Merge tag 'efi-for-3.9-rc4' into x86/urgent
[deliverable/linux.git] / fs / ext4 / extents.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44 #include "ext4_extents.h"
45 #include "xattr.h"
46
47 #include <trace/events/ext4.h>
48
49 /*
50 * used by extent splitting.
51 */
52 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
53 due to ENOSPC */
54 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
55 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
56
57 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
58 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
59
60 static __le32 ext4_extent_block_csum(struct inode *inode,
61 struct ext4_extent_header *eh)
62 {
63 struct ext4_inode_info *ei = EXT4_I(inode);
64 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
65 __u32 csum;
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
68 EXT4_EXTENT_TAIL_OFFSET(eh));
69 return cpu_to_le32(csum);
70 }
71
72 static int ext4_extent_block_csum_verify(struct inode *inode,
73 struct ext4_extent_header *eh)
74 {
75 struct ext4_extent_tail *et;
76
77 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
78 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
79 return 1;
80
81 et = find_ext4_extent_tail(eh);
82 if (et->et_checksum != ext4_extent_block_csum(inode, eh))
83 return 0;
84 return 1;
85 }
86
87 static void ext4_extent_block_csum_set(struct inode *inode,
88 struct ext4_extent_header *eh)
89 {
90 struct ext4_extent_tail *et;
91
92 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
93 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
94 return;
95
96 et = find_ext4_extent_tail(eh);
97 et->et_checksum = ext4_extent_block_csum(inode, eh);
98 }
99
100 static int ext4_split_extent(handle_t *handle,
101 struct inode *inode,
102 struct ext4_ext_path *path,
103 struct ext4_map_blocks *map,
104 int split_flag,
105 int flags);
106
107 static int ext4_split_extent_at(handle_t *handle,
108 struct inode *inode,
109 struct ext4_ext_path *path,
110 ext4_lblk_t split,
111 int split_flag,
112 int flags);
113
114 static int ext4_find_delayed_extent(struct inode *inode,
115 struct extent_status *newes);
116
117 static int ext4_ext_truncate_extend_restart(handle_t *handle,
118 struct inode *inode,
119 int needed)
120 {
121 int err;
122
123 if (!ext4_handle_valid(handle))
124 return 0;
125 if (handle->h_buffer_credits > needed)
126 return 0;
127 err = ext4_journal_extend(handle, needed);
128 if (err <= 0)
129 return err;
130 err = ext4_truncate_restart_trans(handle, inode, needed);
131 if (err == 0)
132 err = -EAGAIN;
133
134 return err;
135 }
136
137 /*
138 * could return:
139 * - EROFS
140 * - ENOMEM
141 */
142 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
143 struct ext4_ext_path *path)
144 {
145 if (path->p_bh) {
146 /* path points to block */
147 return ext4_journal_get_write_access(handle, path->p_bh);
148 }
149 /* path points to leaf/index in inode body */
150 /* we use in-core data, no need to protect them */
151 return 0;
152 }
153
154 /*
155 * could return:
156 * - EROFS
157 * - ENOMEM
158 * - EIO
159 */
160 #define ext4_ext_dirty(handle, inode, path) \
161 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
162 static int __ext4_ext_dirty(const char *where, unsigned int line,
163 handle_t *handle, struct inode *inode,
164 struct ext4_ext_path *path)
165 {
166 int err;
167 if (path->p_bh) {
168 ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
169 /* path points to block */
170 err = __ext4_handle_dirty_metadata(where, line, handle,
171 inode, path->p_bh);
172 } else {
173 /* path points to leaf/index in inode body */
174 err = ext4_mark_inode_dirty(handle, inode);
175 }
176 return err;
177 }
178
179 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
180 struct ext4_ext_path *path,
181 ext4_lblk_t block)
182 {
183 if (path) {
184 int depth = path->p_depth;
185 struct ext4_extent *ex;
186
187 /*
188 * Try to predict block placement assuming that we are
189 * filling in a file which will eventually be
190 * non-sparse --- i.e., in the case of libbfd writing
191 * an ELF object sections out-of-order but in a way
192 * the eventually results in a contiguous object or
193 * executable file, or some database extending a table
194 * space file. However, this is actually somewhat
195 * non-ideal if we are writing a sparse file such as
196 * qemu or KVM writing a raw image file that is going
197 * to stay fairly sparse, since it will end up
198 * fragmenting the file system's free space. Maybe we
199 * should have some hueristics or some way to allow
200 * userspace to pass a hint to file system,
201 * especially if the latter case turns out to be
202 * common.
203 */
204 ex = path[depth].p_ext;
205 if (ex) {
206 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
207 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
208
209 if (block > ext_block)
210 return ext_pblk + (block - ext_block);
211 else
212 return ext_pblk - (ext_block - block);
213 }
214
215 /* it looks like index is empty;
216 * try to find starting block from index itself */
217 if (path[depth].p_bh)
218 return path[depth].p_bh->b_blocknr;
219 }
220
221 /* OK. use inode's group */
222 return ext4_inode_to_goal_block(inode);
223 }
224
225 /*
226 * Allocation for a meta data block
227 */
228 static ext4_fsblk_t
229 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
230 struct ext4_ext_path *path,
231 struct ext4_extent *ex, int *err, unsigned int flags)
232 {
233 ext4_fsblk_t goal, newblock;
234
235 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
236 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
237 NULL, err);
238 return newblock;
239 }
240
241 static inline int ext4_ext_space_block(struct inode *inode, int check)
242 {
243 int size;
244
245 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
246 / sizeof(struct ext4_extent);
247 #ifdef AGGRESSIVE_TEST
248 if (!check && size > 6)
249 size = 6;
250 #endif
251 return size;
252 }
253
254 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
255 {
256 int size;
257
258 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
259 / sizeof(struct ext4_extent_idx);
260 #ifdef AGGRESSIVE_TEST
261 if (!check && size > 5)
262 size = 5;
263 #endif
264 return size;
265 }
266
267 static inline int ext4_ext_space_root(struct inode *inode, int check)
268 {
269 int size;
270
271 size = sizeof(EXT4_I(inode)->i_data);
272 size -= sizeof(struct ext4_extent_header);
273 size /= sizeof(struct ext4_extent);
274 #ifdef AGGRESSIVE_TEST
275 if (!check && size > 3)
276 size = 3;
277 #endif
278 return size;
279 }
280
281 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
282 {
283 int size;
284
285 size = sizeof(EXT4_I(inode)->i_data);
286 size -= sizeof(struct ext4_extent_header);
287 size /= sizeof(struct ext4_extent_idx);
288 #ifdef AGGRESSIVE_TEST
289 if (!check && size > 4)
290 size = 4;
291 #endif
292 return size;
293 }
294
295 /*
296 * Calculate the number of metadata blocks needed
297 * to allocate @blocks
298 * Worse case is one block per extent
299 */
300 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
301 {
302 struct ext4_inode_info *ei = EXT4_I(inode);
303 int idxs;
304
305 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
306 / sizeof(struct ext4_extent_idx));
307
308 /*
309 * If the new delayed allocation block is contiguous with the
310 * previous da block, it can share index blocks with the
311 * previous block, so we only need to allocate a new index
312 * block every idxs leaf blocks. At ldxs**2 blocks, we need
313 * an additional index block, and at ldxs**3 blocks, yet
314 * another index blocks.
315 */
316 if (ei->i_da_metadata_calc_len &&
317 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
318 int num = 0;
319
320 if ((ei->i_da_metadata_calc_len % idxs) == 0)
321 num++;
322 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
323 num++;
324 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
325 num++;
326 ei->i_da_metadata_calc_len = 0;
327 } else
328 ei->i_da_metadata_calc_len++;
329 ei->i_da_metadata_calc_last_lblock++;
330 return num;
331 }
332
333 /*
334 * In the worst case we need a new set of index blocks at
335 * every level of the inode's extent tree.
336 */
337 ei->i_da_metadata_calc_len = 1;
338 ei->i_da_metadata_calc_last_lblock = lblock;
339 return ext_depth(inode) + 1;
340 }
341
342 static int
343 ext4_ext_max_entries(struct inode *inode, int depth)
344 {
345 int max;
346
347 if (depth == ext_depth(inode)) {
348 if (depth == 0)
349 max = ext4_ext_space_root(inode, 1);
350 else
351 max = ext4_ext_space_root_idx(inode, 1);
352 } else {
353 if (depth == 0)
354 max = ext4_ext_space_block(inode, 1);
355 else
356 max = ext4_ext_space_block_idx(inode, 1);
357 }
358
359 return max;
360 }
361
362 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
363 {
364 ext4_fsblk_t block = ext4_ext_pblock(ext);
365 int len = ext4_ext_get_actual_len(ext);
366
367 if (len == 0)
368 return 0;
369 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
370 }
371
372 static int ext4_valid_extent_idx(struct inode *inode,
373 struct ext4_extent_idx *ext_idx)
374 {
375 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
376
377 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
378 }
379
380 static int ext4_valid_extent_entries(struct inode *inode,
381 struct ext4_extent_header *eh,
382 int depth)
383 {
384 unsigned short entries;
385 if (eh->eh_entries == 0)
386 return 1;
387
388 entries = le16_to_cpu(eh->eh_entries);
389
390 if (depth == 0) {
391 /* leaf entries */
392 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
393 while (entries) {
394 if (!ext4_valid_extent(inode, ext))
395 return 0;
396 ext++;
397 entries--;
398 }
399 } else {
400 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
401 while (entries) {
402 if (!ext4_valid_extent_idx(inode, ext_idx))
403 return 0;
404 ext_idx++;
405 entries--;
406 }
407 }
408 return 1;
409 }
410
411 static int __ext4_ext_check(const char *function, unsigned int line,
412 struct inode *inode, struct ext4_extent_header *eh,
413 int depth)
414 {
415 const char *error_msg;
416 int max = 0;
417
418 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
419 error_msg = "invalid magic";
420 goto corrupted;
421 }
422 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
423 error_msg = "unexpected eh_depth";
424 goto corrupted;
425 }
426 if (unlikely(eh->eh_max == 0)) {
427 error_msg = "invalid eh_max";
428 goto corrupted;
429 }
430 max = ext4_ext_max_entries(inode, depth);
431 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
432 error_msg = "too large eh_max";
433 goto corrupted;
434 }
435 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
436 error_msg = "invalid eh_entries";
437 goto corrupted;
438 }
439 if (!ext4_valid_extent_entries(inode, eh, depth)) {
440 error_msg = "invalid extent entries";
441 goto corrupted;
442 }
443 /* Verify checksum on non-root extent tree nodes */
444 if (ext_depth(inode) != depth &&
445 !ext4_extent_block_csum_verify(inode, eh)) {
446 error_msg = "extent tree corrupted";
447 goto corrupted;
448 }
449 return 0;
450
451 corrupted:
452 ext4_error_inode(inode, function, line, 0,
453 "bad header/extent: %s - magic %x, "
454 "entries %u, max %u(%u), depth %u(%u)",
455 error_msg, le16_to_cpu(eh->eh_magic),
456 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
457 max, le16_to_cpu(eh->eh_depth), depth);
458
459 return -EIO;
460 }
461
462 #define ext4_ext_check(inode, eh, depth) \
463 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
464
465 int ext4_ext_check_inode(struct inode *inode)
466 {
467 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
468 }
469
470 static int __ext4_ext_check_block(const char *function, unsigned int line,
471 struct inode *inode,
472 struct ext4_extent_header *eh,
473 int depth,
474 struct buffer_head *bh)
475 {
476 int ret;
477
478 if (buffer_verified(bh))
479 return 0;
480 ret = ext4_ext_check(inode, eh, depth);
481 if (ret)
482 return ret;
483 set_buffer_verified(bh);
484 return ret;
485 }
486
487 #define ext4_ext_check_block(inode, eh, depth, bh) \
488 __ext4_ext_check_block(__func__, __LINE__, inode, eh, depth, bh)
489
490 #ifdef EXT_DEBUG
491 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
492 {
493 int k, l = path->p_depth;
494
495 ext_debug("path:");
496 for (k = 0; k <= l; k++, path++) {
497 if (path->p_idx) {
498 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
499 ext4_idx_pblock(path->p_idx));
500 } else if (path->p_ext) {
501 ext_debug(" %d:[%d]%d:%llu ",
502 le32_to_cpu(path->p_ext->ee_block),
503 ext4_ext_is_uninitialized(path->p_ext),
504 ext4_ext_get_actual_len(path->p_ext),
505 ext4_ext_pblock(path->p_ext));
506 } else
507 ext_debug(" []");
508 }
509 ext_debug("\n");
510 }
511
512 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
513 {
514 int depth = ext_depth(inode);
515 struct ext4_extent_header *eh;
516 struct ext4_extent *ex;
517 int i;
518
519 if (!path)
520 return;
521
522 eh = path[depth].p_hdr;
523 ex = EXT_FIRST_EXTENT(eh);
524
525 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
526
527 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
528 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
529 ext4_ext_is_uninitialized(ex),
530 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
531 }
532 ext_debug("\n");
533 }
534
535 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
536 ext4_fsblk_t newblock, int level)
537 {
538 int depth = ext_depth(inode);
539 struct ext4_extent *ex;
540
541 if (depth != level) {
542 struct ext4_extent_idx *idx;
543 idx = path[level].p_idx;
544 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
545 ext_debug("%d: move %d:%llu in new index %llu\n", level,
546 le32_to_cpu(idx->ei_block),
547 ext4_idx_pblock(idx),
548 newblock);
549 idx++;
550 }
551
552 return;
553 }
554
555 ex = path[depth].p_ext;
556 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
557 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
558 le32_to_cpu(ex->ee_block),
559 ext4_ext_pblock(ex),
560 ext4_ext_is_uninitialized(ex),
561 ext4_ext_get_actual_len(ex),
562 newblock);
563 ex++;
564 }
565 }
566
567 #else
568 #define ext4_ext_show_path(inode, path)
569 #define ext4_ext_show_leaf(inode, path)
570 #define ext4_ext_show_move(inode, path, newblock, level)
571 #endif
572
573 void ext4_ext_drop_refs(struct ext4_ext_path *path)
574 {
575 int depth = path->p_depth;
576 int i;
577
578 for (i = 0; i <= depth; i++, path++)
579 if (path->p_bh) {
580 brelse(path->p_bh);
581 path->p_bh = NULL;
582 }
583 }
584
585 /*
586 * ext4_ext_binsearch_idx:
587 * binary search for the closest index of the given block
588 * the header must be checked before calling this
589 */
590 static void
591 ext4_ext_binsearch_idx(struct inode *inode,
592 struct ext4_ext_path *path, ext4_lblk_t block)
593 {
594 struct ext4_extent_header *eh = path->p_hdr;
595 struct ext4_extent_idx *r, *l, *m;
596
597
598 ext_debug("binsearch for %u(idx): ", block);
599
600 l = EXT_FIRST_INDEX(eh) + 1;
601 r = EXT_LAST_INDEX(eh);
602 while (l <= r) {
603 m = l + (r - l) / 2;
604 if (block < le32_to_cpu(m->ei_block))
605 r = m - 1;
606 else
607 l = m + 1;
608 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
609 m, le32_to_cpu(m->ei_block),
610 r, le32_to_cpu(r->ei_block));
611 }
612
613 path->p_idx = l - 1;
614 ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
615 ext4_idx_pblock(path->p_idx));
616
617 #ifdef CHECK_BINSEARCH
618 {
619 struct ext4_extent_idx *chix, *ix;
620 int k;
621
622 chix = ix = EXT_FIRST_INDEX(eh);
623 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
624 if (k != 0 &&
625 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
626 printk(KERN_DEBUG "k=%d, ix=0x%p, "
627 "first=0x%p\n", k,
628 ix, EXT_FIRST_INDEX(eh));
629 printk(KERN_DEBUG "%u <= %u\n",
630 le32_to_cpu(ix->ei_block),
631 le32_to_cpu(ix[-1].ei_block));
632 }
633 BUG_ON(k && le32_to_cpu(ix->ei_block)
634 <= le32_to_cpu(ix[-1].ei_block));
635 if (block < le32_to_cpu(ix->ei_block))
636 break;
637 chix = ix;
638 }
639 BUG_ON(chix != path->p_idx);
640 }
641 #endif
642
643 }
644
645 /*
646 * ext4_ext_binsearch:
647 * binary search for closest extent of the given block
648 * the header must be checked before calling this
649 */
650 static void
651 ext4_ext_binsearch(struct inode *inode,
652 struct ext4_ext_path *path, ext4_lblk_t block)
653 {
654 struct ext4_extent_header *eh = path->p_hdr;
655 struct ext4_extent *r, *l, *m;
656
657 if (eh->eh_entries == 0) {
658 /*
659 * this leaf is empty:
660 * we get such a leaf in split/add case
661 */
662 return;
663 }
664
665 ext_debug("binsearch for %u: ", block);
666
667 l = EXT_FIRST_EXTENT(eh) + 1;
668 r = EXT_LAST_EXTENT(eh);
669
670 while (l <= r) {
671 m = l + (r - l) / 2;
672 if (block < le32_to_cpu(m->ee_block))
673 r = m - 1;
674 else
675 l = m + 1;
676 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
677 m, le32_to_cpu(m->ee_block),
678 r, le32_to_cpu(r->ee_block));
679 }
680
681 path->p_ext = l - 1;
682 ext_debug(" -> %d:%llu:[%d]%d ",
683 le32_to_cpu(path->p_ext->ee_block),
684 ext4_ext_pblock(path->p_ext),
685 ext4_ext_is_uninitialized(path->p_ext),
686 ext4_ext_get_actual_len(path->p_ext));
687
688 #ifdef CHECK_BINSEARCH
689 {
690 struct ext4_extent *chex, *ex;
691 int k;
692
693 chex = ex = EXT_FIRST_EXTENT(eh);
694 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
695 BUG_ON(k && le32_to_cpu(ex->ee_block)
696 <= le32_to_cpu(ex[-1].ee_block));
697 if (block < le32_to_cpu(ex->ee_block))
698 break;
699 chex = ex;
700 }
701 BUG_ON(chex != path->p_ext);
702 }
703 #endif
704
705 }
706
707 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
708 {
709 struct ext4_extent_header *eh;
710
711 eh = ext_inode_hdr(inode);
712 eh->eh_depth = 0;
713 eh->eh_entries = 0;
714 eh->eh_magic = EXT4_EXT_MAGIC;
715 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
716 ext4_mark_inode_dirty(handle, inode);
717 return 0;
718 }
719
720 struct ext4_ext_path *
721 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
722 struct ext4_ext_path *path)
723 {
724 struct ext4_extent_header *eh;
725 struct buffer_head *bh;
726 short int depth, i, ppos = 0, alloc = 0;
727 int ret;
728
729 eh = ext_inode_hdr(inode);
730 depth = ext_depth(inode);
731
732 /* account possible depth increase */
733 if (!path) {
734 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
735 GFP_NOFS);
736 if (!path)
737 return ERR_PTR(-ENOMEM);
738 alloc = 1;
739 }
740 path[0].p_hdr = eh;
741 path[0].p_bh = NULL;
742
743 i = depth;
744 /* walk through the tree */
745 while (i) {
746 ext_debug("depth %d: num %d, max %d\n",
747 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
748
749 ext4_ext_binsearch_idx(inode, path + ppos, block);
750 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
751 path[ppos].p_depth = i;
752 path[ppos].p_ext = NULL;
753
754 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
755 if (unlikely(!bh)) {
756 ret = -ENOMEM;
757 goto err;
758 }
759 if (!bh_uptodate_or_lock(bh)) {
760 trace_ext4_ext_load_extent(inode, block,
761 path[ppos].p_block);
762 ret = bh_submit_read(bh);
763 if (ret < 0) {
764 put_bh(bh);
765 goto err;
766 }
767 }
768 eh = ext_block_hdr(bh);
769 ppos++;
770 if (unlikely(ppos > depth)) {
771 put_bh(bh);
772 EXT4_ERROR_INODE(inode,
773 "ppos %d > depth %d", ppos, depth);
774 ret = -EIO;
775 goto err;
776 }
777 path[ppos].p_bh = bh;
778 path[ppos].p_hdr = eh;
779 i--;
780
