ext4: return ENOMEM if find_or_create_pages fails
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/module.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/jbd2.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46
47 #include <trace/events/ext4.h>
48
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53 {
54 trace_ext4_begin_ordered_truncate(inode, new_size);
55 /*
56 * If jinode is zero, then we never opened the file for
57 * writing, so there's no need to call
58 * jbd2_journal_begin_ordered_truncate() since there's no
59 * outstanding writes we need to flush.
60 */
61 if (!EXT4_I(inode)->jinode)
62 return 0;
63 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
64 EXT4_I(inode)->jinode,
65 new_size);
66 }
67
68 static void ext4_invalidatepage(struct page *page, unsigned long offset);
69 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
70 struct buffer_head *bh_result, int create);
71 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
72 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
73 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
74 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
75
76 /*
77 * Test whether an inode is a fast symlink.
78 */
79 static int ext4_inode_is_fast_symlink(struct inode *inode)
80 {
81 int ea_blocks = EXT4_I(inode)->i_file_acl ?
82 (inode->i_sb->s_blocksize >> 9) : 0;
83
84 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
85 }
86
87 /*
88 * Restart the transaction associated with *handle. This does a commit,
89 * so before we call here everything must be consistently dirtied against
90 * this transaction.
91 */
92 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
93 int nblocks)
94 {
95 int ret;
96
97 /*
98 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
99 * moment, get_block can be called only for blocks inside i_size since
100 * page cache has been already dropped and writes are blocked by
101 * i_mutex. So we can safely drop the i_data_sem here.
102 */
103 BUG_ON(EXT4_JOURNAL(inode) == NULL);
104 jbd_debug(2, "restarting handle %p\n", handle);
105 up_write(&EXT4_I(inode)->i_data_sem);
106 ret = ext4_journal_restart(handle, nblocks);
107 down_write(&EXT4_I(inode)->i_data_sem);
108 ext4_discard_preallocations(inode);
109
110 return ret;
111 }
112
113 /*
114 * Called at the last iput() if i_nlink is zero.
115 */
116 void ext4_evict_inode(struct inode *inode)
117 {
118 handle_t *handle;
119 int err;
120
121 trace_ext4_evict_inode(inode);
122
123 ext4_ioend_wait(inode);
124
125 if (inode->i_nlink) {
126 /*
127 * When journalling data dirty buffers are tracked only in the
128 * journal. So although mm thinks everything is clean and
129 * ready for reaping the inode might still have some pages to
130 * write in the running transaction or waiting to be
131 * checkpointed. Thus calling jbd2_journal_invalidatepage()
132 * (via truncate_inode_pages()) to discard these buffers can
133 * cause data loss. Also even if we did not discard these
134 * buffers, we would have no way to find them after the inode
135 * is reaped and thus user could see stale data if he tries to
136 * read them before the transaction is checkpointed. So be
137 * careful and force everything to disk here... We use
138 * ei->i_datasync_tid to store the newest transaction
139 * containing inode's data.
140 *
141 * Note that directories do not have this problem because they
142 * don't use page cache.
143 */
144 if (ext4_should_journal_data(inode) &&
145 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
146 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
147 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
148
149 jbd2_log_start_commit(journal, commit_tid);
150 jbd2_log_wait_commit(journal, commit_tid);
151 filemap_write_and_wait(&inode->i_data);
152 }
153 truncate_inode_pages(&inode->i_data, 0);
154 goto no_delete;
155 }
156
157 if (!is_bad_inode(inode))
158 dquot_initialize(inode);
159
160 if (ext4_should_order_data(inode))
161 ext4_begin_ordered_truncate(inode, 0);
162 truncate_inode_pages(&inode->i_data, 0);
163
164 if (is_bad_inode(inode))
165 goto no_delete;
166
167 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
168 if (IS_ERR(handle)) {
169 ext4_std_error(inode->i_sb, PTR_ERR(handle));
170 /*
171 * If we're going to skip the normal cleanup, we still need to
172 * make sure that the in-core orphan linked list is properly
173 * cleaned up.
