Merge branch 'rc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuil...
[deliverable/linux.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53
54 struct btrfs_iget_args {
55 u64 ino;
56 struct btrfs_root *root;
57 };
58
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
83 };
84
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 struct page *locked_page,
89 u64 start, u64 end, int *page_started,
90 unsigned long *nr_written, int unlock);
91
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 struct inode *inode, struct inode *dir)
94 {
95 int err;
96
97 err = btrfs_init_acl(trans, inode, dir);
98 if (!err)
99 err = btrfs_xattr_security_init(trans, inode, dir);
100 return err;
101 }
102
103 /*
104 * this does all the hard work for inserting an inline extent into
105 * the btree. The caller should have done a btrfs_drop_extents so that
106 * no overlapping inline items exist in the btree
107 */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root, struct inode *inode,
110 u64 start, size_t size, size_t compressed_size,
111 struct page **compressed_pages)
112 {
113 struct btrfs_key key;
114 struct btrfs_path *path;
115 struct extent_buffer *leaf;
116 struct page *page = NULL;
117 char *kaddr;
118 unsigned long ptr;
119 struct btrfs_file_extent_item *ei;
120 int err = 0;
121 int ret;
122 size_t cur_size = size;
123 size_t datasize;
124 unsigned long offset;
125 int compress_type = BTRFS_COMPRESS_NONE;
126
127 if (compressed_size && compressed_pages) {
128 compress_type = root->fs_info->compress_type;
129 cur_size = compressed_size;
130 }
131
132 path = btrfs_alloc_path();
133 if (!path)
134 return -ENOMEM;
135
136 path->leave_spinning = 1;
137 btrfs_set_trans_block_group(trans, inode);
138
139 key.objectid = inode->i_ino;
140 key.offset = start;
141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 datasize = btrfs_file_extent_calc_inline_size(cur_size);
143
144 inode_add_bytes(inode, size);
145 ret = btrfs_insert_empty_item(trans, root, path, &key,
146 datasize);
147 BUG_ON(ret);
148 if (ret) {
149 err = ret;
150 goto fail;
151 }
152 leaf = path->nodes[0];
153 ei = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_file_extent_item);
155 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 btrfs_set_file_extent_encryption(leaf, ei, 0);
158 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 ptr = btrfs_file_extent_inline_start(ei);
161
162 if (compress_type != BTRFS_COMPRESS_NONE) {
163 struct page *cpage;
164 int i = 0;
165 while (compressed_size > 0) {
166 cpage = compressed_pages[i];
167 cur_size = min_t(unsigned long, compressed_size,
168 PAGE_CACHE_SIZE);
169
170 kaddr = kmap_atomic(cpage, KM_USER0);
171 write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 kunmap_atomic(kaddr, KM_USER0);
173
174 i++;
175 ptr += cur_size;
176 compressed_size -= cur_size;
177 }
178 btrfs_set_file_extent_compression(leaf, ei,
179 compress_type);
180 } else {
181 page = find_get_page(inode->i_mapping,
182 start >> PAGE_CACHE_SHIFT);
183 btrfs_set_file_extent_compression(leaf, ei, 0);
184 kaddr = kmap_atomic(page, KM_USER0);
185 offset = start & (PAGE_CACHE_SIZE - 1);
186 write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 kunmap_atomic(kaddr, KM_USER0);
188 page_cache_release(page);
189 }
190 btrfs_mark_buffer_dirty(leaf);
191 btrfs_free_path(path);
192
193 /*
194 * we're an inline extent, so nobody can
195 * extend the file past i_size without locking
196 * a page we already have locked.
197 *
198 * We must do any isize and inode updates
199 * before we unlock the pages. Otherwise we
200 * could end up racing with unlink.
201 */
202 BTRFS_I(inode)->disk_i_size = inode->i_size;
203 btrfs_update_inode(trans, root, inode);
204
205 return 0;
206 fail:
207 btrfs_free_path(path);
208 return err;
209 }
210
211
212 /*
213 * conditionally insert an inline extent into the file. This
214 * does the checks required to make sure the data is small enough
215 * to fit as an inline extent.
216 */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 struct btrfs_root *root,
219 struct inode *inode, u64 start, u64 end,
220 size_t compressed_size,
221 struct page **compressed_pages)
222 {
223 u64 isize = i_size_read(inode);
224 u64 actual_end = min(end + 1, isize);
225 u64 inline_len = actual_end - start;
226 u64 aligned_end = (end + root->sectorsize - 1) &
227 ~((u64)root->sectorsize - 1);
228 u64 hint_byte;
229 u64 data_len = inline_len;
230 int ret;
231
232 if (compressed_size)
233 data_len = compressed_size;
234
235 if (start > 0 ||
236 actual_end >= PAGE_CACHE_SIZE ||
237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 (!compressed_size &&
239 (actual_end & (root->sectorsize - 1)) == 0) ||
240 end + 1 < isize ||
241 data_len > root->fs_info->max_inline) {
242 return 1;
243 }
244
245 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 &hint_byte, 1);
247 BUG_ON(ret);
248
249 if (isize > actual_end)
250 inline_len = min_t(u64, isize, actual_end);
251 ret = insert_inline_extent(trans, root, inode, start,
252 inline_len, compressed_size,
253 compressed_pages);
254 BUG_ON(ret);
255 btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 return 0;
258 }
259
260 struct async_extent {
261 u64 start;
262 u64 ram_size;
263 u64 compressed_size;
264 struct page **pages;
265 unsigned long nr_pages;
266 int compress_type;
267 struct list_head list;
268 };
269
270 struct async_cow {
271 struct inode *inode;
272 struct btrfs_root *root;
273 struct page *locked_page;
274 u64 start;
275 u64 end;
276 struct list_head extents;
277 struct btrfs_work work;
278 };
279
280 static noinline int add_async_extent(struct async_cow *cow,
281 u64 start, u64 ram_size,
282 u64 compressed_size,
283 struct page **pages,
284 unsigned long nr_pages,
285 int compress_type)
286 {
287 struct async_extent *async_extent;
288
289 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
290 async_extent->start = start;
291 async_extent->ram_size = ram_size;
292 async_extent->compressed_size = compressed_size;
293 async_extent->pages = pages;
294 async_extent->nr_pages = nr_pages;
295 async_extent->compress_type = compress_type;
296 list_add_tail(&async_extent->list, &cow->extents);
297 return 0;
298 }
299
300 /*
301 * we create compressed extents in two phases. The first
302 * phase compresses a range of pages that have already been
303 * locked (both pages and state bits are locked).
304 *
305 * This is done inside an ordered work queue, and the compression
306 * is spread across many cpus. The actual IO submission is step
307 * two, and the ordered work queue takes care of making sure that
308 * happens in the same order things were put onto the queue by
309 * writepages and friends.
310 *
311 * If this code finds it can't get good compression, it puts an
312 * entry onto the work queue to write the uncompressed bytes. This
313 * makes sure that both compressed inodes and uncompressed inodes
314 * are written in the same order that pdflush sent them down.
315 */
316 static noinline int compress_file_range(struct inode *inode,
317 struct page *locked_page,
318 u64 start, u64 end,
319 struct async_cow *async_cow,
320 int *num_added)
321 {
322 struct btrfs_root *root = BTRFS_I(inode)->root;
323 struct btrfs_trans_handle *trans;
324 u64 num_bytes;
325 u64 blocksize = root->sectorsize;
326 u64 actual_end;
327 u64 isize = i_size_read(inode);
328 int ret = 0;
329 struct page **pages = NULL;
330 unsigned long nr_pages;
331 unsigned long nr_pages_ret = 0;
332 unsigned long total_compressed = 0;
333 unsigned long total_in = 0;
334 unsigned long max_compressed = 128 * 1024;
335 unsigned long max_uncompressed = 128 * 1024;
336 int i;
337 int will_compress;
338 int compress_type = root->fs_info->compress_type;
339
340 actual_end = min_t(u64, isize, end + 1);
341 again:
342 will_compress = 0;
343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
345
346 /*
347 * we don't want to send crud past the end of i_size through
348 * compression, that's just a waste of CPU time. So, if the
349 * end of the file is before the start of our current
350 * requested range of bytes, we bail out to the uncompressed
351 * cleanup code that can deal with all of this.
352 *
353 * It isn't really the fastest way to fix things, but this is a
354 * very uncommon corner.
355 */
356 if (actual_end <= start)
357 goto cleanup_and_bail_uncompressed;
358
359 total_compressed = actual_end - start;
360
361 /* we want to make sure that amount of ram required to uncompress
362 * an extent is reasonable, so we limit the total size in ram
363 * of a compressed extent to 128k. This is a crucial number
364 * because it also controls how easily we can spread reads across
365 * cpus for decompression.
366 *
367 * We also want to make sure the amount of IO required to do
368 * a random read is reasonably small, so we limit the size of
369 * a compressed extent to 128k.
370 */
371 total_compressed = min(total_compressed, max_uncompressed);
372 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
373 num_bytes = max(blocksize, num_bytes);
374 total_in = 0;
375 ret = 0;
376
377 /*
378 * we do compression for mount -o compress and when the
379 * inode has not been flagged as nocompress. This flag can
380 * change at any time if we discover bad compression ratios.
381 */
382 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
383 (btrfs_test_opt(root, COMPRESS) ||
384 (BTRFS_I(inode)->force_compress))) {
385 WARN_ON(pages);
386 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
387
388 if (BTRFS_I(inode)->force_compress)
389 compress_type = BTRFS_I(inode)->force_compress;
390
391 ret = btrfs_compress_pages(compress_type,
392 inode->i_mapping, start,
393 total_compressed, pages,
394 nr_pages, &nr_pages_ret,
395 &total_in,
396 &total_compressed,
397 max_compressed);
398
399 if (!ret) {
400 unsigned long offset = total_compressed &
401 (PAGE_CACHE_SIZE - 1);
402 struct page *page = pages[nr_pages_ret - 1];
403 char *kaddr;
404
405 /* zero the tail end of the last page, we might be
406 * sending it down to disk
407 */
408 if (offset) {
409 kaddr = kmap_atomic(page, KM_USER0);
410 memset(kaddr + offset, 0,
411 PAGE_CACHE_SIZE - offset);
412 kunmap_atomic(kaddr, KM_USER0);
413 }
414 will_compress = 1;
415 }
416 }
417 if (start == 0) {
418 trans = btrfs_join_transaction(root, 1);
419 BUG_ON(IS_ERR(trans));
420 btrfs_set_trans_block_group(trans, inode);
421 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
422
423 /* lets try to make an inline extent */
424 if (ret || total_in < (actual_end - start)) {
425 /* we didn't compress the entire range, try
426 * to make an uncompressed inline extent.
427 */
428 ret = cow_file_range_inline(trans, root, inode,
429 start, end, 0, NULL);
430 } else {
431 /* try making a compressed inline extent */
432 ret = cow_file_range_inline(trans, root, inode,
433 start, end,
434 total_compressed, pages);
435 }
436 if (ret == 0) {
437 /*
438 * inline extent creation worked, we don't need
439 * to create any more async work items. Unlock
440 * and free up our temp pages.
441 */
442 extent_clear_unlock_delalloc(inode,
443 &BTRFS_I(inode)->io_tree,
444 start, end, NULL,
445 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
446 EXTENT_CLEAR_DELALLOC |
447 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
448
449 btrfs_end_transaction(trans, root);
450 goto free_pages_out;
451 }
452 btrfs_end_transaction(trans, root);
453 }
454
455 if (will_compress) {
456 /*
457 * we aren't doing an inline extent round the compressed size
458 * up to a block size boundary so the allocator does sane
459 * things
460 */
461 total_compressed = (total_compressed + blocksize - 1) &
462 ~(blocksize - 1);
463
464 /*
465 * one last check to make sure the compression is really a
466 * win, compare the page count read with the blocks on disk
467 */
468 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
469 ~(PAGE_CACHE_SIZE - 1);
470 if (total_compressed >= total_in) {
471 will_compress = 0;
472 } else {
473 num_bytes = total_in;
474 }
475 }
476 if (!will_compress && pages) {
477 /*
478 * the compression code ran but failed to make things smaller,
479 * free any pages it allocated and our page pointer array
480 */
481 for (i = 0; i < nr_pages_ret; i++) {
482 WARN_ON(pages[i]->mapping);
483 page_cache_release(pages[i]);
484 }
485 kfree(pages);
486 pages = NULL;
487 total_compressed = 0;
488 nr_pages_ret = 0;
489
490 /* flag the file so we don't compress in the future */
491 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
492 !(BTRFS_I(inode)->force_compress)) {
493 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
494 }
495 }
496 if (will_compress) {
497 *num_added += 1;
498
499 /* the async work queues will take care of doing actual
500 * allocation on disk for these compressed pages,
501 * and will submit them to the elevator.
502 */
503 add_async_extent(async_cow, start, num_bytes,
504 total_compressed, pages, nr_pages_ret,
505 compress_type);
506
507 if (start + num_bytes < end) {
508 start += num_bytes;
509 pages = NULL;
510 cond_resched();
511 goto again;
512 }
513 } else {
514 cleanup_and_bail_uncompressed:
515 /*
516 * No compression, but we still need to write the pages in
517 * the file we've been given so far. redirty the locked
518 * page if it corresponds to our extent and set things up
519 * for the async work queue to run cow_file_range to do
520 * the normal delalloc dance
521 */
522 if (page_offset(locked_page) >= start &&
523 page_offset(locked_page) <= end) {
524 __set_page_dirty_nobuffers(locked_page);
525 /* unlocked later on in the async handlers */
526 }
527 add_async_extent(async_cow, start, end - start + 1,
528 0, NULL, 0, BTRFS_COMPRESS_NONE);
529 *num_added += 1;
530 }
531
532 out:
533 return 0;
534
535 free_pages_out:
536 for (i = 0; i < nr_pages_ret; i++) {
537 WARN_ON(pages[i]->mapping);
538 page_cache_release(pages[i]);
539 }
540 kfree(pages);
541
542 goto out;
543 }
544
545 /*
546 * phase two of compressed writeback. This is the ordered portion
547 * of the code, which only gets called in the order the work was
548 * queued. We walk all the async extents created by compress_file_range
549 * and send them down to the disk.
550 */
551 static noinline int submit_compressed_extents(struct inode *inode,
552 struct async_cow *async_cow)
553 {
554 struct async_extent *async_extent;
555 u64 alloc_hint = 0;
556 struct btrfs_trans_handle *trans;
557 struct btrfs_key ins;
558 struct extent_map *em;
559 struct btrfs_root *root = BTRFS_I(inode)->root;
560 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
561 struct extent_io_tree *io_tree;
562 int ret = 0;
563
564 if (list_empty(&async_cow->extents))
565 return 0;
566
567
568 while (!list_empty(&async_cow->extents)) {
569 async_extent = list_entry(async_cow->extents.next,
570 struct async_extent, list);
571 list_del(&async_extent->list);
572
573 io_tree = &BTRFS_I(inode)->io_tree;
574
575 retry:
576 /* did the compression code fall back to uncompressed IO? */
577 if (!async_extent->pages) {
578 int page_started = 0;
579 unsigned long nr_written = 0;
580
581 lock_extent(io_tree, async_extent->start,
582 async_extent->start +
583 async_extent->ram_size - 1, GFP_NOFS);
584
585 /* allocate blocks */
586 ret = cow_file_range(inode, async_cow->locked_page,
587 async_extent->start,
588 async_extent->start +
589 async_extent->ram_size - 1,
590 &page_started, &nr_written, 0);
591
592 /*
593 * if page_started, cow_file_range inserted an
594 * inline extent and took care of all the unlocking
595 * and IO for us. Otherwise, we need to submit
596 * all those pages down to the drive.
597 */
598 if (!page_started && !ret)
599 extent_write_locked_range(io_tree,
600 inode, async_extent->start,
601 async_extent->start +
602 async_extent->ram_size - 1,
603 btrfs_get_extent,
604 WB_SYNC_ALL);
605 kfree(async_extent);
606 cond_resched();
607 continue;
608 }
609
610 lock_extent(io_tree, async_extent->start,
611 async_extent->start + async_extent->ram_size - 1,
612 GFP_NOFS);
613
614 trans = btrfs_join_transaction(root, 1);
615 BUG_ON(IS_ERR(trans));
616 ret = btrfs_reserve_extent(trans, root,
617 async_extent->compressed_size,
618 async_extent->compressed_size,
619 0, alloc_hint,
620 (u64)-1, &ins, 1);
621 btrfs_end_transaction(trans, root);
622
623 if (ret) {
624 int i;
625 for (i = 0; i < async_extent->nr_pages; i++) {
626 WARN_ON(async_extent->pages[i]->mapping);
627 page_cache_release(async_extent->pages[i]);
628 }
629 kfree(async_extent->pages);
630 async_extent->nr_pages = 0;
631 async_extent->pages = NULL;
632 unlock_extent(io_tree, async_extent->start,
633 async_extent->start +
634 async_extent->ram_size - 1, GFP_NOFS);
635 goto retry;
636 }
637
638 /*
639 * here we're doing allocation and writeback of the
640 * compressed pages
641 */
642 btrfs_drop_extent_cache(inode, async_extent->start,
643 async_extent->start +
644 async_extent->ram_size - 1, 0);
645
646 em = alloc_extent_map(GFP_NOFS);
647 em->start = async_extent->start;
648 em->len = async_extent->ram_size;
649 em->orig_start = em->start;
650
651 em->block_start = ins.objectid;
652 em->block_len = ins.offset;
653 em->bdev = root->fs_info->fs_devices->latest_bdev;
654 em->compress_type = async_extent->compress_type;
655 set_bit(EXTENT_FLAG_PINNED, &em->flags);
656 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
657
658 while (1) {
659 write_lock(&em_tree->lock);
660 ret = add_extent_mapping(em_tree, em);
661 write_unlock(&em_tree->lock);
662 if (ret != -EEXIST) {
663 free_extent_map(em);
664 break;
665 }
666 btrfs_drop_extent_cache(inode, async_extent->start,
667 async_extent->start +
668 async_extent->ram_size - 1, 0);
669 }
670
671 ret = btrfs_add_ordered_extent_compress(inode,
672 async_extent->start,
673 ins.objectid,
674 async_extent->ram_size,
675 ins.offset,
676 BTRFS_ORDERED_COMPRESSED,
677 async_extent->compress_type);
678 BUG_ON(ret);
679
680 /*
681 * clear dirty, set writeback and unlock the pages.
682 */
683 extent_clear_unlock_delalloc(inode,
684 &BTRFS_I(inode)->io_tree,
685 async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1,
688 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
689 EXTENT_CLEAR_UNLOCK |
690 EXTENT_CLEAR_DELALLOC |
691 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
692
693 ret = btrfs_submit_compressed_write(inode,
694 async_extent->start,
695 async_extent->ram_size,
696 ins.objectid,
697 ins.offset, async_extent->pages,
698 async_extent->nr_pages);
699
700 BUG_ON(ret);
701 alloc_hint = ins.objectid + ins.offset;
702 kfree(async_extent);
703 cond_resched();
704 }
705
706 return 0;
707 }
708
709 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
710 u64 num_bytes)
711 {
712 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
713 struct extent_map *em;
714 u64 alloc_hint = 0;
715
716 read_lock(&em_tree->lock);
717 em = search_extent_mapping(em_tree, start, num_bytes);
718 if (em) {
719 /*
720 * if block start isn't an actual block number then find the
721 * first block in this inode and use that as a hint. If that
722 * block is also bogus then just don't worry about it.
723 */
724 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
725 free_extent_map(em);
726 em = search_extent_mapping(em_tree, 0, 0);
727 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
728 alloc_hint = em->block_start;
729 if (em)
730 free_extent_map(em);
731 } else {
732 alloc_hint = em->block_start;
733 free_extent_map(em);
734 }
735 }
736 read_unlock(&em_tree->lock);
737
738 return alloc_hint;
739 }
740
741 /*
742 * when extent_io.c finds a delayed allocation range in the file,
743 * the call backs end up in this code. The basic idea is to
744 * allocate extents on disk for the range, and create ordered data structs
745 * in ram to track those extents.
746 *
747 * locked_page is the page that writepage had locked already. We use
748 * it to make sure we don't do extra locks or unlocks.
749 *
750 * *page_started is set to one if we unlock locked_page and do everything
751 * required to start IO on it. It may be clean and already done with
752 * IO when we return.
753 */
754 static noinline int cow_file_range(struct inode *inode,
755 struct page *locked_page,
756 u64 start, u64 end, int *page_started,
757 unsigned long *nr_written,
758 int unlock)
759 {
760 struct btrfs_root *root = BTRFS_I(inode)->root;
761 struct btrfs_trans_handle *trans;
762 u64 alloc_hint = 0;
763 u64 num_bytes;
764 unsigned long ram_size;
765 u64 disk_num_bytes;
766 u64 cur_alloc_size;
767 u64 blocksize = root->sectorsize;
768 struct btrfs_key ins;
769 struct extent_map *em;
770 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
771 int ret = 0;
772
773 BUG_ON(root == root->fs_info->tree_root);
774 trans = btrfs_join_transaction(root, 1);
775 BUG_ON(IS_ERR(trans));
776 btrfs_set_trans_block_group(trans, inode);
777 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
778
779 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
780 num_bytes = max(blocksize, num_bytes);
781 disk_num_bytes = num_bytes;
782 ret = 0;
783
784 if (start == 0) {
785 /* lets try to make an inline extent */
786 ret = cow_file_range_inline(trans, root, inode,
787 start, end, 0, NULL);
788 if (ret == 0) {
789 extent_clear_unlock_delalloc(inode,
790 &BTRFS_I(inode)->io_tree,
791 start, end, NULL,
792 EXTENT_CLEAR_UNLOCK_PAGE |
793 EXTENT_CLEAR_UNLOCK |
794 EXTENT_CLEAR_DELALLOC |
795 EXTENT_CLEAR_DIRTY |
796 EXTENT_SET_WRITEBACK |
797 EXTENT_END_WRITEBACK);
798
799 *nr_written = *nr_written +
800 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
801 *page_started = 1;
802 ret = 0;
803 goto out;
804 }
805 }
806
807 BUG_ON(disk_num_bytes >
808 btrfs_super_total_bytes(&root->fs_info->super_copy));
809
810 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
811 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
812
813 while (disk_num_bytes > 0) {
814 unsigned long op;
815
816 cur_alloc_size = disk_num_bytes;
817 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
818 root->sectorsize, 0, alloc_hint,
819 (u64)-1, &ins, 1);
820 BUG_ON(ret);
821
822 em = alloc_extent_map(GFP_NOFS);
823 em->start = start;
824 em->orig_start = em->start;
825 ram_size = ins.offset;
826 em->len = ins.offset;
827
828 em->block_start = ins.objectid;
829 em->block_len = ins.offset;
830 em->bdev = root->fs_info->fs_devices->latest_bdev;
831 set_bit(EXTENT_FLAG_PINNED, &em->flags);
832
833 while (1) {
834 write_lock(&em_tree->lock);
835 ret = add_extent_mapping(em_tree, em);
836 write_unlock(&em_tree->lock);
837 if (ret != -EEXIST) {
838 free_extent_map(em);
839 break;
840 }
841 btrfs_drop_extent_cache(inode, start,
842 start + ram_size - 1, 0);
843 }
844
845 cur_alloc_size = ins.offset;
846 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
847 ram_size, cur_alloc_size, 0);
848 BUG_ON(ret);
849
850 if (root->root_key.objectid ==
851 BTRFS_DATA_RELOC_TREE_OBJECTID) {
852 ret = btrfs_reloc_clone_csums(inode, start,
853 cur_alloc_size);
854 BUG_ON(ret);
855 }
856
857 if (disk_num_bytes < cur_alloc_size)
858 break;
859
860 /* we're not doing compressed IO, don't unlock the first
861 * page (which the caller expects to stay locked), don't
862 * clear any dirty bits and don't set any writeback bits
863 *
864 * Do set the Private2 bit so we know this page was properly
865 * setup for writepage
866 */
867 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
868 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
869 EXTENT_SET_PRIVATE2;
870
871 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
872 start, start + ram_size - 1,
873 locked_page, op);
874 disk_num_bytes -= cur_alloc_size;
875 num_bytes -= cur_alloc_size;
876 alloc_hint = ins.objectid + ins.offset;
877 start += cur_alloc_size;
878 }
879 out:
880 ret = 0;
881 btrfs_end_transaction(trans, root);
882
883 return ret;
884 }
885
886 /*
887 * work queue call back to started compression on a file and pages
888 */
889 static noinline void async_cow_start(struct btrfs_work *work)
890 {
891 struct async_cow *async_cow;
892 int num_added = 0;
893 async_cow = container_of(work, struct async_cow, work);
894
895 compress_file_range(async_cow->inode, async_cow->locked_page,
896 async_cow->start, async_cow->end, async_cow,
897 &num_added);
898 if (num_added == 0)
899 async_cow->inode = NULL;
900 }
901
902 /*
903 * work queue call back to submit previously compressed pages
904 */
905 static noinline void async_cow_submit(struct btrfs_work *work)
906 {
907 struct async_cow *async_cow;
908 struct btrfs_root *root;
909 unsigned long nr_pages;
910
911 async_cow = container_of(work, struct async_cow, work);
912
913 root = async_cow->root;
914 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
915 PAGE_CACHE_SHIFT;
916
917 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
918
919 if (atomic_read(&root->fs_info->async_delalloc_pages) <
920 5 * 1042 * 1024 &&
921 waitqueue_active(&root->fs_info->async_submit_wait))
922 wake_up(&root->fs_info->async_submit_wait);
923
924 if (async_cow->inode)
925 submit_compressed_extents(async_cow->inode, async_cow);
926 }
927
928 static noinline void async_cow_free(struct btrfs_work *work)
929 {
930 struct async_cow *async_cow;
931 async_cow = container_of(work, struct async_cow, work);
932 kfree(async_cow);
933 }
934
935 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
936 u64 start, u64 end, int *page_started,
937 unsigned long *nr_written)
938 {
939 struct async_cow *async_cow;
940 struct btrfs_root *root = BTRFS_I(inode)->root;
941 unsigned long nr_pages;
942 u64 cur_end;
943 int limit = 10 * 1024 * 1042;
944
945 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
946 1, 0, NULL, GFP_NOFS);
947 while (start < end) {
948 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
949 async_cow->inode = inode;
950 async_cow->root = root;
951 async_cow->locked_page = locked_page;
952 async_cow->start = start;
953
954 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
955 cur_end = end;
956 else
957 cur_end = min(end, start + 512 * 1024 - 1);
958
959 async_cow->end = cur_end;
960 INIT_LIST_HEAD(&async_cow->extents);
961
962 async_cow->work.func = async_cow_start;
963 async_cow->work.ordered_func = async_cow_submit;
964 async_cow->work.ordered_free = async_cow_free;
965 async_cow->work.flags = 0;
966
967 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
968 PAGE_CACHE_SHIFT;
969 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
970
971 btrfs_queue_worker(&root->fs_info->delalloc_workers,
972 &async_cow->work);
973
974 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
975 wait_event(root->fs_info->async_submit_wait,
976 (atomic_read(&root->fs_info->async_delalloc_pages) <
977 limit));
978 }
979
980 while (atomic_read(&root->fs_info->async_submit_draining) &&
981 atomic_read(&root->fs_info->async_delalloc_pages)) {
982 wait_event(root->fs_info->async_submit_wait,
983 (atomic_read(&root->fs_info->async_delalloc_pages) ==
984 0));
985 }
986
987 *nr_written += nr_pages;
988 start = cur_end + 1;
989 }
990 *page_started = 1;
991 return 0;
992 }
993
994 static noinline int csum_exist_in_range(struct btrfs_root *root,
995 u64 bytenr, u64 num_bytes)
996 {
997 int ret;
998 struct btrfs_ordered_sum *sums;
999 LIST_HEAD(list);
1000
1001 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1002 bytenr + num_bytes - 1, &list);
1003 if (ret == 0 && list_empty(&list))
1004 return 0;
1005
1006 while (!list_empty(&list)) {
1007 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1008 list_del(&sums->list);
1009 kfree(sums);
1010 }
1011 return 1;
1012 }
1013
1014 /*
1015 * when nowcow writeback call back. This checks for snapshots or COW copies
1016 * of the extents that exist in the file, and COWs the file as required.