781 ret = ext4_ext_check_block(inode, eh, i, bh);
782 if (ret < 0)
783 goto err;
784 }
785
786 path[ppos].p_depth = i;
787 path[ppos].p_ext = NULL;
788 path[ppos].p_idx = NULL;
789
790 /* find extent */
791 ext4_ext_binsearch(inode, path + ppos, block);
792 /* if not an empty leaf */
793 if (path[ppos].p_ext)
794 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
795
796 ext4_ext_show_path(inode, path);
797
798 return path;
799
800 err:
801 ext4_ext_drop_refs(path);
802 if (alloc)
803 kfree(path);
804 return ERR_PTR(ret);
805 }
806
807 /*
808 * ext4_ext_insert_index:
809 * insert new index [@logical;@ptr] into the block at @curp;
810 * check where to insert: before @curp or after @curp
811 */
812 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
813 struct ext4_ext_path *curp,
814 int logical, ext4_fsblk_t ptr)
815 {
816 struct ext4_extent_idx *ix;
817 int len, err;
818
819 err = ext4_ext_get_access(handle, inode, curp);
820 if (err)
821 return err;
822
823 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
824 EXT4_ERROR_INODE(inode,
825 "logical %d == ei_block %d!",
826 logical, le32_to_cpu(curp->p_idx->ei_block));
827 return -EIO;
828 }
829
830 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
831 >= le16_to_cpu(curp->p_hdr->eh_max))) {
832 EXT4_ERROR_INODE(inode,
833 "eh_entries %d >= eh_max %d!",
834 le16_to_cpu(curp->p_hdr->eh_entries),
835 le16_to_cpu(curp->p_hdr->eh_max));
836 return -EIO;
837 }
838
839 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
840 /* insert after */
841 ext_debug("insert new index %d after: %llu\n", logical, ptr);
842 ix = curp->p_idx + 1;
843 } else {
844 /* insert before */
845 ext_debug("insert new index %d before: %llu\n", logical, ptr);
846 ix = curp->p_idx;
847 }
848
849 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
850 BUG_ON(len < 0);
851 if (len > 0) {
852 ext_debug("insert new index %d: "
853 "move %d indices from 0x%p to 0x%p\n",
854 logical, len, ix, ix + 1);
855 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
856 }
857
858 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
859 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
860 return -EIO;
861 }
862
863 ix->ei_block = cpu_to_le32(logical);
864 ext4_idx_store_pblock(ix, ptr);
865 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
866
867 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
868 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
869 return -EIO;
870 }
871
872 err = ext4_ext_dirty(handle, inode, curp);
873 ext4_std_error(inode->i_sb, err);
874
875 return err;
876 }
877
878 /*
879 * ext4_ext_split:
880 * inserts new subtree into the path, using free index entry
881 * at depth @at:
882 * - allocates all needed blocks (new leaf and all intermediate index blocks)
883 * - makes decision where to split
884 * - moves remaining extents and index entries (right to the split point)
885 * into the newly allocated blocks
886 * - initializes subtree
887 */
888 static int ext4_ext_split(handle_t *handle, struct inode *inode,
889 unsigned int flags,
890 struct ext4_ext_path *path,
891 struct ext4_extent *newext, int at)
892 {
893 struct buffer_head *bh = NULL;
894 int depth = ext_depth(inode);
895 struct ext4_extent_header *neh;
896 struct ext4_extent_idx *fidx;
897 int i = at, k, m, a;
898 ext4_fsblk_t newblock, oldblock;
899 __le32 border;
900 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
901 int err = 0;
902
903 /* make decision: where to split? */
904 /* FIXME: now decision is simplest: at current extent */
905
906 /* if current leaf will be split, then we should use
907 * border from split point */
908 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
909 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
910 return -EIO;
911 }
912 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
913 border = path[depth].p_ext[1].ee_block;
914 ext_debug("leaf will be split."
915 " next leaf starts at %d\n",
916 le32_to_cpu(border));
917 } else {
918 border = newext->ee_block;
919 ext_debug("leaf will be added."
920 " next leaf starts at %d\n",
921 le32_to_cpu(border));
922 }
923
924 /*
925 * If error occurs, then we break processing
926 * and mark filesystem read-only. index won't
927 * be inserted and tree will be in consistent
928 * state. Next mount will repair buffers too.
929 */
930
931 /*
932 * Get array to track all allocated blocks.
933 * We need this to handle errors and free blocks
934 * upon them.
935 */
936 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
937 if (!ablocks)
938 return -ENOMEM;
939
940 /* allocate all needed blocks */
941 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
942 for (a = 0; a < depth - at; a++) {
943 newblock = ext4_ext_new_meta_block(handle, inode, path,
944 newext, &err, flags);
945 if (newblock == 0)
946 goto cleanup;
947 ablocks[a] = newblock;
948 }
949
950 /* initialize new leaf */
951 newblock = ablocks[--a];
952 if (unlikely(newblock == 0)) {
953 EXT4_ERROR_INODE(inode, "newblock == 0!");
954 err = -EIO;
955 goto cleanup;
956 }
957 bh = sb_getblk(inode->i_sb, newblock);
958 if (unlikely(!bh)) {
959 err = -ENOMEM;
960 goto cleanup;
961 }
962 lock_buffer(bh);
963
964 err = ext4_journal_get_create_access(handle, bh);
965 if (err)
966 goto cleanup;
967
968 neh = ext_block_hdr(bh);
969 neh->eh_entries = 0;
970 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
971 neh->eh_magic = EXT4_EXT_MAGIC;
972 neh->eh_depth = 0;
973
974 /* move remainder of path[depth] to the new leaf */
975 if (unlikely(path[depth].p_hdr->eh_entries !=
976 path[depth].p_hdr->eh_max)) {
977 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
978 path[depth].p_hdr->eh_entries,
979 path[depth].p_hdr->eh_max);
980 err = -EIO;
981 goto cleanup;
982 }
983 /* start copy from next extent */
984 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
985 ext4_ext_show_move(inode, path, newblock, depth);
986 if (m) {
987 struct ext4_extent *ex;
988 ex = EXT_FIRST_EXTENT(neh);
989 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
990 le16_add_cpu(&neh->eh_entries, m);
991 }
992
993 ext4_extent_block_csum_set(inode, neh);
994 set_buffer_uptodate(bh);
995 unlock_buffer(bh);
996
997 err = ext4_handle_dirty_metadata(handle, inode, bh);
998 if (err)
999 goto cleanup;
1000 brelse(bh);
1001 bh = NULL;
1002
1003 /* correct old leaf */
1004 if (m) {
1005 err = ext4_ext_get_access(handle, inode, path + depth);
1006 if (err)
1007 goto cleanup;
1008 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
1009 err = ext4_ext_dirty(handle, inode, path + depth);
1010 if (err)
1011 goto cleanup;
1012
1013 }
1014
1015 /* create intermediate indexes */
1016 k = depth - at - 1;
1017 if (unlikely(k < 0)) {
1018 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
1019 err = -EIO;
1020 goto cleanup;
1021 }
1022 if (k)
1023 ext_debug("create %d intermediate indices\n", k);
1024 /* insert new index into current index block */
1025 /* current depth stored in i var */
1026 i = depth - 1;
1027 while (k--) {
1028 oldblock = newblock;
1029 newblock = ablocks[--a];
1030 bh = sb_getblk(inode->i_sb, newblock);
1031 if (unlikely(!bh)) {
1032 err = -ENOMEM;
1033 goto cleanup;
1034 }
1035 lock_buffer(bh);
1036
1037 err = ext4_journal_get_create_access(handle, bh);
1038 if (err)
1039 goto cleanup;
1040
1041 neh = ext_block_hdr(bh);
1042 neh->eh_entries = cpu_to_le16(1);
1043 neh->eh_magic = EXT4_EXT_MAGIC;
1044 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1045 neh->eh_depth = cpu_to_le16(depth - i);
1046 fidx = EXT_FIRST_INDEX(neh);
1047 fidx->ei_block = border;
1048 ext4_idx_store_pblock(fidx, oldblock);
1049
1050 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
1051 i, newblock, le32_to_cpu(border), oldblock);
1052
1053 /* move remainder of path[i] to the new index block */
1054 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
1055 EXT_LAST_INDEX(path[i].p_hdr))) {
1056 EXT4_ERROR_INODE(inode,
1057 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
1058 le32_to_cpu(path[i].p_ext->ee_block));
1059 err = -EIO;
1060 goto cleanup;
1061 }
1062 /* start copy indexes */
1063 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
1064 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
1065 EXT_MAX_INDEX(path[i].p_hdr));
1066 ext4_ext_show_move(inode, path, newblock, i);
1067 if (m) {
1068 memmove(++fidx, path[i].p_idx,
1069 sizeof(struct ext4_extent_idx) * m);
1070 le16_add_cpu(&neh->eh_entries, m);
1071 }
1072 ext4_extent_block_csum_set(inode, neh);
1073 set_buffer_uptodate(bh);
1074 unlock_buffer(bh);
1075
1076 err = ext4_handle_dirty_metadata(handle, inode, bh);
1077 if (err)
1078 goto cleanup;
1079 brelse(bh);
1080 bh = NULL;
1081
1082 /* correct old index */
1083 if (m) {
1084 err = ext4_ext_get_access(handle, inode, path + i);
1085 if (err)
1086 goto cleanup;
1087 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1088 err = ext4_ext_dirty(handle, inode, path + i);
1089 if (err)
1090 goto cleanup;
1091 }
1092
1093 i--;
1094 }
1095
1096 /* insert new index */
1097 err = ext4_ext_insert_index(handle, inode, path + at,
1098 le32_to_cpu(border), newblock);
1099
1100 cleanup:
1101 if (bh) {
1102 if (buffer_locked(bh))
1103 unlock_buffer(bh);
1104 brelse(bh);
1105 }
1106
1107 if (err) {
1108 /* free all allocated blocks in error case */
1109 for (i = 0; i < depth; i++) {
1110 if (!ablocks[i])
1111 continue;
1112 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1113 EXT4_FREE_BLOCKS_METADATA);
1114 }
1115 }
1116 kfree(ablocks);
1117
1118 return err;
1119 }
1120
1121 /*
1122 * ext4_ext_grow_indepth:
1123 * implements tree growing procedure:
1124 * - allocates new block
1125 * - moves top-level data (index block or leaf) into the new block
1126 * - initializes new top-level, creating index that points to the
1127 * just created block
1128 */
1129 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1130 unsigned int flags,
1131 struct ext4_extent *newext)
1132 {
1133 struct ext4_extent_header *neh;
1134 struct buffer_head *bh;
1135 ext4_fsblk_t newblock;
1136 int err = 0;
1137
1138 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1139 newext, &err, flags);
1140 if (newblock == 0)
1141 return err;
1142
1143 bh = sb_getblk(inode->i_sb, newblock);
1144 if (unlikely(!bh))
1145 return -ENOMEM;
1146 lock_buffer(bh);
1147
1148 err = ext4_journal_get_create_access(handle, bh);
1149 if (err) {
1150 unlock_buffer(bh);
1151 goto out;
1152 }
1153
1154 /* move top-level index/leaf into new block */
1155 memmove(bh->b_data, EXT4_I(inode)->i_data,
1156 sizeof(EXT4_I(inode)->i_data));
1157
1158 /* set size of new block */
1159 neh = ext_block_hdr(bh);
1160 /* old root could have indexes or leaves
1161 * so calculate e_max right way */
1162 if (ext_depth(inode))
1163 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1164 else
1165 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1166 neh->eh_magic = EXT4_EXT_MAGIC;
1167 ext4_extent_block_csum_set(inode, neh);
1168 set_buffer_uptodate(bh);
1169 unlock_buffer(bh);
1170
1171 err = ext4_handle_dirty_metadata(handle, inode, bh);
1172 if (err)
1173 goto out;
1174
1175 /* Update top-level index: num,max,pointer */
1176 neh = ext_inode_hdr(inode);
1177 neh->eh_entries = cpu_to_le16(1);
1178 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1179 if (neh->eh_depth == 0) {
1180 /* Root extent block becomes index block */
1181 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1182 EXT_FIRST_INDEX(neh)->ei_block =
1183 EXT_FIRST_EXTENT(neh)->ee_block;
1184 }
1185 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1186 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1187 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1188 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1189
1190 le16_add_cpu(&neh->eh_depth, 1);
1191 ext4_mark_inode_dirty(handle, inode);
1192 out:
1193 brelse(bh);
1194
1195 return err;
1196 }
1197
1198 /*
1199 * ext4_ext_create_new_leaf:
1200 * finds empty index and adds new leaf.
1201 * if no free index is found, then it requests in-depth growing.
1202 */
1203 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1204 unsigned int flags,
1205 struct ext4_ext_path *path,
1206 struct ext4_extent *newext)
1207 {
1208 struct ext4_ext_path *curp;
1209 int depth, i, err = 0;
1210
1211 repeat:
1212 i = depth = ext_depth(inode);
1213
1214 /* walk up to the tree and look for free index entry */
1215 curp = path + depth;
1216 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1217 i--;
1218 curp--;
1219 }
1220
1221 /* we use already allocated block for index block,
1222 * so subsequent data blocks should be contiguous */
1223 if (EXT_HAS_FREE_INDEX(curp)) {
1224 /* if we found index with free entry, then use that
1225 * entry: create all needed subtree and add new leaf */
1226 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1227 if (err)
1228 goto out;
1229
1230 /* refill path */
1231 ext4_ext_drop_refs(path);
1232 path = ext4_ext_find_extent(inode,
1233 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1234 path);
1235 if (IS_ERR(path))
1236 err = PTR_ERR(path);
1237 } else {
1238 /* tree is full, time to grow in depth */
1239 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1240 if (err)
1241 goto out;
1242
1243 /* refill path */
1244 ext4_ext_drop_refs(path);
1245 path = ext4_ext_find_extent(inode,
1246 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1247 path);
1248 if (IS_ERR(path)) {
1249 err = PTR_ERR(path);
1250 goto out;
1251 }
1252
1253 /*
1254 * only first (depth 0 -> 1) produces free space;
1255 * in all other cases we have to split the grown tree
1256 */
1257 depth = ext_depth(inode);
1258 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1259 /* now we need to split */
1260 goto repeat;
1261 }
1262 }
1263
1264 out:
1265 return err;
1266 }
1267
1268 /*
1269 * search the closest allocated block to the left for *logical
1270 * and returns it at @logical + it's physical address at @phys
1271 * if *logical is the smallest allocated block, the function
1272 * returns 0 at @phys
1273 * return value contains 0 (success) or error code
1274 */
1275 static int ext4_ext_search_left(struct inode *inode,
1276 struct ext4_ext_path *path,
1277 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1278 {
1279 struct ext4_extent_idx *ix;
1280 struct ext4_extent *ex;
1281 int depth, ee_len;
1282
1283 if (unlikely(path == NULL)) {
1284 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1285 return -EIO;
1286 }
1287 depth = path->p_depth;
1288 *phys = 0;
1289
1290 if (depth == 0 && path->p_ext == NULL)
1291 return 0;
1292
1293 /* usually extent in the path covers blocks smaller
1294 * then *logical, but it can be that extent is the
1295 * first one in the file */
1296
1297 ex = path[depth].p_ext;
1298 ee_len = ext4_ext_get_actual_len(ex);
1299 if (*logical < le32_to_cpu(ex->ee_block)) {
1300 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1301 EXT4_ERROR_INODE(inode,
1302 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1303 *logical, le32_to_cpu(ex->ee_block));
1304 return -EIO;
1305 }
1306 while (--depth >= 0) {
1307 ix = path[depth].p_idx;
1308 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1309 EXT4_ERROR_INODE(inode,
1310 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1311 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1312 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1313 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1314 depth);
1315 return -EIO;
1316 }
1317 }
1318 return 0;
1319 }
1320
1321 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1322 EXT4_ERROR_INODE(inode,
1323 "logical %d < ee_block %d + ee_len %d!",
1324 *logical, le32_to_cpu(ex->ee_block), ee_len);
1325 return -EIO;
1326 }
1327
1328 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1329 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1330 return 0;
1331 }
1332
1333 /*
1334 * search the closest allocated block to the right for *logical
1335 * and returns it at @logical + it's physical address at @phys
1336 * if *logical is the largest allocated block, the function
1337 * returns 0 at @phys
1338 * return value contains 0 (success) or error code
1339 */
1340 static int ext4_ext_search_right(struct inode *inode,
1341 struct ext4_ext_path *path,
1342 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1343 struct ext4_extent **ret_ex)
1344 {
1345 struct buffer_head *bh = NULL;
1346 struct ext4_extent_header *eh;
1347 struct ext4_extent_idx *ix;
1348 struct ext4_extent *ex;
1349 ext4_fsblk_t block;
1350 int depth; /* Note, NOT eh_depth; depth from top of tree */
1351 int ee_len;
1352
1353 if (unlikely(path == NULL)) {
1354 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1355 return -EIO;
1356 }
1357 depth = path->p_depth;
1358 *phys = 0;
1359
1360 if (depth == 0 && path->p_ext == NULL)
1361 return 0;
1362
1363 /* usually extent in the path covers blocks smaller
1364 * then *logical, but it can be that extent is the
1365 * first one in the file */
1366
1367 ex = path[depth].p_ext;
1368 ee_len = ext4_ext_get_actual_len(ex);
1369 if (*logical < le32_to_cpu(ex->ee_block)) {
1370 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1371 EXT4_ERROR_INODE(inode,
1372 "first_extent(path[%d].p_hdr) != ex",
1373 depth);
1374 return -EIO;
1375 }
1376 while (--depth >= 0) {
1377 ix = path[depth].p_idx;
1378 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1379 EXT4_ERROR_INODE(inode,
1380 "ix != EXT_FIRST_INDEX *logical %d!",
1381 *logical);
1382 return -EIO;
1383 }
1384 }
1385 goto found_extent;
1386 }
1387
1388 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1389 EXT4_ERROR_INODE(inode,
1390 "logical %d < ee_block %d + ee_len %d!",
1391 *logical, le32_to_cpu(ex->ee_block), ee_len);
1392 return -EIO;
1393 }
1394
1395 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1396 /* next allocated block in this leaf */
1397 ex++;
1398 goto found_extent;
1399 }
1400
1401 /* go up and search for index to the right */
1402 while (--depth >= 0) {
1403 ix = path[depth].p_idx;
1404 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1405 goto got_index;
1406 }
1407
1408 /* we've gone up to the root and found no index to the right */
1409 return 0;
1410
1411 got_index:
1412 /* we've found index to the right, let's
1413 * follow it and find the closest allocated
1414 * block to the right */
1415 ix++;
1416 block = ext4_idx_pblock(ix);
1417 while (++depth < path->p_depth) {
1418 bh = sb_bread(inode->i_sb, block);
1419 if (bh == NULL)
1420 return -EIO;
1421 eh = ext_block_hdr(bh);
1422 /* subtract from p_depth to get proper eh_depth */
1423 if (ext4_ext_check_block(inode, eh,
1424 path->p_depth - depth, bh)) {
1425 put_bh(bh);
1426 return -EIO;
1427 }
1428 ix = EXT_FIRST_INDEX(eh);
1429 block = ext4_idx_pblock(ix);
1430 put_bh(bh);
1431 }
1432
1433 bh = sb_bread(inode->i_sb, block);
1434 if (bh == NULL)
1435 return -EIO;
1436 eh = ext_block_hdr(bh);
1437 if (ext4_ext_check_block(inode, eh, path->p_depth - depth, bh)) {
1438 put_bh(bh);
1439 return -EIO;
1440 }
1441 ex = EXT_FIRST_EXTENT(eh);
1442 found_extent:
1443 *logical = le32_to_cpu(ex->ee_block);
1444 *phys = ext4_ext_pblock(ex);
1445 *ret_ex = ex;
1446 if (bh)
1447 put_bh(bh);
1448 return 0;
1449 }
1450
1451 /*
1452 * ext4_ext_next_allocated_block:
1453 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1454 * NOTE: it considers block number from index entry as
1455 * allocated block. Thus, index entries have to be consistent
1456 * with leaves.