174 */
175 ext4_orphan_del(NULL, inode);
176 goto no_delete;
177 }
178
179 if (IS_SYNC(inode))
180 ext4_handle_sync(handle);
181 inode->i_size = 0;
182 err = ext4_mark_inode_dirty(handle, inode);
183 if (err) {
184 ext4_warning(inode->i_sb,
185 "couldn't mark inode dirty (err %d)", err);
186 goto stop_handle;
187 }
188 if (inode->i_blocks)
189 ext4_truncate(inode);
190
191 /*
192 * ext4_ext_truncate() doesn't reserve any slop when it
193 * restarts journal transactions; therefore there may not be
194 * enough credits left in the handle to remove the inode from
195 * the orphan list and set the dtime field.
196 */
197 if (!ext4_handle_has_enough_credits(handle, 3)) {
198 err = ext4_journal_extend(handle, 3);
199 if (err > 0)
200 err = ext4_journal_restart(handle, 3);
201 if (err != 0) {
202 ext4_warning(inode->i_sb,
203 "couldn't extend journal (err %d)", err);
204 stop_handle:
205 ext4_journal_stop(handle);
206 ext4_orphan_del(NULL, inode);
207 goto no_delete;
208 }
209 }
210
211 /*
212 * Kill off the orphan record which ext4_truncate created.
213 * AKPM: I think this can be inside the above `if'.
214 * Note that ext4_orphan_del() has to be able to cope with the
215 * deletion of a non-existent orphan - this is because we don't
216 * know if ext4_truncate() actually created an orphan record.
217 * (Well, we could do this if we need to, but heck - it works)
218 */
219 ext4_orphan_del(handle, inode);
220 EXT4_I(inode)->i_dtime = get_seconds();
221
222 /*
223 * One subtle ordering requirement: if anything has gone wrong
224 * (transaction abort, IO errors, whatever), then we can still
225 * do these next steps (the fs will already have been marked as
226 * having errors), but we can't free the inode if the mark_dirty
227 * fails.
228 */
229 if (ext4_mark_inode_dirty(handle, inode))
230 /* If that failed, just do the required in-core inode clear. */
231 ext4_clear_inode(inode);
232 else
233 ext4_free_inode(handle, inode);
234 ext4_journal_stop(handle);
235 return;
236 no_delete:
237 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
238 }
239
240 #ifdef CONFIG_QUOTA
241 qsize_t *ext4_get_reserved_space(struct inode *inode)
242 {
243 return &EXT4_I(inode)->i_reserved_quota;
244 }
245 #endif
246
247 /*
248 * Calculate the number of metadata blocks need to reserve
249 * to allocate a block located at @lblock
250 */
251 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
252 {
253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
254 return ext4_ext_calc_metadata_amount(inode, lblock);
255
256 return ext4_ind_calc_metadata_amount(inode, lblock);
257 }
258
259 /*
260 * Called with i_data_sem down, which is important since we can call
261 * ext4_discard_preallocations() from here.
262 */
263 void ext4_da_update_reserve_space(struct inode *inode,
264 int used, int quota_claim)
265 {
266 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
267 struct ext4_inode_info *ei = EXT4_I(inode);
268
269 spin_lock(&ei->i_block_reservation_lock);
270 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
271 if (unlikely(used > ei->i_reserved_data_blocks)) {
272 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
273 "with only %d reserved data blocks\n",
274 __func__, inode->i_ino, used,
275 ei->i_reserved_data_blocks);
276 WARN_ON(1);
277 used = ei->i_reserved_data_blocks;
278 }
279
280 /* Update per-inode reservations */
281 ei->i_reserved_data_blocks -= used;
282 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
284 used + ei->i_allocated_meta_blocks);
285 ei->i_allocated_meta_blocks = 0;
286
287 if (ei->i_reserved_data_blocks == 0) {
288 /*
289 * We can release all of the reserved metadata blocks
290 * only when we have written all of the delayed
291 * allocation blocks.
292 */
293 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
294 ei->i_reserved_meta_blocks);
295 ei->i_reserved_meta_blocks = 0;
296 ei->i_da_metadata_calc_len = 0;
297 }
298 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
299
300 /* Update quota subsystem for data blocks */
301 if (quota_claim)
302 dquot_claim_block(inode, EXT4_C2B(sbi, used));
303 else {
304 /*
305 * We did fallocate with an offset that is already delayed
306 * allocated. So on delayed allocated writeback we should
307 * not re-claim the quota for fallocated blocks.
308 */
309 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
310 }
311
312 /*
313 * If we have done all the pending block allocations and if
314 * there aren't any writers on the inode, we can discard the
315 * inode's preallocations.