1017 *
1018 * If no cow copies or snapshots exist, we write directly to the existing
1019 * blocks on disk
1020 */
1021 static noinline int run_delalloc_nocow(struct inode *inode,
1022 struct page *locked_page,
1023 u64 start, u64 end, int *page_started, int force,
1024 unsigned long *nr_written)
1025 {
1026 struct btrfs_root *root = BTRFS_I(inode)->root;
1027 struct btrfs_trans_handle *trans;
1028 struct extent_buffer *leaf;
1029 struct btrfs_path *path;
1030 struct btrfs_file_extent_item *fi;
1031 struct btrfs_key found_key;
1032 u64 cow_start;
1033 u64 cur_offset;
1034 u64 extent_end;
1035 u64 extent_offset;
1036 u64 disk_bytenr;
1037 u64 num_bytes;
1038 int extent_type;
1039 int ret;
1040 int type;
1041 int nocow;
1042 int check_prev = 1;
1043 bool nolock = false;
1044
1045 path = btrfs_alloc_path();
1046 BUG_ON(!path);
1047 if (root == root->fs_info->tree_root) {
1048 nolock = true;
1049 trans = btrfs_join_transaction_nolock(root, 1);
1050 } else {
1051 trans = btrfs_join_transaction(root, 1);
1052 }
1053 BUG_ON(IS_ERR(trans));
1054
1055 cow_start = (u64)-1;
1056 cur_offset = start;
1057 while (1) {
1058 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1059 cur_offset, 0);
1060 BUG_ON(ret < 0);
1061 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1062 leaf = path->nodes[0];
1063 btrfs_item_key_to_cpu(leaf, &found_key,
1064 path->slots[0] - 1);
1065 if (found_key.objectid == inode->i_ino &&
1066 found_key.type == BTRFS_EXTENT_DATA_KEY)
1067 path->slots[0]--;
1068 }
1069 check_prev = 0;
1070 next_slot:
1071 leaf = path->nodes[0];
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1074 if (ret < 0)
1075 BUG_ON(1);
1076 if (ret > 0)
1077 break;
1078 leaf = path->nodes[0];
1079 }
1080
1081 nocow = 0;
1082 disk_bytenr = 0;
1083 num_bytes = 0;
1084 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1085
1086 if (found_key.objectid > inode->i_ino ||
1087 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1088 found_key.offset > end)
1089 break;
1090
1091 if (found_key.offset > cur_offset) {
1092 extent_end = found_key.offset;
1093 extent_type = 0;
1094 goto out_check;
1095 }
1096
1097 fi = btrfs_item_ptr(leaf, path->slots[0],
1098 struct btrfs_file_extent_item);
1099 extent_type = btrfs_file_extent_type(leaf, fi);
1100
1101 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1102 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1103 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1104 extent_offset = btrfs_file_extent_offset(leaf, fi);
1105 extent_end = found_key.offset +
1106 btrfs_file_extent_num_bytes(leaf, fi);
1107 if (extent_end <= start) {
1108 path->slots[0]++;
1109 goto next_slot;
1110 }
1111 if (disk_bytenr == 0)
1112 goto out_check;
1113 if (btrfs_file_extent_compression(leaf, fi) ||
1114 btrfs_file_extent_encryption(leaf, fi) ||
1115 btrfs_file_extent_other_encoding(leaf, fi))
1116 goto out_check;
1117 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1118 goto out_check;
1119 if (btrfs_extent_readonly(root, disk_bytenr))
1120 goto out_check;
1121 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1122 found_key.offset -
1123 extent_offset, disk_bytenr))
1124 goto out_check;
1125 disk_bytenr += extent_offset;
1126 disk_bytenr += cur_offset - found_key.offset;
1127 num_bytes = min(end + 1, extent_end) - cur_offset;
1128 /*
1129 * force cow if csum exists in the range.
1130 * this ensure that csum for a given extent are
1131 * either valid or do not exist.
1132 */
1133 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1134 goto out_check;
1135 nocow = 1;
1136 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1137 extent_end = found_key.offset +
1138 btrfs_file_extent_inline_len(leaf, fi);
1139 extent_end = ALIGN(extent_end, root->sectorsize);
1140 } else {
1141 BUG_ON(1);
1142 }
1143 out_check:
1144 if (extent_end <= start) {
1145 path->slots[0]++;
1146 goto next_slot;
1147 }
1148 if (!nocow) {
1149 if (cow_start == (u64)-1)
1150 cow_start = cur_offset;
1151 cur_offset = extent_end;
1152 if (cur_offset > end)
1153 break;
1154 path->slots[0]++;
1155 goto next_slot;
1156 }
1157
1158 btrfs_release_path(root, path);
1159 if (cow_start != (u64)-1) {
1160 ret = cow_file_range(inode, locked_page, cow_start,
1161 found_key.offset - 1, page_started,
1162 nr_written, 1);
1163 BUG_ON(ret);
1164 cow_start = (u64)-1;
1165 }
1166
1167 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1168 struct extent_map *em;
1169 struct extent_map_tree *em_tree;
1170 em_tree = &BTRFS_I(inode)->extent_tree;
1171 em = alloc_extent_map(GFP_NOFS);
1172 em->start = cur_offset;
1173 em->orig_start = em->start;
1174 em->len = num_bytes;
1175 em->block_len = num_bytes;
1176 em->block_start = disk_bytenr;
1177 em->bdev = root->fs_info->fs_devices->latest_bdev;
1178 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1179 while (1) {
1180 write_lock(&em_tree->lock);
1181 ret = add_extent_mapping(em_tree, em);
1182 write_unlock(&em_tree->lock);
1183 if (ret != -EEXIST) {
1184 free_extent_map(em);
1185 break;
1186 }
1187 btrfs_drop_extent_cache(inode, em->start,
1188 em->start + em->len - 1, 0);
1189 }
1190 type = BTRFS_ORDERED_PREALLOC;
1191 } else {
1192 type = BTRFS_ORDERED_NOCOW;
1193 }
1194
1195 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1196 num_bytes, num_bytes, type);
1197 BUG_ON(ret);
1198
1199 if (root->root_key.objectid ==
1200 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1201 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1202 num_bytes);
1203 BUG_ON(ret);
1204 }
1205
1206 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1207 cur_offset, cur_offset + num_bytes - 1,
1208 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1209 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1210 EXTENT_SET_PRIVATE2);
1211 cur_offset = extent_end;
1212 if (cur_offset > end)
1213 break;
1214 }
1215 btrfs_release_path(root, path);
1216
1217 if (cur_offset <= end && cow_start == (u64)-1)
1218 cow_start = cur_offset;
1219 if (cow_start != (u64)-1) {
1220 ret = cow_file_range(inode, locked_page, cow_start, end,
1221 page_started, nr_written, 1);
1222 BUG_ON(ret);
1223 }
1224
1225 if (nolock) {
1226 ret = btrfs_end_transaction_nolock(trans, root);
1227 BUG_ON(ret);
1228 } else {
1229 ret = btrfs_end_transaction(trans, root);
1230 BUG_ON(ret);
1231 }
1232 btrfs_free_path(path);
1233 return 0;
1234 }
1235
1236 /*
1237 * extent_io.c call back to do delayed allocation processing
1238 */
1239 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1240 u64 start, u64 end, int *page_started,
1241 unsigned long *nr_written)
1242 {
1243 int ret;
1244 struct btrfs_root *root = BTRFS_I(inode)->root;
1245
1246 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1247 ret = run_delalloc_nocow(inode, locked_page, start, end,
1248 page_started, 1, nr_written);
1249 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1250 ret = run_delalloc_nocow(inode, locked_page, start, end,
1251 page_started, 0, nr_written);
1252 else if (!btrfs_test_opt(root, COMPRESS) &&
1253 !(BTRFS_I(inode)->force_compress))
1254 ret = cow_file_range(inode, locked_page, start, end,
1255 page_started, nr_written, 1);
1256 else
1257 ret = cow_file_range_async(inode, locked_page, start, end,
1258 page_started, nr_written);
1259 return ret;
1260 }
1261
1262 static int btrfs_split_extent_hook(struct inode *inode,
1263 struct extent_state *orig, u64 split)
1264 {
1265 /* not delalloc, ignore it */
1266 if (!(orig->state & EXTENT_DELALLOC))
1267 return 0;
1268
1269 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1270 return 0;
1271 }
1272
1273 /*
1274 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1275 * extents so we can keep track of new extents that are just merged onto old
1276 * extents, such as when we are doing sequential writes, so we can properly
1277 * account for the metadata space we'll need.
1278 */
1279 static int btrfs_merge_extent_hook(struct inode *inode,
1280 struct extent_state *new,
1281 struct extent_state *other)
1282 {
1283 /* not delalloc, ignore it */
1284 if (!(other->state & EXTENT_DELALLOC))
1285 return 0;
1286
1287 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1288 return 0;
1289 }
1290
1291 /*
1292 * extent_io.c set_bit_hook, used to track delayed allocation
1293 * bytes in this file, and to maintain the list of inodes that
1294 * have pending delalloc work to be done.
1295 */
1296 static int btrfs_set_bit_hook(struct inode *inode,
1297 struct extent_state *state, int *bits)
1298 {
1299
1300 /*
1301 * set_bit and clear bit hooks normally require _irqsave/restore
1302 * but in this case, we are only testeing for the DELALLOC
1303 * bit, which is only set or cleared with irqs on
1304 */
1305 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1306 struct btrfs_root *root = BTRFS_I(inode)->root;
1307 u64 len = state->end + 1 - state->start;
1308 int do_list = (root->root_key.objectid !=
1309 BTRFS_ROOT_TREE_OBJECTID);
1310
1311 if (*bits & EXTENT_FIRST_DELALLOC)
1312 *bits &= ~EXTENT_FIRST_DELALLOC;
1313 else
1314 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1315
1316 spin_lock(&root->fs_info->delalloc_lock);
1317 BTRFS_I(inode)->delalloc_bytes += len;
1318 root->fs_info->delalloc_bytes += len;
1319 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1320 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1321 &root->fs_info->delalloc_inodes);
1322 }
1323 spin_unlock(&root->fs_info->delalloc_lock);
1324 }
1325 return 0;
1326 }
1327
1328 /*
1329 * extent_io.c clear_bit_hook, see set_bit_hook for why
1330 */
1331 static int btrfs_clear_bit_hook(struct inode *inode,
1332 struct extent_state *state, int *bits)
1333 {
1334 /*
1335 * set_bit and clear bit hooks normally require _irqsave/restore
1336 * but in this case, we are only testeing for the DELALLOC
1337 * bit, which is only set or cleared with irqs on
1338 */
1339 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1340 struct btrfs_root *root = BTRFS_I(inode)->root;
1341 u64 len = state->end + 1 - state->start;
1342 int do_list = (root->root_key.objectid !=
1343 BTRFS_ROOT_TREE_OBJECTID);
1344
1345 if (*bits & EXTENT_FIRST_DELALLOC)
1346 *bits &= ~EXTENT_FIRST_DELALLOC;
1347 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1348 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1349
1350 if (*bits & EXTENT_DO_ACCOUNTING)
1351 btrfs_delalloc_release_metadata(inode, len);
1352
1353 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1354 && do_list)
1355 btrfs_free_reserved_data_space(inode, len);
1356
1357 spin_lock(&root->fs_info->delalloc_lock);
1358 root->fs_info->delalloc_bytes -= len;
1359 BTRFS_I(inode)->delalloc_bytes -= len;
1360
1361 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1362 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1363 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1364 }
1365 spin_unlock(&root->fs_info->delalloc_lock);
1366 }
1367 return 0;
1368 }
1369
1370 /*
1371 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1372 * we don't create bios that span stripes or chunks
1373 */
1374 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1375 size_t size, struct bio *bio,
1376 unsigned long bio_flags)
1377 {
1378 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1379 struct btrfs_mapping_tree *map_tree;
1380 u64 logical = (u64)bio->bi_sector << 9;
1381 u64 length = 0;
1382 u64 map_length;
1383 int ret;
1384
1385 if (bio_flags & EXTENT_BIO_COMPRESSED)
1386 return 0;
1387
1388 length = bio->bi_size;
1389 map_tree = &root->fs_info->mapping_tree;
1390 map_length = length;
1391 ret = btrfs_map_block(map_tree, READ, logical,
1392 &map_length, NULL, 0);
1393
1394 if (map_length < length + size)
1395 return 1;
1396 return ret;
1397 }
1398
1399 /*
1400 * in order to insert checksums into the metadata in large chunks,
1401 * we wait until bio submission time. All the pages in the bio are
1402 * checksummed and sums are attached onto the ordered extent record.
1403 *
1404 * At IO completion time the cums attached on the ordered extent record
1405 * are inserted into the btree
1406 */
1407 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1408 struct bio *bio, int mirror_num,
1409 unsigned long bio_flags,
1410 u64 bio_offset)
1411 {
1412 struct btrfs_root *root = BTRFS_I(inode)->root;
1413 int ret = 0;
1414
1415 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1416 BUG_ON(ret);
1417 return 0;
1418 }
1419
1420 /*
1421 * in order to insert checksums into the metadata in large chunks,
1422 * we wait until bio submission time. All the pages in the bio are
1423 * checksummed and sums are attached onto the ordered extent record.
1424 *
1425 * At IO completion time the cums attached on the ordered extent record
1426 * are inserted into the btree
1427 */
1428 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1429 int mirror_num, unsigned long bio_flags,
1430 u64 bio_offset)
1431 {
1432 struct btrfs_root *root = BTRFS_I(inode)->root;
1433 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1434 }
1435
1436 /*
1437 * extent_io.c submission hook. This does the right thing for csum calculation
1438 * on write, or reading the csums from the tree before a read
1439 */
1440 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1441 int mirror_num, unsigned long bio_flags,
1442 u64 bio_offset)
1443 {
1444 struct btrfs_root *root = BTRFS_I(inode)->root;
1445 int ret = 0;
1446 int skip_sum;
1447
1448 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1449
1450 if (root == root->fs_info->tree_root)
1451 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1452 else
1453 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1454 BUG_ON(ret);
1455
1456 if (!(rw & REQ_WRITE)) {
1457 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1458 return btrfs_submit_compressed_read(inode, bio,
1459 mirror_num, bio_flags);
1460 } else if (!skip_sum)
1461 btrfs_lookup_bio_sums(root, inode, bio, NULL);
1462 goto mapit;
1463 } else if (!skip_sum) {
1464 /* csum items have already been cloned */
1465 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1466 goto mapit;
1467 /* we're doing a write, do the async checksumming */
1468 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1469 inode, rw, bio, mirror_num,
1470 bio_flags, bio_offset,
1471 __btrfs_submit_bio_start,
1472 __btrfs_submit_bio_done);
1473 }
1474
1475 mapit:
1476 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1477 }
1478
1479 /*
1480 * given a list of ordered sums record them in the inode. This happens
1481 * at IO completion time based on sums calculated at bio submission time.
1482 */
1483 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1484 struct inode *inode, u64 file_offset,
1485 struct list_head *list)
1486 {
1487 struct btrfs_ordered_sum *sum;
1488
1489 btrfs_set_trans_block_group(trans, inode);
1490
1491 list_for_each_entry(sum, list, list) {
1492 btrfs_csum_file_blocks(trans,
1493 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1494 }
1495 return 0;
1496 }
1497
1498 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1499 struct extent_state **cached_state)
1500 {
1501 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1502 WARN_ON(1);
1503 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1504 cached_state, GFP_NOFS);
1505 }
1506
1507 /* see btrfs_writepage_start_hook for details on why this is required */
1508 struct btrfs_writepage_fixup {
1509 struct page *page;
1510 struct btrfs_work work;
1511 };
1512
1513 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1514 {
1515 struct btrfs_writepage_fixup *fixup;
1516 struct btrfs_ordered_extent *ordered;
1517 struct extent_state *cached_state = NULL;
1518 struct page *page;
1519 struct inode *inode;
1520 u64 page_start;
1521 u64 page_end;
1522
1523 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1524 page = fixup->page;
1525 again:
1526 lock_page(page);
1527 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1528 ClearPageChecked(page);
1529 goto out_page;
1530 }
1531
1532 inode = page->mapping->host;
1533 page_start = page_offset(page);
1534 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1535
1536 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1537 &cached_state, GFP_NOFS);
1538
1539 /* already ordered? We're done */
1540 if (PagePrivate2(page))
1541 goto out;
1542
1543 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1544 if (ordered) {
1545 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1546 page_end, &cached_state, GFP_NOFS);
1547 unlock_page(page);
1548 btrfs_start_ordered_extent(inode, ordered, 1);
1549 goto again;
1550 }
1551
1552 BUG();
1553 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1554 ClearPageChecked(page);
1555 out:
1556 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1557 &cached_state, GFP_NOFS);
1558 out_page:
1559 unlock_page(page);
1560 page_cache_release(page);
1561 kfree(fixup);
1562 }
1563
1564 /*
1565 * There are a few paths in the higher layers of the kernel that directly
1566 * set the page dirty bit without asking the filesystem if it is a
1567 * good idea. This causes problems because we want to make sure COW
1568 * properly happens and the data=ordered rules are followed.
1569 *
1570 * In our case any range that doesn't have the ORDERED bit set
1571 * hasn't been properly setup for IO. We kick off an async process
1572 * to fix it up. The async helper will wait for ordered extents, set
1573 * the delalloc bit and make it safe to write the page.
1574 */
1575 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1576 {
1577 struct inode *inode = page->mapping->host;
1578 struct btrfs_writepage_fixup *fixup;
1579 struct btrfs_root *root = BTRFS_I(inode)->root;
1580
1581 /* this page is properly in the ordered list */
1582 if (TestClearPagePrivate2(page))
1583 return 0;
1584
1585 if (PageChecked(page))
1586 return -EAGAIN;
1587
1588 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1589 if (!fixup)
1590 return -EAGAIN;
1591
1592 SetPageChecked(page);
1593 page_cache_get(page);
1594 fixup->work.func = btrfs_writepage_fixup_worker;
1595 fixup->page = page;
1596 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1597 return -EAGAIN;
1598 }
1599
1600 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1601 struct inode *inode, u64 file_pos,
1602 u64 disk_bytenr, u64 disk_num_bytes,
1603 u64 num_bytes, u64 ram_bytes,
1604 u8 compression, u8 encryption,
1605 u16 other_encoding, int extent_type)
1606 {
1607 struct btrfs_root *root = BTRFS_I(inode)->root;
1608 struct btrfs_file_extent_item *fi;
1609 struct btrfs_path *path;
1610 struct extent_buffer *leaf;
1611 struct btrfs_key ins;
1612 u64 hint;
1613 int ret;
1614
1615 path = btrfs_alloc_path();
1616 BUG_ON(!path);
1617
1618 path->leave_spinning = 1;
1619
1620 /*
1621 * we may be replacing one extent in the tree with another.
1622 * The new extent is pinned in the extent map, and we don't want
1623 * to drop it from the cache until it is completely in the btree.
1624 *
1625 * So, tell btrfs_drop_extents to leave this extent in the cache.
1626 * the caller is expected to unpin it and allow it to be merged
1627 * with the others.
1628 */
1629 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1630 &hint, 0);
1631 BUG_ON(ret);
1632
1633 ins.objectid = inode->i_ino;
1634 ins.offset = file_pos;
1635 ins.type = BTRFS_EXTENT_DATA_KEY;
1636 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1637 BUG_ON(ret);
1638 leaf = path->nodes[0];
1639 fi = btrfs_item_ptr(leaf, path->slots[0],
1640 struct btrfs_file_extent_item);
1641 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1642 btrfs_set_file_extent_type(leaf, fi, extent_type);
1643 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1644 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1645 btrfs_set_file_extent_offset(leaf, fi, 0);
1646 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1647 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1648 btrfs_set_file_extent_compression(leaf, fi, compression);
1649 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1650 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1651
1652 btrfs_unlock_up_safe(path, 1);
1653 btrfs_set_lock_blocking(leaf);
1654
1655 btrfs_mark_buffer_dirty(leaf);
1656
1657 inode_add_bytes(inode, num_bytes);
1658
1659 ins.objectid = disk_bytenr;
1660 ins.offset = disk_num_bytes;
1661 ins.type = BTRFS_EXTENT_ITEM_KEY;
1662 ret = btrfs_alloc_reserved_file_extent(trans, root,
1663 root->root_key.objectid,
1664 inode->i_ino, file_pos, &ins);
1665 BUG_ON(ret);
1666 btrfs_free_path(path);
1667
1668 return 0;
1669 }
1670
1671 /*
1672 * helper function for btrfs_finish_ordered_io, this
1673 * just reads in some of the csum leaves to prime them into ram
1674 * before we start the transaction. It limits the amount of btree
1675 * reads required while inside the transaction.
1676 */
1677 /* as ordered data IO finishes, this gets called so we can finish
1678 * an ordered extent if the range of bytes in the file it covers are
1679 * fully written.
1680 */
1681 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1682 {
1683 struct btrfs_root *root = BTRFS_I(inode)->root;
1684 struct btrfs_trans_handle *trans = NULL;
1685 struct btrfs_ordered_extent *ordered_extent = NULL;
1686 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1687 struct extent_state *cached_state = NULL;
1688 int compress_type = 0;
1689 int ret;
1690 bool nolock = false;
1691
1692 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1693 end - start + 1);
1694 if (!ret)
1695 return 0;
1696 BUG_ON(!ordered_extent);
1697
1698 nolock = (root == root->fs_info->tree_root);
1699
1700 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1701 BUG_ON(!list_empty(&ordered_extent->list));
1702 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1703 if (!ret) {
1704 if (nolock)
1705 trans = btrfs_join_transaction_nolock(root, 1);
1706 else
1707 trans = btrfs_join_transaction(root, 1);
1708 BUG_ON(IS_ERR(trans));
1709 btrfs_set_trans_block_group(trans, inode);
1710 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1711 ret = btrfs_update_inode(trans, root, inode);
1712 BUG_ON(ret);
1713 }
1714 goto out;
1715 }
1716
1717 lock_extent_bits(io_tree, ordered_extent->file_offset,
1718 ordered_extent->file_offset + ordered_extent->len - 1,
1719 0, &cached_state, GFP_NOFS);
1720
1721 if (nolock)
1722 trans = btrfs_join_transaction_nolock(root, 1);
1723 else
1724 trans = btrfs_join_transaction(root, 1);
1725 BUG_ON(IS_ERR(trans));
1726 btrfs_set_trans_block_group(trans, inode);
1727 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1728
1729 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1730 compress_type = ordered_extent->compress_type;
1731 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1732 BUG_ON(compress_type);
1733 ret = btrfs_mark_extent_written(trans, inode,
1734 ordered_extent->file_offset,
1735 ordered_extent->file_offset +
1736 ordered_extent->len);
1737 BUG_ON(ret);
1738 } else {
1739 BUG_ON(root == root->fs_info->tree_root);
1740 ret = insert_reserved_file_extent(trans, inode,
1741 ordered_extent->file_offset,
1742 ordered_extent->start,
1743 ordered_extent->disk_len,
1744 ordered_extent->len,
1745 ordered_extent->len,
1746 compress_type, 0, 0,
1747 BTRFS_FILE_EXTENT_REG);
1748 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1749 ordered_extent->file_offset,
1750 ordered_extent->len);
1751 BUG_ON(ret);
1752 }
1753 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1754 ordered_extent->file_offset +
1755 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1756
1757 add_pending_csums(trans, inode, ordered_extent->file_offset,
1758 &ordered_extent->list);
1759
1760 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1761 ret = btrfs_update_inode(trans, root, inode);
1762 BUG_ON(ret);
1763 out:
1764 if (nolock) {
1765 if (trans)
1766 btrfs_end_transaction_nolock(trans, root);
1767 } else {
1768 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1769 if (trans)
1770 btrfs_end_transaction(trans, root);
1771 }
1772
1773 /* once for us */
1774 btrfs_put_ordered_extent(ordered_extent);
1775 /* once for the tree */
1776 btrfs_put_ordered_extent(ordered_extent);
1777
1778 return 0;
1779 }
1780
1781 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1782 struct extent_state *state, int uptodate)
1783 {
1784 ClearPagePrivate2(page);
1785 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1786 }
1787
1788 /*
1789 * When IO fails, either with EIO or csum verification fails, we
1790 * try other mirrors that might have a good copy of the data. This
1791 * io_failure_record is used to record state as we go through all the
1792 * mirrors. If another mirror has good data, the page is set up to date
1793 * and things continue. If a good mirror can't be found, the original
1794 * bio end_io callback is called to indicate things have failed.