1457 */
1458 static ext4_lblk_t
1459 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1460 {
1461 int depth;
1462
1463 BUG_ON(path == NULL);
1464 depth = path->p_depth;
1465
1466 if (depth == 0 && path->p_ext == NULL)
1467 return EXT_MAX_BLOCKS;
1468
1469 while (depth >= 0) {
1470 if (depth == path->p_depth) {
1471 /* leaf */
1472 if (path[depth].p_ext &&
1473 path[depth].p_ext !=
1474 EXT_LAST_EXTENT(path[depth].p_hdr))
1475 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1476 } else {
1477 /* index */
1478 if (path[depth].p_idx !=
1479 EXT_LAST_INDEX(path[depth].p_hdr))
1480 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1481 }
1482 depth--;
1483 }
1484
1485 return EXT_MAX_BLOCKS;
1486 }
1487
1488 /*
1489 * ext4_ext_next_leaf_block:
1490 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1491 */
1492 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1493 {
1494 int depth;
1495
1496 BUG_ON(path == NULL);
1497 depth = path->p_depth;
1498
1499 /* zero-tree has no leaf blocks at all */
1500 if (depth == 0)
1501 return EXT_MAX_BLOCKS;
1502
1503 /* go to index block */
1504 depth--;
1505
1506 while (depth >= 0) {
1507 if (path[depth].p_idx !=
1508 EXT_LAST_INDEX(path[depth].p_hdr))
1509 return (ext4_lblk_t)
1510 le32_to_cpu(path[depth].p_idx[1].ei_block);
1511 depth--;
1512 }
1513
1514 return EXT_MAX_BLOCKS;
1515 }
1516
1517 /*
1518 * ext4_ext_correct_indexes:
1519 * if leaf gets modified and modified extent is first in the leaf,
1520 * then we have to correct all indexes above.
1521 * TODO: do we need to correct tree in all cases?
1522 */
1523 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1524 struct ext4_ext_path *path)
1525 {
1526 struct ext4_extent_header *eh;
1527 int depth = ext_depth(inode);
1528 struct ext4_extent *ex;
1529 __le32 border;
1530 int k, err = 0;
1531
1532 eh = path[depth].p_hdr;
1533 ex = path[depth].p_ext;
1534
1535 if (unlikely(ex == NULL || eh == NULL)) {
1536 EXT4_ERROR_INODE(inode,
1537 "ex %p == NULL or eh %p == NULL", ex, eh);
1538 return -EIO;
1539 }
1540
1541 if (depth == 0) {
1542 /* there is no tree at all */
1543 return 0;
1544 }
1545
1546 if (ex != EXT_FIRST_EXTENT(eh)) {
1547 /* we correct tree if first leaf got modified only */
1548 return 0;
1549 }
1550
1551 /*
1552 * TODO: we need correction if border is smaller than current one
1553 */
1554 k = depth - 1;
1555 border = path[depth].p_ext->ee_block;
1556 err = ext4_ext_get_access(handle, inode, path + k);
1557 if (err)
1558 return err;
1559 path[k].p_idx->ei_block = border;
1560 err = ext4_ext_dirty(handle, inode, path + k);
1561 if (err)
1562 return err;
1563
1564 while (k--) {
1565 /* change all left-side indexes */
1566 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1567 break;
1568 err = ext4_ext_get_access(handle, inode, path + k);
1569 if (err)
1570 break;
1571 path[k].p_idx->ei_block = border;
1572 err = ext4_ext_dirty(handle, inode, path + k);
1573 if (err)
1574 break;
1575 }
1576
1577 return err;
1578 }
1579
1580 int
1581 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1582 struct ext4_extent *ex2)
1583 {
1584 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1585
1586 /*
1587 * Make sure that either both extents are uninitialized, or
1588 * both are _not_.
1589 */
1590 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1591 return 0;
1592
1593 if (ext4_ext_is_uninitialized(ex1))
1594 max_len = EXT_UNINIT_MAX_LEN;
1595 else
1596 max_len = EXT_INIT_MAX_LEN;
1597
1598 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1599 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1600
1601 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1602 le32_to_cpu(ex2->ee_block))
1603 return 0;
1604
1605 /*
1606 * To allow future support for preallocated extents to be added
1607 * as an RO_COMPAT feature, refuse to merge to extents if
1608 * this can result in the top bit of ee_len being set.
1609 */
1610 if (ext1_ee_len + ext2_ee_len > max_len)
1611 return 0;
1612 #ifdef AGGRESSIVE_TEST
1613 if (ext1_ee_len >= 4)
1614 return 0;
1615 #endif
1616
1617 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1618 return 1;
1619 return 0;
1620 }
1621
1622 /*
1623 * This function tries to merge the "ex" extent to the next extent in the tree.
1624 * It always tries to merge towards right. If you want to merge towards
1625 * left, pass "ex - 1" as argument instead of "ex".
1626 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1627 * 1 if they got merged.
1628 */
1629 static int ext4_ext_try_to_merge_right(struct inode *inode,
1630 struct ext4_ext_path *path,
1631 struct ext4_extent *ex)
1632 {
1633 struct ext4_extent_header *eh;
1634 unsigned int depth, len;
1635 int merge_done = 0;
1636 int uninitialized = 0;
1637
1638 depth = ext_depth(inode);
1639 BUG_ON(path[depth].p_hdr == NULL);
1640 eh = path[depth].p_hdr;
1641
1642 while (ex < EXT_LAST_EXTENT(eh)) {
1643 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1644 break;
1645 /* merge with next extent! */
1646 if (ext4_ext_is_uninitialized(ex))
1647 uninitialized = 1;
1648 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1649 + ext4_ext_get_actual_len(ex + 1));
1650 if (uninitialized)
1651 ext4_ext_mark_uninitialized(ex);
1652
1653 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1654 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1655 * sizeof(struct ext4_extent);
1656 memmove(ex + 1, ex + 2, len);
1657 }
1658 le16_add_cpu(&eh->eh_entries, -1);
1659 merge_done = 1;
1660 WARN_ON(eh->eh_entries == 0);
1661 if (!eh->eh_entries)
1662 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1663 }
1664
1665 return merge_done;
1666 }
1667
1668 /*
1669 * This function does a very simple check to see if we can collapse
1670 * an extent tree with a single extent tree leaf block into the inode.
1671 */
1672 static void ext4_ext_try_to_merge_up(handle_t *handle,
1673 struct inode *inode,
1674 struct ext4_ext_path *path)
1675 {
1676 size_t s;
1677 unsigned max_root = ext4_ext_space_root(inode, 0);
1678 ext4_fsblk_t blk;
1679
1680 if ((path[0].p_depth != 1) ||
1681 (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
1682 (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
1683 return;
1684
1685 /*
1686 * We need to modify the block allocation bitmap and the block
1687 * group descriptor to release the extent tree block. If we
1688 * can't get the journal credits, give up.
1689 */
1690 if (ext4_journal_extend(handle, 2))
1691 return;
1692
1693 /*
1694 * Copy the extent data up to the inode
1695 */
1696 blk = ext4_idx_pblock(path[0].p_idx);
1697 s = le16_to_cpu(path[1].p_hdr->eh_entries) *
1698 sizeof(struct ext4_extent_idx);
1699 s += sizeof(struct ext4_extent_header);
1700
1701 memcpy(path[0].p_hdr, path[1].p_hdr, s);
1702 path[0].p_depth = 0;
1703 path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
1704 (path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
1705 path[0].p_hdr->eh_max = cpu_to_le16(max_root);
1706
1707 brelse(path[1].p_bh);
1708 ext4_free_blocks(handle, inode, NULL, blk, 1,
1709 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
1710 }
1711
1712 /*
1713 * This function tries to merge the @ex extent to neighbours in the tree.
1714 * return 1 if merge left else 0.
1715 */
1716 static void ext4_ext_try_to_merge(handle_t *handle,
1717 struct inode *inode,
1718 struct ext4_ext_path *path,
1719 struct ext4_extent *ex) {
1720 struct ext4_extent_header *eh;
1721 unsigned int depth;
1722 int merge_done = 0;
1723
1724 depth = ext_depth(inode);
1725 BUG_ON(path[depth].p_hdr == NULL);
1726 eh = path[depth].p_hdr;
1727
1728 if (ex > EXT_FIRST_EXTENT(eh))
1729 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1730
1731 if (!merge_done)
1732 (void) ext4_ext_try_to_merge_right(inode, path, ex);
1733
1734 ext4_ext_try_to_merge_up(handle, inode, path);
1735 }
1736
1737 /*
1738 * check if a portion of the "newext" extent overlaps with an
1739 * existing extent.
1740 *
1741 * If there is an overlap discovered, it updates the length of the newext
1742 * such that there will be no overlap, and then returns 1.
1743 * If there is no overlap found, it returns 0.
1744 */
1745 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1746 struct inode *inode,
1747 struct ext4_extent *newext,
1748 struct ext4_ext_path *path)
1749 {
1750 ext4_lblk_t b1, b2;
1751 unsigned int depth, len1;
1752 unsigned int ret = 0;
1753
1754 b1 = le32_to_cpu(newext->ee_block);
1755 len1 = ext4_ext_get_actual_len(newext);
1756 depth = ext_depth(inode);
1757 if (!path[depth].p_ext)
1758 goto out;
1759 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1760 b2 &= ~(sbi->s_cluster_ratio - 1);
1761
1762 /*
1763 * get the next allocated block if the extent in the path
1764 * is before the requested block(s)
1765 */
1766 if (b2 < b1) {
1767 b2 = ext4_ext_next_allocated_block(path);
1768 if (b2 == EXT_MAX_BLOCKS)
1769 goto out;
1770 b2 &= ~(sbi->s_cluster_ratio - 1);
1771 }
1772
1773 /* check for wrap through zero on extent logical start block*/
1774 if (b1 + len1 < b1) {
1775 len1 = EXT_MAX_BLOCKS - b1;
1776 newext->ee_len = cpu_to_le16(len1);
1777 ret = 1;
1778 }
1779
1780 /* check for overlap */
1781 if (b1 + len1 > b2) {
1782 newext->ee_len = cpu_to_le16(b2 - b1);
1783 ret = 1;
1784 }
1785 out:
1786 return ret;
1787 }
1788
1789 /*
1790 * ext4_ext_insert_extent:
1791 * tries to merge requsted extent into the existing extent or
1792 * inserts requested extent as new one into the tree,
1793 * creating new leaf in the no-space case.
1794 */
1795 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1796 struct ext4_ext_path *path,
1797 struct ext4_extent *newext, int flag)
1798 {
1799 struct ext4_extent_header *eh;
1800 struct ext4_extent *ex, *fex;
1801 struct ext4_extent *nearex; /* nearest extent */
1802 struct ext4_ext_path *npath = NULL;
1803 int depth, len, err;
1804 ext4_lblk_t next;
1805 unsigned uninitialized = 0;
1806 int flags = 0;
1807
1808 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1809 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1810 return -EIO;
1811 }
1812 depth = ext_depth(inode);
1813 ex = path[depth].p_ext;
1814 if (unlikely(path[depth].p_hdr == NULL)) {
1815 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1816 return -EIO;
1817 }
1818
1819 /* try to insert block into found extent and return */
1820 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1821 && ext4_can_extents_be_merged(inode, ex, newext)) {
1822 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1823 ext4_ext_is_uninitialized(newext),
1824 ext4_ext_get_actual_len(newext),
1825 le32_to_cpu(ex->ee_block),
1826 ext4_ext_is_uninitialized(ex),
1827 ext4_ext_get_actual_len(ex),
1828 ext4_ext_pblock(ex));
1829 err = ext4_ext_get_access(handle, inode, path + depth);
1830 if (err)
1831 return err;
1832
1833 /*
1834 * ext4_can_extents_be_merged should have checked that either
1835 * both extents are uninitialized, or both aren't. Thus we
1836 * need to check only one of them here.
1837 */
1838 if (ext4_ext_is_uninitialized(ex))
1839 uninitialized = 1;
1840 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1841 + ext4_ext_get_actual_len(newext));
1842 if (uninitialized)
1843 ext4_ext_mark_uninitialized(ex);
1844 eh = path[depth].p_hdr;
1845 nearex = ex;
1846 goto merge;
1847 }
1848
1849 depth = ext_depth(inode);
1850 eh = path[depth].p_hdr;
1851 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1852 goto has_space;
1853
1854 /* probably next leaf has space for us? */
1855 fex = EXT_LAST_EXTENT(eh);
1856 next = EXT_MAX_BLOCKS;
1857 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1858 next = ext4_ext_next_leaf_block(path);
1859 if (next != EXT_MAX_BLOCKS) {
1860 ext_debug("next leaf block - %u\n", next);
1861 BUG_ON(npath != NULL);
1862 npath = ext4_ext_find_extent(inode, next, NULL);
1863 if (IS_ERR(npath))
1864 return PTR_ERR(npath);
1865 BUG_ON(npath->p_depth != path->p_depth);
1866 eh = npath[depth].p_hdr;
1867 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1868 ext_debug("next leaf isn't full(%d)\n",
1869 le16_to_cpu(eh->eh_entries));
1870 path = npath;
1871 goto has_space;
1872 }
1873 ext_debug("next leaf has no free space(%d,%d)\n",
1874 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1875 }
1876
1877 /*
1878 * There is no free space in the found leaf.
1879 * We're gonna add a new leaf in the tree.