316 */
317 if ((ei->i_reserved_data_blocks == 0) &&
318 (atomic_read(&inode->i_writecount) == 0))
319 ext4_discard_preallocations(inode);
320 }
321
322 static int __check_block_validity(struct inode *inode, const char *func,
323 unsigned int line,
324 struct ext4_map_blocks *map)
325 {
326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
327 map->m_len)) {
328 ext4_error_inode(inode, func, line, map->m_pblk,
329 "lblock %lu mapped to illegal pblock "
330 "(length %d)", (unsigned long) map->m_lblk,
331 map->m_len);
332 return -EIO;
333 }
334 return 0;
335 }
336
337 #define check_block_validity(inode, map) \
338 __check_block_validity((inode), __func__, __LINE__, (map))
339
340 /*
341 * Return the number of contiguous dirty pages in a given inode
342 * starting at page frame idx.
343 */
344 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
345 unsigned int max_pages)
346 {
347 struct address_space *mapping = inode->i_mapping;
348 pgoff_t index;
349 struct pagevec pvec;
350 pgoff_t num = 0;
351 int i, nr_pages, done = 0;
352
353 if (max_pages == 0)
354 return 0;
355 pagevec_init(&pvec, 0);
356 while (!done) {
357 index = idx;
358 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
359 PAGECACHE_TAG_DIRTY,
360 (pgoff_t)PAGEVEC_SIZE);
361 if (nr_pages == 0)
362 break;
363 for (i = 0; i < nr_pages; i++) {
364 struct page *page = pvec.pages[i];
365 struct buffer_head *bh, *head;
366
367 lock_page(page);
368 if (unlikely(page->mapping != mapping) ||
369 !PageDirty(page) ||
370 PageWriteback(page) ||
371 page->index != idx) {
372 done = 1;
373 unlock_page(page);
374 break;
375 }
376 if (page_has_buffers(page)) {
377 bh = head = page_buffers(page);
378 do {
379 if (!buffer_delay(bh) &&
380 !buffer_unwritten(bh))
381 done = 1;
382 bh = bh->b_this_page;
383 } while (!done && (bh != head));
384 }
385 unlock_page(page);
386 if (done)
387 break;
388 idx++;
389 num++;
390 if (num >= max_pages) {
391 done = 1;
392 break;
393 }
394 }
395 pagevec_release(&pvec);
396 }
397 return num;
398 }
399
400 /*
401 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
402 */
403 static void set_buffers_da_mapped(struct inode *inode,
404 struct ext4_map_blocks *map)
405 {
406 struct address_space *mapping = inode->i_mapping;
407 struct pagevec pvec;
408 int i, nr_pages;
409 pgoff_t index, end;
410
411 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
412 end = (map->m_lblk + map->m_len - 1) >>
413 (PAGE_CACHE_SHIFT - inode->i_blkbits);
414
415 pagevec_init(&pvec, 0);
416 while (index <= end) {
417 nr_pages = pagevec_lookup(&pvec, mapping, index,
418 min(end - index + 1,
419 (pgoff_t)PAGEVEC_SIZE));
420 if (nr_pages == 0)
421 break;
422 for (i = 0; i < nr_pages; i++) {
423 struct page *page = pvec.pages[i];
424 struct buffer_head *bh, *head;
425
426 if (unlikely(page->mapping != mapping) ||
427 !PageDirty(page))
428 break;
429
430 if (page_has_buffers(page)) {
431 bh = head = page_buffers(page);
432 do {
433 set_buffer_da_mapped(bh);
434 bh = bh->b_this_page;
435 } while (bh != head);
436 }
437 index++;
438 }
439 pagevec_release(&pvec);
440 }
441 }
442
443 /*
444 * The ext4_map_blocks() function tries to look up the requested blocks,
445 * and returns if the blocks are already mapped.
446 *
447 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
448 * and store the allocated blocks in the result buffer head and mark it
449 * mapped.
450 *
451 * If file type is extents based, it will call ext4_ext_map_blocks(),
452 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
453 * based files
454 *
455 * On success, it returns the number of blocks being mapped or allocate.
456 * if create==0 and the blocks are pre-allocated and uninitialized block,
457 * the result buffer head is unmapped. If the create ==1, it will make sure
458 * the buffer head is mapped.
459 *
460 * It returns 0 if plain look up failed (blocks have not been allocated), in
461 * that case, buffer head is unmapped
462 *
463 * It returns the error in case of allocation failure.