1795 */
1796 struct io_failure_record {
1797 struct page *page;
1798 u64 start;
1799 u64 len;
1800 u64 logical;
1801 unsigned long bio_flags;
1802 int last_mirror;
1803 };
1804
1805 static int btrfs_io_failed_hook(struct bio *failed_bio,
1806 struct page *page, u64 start, u64 end,
1807 struct extent_state *state)
1808 {
1809 struct io_failure_record *failrec = NULL;
1810 u64 private;
1811 struct extent_map *em;
1812 struct inode *inode = page->mapping->host;
1813 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1814 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1815 struct bio *bio;
1816 int num_copies;
1817 int ret;
1818 int rw;
1819 u64 logical;
1820
1821 ret = get_state_private(failure_tree, start, &private);
1822 if (ret) {
1823 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1824 if (!failrec)
1825 return -ENOMEM;
1826 failrec->start = start;
1827 failrec->len = end - start + 1;
1828 failrec->last_mirror = 0;
1829 failrec->bio_flags = 0;
1830
1831 read_lock(&em_tree->lock);
1832 em = lookup_extent_mapping(em_tree, start, failrec->len);
1833 if (em->start > start || em->start + em->len < start) {
1834 free_extent_map(em);
1835 em = NULL;
1836 }
1837 read_unlock(&em_tree->lock);
1838
1839 if (!em || IS_ERR(em)) {
1840 kfree(failrec);
1841 return -EIO;
1842 }
1843 logical = start - em->start;
1844 logical = em->block_start + logical;
1845 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1846 logical = em->block_start;
1847 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1848 extent_set_compress_type(&failrec->bio_flags,
1849 em->compress_type);
1850 }
1851 failrec->logical = logical;
1852 free_extent_map(em);
1853 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1854 EXTENT_DIRTY, GFP_NOFS);
1855 set_state_private(failure_tree, start,
1856 (u64)(unsigned long)failrec);
1857 } else {
1858 failrec = (struct io_failure_record *)(unsigned long)private;
1859 }
1860 num_copies = btrfs_num_copies(
1861 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1862 failrec->logical, failrec->len);
1863 failrec->last_mirror++;
1864 if (!state) {
1865 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1866 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1867 failrec->start,
1868 EXTENT_LOCKED);
1869 if (state && state->start != failrec->start)
1870 state = NULL;
1871 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1872 }
1873 if (!state || failrec->last_mirror > num_copies) {
1874 set_state_private(failure_tree, failrec->start, 0);
1875 clear_extent_bits(failure_tree, failrec->start,
1876 failrec->start + failrec->len - 1,
1877 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1878 kfree(failrec);
1879 return -EIO;
1880 }
1881 bio = bio_alloc(GFP_NOFS, 1);
1882 bio->bi_private = state;
1883 bio->bi_end_io = failed_bio->bi_end_io;
1884 bio->bi_sector = failrec->logical >> 9;
1885 bio->bi_bdev = failed_bio->bi_bdev;
1886 bio->bi_size = 0;
1887
1888 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1889 if (failed_bio->bi_rw & REQ_WRITE)
1890 rw = WRITE;
1891 else
1892 rw = READ;
1893
1894 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1895 failrec->last_mirror,
1896 failrec->bio_flags, 0);
1897 return 0;
1898 }
1899
1900 /*
1901 * each time an IO finishes, we do a fast check in the IO failure tree
1902 * to see if we need to process or clean up an io_failure_record
1903 */
1904 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1905 {
1906 u64 private;
1907 u64 private_failure;
1908 struct io_failure_record *failure;
1909 int ret;
1910
1911 private = 0;
1912 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1913 (u64)-1, 1, EXTENT_DIRTY)) {
1914 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1915 start, &private_failure);
1916 if (ret == 0) {
1917 failure = (struct io_failure_record *)(unsigned long)
1918 private_failure;
1919 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1920 failure->start, 0);
1921 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1922 failure->start,
1923 failure->start + failure->len - 1,
1924 EXTENT_DIRTY | EXTENT_LOCKED,
1925 GFP_NOFS);
1926 kfree(failure);
1927 }
1928 }
1929 return 0;
1930 }
1931
1932 /*
1933 * when reads are done, we need to check csums to verify the data is correct
1934 * if there's a match, we allow the bio to finish. If not, we go through
1935 * the io_failure_record routines to find good copies
1936 */
1937 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1938 struct extent_state *state)
1939 {
1940 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1941 struct inode *inode = page->mapping->host;
1942 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1943 char *kaddr;
1944 u64 private = ~(u32)0;
1945 int ret;
1946 struct btrfs_root *root = BTRFS_I(inode)->root;
1947 u32 csum = ~(u32)0;
1948
1949 if (PageChecked(page)) {
1950 ClearPageChecked(page);
1951 goto good;
1952 }
1953
1954 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1955 return 0;
1956
1957 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1958 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1959 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1960 GFP_NOFS);
1961 return 0;
1962 }
1963
1964 if (state && state->start == start) {
1965 private = state->private;
1966 ret = 0;
1967 } else {
1968 ret = get_state_private(io_tree, start, &private);
1969 }
1970 kaddr = kmap_atomic(page, KM_USER0);
1971 if (ret)
1972 goto zeroit;
1973
1974 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1975 btrfs_csum_final(csum, (char *)&csum);
1976 if (csum != private)
1977 goto zeroit;
1978
1979 kunmap_atomic(kaddr, KM_USER0);
1980 good:
1981 /* if the io failure tree for this inode is non-empty,
1982 * check to see if we've recovered from a failed IO
1983 */
1984 btrfs_clean_io_failures(inode, start);
1985 return 0;
1986
1987 zeroit:
1988 if (printk_ratelimit()) {
1989 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1990 "private %llu\n", page->mapping->host->i_ino,
1991 (unsigned long long)start, csum,
1992 (unsigned long long)private);
1993 }
1994 memset(kaddr + offset, 1, end - start + 1);
1995 flush_dcache_page(page);
1996 kunmap_atomic(kaddr, KM_USER0);
1997 if (private == 0)
1998 return 0;
1999 return -EIO;
2000 }
2001
2002 struct delayed_iput {
2003 struct list_head list;
2004 struct inode *inode;
2005 };
2006
2007 void btrfs_add_delayed_iput(struct inode *inode)
2008 {
2009 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2010 struct delayed_iput *delayed;
2011
2012 if (atomic_add_unless(&inode->i_count, -1, 1))
2013 return;
2014
2015 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2016 delayed->inode = inode;
2017
2018 spin_lock(&fs_info->delayed_iput_lock);
2019 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2020 spin_unlock(&fs_info->delayed_iput_lock);
2021 }
2022
2023 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2024 {
2025 LIST_HEAD(list);
2026 struct btrfs_fs_info *fs_info = root->fs_info;
2027 struct delayed_iput *delayed;
2028 int empty;
2029
2030 spin_lock(&fs_info->delayed_iput_lock);
2031 empty = list_empty(&fs_info->delayed_iputs);
2032 spin_unlock(&fs_info->delayed_iput_lock);
2033 if (empty)
2034 return;
2035
2036 down_read(&root->fs_info->cleanup_work_sem);
2037 spin_lock(&fs_info->delayed_iput_lock);
2038 list_splice_init(&fs_info->delayed_iputs, &list);
2039 spin_unlock(&fs_info->delayed_iput_lock);
2040
2041 while (!list_empty(&list)) {
2042 delayed = list_entry(list.next, struct delayed_iput, list);
2043 list_del(&delayed->list);
2044 iput(delayed->inode);
2045 kfree(delayed);
2046 }
2047 up_read(&root->fs_info->cleanup_work_sem);
2048 }
2049
2050 /*
2051 * calculate extra metadata reservation when snapshotting a subvolume
2052 * contains orphan files.
2053 */
2054 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2055 struct btrfs_pending_snapshot *pending,
2056 u64 *bytes_to_reserve)
2057 {
2058 struct btrfs_root *root;
2059 struct btrfs_block_rsv *block_rsv;
2060 u64 num_bytes;
2061 int index;
2062
2063 root = pending->root;
2064 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2065 return;
2066
2067 block_rsv = root->orphan_block_rsv;
2068
2069 /* orphan block reservation for the snapshot */
2070 num_bytes = block_rsv->size;
2071
2072 /*
2073 * after the snapshot is created, COWing tree blocks may use more
2074 * space than it frees. So we should make sure there is enough
2075 * reserved space.
2076 */
2077 index = trans->transid & 0x1;
2078 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2079 num_bytes += block_rsv->size -
2080 (block_rsv->reserved + block_rsv->freed[index]);
2081 }
2082
2083 *bytes_to_reserve += num_bytes;
2084 }
2085
2086 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2087 struct btrfs_pending_snapshot *pending)
2088 {
2089 struct btrfs_root *root = pending->root;
2090 struct btrfs_root *snap = pending->snap;
2091 struct btrfs_block_rsv *block_rsv;
2092 u64 num_bytes;
2093 int index;
2094 int ret;
2095
2096 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2097 return;
2098
2099 /* refill source subvolume's orphan block reservation */
2100 block_rsv = root->orphan_block_rsv;
2101 index = trans->transid & 0x1;
2102 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2103 num_bytes = block_rsv->size -
2104 (block_rsv->reserved + block_rsv->freed[index]);
2105 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2106 root->orphan_block_rsv,
2107 num_bytes);
2108 BUG_ON(ret);
2109 }
2110
2111 /* setup orphan block reservation for the snapshot */
2112 block_rsv = btrfs_alloc_block_rsv(snap);
2113 BUG_ON(!block_rsv);
2114
2115 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2116 snap->orphan_block_rsv = block_rsv;
2117
2118 num_bytes = root->orphan_block_rsv->size;
2119 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120 block_rsv, num_bytes);
2121 BUG_ON(ret);
2122
2123 #if 0
2124 /* insert orphan item for the snapshot */
2125 WARN_ON(!root->orphan_item_inserted);
2126 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2127 snap->root_key.objectid);
2128 BUG_ON(ret);
2129 snap->orphan_item_inserted = 1;
2130 #endif
2131 }
2132
2133 enum btrfs_orphan_cleanup_state {
2134 ORPHAN_CLEANUP_STARTED = 1,
2135 ORPHAN_CLEANUP_DONE = 2,
2136 };
2137
2138 /*
2139 * This is called in transaction commmit time. If there are no orphan
2140 * files in the subvolume, it removes orphan item and frees block_rsv
2141 * structure.
2142 */
2143 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2144 struct btrfs_root *root)
2145 {
2146 int ret;
2147
2148 if (!list_empty(&root->orphan_list) ||
2149 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2150 return;
2151
2152 if (root->orphan_item_inserted &&
2153 btrfs_root_refs(&root->root_item) > 0) {
2154 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2155 root->root_key.objectid);
2156 BUG_ON(ret);
2157 root->orphan_item_inserted = 0;
2158 }
2159
2160 if (root->orphan_block_rsv) {
2161 WARN_ON(root->orphan_block_rsv->size > 0);
2162 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2163 root->orphan_block_rsv = NULL;
2164 }
2165 }
2166
2167 /*
2168 * This creates an orphan entry for the given inode in case something goes
2169 * wrong in the middle of an unlink/truncate.
2170 *
2171 * NOTE: caller of this function should reserve 5 units of metadata for
2172 * this function.
2173 */
2174 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2175 {
2176 struct btrfs_root *root = BTRFS_I(inode)->root;
2177 struct btrfs_block_rsv *block_rsv = NULL;
2178 int reserve = 0;
2179 int insert = 0;
2180 int ret;
2181
2182 if (!root->orphan_block_rsv) {
2183 block_rsv = btrfs_alloc_block_rsv(root);
2184 BUG_ON(!block_rsv);
2185 }
2186
2187 spin_lock(&root->orphan_lock);
2188 if (!root->orphan_block_rsv) {
2189 root->orphan_block_rsv = block_rsv;
2190 } else if (block_rsv) {
2191 btrfs_free_block_rsv(root, block_rsv);
2192 block_rsv = NULL;
2193 }
2194
2195 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2196 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2197 #if 0
2198 /*
2199 * For proper ENOSPC handling, we should do orphan
2200 * cleanup when mounting. But this introduces backward
2201 * compatibility issue.
2202 */
2203 if (!xchg(&root->orphan_item_inserted, 1))
2204 insert = 2;
2205 else
2206 insert = 1;
2207 #endif
2208 insert = 1;
2209 } else {
2210 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2211 }
2212
2213 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2214 BTRFS_I(inode)->orphan_meta_reserved = 1;
2215 reserve = 1;
2216 }
2217 spin_unlock(&root->orphan_lock);
2218
2219 if (block_rsv)
2220 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2221
2222 /* grab metadata reservation from transaction handle */
2223 if (reserve) {
2224 ret = btrfs_orphan_reserve_metadata(trans, inode);
2225 BUG_ON(ret);
2226 }
2227
2228 /* insert an orphan item to track this unlinked/truncated file */
2229 if (insert >= 1) {
2230 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2231 BUG_ON(ret);
2232 }
2233
2234 /* insert an orphan item to track subvolume contains orphan files */
2235 if (insert >= 2) {
2236 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2237 root->root_key.objectid);
2238 BUG_ON(ret);
2239 }
2240 return 0;
2241 }
2242
2243 /*
2244 * We have done the truncate/delete so we can go ahead and remove the orphan
2245 * item for this particular inode.
2246 */
2247 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2248 {
2249 struct btrfs_root *root = BTRFS_I(inode)->root;
2250 int delete_item = 0;
2251 int release_rsv = 0;
2252 int ret = 0;
2253
2254 spin_lock(&root->orphan_lock);
2255 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2256 list_del_init(&BTRFS_I(inode)->i_orphan);
2257 delete_item = 1;
2258 }
2259
2260 if (BTRFS_I(inode)->orphan_meta_reserved) {
2261 BTRFS_I(inode)->orphan_meta_reserved = 0;
2262 release_rsv = 1;
2263 }
2264 spin_unlock(&root->orphan_lock);
2265
2266 if (trans && delete_item) {
2267 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2268 BUG_ON(ret);
2269 }
2270
2271 if (release_rsv)
2272 btrfs_orphan_release_metadata(inode);
2273
2274 return 0;
2275 }
2276
2277 /*
2278 * this cleans up any orphans that may be left on the list from the last use
2279 * of this root.
2280 */
2281 void btrfs_orphan_cleanup(struct btrfs_root *root)
2282 {
2283 struct btrfs_path *path;
2284 struct extent_buffer *leaf;
2285 struct btrfs_key key, found_key;
2286 struct btrfs_trans_handle *trans;
2287 struct inode *inode;
2288 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2289
2290 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2291 return;
2292
2293 path = btrfs_alloc_path();
2294 BUG_ON(!path);
2295 path->reada = -1;
2296
2297 key.objectid = BTRFS_ORPHAN_OBJECTID;
2298 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2299 key.offset = (u64)-1;
2300
2301 while (1) {
2302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2303 if (ret < 0) {
2304 printk(KERN_ERR "Error searching slot for orphan: %d"
2305 "\n", ret);
2306 break;
2307 }
2308
2309 /*
2310 * if ret == 0 means we found what we were searching for, which
2311 * is weird, but possible, so only screw with path if we didnt
2312 * find the key and see if we have stuff that matches
2313 */
2314 if (ret > 0) {
2315 if (path->slots[0] == 0)
2316 break;
2317 path->slots[0]--;
2318 }
2319
2320 /* pull out the item */
2321 leaf = path->nodes[0];
2322 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2323
2324 /* make sure the item matches what we want */
2325 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2326 break;
2327 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2328 break;
2329
2330 /* release the path since we're done with it */
2331 btrfs_release_path(root, path);
2332
2333 /*
2334 * this is where we are basically btrfs_lookup, without the
2335 * crossing root thing. we store the inode number in the
2336 * offset of the orphan item.
2337 */
2338 found_key.objectid = found_key.offset;
2339 found_key.type = BTRFS_INODE_ITEM_KEY;
2340 found_key.offset = 0;
2341 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2342 BUG_ON(IS_ERR(inode));
2343
2344 /*
2345 * add this inode to the orphan list so btrfs_orphan_del does
2346 * the proper thing when we hit it
2347 */
2348 spin_lock(&root->orphan_lock);
2349 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2350 spin_unlock(&root->orphan_lock);
2351
2352 /*
2353 * if this is a bad inode, means we actually succeeded in
2354 * removing the inode, but not the orphan record, which means
2355 * we need to manually delete the orphan since iput will just
2356 * do a destroy_inode
2357 */
2358 if (is_bad_inode(inode)) {
2359 trans = btrfs_start_transaction(root, 0);
2360 BUG_ON(IS_ERR(trans));
2361 btrfs_orphan_del(trans, inode);
2362 btrfs_end_transaction(trans, root);
2363 iput(inode);
2364 continue;
2365 }
2366
2367 /* if we have links, this was a truncate, lets do that */
2368 if (inode->i_nlink) {
2369 nr_truncate++;
2370 btrfs_truncate(inode);
2371 } else {
2372 nr_unlink++;
2373 }
2374
2375 /* this will do delete_inode and everything for us */
2376 iput(inode);
2377 }
2378 btrfs_free_path(path);
2379
2380 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2381
2382 if (root->orphan_block_rsv)
2383 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2384 (u64)-1);
2385
2386 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2387 trans = btrfs_join_transaction(root, 1);
2388 BUG_ON(IS_ERR(trans));
2389 btrfs_end_transaction(trans, root);
2390 }
2391
2392 if (nr_unlink)
2393 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2394 if (nr_truncate)
2395 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2396 }
2397
2398 /*
2399 * very simple check to peek ahead in the leaf looking for xattrs. If we
2400 * don't find any xattrs, we know there can't be any acls.
2401 *
2402 * slot is the slot the inode is in, objectid is the objectid of the inode
2403 */
2404 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2405 int slot, u64 objectid)
2406 {
2407 u32 nritems = btrfs_header_nritems(leaf);
2408 struct btrfs_key found_key;
2409 int scanned = 0;
2410
2411 slot++;
2412 while (slot < nritems) {
2413 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2414
2415 /* we found a different objectid, there must not be acls */
2416 if (found_key.objectid != objectid)
2417 return 0;
2418
2419 /* we found an xattr, assume we've got an acl */
2420 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2421 return 1;
2422
2423 /*
2424 * we found a key greater than an xattr key, there can't
2425 * be any acls later on
2426 */
2427 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2428 return 0;
2429
2430 slot++;
2431 scanned++;
2432
2433 /*
2434 * it goes inode, inode backrefs, xattrs, extents,
2435 * so if there are a ton of hard links to an inode there can
2436 * be a lot of backrefs. Don't waste time searching too hard,
2437 * this is just an optimization
2438 */
2439 if (scanned >= 8)
2440 break;
2441 }
2442 /* we hit the end of the leaf before we found an xattr or
2443 * something larger than an xattr. We have to assume the inode
2444 * has acls
2445 */
2446 return 1;
2447 }
2448
2449 /*
2450 * read an inode from the btree into the in-memory inode
2451 */
2452 static void btrfs_read_locked_inode(struct inode *inode)
2453 {
2454 struct btrfs_path *path;
2455 struct extent_buffer *leaf;
2456 struct btrfs_inode_item *inode_item;
2457 struct btrfs_timespec *tspec;
2458 struct btrfs_root *root = BTRFS_I(inode)->root;
2459 struct btrfs_key location;
2460 int maybe_acls;
2461 u64 alloc_group_block;
2462 u32 rdev;
2463 int ret;
2464
2465 path = btrfs_alloc_path();
2466 BUG_ON(!path);
2467 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2468
2469 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2470 if (ret)
2471 goto make_bad;
2472
2473 leaf = path->nodes[0];
2474 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2475 struct btrfs_inode_item);
2476
2477 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2478 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2479 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2480 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2481 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2482
2483 tspec = btrfs_inode_atime(inode_item);
2484 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2485 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2486
2487 tspec = btrfs_inode_mtime(inode_item);
2488 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2489 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2490
2491 tspec = btrfs_inode_ctime(inode_item);
2492 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2493 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2494
2495 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2496 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2497 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2498 inode->i_generation = BTRFS_I(inode)->generation;
2499 inode->i_rdev = 0;
2500 rdev = btrfs_inode_rdev(leaf, inode_item);
2501
2502 BTRFS_I(inode)->index_cnt = (u64)-1;
2503 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2504
2505 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2506
2507 /*
2508 * try to precache a NULL acl entry for files that don't have
2509 * any xattrs or acls
2510 */
2511 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2512 if (!maybe_acls)
2513 cache_no_acl(inode);
2514
2515 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2516 alloc_group_block, 0);
2517 btrfs_free_path(path);
2518 inode_item = NULL;
2519
2520 switch (inode->i_mode & S_IFMT) {
2521 case S_IFREG:
2522 inode->i_mapping->a_ops = &btrfs_aops;
2523 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2524 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2525 inode->i_fop = &btrfs_file_operations;
2526 inode->i_op = &btrfs_file_inode_operations;
2527 break;
2528 case S_IFDIR:
2529 inode->i_fop = &btrfs_dir_file_operations;
2530 if (root == root->fs_info->tree_root)
2531 inode->i_op = &btrfs_dir_ro_inode_operations;
2532 else
2533 inode->i_op = &btrfs_dir_inode_operations;
2534 break;
2535 case S_IFLNK:
2536 inode->i_op = &btrfs_symlink_inode_operations;
2537 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2538 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2539 break;
2540 default:
2541 inode->i_op = &btrfs_special_inode_operations;
2542 init_special_inode(inode, inode->i_mode, rdev);
2543 break;
2544 }
2545
2546 btrfs_update_iflags(inode);
2547 return;
2548
2549 make_bad:
2550 btrfs_free_path(path);
2551 make_bad_inode(inode);
2552 }
2553
2554 /*
2555 * given a leaf and an inode, copy the inode fields into the leaf
2556 */
2557 static void fill_inode_item(struct btrfs_trans_handle *trans,
2558 struct extent_buffer *leaf,
2559 struct btrfs_inode_item *item,
2560 struct inode *inode)
2561 {
2562 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2563 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2564 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2565 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2566 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2567
2568 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2569 inode->i_atime.tv_sec);
2570 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2571 inode->i_atime.tv_nsec);
2572
2573 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2574 inode->i_mtime.tv_sec);
2575 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2576 inode->i_mtime.tv_nsec);
2577
2578 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2579 inode->i_ctime.tv_sec);
2580 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2581 inode->i_ctime.tv_nsec);
2582
2583 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2584 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2585 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2586 btrfs_set_inode_transid(leaf, item, trans->transid);
2587 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2588 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2589 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2590 }
2591
2592 /*
2593 * copy everything in the in-memory inode into the btree.
2594 */
2595 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2596 struct btrfs_root *root, struct inode *inode)
2597 {
2598 struct btrfs_inode_item *inode_item;
2599 struct btrfs_path *path;
2600 struct extent_buffer *leaf;
2601 int ret;
2602
2603 path = btrfs_alloc_path();
2604 BUG_ON(!path);
2605 path->leave_spinning = 1;
2606 ret = btrfs_lookup_inode(trans, root, path,
2607 &BTRFS_I(inode)->location, 1);
2608 if (ret) {
2609 if (ret > 0)
2610 ret = -ENOENT;
2611 goto failed;
2612 }
2613
2614 btrfs_unlock_up_safe(path, 1);
2615 leaf = path->nodes[0];
2616 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2617 struct btrfs_inode_item);
2618
2619 fill_inode_item(trans, leaf, inode_item, inode);
2620 btrfs_mark_buffer_dirty(leaf);
2621 btrfs_set_inode_last_trans(trans, inode);
2622 ret = 0;
2623 failed:
2624 btrfs_free_path(path);
2625 return ret;
2626 }
2627
2628
2629 /*
2630 * unlink helper that gets used here in inode.c and in the tree logging
2631 * recovery code. It remove a link in a directory with a given name, and
2632 * also drops the back refs in the inode to the directory
2633 */
2634 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2635 struct btrfs_root *root,
2636 struct inode *dir, struct inode *inode,
2637 const char *name, int name_len)
2638 {
2639 struct btrfs_path *path;
2640 int ret = 0;
2641 struct extent_buffer *leaf;
2642 struct btrfs_dir_item *di;
2643 struct btrfs_key key;
2644 u64 index;
2645
2646 path = btrfs_alloc_path();
2647 if (!path) {
2648 ret = -ENOMEM;
2649 goto out;
2650 }
2651
2652 path->leave_spinning = 1;
2653 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2654 name, name_len, -1);
2655 if (IS_ERR(di)) {
2656 ret = PTR_ERR(di);
2657 goto err;
2658 }
2659 if (!di) {
2660 ret = -ENOENT;
2661 goto err;
2662 }
2663 leaf = path->nodes[0];
2664 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2665 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2666 if (ret)
2667 goto err;
2668 btrfs_release_path(root, path);
2669
2670 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2671 inode->i_ino,
2672 dir->i_ino, &index);
2673 if (ret) {
2674 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2675 "inode %lu parent %lu\n", name_len, name,
2676 inode->i_ino, dir->i_ino);
2677 goto err;
2678 }
2679
2680 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2681 index, name, name_len, -1);
2682 if (IS_ERR(di)) {
2683 ret = PTR_ERR(di);
2684 goto err;
2685 }
2686 if (!di) {
2687 ret = -ENOENT;
2688 goto err;
2689 }
2690 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2691 btrfs_release_path(root, path);
2692
2693 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2694 inode, dir->i_ino);
2695 BUG_ON(ret != 0 && ret != -ENOENT);
2696
2697 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2698 dir, index);
2699 if (ret == -ENOENT)
2700 ret = 0;
2701 err:
2702 btrfs_free_path(path);
2703 if (ret)
2704 goto out;
2705
2706 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2707 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2708 btrfs_update_inode(trans, root, dir);
2709 btrfs_drop_nlink(inode);
2710 ret = btrfs_update_inode(trans, root, inode);
2711 out:
2712 return ret;
2713 }
2714
2715 /* helper to check if there is any shared block in the path */
2716 static int check_path_shared(struct btrfs_root *root,
2717 struct btrfs_path *path)
2718 {
2719 struct extent_buffer *eb;
2720 int level;
2721 u64 refs = 1;
2722
2723 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2724 int ret;
2725
2726 if (!path->nodes[level])
2727 break;
2728 eb = path->nodes[level];
2729 if (!btrfs_block_can_be_shared(root, eb))
2730 continue;
2731 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2732 &refs, NULL);
2733 if (refs > 1)
2734 return 1;
2735 }
2736 return 0;
2737 }
2738
2739 /*
2740 * helper to start transaction for unlink and rmdir.
2741 *
2742 * unlink and rmdir are special in btrfs, they do not always free space.
2743 * so in enospc case, we should make sure they will free space before
2744 * allowing them to use the global metadata reservation.