1880 */
1881 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1882 flags = EXT4_MB_USE_ROOT_BLOCKS;
1883 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1884 if (err)
1885 goto cleanup;
1886 depth = ext_depth(inode);
1887 eh = path[depth].p_hdr;
1888
1889 has_space:
1890 nearex = path[depth].p_ext;
1891
1892 err = ext4_ext_get_access(handle, inode, path + depth);
1893 if (err)
1894 goto cleanup;
1895
1896 if (!nearex) {
1897 /* there is no extent in this leaf, create first one */
1898 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1899 le32_to_cpu(newext->ee_block),
1900 ext4_ext_pblock(newext),
1901 ext4_ext_is_uninitialized(newext),
1902 ext4_ext_get_actual_len(newext));
1903 nearex = EXT_FIRST_EXTENT(eh);
1904 } else {
1905 if (le32_to_cpu(newext->ee_block)
1906 > le32_to_cpu(nearex->ee_block)) {
1907 /* Insert after */
1908 ext_debug("insert %u:%llu:[%d]%d before: "
1909 "nearest %p\n",
1910 le32_to_cpu(newext->ee_block),
1911 ext4_ext_pblock(newext),
1912 ext4_ext_is_uninitialized(newext),
1913 ext4_ext_get_actual_len(newext),
1914 nearex);
1915 nearex++;
1916 } else {
1917 /* Insert before */
1918 BUG_ON(newext->ee_block == nearex->ee_block);
1919 ext_debug("insert %u:%llu:[%d]%d after: "
1920 "nearest %p\n",
1921 le32_to_cpu(newext->ee_block),
1922 ext4_ext_pblock(newext),
1923 ext4_ext_is_uninitialized(newext),
1924 ext4_ext_get_actual_len(newext),
1925 nearex);
1926 }
1927 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1928 if (len > 0) {
1929 ext_debug("insert %u:%llu:[%d]%d: "
1930 "move %d extents from 0x%p to 0x%p\n",
1931 le32_to_cpu(newext->ee_block),
1932 ext4_ext_pblock(newext),
1933 ext4_ext_is_uninitialized(newext),
1934 ext4_ext_get_actual_len(newext),
1935 len, nearex, nearex + 1);
1936 memmove(nearex + 1, nearex,
1937 len * sizeof(struct ext4_extent));
1938 }
1939 }
1940
1941 le16_add_cpu(&eh->eh_entries, 1);
1942 path[depth].p_ext = nearex;
1943 nearex->ee_block = newext->ee_block;
1944 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1945 nearex->ee_len = newext->ee_len;
1946
1947 merge:
1948 /* try to merge extents */
1949 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1950 ext4_ext_try_to_merge(handle, inode, path, nearex);
1951
1952
1953 /* time to correct all indexes above */
1954 err = ext4_ext_correct_indexes(handle, inode, path);
1955 if (err)
1956 goto cleanup;
1957
1958 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
1959
1960 cleanup:
1961 if (npath) {
1962 ext4_ext_drop_refs(npath);
1963 kfree(npath);
1964 }
1965 return err;
1966 }
1967
1968 static int ext4_fill_fiemap_extents(struct inode *inode,
1969 ext4_lblk_t block, ext4_lblk_t num,
1970 struct fiemap_extent_info *fieinfo)
1971 {
1972 struct ext4_ext_path *path = NULL;
1973 struct ext4_extent *ex;
1974 struct extent_status es;
1975 ext4_lblk_t next, next_del, start = 0, end = 0;
1976 ext4_lblk_t last = block + num;
1977 int exists, depth = 0, err = 0;
1978 unsigned int flags = 0;
1979 unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
1980
1981 while (block < last && block != EXT_MAX_BLOCKS) {
1982 num = last - block;
1983 /* find extent for this block */
1984 down_read(&EXT4_I(inode)->i_data_sem);
1985
1986 if (path && ext_depth(inode) != depth) {
1987 /* depth was changed. we have to realloc path */
1988 kfree(path);
1989 path = NULL;
1990 }
1991
1992 path = ext4_ext_find_extent(inode, block, path);
1993 if (IS_ERR(path)) {
1994 up_read(&EXT4_I(inode)->i_data_sem);
1995 err = PTR_ERR(path);
1996 path = NULL;
1997 break;
1998 }
1999
2000 depth = ext_depth(inode);
2001 if (unlikely(path[depth].p_hdr == NULL)) {
2002 up_read(&EXT4_I(inode)->i_data_sem);
2003 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2004 err = -EIO;
2005 break;
2006 }
2007 ex = path[depth].p_ext;
2008 next = ext4_ext_next_allocated_block(path);
2009 ext4_ext_drop_refs(path);
2010
2011 flags = 0;
2012 exists = 0;
2013 if (!ex) {
2014 /* there is no extent yet, so try to allocate
2015 * all requested space */
2016 start = block;
2017 end = block + num;
2018 } else if (le32_to_cpu(ex->ee_block) > block) {
2019 /* need to allocate space before found extent */
2020 start = block;
2021 end = le32_to_cpu(ex->ee_block);
2022 if (block + num < end)
2023 end = block + num;
2024 } else if (block >= le32_to_cpu(ex->ee_block)
2025 + ext4_ext_get_actual_len(ex)) {
2026 /* need to allocate space after found extent */
2027 start = block;
2028 end = block + num;
2029 if (end >= next)
2030 end = next;
2031 } else if (block >= le32_to_cpu(ex->ee_block)) {
2032 /*
2033 * some part of requested space is covered
2034 * by found extent
2035 */
2036 start = block;
2037 end = le32_to_cpu(ex->ee_block)
2038 + ext4_ext_get_actual_len(ex);
2039 if (block + num < end)
2040 end = block + num;
2041 exists = 1;
2042 } else {
2043 BUG();
2044 }
2045 BUG_ON(end <= start);
2046
2047 if (!exists) {
2048 es.es_lblk = start;
2049 es.es_len = end - start;
2050 es.es_pblk = 0;
2051 } else {
2052 es.es_lblk = le32_to_cpu(ex->ee_block);
2053 es.es_len = ext4_ext_get_actual_len(ex);
2054 es.es_pblk = ext4_ext_pblock(ex);
2055 if (ext4_ext_is_uninitialized(ex))
2056 flags |= FIEMAP_EXTENT_UNWRITTEN;
2057 }
2058
2059 /*
2060 * Find delayed extent and update es accordingly. We call
2061 * it even in !exists case to find out whether es is the
2062 * last existing extent or not.
2063 */
2064 next_del = ext4_find_delayed_extent(inode, &es);
2065 if (!exists && next_del) {
2066 exists = 1;
2067 flags |= FIEMAP_EXTENT_DELALLOC;
2068 }
2069 up_read(&EXT4_I(inode)->i_data_sem);
2070
2071 if (unlikely(es.es_len == 0)) {
2072 EXT4_ERROR_INODE(inode, "es.es_len == 0");
2073 err = -EIO;
2074 break;
2075 }
2076
2077 /*
2078 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
2079 * we need to check next == EXT_MAX_BLOCKS because it is
2080 * possible that an extent is with unwritten and delayed
2081 * status due to when an extent is delayed allocated and
2082 * is allocated by fallocate status tree will track both of
2083 * them in a extent.
2084 *
2085 * So we could return a unwritten and delayed extent, and
2086 * its block is equal to 'next'.
2087 */
2088 if (next == next_del && next == EXT_MAX_BLOCKS) {
2089 flags |= FIEMAP_EXTENT_LAST;
2090 if (unlikely(next_del != EXT_MAX_BLOCKS ||
2091 next != EXT_MAX_BLOCKS)) {
2092 EXT4_ERROR_INODE(inode,
2093 "next extent == %u, next "
2094 "delalloc extent = %u",
2095 next, next_del);
2096 err = -EIO;
2097 break;
2098 }
2099 }
2100
2101 if (exists) {
2102 err = fiemap_fill_next_extent(fieinfo,
2103 (__u64)es.es_lblk << blksize_bits,
2104 (__u64)es.es_pblk << blksize_bits,
2105 (__u64)es.es_len << blksize_bits,
2106 flags);
2107 if (err < 0)
2108 break;
2109 if (err == 1) {
2110 err = 0;
2111 break;
2112 }
2113 }
2114
2115 block = es.es_lblk + es.es_len;
2116 }
2117
2118 if (path) {
2119 ext4_ext_drop_refs(path);
2120 kfree(path);
2121 }
2122
2123 return err;
2124 }
2125
2126 /*
2127 * ext4_ext_put_gap_in_cache:
2128 * calculate boundaries of the gap that the requested block fits into
2129 * and cache this gap
2130 */
2131 static void
2132 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
2133 ext4_lblk_t block)
2134 {
2135 int depth = ext_depth(inode);
2136 unsigned long len;
2137 ext4_lblk_t lblock;
2138 struct ext4_extent *ex;
2139
2140 ex = path[depth].p_ext;
2141 if (ex == NULL) {
2142 /*
2143 * there is no extent yet, so gap is [0;-] and we
2144 * don't cache it
2145 */
2146 ext_debug("cache gap(whole file):");
2147 } else if (block < le32_to_cpu(ex->ee_block)) {
2148 lblock = block;
2149 len = le32_to_cpu(ex->ee_block) - block;
2150 ext_debug("cache gap(before): %u [%u:%u]",
2151 block,
2152 le32_to_cpu(ex->ee_block),
2153 ext4_ext_get_actual_len(ex));
2154 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2155 ext4_es_insert_extent(inode, lblock, len, ~0,
2156 EXTENT_STATUS_HOLE);
2157 } else if (block >= le32_to_cpu(ex->ee_block)
2158 + ext4_ext_get_actual_len(ex)) {
2159 ext4_lblk_t next;
2160 lblock = le32_to_cpu(ex->ee_block)
2161 + ext4_ext_get_actual_len(ex);
2162
2163 next = ext4_ext_next_allocated_block(path);
2164 ext_debug("cache gap(after): [%u:%u] %u",
2165 le32_to_cpu(ex->ee_block),
2166 ext4_ext_get_actual_len(ex),
2167 block);
2168 BUG_ON(next == lblock);
2169 len = next - lblock;
2170 if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
2171 ext4_es_insert_extent(inode, lblock, len, ~0,
2172 EXTENT_STATUS_HOLE);
2173 } else {
2174 lblock = len = 0;
2175 BUG();
2176 }
2177
2178 ext_debug(" -> %u:%lu\n", lblock, len);
2179 }
2180
2181 /*
2182 * ext4_ext_rm_idx:
2183 * removes index from the index block.
2184 */
2185 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2186 struct ext4_ext_path *path, int depth)
2187 {
2188 int err;
2189 ext4_fsblk_t leaf;
2190
2191 /* free index block */
2192 depth--;
2193 path = path + depth;
2194 leaf = ext4_idx_pblock(path->p_idx);
2195 if (unlikely(path->p_hdr->eh_entries == 0)) {
2196 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2197 return -EIO;
2198 }
2199 err = ext4_ext_get_access(handle, inode, path);
2200 if (err)
2201 return err;
2202
2203 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2204 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2205 len *= sizeof(struct ext4_extent_idx);
2206 memmove(path->p_idx, path->p_idx + 1, len);
2207 }
2208
2209 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2210 err = ext4_ext_dirty(handle, inode, path);
2211 if (err)
2212 return err;
2213 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2214 trace_ext4_ext_rm_idx(inode, leaf);
2215
2216 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2217 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2218
2219 while (--depth >= 0) {
2220 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2221 break;
2222 path--;
2223 err = ext4_ext_get_access(handle, inode, path);
2224 if (err)
2225 break;
2226 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2227 err = ext4_ext_dirty(handle, inode, path);
2228 if (err)
2229 break;
2230 }
2231 return err;
2232 }
2233
2234 /*
2235 * ext4_ext_calc_credits_for_single_extent:
2236 * This routine returns max. credits that needed to insert an extent
2237 * to the extent tree.
2238 * When pass the actual path, the caller should calculate credits
2239 * under i_data_sem.
2240 */
2241 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2242 struct ext4_ext_path *path)
2243 {
2244 if (path) {
2245 int depth = ext_depth(inode);
2246 int ret = 0;
2247
2248 /* probably there is space in leaf? */
2249 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2250 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2251
2252 /*
2253 * There are some space in the leaf tree, no
2254 * need to account for leaf block credit
2255 *
2256 * bitmaps and block group descriptor blocks
2257 * and other metadata blocks still need to be
2258 * accounted.
2259 */
2260 /* 1 bitmap, 1 block group descriptor */
2261 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2262 return ret;
2263 }
2264 }
2265
2266 return ext4_chunk_trans_blocks(inode, nrblocks);
2267 }
2268
2269 /*
2270 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2271 *
2272 * if nrblocks are fit in a single extent (chunk flag is 1), then
2273 * in the worse case, each tree level index/leaf need to be changed
2274 * if the tree split due to insert a new extent, then the old tree
2275 * index/leaf need to be updated too
2276 *
2277 * If the nrblocks are discontiguous, they could cause
2278 * the whole tree split more than once, but this is really rare.
2279 */
2280 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2281 {
2282 int index;
2283 int depth;
2284
2285 /* If we are converting the inline data, only one is needed here. */
2286 if (ext4_has_inline_data(inode))
2287 return 1;
2288
2289 depth = ext_depth(inode);
2290
2291 if (chunk)
2292 index = depth * 2;
2293 else
2294 index = depth * 3;
2295
2296 return index;
2297 }
2298
2299 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2300 struct ext4_extent *ex,
2301 ext4_fsblk_t *partial_cluster,
2302 ext4_lblk_t from, ext4_lblk_t to)
2303 {
2304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2305 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2306 ext4_fsblk_t pblk;
2307 int flags = 0;
2308
2309 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2310 flags |= EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
2311 else if (ext4_should_journal_data(inode))
2312 flags |= EXT4_FREE_BLOCKS_FORGET;
2313
2314 /*
2315 * For bigalloc file systems, we never free a partial cluster
2316 * at the beginning of the extent. Instead, we make a note
2317 * that we tried freeing the cluster, and check to see if we
2318 * need to free it on a subsequent call to ext4_remove_blocks,
2319 * or at the end of the ext4_truncate() operation.
2320 */
2321 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2322
2323 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2324 /*
2325 * If we have a partial cluster, and it's different from the
2326 * cluster of the last block, we need to explicitly free the
2327 * partial cluster here.
2328 */
2329 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2330 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2331 ext4_free_blocks(handle, inode, NULL,
2332 EXT4_C2B(sbi, *partial_cluster),
2333 sbi->s_cluster_ratio, flags);
2334 *partial_cluster = 0;
2335 }
2336
2337 #ifdef EXTENTS_STATS
2338 {
2339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2340 spin_lock(&sbi->s_ext_stats_lock);
2341 sbi->s_ext_blocks += ee_len;
2342 sbi->s_ext_extents++;
2343 if (ee_len < sbi->s_ext_min)
2344 sbi->s_ext_min = ee_len;
2345 if (ee_len > sbi->s_ext_max)
2346 sbi->s_ext_max = ee_len;
2347 if (ext_depth(inode) > sbi->s_depth_max)
2348 sbi->s_depth_max = ext_depth(inode);
2349 spin_unlock(&sbi->s_ext_stats_lock);
2350 }
2351 #endif
2352 if (from >= le32_to_cpu(ex->ee_block)
2353 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2354 /* tail removal */
2355 ext4_lblk_t num;
2356
2357 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2358 pblk = ext4_ext_pblock(ex) + ee_len - num;
2359 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2360 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2361 /*
2362 * If the block range to be freed didn't start at the
2363 * beginning of a cluster, and we removed the entire
2364 * extent, save the partial cluster here, since we
2365 * might need to delete if we determine that the
2366 * truncate operation has removed all of the blocks in
2367 * the cluster.
2368 */
2369 if (pblk & (sbi->s_cluster_ratio - 1) &&
2370 (ee_len == num))
2371 *partial_cluster = EXT4_B2C(sbi, pblk);
2372 else
2373 *partial_cluster = 0;
2374 } else if (from == le32_to_cpu(ex->ee_block)
2375 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2376 /* head removal */
2377 ext4_lblk_t num;
2378 ext4_fsblk_t start;
2379
2380 num = to - from;
2381 start = ext4_ext_pblock(ex);
2382
2383 ext_debug("free first %u blocks starting %llu\n", num, start);
2384 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2385
2386 } else {
2387 printk(KERN_INFO "strange request: removal(2) "
2388 "%u-%u from %u:%u\n",
2389 from, to, le32_to_cpu(ex->ee_block), ee_len);
2390 }
2391 return 0;
2392 }
2393
2394
2395 /*
2396 * ext4_ext_rm_leaf() Removes the extents associated with the
2397 * blocks appearing between "start" and "end", and splits the extents
2398 * if "start" and "end" appear in the same extent
2399 *
2400 * @handle: The journal handle
2401 * @inode: The files inode
2402 * @path: The path to the leaf
2403 * @start: The first block to remove
2404 * @end: The last block to remove
2405 */
2406 static int
2407 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2408 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2409 ext4_lblk_t start, ext4_lblk_t end)
2410 {
2411 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2412 int err = 0, correct_index = 0;
2413 int depth = ext_depth(inode), credits;
2414 struct ext4_extent_header *eh;
2415 ext4_lblk_t a, b;
2416 unsigned num;
2417 ext4_lblk_t ex_ee_block;
2418 unsigned short ex_ee_len;
2419 unsigned uninitialized = 0;
2420 struct ext4_extent *ex;
2421
2422 /* the header must be checked already in ext4_ext_remove_space() */
2423 ext_debug("truncate since %u in leaf to %u\n", start, end);
2424 if (!path[depth].p_hdr)
2425 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2426 eh = path[depth].p_hdr;
2427 if (unlikely(path[depth].p_hdr == NULL)) {
2428 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2429 return -EIO;
2430 }
2431 /* find where to start removing */
2432 ex = EXT_LAST_EXTENT(eh);
2433
2434 ex_ee_block = le32_to_cpu(ex->ee_block);
2435 ex_ee_len = ext4_ext_get_actual_len(ex);
2436
2437 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2438
2439 while (ex >= EXT_FIRST_EXTENT(eh) &&
2440 ex_ee_block + ex_ee_len > start) {
2441
2442 if (ext4_ext_is_uninitialized(ex))
2443 uninitialized = 1;
2444 else
2445 uninitialized = 0;
2446
2447 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2448 uninitialized, ex_ee_len);
2449 path[depth].p_ext = ex;
2450
2451 a = ex_ee_block > start ? ex_ee_block : start;
2452 b = ex_ee_block+ex_ee_len - 1 < end ?
2453 ex_ee_block+ex_ee_len - 1 : end;
2454
2455 ext_debug(" border %u:%u\n", a, b);
2456
2457 /* If this extent is beyond the end of the hole, skip it */
2458 if (end < ex_ee_block) {
2459 ex--;
2460 ex_ee_block = le32_to_cpu(ex->ee_block);
2461 ex_ee_len = ext4_ext_get_actual_len(ex);
2462 continue;
2463 } else if (b != ex_ee_block + ex_ee_len - 1) {
2464 EXT4_ERROR_INODE(inode,
2465 "can not handle truncate %u:%u "
2466 "on extent %u:%u",
2467 start, end, ex_ee_block,
2468 ex_ee_block + ex_ee_len - 1);
2469 err = -EIO;
2470 goto out;
2471 } else if (a != ex_ee_block) {
2472 /* remove tail of the extent */
2473 num = a - ex_ee_block;
2474 } else {
2475 /* remove whole extent: excellent! */
2476 num = 0;
2477 }
2478 /*
2479 * 3 for leaf, sb, and inode plus 2 (bmap and group
2480 * descriptor) for each block group; assume two block
2481 * groups plus ex_ee_len/blocks_per_block_group for
2482 * the worst case
2483 */
2484 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2485 if (ex == EXT_FIRST_EXTENT(eh)) {
2486 correct_index = 1;
2487 credits += (ext_depth(inode)) + 1;
2488 }
2489 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2490
2491 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2492 if (err)
2493 goto out;
2494
2495 err = ext4_ext_get_access(handle, inode, path + depth);
2496 if (err)
2497 goto out;
2498
2499 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2500 a, b);
2501 if (err)
2502 goto out;
2503
2504 if (num == 0)
2505 /* this extent is removed; mark slot entirely unused */
2506 ext4_ext_store_pblock(ex, 0);
2507
2508 ex->ee_len = cpu_to_le16(num);
2509 /*
2510 * Do not mark uninitialized if all the blocks in the
2511 * extent have been removed.