464 */
465 int ext4_map_blocks(handle_t *handle, struct inode *inode,
466 struct ext4_map_blocks *map, int flags)
467 {
468 int retval;
469
470 map->m_flags = 0;
471 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
472 "logical block %lu\n", inode->i_ino, flags, map->m_len,
473 (unsigned long) map->m_lblk);
474 /*
475 * Try to see if we can get the block without requesting a new
476 * file system block.
477 */
478 down_read((&EXT4_I(inode)->i_data_sem));
479 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
480 retval = ext4_ext_map_blocks(handle, inode, map, flags &
481 EXT4_GET_BLOCKS_KEEP_SIZE);
482 } else {
483 retval = ext4_ind_map_blocks(handle, inode, map, flags &
484 EXT4_GET_BLOCKS_KEEP_SIZE);
485 }
486 up_read((&EXT4_I(inode)->i_data_sem));
487
488 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
489 int ret = check_block_validity(inode, map);
490 if (ret != 0)
491 return ret;
492 }
493
494 /* If it is only a block(s) look up */
495 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
496 return retval;
497
498 /*
499 * Returns if the blocks have already allocated
500 *
501 * Note that if blocks have been preallocated
502 * ext4_ext_get_block() returns the create = 0
503 * with buffer head unmapped.
504 */
505 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
506 return retval;
507
508 /*
509 * When we call get_blocks without the create flag, the
510 * BH_Unwritten flag could have gotten set if the blocks
511 * requested were part of a uninitialized extent. We need to
512 * clear this flag now that we are committed to convert all or
513 * part of the uninitialized extent to be an initialized
514 * extent. This is because we need to avoid the combination
515 * of BH_Unwritten and BH_Mapped flags being simultaneously
516 * set on the buffer_head.
517 */
518 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
519
520 /*
521 * New blocks allocate and/or writing to uninitialized extent
522 * will possibly result in updating i_data, so we take
523 * the write lock of i_data_sem, and call get_blocks()
524 * with create == 1 flag.
525 */
526 down_write((&EXT4_I(inode)->i_data_sem));
527
528 /*
529 * if the caller is from delayed allocation writeout path
530 * we have already reserved fs blocks for allocation
531 * let the underlying get_block() function know to
532 * avoid double accounting
533 */
534 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
535 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
536 /*
537 * We need to check for EXT4 here because migrate
538 * could have changed the inode type in between
539 */
540 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
541 retval = ext4_ext_map_blocks(handle, inode, map, flags);
542 } else {
543 retval = ext4_ind_map_blocks(handle, inode, map, flags);
544
545 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
546 /*
547 * We allocated new blocks which will result in
548 * i_data's format changing. Force the migrate
549 * to fail by clearing migrate flags
550 */
551 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
552 }
553
554 /*
555 * Update reserved blocks/metadata blocks after successful
556 * block allocation which had been deferred till now. We don't
557 * support fallocate for non extent files. So we can update
558 * reserve space here.
559 */
560 if ((retval > 0) &&
561 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
562 ext4_da_update_reserve_space(inode, retval, 1);
563 }
564 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
565 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
566
567 /* If we have successfully mapped the delayed allocated blocks,
568 * set the BH_Da_Mapped bit on them. Its important to do this
569 * under the protection of i_data_sem.