2745 */
2746 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2747 struct dentry *dentry)
2748 {
2749 struct btrfs_trans_handle *trans;
2750 struct btrfs_root *root = BTRFS_I(dir)->root;
2751 struct btrfs_path *path;
2752 struct btrfs_inode_ref *ref;
2753 struct btrfs_dir_item *di;
2754 struct inode *inode = dentry->d_inode;
2755 u64 index;
2756 int check_link = 1;
2757 int err = -ENOSPC;
2758 int ret;
2759
2760 trans = btrfs_start_transaction(root, 10);
2761 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2762 return trans;
2763
2764 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2765 return ERR_PTR(-ENOSPC);
2766
2767 /* check if there is someone else holds reference */
2768 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2769 return ERR_PTR(-ENOSPC);
2770
2771 if (atomic_read(&inode->i_count) > 2)
2772 return ERR_PTR(-ENOSPC);
2773
2774 if (xchg(&root->fs_info->enospc_unlink, 1))
2775 return ERR_PTR(-ENOSPC);
2776
2777 path = btrfs_alloc_path();
2778 if (!path) {
2779 root->fs_info->enospc_unlink = 0;
2780 return ERR_PTR(-ENOMEM);
2781 }
2782
2783 trans = btrfs_start_transaction(root, 0);
2784 if (IS_ERR(trans)) {
2785 btrfs_free_path(path);
2786 root->fs_info->enospc_unlink = 0;
2787 return trans;
2788 }
2789
2790 path->skip_locking = 1;
2791 path->search_commit_root = 1;
2792
2793 ret = btrfs_lookup_inode(trans, root, path,
2794 &BTRFS_I(dir)->location, 0);
2795 if (ret < 0) {
2796 err = ret;
2797 goto out;
2798 }
2799 if (ret == 0) {
2800 if (check_path_shared(root, path))
2801 goto out;
2802 } else {
2803 check_link = 0;
2804 }
2805 btrfs_release_path(root, path);
2806
2807 ret = btrfs_lookup_inode(trans, root, path,
2808 &BTRFS_I(inode)->location, 0);
2809 if (ret < 0) {
2810 err = ret;
2811 goto out;
2812 }
2813 if (ret == 0) {
2814 if (check_path_shared(root, path))
2815 goto out;
2816 } else {
2817 check_link = 0;
2818 }
2819 btrfs_release_path(root, path);
2820
2821 if (ret == 0 && S_ISREG(inode->i_mode)) {
2822 ret = btrfs_lookup_file_extent(trans, root, path,
2823 inode->i_ino, (u64)-1, 0);
2824 if (ret < 0) {
2825 err = ret;
2826 goto out;
2827 }
2828 BUG_ON(ret == 0);
2829 if (check_path_shared(root, path))
2830 goto out;
2831 btrfs_release_path(root, path);
2832 }
2833
2834 if (!check_link) {
2835 err = 0;
2836 goto out;
2837 }
2838
2839 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2840 dentry->d_name.name, dentry->d_name.len, 0);
2841 if (IS_ERR(di)) {
2842 err = PTR_ERR(di);
2843 goto out;
2844 }
2845 if (di) {
2846 if (check_path_shared(root, path))
2847 goto out;
2848 } else {
2849 err = 0;
2850 goto out;
2851 }
2852 btrfs_release_path(root, path);
2853
2854 ref = btrfs_lookup_inode_ref(trans, root, path,
2855 dentry->d_name.name, dentry->d_name.len,
2856 inode->i_ino, dir->i_ino, 0);
2857 if (IS_ERR(ref)) {
2858 err = PTR_ERR(ref);
2859 goto out;
2860 }
2861 BUG_ON(!ref);
2862 if (check_path_shared(root, path))
2863 goto out;
2864 index = btrfs_inode_ref_index(path->nodes[0], ref);
2865 btrfs_release_path(root, path);
2866
2867 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2868 dentry->d_name.name, dentry->d_name.len, 0);
2869 if (IS_ERR(di)) {
2870 err = PTR_ERR(di);
2871 goto out;
2872 }
2873 BUG_ON(ret == -ENOENT);
2874 if (check_path_shared(root, path))
2875 goto out;
2876
2877 err = 0;
2878 out:
2879 btrfs_free_path(path);
2880 if (err) {
2881 btrfs_end_transaction(trans, root);
2882 root->fs_info->enospc_unlink = 0;
2883 return ERR_PTR(err);
2884 }
2885
2886 trans->block_rsv = &root->fs_info->global_block_rsv;
2887 return trans;
2888 }
2889
2890 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2891 struct btrfs_root *root)
2892 {
2893 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2894 BUG_ON(!root->fs_info->enospc_unlink);
2895 root->fs_info->enospc_unlink = 0;
2896 }
2897 btrfs_end_transaction_throttle(trans, root);
2898 }
2899
2900 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2901 {
2902 struct btrfs_root *root = BTRFS_I(dir)->root;
2903 struct btrfs_trans_handle *trans;
2904 struct inode *inode = dentry->d_inode;
2905 int ret;
2906 unsigned long nr = 0;
2907
2908 trans = __unlink_start_trans(dir, dentry);
2909 if (IS_ERR(trans))
2910 return PTR_ERR(trans);
2911
2912 btrfs_set_trans_block_group(trans, dir);
2913
2914 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2915
2916 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2917 dentry->d_name.name, dentry->d_name.len);
2918 BUG_ON(ret);
2919
2920 if (inode->i_nlink == 0) {
2921 ret = btrfs_orphan_add(trans, inode);
2922 BUG_ON(ret);
2923 }
2924
2925 nr = trans->blocks_used;
2926 __unlink_end_trans(trans, root);
2927 btrfs_btree_balance_dirty(root, nr);
2928 return ret;
2929 }
2930
2931 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2932 struct btrfs_root *root,
2933 struct inode *dir, u64 objectid,
2934 const char *name, int name_len)
2935 {
2936 struct btrfs_path *path;
2937 struct extent_buffer *leaf;
2938 struct btrfs_dir_item *di;
2939 struct btrfs_key key;
2940 u64 index;
2941 int ret;
2942
2943 path = btrfs_alloc_path();
2944 if (!path)
2945 return -ENOMEM;
2946
2947 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2948 name, name_len, -1);
2949 BUG_ON(!di || IS_ERR(di));
2950
2951 leaf = path->nodes[0];
2952 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2953 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2954 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2955 BUG_ON(ret);
2956 btrfs_release_path(root, path);
2957
2958 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2959 objectid, root->root_key.objectid,
2960 dir->i_ino, &index, name, name_len);
2961 if (ret < 0) {
2962 BUG_ON(ret != -ENOENT);
2963 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2964 name, name_len);
2965 BUG_ON(!di || IS_ERR(di));
2966
2967 leaf = path->nodes[0];
2968 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2969 btrfs_release_path(root, path);
2970 index = key.offset;
2971 }
2972
2973 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2974 index, name, name_len, -1);
2975 BUG_ON(!di || IS_ERR(di));
2976
2977 leaf = path->nodes[0];
2978 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2979 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2980 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2981 BUG_ON(ret);
2982 btrfs_release_path(root, path);
2983
2984 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2985 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2986 ret = btrfs_update_inode(trans, root, dir);
2987 BUG_ON(ret);
2988
2989 btrfs_free_path(path);
2990 return 0;
2991 }
2992
2993 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2994 {
2995 struct inode *inode = dentry->d_inode;
2996 int err = 0;
2997 struct btrfs_root *root = BTRFS_I(dir)->root;
2998 struct btrfs_trans_handle *trans;
2999 unsigned long nr = 0;
3000
3001 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3002 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3003 return -ENOTEMPTY;
3004
3005 trans = __unlink_start_trans(dir, dentry);
3006 if (IS_ERR(trans))
3007 return PTR_ERR(trans);
3008
3009 btrfs_set_trans_block_group(trans, dir);
3010
3011 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3012 err = btrfs_unlink_subvol(trans, root, dir,
3013 BTRFS_I(inode)->location.objectid,
3014 dentry->d_name.name,
3015 dentry->d_name.len);
3016 goto out;
3017 }
3018
3019 err = btrfs_orphan_add(trans, inode);
3020 if (err)
3021 goto out;
3022
3023 /* now the directory is empty */
3024 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3025 dentry->d_name.name, dentry->d_name.len);
3026 if (!err)
3027 btrfs_i_size_write(inode, 0);
3028 out:
3029 nr = trans->blocks_used;
3030 __unlink_end_trans(trans, root);
3031 btrfs_btree_balance_dirty(root, nr);
3032
3033 return err;
3034 }
3035
3036 #if 0
3037 /*
3038 * when truncating bytes in a file, it is possible to avoid reading
3039 * the leaves that contain only checksum items. This can be the
3040 * majority of the IO required to delete a large file, but it must
3041 * be done carefully.
3042 *
3043 * The keys in the level just above the leaves are checked to make sure
3044 * the lowest key in a given leaf is a csum key, and starts at an offset
3045 * after the new size.
3046 *
3047 * Then the key for the next leaf is checked to make sure it also has
3048 * a checksum item for the same file. If it does, we know our target leaf
3049 * contains only checksum items, and it can be safely freed without reading
3050 * it.
3051 *
3052 * This is just an optimization targeted at large files. It may do
3053 * nothing. It will return 0 unless things went badly.
3054 */
3055 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3056 struct btrfs_root *root,
3057 struct btrfs_path *path,
3058 struct inode *inode, u64 new_size)
3059 {
3060 struct btrfs_key key;
3061 int ret;
3062 int nritems;
3063 struct btrfs_key found_key;
3064 struct btrfs_key other_key;
3065 struct btrfs_leaf_ref *ref;
3066 u64 leaf_gen;
3067 u64 leaf_start;
3068
3069 path->lowest_level = 1;
3070 key.objectid = inode->i_ino;
3071 key.type = BTRFS_CSUM_ITEM_KEY;
3072 key.offset = new_size;
3073 again:
3074 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3075 if (ret < 0)
3076 goto out;
3077
3078 if (path->nodes[1] == NULL) {
3079 ret = 0;
3080 goto out;
3081 }
3082 ret = 0;
3083 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3084 nritems = btrfs_header_nritems(path->nodes[1]);
3085
3086 if (!nritems)
3087 goto out;
3088
3089 if (path->slots[1] >= nritems)
3090 goto next_node;
3091
3092 /* did we find a key greater than anything we want to delete? */
3093 if (found_key.objectid > inode->i_ino ||
3094 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3095 goto out;
3096
3097 /* we check the next key in the node to make sure the leave contains
3098 * only checksum items. This comparison doesn't work if our
3099 * leaf is the last one in the node
3100 */
3101 if (path->slots[1] + 1 >= nritems) {
3102 next_node:
3103 /* search forward from the last key in the node, this
3104 * will bring us into the next node in the tree
3105 */
3106 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3107
3108 /* unlikely, but we inc below, so check to be safe */
3109 if (found_key.offset == (u64)-1)
3110 goto out;
3111
3112 /* search_forward needs a path with locks held, do the
3113 * search again for the original key. It is possible
3114 * this will race with a balance and return a path that
3115 * we could modify, but this drop is just an optimization
3116 * and is allowed to miss some leaves.
3117 */
3118 btrfs_release_path(root, path);
3119 found_key.offset++;
3120
3121 /* setup a max key for search_forward */
3122 other_key.offset = (u64)-1;
3123 other_key.type = key.type;
3124 other_key.objectid = key.objectid;
3125
3126 path->keep_locks = 1;
3127 ret = btrfs_search_forward(root, &found_key, &other_key,
3128 path, 0, 0);
3129 path->keep_locks = 0;
3130 if (ret || found_key.objectid != key.objectid ||
3131 found_key.type != key.type) {
3132 ret = 0;
3133 goto out;
3134 }
3135
3136 key.offset = found_key.offset;
3137 btrfs_release_path(root, path);
3138 cond_resched();
3139 goto again;
3140 }
3141
3142 /* we know there's one more slot after us in the tree,
3143 * read that key so we can verify it is also a checksum item
3144 */
3145 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3146
3147 if (found_key.objectid < inode->i_ino)
3148 goto next_key;
3149
3150 if (found_key.type != key.type || found_key.offset < new_size)
3151 goto next_key;
3152
3153 /*
3154 * if the key for the next leaf isn't a csum key from this objectid,
3155 * we can't be sure there aren't good items inside this leaf.
3156 * Bail out
3157 */
3158 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3159 goto out;
3160
3161 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3162 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3163 /*
3164 * it is safe to delete this leaf, it contains only
3165 * csum items from this inode at an offset >= new_size
3166 */
3167 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3168 BUG_ON(ret);
3169
3170 if (root->ref_cows && leaf_gen < trans->transid) {
3171 ref = btrfs_alloc_leaf_ref(root, 0);
3172 if (ref) {
3173 ref->root_gen = root->root_key.offset;
3174 ref->bytenr = leaf_start;
3175 ref->owner = 0;
3176 ref->generation = leaf_gen;
3177 ref->nritems = 0;
3178
3179 btrfs_sort_leaf_ref(ref);
3180
3181 ret = btrfs_add_leaf_ref(root, ref, 0);
3182 WARN_ON(ret);
3183 btrfs_free_leaf_ref(root, ref);
3184 } else {
3185 WARN_ON(1);
3186 }
3187 }
3188 next_key:
3189 btrfs_release_path(root, path);
3190
3191 if (other_key.objectid == inode->i_ino &&
3192 other_key.type == key.type && other_key.offset > key.offset) {
3193 key.offset = other_key.offset;
3194 cond_resched();
3195 goto again;
3196 }
3197 ret = 0;
3198 out:
3199 /* fixup any changes we've made to the path */
3200 path->lowest_level = 0;
3201 path->keep_locks = 0;
3202 btrfs_release_path(root, path);
3203 return ret;
3204 }
3205
3206 #endif
3207
3208 /*
3209 * this can truncate away extent items, csum items and directory items.
3210 * It starts at a high offset and removes keys until it can't find
3211 * any higher than new_size
3212 *
3213 * csum items that cross the new i_size are truncated to the new size
3214 * as well.
3215 *
3216 * min_type is the minimum key type to truncate down to. If set to 0, this
3217 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3218 */
3219 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3220 struct btrfs_root *root,
3221 struct inode *inode,
3222 u64 new_size, u32 min_type)
3223 {
3224 struct btrfs_path *path;
3225 struct extent_buffer *leaf;
3226 struct btrfs_file_extent_item *fi;
3227 struct btrfs_key key;
3228 struct btrfs_key found_key;
3229 u64 extent_start = 0;
3230 u64 extent_num_bytes = 0;
3231 u64 extent_offset = 0;
3232 u64 item_end = 0;
3233 u64 mask = root->sectorsize - 1;
3234 u32 found_type = (u8)-1;
3235 int found_extent;
3236 int del_item;
3237 int pending_del_nr = 0;
3238 int pending_del_slot = 0;
3239 int extent_type = -1;
3240 int encoding;
3241 int ret;
3242 int err = 0;
3243
3244 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3245
3246 if (root->ref_cows || root == root->fs_info->tree_root)
3247 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3248
3249 path = btrfs_alloc_path();
3250 BUG_ON(!path);
3251 path->reada = -1;
3252
3253 key.objectid = inode->i_ino;
3254 key.offset = (u64)-1;
3255 key.type = (u8)-1;
3256
3257 search_again:
3258 path->leave_spinning = 1;
3259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3260 if (ret < 0) {
3261 err = ret;
3262 goto out;
3263 }
3264
3265 if (ret > 0) {
3266 /* there are no items in the tree for us to truncate, we're
3267 * done
3268 */
3269 if (path->slots[0] == 0)
3270 goto out;
3271 path->slots[0]--;
3272 }
3273
3274 while (1) {
3275 fi = NULL;
3276 leaf = path->nodes[0];
3277 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3278 found_type = btrfs_key_type(&found_key);
3279 encoding = 0;
3280
3281 if (found_key.objectid != inode->i_ino)
3282 break;
3283
3284 if (found_type < min_type)
3285 break;
3286
3287 item_end = found_key.offset;
3288 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3289 fi = btrfs_item_ptr(leaf, path->slots[0],
3290 struct btrfs_file_extent_item);
3291 extent_type = btrfs_file_extent_type(leaf, fi);
3292 encoding = btrfs_file_extent_compression(leaf, fi);
3293 encoding |= btrfs_file_extent_encryption(leaf, fi);
3294 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3295
3296 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3297 item_end +=
3298 btrfs_file_extent_num_bytes(leaf, fi);
3299 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3300 item_end += btrfs_file_extent_inline_len(leaf,
3301 fi);
3302 }
3303 item_end--;
3304 }
3305 if (found_type > min_type) {
3306 del_item = 1;
3307 } else {
3308 if (item_end < new_size)
3309 break;
3310 if (found_key.offset >= new_size)
3311 del_item = 1;
3312 else
3313 del_item = 0;
3314 }
3315 found_extent = 0;
3316 /* FIXME, shrink the extent if the ref count is only 1 */
3317 if (found_type != BTRFS_EXTENT_DATA_KEY)
3318 goto delete;
3319
3320 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3321 u64 num_dec;
3322 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3323 if (!del_item && !encoding) {
3324 u64 orig_num_bytes =
3325 btrfs_file_extent_num_bytes(leaf, fi);
3326 extent_num_bytes = new_size -
3327 found_key.offset + root->sectorsize - 1;
3328 extent_num_bytes = extent_num_bytes &
3329 ~((u64)root->sectorsize - 1);
3330 btrfs_set_file_extent_num_bytes(leaf, fi,
3331 extent_num_bytes);
3332 num_dec = (orig_num_bytes -
3333 extent_num_bytes);
3334 if (root->ref_cows && extent_start != 0)
3335 inode_sub_bytes(inode, num_dec);
3336 btrfs_mark_buffer_dirty(leaf);
3337 } else {
3338 extent_num_bytes =
3339 btrfs_file_extent_disk_num_bytes(leaf,
3340 fi);
3341 extent_offset = found_key.offset -
3342 btrfs_file_extent_offset(leaf, fi);
3343
3344 /* FIXME blocksize != 4096 */
3345 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3346 if (extent_start != 0) {
3347 found_extent = 1;
3348 if (root->ref_cows)
3349 inode_sub_bytes(inode, num_dec);
3350 }
3351 }
3352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3353 /*
3354 * we can't truncate inline items that have had
3355 * special encodings
3356 */
3357 if (!del_item &&
3358 btrfs_file_extent_compression(leaf, fi) == 0 &&
3359 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3360 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3361 u32 size = new_size - found_key.offset;
3362
3363 if (root->ref_cows) {
3364 inode_sub_bytes(inode, item_end + 1 -
3365 new_size);
3366 }
3367 size =
3368 btrfs_file_extent_calc_inline_size(size);
3369 ret = btrfs_truncate_item(trans, root, path,
3370 size, 1);
3371 BUG_ON(ret);
3372 } else if (root->ref_cows) {
3373 inode_sub_bytes(inode, item_end + 1 -
3374 found_key.offset);
3375 }
3376 }
3377 delete:
3378 if (del_item) {
3379 if (!pending_del_nr) {
3380 /* no pending yet, add ourselves */
3381 pending_del_slot = path->slots[0];
3382 pending_del_nr = 1;
3383 } else if (pending_del_nr &&
3384 path->slots[0] + 1 == pending_del_slot) {
3385 /* hop on the pending chunk */
3386 pending_del_nr++;
3387 pending_del_slot = path->slots[0];
3388 } else {
3389 BUG();
3390 }
3391 } else {
3392 break;
3393 }
3394 if (found_extent && (root->ref_cows ||
3395 root == root->fs_info->tree_root)) {
3396 btrfs_set_path_blocking(path);
3397 ret = btrfs_free_extent(trans, root, extent_start,
3398 extent_num_bytes, 0,
3399 btrfs_header_owner(leaf),
3400 inode->i_ino, extent_offset);
3401 BUG_ON(ret);
3402 }
3403
3404 if (found_type == BTRFS_INODE_ITEM_KEY)
3405 break;
3406
3407 if (path->slots[0] == 0 ||
3408 path->slots[0] != pending_del_slot) {
3409 if (root->ref_cows) {
3410 err = -EAGAIN;
3411 goto out;
3412 }
3413 if (pending_del_nr) {
3414 ret = btrfs_del_items(trans, root, path,
3415 pending_del_slot,
3416 pending_del_nr);
3417 BUG_ON(ret);
3418 pending_del_nr = 0;
3419 }
3420 btrfs_release_path(root, path);
3421 goto search_again;
3422 } else {
3423 path->slots[0]--;
3424 }
3425 }
3426 out:
3427 if (pending_del_nr) {
3428 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3429 pending_del_nr);
3430 BUG_ON(ret);
3431 }
3432 btrfs_free_path(path);
3433 return err;
3434 }
3435
3436 /*
3437 * taken from block_truncate_page, but does cow as it zeros out
3438 * any bytes left in the last page in the file.
3439 */
3440 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3441 {
3442 struct inode *inode = mapping->host;
3443 struct btrfs_root *root = BTRFS_I(inode)->root;
3444 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3445 struct btrfs_ordered_extent *ordered;
3446 struct extent_state *cached_state = NULL;
3447 char *kaddr;
3448 u32 blocksize = root->sectorsize;
3449 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3450 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3451 struct page *page;
3452 int ret = 0;
3453 u64 page_start;
3454 u64 page_end;
3455
3456 if ((offset & (blocksize - 1)) == 0)
3457 goto out;
3458 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3459 if (ret)
3460 goto out;
3461
3462 ret = -ENOMEM;
3463 again:
3464 page = grab_cache_page(mapping, index);
3465 if (!page) {
3466 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3467 goto out;
3468 }
3469
3470 page_start = page_offset(page);
3471 page_end = page_start + PAGE_CACHE_SIZE - 1;
3472
3473 if (!PageUptodate(page)) {
3474 ret = btrfs_readpage(NULL, page);
3475 lock_page(page);
3476 if (page->mapping != mapping) {
3477 unlock_page(page);
3478 page_cache_release(page);
3479 goto again;
3480 }
3481 if (!PageUptodate(page)) {
3482 ret = -EIO;
3483 goto out_unlock;
3484 }
3485 }
3486 wait_on_page_writeback(page);
3487
3488 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3489 GFP_NOFS);
3490 set_page_extent_mapped(page);
3491
3492 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3493 if (ordered) {
3494 unlock_extent_cached(io_tree, page_start, page_end,
3495 &cached_state, GFP_NOFS);
3496 unlock_page(page);
3497 page_cache_release(page);
3498 btrfs_start_ordered_extent(inode, ordered, 1);
3499 btrfs_put_ordered_extent(ordered);
3500 goto again;
3501 }
3502
3503 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3504 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3505 0, 0, &cached_state, GFP_NOFS);
3506
3507 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3508 &cached_state);
3509 if (ret) {
3510 unlock_extent_cached(io_tree, page_start, page_end,
3511 &cached_state, GFP_NOFS);
3512 goto out_unlock;
3513 }
3514
3515 ret = 0;
3516 if (offset != PAGE_CACHE_SIZE) {
3517 kaddr = kmap(page);
3518 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3519 flush_dcache_page(page);
3520 kunmap(page);
3521 }
3522 ClearPageChecked(page);
3523 set_page_dirty(page);
3524 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3525 GFP_NOFS);
3526
3527 out_unlock:
3528 if (ret)
3529 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3530 unlock_page(page);
3531 page_cache_release(page);
3532 out:
3533 return ret;
3534 }
3535
3536 int btrfs_cont_expand(struct inode *inode, loff_t size)
3537 {
3538 struct btrfs_trans_handle *trans;
3539 struct btrfs_root *root = BTRFS_I(inode)->root;
3540 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3541 struct extent_map *em = NULL;
3542 struct extent_state *cached_state = NULL;
3543 u64 mask = root->sectorsize - 1;
3544 u64 hole_start = (inode->i_size + mask) & ~mask;
3545 u64 block_end = (size + mask) & ~mask;
3546 u64 last_byte;
3547 u64 cur_offset;
3548 u64 hole_size;
3549 int err = 0;
3550
3551 if (size <= hole_start)
3552 return 0;
3553
3554 while (1) {
3555 struct btrfs_ordered_extent *ordered;
3556 btrfs_wait_ordered_range(inode, hole_start,
3557 block_end - hole_start);
3558 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3559 &cached_state, GFP_NOFS);
3560 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3561 if (!ordered)
3562 break;
3563 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3564 &cached_state, GFP_NOFS);
3565 btrfs_put_ordered_extent(ordered);
3566 }
3567
3568 cur_offset = hole_start;
3569 while (1) {
3570 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3571 block_end - cur_offset, 0);
3572 BUG_ON(IS_ERR(em) || !em);
3573 last_byte = min(extent_map_end(em), block_end);
3574 last_byte = (last_byte + mask) & ~mask;
3575 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3576 u64 hint_byte = 0;
3577 hole_size = last_byte - cur_offset;
3578
3579 trans = btrfs_start_transaction(root, 2);
3580 if (IS_ERR(trans)) {
3581 err = PTR_ERR(trans);
3582 break;
3583 }
3584 btrfs_set_trans_block_group(trans, inode);
3585
3586 err = btrfs_drop_extents(trans, inode, cur_offset,
3587 cur_offset + hole_size,
3588 &hint_byte, 1);
3589 BUG_ON(err);
3590
3591 err = btrfs_insert_file_extent(trans, root,
3592 inode->i_ino, cur_offset, 0,
3593 0, hole_size, 0, hole_size,
3594 0, 0, 0);
3595 BUG_ON(err);
3596
3597 btrfs_drop_extent_cache(inode, hole_start,
3598 last_byte - 1, 0);
3599
3600 btrfs_end_transaction(trans, root);
3601 }
3602 free_extent_map(em);
3603 em = NULL;
3604 cur_offset = last_byte;
3605 if (cur_offset >= block_end)
3606 break;
3607 }
3608
3609 free_extent_map(em);
3610 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3611 GFP_NOFS);
3612 return err;
3613 }
3614
3615 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3616 {
3617 struct btrfs_root *root = BTRFS_I(inode)->root;
3618 struct btrfs_trans_handle *trans;
3619 unsigned long nr;
3620 int ret;
3621
3622 if (attr->ia_size == inode->i_size)
3623 return 0;
3624
3625 if (attr->ia_size > inode->i_size) {
3626 unsigned long limit;
3627 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3628 if (attr->ia_size > inode->i_sb->s_maxbytes)
3629 return -EFBIG;
3630 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3631 send_sig(SIGXFSZ, current, 0);
3632 return -EFBIG;
3633 }
3634 }
3635
3636 trans = btrfs_start_transaction(root, 5);
3637 if (IS_ERR(trans))
3638 return PTR_ERR(trans);
3639
3640 btrfs_set_trans_block_group(trans, inode);
3641
3642 ret = btrfs_orphan_add(trans, inode);
3643 BUG_ON(ret);
3644
3645 nr = trans->blocks_used;
3646 btrfs_end_transaction(trans, root);
3647 btrfs_btree_balance_dirty(root, nr);
3648
3649 if (attr->ia_size > inode->i_size) {
3650 ret = btrfs_cont_expand(inode, attr->ia_size);
3651 if (ret) {
3652 btrfs_truncate(inode);
3653 return ret;
3654 }
3655
3656 i_size_write(inode, attr->ia_size);
3657 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3658
3659 trans = btrfs_start_transaction(root, 0);
3660 BUG_ON(IS_ERR(trans));
3661 btrfs_set_trans_block_group(trans, inode);
3662 trans->block_rsv = root->orphan_block_rsv;
3663 BUG_ON(!trans->block_rsv);
3664
3665 ret = btrfs_update_inode(trans, root, inode);
3666 BUG_ON(ret);
3667 if (inode->i_nlink > 0) {
3668 ret = btrfs_orphan_del(trans, inode);
3669 BUG_ON(ret);
3670 }
3671 nr = trans->blocks_used;
3672 btrfs_end_transaction(trans, root);
3673 btrfs_btree_balance_dirty(root, nr);
3674 return 0;
3675 }
3676
3677 /*
3678 * We're truncating a file that used to have good data down to
3679 * zero. Make sure it gets into the ordered flush list so that
3680 * any new writes get down to disk quickly.
3681 */
3682 if (attr->ia_size == 0)
3683 BTRFS_I(inode)->ordered_data_close = 1;
3684
3685 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3686 ret = vmtruncate(inode, attr->ia_size);
3687 BUG_ON(ret);
3688
3689 return 0;
3690 }
3691
3692 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3693 {
3694 struct inode *inode = dentry->d_inode;
3695 struct btrfs_root *root = BTRFS_I(inode)->root;
3696 int err;
3697
3698 if (btrfs_root_readonly(root))
3699 return -EROFS;
3700
3701 err = inode_change_ok(inode, attr);
3702 if (err)
3703 return err;
3704
3705 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3706 err = btrfs_setattr_size(inode, attr);
3707 if (err)
3708 return err;
3709 }
3710
3711 if (attr->ia_valid) {
3712 setattr_copy(inode, attr);
3713 mark_inode_dirty(inode);
3714
3715 if (attr->ia_valid & ATTR_MODE)
3716 err = btrfs_acl_chmod(inode);
3717 }
3718
3719 return err;
3720 }
3721
3722 void btrfs_evict_inode(struct inode *inode)
3723 {
3724 struct btrfs_trans_handle *trans;
3725 struct btrfs_root *root = BTRFS_I(inode)->root;
3726 unsigned long nr;
3727 int ret;
3728
3729 truncate_inode_pages(&inode->i_data, 0);
3730 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3731 root == root->fs_info->tree_root))
3732 goto no_delete;
3733
3734 if (is_bad_inode(inode)) {
3735 btrfs_orphan_del(NULL, inode);
3736 goto no_delete;
3737 }
3738 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3739 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3740
3741 if (root->fs_info->log_root_recovering) {
3742 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3743 goto no_delete;
3744 }
3745
3746 if (inode->i_nlink > 0) {
3747 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3748 goto no_delete;
3749 }
3750
3751 btrfs_i_size_write(inode, 0);
3752
3753 while (1) {
3754 trans = btrfs_start_transaction(root, 0);
3755 BUG_ON(IS_ERR(trans));
3756 btrfs_set_trans_block_group(trans, inode);
3757 trans->block_rsv = root->orphan_block_rsv;
3758
3759 ret = btrfs_block_rsv_check(trans, root,
3760 root->orphan_block_rsv, 0, 5);
3761 if (ret) {
3762 BUG_ON(ret != -EAGAIN);
3763 ret = btrfs_commit_transaction(trans, root);
3764 BUG_ON(ret);
3765 continue;
3766 }
3767
3768 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3769 if (ret != -EAGAIN)
3770 break;
3771
3772 nr = trans->blocks_used;
3773 btrfs_end_transaction(trans, root);
3774 trans = NULL;
3775 btrfs_btree_balance_dirty(root, nr);
3776
3777 }
3778
3779 if (ret == 0) {
3780 ret = btrfs_orphan_del(trans, inode);
3781 BUG_ON(ret);
3782 }
3783
3784 nr = trans->blocks_used;
3785 btrfs_end_transaction(trans, root);
3786 btrfs_btree_balance_dirty(root, nr);
3787 no_delete:
3788 end_writeback(inode);
3789 return;
3790 }
3791
3792 /*
3793 * this returns the key found in the dir entry in the location pointer.
