 write_unlock(&em_tree->lock);
10342 if (ret != -EEXIST)
10343 break;
10344 btrfs_drop_extent_cache(inode, cur_offset,
10345 cur_offset + ins.offset - 1,
10346 0);
10347 }
10348 free_extent_map(em);
10349 next:
10350 num_bytes -= ins.offset;
10351 cur_offset += ins.offset;
10352 *alloc_hint = ins.objectid + ins.offset;
10353
10354 inode_inc_iversion(inode);
10355 inode->i_ctime = current_fs_time(inode->i_sb);
10356 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10357 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10358 (actual_len > inode->i_size) &&
10359 (cur_offset > inode->i_size)) {
10360 if (cur_offset > actual_len)
10361 i_size = actual_len;
10362 else
10363 i_size = cur_offset;
10364 i_size_write(inode, i_size);
10365 btrfs_ordered_update_i_size(inode, i_size, NULL);
10366 }
10367
10368 ret = btrfs_update_inode(trans, root, inode);
10369
10370 if (ret) {
10371 btrfs_abort_transaction(trans, root, ret);
10372 if (own_trans)
10373 btrfs_end_transaction(trans, root);
10374 break;
10375 }
10376
10377 if (own_trans)
10378 btrfs_end_transaction(trans, root);
10379 }
10380 return ret;
10381 }
10382
10383 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10384 u64 start, u64 num_bytes, u64 min_size,
10385 loff_t actual_len, u64 *alloc_hint)
10386 {
10387 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10388 min_size, actual_len, alloc_hint,
10389 NULL);
10390 }
10391
10392 int btrfs_prealloc_file_range_trans(struct inode *inode,
10393 struct btrfs_trans_handle *trans, int mode,
10394 u64 start, u64 num_bytes, u64 min_size,
10395 loff_t actual_len, u64 *alloc_hint)
10396 {
10397 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10398 min_size, actual_len, alloc_hint, trans);
10399 }
10400
10401 static int btrfs_set_page_dirty(struct page *page)
10402 {
10403 return __set_page_dirty_nobuffers(page);
10404 }
10405
10406 static int btrfs_permission(struct inode *inode, int mask)
10407 {
10408 struct btrfs_root *root = BTRFS_I(inode)->root;
10409 umode_t mode = inode->i_mode;
10410
10411 if (mask & MAY_WRITE &&
10412 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10413 if (btrfs_root_readonly(root))
10414 return -EROFS;
10415 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10416 return -EACCES;
10417 }
10418 return generic_permission(inode, mask);
10419 }
10420
10421 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10422 {
10423 struct btrfs_trans_handle *trans;
10424 struct btrfs_root *root = BTRFS_I(dir)->root;
10425 struct inode *inode = NULL;
10426 u64 objectid;
10427 u64 index;
10428 int ret = 0;
10429
10430 /*
10431 * 5 units required for adding orphan entry
10432 */
10433 trans = btrfs_start_transaction(root, 5);
10434 if (IS_ERR(trans))
10435 return PTR_ERR(trans);
10436
10437 ret = btrfs_find_free_ino(root, &objectid);
10438 if (ret)
10439 goto out;
10440
10441 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10442 btrfs_ino(dir), objectid, mode, &index);
10443 if (IS_ERR(inode)) {
10444 ret = PTR_ERR(inode);
10445 inode = NULL;
10446 goto out;
10447 }
10448
10449 inode->i_fop = &btrfs_file_operations;
10450 inode->i_op = &btrfs_file_inode_operations;
10451
10452 inode->i_mapping->a_ops = &btrfs_aops;
10453 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10454
10455 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10456 if (ret)
10457 goto out_inode;
10458
10459 ret = btrfs_update_inode(trans, root, inode);
10460 if (ret)
10461 goto out_inode;
10462 ret = btrfs_orphan_add(trans, inode);
10463 if (ret)
10464 goto out_inode;
10465
10466 /*
10467 * We set number of links to 0 in btrfs_new_inode(), and here we set
10468 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10469 * through:
10470 *
10471 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10472 */
10473 set_nlink(inode, 1);
10474 unlock_new_inode(inode);
10475 d_tmpfile(dentry, inode);
10476 mark_inode_dirty(inode);
10477
10478 out:
10479 btrfs_end_transaction(trans, root);
10480 if (ret)
10481 iput(inode);
10482 btrfs_balance_delayed_items(root);
10483 btrfs_btree_balance_dirty(root);
10484 return ret;
10485
10486 out_inode:
10487 unlock_new_inode(inode);
10488 goto out;
10489
10490 }
10491
10492 /* Inspired by filemap_check_errors() */
10493 int btrfs_inode_check_errors(struct inode *inode)
10494 {
10495 int ret = 0;
10496
10497 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10498 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10499 ret = -ENOSPC;
10500 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10501 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10502 ret = -EIO;
10503
10504 return ret;
10505 }
10506
10507 static const struct inode_operations btrfs_dir_inode_operations = {