570 */
571 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572 set_buffers_da_mapped(inode, map);
573 }
574
575 up_write((&EXT4_I(inode)->i_data_sem));
576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 int ret = check_block_validity(inode, map);
578 if (ret != 0)
579 return ret;
580 }
581 return retval;
582 }
583
584 /* Maximum number of blocks we map for direct IO at once. */
585 #define DIO_MAX_BLOCKS 4096
586
587 static int _ext4_get_block(struct inode *inode, sector_t iblock,
588 struct buffer_head *bh, int flags)
589 {
590 handle_t *handle = ext4_journal_current_handle();
591 struct ext4_map_blocks map;
592 int ret = 0, started = 0;
593 int dio_credits;
594
595 map.m_lblk = iblock;
596 map.m_len = bh->b_size >> inode->i_blkbits;
597
598 if (flags && !handle) {
599 /* Direct IO write... */
600 if (map.m_len > DIO_MAX_BLOCKS)
601 map.m_len = DIO_MAX_BLOCKS;
602 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
603 handle = ext4_journal_start(inode, dio_credits);
604 if (IS_ERR(handle)) {
605 ret = PTR_ERR(handle);
606 return ret;
607 }
608 started = 1;
609 }
610
611 ret = ext4_map_blocks(handle, inode, &map, flags);
612 if (ret > 0) {
613 map_bh(bh, inode->i_sb, map.m_pblk);
614 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
615 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
616 ret = 0;
617 }
618 if (started)
619 ext4_journal_stop(handle);
620 return ret;
621 }
622
623 int ext4_get_block(struct inode *inode, sector_t iblock,
624 struct buffer_head *bh, int create)
625 {
626 return _ext4_get_block(inode, iblock, bh,
627 create ? EXT4_GET_BLOCKS_CREATE : 0);
628 }
629
630 /*
631 * `handle' can be NULL if create is zero
632 */
633 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
634 ext4_lblk_t block, int create, int *errp)
635 {
636 struct ext4_map_blocks map;
637 struct buffer_head *bh;
638 int fatal = 0, err;
639
640 J_ASSERT(handle != NULL || create == 0);
641
642 map.m_lblk = block;
643 map.m_len = 1;
644 err = ext4_map_blocks(handle, inode, &map,
645 create ? EXT4_GET_BLOCKS_CREATE : 0);
646
647 if (err < 0)
648 *errp = err;
649 if (err <= 0)
650 return NULL;
651 *errp = 0;
652
653 bh = sb_getblk(inode->i_sb, map.m_pblk);
654 if (!bh) {
655 *errp = -EIO;
656 return NULL;
657 }
658 if (map.m_flags & EXT4_MAP_NEW) {
659 J_ASSERT(create != 0);
660 J_ASSERT(handle != NULL);
661
662 /*
663 * Now that we do not always journal data, we should
664 * keep in mind whether this should always journal the
665 * new buffer as metadata. For now, regular file
666 * writes use ext4_get_block instead, so it's not a
667 * problem.
668 */
669 lock_buffer(bh);
670 BUFFER_TRACE(bh, "call get_create_access");
671 fatal = ext4_journal_get_create_access(handle, bh);
672 if (!fatal && !buffer_uptodate(bh)) {
673 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
674 set_buffer_uptodate(bh);
675 }
676 unlock_buffer(bh);
677 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
678 err = ext4_handle_dirty_metadata(handle, inode, bh);
679 if (!fatal)
680 fatal = err;
681 } else {
682 BUFFER_TRACE(bh, "not a new buffer");
683 }
684 if (fatal) {
685 *errp = fatal;
686 brelse(bh);
687 bh = NULL;
688 }
689 return bh;
690 }
691
692 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
693 ext4_lblk_t block, int create, int *err)
694 {
695 struct buffer_head *bh;
696
697 bh = ext4_getblk(handle, inode, block, create, err);
698 if (!bh)
699 return bh;
700 if (buffer_uptodate(bh))
701 return bh;
702 ll_rw_block(READ_META, 1, &bh);
703 wait_on_buffer(bh);
704 if (buffer_uptodate(bh))
705 return bh;
706 put_bh(bh);
707 *err = -EIO;
708 return NULL;
709 }
710
711 static int walk_page_buffers(handle_t *handle,
712 struct buffer_head *head,
713 unsigned from,
714 unsigned to,
715 int *partial,
716 int (*fn)(handle_t *handle,
717 struct buffer_head *bh))
718 {
719 struct buffer_head *bh;
720 unsigned block_start, block_end;
721 unsigned blocksize = head->b_size;
722 int err, ret = 0;
723 struct buffer_head *next;
724
725 for (bh = head, block_start = 0;
726 ret == 0 && (bh != head || !block_start);
727 block_start = block_end, bh = next) {
728 next = bh->b_this_page;
729 block_end = block_start + blocksize;
730 if (block_end <= from || block_start >= to) {
731 if (partial && !buffer_uptodate(bh))
732 *partial = 1;
733 continue;
734 }
735 err = (*fn)(handle, bh);
736 if (!ret)
737 ret = err;
738 }
739 return ret;
740 }
741
742 /*
743 * To preserve ordering, it is essential that the hole instantiation and
744 * the data write be encapsulated in a single transaction. We cannot
745 * close off a transaction and start a new one between the ext4_get_block()
746 * and the commit_write(). So doing the jbd2_journal_start at the start of
747 * prepare_write() is the right place.