3794 * If no dir entries were found, location->objectid is 0.
3795 */
3796 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3797 struct btrfs_key *location)
3798 {
3799 const char *name = dentry->d_name.name;
3800 int namelen = dentry->d_name.len;
3801 struct btrfs_dir_item *di;
3802 struct btrfs_path *path;
3803 struct btrfs_root *root = BTRFS_I(dir)->root;
3804 int ret = 0;
3805
3806 path = btrfs_alloc_path();
3807 BUG_ON(!path);
3808
3809 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3810 namelen, 0);
3811 if (IS_ERR(di))
3812 ret = PTR_ERR(di);
3813
3814 if (!di || IS_ERR(di))
3815 goto out_err;
3816
3817 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3818 out:
3819 btrfs_free_path(path);
3820 return ret;
3821 out_err:
3822 location->objectid = 0;
3823 goto out;
3824 }
3825
3826 /*
3827 * when we hit a tree root in a directory, the btrfs part of the inode
3828 * needs to be changed to reflect the root directory of the tree root. This
3829 * is kind of like crossing a mount point.
3830 */
3831 static int fixup_tree_root_location(struct btrfs_root *root,
3832 struct inode *dir,
3833 struct dentry *dentry,
3834 struct btrfs_key *location,
3835 struct btrfs_root **sub_root)
3836 {
3837 struct btrfs_path *path;
3838 struct btrfs_root *new_root;
3839 struct btrfs_root_ref *ref;
3840 struct extent_buffer *leaf;
3841 int ret;
3842 int err = 0;
3843
3844 path = btrfs_alloc_path();
3845 if (!path) {
3846 err = -ENOMEM;
3847 goto out;
3848 }
3849
3850 err = -ENOENT;
3851 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3852 BTRFS_I(dir)->root->root_key.objectid,
3853 location->objectid);
3854 if (ret) {
3855 if (ret < 0)
3856 err = ret;
3857 goto out;
3858 }
3859
3860 leaf = path->nodes[0];
3861 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3862 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3863 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3864 goto out;
3865
3866 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3867 (unsigned long)(ref + 1),
3868 dentry->d_name.len);
3869 if (ret)
3870 goto out;
3871
3872 btrfs_release_path(root->fs_info->tree_root, path);
3873
3874 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3875 if (IS_ERR(new_root)) {
3876 err = PTR_ERR(new_root);
3877 goto out;
3878 }
3879
3880 if (btrfs_root_refs(&new_root->root_item) == 0) {
3881 err = -ENOENT;
3882 goto out;
3883 }
3884
3885 *sub_root = new_root;
3886 location->objectid = btrfs_root_dirid(&new_root->root_item);
3887 location->type = BTRFS_INODE_ITEM_KEY;
3888 location->offset = 0;
3889 err = 0;
3890 out:
3891 btrfs_free_path(path);
3892 return err;
3893 }
3894
3895 static void inode_tree_add(struct inode *inode)
3896 {
3897 struct btrfs_root *root = BTRFS_I(inode)->root;
3898 struct btrfs_inode *entry;
3899 struct rb_node **p;
3900 struct rb_node *parent;
3901 again:
3902 p = &root->inode_tree.rb_node;
3903 parent = NULL;
3904
3905 if (inode_unhashed(inode))
3906 return;
3907
3908 spin_lock(&root->inode_lock);
3909 while (*p) {
3910 parent = *p;
3911 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3912
3913 if (inode->i_ino < entry->vfs_inode.i_ino)
3914 p = &parent->rb_left;
3915 else if (inode->i_ino > entry->vfs_inode.i_ino)
3916 p = &parent->rb_right;
3917 else {
3918 WARN_ON(!(entry->vfs_inode.i_state &
3919 (I_WILL_FREE | I_FREEING)));
3920 rb_erase(parent, &root->inode_tree);
3921 RB_CLEAR_NODE(parent);
3922 spin_unlock(&root->inode_lock);
3923 goto again;
3924 }
3925 }
3926 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3927 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3928 spin_unlock(&root->inode_lock);
3929 }
3930
3931 static void inode_tree_del(struct inode *inode)
3932 {
3933 struct btrfs_root *root = BTRFS_I(inode)->root;
3934 int empty = 0;
3935
3936 spin_lock(&root->inode_lock);
3937 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3938 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3939 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3940 empty = RB_EMPTY_ROOT(&root->inode_tree);
3941 }
3942 spin_unlock(&root->inode_lock);
3943
3944 /*
3945 * Free space cache has inodes in the tree root, but the tree root has a
3946 * root_refs of 0, so this could end up dropping the tree root as a
3947 * snapshot, so we need the extra !root->fs_info->tree_root check to
3948 * make sure we don't drop it.
3949 */
3950 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3951 root != root->fs_info->tree_root) {
3952 synchronize_srcu(&root->fs_info->subvol_srcu);
3953 spin_lock(&root->inode_lock);
3954 empty = RB_EMPTY_ROOT(&root->inode_tree);
3955 spin_unlock(&root->inode_lock);
3956 if (empty)
3957 btrfs_add_dead_root(root);
3958 }
3959 }
3960
3961 int btrfs_invalidate_inodes(struct btrfs_root *root)
3962 {
3963 struct rb_node *node;
3964 struct rb_node *prev;
3965 struct btrfs_inode *entry;
3966 struct inode *inode;
3967 u64 objectid = 0;
3968
3969 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3970
3971 spin_lock(&root->inode_lock);
3972 again:
3973 node = root->inode_tree.rb_node;
3974 prev = NULL;
3975 while (node) {
3976 prev = node;
3977 entry = rb_entry(node, struct btrfs_inode, rb_node);
3978
3979 if (objectid < entry->vfs_inode.i_ino)
3980 node = node->rb_left;
3981 else if (objectid > entry->vfs_inode.i_ino)
3982 node = node->rb_right;
3983 else
3984 break;
3985 }
3986 if (!node) {
3987 while (prev) {
3988 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3989 if (objectid <= entry->vfs_inode.i_ino) {
3990 node = prev;
3991 break;
3992 }
3993 prev = rb_next(prev);
3994 }
3995 }
3996 while (node) {
3997 entry = rb_entry(node, struct btrfs_inode, rb_node);
3998 objectid = entry->vfs_inode.i_ino + 1;
3999 inode = igrab(&entry->vfs_inode);
4000 if (inode) {
4001 spin_unlock(&root->inode_lock);
4002 if (atomic_read(&inode->i_count) > 1)
4003 d_prune_aliases(inode);
4004 /*
4005 * btrfs_drop_inode will have it removed from
4006 * the inode cache when its usage count
4007 * hits zero.
4008 */
4009 iput(inode);
4010 cond_resched();
4011 spin_lock(&root->inode_lock);
4012 goto again;
4013 }
4014
4015 if (cond_resched_lock(&root->inode_lock))
4016 goto again;
4017
4018 node = rb_next(node);
4019 }
4020 spin_unlock(&root->inode_lock);
4021 return 0;
4022 }
4023
4024 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4025 {
4026 struct btrfs_iget_args *args = p;
4027 inode->i_ino = args->ino;
4028 BTRFS_I(inode)->root = args->root;
4029 btrfs_set_inode_space_info(args->root, inode);
4030 return 0;
4031 }
4032
4033 static int btrfs_find_actor(struct inode *inode, void *opaque)
4034 {
4035 struct btrfs_iget_args *args = opaque;
4036 return args->ino == inode->i_ino &&
4037 args->root == BTRFS_I(inode)->root;
4038 }
4039
4040 static struct inode *btrfs_iget_locked(struct super_block *s,
4041 u64 objectid,
4042 struct btrfs_root *root)
4043 {
4044 struct inode *inode;
4045 struct btrfs_iget_args args;
4046 args.ino = objectid;
4047 args.root = root;
4048
4049 inode = iget5_locked(s, objectid, btrfs_find_actor,
4050 btrfs_init_locked_inode,
4051 (void *)&args);
4052 return inode;
4053 }
4054
4055 /* Get an inode object given its location and corresponding root.
4056 * Returns in *is_new if the inode was read from disk
4057 */
4058 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4059 struct btrfs_root *root, int *new)
4060 {
4061 struct inode *inode;
4062
4063 inode = btrfs_iget_locked(s, location->objectid, root);
4064 if (!inode)
4065 return ERR_PTR(-ENOMEM);
4066
4067 if (inode->i_state & I_NEW) {
4068 BTRFS_I(inode)->root = root;
4069 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4070 btrfs_read_locked_inode(inode);
4071
4072 inode_tree_add(inode);
4073 unlock_new_inode(inode);
4074 if (new)
4075 *new = 1;
4076 }
4077
4078 return inode;
4079 }
4080
4081 static struct inode *new_simple_dir(struct super_block *s,
4082 struct btrfs_key *key,
4083 struct btrfs_root *root)
4084 {
4085 struct inode *inode = new_inode(s);
4086
4087 if (!inode)
4088 return ERR_PTR(-ENOMEM);
4089
4090 BTRFS_I(inode)->root = root;
4091 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4092 BTRFS_I(inode)->dummy_inode = 1;
4093
4094 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4095 inode->i_op = &simple_dir_inode_operations;
4096 inode->i_fop = &simple_dir_operations;
4097 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4098 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4099
4100 return inode;
4101 }
4102
4103 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4104 {
4105 struct inode *inode;
4106 struct btrfs_root *root = BTRFS_I(dir)->root;
4107 struct btrfs_root *sub_root = root;
4108 struct btrfs_key location;
4109 int index;
4110 int ret;
4111
4112 if (dentry->d_name.len > BTRFS_NAME_LEN)
4113 return ERR_PTR(-ENAMETOOLONG);
4114
4115 ret = btrfs_inode_by_name(dir, dentry, &location);
4116
4117 if (ret < 0)
4118 return ERR_PTR(ret);
4119
4120 if (location.objectid == 0)
4121 return NULL;
4122
4123 if (location.type == BTRFS_INODE_ITEM_KEY) {
4124 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4125 return inode;
4126 }
4127
4128 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4129
4130 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4131 ret = fixup_tree_root_location(root, dir, dentry,
4132 &location, &sub_root);
4133 if (ret < 0) {
4134 if (ret != -ENOENT)
4135 inode = ERR_PTR(ret);
4136 else
4137 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4138 } else {
4139 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4140 }
4141 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4142
4143 if (!IS_ERR(inode) && root != sub_root) {
4144 down_read(&root->fs_info->cleanup_work_sem);
4145 if (!(inode->i_sb->s_flags & MS_RDONLY))
4146 btrfs_orphan_cleanup(sub_root);
4147 up_read(&root->fs_info->cleanup_work_sem);
4148 }
4149
4150 return inode;
4151 }
4152
4153 static int btrfs_dentry_delete(const struct dentry *dentry)
4154 {
4155 struct btrfs_root *root;
4156
4157 if (!dentry->d_inode && !IS_ROOT(dentry))
4158 dentry = dentry->d_parent;
4159
4160 if (dentry->d_inode) {
4161 root = BTRFS_I(dentry->d_inode)->root;
4162 if (btrfs_root_refs(&root->root_item) == 0)
4163 return 1;
4164 }
4165 return 0;
4166 }
4167
4168 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4169 struct nameidata *nd)
4170 {
4171 struct inode *inode;
4172
4173 inode = btrfs_lookup_dentry(dir, dentry);
4174 if (IS_ERR(inode))
4175 return ERR_CAST(inode);
4176
4177 return d_splice_alias(inode, dentry);
4178 }
4179
4180 static unsigned char btrfs_filetype_table[] = {
4181 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4182 };
4183
4184 static int btrfs_real_readdir(struct file *filp, void *dirent,
4185 filldir_t filldir)
4186 {
4187 struct inode *inode = filp->f_dentry->d_inode;
4188 struct btrfs_root *root = BTRFS_I(inode)->root;
4189 struct btrfs_item *item;
4190 struct btrfs_dir_item *di;
4191 struct btrfs_key key;
4192 struct btrfs_key found_key;
4193 struct btrfs_path *path;
4194 int ret;
4195 u32 nritems;
4196 struct extent_buffer *leaf;
4197 int slot;
4198 int advance;
4199 unsigned char d_type;
4200 int over = 0;
4201 u32 di_cur;
4202 u32 di_total;
4203 u32 di_len;
4204 int key_type = BTRFS_DIR_INDEX_KEY;
4205 char tmp_name[32];
4206 char *name_ptr;
4207 int name_len;
4208
4209 /* FIXME, use a real flag for deciding about the key type */
4210 if (root->fs_info->tree_root == root)
4211 key_type = BTRFS_DIR_ITEM_KEY;
4212
4213 /* special case for "." */
4214 if (filp->f_pos == 0) {
4215 over = filldir(dirent, ".", 1,
4216 1, inode->i_ino,
4217 DT_DIR);
4218 if (over)
4219 return 0;
4220 filp->f_pos = 1;
4221 }
4222 /* special case for .., just use the back ref */
4223 if (filp->f_pos == 1) {
4224 u64 pino = parent_ino(filp->f_path.dentry);
4225 over = filldir(dirent, "..", 2,
4226 2, pino, DT_DIR);
4227 if (over)
4228 return 0;
4229 filp->f_pos = 2;
4230 }
4231 path = btrfs_alloc_path();
4232 path->reada = 2;
4233
4234 btrfs_set_key_type(&key, key_type);
4235 key.offset = filp->f_pos;
4236 key.objectid = inode->i_ino;
4237
4238 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4239 if (ret < 0)
4240 goto err;
4241 advance = 0;
4242
4243 while (1) {
4244 leaf = path->nodes[0];
4245 nritems = btrfs_header_nritems(leaf);
4246 slot = path->slots[0];
4247 if (advance || slot >= nritems) {
4248 if (slot >= nritems - 1) {
4249 ret = btrfs_next_leaf(root, path);
4250 if (ret)
4251 break;
4252 leaf = path->nodes[0];
4253 nritems = btrfs_header_nritems(leaf);
4254 slot = path->slots[0];
4255 } else {
4256 slot++;
4257 path->slots[0]++;
4258 }
4259 }
4260
4261 advance = 1;
4262 item = btrfs_item_nr(leaf, slot);
4263 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4264
4265 if (found_key.objectid != key.objectid)
4266 break;
4267 if (btrfs_key_type(&found_key) != key_type)
4268 break;
4269 if (found_key.offset < filp->f_pos)
4270 continue;
4271
4272 filp->f_pos = found_key.offset;
4273
4274 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4275 di_cur = 0;
4276 di_total = btrfs_item_size(leaf, item);
4277
4278 while (di_cur < di_total) {
4279 struct btrfs_key location;
4280
4281 name_len = btrfs_dir_name_len(leaf, di);
4282 if (name_len <= sizeof(tmp_name)) {
4283 name_ptr = tmp_name;
4284 } else {
4285 name_ptr = kmalloc(name_len, GFP_NOFS);
4286 if (!name_ptr) {
4287 ret = -ENOMEM;
4288 goto err;
4289 }
4290 }
4291 read_extent_buffer(leaf, name_ptr,
4292 (unsigned long)(di + 1), name_len);
4293
4294 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4295 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4296
4297 /* is this a reference to our own snapshot? If so
4298 * skip it
4299 */
4300 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4301 location.objectid == root->root_key.objectid) {
4302 over = 0;
4303 goto skip;
4304 }
4305 over = filldir(dirent, name_ptr, name_len,
4306 found_key.offset, location.objectid,
4307 d_type);
4308
4309 skip:
4310 if (name_ptr != tmp_name)
4311 kfree(name_ptr);
4312
4313 if (over)
4314 goto nopos;
4315 di_len = btrfs_dir_name_len(leaf, di) +
4316 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4317 di_cur += di_len;
4318 di = (struct btrfs_dir_item *)((char *)di + di_len);
4319 }
4320 }
4321
4322 /* Reached end of directory/root. Bump pos past the last item. */
4323 if (key_type == BTRFS_DIR_INDEX_KEY)
4324 /*
4325 * 32-bit glibc will use getdents64, but then strtol -
4326 * so the last number we can serve is this.
4327 */
4328 filp->f_pos = 0x7fffffff;
4329 else
4330 filp->f_pos++;
4331 nopos:
4332 ret = 0;
4333 err:
4334 btrfs_free_path(path);
4335 return ret;
4336 }
4337
4338 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4339 {
4340 struct btrfs_root *root = BTRFS_I(inode)->root;
4341 struct btrfs_trans_handle *trans;
4342 int ret = 0;
4343 bool nolock = false;
4344
4345 if (BTRFS_I(inode)->dummy_inode)
4346 return 0;
4347
4348 smp_mb();
4349 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4350
4351 if (wbc->sync_mode == WB_SYNC_ALL) {
4352 if (nolock)
4353 trans = btrfs_join_transaction_nolock(root, 1);
4354 else
4355 trans = btrfs_join_transaction(root, 1);
4356 if (IS_ERR(trans))
4357 return PTR_ERR(trans);
4358 btrfs_set_trans_block_group(trans, inode);
4359 if (nolock)
4360 ret = btrfs_end_transaction_nolock(trans, root);
4361 else
4362 ret = btrfs_commit_transaction(trans, root);
4363 }
4364 return ret;
4365 }
4366
4367 /*
4368 * This is somewhat expensive, updating the tree every time the
4369 * inode changes. But, it is most likely to find the inode in cache.
4370 * FIXME, needs more benchmarking...there are no reasons other than performance
4371 * to keep or drop this code.
4372 */
4373 void btrfs_dirty_inode(struct inode *inode)
4374 {
4375 struct btrfs_root *root = BTRFS_I(inode)->root;
4376 struct btrfs_trans_handle *trans;
4377 int ret;
4378
4379 if (BTRFS_I(inode)->dummy_inode)
4380 return;
4381
4382 trans = btrfs_join_transaction(root, 1);
4383 BUG_ON(IS_ERR(trans));
4384 btrfs_set_trans_block_group(trans, inode);
4385
4386 ret = btrfs_update_inode(trans, root, inode);
4387 if (ret && ret == -ENOSPC) {
4388 /* whoops, lets try again with the full transaction */
4389 btrfs_end_transaction(trans, root);
4390 trans = btrfs_start_transaction(root, 1);
4391 if (IS_ERR(trans)) {
4392 if (printk_ratelimit()) {
4393 printk(KERN_ERR "btrfs: fail to "
4394 "dirty inode %lu error %ld\n",
4395 inode->i_ino, PTR_ERR(trans));
4396 }
4397 return;
4398 }
4399 btrfs_set_trans_block_group(trans, inode);
4400
4401 ret = btrfs_update_inode(trans, root, inode);
4402 if (ret) {
4403 if (printk_ratelimit()) {
4404 printk(KERN_ERR "btrfs: fail to "
4405 "dirty inode %lu error %d\n",
4406 inode->i_ino, ret);
4407 }
4408 }
4409 }
4410 btrfs_end_transaction(trans, root);
4411 }
4412
4413 /*
4414 * find the highest existing sequence number in a directory
4415 * and then set the in-memory index_cnt variable to reflect
4416 * free sequence numbers
4417 */
4418 static int btrfs_set_inode_index_count(struct inode *inode)
4419 {
4420 struct btrfs_root *root = BTRFS_I(inode)->root;
4421 struct btrfs_key key, found_key;
4422 struct btrfs_path *path;
4423 struct extent_buffer *leaf;
4424 int ret;
4425
4426 key.objectid = inode->i_ino;
4427 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4428 key.offset = (u64)-1;
4429
4430 path = btrfs_alloc_path();
4431 if (!path)
4432 return -ENOMEM;
4433
4434 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4435 if (ret < 0)
4436 goto out;
4437 /* FIXME: we should be able to handle this */
4438 if (ret == 0)
4439 goto out;
4440 ret = 0;
4441
4442 /*
4443 * MAGIC NUMBER EXPLANATION:
4444 * since we search a directory based on f_pos we have to start at 2
4445 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4446 * else has to start at 2
4447 */
4448 if (path->slots[0] == 0) {
4449 BTRFS_I(inode)->index_cnt = 2;
4450 goto out;
4451 }
4452
4453 path->slots[0]--;
4454
4455 leaf = path->nodes[0];
4456 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4457
4458 if (found_key.objectid != inode->i_ino ||
4459 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4460 BTRFS_I(inode)->index_cnt = 2;
4461 goto out;
4462 }
4463
4464 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4465 out:
4466 btrfs_free_path(path);
4467 return ret;
4468 }
4469
4470 /*
4471 * helper to find a free sequence number in a given directory. This current
4472 * code is very simple, later versions will do smarter things in the btree
4473 */
4474 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4475 {
4476 int ret = 0;
4477
4478 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4479 ret = btrfs_set_inode_index_count(dir);
4480 if (ret)
4481 return ret;
4482 }
4483
4484 *index = BTRFS_I(dir)->index_cnt;
4485 BTRFS_I(dir)->index_cnt++;
4486
4487 return ret;
4488 }
4489
4490 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4491 struct btrfs_root *root,
4492 struct inode *dir,
4493 const char *name, int name_len,
4494 u64 ref_objectid, u64 objectid,
4495 u64 alloc_hint, int mode, u64 *index)
4496 {
4497 struct inode *inode;
4498 struct btrfs_inode_item *inode_item;
4499 struct btrfs_key *location;
4500 struct btrfs_path *path;
4501 struct btrfs_inode_ref *ref;
4502 struct btrfs_key key[2];
4503 u32 sizes[2];
4504 unsigned long ptr;
4505 int ret;
4506 int owner;
4507
4508 path = btrfs_alloc_path();
4509 BUG_ON(!path);
4510
4511 inode = new_inode(root->fs_info->sb);
4512 if (!inode)
4513 return ERR_PTR(-ENOMEM);
4514
4515 if (dir) {
4516 ret = btrfs_set_inode_index(dir, index);
4517 if (ret) {
4518 iput(inode);
4519 return ERR_PTR(ret);
4520 }
4521 }
4522 /*
4523 * index_cnt is ignored for everything but a dir,
4524 * btrfs_get_inode_index_count has an explanation for the magic
4525 * number
4526 */
4527 BTRFS_I(inode)->index_cnt = 2;
4528 BTRFS_I(inode)->root = root;
4529 BTRFS_I(inode)->generation = trans->transid;
4530 inode->i_generation = BTRFS_I(inode)->generation;
4531 btrfs_set_inode_space_info(root, inode);
4532
4533 if (mode & S_IFDIR)
4534 owner = 0;
4535 else
4536 owner = 1;
4537 BTRFS_I(inode)->block_group =
4538 btrfs_find_block_group(root, 0, alloc_hint, owner);
4539
4540 key[0].objectid = objectid;
4541 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4542 key[0].offset = 0;
4543
4544 key[1].objectid = objectid;
4545 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4546 key[1].offset = ref_objectid;
4547
4548 sizes[0] = sizeof(struct btrfs_inode_item);
4549 sizes[1] = name_len + sizeof(*ref);
4550
4551 path->leave_spinning = 1;
4552 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4553 if (ret != 0)
4554 goto fail;
4555
4556 inode_init_owner(inode, dir, mode);
4557 inode->i_ino = objectid;
4558 inode_set_bytes(inode, 0);
4559 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4560 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4561 struct btrfs_inode_item);
4562 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4563
4564 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4565 struct btrfs_inode_ref);
4566 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4567 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4568 ptr = (unsigned long)(ref + 1);
4569 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4570
4571 btrfs_mark_buffer_dirty(path->nodes[0]);
4572 btrfs_free_path(path);
4573
4574 location = &BTRFS_I(inode)->location;
4575 location->objectid = objectid;
4576 location->offset = 0;
4577 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4578
4579 btrfs_inherit_iflags(inode, dir);
4580
4581 if ((mode & S_IFREG)) {
4582 if (btrfs_test_opt(root, NODATASUM))
4583 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4584 if (btrfs_test_opt(root, NODATACOW))
4585 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4586 }
4587
4588 insert_inode_hash(inode);
4589 inode_tree_add(inode);
4590 return inode;
4591 fail:
4592 if (dir)
4593 BTRFS_I(dir)->index_cnt--;
4594 btrfs_free_path(path);
4595 iput(inode);
4596 return ERR_PTR(ret);
4597 }
4598
4599 static inline u8 btrfs_inode_type(struct inode *inode)
4600 {
4601 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4602 }
4603
4604 /*
4605 * utility function to add 'inode' into 'parent_inode' with
4606 * a give name and a given sequence number.
4607 * if 'add_backref' is true, also insert a backref from the
4608 * inode to the parent directory.