2512 */
2513 if (uninitialized && num)
2514 ext4_ext_mark_uninitialized(ex);
2515 /*
2516 * If the extent was completely released,
2517 * we need to remove it from the leaf
2518 */
2519 if (num == 0) {
2520 if (end != EXT_MAX_BLOCKS - 1) {
2521 /*
2522 * For hole punching, we need to scoot all the
2523 * extents up when an extent is removed so that
2524 * we dont have blank extents in the middle
2525 */
2526 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2527 sizeof(struct ext4_extent));
2528
2529 /* Now get rid of the one at the end */
2530 memset(EXT_LAST_EXTENT(eh), 0,
2531 sizeof(struct ext4_extent));
2532 }
2533 le16_add_cpu(&eh->eh_entries, -1);
2534 } else
2535 *partial_cluster = 0;
2536
2537 err = ext4_ext_dirty(handle, inode, path + depth);
2538 if (err)
2539 goto out;
2540
2541 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2542 ext4_ext_pblock(ex));
2543 ex--;
2544 ex_ee_block = le32_to_cpu(ex->ee_block);
2545 ex_ee_len = ext4_ext_get_actual_len(ex);
2546 }
2547
2548 if (correct_index && eh->eh_entries)
2549 err = ext4_ext_correct_indexes(handle, inode, path);
2550
2551 /*
2552 * If there is still a entry in the leaf node, check to see if
2553 * it references the partial cluster. This is the only place
2554 * where it could; if it doesn't, we can free the cluster.
2555 */
2556 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2557 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2558 *partial_cluster)) {
2559 int flags = EXT4_FREE_BLOCKS_FORGET;
2560
2561 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2562 flags |= EXT4_FREE_BLOCKS_METADATA;
2563
2564 ext4_free_blocks(handle, inode, NULL,
2565 EXT4_C2B(sbi, *partial_cluster),
2566 sbi->s_cluster_ratio, flags);
2567 *partial_cluster = 0;
2568 }
2569
2570 /* if this leaf is free, then we should
2571 * remove it from index block above */
2572 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2573 err = ext4_ext_rm_idx(handle, inode, path, depth);
2574
2575 out:
2576 return err;
2577 }
2578
2579 /*
2580 * ext4_ext_more_to_rm:
2581 * returns 1 if current index has to be freed (even partial)
2582 */
2583 static int
2584 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2585 {
2586 BUG_ON(path->p_idx == NULL);
2587
2588 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2589 return 0;
2590
2591 /*
2592 * if truncate on deeper level happened, it wasn't partial,
2593 * so we have to consider current index for truncation
2594 */
2595 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2596 return 0;
2597 return 1;
2598 }
2599
2600 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2601 ext4_lblk_t end)
2602 {
2603 struct super_block *sb = inode->i_sb;
2604 int depth = ext_depth(inode);
2605 struct ext4_ext_path *path = NULL;
2606 ext4_fsblk_t partial_cluster = 0;
2607 handle_t *handle;
2608 int i = 0, err = 0;
2609
2610 ext_debug("truncate since %u to %u\n", start, end);
2611
2612 /* probably first extent we're gonna free will be last in block */
2613 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
2614 if (IS_ERR(handle))
2615 return PTR_ERR(handle);
2616
2617 again:
2618 trace_ext4_ext_remove_space(inode, start, depth);
2619
2620 /*
2621 * Check if we are removing extents inside the extent tree. If that
2622 * is the case, we are going to punch a hole inside the extent tree
2623 * so we have to check whether we need to split the extent covering
2624 * the last block to remove so we can easily remove the part of it
2625 * in ext4_ext_rm_leaf().
2626 */
2627 if (end < EXT_MAX_BLOCKS - 1) {
2628 struct ext4_extent *ex;
2629 ext4_lblk_t ee_block;
2630
2631 /* find extent for this block */
2632 path = ext4_ext_find_extent(inode, end, NULL);
2633 if (IS_ERR(path)) {
2634 ext4_journal_stop(handle);
2635 return PTR_ERR(path);
2636 }
2637 depth = ext_depth(inode);
2638 /* Leaf not may not exist only if inode has no blocks at all */
2639 ex = path[depth].p_ext;
2640 if (!ex) {
2641 if (depth) {
2642 EXT4_ERROR_INODE(inode,
2643 "path[%d].p_hdr == NULL",
2644 depth);
2645 err = -EIO;
2646 }
2647 goto out;
2648 }
2649
2650 ee_block = le32_to_cpu(ex->ee_block);
2651
2652 /*
2653 * See if the last block is inside the extent, if so split
2654 * the extent at 'end' block so we can easily remove the
2655 * tail of the first part of the split extent in
2656 * ext4_ext_rm_leaf().
2657 */
2658 if (end >= ee_block &&
2659 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2660 int split_flag = 0;
2661
2662 if (ext4_ext_is_uninitialized(ex))
2663 split_flag = EXT4_EXT_MARK_UNINIT1 |
2664 EXT4_EXT_MARK_UNINIT2;
2665
2666 /*
2667 * Split the extent in two so that 'end' is the last
2668 * block in the first new extent
2669 */
2670 err = ext4_split_extent_at(handle, inode, path,
2671 end + 1, split_flag,
2672 EXT4_GET_BLOCKS_PRE_IO |
2673 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2674
2675 if (err < 0)
2676 goto out;
2677 }
2678 }
2679 /*
2680 * We start scanning from right side, freeing all the blocks
2681 * after i_size and walking into the tree depth-wise.
2682 */
2683 depth = ext_depth(inode);
2684 if (path) {
2685 int k = i = depth;
2686 while (--k > 0)
2687 path[k].p_block =
2688 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2689 } else {
2690 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2691 GFP_NOFS);
2692 if (path == NULL) {
2693 ext4_journal_stop(handle);
2694 return -ENOMEM;
2695 }
2696 path[0].p_depth = depth;
2697 path[0].p_hdr = ext_inode_hdr(inode);
2698 i = 0;
2699
2700 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2701 err = -EIO;
2702 goto out;
2703 }
2704 }
2705 err = 0;
2706
2707 while (i >= 0 && err == 0) {
2708 if (i == depth) {
2709 /* this is leaf block */
2710 err = ext4_ext_rm_leaf(handle, inode, path,
2711 &partial_cluster, start,
2712 end);
2713 /* root level has p_bh == NULL, brelse() eats this */
2714 brelse(path[i].p_bh);
2715 path[i].p_bh = NULL;
2716 i--;
2717 continue;
2718 }
2719
2720 /* this is index block */
2721 if (!path[i].p_hdr) {
2722 ext_debug("initialize header\n");
2723 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2724 }
2725
2726 if (!path[i].p_idx) {
2727 /* this level hasn't been touched yet */
2728 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2729 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2730 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2731 path[i].p_hdr,
2732 le16_to_cpu(path[i].p_hdr->eh_entries));
2733 } else {
2734 /* we were already here, see at next index */
2735 path[i].p_idx--;
2736 }
2737
2738 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2739 i, EXT_FIRST_INDEX(path[i].p_hdr),
2740 path[i].p_idx);
2741 if (ext4_ext_more_to_rm(path + i)) {
2742 struct buffer_head *bh;
2743 /* go to the next level */
2744 ext_debug("move to level %d (block %llu)\n",
2745 i + 1, ext4_idx_pblock(path[i].p_idx));
2746 memset(path + i + 1, 0, sizeof(*path));
2747 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2748 if (!bh) {
2749 /* should we reset i_size? */
2750 err = -EIO;
2751 break;
2752 }
2753 if (WARN_ON(i + 1 > depth)) {
2754 err = -EIO;
2755 break;
2756 }
2757 if (ext4_ext_check_block(inode, ext_block_hdr(bh),
2758 depth - i - 1, bh)) {
2759 err = -EIO;
2760 break;
2761 }
2762 path[i + 1].p_bh = bh;
2763
2764 /* save actual number of indexes since this
2765 * number is changed at the next iteration */
2766 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2767 i++;
2768 } else {
2769 /* we finished processing this index, go up */
2770 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2771 /* index is empty, remove it;
2772 * handle must be already prepared by the
2773 * truncatei_leaf() */
2774 err = ext4_ext_rm_idx(handle, inode, path, i);
2775 }
2776 /* root level has p_bh == NULL, brelse() eats this */
2777 brelse(path[i].p_bh);
2778 path[i].p_bh = NULL;
2779 i--;
2780 ext_debug("return to level %d\n", i);
2781 }
2782 }
2783
2784 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2785 path->p_hdr->eh_entries);
2786
2787 /* If we still have something in the partial cluster and we have removed
2788 * even the first extent, then we should free the blocks in the partial
2789 * cluster as well. */
2790 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2791 int flags = EXT4_FREE_BLOCKS_FORGET;
2792
2793 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2794 flags |= EXT4_FREE_BLOCKS_METADATA;
2795
2796 ext4_free_blocks(handle, inode, NULL,
2797 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2798 EXT4_SB(sb)->s_cluster_ratio, flags);
2799 partial_cluster = 0;
2800 }
2801
2802 /* TODO: flexible tree reduction should be here */
2803 if (path->p_hdr->eh_entries == 0) {
2804 /*
2805 * truncate to zero freed all the tree,
2806 * so we need to correct eh_depth
2807 */
2808 err = ext4_ext_get_access(handle, inode, path);
2809 if (err == 0) {
2810 ext_inode_hdr(inode)->eh_depth = 0;
2811 ext_inode_hdr(inode)->eh_max =
2812 cpu_to_le16(ext4_ext_space_root(inode, 0));
2813 err = ext4_ext_dirty(handle, inode, path);
2814 }
2815 }
2816 out:
2817 ext4_ext_drop_refs(path);
2818 kfree(path);
2819 if (err == -EAGAIN) {
2820 path = NULL;
2821 goto again;
2822 }
2823 ext4_journal_stop(handle);
2824
2825 return err;
2826 }
2827
2828 /*
2829 * called at mount time
2830 */
2831 void ext4_ext_init(struct super_block *sb)
2832 {
2833 /*
2834 * possible initialization would be here
2835 */
2836
2837 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2838 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2839 printk(KERN_INFO "EXT4-fs: file extents enabled"
2840 #ifdef AGGRESSIVE_TEST
2841 ", aggressive tests"
2842 #endif
2843 #ifdef CHECK_BINSEARCH
2844 ", check binsearch"
2845 #endif
2846 #ifdef EXTENTS_STATS
2847 ", stats"
2848 #endif
2849 "\n");
2850 #endif
2851 #ifdef EXTENTS_STATS
2852 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2853 EXT4_SB(sb)->s_ext_min = 1 << 30;
2854 EXT4_SB(sb)->s_ext_max = 0;
2855 #endif
2856 }
2857 }
2858
2859 /*
2860 * called at umount time
2861 */
2862 void ext4_ext_release(struct super_block *sb)
2863 {
2864 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2865 return;
2866
2867 #ifdef EXTENTS_STATS
2868 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2869 struct ext4_sb_info *sbi = EXT4_SB(sb);
2870 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2871 sbi->s_ext_blocks, sbi->s_ext_extents,
2872 sbi->s_ext_blocks / sbi->s_ext_extents);
2873 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2874 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2875 }
2876 #endif
2877 }
2878
2879 /* FIXME!! we need to try to merge to left or right after zero-out */
2880 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2881 {
2882 ext4_fsblk_t ee_pblock;
2883 unsigned int ee_len;
2884 int ret;
2885
2886 ee_len = ext4_ext_get_actual_len(ex);
2887 ee_pblock = ext4_ext_pblock(ex);
2888
2889 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2890 if (ret > 0)
2891 ret = 0;
2892
2893 return ret;
2894 }
2895
2896 /*
2897 * ext4_split_extent_at() splits an extent at given block.
2898 *
2899 * @handle: the journal handle
2900 * @inode: the file inode
2901 * @path: the path to the extent
2902 * @split: the logical block where the extent is splitted.
2903 * @split_flags: indicates if the extent could be zeroout if split fails, and
2904 * the states(init or uninit) of new extents.
2905 * @flags: flags used to insert new extent to extent tree.
2906 *
2907 *
2908 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2909 * of which are deterimined by split_flag.
2910 *
2911 * There are two cases:
2912 * a> the extent are splitted into two extent.
2913 * b> split is not needed, and just mark the extent.
2914 *
2915 * return 0 on success.
2916 */
2917 static int ext4_split_extent_at(handle_t *handle,
2918 struct inode *inode,
2919 struct ext4_ext_path *path,
2920 ext4_lblk_t split,
2921 int split_flag,
2922 int flags)
2923 {
2924 ext4_fsblk_t newblock;
2925 ext4_lblk_t ee_block;
2926 struct ext4_extent *ex, newex, orig_ex;
2927 struct ext4_extent *ex2 = NULL;
2928 unsigned int ee_len, depth;
2929 int err = 0;
2930
2931 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2932 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2933
2934 ext_debug("ext4_split_extents_at: inode %lu, logical"
2935 "block %llu\n", inode->i_ino, (unsigned long long)split);
2936
2937 ext4_ext_show_leaf(inode, path);
2938
2939 depth = ext_depth(inode);
2940 ex = path[depth].p_ext;
2941 ee_block = le32_to_cpu(ex->ee_block);
2942 ee_len = ext4_ext_get_actual_len(ex);
2943 newblock = split - ee_block + ext4_ext_pblock(ex);
2944
2945 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2946
2947 err = ext4_ext_get_access(handle, inode, path + depth);
2948 if (err)
2949 goto out;
2950
2951 if (split == ee_block) {
2952 /*
2953 * case b: block @split is the block that the extent begins with
2954 * then we just change the state of the extent, and splitting
2955 * is not needed.
2956 */
2957 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2958 ext4_ext_mark_uninitialized(ex);
2959 else
2960 ext4_ext_mark_initialized(ex);
2961
2962 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2963 ext4_ext_try_to_merge(handle, inode, path, ex);
2964
2965 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
2966 goto out;
2967 }
2968
2969 /* case a */
2970 memcpy(&orig_ex, ex, sizeof(orig_ex));
2971 ex->ee_len = cpu_to_le16(split - ee_block);
2972 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2973 ext4_ext_mark_uninitialized(ex);
2974
2975 /*
2976 * path may lead to new leaf, not to original leaf any more
2977 * after ext4_ext_insert_extent() returns,
2978 */
2979 err = ext4_ext_dirty(handle, inode, path + depth);
2980 if (err)
2981 goto fix_extent_len;
2982
2983 ex2 = &newex;
2984 ex2->ee_block = cpu_to_le32(split);
2985 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2986 ext4_ext_store_pblock(ex2, newblock);
2987 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2988 ext4_ext_mark_uninitialized(ex2);
2989
2990 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2991 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2992 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2993 if (split_flag & EXT4_EXT_DATA_VALID1)
2994 err = ext4_ext_zeroout(inode, ex2);
2995 else
2996 err = ext4_ext_zeroout(inode, ex);
2997 } else
2998 err = ext4_ext_zeroout(inode, &orig_ex);
2999
3000 if (err)
3001 goto fix_extent_len;
3002 /* update the extent length and mark as initialized */
3003 ex->ee_len = cpu_to_le16(ee_len);
3004 ext4_ext_try_to_merge(handle, inode, path, ex);
3005 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3006 goto out;
3007 } else if (err)
3008 goto fix_extent_len;
3009
3010 out:
3011 ext4_ext_show_leaf(inode, path);
3012 return err;
3013
3014 fix_extent_len:
3015 ex->ee_len = orig_ex.ee_len;
3016 ext4_ext_dirty(handle, inode, path + depth);
3017 return err;
3018 }
3019
3020 /*
3021 * ext4_split_extents() splits an extent and mark extent which is covered
3022 * by @map as split_flags indicates
3023 *
3024 * It may result in splitting the extent into multiple extents (upto three)
3025 * There are three possibilities:
3026 * a> There is no split required
3027 * b> Splits in two extents: Split is happening at either end of the extent
3028 * c> Splits in three extents: Somone is splitting in middle of the extent
3029 *
3030 */
3031 static int ext4_split_extent(handle_t *handle,
3032 struct inode *inode,
3033 struct ext4_ext_path *path,
3034 struct ext4_map_blocks *map,
3035 int split_flag,
3036 int flags)
3037 {
3038 ext4_lblk_t ee_block;
3039 struct ext4_extent *ex;
3040 unsigned int ee_len, depth;
3041 int err = 0;
3042 int uninitialized;
3043 int split_flag1, flags1;
3044
3045 depth = ext_depth(inode);
3046 ex = path[depth].p_ext;
3047 ee_block = le32_to_cpu(ex->ee_block);
3048 ee_len = ext4_ext_get_actual_len(ex);
3049 uninitialized = ext4_ext_is_uninitialized(ex);
3050
3051 if (map->m_lblk + map->m_len < ee_block + ee_len) {
3052 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
3053 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
3054 if (uninitialized)
3055 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
3056 EXT4_EXT_MARK_UNINIT2;
3057 if (split_flag & EXT4_EXT_DATA_VALID2)
3058 split_flag1 |= EXT4_EXT_DATA_VALID1;
3059 err = ext4_split_extent_at(handle, inode, path,
3060 map->m_lblk + map->m_len, split_flag1, flags1);
3061 if (err)
3062 goto out;
3063 }
3064
3065 ext4_ext_drop_refs(path);
3066 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3067 if (IS_ERR(path))
3068 return PTR_ERR(path);
3069
3070 if (map->m_lblk >= ee_block) {
3071 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
3072 EXT4_EXT_DATA_VALID2);
3073 if (uninitialized)
3074 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
3075 if (split_flag & EXT4_EXT_MARK_UNINIT2)
3076 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
3077 err = ext4_split_extent_at(handle, inode, path,
3078 map->m_lblk, split_flag1, flags);
3079 if (err)
3080 goto out;
3081 }
3082
3083 ext4_ext_show_leaf(inode, path);
3084 out:
3085 return err ? err : map->m_len;
3086 }
3087
3088 /*
3089 * This function is called by ext4_ext_map_blocks() if someone tries to write
3090 * to an uninitialized extent. It may result in splitting the uninitialized
3091 * extent into multiple extents (up to three - one initialized and two
3092 * uninitialized).