748 *
749 * Also, this function can nest inside ext4_writepage() ->
750 * block_write_full_page(). In that case, we *know* that ext4_writepage()
751 * has generated enough buffer credits to do the whole page. So we won't
752 * block on the journal in that case, which is good, because the caller may
753 * be PF_MEMALLOC.
754 *
755 * By accident, ext4 can be reentered when a transaction is open via
756 * quota file writes. If we were to commit the transaction while thus
757 * reentered, there can be a deadlock - we would be holding a quota
758 * lock, and the commit would never complete if another thread had a
759 * transaction open and was blocking on the quota lock - a ranking
760 * violation.
761 *
762 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
763 * will _not_ run commit under these circumstances because handle->h_ref
764 * is elevated. We'll still have enough credits for the tiny quotafile
765 * write.
766 */
767 static int do_journal_get_write_access(handle_t *handle,
768 struct buffer_head *bh)
769 {
770 int dirty = buffer_dirty(bh);
771 int ret;
772
773 if (!buffer_mapped(bh) || buffer_freed(bh))
774 return 0;
775 /*
776 * __block_write_begin() could have dirtied some buffers. Clean
777 * the dirty bit as jbd2_journal_get_write_access() could complain
778 * otherwise about fs integrity issues. Setting of the dirty bit
779 * by __block_write_begin() isn't a real problem here as we clear
780 * the bit before releasing a page lock and thus writeback cannot
781 * ever write the buffer.
782 */
783 if (dirty)
784 clear_buffer_dirty(bh);
785 ret = ext4_journal_get_write_access(handle, bh);
786 if (!ret && dirty)
787 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
788 return ret;
789 }
790
791 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
792 struct buffer_head *bh_result, int create);
793 static int ext4_write_begin(struct file *file, struct address_space *mapping,
794 loff_t pos, unsigned len, unsigned flags,
795 struct page **pagep, void **fsdata)
796 {
797 struct inode *inode = mapping->host;
798 int ret, needed_blocks;
799 handle_t *handle;
800 int retries = 0;
801 struct page *page;
802 pgoff_t index;
803 unsigned from, to;
804
805 trace_ext4_write_begin(inode, pos, len, flags);
806 /*
807 * Reserve one block more for addition to orphan list in case
808 * we allocate blocks but write fails for some reason
809 */
810 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
811 index = pos >> PAGE_CACHE_SHIFT;
812 from = pos & (PAGE_CACHE_SIZE - 1);
813 to = from + len;
814
815 retry:
816 handle = ext4_journal_start(inode, needed_blocks);
817 if (IS_ERR(handle)) {
818 ret = PTR_ERR(handle);
819 goto out;
820 }
821
822 /* We cannot recurse into the filesystem as the transaction is already
823 * started */
824 flags |= AOP_FLAG_NOFS;
825
826 page = grab_cache_page_write_begin(mapping, index, flags);
827 if (!page) {
828 ext4_journal_stop(handle);
829 ret = -ENOMEM;
830 goto out;
831 }
832 *pagep = page;
833
834 if (ext4_should_dioread_nolock(inode))
835 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
836 else
837 ret = __block_write_begin(page, pos, len, ext4_get_block);
838
839 if (!ret && ext4_should_journal_data(inode)) {
840 ret = walk_page_buffers(handle, page_buffers(page),
841 from, to, NULL, do_journal_get_write_access);
842 }
843
844 if (ret) {
845 unlock_page(page);
846 page_cache_release(page);
847 /*
848 * __block_write_begin may have instantiated a few blocks
849 * outside i_size. Trim these off again. Don't need
850 * i_size_read because we hold i_mutex.
851 *
852 * Add inode to orphan list in case we crash before
853 * truncate finishes
854 */
855 if (pos + len > inode->i_size && ext4_can_truncate(inode))
856 ext4_orphan_add(handle, inode);
857
858 ext4_journal_stop(handle);
859 if (pos + len > inode->i_size) {
860 ext4_truncate_failed_write(inode);
861 /*
862 * If truncate failed early the inode might
863 * still be on the orphan list; we need to
864 * make sure the inode is removed from the
865 * orphan list in that case.