4609 */
4610 int btrfs_add_link(struct btrfs_trans_handle *trans,
4611 struct inode *parent_inode, struct inode *inode,
4612 const char *name, int name_len, int add_backref, u64 index)
4613 {
4614 int ret = 0;
4615 struct btrfs_key key;
4616 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4617
4618 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4619 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4620 } else {
4621 key.objectid = inode->i_ino;
4622 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4623 key.offset = 0;
4624 }
4625
4626 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4627 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4628 key.objectid, root->root_key.objectid,
4629 parent_inode->i_ino,
4630 index, name, name_len);
4631 } else if (add_backref) {
4632 ret = btrfs_insert_inode_ref(trans, root,
4633 name, name_len, inode->i_ino,
4634 parent_inode->i_ino, index);
4635 }
4636
4637 if (ret == 0) {
4638 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4639 parent_inode->i_ino, &key,
4640 btrfs_inode_type(inode), index);
4641 BUG_ON(ret);
4642
4643 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4644 name_len * 2);
4645 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4646 ret = btrfs_update_inode(trans, root, parent_inode);
4647 }
4648 return ret;
4649 }
4650
4651 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4652 struct inode *dir, struct dentry *dentry,
4653 struct inode *inode, int backref, u64 index)
4654 {
4655 int err = btrfs_add_link(trans, dir, inode,
4656 dentry->d_name.name, dentry->d_name.len,
4657 backref, index);
4658 if (!err) {
4659 d_instantiate(dentry, inode);
4660 return 0;
4661 }
4662 if (err > 0)
4663 err = -EEXIST;
4664 return err;
4665 }
4666
4667 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4668 int mode, dev_t rdev)
4669 {
4670 struct btrfs_trans_handle *trans;
4671 struct btrfs_root *root = BTRFS_I(dir)->root;
4672 struct inode *inode = NULL;
4673 int err;
4674 int drop_inode = 0;
4675 u64 objectid;
4676 unsigned long nr = 0;
4677 u64 index = 0;
4678
4679 if (!new_valid_dev(rdev))
4680 return -EINVAL;
4681
4682 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4683 if (err)
4684 return err;
4685
4686 /*
4687 * 2 for inode item and ref
4688 * 2 for dir items
4689 * 1 for xattr if selinux is on
4690 */
4691 trans = btrfs_start_transaction(root, 5);
4692 if (IS_ERR(trans))
4693 return PTR_ERR(trans);
4694
4695 btrfs_set_trans_block_group(trans, dir);
4696
4697 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4698 dentry->d_name.len, dir->i_ino, objectid,
4699 BTRFS_I(dir)->block_group, mode, &index);
4700 err = PTR_ERR(inode);
4701 if (IS_ERR(inode))
4702 goto out_unlock;
4703
4704 err = btrfs_init_inode_security(trans, inode, dir);
4705 if (err) {
4706 drop_inode = 1;
4707 goto out_unlock;
4708 }
4709
4710 btrfs_set_trans_block_group(trans, inode);
4711 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4712 if (err)
4713 drop_inode = 1;
4714 else {
4715 inode->i_op = &btrfs_special_inode_operations;
4716 init_special_inode(inode, inode->i_mode, rdev);
4717 btrfs_update_inode(trans, root, inode);
4718 }
4719 btrfs_update_inode_block_group(trans, inode);
4720 btrfs_update_inode_block_group(trans, dir);
4721 out_unlock:
4722 nr = trans->blocks_used;
4723 btrfs_end_transaction_throttle(trans, root);
4724 btrfs_btree_balance_dirty(root, nr);
4725 if (drop_inode) {
4726 inode_dec_link_count(inode);
4727 iput(inode);
4728 }
4729 return err;
4730 }
4731
4732 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4733 int mode, struct nameidata *nd)
4734 {
4735 struct btrfs_trans_handle *trans;
4736 struct btrfs_root *root = BTRFS_I(dir)->root;
4737 struct inode *inode = NULL;
4738 int drop_inode = 0;
4739 int err;
4740 unsigned long nr = 0;
4741 u64 objectid;
4742 u64 index = 0;
4743
4744 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4745 if (err)
4746 return err;
4747 /*
4748 * 2 for inode item and ref
4749 * 2 for dir items
4750 * 1 for xattr if selinux is on
4751 */
4752 trans = btrfs_start_transaction(root, 5);
4753 if (IS_ERR(trans))
4754 return PTR_ERR(trans);
4755
4756 btrfs_set_trans_block_group(trans, dir);
4757
4758 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4759 dentry->d_name.len, dir->i_ino, objectid,
4760 BTRFS_I(dir)->block_group, mode, &index);
4761 err = PTR_ERR(inode);
4762 if (IS_ERR(inode))
4763 goto out_unlock;
4764
4765 err = btrfs_init_inode_security(trans, inode, dir);
4766 if (err) {
4767 drop_inode = 1;
4768 goto out_unlock;
4769 }
4770
4771 btrfs_set_trans_block_group(trans, inode);
4772 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4773 if (err)
4774 drop_inode = 1;
4775 else {
4776 inode->i_mapping->a_ops = &btrfs_aops;
4777 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4778 inode->i_fop = &btrfs_file_operations;
4779 inode->i_op = &btrfs_file_inode_operations;
4780 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4781 }
4782 btrfs_update_inode_block_group(trans, inode);
4783 btrfs_update_inode_block_group(trans, dir);
4784 out_unlock:
4785 nr = trans->blocks_used;
4786 btrfs_end_transaction_throttle(trans, root);
4787 if (drop_inode) {
4788 inode_dec_link_count(inode);
4789 iput(inode);
4790 }
4791 btrfs_btree_balance_dirty(root, nr);
4792 return err;
4793 }
4794
4795 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4796 struct dentry *dentry)
4797 {
4798 struct btrfs_trans_handle *trans;
4799 struct btrfs_root *root = BTRFS_I(dir)->root;
4800 struct inode *inode = old_dentry->d_inode;
4801 u64 index;
4802 unsigned long nr = 0;
4803 int err;
4804 int drop_inode = 0;
4805
4806 if (inode->i_nlink == 0)
4807 return -ENOENT;
4808
4809 /* do not allow sys_link's with other subvols of the same device */
4810 if (root->objectid != BTRFS_I(inode)->root->objectid)
4811 return -EPERM;
4812
4813 btrfs_inc_nlink(inode);
4814 inode->i_ctime = CURRENT_TIME;
4815
4816 err = btrfs_set_inode_index(dir, &index);
4817 if (err)
4818 goto fail;
4819
4820 /*
4821 * 1 item for inode ref
4822 * 2 items for dir items
4823 */
4824 trans = btrfs_start_transaction(root, 3);
4825 if (IS_ERR(trans)) {
4826 err = PTR_ERR(trans);
4827 goto fail;
4828 }
4829
4830 btrfs_set_trans_block_group(trans, dir);
4831 ihold(inode);
4832
4833 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4834
4835 if (err) {
4836 drop_inode = 1;
4837 } else {
4838 struct dentry *parent = dget_parent(dentry);
4839 btrfs_update_inode_block_group(trans, dir);
4840 err = btrfs_update_inode(trans, root, inode);
4841 BUG_ON(err);
4842 btrfs_log_new_name(trans, inode, NULL, parent);
4843 dput(parent);
4844 }
4845
4846 nr = trans->blocks_used;
4847 btrfs_end_transaction_throttle(trans, root);
4848 fail:
4849 if (drop_inode) {
4850 inode_dec_link_count(inode);
4851 iput(inode);
4852 }
4853 btrfs_btree_balance_dirty(root, nr);
4854 return err;
4855 }
4856
4857 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4858 {
4859 struct inode *inode = NULL;
4860 struct btrfs_trans_handle *trans;
4861 struct btrfs_root *root = BTRFS_I(dir)->root;
4862 int err = 0;
4863 int drop_on_err = 0;
4864 u64 objectid = 0;
4865 u64 index = 0;
4866 unsigned long nr = 1;
4867
4868 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4869 if (err)
4870 return err;
4871
4872 /*
4873 * 2 items for inode and ref
4874 * 2 items for dir items
4875 * 1 for xattr if selinux is on
4876 */
4877 trans = btrfs_start_transaction(root, 5);
4878 if (IS_ERR(trans))
4879 return PTR_ERR(trans);
4880 btrfs_set_trans_block_group(trans, dir);
4881
4882 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4883 dentry->d_name.len, dir->i_ino, objectid,
4884 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4885 &index);
4886 if (IS_ERR(inode)) {
4887 err = PTR_ERR(inode);
4888 goto out_fail;
4889 }
4890
4891 drop_on_err = 1;
4892
4893 err = btrfs_init_inode_security(trans, inode, dir);
4894 if (err)
4895 goto out_fail;
4896
4897 inode->i_op = &btrfs_dir_inode_operations;
4898 inode->i_fop = &btrfs_dir_file_operations;
4899 btrfs_set_trans_block_group(trans, inode);
4900
4901 btrfs_i_size_write(inode, 0);
4902 err = btrfs_update_inode(trans, root, inode);
4903 if (err)
4904 goto out_fail;
4905
4906 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4907 dentry->d_name.len, 0, index);
4908 if (err)
4909 goto out_fail;
4910
4911 d_instantiate(dentry, inode);
4912 drop_on_err = 0;
4913 btrfs_update_inode_block_group(trans, inode);
4914 btrfs_update_inode_block_group(trans, dir);
4915
4916 out_fail:
4917 nr = trans->blocks_used;
4918 btrfs_end_transaction_throttle(trans, root);
4919 if (drop_on_err)
4920 iput(inode);
4921 btrfs_btree_balance_dirty(root, nr);
4922 return err;
4923 }
4924
4925 /* helper for btfs_get_extent. Given an existing extent in the tree,
4926 * and an extent that you want to insert, deal with overlap and insert
4927 * the new extent into the tree.
4928 */
4929 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4930 struct extent_map *existing,
4931 struct extent_map *em,
4932 u64 map_start, u64 map_len)
4933 {
4934 u64 start_diff;
4935
4936 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4937 start_diff = map_start - em->start;
4938 em->start = map_start;
4939 em->len = map_len;
4940 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4941 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4942 em->block_start += start_diff;
4943 em->block_len -= start_diff;
4944 }
4945 return add_extent_mapping(em_tree, em);
4946 }
4947
4948 static noinline int uncompress_inline(struct btrfs_path *path,
4949 struct inode *inode, struct page *page,
4950 size_t pg_offset, u64 extent_offset,
4951 struct btrfs_file_extent_item *item)
4952 {
4953 int ret;
4954 struct extent_buffer *leaf = path->nodes[0];
4955 char *tmp;
4956 size_t max_size;
4957 unsigned long inline_size;
4958 unsigned long ptr;
4959 int compress_type;
4960
4961 WARN_ON(pg_offset != 0);
4962 compress_type = btrfs_file_extent_compression(leaf, item);
4963 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4964 inline_size = btrfs_file_extent_inline_item_len(leaf,
4965 btrfs_item_nr(leaf, path->slots[0]));
4966 tmp = kmalloc(inline_size, GFP_NOFS);
4967 ptr = btrfs_file_extent_inline_start(item);
4968
4969 read_extent_buffer(leaf, tmp, ptr, inline_size);
4970
4971 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4972 ret = btrfs_decompress(compress_type, tmp, page,
4973 extent_offset, inline_size, max_size);
4974 if (ret) {
4975 char *kaddr = kmap_atomic(page, KM_USER0);
4976 unsigned long copy_size = min_t(u64,
4977 PAGE_CACHE_SIZE - pg_offset,
4978 max_size - extent_offset);
4979 memset(kaddr + pg_offset, 0, copy_size);
4980 kunmap_atomic(kaddr, KM_USER0);
4981 }
4982 kfree(tmp);
4983 return 0;
4984 }
4985
4986 /*
4987 * a bit scary, this does extent mapping from logical file offset to the disk.
4988 * the ugly parts come from merging extents from the disk with the in-ram
4989 * representation. This gets more complex because of the data=ordered code,
4990 * where the in-ram extents might be locked pending data=ordered completion.
4991 *
4992 * This also copies inline extents directly into the page.
4993 */
4994
4995 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4996 size_t pg_offset, u64 start, u64 len,
4997 int create)
4998 {
4999 int ret;
5000 int err = 0;
5001 u64 bytenr;
5002 u64 extent_start = 0;
5003 u64 extent_end = 0;
5004 u64 objectid = inode->i_ino;
5005 u32 found_type;
5006 struct btrfs_path *path = NULL;
5007 struct btrfs_root *root = BTRFS_I(inode)->root;
5008 struct btrfs_file_extent_item *item;
5009 struct extent_buffer *leaf;
5010 struct btrfs_key found_key;
5011 struct extent_map *em = NULL;
5012 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5013 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5014 struct btrfs_trans_handle *trans = NULL;
5015 int compress_type;
5016
5017 again:
5018 read_lock(&em_tree->lock);
5019 em = lookup_extent_mapping(em_tree, start, len);
5020 if (em)
5021 em->bdev = root->fs_info->fs_devices->latest_bdev;
5022 read_unlock(&em_tree->lock);
5023
5024 if (em) {
5025 if (em->start > start || em->start + em->len <= start)
5026 free_extent_map(em);
5027 else if (em->block_start == EXTENT_MAP_INLINE && page)
5028 free_extent_map(em);
5029 else
5030 goto out;
5031 }
5032 em = alloc_extent_map(GFP_NOFS);
5033 if (!em) {
5034 err = -ENOMEM;
5035 goto out;
5036 }
5037 em->bdev = root->fs_info->fs_devices->latest_bdev;
5038 em->start = EXTENT_MAP_HOLE;
5039 em->orig_start = EXTENT_MAP_HOLE;
5040 em->len = (u64)-1;
5041 em->block_len = (u64)-1;
5042
5043 if (!path) {
5044 path = btrfs_alloc_path();
5045 BUG_ON(!path);
5046 }
5047
5048 ret = btrfs_lookup_file_extent(trans, root, path,
5049 objectid, start, trans != NULL);
5050 if (ret < 0) {
5051 err = ret;
5052 goto out;
5053 }
5054
5055 if (ret != 0) {
5056 if (path->slots[0] == 0)
5057 goto not_found;
5058 path->slots[0]--;
5059 }
5060
5061 leaf = path->nodes[0];
5062 item = btrfs_item_ptr(leaf, path->slots[0],
5063 struct btrfs_file_extent_item);
5064 /* are we inside the extent that was found? */
5065 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5066 found_type = btrfs_key_type(&found_key);
5067 if (found_key.objectid != objectid ||
5068 found_type != BTRFS_EXTENT_DATA_KEY) {
5069 goto not_found;
5070 }
5071
5072 found_type = btrfs_file_extent_type(leaf, item);
5073 extent_start = found_key.offset;
5074 compress_type = btrfs_file_extent_compression(leaf, item);
5075 if (found_type == BTRFS_FILE_EXTENT_REG ||
5076 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5077 extent_end = extent_start +
5078 btrfs_file_extent_num_bytes(leaf, item);
5079 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5080 size_t size;
5081 size = btrfs_file_extent_inline_len(leaf, item);
5082 extent_end = (extent_start + size + root->sectorsize - 1) &
5083 ~((u64)root->sectorsize - 1);
5084 }
5085
5086 if (start >= extent_end) {
5087 path->slots[0]++;
5088 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5089 ret = btrfs_next_leaf(root, path);
5090 if (ret < 0) {
5091 err = ret;
5092 goto out;
5093 }
5094 if (ret > 0)
5095 goto not_found;
5096 leaf = path->nodes[0];
5097 }
5098 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5099 if (found_key.objectid != objectid ||
5100 found_key.type != BTRFS_EXTENT_DATA_KEY)
5101 goto not_found;
5102 if (start + len <= found_key.offset)
5103 goto not_found;
5104 em->start = start;
5105 em->len = found_key.offset - start;
5106 goto not_found_em;
5107 }
5108
5109 if (found_type == BTRFS_FILE_EXTENT_REG ||
5110 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5111 em->start = extent_start;
5112 em->len = extent_end - extent_start;
5113 em->orig_start = extent_start -
5114 btrfs_file_extent_offset(leaf, item);
5115 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5116 if (bytenr == 0) {
5117 em->block_start = EXTENT_MAP_HOLE;
5118 goto insert;
5119 }
5120 if (compress_type != BTRFS_COMPRESS_NONE) {
5121 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5122 em->compress_type = compress_type;
5123 em->block_start = bytenr;
5124 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5125 item);
5126 } else {
5127 bytenr += btrfs_file_extent_offset(leaf, item);
5128 em->block_start = bytenr;
5129 em->block_len = em->len;
5130 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5131 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5132 }
5133 goto insert;
5134 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5135 unsigned long ptr;
5136 char *map;
5137 size_t size;
5138 size_t extent_offset;
5139 size_t copy_size;
5140
5141 em->block_start = EXTENT_MAP_INLINE;
5142 if (!page || create) {
5143 em->start = extent_start;
5144 em->len = extent_end - extent_start;
5145 goto out;
5146 }
5147
5148 size = btrfs_file_extent_inline_len(leaf, item);
5149 extent_offset = page_offset(page) + pg_offset - extent_start;
5150 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5151 size - extent_offset);
5152 em->start = extent_start + extent_offset;
5153 em->len = (copy_size + root->sectorsize - 1) &
5154 ~((u64)root->sectorsize - 1);
5155 em->orig_start = EXTENT_MAP_INLINE;
5156 if (compress_type) {
5157 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5158 em->compress_type = compress_type;
5159 }
5160 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5161 if (create == 0 && !PageUptodate(page)) {
5162 if (btrfs_file_extent_compression(leaf, item) !=
5163 BTRFS_COMPRESS_NONE) {
5164 ret = uncompress_inline(path, inode, page,
5165 pg_offset,
5166 extent_offset, item);
5167 BUG_ON(ret);
5168 } else {
5169 map = kmap(page);
5170 read_extent_buffer(leaf, map + pg_offset, ptr,
5171 copy_size);
5172 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5173 memset(map + pg_offset + copy_size, 0,
5174 PAGE_CACHE_SIZE - pg_offset -
5175 copy_size);
5176 }
5177 kunmap(page);
5178 }
5179 flush_dcache_page(page);
5180 } else if (create && PageUptodate(page)) {
5181 WARN_ON(1);
5182 if (!trans) {
5183 kunmap(page);
5184 free_extent_map(em);
5185 em = NULL;
5186 btrfs_release_path(root, path);
5187 trans = btrfs_join_transaction(root, 1);
5188 if (IS_ERR(trans))
5189 return ERR_CAST(trans);
5190 goto again;
5191 }
5192 map = kmap(page);
5193 write_extent_buffer(leaf, map + pg_offset, ptr,
5194 copy_size);
5195 kunmap(page);
5196 btrfs_mark_buffer_dirty(leaf);
5197 }
5198 set_extent_uptodate(io_tree, em->start,
5199 extent_map_end(em) - 1, GFP_NOFS);
5200 goto insert;
5201 } else {
5202 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5203 WARN_ON(1);
5204 }
5205 not_found:
5206 em->start = start;
5207 em->len = len;
5208 not_found_em:
5209 em->block_start = EXTENT_MAP_HOLE;
5210 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5211 insert:
5212 btrfs_release_path(root, path);
5213 if (em->start > start || extent_map_end(em) <= start) {
5214 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5215 "[%llu %llu]\n", (unsigned long long)em->start,
5216 (unsigned long long)em->len,
5217 (unsigned long long)start,
5218 (unsigned long long)len);
5219 err = -EIO;
5220 goto out;
5221 }
5222
5223 err = 0;
5224 write_lock(&em_tree->lock);
5225 ret = add_extent_mapping(em_tree, em);
5226 /* it is possible that someone inserted the extent into the tree
5227 * while we had the lock dropped. It is also possible that
5228 * an overlapping map exists in the tree
5229 */
5230 if (ret == -EEXIST) {
5231 struct extent_map *existing;
5232
5233 ret = 0;
5234
5235 existing = lookup_extent_mapping(em_tree, start, len);
5236 if (existing && (existing->start > start ||
5237 existing->start + existing->len <= start)) {
5238 free_extent_map(existing);
5239 existing = NULL;
5240 }
5241 if (!existing) {
5242 existing = lookup_extent_mapping(em_tree, em->start,
5243 em->len);
5244 if (existing) {
5245 err = merge_extent_mapping(em_tree, existing,
5246 em, start,
5247 root->sectorsize);
5248 free_extent_map(existing);
5249 if (err) {
5250 free_extent_map(em);
5251 em = NULL;
5252 }
5253 } else {
5254 err = -EIO;
5255 free_extent_map(em);
5256 em = NULL;
5257 }
5258 } else {
5259 free_extent_map(em);
5260 em = existing;
5261 err = 0;
5262 }
5263 }
5264 write_unlock(&em_tree->lock);
5265 out:
5266 if (path)
5267 btrfs_free_path(path);
5268 if (trans) {
5269 ret = btrfs_end_transaction(trans, root);
5270 if (!err)
5271 err = ret;
5272 }
5273 if (err) {
5274 free_extent_map(em);
5275 return ERR_PTR(err);
5276 }
5277 return em;
5278 }
5279
5280 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5281 u64 start, u64 len)
5282 {
5283 struct btrfs_root *root = BTRFS_I(inode)->root;
5284 struct btrfs_trans_handle *trans;
5285 struct extent_map *em;
5286 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5287 struct btrfs_key ins;
5288 u64 alloc_hint;
5289 int ret;
5290
5291 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5292
5293 trans = btrfs_join_transaction(root, 0);
5294 if (IS_ERR(trans))
5295 return ERR_CAST(trans);
5296
5297 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5298
5299 alloc_hint = get_extent_allocation_hint(inode, start, len);
5300 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5301 alloc_hint, (u64)-1, &ins, 1);
5302 if (ret) {
5303 em = ERR_PTR(ret);
5304 goto out;
5305 }
5306
5307 em = alloc_extent_map(GFP_NOFS);
5308 if (!em) {
5309 em = ERR_PTR(-ENOMEM);
5310 goto out;
5311 }
5312
5313 em->start = start;
5314 em->orig_start = em->start;
5315 em->len = ins.offset;
5316
5317 em->block_start = ins.objectid;
5318 em->block_len = ins.offset;
5319 em->bdev = root->fs_info->fs_devices->latest_bdev;
5320 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5321
5322 while (1) {
5323 write_lock(&em_tree->lock);
5324 ret = add_extent_mapping(em_tree, em);
5325 write_unlock(&em_tree->lock);
5326 if (ret != -EEXIST)
5327 break;
5328 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5329 }
5330
5331 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5332 ins.offset, ins.offset, 0);
5333 if (ret) {
5334 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5335 em = ERR_PTR(ret);
5336 }
5337 out:
5338 btrfs_end_transaction(trans, root);
5339 return em;
5340 }
5341
5342 /*
5343 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5344 * block must be cow'd
5345 */
5346 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5347 struct inode *inode, u64 offset, u64 len)
5348 {
5349 struct btrfs_path *path;
5350 int ret;
5351 struct extent_buffer *leaf;
5352 struct btrfs_root *root = BTRFS_I(inode)->root;
5353 struct btrfs_file_extent_item *fi;
5354 struct btrfs_key key;
5355 u64 disk_bytenr;
5356 u64 backref_offset;
5357 u64 extent_end;
5358 u64 num_bytes;
5359 int slot;
5360 int found_type;
5361
5362 path = btrfs_alloc_path();
5363 if (!path)
5364 return -ENOMEM;
5365
5366 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5367 offset, 0);
5368 if (ret < 0)
5369 goto out;
5370
5371 slot = path->slots[0];
5372 if (ret == 1) {
5373 if (slot == 0) {
5374 /* can't find the item, must cow */
5375 ret = 0;
5376 goto out;
5377 }
5378 slot--;
5379 }
5380 ret = 0;
5381 leaf = path->nodes[0];
5382 btrfs_item_key_to_cpu(leaf, &key, slot);
5383 if (key.objectid != inode->i_ino ||
5384 key.type != BTRFS_EXTENT_DATA_KEY) {
5385 /* not our file or wrong item type, must cow */
5386 goto out;
5387 }
5388
5389 if (key.offset > offset) {
5390 /* Wrong offset, must cow */
5391 goto out;
5392 }
5393
5394 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5395 found_type = btrfs_file_extent_type(leaf, fi);
5396 if (found_type != BTRFS_FILE_EXTENT_REG &&
5397 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5398 /* not a regular extent, must cow */
5399 goto out;
5400 }
5401 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5402 backref_offset = btrfs_file_extent_offset(leaf, fi);
5403
5404 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5405 if (extent_end < offset + len) {
5406 /* extent doesn't include our full range, must cow */
5407 goto out;
5408 }
5409
5410 if (btrfs_extent_readonly(root, disk_bytenr))
5411 goto out;
5412
5413 /*
5414 * look for other files referencing this extent, if we
5415 * find any we must cow
5416 */
5417 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5418 key.offset - backref_offset, disk_bytenr))
5419 goto out;
5420
5421 /*
5422 * adjust disk_bytenr and num_bytes to cover just the bytes
5423 * in this extent we are about to write. If there
5424 * are any csums in that range we have to cow in order
5425 * to keep the csums correct
5426 */
5427 disk_bytenr += backref_offset;
5428 disk_bytenr += offset - key.offset;
5429 num_bytes = min(offset + len, extent_end) - offset;
5430 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5431 goto out;
5432 /*
5433 * all of the above have passed, it is safe to overwrite this extent
5434 * without cow
5435 */
5436 ret = 1;
5437 out:
5438 btrfs_free_path(path);
5439 return ret;
5440 }
5441
5442 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5443 struct buffer_head *bh_result, int create)
5444 {
5445 struct extent_map *em;
5446 struct btrfs_root *root = BTRFS_I(inode)->root;
5447 u64 start = iblock << inode->i_blkbits;
5448 u64 len = bh_result->b_size;
5449 struct btrfs_trans_handle *trans;
5450
5451 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5452 if (IS_ERR(em))
5453 return PTR_ERR(em);
5454
5455 /*
5456 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5457 * io. INLINE is special, and we could probably kludge it in here, but
5458 * it's still buffered so for safety lets just fall back to the generic
5459 * buffered path.
5460 *
5461 * For COMPRESSED we _have_ to read the entire extent in so we can
5462 * decompress it, so there will be buffering required no matter what we
5463 * do, so go ahead and fallback to buffered.
5464 *
5465 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5466 * to buffered IO. Don't blame me, this is the price we pay for using
5467 * the generic code.
5468 */
5469 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5470 em->block_start == EXTENT_MAP_INLINE) {
5471 free_extent_map(em);
5472 return -ENOTBLK;
5473 }
5474
5475 /* Just a good old fashioned hole, return */
5476 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5477 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5478 free_extent_map(em);
5479 /* DIO will do one hole at a time, so just unlock a sector */
5480 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5481 start + root->sectorsize - 1, GFP_NOFS);
5482 return 0;
5483 }
5484
5485 /*
5486 * We don't allocate a new extent in the following cases
5487 *
5488 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5489 * existing extent.
5490 * 2) The extent is marked as PREALLOC. We're good to go here and can
5491 * just use the extent.