10508 .getattr = btrfs_getattr,
10509 .lookup = btrfs_lookup,
10510 .create = btrfs_create,
10511 .unlink = btrfs_unlink,
10512 .link = btrfs_link,
10513 .mkdir = btrfs_mkdir,
10514 .rmdir = btrfs_rmdir,
10515 .rename2 = btrfs_rename2,
10516 .symlink = btrfs_symlink,
10517 .setattr = btrfs_setattr,
10518 .mknod = btrfs_mknod,
10519 .setxattr = generic_setxattr,
10520 .getxattr = generic_getxattr,
10521 .listxattr = btrfs_listxattr,
10522 .removexattr = generic_removexattr,
10523 .permission = btrfs_permission,
10524 .get_acl = btrfs_get_acl,
10525 .set_acl = btrfs_set_acl,
10526 .update_time = btrfs_update_time,
10527 .tmpfile = btrfs_tmpfile,
10528 };
10529 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10530 .lookup = btrfs_lookup,
10531 .permission = btrfs_permission,
10532 .get_acl = btrfs_get_acl,
10533 .set_acl = btrfs_set_acl,
10534 .update_time = btrfs_update_time,
10535 };
10536
10537 static const struct file_operations btrfs_dir_file_operations = {
10538 .llseek = generic_file_llseek,
10539 .read = generic_read_dir,
10540 .iterate_shared = btrfs_real_readdir,
10541 .unlocked_ioctl = btrfs_ioctl,
10542 #ifdef CONFIG_COMPAT
10543 .compat_ioctl = btrfs_compat_ioctl,
10544 #endif
10545 .release = btrfs_release_file,
10546 .fsync = btrfs_sync_file,
10547 };
10548
10549 static const struct extent_io_ops btrfs_extent_io_ops = {
10550 .fill_delalloc = run_delalloc_range,
10551 .submit_bio_hook = btrfs_submit_bio_hook,
10552 .merge_bio_hook = btrfs_merge_bio_hook,
10553 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10554 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10555 .writepage_start_hook = btrfs_writepage_start_hook,
10556 .set_bit_hook = btrfs_set_bit_hook,
10557 .clear_bit_hook = btrfs_clear_bit_hook,
10558 .merge_extent_hook = btrfs_merge_extent_hook,
10559 .split_extent_hook = btrfs_split_extent_hook,
10560 };
10561
10562 /*
10563 * btrfs doesn't support the bmap operation because swapfiles
10564 * use bmap to make a mapping of extents in the file. They assume
10565 * these extents won't change over the life of the file and they
10566 * use the bmap result to do IO directly to the drive.
10567 *
10568 * the btrfs bmap call would return logical addresses that aren't
10569 * suitable for IO and they also will change frequently as COW
10570 * operations happen. So, swapfile + btrfs == corruption.
10571 *
10572 * For now we're avoiding this by dropping bmap.
10573 */
10574 static const struct address_space_operations btrfs_aops = {
10575 .readpage = btrfs_readpage,
10576 .writepage = btrfs_writepage,
10577 .writepages = btrfs_writepages,
10578 .readpages = btrfs_readpages,
10579 .direct_IO = btrfs_direct_IO,
10580 .invalidatepage = btrfs_invalidatepage,
10581 .releasepage = btrfs_releasepage,
10582 .set_page_dirty = btrfs_set_page_dirty,
10583 .error_remove_page = generic_error_remove_page,
10584 };
10585
10586 static const struct address_space_operations btrfs_symlink_aops = {
10587 .readpage = btrfs_readpage,
10588 .writepage = btrfs_writepage,
10589 .invalidatepage = btrfs_invalidatepage,
10590 .releasepage = btrfs_releasepage,
10591 };
10592
10593 static const struct inode_operations btrfs_file_inode_operations = {
10594 .getattr = btrfs_getattr,
10595 .setattr = btrfs_setattr,
10596 .setxattr = generic_setxattr,
10597 .getxattr = generic_getxattr,
10598 .listxattr = btrfs_listxattr,
10599 .removexattr = generic_removexattr,
10600 .permission = btrfs_permission,
10601 .fiemap = btrfs_fiemap,
10602 .get_acl = btrfs_get_acl,
10603 .set_acl = btrfs_set_acl,
10604 .update_time = btrfs_update_time,
10605 };
10606 static const struct inode_operations btrfs_special_inode_operations = {
10607 .getattr = btrfs_getattr,
10608 .setattr = btrfs_setattr,
10609 .permission = btrfs_permission,
10610 .setxattr = generic_setxattr,
10611 .getxattr = generic_getxattr,
10612 .listxattr = btrfs_listxattr,
10613 .removexattr = generic_removexattr,
10614 .get_acl = btrfs_get_acl,
10615 .set_acl = btrfs_set_acl,
10616 .update_time = btrfs_update_time,
10617 };
10618 static const struct inode_operations btrfs_symlink_inode_operations = {
10619 .readlink = generic_readlink,
10620 .get_link = page_get_link,
10621 .getattr = btrfs_getattr,
10622 .setattr = btrfs_setattr,
10623 .permission = btrfs_permission,
10624 .setxattr = generic_setxattr,
10625 .getxattr = generic_getxattr,
10626 .listxattr = btrfs_listxattr,
10627 .removexattr = generic_removexattr,
10628 .update_time = btrfs_update_time,
10629 };
10630
10631 const struct dentry_operations btrfs_dentry_operations = {
10632 .d_delete = btrfs_dentry_delete,
10633 .d_release = btrfs_dentry_release,
10634 };
This page took 0.257991 seconds and 5 git commands to generate.