866 */
867 if (inode->i_nlink)
868 ext4_orphan_del(NULL, inode);
869 }
870 }
871
872 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
873 goto retry;
874 out:
875 return ret;
876 }
877
878 /* For write_end() in data=journal mode */
879 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
880 {
881 if (!buffer_mapped(bh) || buffer_freed(bh))
882 return 0;
883 set_buffer_uptodate(bh);
884 return ext4_handle_dirty_metadata(handle, NULL, bh);
885 }
886
887 static int ext4_generic_write_end(struct file *file,
888 struct address_space *mapping,
889 loff_t pos, unsigned len, unsigned copied,
890 struct page *page, void *fsdata)
891 {
892 int i_size_changed = 0;
893 struct inode *inode = mapping->host;
894 handle_t *handle = ext4_journal_current_handle();
895
896 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
897
898 /*
899 * No need to use i_size_read() here, the i_size
900 * cannot change under us because we hold i_mutex.
901 *
902 * But it's important to update i_size while still holding page lock:
903 * page writeout could otherwise come in and zero beyond i_size.
904 */
905 if (pos + copied > inode->i_size) {
906 i_size_write(inode, pos + copied);
907 i_size_changed = 1;
908 }
909
910 if (pos + copied > EXT4_I(inode)->i_disksize) {
911 /* We need to mark inode dirty even if
912 * new_i_size is less that inode->i_size
913 * bu greater than i_disksize.(hint delalloc)
914 */
915 ext4_update_i_disksize(inode, (pos + copied));
916 i_size_changed = 1;
917 }
918 unlock_page(page);
919 page_cache_release(page);
920
921 /*
922 * Don't mark the inode dirty under page lock. First, it unnecessarily
923 * makes the holding time of page lock longer. Second, it forces lock
924 * ordering of page lock and transaction start for journaling
925 * filesystems.
926 */
927 if (i_size_changed)
928 ext4_mark_inode_dirty(handle, inode);
929
930 return copied;
931 }
932
933 /*
934 * We need to pick up the new inode size which generic_commit_write gave us
935 * `file' can be NULL - eg, when called from page_symlink().
936 *
937 * ext4 never places buffers on inode->i_mapping->private_list. metadata
938 * buffers are managed internally.
939 */
940 static int ext4_ordered_write_end(struct file *file,
941 struct address_space *mapping,
942 loff_t pos, unsigned len, unsigned copied,
943 struct page *page, void *fsdata)
944 {
945 handle_t *handle = ext4_journal_current_handle();
946 struct inode *inode = mapping->host;
947 int ret = 0, ret2;
948
949 trace_ext4_ordered_write_end(inode, pos, len, copied);
950 ret = ext4_jbd2_file_inode(handle, inode);
951
952 if (ret == 0) {
953 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
954 page, fsdata);
955 copied = ret2;
956 if (pos + len > inode->i_size && ext4_can_truncate(inode))
957 /* if we have allocated more blocks and copied
958 * less. We will have blocks allocated outside
959 * inode->i_size. So truncate them
960 */
961 ext4_orphan_add(handle, inode);
962 if (ret2 < 0)
963 ret = ret2;
964 } else {
965 unlock_page(page);
966 page_cache_release(page);
967 }
968
969 ret2 = ext4_journal_stop(handle);
970 if (!ret)
971 ret = ret2;
972
973 if (pos + len > inode->i_size) {
974 ext4_truncate_failed_write(inode);
975 /*
976 * If truncate failed early the inode might still be
977 * on the orphan list; we need to make sure the inode
978 * is removed from the orphan list in that case.
979 */
980 if (inode->i_nlink)
981 ext4_orphan_del(NULL, inode);
982 }
983
984
985 return ret ? ret : copied;
986 }
987
988 static int ext4_writeback_write_end(struct file *file,
989 struct address_space *mapping,
990 loff_t pos, unsigned len, unsigned copied,
991 struct page *page, void *fsdata)
992 {
993 handle_t *handle = ext4_journal_current_handle();
994 struct inode *inode = mapping->host;
995 int ret = 0, ret2;
996
997 trace_ext4_writeback_write_end(inode, pos, len, copied);
998 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
999 page, fsdata);
1000 copied = ret2;
1001 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1002 /* if we have allocated more blocks and copied
1003 * less. We will have blocks allocated outside
1004 * inode->i_size. So truncate them
1005 */
1006 ext4_orphan_add(handle, inode);
1007
1008 if (ret2 < 0)
1009 ret = ret2;
1010
1011 ret2 = ext4_journal_stop(handle);
1012 if (!ret)
1013 ret = ret2;
1014
1015 if (pos + len > inode->i_size) {
1016 ext4_truncate_failed_write(inode);
1017 /*
1018 * If truncate failed early the inode might still be
1019 * on the orphan list; we need to make sure the inode
1020 * is removed from the orphan list in that case.