5492 *
5493 */
5494 if (!create) {
5495 len = em->len - (start - em->start);
5496 goto map;
5497 }
5498
5499 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5500 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5501 em->block_start != EXTENT_MAP_HOLE)) {
5502 int type;
5503 int ret;
5504 u64 block_start;
5505
5506 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5507 type = BTRFS_ORDERED_PREALLOC;
5508 else
5509 type = BTRFS_ORDERED_NOCOW;
5510 len = min(len, em->len - (start - em->start));
5511 block_start = em->block_start + (start - em->start);
5512
5513 /*
5514 * we're not going to log anything, but we do need
5515 * to make sure the current transaction stays open
5516 * while we look for nocow cross refs
5517 */
5518 trans = btrfs_join_transaction(root, 0);
5519 if (IS_ERR(trans))
5520 goto must_cow;
5521
5522 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5523 ret = btrfs_add_ordered_extent_dio(inode, start,
5524 block_start, len, len, type);
5525 btrfs_end_transaction(trans, root);
5526 if (ret) {
5527 free_extent_map(em);
5528 return ret;
5529 }
5530 goto unlock;
5531 }
5532 btrfs_end_transaction(trans, root);
5533 }
5534 must_cow:
5535 /*
5536 * this will cow the extent, reset the len in case we changed
5537 * it above
5538 */
5539 len = bh_result->b_size;
5540 free_extent_map(em);
5541 em = btrfs_new_extent_direct(inode, start, len);
5542 if (IS_ERR(em))
5543 return PTR_ERR(em);
5544 len = min(len, em->len - (start - em->start));
5545 unlock:
5546 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5547 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5548 0, NULL, GFP_NOFS);
5549 map:
5550 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5551 inode->i_blkbits;
5552 bh_result->b_size = len;
5553 bh_result->b_bdev = em->bdev;
5554 set_buffer_mapped(bh_result);
5555 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5556 set_buffer_new(bh_result);
5557
5558 free_extent_map(em);
5559
5560 return 0;
5561 }
5562
5563 struct btrfs_dio_private {
5564 struct inode *inode;
5565 u64 logical_offset;
5566 u64 disk_bytenr;
5567 u64 bytes;
5568 u32 *csums;
5569 void *private;
5570
5571 /* number of bios pending for this dio */
5572 atomic_t pending_bios;
5573
5574 /* IO errors */
5575 int errors;
5576
5577 struct bio *orig_bio;
5578 };
5579
5580 static void btrfs_endio_direct_read(struct bio *bio, int err)
5581 {
5582 struct btrfs_dio_private *dip = bio->bi_private;
5583 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5584 struct bio_vec *bvec = bio->bi_io_vec;
5585 struct inode *inode = dip->inode;
5586 struct btrfs_root *root = BTRFS_I(inode)->root;
5587 u64 start;
5588 u32 *private = dip->csums;
5589
5590 start = dip->logical_offset;
5591 do {
5592 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5593 struct page *page = bvec->bv_page;
5594 char *kaddr;
5595 u32 csum = ~(u32)0;
5596 unsigned long flags;
5597
5598 local_irq_save(flags);
5599 kaddr = kmap_atomic(page, KM_IRQ0);
5600 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5601 csum, bvec->bv_len);
5602 btrfs_csum_final(csum, (char *)&csum);
5603 kunmap_atomic(kaddr, KM_IRQ0);
5604 local_irq_restore(flags);
5605
5606 flush_dcache_page(bvec->bv_page);
5607 if (csum != *private) {
5608 printk(KERN_ERR "btrfs csum failed ino %lu off"
5609 " %llu csum %u private %u\n",
5610 inode->i_ino, (unsigned long long)start,
5611 csum, *private);
5612 err = -EIO;
5613 }
5614 }
5615
5616 start += bvec->bv_len;
5617 private++;
5618 bvec++;
5619 } while (bvec <= bvec_end);
5620
5621 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5622 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5623 bio->bi_private = dip->private;
5624
5625 kfree(dip->csums);
5626 kfree(dip);
5627 dio_end_io(bio, err);
5628 }
5629
5630 static void btrfs_endio_direct_write(struct bio *bio, int err)
5631 {
5632 struct btrfs_dio_private *dip = bio->bi_private;
5633 struct inode *inode = dip->inode;
5634 struct btrfs_root *root = BTRFS_I(inode)->root;
5635 struct btrfs_trans_handle *trans;
5636 struct btrfs_ordered_extent *ordered = NULL;
5637 struct extent_state *cached_state = NULL;
5638 u64 ordered_offset = dip->logical_offset;
5639 u64 ordered_bytes = dip->bytes;
5640 int ret;
5641
5642 if (err)
5643 goto out_done;
5644 again:
5645 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5646 &ordered_offset,
5647 ordered_bytes);
5648 if (!ret)
5649 goto out_test;
5650
5651 BUG_ON(!ordered);
5652
5653 trans = btrfs_join_transaction(root, 1);
5654 if (IS_ERR(trans)) {
5655 err = -ENOMEM;
5656 goto out;
5657 }
5658 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5659
5660 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5661 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5662 if (!ret)
5663 ret = btrfs_update_inode(trans, root, inode);
5664 err = ret;
5665 goto out;
5666 }
5667
5668 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5669 ordered->file_offset + ordered->len - 1, 0,
5670 &cached_state, GFP_NOFS);
5671
5672 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5673 ret = btrfs_mark_extent_written(trans, inode,
5674 ordered->file_offset,
5675 ordered->file_offset +
5676 ordered->len);
5677 if (ret) {
5678 err = ret;
5679 goto out_unlock;
5680 }
5681 } else {
5682 ret = insert_reserved_file_extent(trans, inode,
5683 ordered->file_offset,
5684 ordered->start,
5685 ordered->disk_len,
5686 ordered->len,
5687 ordered->len,
5688 0, 0, 0,
5689 BTRFS_FILE_EXTENT_REG);
5690 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5691 ordered->file_offset, ordered->len);
5692 if (ret) {
5693 err = ret;
5694 WARN_ON(1);
5695 goto out_unlock;
5696 }
5697 }
5698
5699 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5700 btrfs_ordered_update_i_size(inode, 0, ordered);
5701 btrfs_update_inode(trans, root, inode);
5702 out_unlock:
5703 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5704 ordered->file_offset + ordered->len - 1,
5705 &cached_state, GFP_NOFS);
5706 out:
5707 btrfs_delalloc_release_metadata(inode, ordered->len);
5708 btrfs_end_transaction(trans, root);
5709 ordered_offset = ordered->file_offset + ordered->len;
5710 btrfs_put_ordered_extent(ordered);
5711 btrfs_put_ordered_extent(ordered);
5712
5713 out_test:
5714 /*
5715 * our bio might span multiple ordered extents. If we haven't
5716 * completed the accounting for the whole dio, go back and try again
5717 */
5718 if (ordered_offset < dip->logical_offset + dip->bytes) {
5719 ordered_bytes = dip->logical_offset + dip->bytes -
5720 ordered_offset;
5721 goto again;
5722 }
5723 out_done:
5724 bio->bi_private = dip->private;
5725
5726 kfree(dip->csums);
5727 kfree(dip);
5728 dio_end_io(bio, err);
5729 }
5730
5731 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5732 struct bio *bio, int mirror_num,
5733 unsigned long bio_flags, u64 offset)
5734 {
5735 int ret;
5736 struct btrfs_root *root = BTRFS_I(inode)->root;
5737 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5738 BUG_ON(ret);
5739 return 0;
5740 }
5741
5742 static void btrfs_end_dio_bio(struct bio *bio, int err)
5743 {
5744 struct btrfs_dio_private *dip = bio->bi_private;
5745
5746 if (err) {
5747 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5748 "sector %#Lx len %u err no %d\n",
5749 dip->inode->i_ino, bio->bi_rw,
5750 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5751 dip->errors = 1;
5752
5753 /*
5754 * before atomic variable goto zero, we must make sure
5755 * dip->errors is perceived to be set.
5756 */
5757 smp_mb__before_atomic_dec();
5758 }
5759
5760 /* if there are more bios still pending for this dio, just exit */
5761 if (!atomic_dec_and_test(&dip->pending_bios))
5762 goto out;
5763
5764 if (dip->errors)
5765 bio_io_error(dip->orig_bio);
5766 else {
5767 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5768 bio_endio(dip->orig_bio, 0);
5769 }
5770 out:
5771 bio_put(bio);
5772 }
5773
5774 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5775 u64 first_sector, gfp_t gfp_flags)
5776 {
5777 int nr_vecs = bio_get_nr_vecs(bdev);
5778 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5779 }
5780
5781 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5782 int rw, u64 file_offset, int skip_sum,
5783 u32 *csums)
5784 {
5785 int write = rw & REQ_WRITE;
5786 struct btrfs_root *root = BTRFS_I(inode)->root;
5787 int ret;
5788
5789 bio_get(bio);
5790 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5791 if (ret)
5792 goto err;
5793
5794 if (write && !skip_sum) {
5795 ret = btrfs_wq_submit_bio(root->fs_info,
5796 inode, rw, bio, 0, 0,
5797 file_offset,
5798 __btrfs_submit_bio_start_direct_io,
5799 __btrfs_submit_bio_done);
5800 goto err;
5801 } else if (!skip_sum)
5802 btrfs_lookup_bio_sums_dio(root, inode, bio,
5803 file_offset, csums);
5804
5805 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5806 err:
5807 bio_put(bio);
5808 return ret;
5809 }
5810
5811 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5812 int skip_sum)
5813 {
5814 struct inode *inode = dip->inode;
5815 struct btrfs_root *root = BTRFS_I(inode)->root;
5816 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5817 struct bio *bio;
5818 struct bio *orig_bio = dip->orig_bio;
5819 struct bio_vec *bvec = orig_bio->bi_io_vec;
5820 u64 start_sector = orig_bio->bi_sector;
5821 u64 file_offset = dip->logical_offset;
5822 u64 submit_len = 0;
5823 u64 map_length;
5824 int nr_pages = 0;
5825 u32 *csums = dip->csums;
5826 int ret = 0;
5827
5828 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5829 if (!bio)
5830 return -ENOMEM;
5831 bio->bi_private = dip;
5832 bio->bi_end_io = btrfs_end_dio_bio;
5833 atomic_inc(&dip->pending_bios);
5834
5835 map_length = orig_bio->bi_size;
5836 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5837 &map_length, NULL, 0);
5838 if (ret) {
5839 bio_put(bio);
5840 return -EIO;
5841 }
5842
5843 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5844 if (unlikely(map_length < submit_len + bvec->bv_len ||
5845 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5846 bvec->bv_offset) < bvec->bv_len)) {
5847 /*
5848 * inc the count before we submit the bio so
5849 * we know the end IO handler won't happen before
5850 * we inc the count. Otherwise, the dip might get freed
5851 * before we're done setting it up
5852 */
5853 atomic_inc(&dip->pending_bios);
5854 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5855 file_offset, skip_sum,
5856 csums);
5857 if (ret) {
5858 bio_put(bio);
5859 atomic_dec(&dip->pending_bios);
5860 goto out_err;
5861 }
5862
5863 if (!skip_sum)
5864 csums = csums + nr_pages;
5865 start_sector += submit_len >> 9;
5866 file_offset += submit_len;
5867
5868 submit_len = 0;
5869 nr_pages = 0;
5870
5871 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5872 start_sector, GFP_NOFS);
5873 if (!bio)
5874 goto out_err;
5875 bio->bi_private = dip;
5876 bio->bi_end_io = btrfs_end_dio_bio;
5877
5878 map_length = orig_bio->bi_size;
5879 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5880 &map_length, NULL, 0);
5881 if (ret) {
5882 bio_put(bio);
5883 goto out_err;
5884 }
5885 } else {
5886 submit_len += bvec->bv_len;
5887 nr_pages ++;
5888 bvec++;
5889 }
5890 }
5891
5892 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5893 csums);
5894 if (!ret)
5895 return 0;
5896
5897 bio_put(bio);
5898 out_err:
5899 dip->errors = 1;
5900 /*
5901 * before atomic variable goto zero, we must
5902 * make sure dip->errors is perceived to be set.
5903 */
5904 smp_mb__before_atomic_dec();
5905 if (atomic_dec_and_test(&dip->pending_bios))
5906 bio_io_error(dip->orig_bio);
5907
5908 /* bio_end_io() will handle error, so we needn't return it */
5909 return 0;
5910 }
5911
5912 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5913 loff_t file_offset)
5914 {
5915 struct btrfs_root *root = BTRFS_I(inode)->root;
5916 struct btrfs_dio_private *dip;
5917 struct bio_vec *bvec = bio->bi_io_vec;
5918 int skip_sum;
5919 int write = rw & REQ_WRITE;
5920 int ret = 0;
5921
5922 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5923
5924 dip = kmalloc(sizeof(*dip), GFP_NOFS);
5925 if (!dip) {
5926 ret = -ENOMEM;
5927 goto free_ordered;
5928 }
5929 dip->csums = NULL;
5930
5931 if (!skip_sum) {
5932 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5933 if (!dip->csums) {
5934 ret = -ENOMEM;
5935 goto free_ordered;
5936 }
5937 }
5938
5939 dip->private = bio->bi_private;
5940 dip->inode = inode;
5941 dip->logical_offset = file_offset;
5942
5943 dip->bytes = 0;
5944 do {
5945 dip->bytes += bvec->bv_len;
5946 bvec++;
5947 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5948
5949 dip->disk_bytenr = (u64)bio->bi_sector << 9;
5950 bio->bi_private = dip;
5951 dip->errors = 0;
5952 dip->orig_bio = bio;
5953 atomic_set(&dip->pending_bios, 0);
5954
5955 if (write)
5956 bio->bi_end_io = btrfs_endio_direct_write;
5957 else
5958 bio->bi_end_io = btrfs_endio_direct_read;
5959
5960 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5961 if (!ret)
5962 return;
5963 free_ordered:
5964 /*
5965 * If this is a write, we need to clean up the reserved space and kill
5966 * the ordered extent.
5967 */
5968 if (write) {
5969 struct btrfs_ordered_extent *ordered;
5970 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5971 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5972 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5973 btrfs_free_reserved_extent(root, ordered->start,
5974 ordered->disk_len);
5975 btrfs_put_ordered_extent(ordered);
5976 btrfs_put_ordered_extent(ordered);
5977 }
5978 bio_endio(bio, ret);
5979 }
5980
5981 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5982 const struct iovec *iov, loff_t offset,
5983 unsigned long nr_segs)
5984 {
5985 int seg;
5986 size_t size;
5987 unsigned long addr;
5988 unsigned blocksize_mask = root->sectorsize - 1;
5989 ssize_t retval = -EINVAL;
5990 loff_t end = offset;
5991
5992 if (offset & blocksize_mask)
5993 goto out;
5994
5995 /* Check the memory alignment. Blocks cannot straddle pages */
5996 for (seg = 0; seg < nr_segs; seg++) {
5997 addr = (unsigned long)iov[seg].iov_base;
5998 size = iov[seg].iov_len;
5999 end += size;
6000 if ((addr & blocksize_mask) || (size & blocksize_mask))
6001 goto out;
6002 }
6003 retval = 0;
6004 out:
6005 return retval;
6006 }
6007 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6008 const struct iovec *iov, loff_t offset,
6009 unsigned long nr_segs)
6010 {
6011 struct file *file = iocb->ki_filp;
6012 struct inode *inode = file->f_mapping->host;
6013 struct btrfs_ordered_extent *ordered;
6014 struct extent_state *cached_state = NULL;
6015 u64 lockstart, lockend;
6016 ssize_t ret;
6017 int writing = rw & WRITE;
6018 int write_bits = 0;
6019 size_t count = iov_length(iov, nr_segs);
6020
6021 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6022 offset, nr_segs)) {
6023 return 0;
6024 }
6025
6026 lockstart = offset;
6027 lockend = offset + count - 1;
6028
6029 if (writing) {
6030 ret = btrfs_delalloc_reserve_space(inode, count);
6031 if (ret)
6032 goto out;
6033 }
6034
6035 while (1) {
6036 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6037 0, &cached_state, GFP_NOFS);
6038 /*
6039 * We're concerned with the entire range that we're going to be
6040 * doing DIO to, so we need to make sure theres no ordered
6041 * extents in this range.
6042 */
6043 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6044 lockend - lockstart + 1);
6045 if (!ordered)
6046 break;
6047 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6048 &cached_state, GFP_NOFS);
6049 btrfs_start_ordered_extent(inode, ordered, 1);
6050 btrfs_put_ordered_extent(ordered);
6051 cond_resched();
6052 }
6053
6054 /*
6055 * we don't use btrfs_set_extent_delalloc because we don't want
6056 * the dirty or uptodate bits
6057 */
6058 if (writing) {
6059 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6060 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6061 EXTENT_DELALLOC, 0, NULL, &cached_state,
6062 GFP_NOFS);
6063 if (ret) {
6064 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6065 lockend, EXTENT_LOCKED | write_bits,
6066 1, 0, &cached_state, GFP_NOFS);
6067 goto out;
6068 }
6069 }
6070
6071 free_extent_state(cached_state);
6072 cached_state = NULL;
6073
6074 ret = __blockdev_direct_IO(rw, iocb, inode,
6075 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6076 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6077 btrfs_submit_direct, 0);
6078
6079 if (ret < 0 && ret != -EIOCBQUEUED) {
6080 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6081 offset + iov_length(iov, nr_segs) - 1,
6082 EXTENT_LOCKED | write_bits, 1, 0,
6083 &cached_state, GFP_NOFS);
6084 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6085 /*
6086 * We're falling back to buffered, unlock the section we didn't
6087 * do IO on.
6088 */
6089 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6090 offset + iov_length(iov, nr_segs) - 1,
6091 EXTENT_LOCKED | write_bits, 1, 0,
6092 &cached_state, GFP_NOFS);
6093 }
6094 out:
6095 free_extent_state(cached_state);
6096 return ret;
6097 }
6098
6099 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6100 __u64 start, __u64 len)
6101 {
6102 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6103 }
6104
6105 int btrfs_readpage(struct file *file, struct page *page)
6106 {
6107 struct extent_io_tree *tree;
6108 tree = &BTRFS_I(page->mapping->host)->io_tree;
6109 return extent_read_full_page(tree, page, btrfs_get_extent);
6110 }
6111
6112 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6113 {
6114 struct extent_io_tree *tree;
6115
6116
6117 if (current->flags & PF_MEMALLOC) {
6118 redirty_page_for_writepage(wbc, page);
6119 unlock_page(page);
6120 return 0;
6121 }
6122 tree = &BTRFS_I(page->mapping->host)->io_tree;
6123 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6124 }
6125
6126 int btrfs_writepages(struct address_space *mapping,
6127 struct writeback_control *wbc)
6128 {
6129 struct extent_io_tree *tree;
6130
6131 tree = &BTRFS_I(mapping->host)->io_tree;
6132 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6133 }
6134
6135 static int
6136 btrfs_readpages(struct file *file, struct address_space *mapping,
6137 struct list_head *pages, unsigned nr_pages)
6138 {
6139 struct extent_io_tree *tree;
6140 tree = &BTRFS_I(mapping->host)->io_tree;
6141 return extent_readpages(tree, mapping, pages, nr_pages,
6142 btrfs_get_extent);
6143 }
6144 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6145 {
6146 struct extent_io_tree *tree;
6147 struct extent_map_tree *map;
6148 int ret;
6149
6150 tree = &BTRFS_I(page->mapping->host)->io_tree;
6151 map = &BTRFS_I(page->mapping->host)->extent_tree;
6152 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6153 if (ret == 1) {
6154 ClearPagePrivate(page);
6155 set_page_private(page, 0);
6156 page_cache_release(page);
6157 }
6158 return ret;
6159 }
6160
6161 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6162 {
6163 if (PageWriteback(page) || PageDirty(page))
6164 return 0;
6165 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6166 }
6167
6168 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6169 {
6170 struct extent_io_tree *tree;
6171 struct btrfs_ordered_extent *ordered;
6172 struct extent_state *cached_state = NULL;
6173 u64 page_start = page_offset(page);
6174 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6175
6176
6177 /*
6178 * we have the page locked, so new writeback can't start,
6179 * and the dirty bit won't be cleared while we are here.
6180 *
6181 * Wait for IO on this page so that we can safely clear
6182 * the PagePrivate2 bit and do ordered accounting
6183 */
6184 wait_on_page_writeback(page);
6185
6186 tree = &BTRFS_I(page->mapping->host)->io_tree;
6187 if (offset) {
6188 btrfs_releasepage(page, GFP_NOFS);
6189 return;
6190 }
6191 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6192 GFP_NOFS);
6193 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6194 page_offset(page));
6195 if (ordered) {
6196 /*
6197 * IO on this page will never be started, so we need
6198 * to account for any ordered extents now
6199 */
6200 clear_extent_bit(tree, page_start, page_end,
6201 EXTENT_DIRTY | EXTENT_DELALLOC |
6202 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6203 &cached_state, GFP_NOFS);
6204 /*
6205 * whoever cleared the private bit is responsible
6206 * for the finish_ordered_io
6207 */
6208 if (TestClearPagePrivate2(page)) {
6209 btrfs_finish_ordered_io(page->mapping->host,
6210 page_start, page_end);
6211 }
6212 btrfs_put_ordered_extent(ordered);
6213 cached_state = NULL;
6214 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6215 GFP_NOFS);
6216 }
6217 clear_extent_bit(tree, page_start, page_end,
6218 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6219 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6220 __btrfs_releasepage(page, GFP_NOFS);
6221
6222 ClearPageChecked(page);
6223 if (PagePrivate(page)) {
6224 ClearPagePrivate(page);
6225 set_page_private(page, 0);
6226 page_cache_release(page);
6227 }
6228 }
6229
6230 /*
6231 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6232 * called from a page fault handler when a page is first dirtied. Hence we must
6233 * be careful to check for EOF conditions here. We set the page up correctly
6234 * for a written page which means we get ENOSPC checking when writing into
6235 * holes and correct delalloc and unwritten extent mapping on filesystems that
6236 * support these features.
6237 *
6238 * We are not allowed to take the i_mutex here so we have to play games to
6239 * protect against truncate races as the page could now be beyond EOF. Because
6240 * vmtruncate() writes the inode size before removing pages, once we have the
6241 * page lock we can determine safely if the page is beyond EOF. If it is not
6242 * beyond EOF, then the page is guaranteed safe against truncation until we
6243 * unlock the page.
6244 */
6245 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6246 {
6247 struct page *page = vmf->page;
6248 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6249 struct btrfs_root *root = BTRFS_I(inode)->root;
6250 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6251 struct btrfs_ordered_extent *ordered;
6252 struct extent_state *cached_state = NULL;
6253 char *kaddr;
6254 unsigned long zero_start;
6255 loff_t size;
6256 int ret;
6257 u64 page_start;
6258 u64 page_end;
6259
6260 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6261 if (ret) {
6262 if (ret == -ENOMEM)
6263 ret = VM_FAULT_OOM;
6264 else /* -ENOSPC, -EIO, etc */
6265 ret = VM_FAULT_SIGBUS;
6266 goto out;
6267 }
6268
6269 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6270 again:
6271 lock_page(page);
6272 size = i_size_read(inode);
6273 page_start = page_offset(page);
6274 page_end = page_start + PAGE_CACHE_SIZE - 1;
6275
6276 if ((page->mapping != inode->i_mapping) ||
6277 (page_start >= size)) {
6278 /* page got truncated out from underneath us */
6279 goto out_unlock;
6280 }
6281 wait_on_page_writeback(page);
6282
6283 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6284 GFP_NOFS);
6285 set_page_extent_mapped(page);
6286
6287 /*
6288 * we can't set the delalloc bits if there are pending ordered
6289 * extents. Drop our locks and wait for them to finish
6290 */
6291 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6292 if (ordered) {
6293 unlock_extent_cached(io_tree, page_start, page_end,
6294 &cached_state, GFP_NOFS);
6295 unlock_page(page);
6296 btrfs_start_ordered_extent(inode, ordered, 1);
6297 btrfs_put_ordered_extent(ordered);
6298 goto again;
6299 }
6300
6301 /*
6302 * XXX - page_mkwrite gets called every time the page is dirtied, even
6303 * if it was already dirty, so for space accounting reasons we need to
6304 * clear any delalloc bits for the range we are fixing to save. There
6305 * is probably a better way to do this, but for now keep consistent with
6306 * prepare_pages in the normal write path.
6307 */
6308 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6309 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6310 0, 0, &cached_state, GFP_NOFS);
6311
6312 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6313 &cached_state);
6314 if (ret) {
6315 unlock_extent_cached(io_tree, page_start, page_end,
6316 &cached_state, GFP_NOFS);
6317 ret = VM_FAULT_SIGBUS;
6318 goto out_unlock;
6319 }
6320 ret = 0;
6321
6322 /* page is wholly or partially inside EOF */
6323 if (page_start + PAGE_CACHE_SIZE > size)
6324 zero_start = size & ~PAGE_CACHE_MASK;
6325 else
6326 zero_start = PAGE_CACHE_SIZE;
6327
6328 if (zero_start != PAGE_CACHE_SIZE) {
6329 kaddr = kmap(page);
6330 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6331 flush_dcache_page(page);
6332 kunmap(page);
6333 }
6334 ClearPageChecked(page);
6335 set_page_dirty(page);
6336 SetPageUptodate(page);
6337
6338 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6339 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6340
6341 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6342
6343 out_unlock:
6344 if (!ret)
6345 return VM_FAULT_LOCKED;
6346 unlock_page(page);
6347 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6348 out:
6349 return ret;
6350 }
6351
6352 static void btrfs_truncate(struct inode *inode)
6353 {
6354 struct btrfs_root *root = BTRFS_I(inode)->root;
6355 int ret;
6356 struct btrfs_trans_handle *trans;
6357 unsigned long nr;
6358 u64 mask = root->sectorsize - 1;
6359
6360 if (!S_ISREG(inode->i_mode)) {
6361 WARN_ON(1);
6362 return;
6363 }
6364
6365 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6366 if (ret)
6367 return;
6368
6369 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6370 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6371
6372 trans = btrfs_start_transaction(root, 0);
6373 BUG_ON(IS_ERR(trans));
6374 btrfs_set_trans_block_group(trans, inode);
6375 trans->block_rsv = root->orphan_block_rsv;
6376
6377 /*
6378 * setattr is responsible for setting the ordered_data_close flag,
6379 * but that is only tested during the last file release. That
6380 * could happen well after the next commit, leaving a great big
6381 * window where new writes may get lost if someone chooses to write
6382 * to this file after truncating to zero
6383 *
6384 * The inode doesn't have any dirty data here, and so if we commit
6385 * this is a noop. If someone immediately starts writing to the inode
6386 * it is very likely we'll catch some of their writes in this
6387 * transaction, and the commit will find this file on the ordered
6388 * data list with good things to send down.
6389 *
6390 * This is a best effort solution, there is still a window where
6391 * using truncate to replace the contents of the file will
6392 * end up with a zero length file after a crash.
6393 */
6394 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6395 btrfs_add_ordered_operation(trans, root, inode);
6396
6397 while (1) {
6398 if (!trans) {
6399 trans = btrfs_start_transaction(root, 0);
6400 BUG_ON(IS_ERR(trans));
6401 btrfs_set_trans_block_group(trans, inode);
6402 trans->block_rsv = root->orphan_block_rsv;
6403 }
6404
6405 ret = btrfs_block_rsv_check(trans, root,
6406 root->orphan_block_rsv, 0, 5);
6407 if (ret) {
6408 BUG_ON(ret != -EAGAIN);
6409 ret = btrfs_commit_transaction(trans, root);
6410 BUG_ON(ret);
6411 trans = NULL;
6412 continue;
6413 }
6414
6415 ret = btrfs_truncate_inode_items(trans, root, inode,
6416 inode->i_size,
6417 BTRFS_EXTENT_DATA_KEY);
6418 if (ret != -EAGAIN)
6419 break;
6420
6421 ret = btrfs_update_inode(trans, root, inode);
6422 BUG_ON(ret);
6423
6424 nr = trans->blocks_used;
6425 btrfs_end_transaction(trans, root);
6426 trans = NULL;
6427 btrfs_btree_balance_dirty(root, nr);
6428 }
6429
6430 if (ret == 0 && inode->i_nlink > 0) {
6431 ret = btrfs_orphan_del(trans, inode);
6432 BUG_ON(ret);
6433 }
6434
6435 ret = btrfs_update_inode(trans, root, inode);
6436 BUG_ON(ret);
6437
6438 nr = trans->blocks_used;
6439 ret = btrfs_end_transaction_throttle(trans, root);
6440 BUG_ON(ret);
6441 btrfs_btree_balance_dirty(root, nr);
6442 }
6443
6444 /*
6445 * create a new subvolume directory/inode (helper for the ioctl).