3093 * There are three possibilities:
3094 * a> There is no split required: Entire extent should be initialized
3095 * b> Splits in two extents: Write is happening at either end of the extent
3096 * c> Splits in three extents: Somone is writing in middle of the extent
3097 *
3098 * Pre-conditions:
3099 * - The extent pointed to by 'path' is uninitialized.
3100 * - The extent pointed to by 'path' contains a superset
3101 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3102 *
3103 * Post-conditions on success:
3104 * - the returned value is the number of blocks beyond map->l_lblk
3105 * that are allocated and initialized.
3106 * It is guaranteed to be >= map->m_len.
3107 */
3108 static int ext4_ext_convert_to_initialized(handle_t *handle,
3109 struct inode *inode,
3110 struct ext4_map_blocks *map,
3111 struct ext4_ext_path *path)
3112 {
3113 struct ext4_sb_info *sbi;
3114 struct ext4_extent_header *eh;
3115 struct ext4_map_blocks split_map;
3116 struct ext4_extent zero_ex;
3117 struct ext4_extent *ex;
3118 ext4_lblk_t ee_block, eof_block;
3119 unsigned int ee_len, depth;
3120 int allocated, max_zeroout = 0;
3121 int err = 0;
3122 int split_flag = 0;
3123
3124 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3125 "block %llu, max_blocks %u\n", inode->i_ino,
3126 (unsigned long long)map->m_lblk, map->m_len);
3127
3128 sbi = EXT4_SB(inode->i_sb);
3129 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3130 inode->i_sb->s_blocksize_bits;
3131 if (eof_block < map->m_lblk + map->m_len)
3132 eof_block = map->m_lblk + map->m_len;
3133
3134 depth = ext_depth(inode);
3135 eh = path[depth].p_hdr;
3136 ex = path[depth].p_ext;
3137 ee_block = le32_to_cpu(ex->ee_block);
3138 ee_len = ext4_ext_get_actual_len(ex);
3139 allocated = ee_len - (map->m_lblk - ee_block);
3140
3141 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3142
3143 /* Pre-conditions */
3144 BUG_ON(!ext4_ext_is_uninitialized(ex));
3145 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3146
3147 /*
3148 * Attempt to transfer newly initialized blocks from the currently
3149 * uninitialized extent to its left neighbor. This is much cheaper
3150 * than an insertion followed by a merge as those involve costly
3151 * memmove() calls. This is the common case in steady state for
3152 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3153 * writes.
3154 *
3155 * Limitations of the current logic:
3156 * - L1: we only deal with writes at the start of the extent.
3157 * The approach could be extended to writes at the end
3158 * of the extent but this scenario was deemed less common.
3159 * - L2: we do not deal with writes covering the whole extent.
3160 * This would require removing the extent if the transfer
3161 * is possible.
3162 * - L3: we only attempt to merge with an extent stored in the
3163 * same extent tree node.
3164 */
3165 if ((map->m_lblk == ee_block) && /*L1*/
3166 (map->m_len < ee_len) && /*L2*/
3167 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3168 struct ext4_extent *prev_ex;
3169 ext4_lblk_t prev_lblk;
3170 ext4_fsblk_t prev_pblk, ee_pblk;
3171 unsigned int prev_len, write_len;
3172
3173 prev_ex = ex - 1;
3174 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3175 prev_len = ext4_ext_get_actual_len(prev_ex);
3176 prev_pblk = ext4_ext_pblock(prev_ex);
3177 ee_pblk = ext4_ext_pblock(ex);
3178 write_len = map->m_len;
3179
3180 /*
3181 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3182 * upon those conditions:
3183 * - C1: prev_ex is initialized,
3184 * - C2: prev_ex is logically abutting ex,
3185 * - C3: prev_ex is physically abutting ex,
3186 * - C4: prev_ex can receive the additional blocks without
3187 * overflowing the (initialized) length limit.
3188 */
3189 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3190 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3191 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3192 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3193 err = ext4_ext_get_access(handle, inode, path + depth);
3194 if (err)
3195 goto out;
3196
3197 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3198 map, ex, prev_ex);
3199
3200 /* Shift the start of ex by 'write_len' blocks */
3201 ex->ee_block = cpu_to_le32(ee_block + write_len);
3202 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3203 ex->ee_len = cpu_to_le16(ee_len - write_len);
3204 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3205
3206 /* Extend prev_ex by 'write_len' blocks */
3207 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3208
3209 /* Mark the block containing both extents as dirty */
3210 ext4_ext_dirty(handle, inode, path + depth);
3211
3212 /* Update path to point to the right extent */
3213 path[depth].p_ext = prev_ex;
3214
3215 /* Result: number of initialized blocks past m_lblk */
3216 allocated = write_len;
3217 goto out;
3218 }
3219 }
3220
3221 WARN_ON(map->m_lblk < ee_block);
3222 /*
3223 * It is safe to convert extent to initialized via explicit
3224 * zeroout only if extent is fully insde i_size or new_size.
3225 */
3226 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3227
3228 if (EXT4_EXT_MAY_ZEROOUT & split_flag)
3229 max_zeroout = sbi->s_extent_max_zeroout_kb >>
3230 inode->i_sb->s_blocksize_bits;
3231
3232 /* If extent is less than s_max_zeroout_kb, zeroout directly */
3233 if (max_zeroout && (ee_len <= max_zeroout)) {
3234 err = ext4_ext_zeroout(inode, ex);
3235 if (err)
3236 goto out;
3237
3238 err = ext4_ext_get_access(handle, inode, path + depth);
3239 if (err)
3240 goto out;
3241 ext4_ext_mark_initialized(ex);
3242 ext4_ext_try_to_merge(handle, inode, path, ex);
3243 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3244 goto out;
3245 }
3246
3247 /*
3248 * four cases:
3249 * 1. split the extent into three extents.
3250 * 2. split the extent into two extents, zeroout the first half.
3251 * 3. split the extent into two extents, zeroout the second half.
3252 * 4. split the extent into two extents with out zeroout.
3253 */
3254 split_map.m_lblk = map->m_lblk;
3255 split_map.m_len = map->m_len;
3256
3257 if (max_zeroout && (allocated > map->m_len)) {
3258 if (allocated <= max_zeroout) {
3259 /* case 3 */
3260 zero_ex.ee_block =
3261 cpu_to_le32(map->m_lblk);
3262 zero_ex.ee_len = cpu_to_le16(allocated);
3263 ext4_ext_store_pblock(&zero_ex,
3264 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3265 err = ext4_ext_zeroout(inode, &zero_ex);
3266 if (err)
3267 goto out;
3268 split_map.m_lblk = map->m_lblk;
3269 split_map.m_len = allocated;
3270 } else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
3271 /* case 2 */
3272 if (map->m_lblk != ee_block) {
3273 zero_ex.ee_block = ex->ee_block;
3274 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3275 ee_block);
3276 ext4_ext_store_pblock(&zero_ex,
3277 ext4_ext_pblock(ex));
3278 err = ext4_ext_zeroout(inode, &zero_ex);
3279 if (err)
3280 goto out;
3281 }
3282
3283 split_map.m_lblk = ee_block;
3284 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3285 allocated = map->m_len;
3286 }
3287 }
3288
3289 allocated = ext4_split_extent(handle, inode, path,
3290 &split_map, split_flag, 0);
3291 if (allocated < 0)
3292 err = allocated;
3293
3294 out:
3295 return err ? err : allocated;
3296 }
3297
3298 /*
3299 * This function is called by ext4_ext_map_blocks() from
3300 * ext4_get_blocks_dio_write() when DIO to write
3301 * to an uninitialized extent.
3302 *
3303 * Writing to an uninitialized extent may result in splitting the uninitialized
3304 * extent into multiple initialized/uninitialized extents (up to three)
3305 * There are three possibilities:
3306 * a> There is no split required: Entire extent should be uninitialized
3307 * b> Splits in two extents: Write is happening at either end of the extent
3308 * c> Splits in three extents: Somone is writing in middle of the extent
3309 *
3310 * One of more index blocks maybe needed if the extent tree grow after
3311 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3312 * complete, we need to split the uninitialized extent before DIO submit
3313 * the IO. The uninitialized extent called at this time will be split
3314 * into three uninitialized extent(at most). After IO complete, the part
3315 * being filled will be convert to initialized by the end_io callback function
3316 * via ext4_convert_unwritten_extents().
3317 *
3318 * Returns the size of uninitialized extent to be written on success.
3319 */
3320 static int ext4_split_unwritten_extents(handle_t *handle,
3321 struct inode *inode,
3322 struct ext4_map_blocks *map,
3323 struct ext4_ext_path *path,
3324 int flags)
3325 {
3326 ext4_lblk_t eof_block;
3327 ext4_lblk_t ee_block;
3328 struct ext4_extent *ex;
3329 unsigned int ee_len;
3330 int split_flag = 0, depth;
3331
3332 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3333 "block %llu, max_blocks %u\n", inode->i_ino,
3334 (unsigned long long)map->m_lblk, map->m_len);
3335
3336 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3337 inode->i_sb->s_blocksize_bits;
3338 if (eof_block < map->m_lblk + map->m_len)
3339 eof_block = map->m_lblk + map->m_len;
3340 /*
3341 * It is safe to convert extent to initialized via explicit
3342 * zeroout only if extent is fully insde i_size or new_size.
3343 */
3344 depth = ext_depth(inode);
3345 ex = path[depth].p_ext;
3346 ee_block = le32_to_cpu(ex->ee_block);
3347 ee_len = ext4_ext_get_actual_len(ex);
3348
3349 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3350 split_flag |= EXT4_EXT_MARK_UNINIT2;
3351 if (flags & EXT4_GET_BLOCKS_CONVERT)
3352 split_flag |= EXT4_EXT_DATA_VALID2;
3353 flags |= EXT4_GET_BLOCKS_PRE_IO;
3354 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3355 }
3356
3357 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3358 struct inode *inode,
3359 struct ext4_map_blocks *map,
3360 struct ext4_ext_path *path)
3361 {
3362 struct ext4_extent *ex;
3363 ext4_lblk_t ee_block;
3364 unsigned int ee_len;
3365 int depth;
3366 int err = 0;
3367
3368 depth = ext_depth(inode);
3369 ex = path[depth].p_ext;
3370 ee_block = le32_to_cpu(ex->ee_block);
3371 ee_len = ext4_ext_get_actual_len(ex);
3372
3373 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3374 "block %llu, max_blocks %u\n", inode->i_ino,
3375 (unsigned long long)ee_block, ee_len);
3376
3377 /* If extent is larger than requested then split is required */
3378 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3379 err = ext4_split_unwritten_extents(handle, inode, map, path,
3380 EXT4_GET_BLOCKS_CONVERT);
3381 if (err < 0)
3382 goto out;
3383 ext4_ext_drop_refs(path);
3384 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3385 if (IS_ERR(path)) {
3386 err = PTR_ERR(path);
3387 goto out;
3388 }
3389 depth = ext_depth(inode);
3390 ex = path[depth].p_ext;
3391 }
3392
3393 err = ext4_ext_get_access(handle, inode, path + depth);
3394 if (err)
3395 goto out;
3396 /* first mark the extent as initialized */
3397 ext4_ext_mark_initialized(ex);
3398
3399 /* note: ext4_ext_correct_indexes() isn't needed here because
3400 * borders are not changed
3401 */
3402 ext4_ext_try_to_merge(handle, inode, path, ex);
3403
3404 /* Mark modified extent as dirty */
3405 err = ext4_ext_dirty(handle, inode, path + path->p_depth);
3406 out:
3407 ext4_ext_show_leaf(inode, path);
3408 return err;
3409 }
3410
3411 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3412 sector_t block, int count)
3413 {
3414 int i;
3415 for (i = 0; i < count; i++)
3416 unmap_underlying_metadata(bdev, block + i);
3417 }
3418
3419 /*
3420 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3421 */
3422 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3423 ext4_lblk_t lblk,
3424 struct ext4_ext_path *path,
3425 unsigned int len)
3426 {
3427 int i, depth;
3428 struct ext4_extent_header *eh;
3429 struct ext4_extent *last_ex;
3430
3431 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3432 return 0;
3433
3434 depth = ext_depth(inode);
3435 eh = path[depth].p_hdr;
3436
3437 /*
3438 * We're going to remove EOFBLOCKS_FL entirely in future so we
3439 * do not care for this case anymore. Simply remove the flag
3440 * if there are no extents.
3441 */
3442 if (unlikely(!eh->eh_entries))
3443 goto out;
3444 last_ex = EXT_LAST_EXTENT(eh);
3445 /*
3446 * We should clear the EOFBLOCKS_FL flag if we are writing the
3447 * last block in the last extent in the file. We test this by
3448 * first checking to see if the caller to
3449 * ext4_ext_get_blocks() was interested in the last block (or
3450 * a block beyond the last block) in the current extent. If
3451 * this turns out to be false, we can bail out from this
3452 * function immediately.
3453 */
3454 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3455 ext4_ext_get_actual_len(last_ex))
3456 return 0;
3457 /*
3458 * If the caller does appear to be planning to write at or
3459 * beyond the end of the current extent, we then test to see
3460 * if the current extent is the last extent in the file, by
3461 * checking to make sure it was reached via the rightmost node
3462 * at each level of the tree.
3463 */
3464 for (i = depth-1; i >= 0; i--)
3465 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3466 return 0;
3467 out:
3468 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3469 return ext4_mark_inode_dirty(handle, inode);
3470 }
3471
3472 /**
3473 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3474 *
3475 * Return 1 if there is a delalloc block in the range, otherwise 0.
3476 */
3477 int ext4_find_delalloc_range(struct inode *inode,
3478 ext4_lblk_t lblk_start,
3479 ext4_lblk_t lblk_end)
3480 {
3481 struct extent_status es;
3482
3483 ext4_es_find_delayed_extent(inode, lblk_start, &es);
3484 if (es.es_len == 0)
3485 return 0; /* there is no delay extent in this tree */
3486 else if (es.es_lblk <= lblk_start &&
3487 lblk_start < es.es_lblk + es.es_len)
3488 return 1;
3489 else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
3490 return 1;
3491 else
3492 return 0;
3493 }
3494
3495 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
3496 {
3497 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3498 ext4_lblk_t lblk_start, lblk_end;
3499 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3500 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3501
3502 return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
3503 }
3504
3505 /**
3506 * Determines how many complete clusters (out of those specified by the 'map')
3507 * are under delalloc and were reserved quota for.
3508 * This function is called when we are writing out the blocks that were
3509 * originally written with their allocation delayed, but then the space was
3510 * allocated using fallocate() before the delayed allocation could be resolved.
3511 * The cases to look for are:
3512 * ('=' indicated delayed allocated blocks
3513 * '-' indicates non-delayed allocated blocks)
3514 * (a) partial clusters towards beginning and/or end outside of allocated range
3515 * are not delalloc'ed.
3516 * Ex:
3517 * |----c---=|====c====|====c====|===-c----|
3518 * |++++++ allocated ++++++|
3519 * ==> 4 complete clusters in above example
3520 *
3521 * (b) partial cluster (outside of allocated range) towards either end is
3522 * marked for delayed allocation. In this case, we will exclude that
3523 * cluster.
3524 * Ex:
3525 * |----====c========|========c========|
3526 * |++++++ allocated ++++++|
3527 * ==> 1 complete clusters in above example
3528 *
3529 * Ex:
3530 * |================c================|
3531 * |++++++ allocated ++++++|
3532 * ==> 0 complete clusters in above example
3533 *
3534 * The ext4_da_update_reserve_space will be called only if we
3535 * determine here that there were some "entire" clusters that span
3536 * this 'allocated' range.
3537 * In the non-bigalloc case, this function will just end up returning num_blks
3538 * without ever calling ext4_find_delalloc_range.
3539 */
3540 static unsigned int
3541 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3542 unsigned int num_blks)
3543 {
3544 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3545 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3546 ext4_lblk_t lblk_from, lblk_to, c_offset;
3547 unsigned int allocated_clusters = 0;
3548
3549 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3550 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3551
3552 /* max possible clusters for this allocation */
3553 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3554
3555 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3556
3557 /* Check towards left side */
3558 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3559 if (c_offset) {
3560 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3561 lblk_to = lblk_from + c_offset - 1;
3562
3563 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3564 allocated_clusters--;
3565 }
3566
3567 /* Now check towards right. */
3568 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3569 if (allocated_clusters && c_offset) {
3570 lblk_from = lblk_start + num_blks;
3571 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3572
3573 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
3574 allocated_clusters--;
3575 }
3576
3577 return allocated_clusters;
3578 }
3579
3580 static int
3581 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3582 struct ext4_map_blocks *map,
3583 struct ext4_ext_path *path, int flags,
3584 unsigned int allocated, ext4_fsblk_t newblock)
3585 {
3586 int ret = 0;
3587 int err = 0;
3588 ext4_io_end_t *io = ext4_inode_aio(inode);
3589
3590 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3591 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3592 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3593 flags, allocated);
3594 ext4_ext_show_leaf(inode, path);
3595
3596 trace_ext4_ext_handle_uninitialized_extents(inode, map, flags,
3597 allocated, newblock);
3598
3599 /* get_block() before submit the IO, split the extent */
3600 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3601 ret = ext4_split_unwritten_extents(handle, inode, map,
3602 path, flags);
3603 if (ret <= 0)
3604 goto out;
3605 /*
3606 * Flag the inode(non aio case) or end_io struct (aio case)
3607 * that this IO needs to conversion to written when IO is
3608 * completed
3609 */
3610 if (io)
3611 ext4_set_io_unwritten_flag(inode, io);
3612 else
3613 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3614 map->m_flags |= EXT4_MAP_UNWRITTEN;
3615 if (ext4_should_dioread_nolock(inode))
3616 map->m_flags |= EXT4_MAP_UNINIT;
3617 goto out;
3618 }
3619 /* IO end_io complete, convert the filled extent to written */
3620 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3621 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3622 path);
3623 if (ret >= 0) {
3624 ext4_update_inode_fsync_trans(handle, inode, 1);
3625 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3626 path, map->m_len);
3627 } else
3628 err = ret;
3629 goto out2;
3630 }
3631 /* buffered IO case */
3632 /*
3633 * repeat fallocate creation request
3634 * we already have an unwritten extent
3635 */
3636 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT) {
3637 map->m_flags |= EXT4_MAP_UNWRITTEN;
3638 goto map_out;
3639 }
3640
3641 /* buffered READ or buffered write_begin() lookup */
3642 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3643 /*
3644 * We have blocks reserved already. We
3645 * return allocated blocks so that delalloc
3646 * won't do block reservation for us. But
3647 * the buffer head will be unmapped so that
3648 * a read from the block returns 0s.
3649 */
3650 map->m_flags |= EXT4_MAP_UNWRITTEN;
3651 goto out1;
3652 }
3653
3654 /* buffered write, writepage time, convert*/
3655 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3656 if (ret >= 0)
3657 ext4_update_inode_fsync_trans(handle, inode, 1);
3658 out:
3659 if (ret <= 0) {
3660 err = ret;
3661 goto out2;
3662 } else
3663 allocated = ret;
3664 map->m_flags |= EXT4_MAP_NEW;
3665 /*
3666 * if we allocated more blocks than requested
3667 * we need to make sure we unmap the extra block
3668 * allocated. The actual needed block will get
3669 * unmapped later when we find the buffer_head marked
3670 * new.
3671 */
3672 if (allocated > map->m_len) {
3673 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3674 newblock + map->m_len,
3675 allocated - map->m_len);
3676 allocated = map->m_len;
3677 }
3678
3679 /*
3680 * If we have done fallocate with the offset that is already
3681 * delayed allocated, we would have block reservation
3682 * and quota reservation done in the delayed write path.
3683 * But fallocate would have already updated quota and block
3684 * count for this offset. So cancel these reservation
3685 */
3686 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3687 unsigned int reserved_clusters;
3688 reserved_clusters = get_reserved_cluster_alloc(inode,
3689 map->m_lblk, map->m_len);
3690 if (reserved_clusters)
3691 ext4_da_update_reserve_space(inode,
3692 reserved_clusters,
3693 0);
3694 }
3695
3696 map_out:
3697 map->m_flags |= EXT4_MAP_MAPPED;
3698 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3699 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3700 map->m_len);
3701 if (err < 0)
3702 goto out2;
3703 }
3704 out1:
3705 if (allocated > map->m_len)
3706 allocated = map->m_len;
3707 ext4_ext_show_leaf(inode, path);
3708 map->m_pblk = newblock;
3709 map->m_len = allocated;
3710 out2:
3711 if (path) {
3712 ext4_ext_drop_refs(path);
3713 kfree(path);
3714 }
3715 return err ? err : allocated;
3716 }
3717
3718 /*
3719 * get_implied_cluster_alloc - check to see if the requested
3720 * allocation (in the map structure) overlaps with a cluster already
3721 * allocated in an extent.
3722 * @sb The filesystem superblock structure
3723 * @map The requested lblk->pblk mapping
3724 * @ex The extent structure which might contain an implied
3725 * cluster allocation
3726 *
3727 * This function is called by ext4_ext_map_blocks() after we failed to
3728 * find blocks that were already in the inode's extent tree. Hence,
3729 * we know that the beginning of the requested region cannot overlap
3730 * the extent from the inode's extent tree. There are three cases we
3731 * want to catch. The first is this case:
3732 *
3733 * |--- cluster # N--|
3734 * |--- extent ---| |---- requested region ---|
3735 * |==========|
3736 *
3737 * The second case that we need to test for is this one:
3738 *
3739 * |--------- cluster # N ----------------|
3740 * |--- requested region --| |------- extent ----|
3741 * |=======================|
3742 *
3743 * The third case is when the requested region lies between two extents
3744 * within the same cluster:
3745 * |------------- cluster # N-------------|
3746 * |----- ex -----| |---- ex_right ----|
3747 * |------ requested region ------|
3748 * |================|
3749 *
3750 * In each of the above cases, we need to set the map->m_pblk and
3751 * map->m_len so it corresponds to the return the extent labelled as
3752 * "|====|" from cluster #N, since it is already in use for data in
3753 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3754 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3755 * as a new "allocated" block region. Otherwise, we will return 0 and
3756 * ext4_ext_map_blocks() will then allocate one or more new clusters
3757 * by calling ext4_mb_new_blocks().
3758 */
3759 static int get_implied_cluster_alloc(struct super_block *sb,
3760 struct ext4_map_blocks *map,
3761 struct ext4_extent *ex,
3762 struct ext4_ext_path *path)
3763 {
3764 struct ext4_sb_info *sbi = EXT4_SB(sb);
3765 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3766 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3767 ext4_lblk_t rr_cluster_start;
3768 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3769 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3770 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3771
3772 /* The extent passed in that we are trying to match */
3773 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3774 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3775
3776 /* The requested region passed into ext4_map_blocks() */
3777 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3778
3779 if ((rr_cluster_start == ex_cluster_end) ||
3780 (rr_cluster_start == ex_cluster_start)) {
3781 if (rr_cluster_start == ex_cluster_end)
3782 ee_start += ee_len - 1;
3783 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3784 c_offset;
3785 map->m_len = min(map->m_len,
3786 (unsigned) sbi->s_cluster_ratio - c_offset);
3787 /*
3788 * Check for and handle this case:
3789 *
3790 * |--------- cluster # N-------------|
3791 * |------- extent ----|
3792 * |--- requested region ---|
3793 * |===========|
3794 */
3795
3796 if (map->m_lblk < ee_block)
3797 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3798
3799 /*
3800 * Check for the case where there is already another allocated
3801 * block to the right of 'ex' but before the end of the cluster.
3802 *
3803 * |------------- cluster # N-------------|
3804 * |----- ex -----| |---- ex_right ----|
3805 * |------ requested region ------|
3806 * |================|
3807 */
3808 if (map->m_lblk > ee_block) {
3809 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3810 map->m_len = min(map->m_len, next - map->m_lblk);
3811 }
3812
3813 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3814 return 1;
3815 }
3816
3817 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3818 return 0;
3819 }
3820
3821
3822 /*
3823 * Block allocation/map/preallocation routine for extents based files
3824 *
3825 *
3826 * Need to be called with
3827 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3828 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3829 *
3830 * return > 0, number of of blocks already mapped/allocated
3831 * if create == 0 and these are pre-allocated blocks
3832 * buffer head is unmapped
3833 * otherwise blocks are mapped
3834 *
3835 * return = 0, if plain look up failed (blocks have not been allocated)
3836 * buffer head is unmapped
3837 *
3838 * return < 0, error case.
3839 */
3840 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3841 struct ext4_map_blocks *map, int flags)
3842 {
3843 struct ext4_ext_path *path = NULL;
3844 struct ext4_extent newex, *ex, *ex2;
3845 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3846 ext4_fsblk_t newblock = 0;
3847 int free_on_err = 0, err = 0, depth;
3848 unsigned int allocated = 0, offset = 0;
3849 unsigned int allocated_clusters = 0;
3850 struct ext4_allocation_request ar;
3851 ext4_io_end_t *io = ext4_inode_aio(inode);
3852 ext4_lblk_t cluster_offset;
3853 int set_unwritten = 0;
3854
3855 ext_debug("blocks %u/%u requested for inode %lu\n",
3856 map->m_lblk, map->m_len, inode->i_ino);
3857 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3858
3859 /* find extent for this block */
3860 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3861 if (IS_ERR(path)) {
3862 err = PTR_ERR(path);
3863 path = NULL;
3864 goto out2;
3865 }
3866
3867 depth = ext_depth(inode);
3868
3869 /*
3870 * consistent leaf must not be empty;
3871 * this situation is possible, though, _during_ tree modification;
3872 * this is why assert can't be put in ext4_ext_find_extent()
3873 */
3874 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3875 EXT4_ERROR_INODE(inode, "bad extent address "
3876 "lblock: %lu, depth: %d pblock %lld",
3877 (unsigned long) map->m_lblk, depth,
3878 path[depth].p_block);
3879 err = -EIO;
3880 goto out2;
3881 }
3882
3883 ex = path[depth].p_ext;
3884 if (ex) {
3885 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3886 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3887 unsigned short ee_len;
3888
3889 /*
3890 * Uninitialized extents are treated as holes, except that
3891 * we split out initialized portions during a write.
3892 */
3893 ee_len = ext4_ext_get_actual_len(ex);
3894
3895 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3896
3897 /* if found extent covers block, simply return it */
3898 if (in_range(map->m_lblk, ee_block, ee_len)) {
3899 newblock = map->m_lblk - ee_block + ee_start;
3900 /* number of remaining blocks in the extent */
3901 allocated = ee_len - (map->m_lblk - ee_block);
3902 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3903 ee_block, ee_len, newblock);
3904
3905 if (!ext4_ext_is_uninitialized(ex))
3906 goto out;
3907
3908 allocated = ext4_ext_handle_uninitialized_extents(
3909 handle, inode, map, path, flags,
3910 allocated, newblock);
3911 goto out3;
3912 }
3913 }
3914
3915 if ((sbi->s_cluster_ratio > 1) &&
3916 ext4_find_delalloc_cluster(inode, map->m_lblk))
3917 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3918
3919 /*
3920 * requested block isn't allocated yet;
3921 * we couldn't try to create block if create flag is zero
3922 */
3923 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3924 /*
3925 * put just found gap into cache to speed up
3926 * subsequent requests
3927 */
3928 if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
3929 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3930 goto out2;
3931 }
3932
3933 /*
3934 * Okay, we need to do block allocation.
3935 */
3936 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3937 newex.ee_block = cpu_to_le32(map->m_lblk);
3938 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3939
3940 /*
3941 * If we are doing bigalloc, check to see if the extent returned
3942 * by ext4_ext_find_extent() implies a cluster we can use.
3943 */
3944 if (cluster_offset && ex &&
3945 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3946 ar.len = allocated = map->m_len;
3947 newblock = map->m_pblk;
3948 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3949 goto got_allocated_blocks;
3950 }
3951
3952 /* find neighbour allocated blocks */
3953 ar.lleft = map->m_lblk;
3954 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3955 if (err)
3956 goto out2;
3957 ar.lright = map->m_lblk;
3958 ex2 = NULL;
3959 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3960 if (err)
3961 goto out2;
3962
3963 /* Check if the extent after searching to the right implies a
3964 * cluster we can use. */
3965 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3966 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3967 ar.len = allocated = map->m_len;
3968 newblock = map->m_pblk;
3969 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3970 goto got_allocated_blocks;
3971 }
3972
3973 /*
3974 * See if request is beyond maximum number of blocks we can have in
3975 * a single extent. For an initialized extent this limit is
3976 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3977 * EXT_UNINIT_MAX_LEN.
3978 */
3979 if (map->m_len > EXT_INIT_MAX_LEN &&
3980 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3981 map->m_len = EXT_INIT_MAX_LEN;
3982 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3983 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3984 map->m_len = EXT_UNINIT_MAX_LEN;
3985
3986 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3987 newex.ee_len = cpu_to_le16(map->m_len);
3988 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3989 if (err)
3990 allocated = ext4_ext_get_actual_len(&newex);
3991 else
3992 allocated = map->m_len;
3993
3994 /* allocate new block */
3995 ar.inode = inode;
3996 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3997 ar.logical = map->m_lblk;
3998 /*
3999 * We calculate the offset from the beginning of the cluster
4000 * for the logical block number, since when we allocate a
4001 * physical cluster, the physical block should start at the
4002 * same offset from the beginning of the cluster. This is
4003 * needed so that future calls to get_implied_cluster_alloc()
4004 * work correctly.
4005 */
4006 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4007 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4008 ar.goal -= offset;
4009 ar.logical -= offset;
4010 if (S_ISREG(inode->i_mode))
4011 ar.flags = EXT4_MB_HINT_DATA;
4012 else
4013 /* disable in-core preallocation for non-regular files */
4014 ar.flags = 0;
4015 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4016 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4017 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4018 if (!newblock)
4019 goto out2;
4020 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4021 ar.goal, newblock, allocated);
4022 free_on_err = 1;
4023 allocated_clusters = ar.len;
4024 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4025 if (ar.len > allocated)
4026 ar.len = allocated;
4027
4028 got_allocated_blocks:
4029 /* try to insert new extent into found leaf and return */
4030 ext4_ext_store_pblock(&newex, newblock + offset);
4031 newex.ee_len = cpu_to_le16(ar.len);
4032 /* Mark uninitialized */
4033 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4034 ext4_ext_mark_uninitialized(&newex);
4035 map->m_flags |= EXT4_MAP_UNWRITTEN;
4036 /*
4037 * io_end structure was created for every IO write to an
4038 * uninitialized extent. To avoid unnecessary conversion,
4039 * here we flag the IO that really needs the conversion.
4040 * For non asycn direct IO case, flag the inode state
4041 * that we need to perform conversion when IO is done.
4042 */
4043 if ((flags & EXT4_GET_BLOCKS_PRE_IO))
4044 set_unwritten = 1;
4045 if (ext4_should_dioread_nolock(inode))
4046 map->m_flags |= EXT4_MAP_UNINIT;
4047 }
4048
4049 err = 0;
4050 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4051 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4052 path, ar.len);
4053 if (!err)
4054 err = ext4_ext_insert_extent(handle, inode, path,
4055 &newex, flags);
4056
4057 if (!err && set_unwritten) {
4058 if (io)
4059 ext4_set_io_unwritten_flag(inode, io);
4060 else
4061 ext4_set_inode_state(inode,
4062 EXT4_STATE_DIO_UNWRITTEN);
4063 }
4064
4065 if (err && free_on_err) {
4066 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4067 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4068 /* free data blocks we just allocated */
4069 /* not a good idea to call discard here directly,
4070 * but otherwise we'd need to call it every free() */
4071 ext4_discard_preallocations(inode);
4072 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4073 ext4_ext_get_actual_len(&newex), fb_flags);
4074 goto out2;
4075 }
4076
4077 /* previous routine could use block we allocated */
4078 newblock = ext4_ext_pblock(&newex);
4079 allocated = ext4_ext_get_actual_len(&newex);
4080 if (allocated > map->m_len)
4081 allocated = map->m_len;
4082 map->m_flags |= EXT4_MAP_NEW;
4083
4084 /*
4085 * Update reserved blocks/metadata blocks after successful
4086 * block allocation which had been deferred till now.
4087 */
4088 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4089 unsigned int reserved_clusters;
4090 /*
4091 * Check how many clusters we had reserved this allocated range
4092 */
4093 reserved_clusters = get_reserved_cluster_alloc(inode,
4094 map->m_lblk, allocated);
4095 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4096 if (reserved_clusters) {
4097 /*
4098 * We have clusters reserved for this range.
4099 * But since we are not doing actual allocation
4100 * and are simply using blocks from previously
4101 * allocated cluster, we should release the
4102 * reservation and not claim quota.
4103 */
4104 ext4_da_update_reserve_space(inode,
4105 reserved_clusters, 0);
4106 }
4107 } else {
4108 BUG_ON(allocated_clusters < reserved_clusters);
4109 /* We will claim quota for all newly allocated blocks.*/
4110 ext4_da_update_reserve_space(inode, allocated_clusters,
4111 1);
4112 if (reserved_clusters < allocated_clusters) {
4113 struct ext4_inode_info *ei = EXT4_I(inode);
4114 int reservation = allocated_clusters -
4115 reserved_clusters;
4116 /*
4117 * It seems we claimed few clusters outside of
4118 * the range of this allocation. We should give
4119 * it back to the reservation pool. This can
4120 * happen in the following case:
4121 *
4122 * * Suppose s_cluster_ratio is 4 (i.e., each
4123 * cluster has 4 blocks. Thus, the clusters
4124 * are [0-3],[4-7],[8-11]...
4125 * * First comes delayed allocation write for
4126 * logical blocks 10 & 11. Since there were no
4127 * previous delayed allocated blocks in the
4128 * range [8-11], we would reserve 1 cluster
4129 * for this write.
4130 * * Next comes write for logical blocks 3 to 8.
4131 * In this case, we will reserve 2 clusters
4132 * (for [0-3] and [4-7]; and not for [8-11] as
4133 * that range has a delayed allocated blocks.
4134 * Thus total reserved clusters now becomes 3.
4135 * * Now, during the delayed allocation writeout
4136 * time, we will first write blocks [3-8] and
4137 * allocate 3 clusters for writing these
4138 * blocks. Also, we would claim all these
4139 * three clusters above.
4140 * * Now when we come here to writeout the
4141 * blocks [10-11], we would expect to claim
4142 * the reservation of 1 cluster we had made
4143 * (and we would claim it since there are no
4144 * more delayed allocated blocks in the range
4145 * [8-11]. But our reserved cluster count had
4146 * already gone to 0.
4147 *
4148 * Thus, at the step 4 above when we determine
4149 * that there are still some unwritten delayed
4150 * allocated blocks outside of our current
4151 * block range, we should increment the
4152 * reserved clusters count so that when the
4153 * remaining blocks finally gets written, we
4154 * could claim them.
4155 */
4156 dquot_reserve_block(inode,
4157 EXT4_C2B(sbi, reservation));
4158 spin_lock(&ei->i_block_reservation_lock);
4159 ei->i_reserved_data_blocks += reservation;
4160 spin_unlock(&ei->i_block_reservation_lock);
4161 }
4162 }
4163 }
4164
4165 /*
4166 * Cache the extent and update transaction to commit on fdatasync only
4167 * when it is _not_ an uninitialized extent.