6446 */
6447 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6448 struct btrfs_root *new_root,
6449 u64 new_dirid, u64 alloc_hint)
6450 {
6451 struct inode *inode;
6452 int err;
6453 u64 index = 0;
6454
6455 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6456 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6457 if (IS_ERR(inode))
6458 return PTR_ERR(inode);
6459 inode->i_op = &btrfs_dir_inode_operations;
6460 inode->i_fop = &btrfs_dir_file_operations;
6461
6462 inode->i_nlink = 1;
6463 btrfs_i_size_write(inode, 0);
6464
6465 err = btrfs_update_inode(trans, new_root, inode);
6466 BUG_ON(err);
6467
6468 iput(inode);
6469 return 0;
6470 }
6471
6472 /* helper function for file defrag and space balancing. This
6473 * forces readahead on a given range of bytes in an inode
6474 */
6475 unsigned long btrfs_force_ra(struct address_space *mapping,
6476 struct file_ra_state *ra, struct file *file,
6477 pgoff_t offset, pgoff_t last_index)
6478 {
6479 pgoff_t req_size = last_index - offset + 1;
6480
6481 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6482 return offset + req_size;
6483 }
6484
6485 struct inode *btrfs_alloc_inode(struct super_block *sb)
6486 {
6487 struct btrfs_inode *ei;
6488 struct inode *inode;
6489
6490 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6491 if (!ei)
6492 return NULL;
6493
6494 ei->root = NULL;
6495 ei->space_info = NULL;
6496 ei->generation = 0;
6497 ei->sequence = 0;
6498 ei->last_trans = 0;
6499 ei->last_sub_trans = 0;
6500 ei->logged_trans = 0;
6501 ei->delalloc_bytes = 0;
6502 ei->reserved_bytes = 0;
6503 ei->disk_i_size = 0;
6504 ei->flags = 0;
6505 ei->index_cnt = (u64)-1;
6506 ei->last_unlink_trans = 0;
6507
6508 spin_lock_init(&ei->accounting_lock);
6509 atomic_set(&ei->outstanding_extents, 0);
6510 ei->reserved_extents = 0;
6511
6512 ei->ordered_data_close = 0;
6513 ei->orphan_meta_reserved = 0;
6514 ei->dummy_inode = 0;
6515 ei->force_compress = BTRFS_COMPRESS_NONE;
6516
6517 inode = &ei->vfs_inode;
6518 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6519 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6520 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6521 mutex_init(&ei->log_mutex);
6522 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6523 INIT_LIST_HEAD(&ei->i_orphan);
6524 INIT_LIST_HEAD(&ei->delalloc_inodes);
6525 INIT_LIST_HEAD(&ei->ordered_operations);
6526 RB_CLEAR_NODE(&ei->rb_node);
6527
6528 return inode;
6529 }
6530
6531 static void btrfs_i_callback(struct rcu_head *head)
6532 {
6533 struct inode *inode = container_of(head, struct inode, i_rcu);
6534 INIT_LIST_HEAD(&inode->i_dentry);
6535 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6536 }
6537
6538 void btrfs_destroy_inode(struct inode *inode)
6539 {
6540 struct btrfs_ordered_extent *ordered;
6541 struct btrfs_root *root = BTRFS_I(inode)->root;
6542
6543 WARN_ON(!list_empty(&inode->i_dentry));
6544 WARN_ON(inode->i_data.nrpages);
6545 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6546 WARN_ON(BTRFS_I(inode)->reserved_extents);
6547
6548 /*
6549 * This can happen where we create an inode, but somebody else also
6550 * created the same inode and we need to destroy the one we already
6551 * created.
6552 */
6553 if (!root)
6554 goto free;
6555
6556 /*
6557 * Make sure we're properly removed from the ordered operation
6558 * lists.
6559 */
6560 smp_mb();
6561 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6562 spin_lock(&root->fs_info->ordered_extent_lock);
6563 list_del_init(&BTRFS_I(inode)->ordered_operations);
6564 spin_unlock(&root->fs_info->ordered_extent_lock);
6565 }
6566
6567 if (root == root->fs_info->tree_root) {
6568 struct btrfs_block_group_cache *block_group;
6569
6570 block_group = btrfs_lookup_block_group(root->fs_info,
6571 BTRFS_I(inode)->block_group);
6572 if (block_group && block_group->inode == inode) {
6573 spin_lock(&block_group->lock);
6574 block_group->inode = NULL;
6575 spin_unlock(&block_group->lock);
6576 btrfs_put_block_group(block_group);
6577 } else if (block_group) {
6578 btrfs_put_block_group(block_group);
6579 }
6580 }
6581
6582 spin_lock(&root->orphan_lock);
6583 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6584 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6585 inode->i_ino);
6586 list_del_init(&BTRFS_I(inode)->i_orphan);
6587 }
6588 spin_unlock(&root->orphan_lock);
6589
6590 while (1) {
6591 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6592 if (!ordered)
6593 break;
6594 else {
6595 printk(KERN_ERR "btrfs found ordered "
6596 "extent %llu %llu on inode cleanup\n",
6597 (unsigned long long)ordered->file_offset,
6598 (unsigned long long)ordered->len);
6599 btrfs_remove_ordered_extent(inode, ordered);
6600 btrfs_put_ordered_extent(ordered);
6601 btrfs_put_ordered_extent(ordered);
6602 }
6603 }
6604 inode_tree_del(inode);
6605 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6606 free:
6607 call_rcu(&inode->i_rcu, btrfs_i_callback);
6608 }
6609
6610 int btrfs_drop_inode(struct inode *inode)
6611 {
6612 struct btrfs_root *root = BTRFS_I(inode)->root;
6613
6614 if (btrfs_root_refs(&root->root_item) == 0 &&
6615 root != root->fs_info->tree_root)
6616 return 1;
6617 else
6618 return generic_drop_inode(inode);
6619 }
6620
6621 static void init_once(void *foo)
6622 {
6623 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6624
6625 inode_init_once(&ei->vfs_inode);
6626 }
6627
6628 void btrfs_destroy_cachep(void)
6629 {
6630 if (btrfs_inode_cachep)
6631 kmem_cache_destroy(btrfs_inode_cachep);
6632 if (btrfs_trans_handle_cachep)
6633 kmem_cache_destroy(btrfs_trans_handle_cachep);
6634 if (btrfs_transaction_cachep)
6635 kmem_cache_destroy(btrfs_transaction_cachep);
6636 if (btrfs_path_cachep)
6637 kmem_cache_destroy(btrfs_path_cachep);
6638 }
6639
6640 int btrfs_init_cachep(void)
6641 {
6642 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6643 sizeof(struct btrfs_inode), 0,
6644 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6645 if (!btrfs_inode_cachep)
6646 goto fail;
6647
6648 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6649 sizeof(struct btrfs_trans_handle), 0,
6650 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6651 if (!btrfs_trans_handle_cachep)
6652 goto fail;
6653
6654 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6655 sizeof(struct btrfs_transaction), 0,
6656 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6657 if (!btrfs_transaction_cachep)
6658 goto fail;
6659
6660 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6661 sizeof(struct btrfs_path), 0,
6662 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6663 if (!btrfs_path_cachep)
6664 goto fail;
6665
6666 return 0;
6667 fail:
6668 btrfs_destroy_cachep();
6669 return -ENOMEM;
6670 }
6671
6672 static int btrfs_getattr(struct vfsmount *mnt,
6673 struct dentry *dentry, struct kstat *stat)
6674 {
6675 struct inode *inode = dentry->d_inode;
6676 generic_fillattr(inode, stat);
6677 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6678 stat->blksize = PAGE_CACHE_SIZE;
6679 stat->blocks = (inode_get_bytes(inode) +
6680 BTRFS_I(inode)->delalloc_bytes) >> 9;
6681 return 0;
6682 }
6683
6684 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6685 struct inode *new_dir, struct dentry *new_dentry)
6686 {
6687 struct btrfs_trans_handle *trans;
6688 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6689 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6690 struct inode *new_inode = new_dentry->d_inode;
6691 struct inode *old_inode = old_dentry->d_inode;
6692 struct timespec ctime = CURRENT_TIME;
6693 u64 index = 0;
6694 u64 root_objectid;
6695 int ret;
6696
6697 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6698 return -EPERM;
6699
6700 /* we only allow rename subvolume link between subvolumes */
6701 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6702 return -EXDEV;
6703
6704 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6705 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6706 return -ENOTEMPTY;
6707
6708 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6709 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6710 return -ENOTEMPTY;
6711 /*
6712 * we're using rename to replace one file with another.
6713 * and the replacement file is large. Start IO on it now so
6714 * we don't add too much work to the end of the transaction
6715 */
6716 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6717 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6718 filemap_flush(old_inode->i_mapping);
6719
6720 /* close the racy window with snapshot create/destroy ioctl */
6721 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6722 down_read(&root->fs_info->subvol_sem);
6723 /*
6724 * We want to reserve the absolute worst case amount of items. So if
6725 * both inodes are subvols and we need to unlink them then that would
6726 * require 4 item modifications, but if they are both normal inodes it
6727 * would require 5 item modifications, so we'll assume their normal
6728 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6729 * should cover the worst case number of items we'll modify.
6730 */
6731 trans = btrfs_start_transaction(root, 20);
6732 if (IS_ERR(trans))
6733 return PTR_ERR(trans);
6734
6735 btrfs_set_trans_block_group(trans, new_dir);
6736
6737 if (dest != root)
6738 btrfs_record_root_in_trans(trans, dest);
6739
6740 ret = btrfs_set_inode_index(new_dir, &index);
6741 if (ret)
6742 goto out_fail;
6743
6744 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6745 /* force full log commit if subvolume involved. */
6746 root->fs_info->last_trans_log_full_commit = trans->transid;
6747 } else {
6748 ret = btrfs_insert_inode_ref(trans, dest,
6749 new_dentry->d_name.name,
6750 new_dentry->d_name.len,
6751 old_inode->i_ino,
6752 new_dir->i_ino, index);
6753 if (ret)
6754 goto out_fail;
6755 /*
6756 * this is an ugly little race, but the rename is required
6757 * to make sure that if we crash, the inode is either at the
6758 * old name or the new one. pinning the log transaction lets
6759 * us make sure we don't allow a log commit to come in after
6760 * we unlink the name but before we add the new name back in.
6761 */
6762 btrfs_pin_log_trans(root);
6763 }
6764 /*
6765 * make sure the inode gets flushed if it is replacing
6766 * something.
6767 */
6768 if (new_inode && new_inode->i_size &&
6769 old_inode && S_ISREG(old_inode->i_mode)) {
6770 btrfs_add_ordered_operation(trans, root, old_inode);
6771 }
6772
6773 old_dir->i_ctime = old_dir->i_mtime = ctime;
6774 new_dir->i_ctime = new_dir->i_mtime = ctime;
6775 old_inode->i_ctime = ctime;
6776
6777 if (old_dentry->d_parent != new_dentry->d_parent)
6778 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6779
6780 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6781 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6782 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6783 old_dentry->d_name.name,
6784 old_dentry->d_name.len);
6785 } else {
6786 btrfs_inc_nlink(old_dentry->d_inode);
6787 ret = btrfs_unlink_inode(trans, root, old_dir,
6788 old_dentry->d_inode,
6789 old_dentry->d_name.name,
6790 old_dentry->d_name.len);
6791 }
6792 BUG_ON(ret);
6793
6794 if (new_inode) {
6795 new_inode->i_ctime = CURRENT_TIME;
6796 if (unlikely(new_inode->i_ino ==
6797 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6798 root_objectid = BTRFS_I(new_inode)->location.objectid;
6799 ret = btrfs_unlink_subvol(trans, dest, new_dir,
6800 root_objectid,
6801 new_dentry->d_name.name,
6802 new_dentry->d_name.len);
6803 BUG_ON(new_inode->i_nlink == 0);
6804 } else {
6805 ret = btrfs_unlink_inode(trans, dest, new_dir,
6806 new_dentry->d_inode,
6807 new_dentry->d_name.name,
6808 new_dentry->d_name.len);
6809 }
6810 BUG_ON(ret);
6811 if (new_inode->i_nlink == 0) {
6812 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6813 BUG_ON(ret);
6814 }
6815 }
6816
6817 ret = btrfs_add_link(trans, new_dir, old_inode,
6818 new_dentry->d_name.name,
6819 new_dentry->d_name.len, 0, index);
6820 BUG_ON(ret);
6821
6822 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6823 struct dentry *parent = dget_parent(new_dentry);
6824 btrfs_log_new_name(trans, old_inode, old_dir, parent);
6825 dput(parent);
6826 btrfs_end_log_trans(root);
6827 }
6828 out_fail:
6829 btrfs_end_transaction_throttle(trans, root);
6830
6831 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6832 up_read(&root->fs_info->subvol_sem);
6833
6834 return ret;
6835 }
6836
6837 /*
6838 * some fairly slow code that needs optimization. This walks the list
6839 * of all the inodes with pending delalloc and forces them to disk.
6840 */
6841 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6842 {
6843 struct list_head *head = &root->fs_info->delalloc_inodes;
6844 struct btrfs_inode *binode;
6845 struct inode *inode;
6846
6847 if (root->fs_info->sb->s_flags & MS_RDONLY)
6848 return -EROFS;
6849
6850 spin_lock(&root->fs_info->delalloc_lock);
6851 while (!list_empty(head)) {
6852 binode = list_entry(head->next, struct btrfs_inode,
6853 delalloc_inodes);
6854 inode = igrab(&binode->vfs_inode);
6855 if (!inode)
6856 list_del_init(&binode->delalloc_inodes);
6857 spin_unlock(&root->fs_info->delalloc_lock);
6858 if (inode) {
6859 filemap_flush(inode->i_mapping);
6860 if (delay_iput)
6861 btrfs_add_delayed_iput(inode);
6862 else
6863 iput(inode);
6864 }
6865 cond_resched();
6866 spin_lock(&root->fs_info->delalloc_lock);
6867 }
6868 spin_unlock(&root->fs_info->delalloc_lock);
6869
6870 /* the filemap_flush will queue IO into the worker threads, but
6871 * we have to make sure the IO is actually started and that
6872 * ordered extents get created before we return
6873 */
6874 atomic_inc(&root->fs_info->async_submit_draining);
6875 while (atomic_read(&root->fs_info->nr_async_submits) ||
6876 atomic_read(&root->fs_info->async_delalloc_pages)) {
6877 wait_event(root->fs_info->async_submit_wait,
6878 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6879 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6880 }
6881 atomic_dec(&root->fs_info->async_submit_draining);
6882 return 0;
6883 }
6884
6885 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6886 int sync)
6887 {
6888 struct btrfs_inode *binode;
6889 struct inode *inode = NULL;
6890
6891 spin_lock(&root->fs_info->delalloc_lock);
6892 while (!list_empty(&root->fs_info->delalloc_inodes)) {
6893 binode = list_entry(root->fs_info->delalloc_inodes.next,
6894 struct btrfs_inode, delalloc_inodes);
6895 inode = igrab(&binode->vfs_inode);
6896 if (inode) {
6897 list_move_tail(&binode->delalloc_inodes,
6898 &root->fs_info->delalloc_inodes);
6899 break;
6900 }
6901
6902 list_del_init(&binode->delalloc_inodes);
6903 cond_resched_lock(&root->fs_info->delalloc_lock);
6904 }
6905 spin_unlock(&root->fs_info->delalloc_lock);
6906
6907 if (inode) {
6908 if (sync) {
6909 filemap_write_and_wait(inode->i_mapping);
6910 /*
6911 * We have to do this because compression doesn't
6912 * actually set PG_writeback until it submits the pages
6913 * for IO, which happens in an async thread, so we could
6914 * race and not actually wait for any writeback pages
6915 * because they've not been submitted yet. Technically
6916 * this could still be the case for the ordered stuff
6917 * since the async thread may not have started to do its
6918 * work yet. If this becomes the case then we need to
6919 * figure out a way to make sure that in writepage we
6920 * wait for any async pages to be submitted before
6921 * returning so that fdatawait does what its supposed to
6922 * do.
6923 */
6924 btrfs_wait_ordered_range(inode, 0, (u64)-1);
6925 } else {
6926 filemap_flush(inode->i_mapping);
6927 }
6928 if (delay_iput)
6929 btrfs_add_delayed_iput(inode);
6930 else
6931 iput(inode);
6932 return 1;
6933 }
6934 return 0;
6935 }
6936
6937 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6938 const char *symname)
6939 {
6940 struct btrfs_trans_handle *trans;
6941 struct btrfs_root *root = BTRFS_I(dir)->root;
6942 struct btrfs_path *path;
6943 struct btrfs_key key;
6944 struct inode *inode = NULL;
6945 int err;
6946 int drop_inode = 0;
6947 u64 objectid;
6948 u64 index = 0 ;
6949 int name_len;
6950 int datasize;
6951 unsigned long ptr;
6952 struct btrfs_file_extent_item *ei;
6953 struct extent_buffer *leaf;
6954 unsigned long nr = 0;
6955
6956 name_len = strlen(symname) + 1;
6957 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6958 return -ENAMETOOLONG;
6959
6960 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6961 if (err)
6962 return err;
6963 /*
6964 * 2 items for inode item and ref
6965 * 2 items for dir items
6966 * 1 item for xattr if selinux is on
6967 */
6968 trans = btrfs_start_transaction(root, 5);
6969 if (IS_ERR(trans))
6970 return PTR_ERR(trans);
6971
6972 btrfs_set_trans_block_group(trans, dir);
6973
6974 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6975 dentry->d_name.len, dir->i_ino, objectid,
6976 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6977 &index);
6978 err = PTR_ERR(inode);
6979 if (IS_ERR(inode))
6980 goto out_unlock;
6981
6982 err = btrfs_init_inode_security(trans, inode, dir);
6983 if (err) {
6984 drop_inode = 1;
6985 goto out_unlock;
6986 }
6987
6988 btrfs_set_trans_block_group(trans, inode);
6989 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6990 if (err)
6991 drop_inode = 1;
6992 else {
6993 inode->i_mapping->a_ops = &btrfs_aops;
6994 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6995 inode->i_fop = &btrfs_file_operations;
6996 inode->i_op = &btrfs_file_inode_operations;
6997 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6998 }
6999 btrfs_update_inode_block_group(trans, inode);
7000 btrfs_update_inode_block_group(trans, dir);
7001 if (drop_inode)
7002 goto out_unlock;
7003
7004 path = btrfs_alloc_path();
7005 BUG_ON(!path);
7006 key.objectid = inode->i_ino;
7007 key.offset = 0;
7008 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7009 datasize = btrfs_file_extent_calc_inline_size(name_len);
7010 err = btrfs_insert_empty_item(trans, root, path, &key,
7011 datasize);
7012 if (err) {
7013 drop_inode = 1;
7014 goto out_unlock;
7015 }
7016 leaf = path->nodes[0];
7017 ei = btrfs_item_ptr(leaf, path->slots[0],
7018 struct btrfs_file_extent_item);
7019 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7020 btrfs_set_file_extent_type(leaf, ei,
7021 BTRFS_FILE_EXTENT_INLINE);
7022 btrfs_set_file_extent_encryption(leaf, ei, 0);
7023 btrfs_set_file_extent_compression(leaf, ei, 0);
7024 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7025 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7026
7027 ptr = btrfs_file_extent_inline_start(ei);
7028 write_extent_buffer(leaf, symname, ptr, name_len);
7029 btrfs_mark_buffer_dirty(leaf);
7030 btrfs_free_path(path);
7031
7032 inode->i_op = &btrfs_symlink_inode_operations;
7033 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7034 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7035 inode_set_bytes(inode, name_len);
7036 btrfs_i_size_write(inode, name_len - 1);
7037 err = btrfs_update_inode(trans, root, inode);
7038 if (err)
7039 drop_inode = 1;
7040
7041 out_unlock:
7042 nr = trans->blocks_used;
7043 btrfs_end_transaction_throttle(trans, root);
7044 if (drop_inode) {
7045 inode_dec_link_count(inode);
7046 iput(inode);
7047 }
7048 btrfs_btree_balance_dirty(root, nr);
7049 return err;
7050 }
7051
7052 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7053 u64 start, u64 num_bytes, u64 min_size,
7054 loff_t actual_len, u64 *alloc_hint,
7055 struct btrfs_trans_handle *trans)
7056 {
7057 struct btrfs_root *root = BTRFS_I(inode)->root;
7058 struct btrfs_key ins;
7059 u64 cur_offset = start;
7060 u64 i_size;
7061 int ret = 0;
7062 bool own_trans = true;
7063
7064 if (trans)
7065 own_trans = false;
7066 while (num_bytes > 0) {
7067 if (own_trans) {
7068 trans = btrfs_start_transaction(root, 3);
7069 if (IS_ERR(trans)) {
7070 ret = PTR_ERR(trans);
7071 break;
7072 }
7073 }
7074
7075 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7076 0, *alloc_hint, (u64)-1, &ins, 1);
7077 if (ret) {
7078 if (own_trans)
7079 btrfs_end_transaction(trans, root);
7080 break;
7081 }
7082
7083 ret = insert_reserved_file_extent(trans, inode,
7084 cur_offset, ins.objectid,
7085 ins.offset, ins.offset,
7086 ins.offset, 0, 0, 0,
7087 BTRFS_FILE_EXTENT_PREALLOC);
7088 BUG_ON(ret);
7089 btrfs_drop_extent_cache(inode, cur_offset,
7090 cur_offset + ins.offset -1, 0);
7091
7092 num_bytes -= ins.offset;
7093 cur_offset += ins.offset;
7094 *alloc_hint = ins.objectid + ins.offset;
7095
7096 inode->i_ctime = CURRENT_TIME;
7097 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7098 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7099 (actual_len > inode->i_size) &&
7100 (cur_offset > inode->i_size)) {
7101 if (cur_offset > actual_len)
7102 i_size = actual_len;
7103 else
7104 i_size = cur_offset;
7105 i_size_write(inode, i_size);
7106 btrfs_ordered_update_i_size(inode, i_size, NULL);
7107 }
7108
7109 ret = btrfs_update_inode(trans, root, inode);
7110 BUG_ON(ret);
7111
7112 if (own_trans)
7113 btrfs_end_transaction(trans, root);
7114 }
7115 return ret;
7116 }
7117
7118 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7119 u64 start, u64 num_bytes, u64 min_size,
7120 loff_t actual_len, u64 *alloc_hint)
7121 {
7122 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7123 min_size, actual_len, alloc_hint,
7124 NULL);
7125 }
7126
7127 int btrfs_prealloc_file_range_trans(struct inode *inode,
7128 struct btrfs_trans_handle *trans, int mode,
7129 u64 start, u64 num_bytes, u64 min_size,
7130 loff_t actual_len, u64 *alloc_hint)
7131 {
7132 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7133 min_size, actual_len, alloc_hint, trans);
7134 }
7135
7136 static int btrfs_set_page_dirty(struct page *page)
7137 {
7138 return __set_page_dirty_nobuffers(page);
7139 }
7140
7141 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7142 {
7143 struct btrfs_root *root = BTRFS_I(inode)->root;
7144
7145 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7146 return -EROFS;
7147 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7148 return -EACCES;
7149 return generic_permission(inode, mask, flags, btrfs_check_acl);
7150 }
7151
7152 static const struct inode_operations btrfs_dir_inode_operations = {
7153 .getattr = btrfs_getattr,
7154 .lookup = btrfs_lookup,
7155 .create = btrfs_create,
7156 .unlink = btrfs_unlink,
7157 .link = btrfs_link,
7158 .mkdir = btrfs_mkdir,
7159 .rmdir = btrfs_rmdir,
7160 .rename = btrfs_rename,
7161 .symlink = btrfs_symlink,
7162 .setattr = btrfs_setattr,
7163 .mknod = btrfs_mknod,
7164 .setxattr = btrfs_setxattr,
7165 .getxattr = btrfs_getxattr,
7166 .listxattr = btrfs_listxattr,
7167 .removexattr = btrfs_removexattr,
7168 .permission = btrfs_permission,
7169 };
7170 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7171 .lookup = btrfs_lookup,
7172 .permission = btrfs_permission,
7173 };
7174
7175 static const struct file_operations btrfs_dir_file_operations = {
7176 .llseek = generic_file_llseek,
7177 .read = generic_read_dir,
7178 .readdir = btrfs_real_readdir,
7179 .unlocked_ioctl = btrfs_ioctl,
7180 #ifdef CONFIG_COMPAT
7181 .compat_ioctl = btrfs_ioctl,
7182 #endif
7183 .release = btrfs_release_file,
7184 .fsync = btrfs_sync_file,
7185 };
7186
7187 static struct extent_io_ops btrfs_extent_io_ops = {
7188 .fill_delalloc = run_delalloc_range,
7189 .submit_bio_hook = btrfs_submit_bio_hook,
7190 .merge_bio_hook = btrfs_merge_bio_hook,
7191 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7192 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7193 .writepage_start_hook = btrfs_writepage_start_hook,
7194 .readpage_io_failed_hook = btrfs_io_failed_hook,
7195 .set_bit_hook = btrfs_set_bit_hook,
7196 .clear_bit_hook = btrfs_clear_bit_hook,
7197 .merge_extent_hook = btrfs_merge_extent_hook,
7198 .split_extent_hook = btrfs_split_extent_hook,
7199 };
7200
7201 /*
7202 * btrfs doesn't support the bmap operation because swapfiles
7203 * use bmap to make a mapping of extents in the file. They assume
7204 * these extents won't change over the life of the file and they
7205 * use the bmap result to do IO directly to the drive.
7206 *
7207 * the btrfs bmap call would return logical addresses that aren't
7208 * suitable for IO and they also will change frequently as COW
7209 * operations happen. So, swapfile + btrfs == corruption.
7210 *
7211 * For now we're avoiding this by dropping bmap.
7212 */
7213 static const struct address_space_operations btrfs_aops = {
7214 .readpage = btrfs_readpage,
7215 .writepage = btrfs_writepage,
7216 .writepages = btrfs_writepages,
7217 .readpages = btrfs_readpages,
7218 .sync_page = block_sync_page,
7219 .direct_IO = btrfs_direct_IO,
7220 .invalidatepage = btrfs_invalidatepage,
7221 .releasepage = btrfs_releasepage,
7222 .set_page_dirty = btrfs_set_page_dirty,
7223 .error_remove_page = generic_error_remove_page,
7224 };
7225
7226 static const struct address_space_operations btrfs_symlink_aops = {
7227 .readpage = btrfs_readpage,
7228 .writepage = btrfs_writepage,
7229 .invalidatepage = btrfs_invalidatepage,
7230 .releasepage = btrfs_releasepage,
7231 };
7232
7233 static const struct inode_operations btrfs_file_inode_operations = {
7234 .truncate = btrfs_truncate,
7235 .getattr = btrfs_getattr,
7236 .setattr = btrfs_setattr,
7237 .setxattr = btrfs_setxattr,
7238 .getxattr = btrfs_getxattr,
7239 .listxattr = btrfs_listxattr,
7240 .removexattr = btrfs_removexattr,
7241 .permission = btrfs_permission,
7242 .fiemap = btrfs_fiemap,
7243 };
7244 static const struct inode_operations btrfs_special_inode_operations = {
7245 .getattr = btrfs_getattr,
7246 .setattr = btrfs_setattr,
7247 .permission = btrfs_permission,
7248 .setxattr = btrfs_setxattr,
7249 .getxattr = btrfs_getxattr,
7250 .listxattr = btrfs_listxattr,
7251 .removexattr = btrfs_removexattr,
7252 };
7253 static const struct inode_operations btrfs_symlink_inode_operations = {
7254 .readlink = generic_readlink,
7255 .follow_link = page_follow_link_light,
7256 .put_link = page_put_link,
7257 .getattr = btrfs_getattr,
7258 .permission = btrfs_permission,
7259 .setxattr = btrfs_setxattr,
7260 .getxattr = btrfs_getxattr,
7261 .listxattr = btrfs_listxattr,
7262 .removexattr = btrfs_removexattr,
7263 };
7264
7265 const struct dentry_operations btrfs_dentry_operations = {
7266 .d_delete = btrfs_dentry_delete,
7267 };
This page took 0.17732 seconds and 6 git commands to generate.