4168 */
4169 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0)
4170 ext4_update_inode_fsync_trans(handle, inode, 1);
4171 else
4172 ext4_update_inode_fsync_trans(handle, inode, 0);
4173 out:
4174 if (allocated > map->m_len)
4175 allocated = map->m_len;
4176 ext4_ext_show_leaf(inode, path);
4177 map->m_flags |= EXT4_MAP_MAPPED;
4178 map->m_pblk = newblock;
4179 map->m_len = allocated;
4180 out2:
4181 if (path) {
4182 ext4_ext_drop_refs(path);
4183 kfree(path);
4184 }
4185
4186 out3:
4187 trace_ext4_ext_map_blocks_exit(inode, map, err ? err : allocated);
4188
4189 return err ? err : allocated;
4190 }
4191
4192 void ext4_ext_truncate(struct inode *inode)
4193 {
4194 struct address_space *mapping = inode->i_mapping;
4195 struct super_block *sb = inode->i_sb;
4196 ext4_lblk_t last_block;
4197 handle_t *handle;
4198 loff_t page_len;
4199 int err = 0;
4200
4201 /*
4202 * finish any pending end_io work so we won't run the risk of
4203 * converting any truncated blocks to initialized later
4204 */
4205 ext4_flush_unwritten_io(inode);
4206
4207 /*
4208 * probably first extent we're gonna free will be last in block
4209 */
4210 err = ext4_writepage_trans_blocks(inode);
4211 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, err);
4212 if (IS_ERR(handle))
4213 return;
4214
4215 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4216 page_len = PAGE_CACHE_SIZE -
4217 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4218
4219 err = ext4_discard_partial_page_buffers(handle,
4220 mapping, inode->i_size, page_len, 0);
4221
4222 if (err)
4223 goto out_stop;
4224 }
4225
4226 if (ext4_orphan_add(handle, inode))
4227 goto out_stop;
4228
4229 down_write(&EXT4_I(inode)->i_data_sem);
4230
4231 ext4_discard_preallocations(inode);
4232
4233 /*
4234 * TODO: optimization is possible here.
4235 * Probably we need not scan at all,
4236 * because page truncation is enough.
4237 */
4238
4239 /* we have to know where to truncate from in crash case */
4240 EXT4_I(inode)->i_disksize = inode->i_size;
4241 ext4_mark_inode_dirty(handle, inode);
4242
4243 last_block = (inode->i_size + sb->s_blocksize - 1)
4244 >> EXT4_BLOCK_SIZE_BITS(sb);
4245 err = ext4_es_remove_extent(inode, last_block,
4246 EXT_MAX_BLOCKS - last_block);
4247 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4248
4249 /* In a multi-transaction truncate, we only make the final
4250 * transaction synchronous.
4251 */
4252 if (IS_SYNC(inode))
4253 ext4_handle_sync(handle);
4254
4255 up_write(&EXT4_I(inode)->i_data_sem);
4256
4257 out_stop:
4258 /*
4259 * If this was a simple ftruncate() and the file will remain alive,
4260 * then we need to clear up the orphan record which we created above.
4261 * However, if this was a real unlink then we were called by
4262 * ext4_delete_inode(), and we allow that function to clean up the
4263 * orphan info for us.
4264 */
4265 if (inode->i_nlink)
4266 ext4_orphan_del(handle, inode);
4267
4268 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4269 ext4_mark_inode_dirty(handle, inode);
4270 ext4_journal_stop(handle);
4271 }
4272
4273 static void ext4_falloc_update_inode(struct inode *inode,
4274 int mode, loff_t new_size, int update_ctime)
4275 {
4276 struct timespec now;
4277
4278 if (update_ctime) {
4279 now = current_fs_time(inode->i_sb);
4280 if (!timespec_equal(&inode->i_ctime, &now))
4281 inode->i_ctime = now;
4282 }
4283 /*
4284 * Update only when preallocation was requested beyond
4285 * the file size.
4286 */
4287 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4288 if (new_size > i_size_read(inode))
4289 i_size_write(inode, new_size);
4290 if (new_size > EXT4_I(inode)->i_disksize)
4291 ext4_update_i_disksize(inode, new_size);
4292 } else {
4293 /*
4294 * Mark that we allocate beyond EOF so the subsequent truncate
4295 * can proceed even if the new size is the same as i_size.
4296 */
4297 if (new_size > i_size_read(inode))
4298 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4299 }
4300
4301 }
4302
4303 /*
4304 * preallocate space for a file. This implements ext4's fallocate file
4305 * operation, which gets called from sys_fallocate system call.
4306 * For block-mapped files, posix_fallocate should fall back to the method
4307 * of writing zeroes to the required new blocks (the same behavior which is
4308 * expected for file systems which do not support fallocate() system call).
4309 */
4310 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4311 {
4312 struct inode *inode = file_inode(file);
4313 handle_t *handle;
4314 loff_t new_size;
4315 unsigned int max_blocks;
4316 int ret = 0;
4317 int ret2 = 0;
4318 int retries = 0;
4319 int flags;
4320 struct ext4_map_blocks map;
4321 unsigned int credits, blkbits = inode->i_blkbits;
4322
4323 /* Return error if mode is not supported */
4324 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4325 return -EOPNOTSUPP;
4326
4327 if (mode & FALLOC_FL_PUNCH_HOLE)
4328 return ext4_punch_hole(file, offset, len);
4329
4330 ret = ext4_convert_inline_data(inode);
4331 if (ret)
4332 return ret;
4333
4334 /*
4335 * currently supporting (pre)allocate mode for extent-based
4336 * files _only_
4337 */
4338 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4339 return -EOPNOTSUPP;
4340
4341 trace_ext4_fallocate_enter(inode, offset, len, mode);
4342 map.m_lblk = offset >> blkbits;
4343 /*
4344 * We can't just convert len to max_blocks because
4345 * If blocksize = 4096 offset = 3072 and len = 2048
4346 */
4347 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4348 - map.m_lblk;
4349 /*
4350 * credits to insert 1 extent into extent tree
4351 */
4352 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4353 mutex_lock(&inode->i_mutex);
4354 ret = inode_newsize_ok(inode, (len + offset));
4355 if (ret) {
4356 mutex_unlock(&inode->i_mutex);
4357 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4358 return ret;
4359 }
4360 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4361 if (mode & FALLOC_FL_KEEP_SIZE)
4362 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4363 /*
4364 * Don't normalize the request if it can fit in one extent so
4365 * that it doesn't get unnecessarily split into multiple
4366 * extents.
4367 */
4368 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4369 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4370
4371 /* Prevent race condition between unwritten */
4372 ext4_flush_unwritten_io(inode);
4373 retry:
4374 while (ret >= 0 && ret < max_blocks) {
4375 map.m_lblk = map.m_lblk + ret;
4376 map.m_len = max_blocks = max_blocks - ret;
4377 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
4378 credits);
4379 if (IS_ERR(handle)) {
4380 ret = PTR_ERR(handle);
4381 break;
4382 }
4383 ret = ext4_map_blocks(handle, inode, &map, flags);
4384 if (ret <= 0) {
4385 #ifdef EXT4FS_DEBUG
4386 ext4_warning(inode->i_sb,
4387 "inode #%lu: block %u: len %u: "
4388 "ext4_ext_map_blocks returned %d",
4389 inode->i_ino, map.m_lblk,
4390 map.m_len, ret);
4391 #endif
4392 ext4_mark_inode_dirty(handle, inode);
4393 ret2 = ext4_journal_stop(handle);
4394 break;
4395 }
4396 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4397 blkbits) >> blkbits))
4398 new_size = offset + len;
4399 else
4400 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4401
4402 ext4_falloc_update_inode(inode, mode, new_size,
4403 (map.m_flags & EXT4_MAP_NEW));
4404 ext4_mark_inode_dirty(handle, inode);
4405 if ((file->f_flags & O_SYNC) && ret >= max_blocks)
4406 ext4_handle_sync(handle);
4407 ret2 = ext4_journal_stop(handle);
4408 if (ret2)
4409 break;
4410 }
4411 if (ret == -ENOSPC &&
4412 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4413 ret = 0;
4414 goto retry;
4415 }
4416 mutex_unlock(&inode->i_mutex);
4417 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4418 ret > 0 ? ret2 : ret);
4419 return ret > 0 ? ret2 : ret;
4420 }
4421
4422 /*
4423 * This function convert a range of blocks to written extents
4424 * The caller of this function will pass the start offset and the size.
4425 * all unwritten extents within this range will be converted to
4426 * written extents.
4427 *
4428 * This function is called from the direct IO end io call back
4429 * function, to convert the fallocated extents after IO is completed.
4430 * Returns 0 on success.
4431 */
4432 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4433 ssize_t len)
4434 {
4435 handle_t *handle;
4436 unsigned int max_blocks;
4437 int ret = 0;
4438 int ret2 = 0;
4439 struct ext4_map_blocks map;
4440 unsigned int credits, blkbits = inode->i_blkbits;
4441
4442 map.m_lblk = offset >> blkbits;
4443 /*
4444 * We can't just convert len to max_blocks because
4445 * If blocksize = 4096 offset = 3072 and len = 2048
4446 */
4447 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4448 map.m_lblk);
4449 /*
4450 * credits to insert 1 extent into extent tree
4451 */
4452 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4453 while (ret >= 0 && ret < max_blocks) {
4454 map.m_lblk += ret;
4455 map.m_len = (max_blocks -= ret);
4456 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
4457 if (IS_ERR(handle)) {
4458 ret = PTR_ERR(handle);
4459 break;
4460 }
4461 ret = ext4_map_blocks(handle, inode, &map,
4462 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4463 if (ret <= 0)
4464 ext4_warning(inode->i_sb,
4465 "inode #%lu: block %u: len %u: "
4466 "ext4_ext_map_blocks returned %d",
4467 inode->i_ino, map.m_lblk,
4468 map.m_len, ret);
4469 ext4_mark_inode_dirty(handle, inode);
4470 ret2 = ext4_journal_stop(handle);
4471 if (ret <= 0 || ret2 )
4472 break;
4473 }
4474 return ret > 0 ? ret2 : ret;
4475 }
4476
4477 /*
4478 * If newes is not existing extent (newes->ec_pblk equals zero) find
4479 * delayed extent at start of newes and update newes accordingly and
4480 * return start of the next delayed extent.
4481 *
4482 * If newes is existing extent (newes->ec_pblk is not equal zero)
4483 * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
4484 * extent found. Leave newes unmodified.
4485 */
4486 static int ext4_find_delayed_extent(struct inode *inode,
4487 struct extent_status *newes)
4488 {
4489 struct extent_status es;
4490 ext4_lblk_t block, next_del;
4491
4492 ext4_es_find_delayed_extent(inode, newes->es_lblk, &es);
4493
4494 if (newes->es_pblk == 0) {
4495 /*
4496 * No extent in extent-tree contains block @newes->es_pblk,
4497 * then the block may stay in 1)a hole or 2)delayed-extent.
4498 */
4499 if (es.es_len == 0)
4500 /* A hole found. */
4501 return 0;
4502
4503 if (es.es_lblk > newes->es_lblk) {
4504 /* A hole found. */
4505 newes->es_len = min(es.es_lblk - newes->es_lblk,
4506 newes->es_len);
4507 return 0;
4508 }
4509
4510 newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
4511 }
4512
4513 block = newes->es_lblk + newes->es_len;
4514 ext4_es_find_delayed_extent(inode, block, &es);
4515 if (es.es_len == 0)
4516 next_del = EXT_MAX_BLOCKS;
4517 else
4518 next_del = es.es_lblk;
4519
4520 return next_del;
4521 }
4522 /* fiemap flags we can handle specified here */
4523 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4524
4525 static int ext4_xattr_fiemap(struct inode *inode,
4526 struct fiemap_extent_info *fieinfo)
4527 {
4528 __u64 physical = 0;
4529 __u64 length;
4530 __u32 flags = FIEMAP_EXTENT_LAST;
4531 int blockbits = inode->i_sb->s_blocksize_bits;
4532 int error = 0;
4533
4534 /* in-inode? */
4535 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4536 struct ext4_iloc iloc;
4537 int offset; /* offset of xattr in inode */
4538
4539 error = ext4_get_inode_loc(inode, &iloc);
4540 if (error)
4541 return error;
4542 physical = iloc.bh->b_blocknr << blockbits;
4543 offset = EXT4_GOOD_OLD_INODE_SIZE +
4544 EXT4_I(inode)->i_extra_isize;
4545 physical += offset;
4546 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4547 flags |= FIEMAP_EXTENT_DATA_INLINE;
4548 brelse(iloc.bh);
4549 } else { /* external block */
4550 physical = EXT4_I(inode)->i_file_acl << blockbits;
4551 length = inode->i_sb->s_blocksize;
4552 }
4553
4554 if (physical)
4555 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4556 length, flags);
4557 return (error < 0 ? error : 0);
4558 }
4559
4560 /*
4561 * ext4_ext_punch_hole
4562 *
4563 * Punches a hole of "length" bytes in a file starting
4564 * at byte "offset"
4565 *
4566 * @inode: The inode of the file to punch a hole in
4567 * @offset: The starting byte offset of the hole
4568 * @length: The length of the hole
4569 *
4570 * Returns the number of blocks removed or negative on err
4571 */
4572 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4573 {
4574 struct inode *inode = file_inode(file);
4575 struct super_block *sb = inode->i_sb;
4576 ext4_lblk_t first_block, stop_block;
4577 struct address_space *mapping = inode->i_mapping;
4578 handle_t *handle;
4579 loff_t first_page, last_page, page_len;
4580 loff_t first_page_offset, last_page_offset;
4581 int credits, err = 0;
4582
4583 /*
4584 * Write out all dirty pages to avoid race conditions
4585 * Then release them.
4586 */
4587 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4588 err = filemap_write_and_wait_range(mapping,
4589 offset, offset + length - 1);
4590
4591 if (err)
4592 return err;
4593 }
4594
4595 mutex_lock(&inode->i_mutex);
4596 /* It's not possible punch hole on append only file */
4597 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4598 err = -EPERM;
4599 goto out_mutex;
4600 }
4601 if (IS_SWAPFILE(inode)) {
4602 err = -ETXTBSY;
4603 goto out_mutex;
4604 }
4605
4606 /* No need to punch hole beyond i_size */
4607 if (offset >= inode->i_size)
4608 goto out_mutex;
4609
4610 /*
4611 * If the hole extends beyond i_size, set the hole
4612 * to end after the page that contains i_size
4613 */
4614 if (offset + length > inode->i_size) {
4615 length = inode->i_size +
4616 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4617 offset;
4618 }
4619
4620 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4621 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4622
4623 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4624 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4625
4626 /* Now release the pages */
4627 if (last_page_offset > first_page_offset) {
4628 truncate_pagecache_range(inode, first_page_offset,
4629 last_page_offset - 1);
4630 }
4631
4632 /* Wait all existing dio workers, newcomers will block on i_mutex */
4633 ext4_inode_block_unlocked_dio(inode);
4634 err = ext4_flush_unwritten_io(inode);
4635 if (err)
4636 goto out_dio;
4637 inode_dio_wait(inode);
4638
4639 credits = ext4_writepage_trans_blocks(inode);
4640 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4641 if (IS_ERR(handle)) {
4642 err = PTR_ERR(handle);
4643 goto out_dio;
4644 }
4645
4646
4647 /*
4648 * Now we need to zero out the non-page-aligned data in the
4649 * pages at the start and tail of the hole, and unmap the buffer
4650 * heads for the block aligned regions of the page that were
4651 * completely zeroed.
4652 */
4653 if (first_page > last_page) {
4654 /*
4655 * If the file space being truncated is contained within a page
4656 * just zero out and unmap the middle of that page
4657 */
4658 err = ext4_discard_partial_page_buffers(handle,
4659 mapping, offset, length, 0);
4660
4661 if (err)
4662 goto out;
4663 } else {
4664 /*
4665 * zero out and unmap the partial page that contains
4666 * the start of the hole
4667 */
4668 page_len = first_page_offset - offset;
4669 if (page_len > 0) {
4670 err = ext4_discard_partial_page_buffers(handle, mapping,
4671 offset, page_len, 0);
4672 if (err)
4673 goto out;
4674 }
4675
4676 /*
4677 * zero out and unmap the partial page that contains
4678 * the end of the hole
4679 */
4680 page_len = offset + length - last_page_offset;
4681 if (page_len > 0) {
4682 err = ext4_discard_partial_page_buffers(handle, mapping,
4683 last_page_offset, page_len, 0);
4684 if (err)
4685 goto out;
4686 }
4687 }
4688
4689 /*
4690 * If i_size is contained in the last page, we need to
4691 * unmap and zero the partial page after i_size
4692 */
4693 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4694 inode->i_size % PAGE_CACHE_SIZE != 0) {
4695
4696 page_len = PAGE_CACHE_SIZE -
4697 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4698
4699 if (page_len > 0) {
4700 err = ext4_discard_partial_page_buffers(handle,
4701 mapping, inode->i_size, page_len, 0);
4702
4703 if (err)
4704 goto out;
4705 }
4706 }
4707
4708 first_block = (offset + sb->s_blocksize - 1) >>
4709 EXT4_BLOCK_SIZE_BITS(sb);
4710 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4711
4712 /* If there are no blocks to remove, return now */
4713 if (first_block >= stop_block)
4714 goto out;
4715
4716 down_write(&EXT4_I(inode)->i_data_sem);
4717 ext4_discard_preallocations(inode);
4718
4719 err = ext4_es_remove_extent(inode, first_block,
4720 stop_block - first_block);
4721 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4722
4723 ext4_discard_preallocations(inode);
4724
4725 if (IS_SYNC(inode))
4726 ext4_handle_sync(handle);
4727
4728 up_write(&EXT4_I(inode)->i_data_sem);
4729
4730 out:
4731 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4732 ext4_mark_inode_dirty(handle, inode);
4733 ext4_journal_stop(handle);
4734 out_dio:
4735 ext4_inode_resume_unlocked_dio(inode);
4736 out_mutex:
4737 mutex_unlock(&inode->i_mutex);
4738 return err;
4739 }
4740
4741 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4742 __u64 start, __u64 len)
4743 {
4744 ext4_lblk_t start_blk;
4745 int error = 0;
4746
4747 if (ext4_has_inline_data(inode)) {
4748 int has_inline = 1;
4749
4750 error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
4751
4752 if (has_inline)
4753 return error;
4754 }
4755
4756 /* fallback to generic here if not in extents fmt */
4757 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4758 return generic_block_fiemap(inode, fieinfo, start, len,
4759 ext4_get_block);
4760
4761 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4762 return -EBADR;
4763
4764 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4765 error = ext4_xattr_fiemap(inode, fieinfo);
4766 } else {
4767 ext4_lblk_t len_blks;
4768 __u64 last_blk;
4769
4770 start_blk = start >> inode->i_sb->s_blocksize_bits;
4771 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4772 if (last_blk >= EXT_MAX_BLOCKS)
4773 last_blk = EXT_MAX_BLOCKS-1;
4774 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4775
4776 /*
4777 * Walk the extent tree gathering extent information
4778 * and pushing extents back to the user.
4779 */
4780 error = ext4_fill_fiemap_extents(inode, start_blk,
4781 len_blks, fieinfo);
4782 }
4783
4784 return error;
4785 }
This page took 0.128512 seconds and 5 git commands to generate.