1021 */
1022 if (inode->i_nlink)
1023 ext4_orphan_del(NULL, inode);
1024 }
1025
1026 return ret ? ret : copied;
1027 }
1028
1029 static int ext4_journalled_write_end(struct file *file,
1030 struct address_space *mapping,
1031 loff_t pos, unsigned len, unsigned copied,
1032 struct page *page, void *fsdata)
1033 {
1034 handle_t *handle = ext4_journal_current_handle();
1035 struct inode *inode = mapping->host;
1036 int ret = 0, ret2;
1037 int partial = 0;
1038 unsigned from, to;
1039 loff_t new_i_size;
1040
1041 trace_ext4_journalled_write_end(inode, pos, len, copied);
1042 from = pos & (PAGE_CACHE_SIZE - 1);
1043 to = from + len;
1044
1045 BUG_ON(!ext4_handle_valid(handle));
1046
1047 if (copied < len) {
1048 if (!PageUptodate(page))
1049 copied = 0;
1050 page_zero_new_buffers(page, from+copied, to);
1051 }
1052
1053 ret = walk_page_buffers(handle, page_buffers(page), from,
1054 to, &partial, write_end_fn);
1055 if (!partial)
1056 SetPageUptodate(page);
1057 new_i_size = pos + copied;
1058 if (new_i_size > inode->i_size)
1059 i_size_write(inode, pos+copied);
1060 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1061 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1062 if (new_i_size > EXT4_I(inode)->i_disksize) {
1063 ext4_update_i_disksize(inode, new_i_size);
1064 ret2 = ext4_mark_inode_dirty(handle, inode);
1065 if (!ret)
1066 ret = ret2;
1067 }
1068
1069 unlock_page(page);
1070 page_cache_release(page);
1071 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1072 /* if we have allocated more blocks and copied
1073 * less. We will have blocks allocated outside
1074 * inode->i_size. So truncate them
1075 */
1076 ext4_orphan_add(handle, inode);
1077
1078 ret2 = ext4_journal_stop(handle);
1079 if (!ret)
1080 ret = ret2;
1081 if (pos + len > inode->i_size) {
1082 ext4_truncate_failed_write(inode);
1083 /*
1084 * If truncate failed early the inode might still be
1085 * on the orphan list; we need to make sure the inode
1086 * is removed from the orphan list in that case.
1087 */
1088 if (inode->i_nlink)
1089 ext4_orphan_del(NULL, inode);
1090 }
1091
1092 return ret ? ret : copied;
1093 }
1094
1095 /*
1096 * Reserve a single cluster located at lblock
1097 */
1098 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1099 {
1100 int retries = 0;
1101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102 struct ext4_inode_info *ei = EXT4_I(inode);
1103 unsigned int md_needed;
1104 int ret;
1105
1106 /*
1107 * recalculate the amount of metadata blocks to reserve
1108 * in order to allocate nrblocks
1109 * worse case is one extent per block
1110 */
1111 repeat:
1112 spin_lock(&ei->i_block_reservation_lock);
1113 md_needed = EXT4_NUM_B2C(sbi,
1114 ext4_calc_metadata_amount(inode, lblock));
1115 trace_ext4_da_reserve_space(inode, md_needed);
1116 spin_unlock(&ei->i_block_reservation_lock);
1117
1118 /*
1119 * We will charge metadata quota at writeout time; this saves
1120 * us from metadata over-estimation, though we may go over by
1121 * a small amount in the end. Here we just reserve for data.
1122 */
1123 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1124 if (ret)
1125 return ret;
1126 /*
1127 * We do still charge estimated metadata to the sb though;
1128 * we cannot afford to run out of free blocks.
1129 */
1130 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1131 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1132 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1133 yield();
1134 goto repeat;
1135 }
1136 return -ENOSPC;
1137 }
1138 spin_lock(&ei->i_block_reservation_lock);
1139 ei->i_reserved_data_blocks++;
1140 ei->i_reserved_meta_blocks += md_needed;
1141 spin_unlock(&ei->i_block_reservation_lock);
1142
1143 return 0; /* success */
1144 }
1145
1146 static void ext4_da_release_space(struct inode *inode, int to_free)
1147 {
1148 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1149 struct ext4_inode_info *ei = EXT4_I(inode);
1150
1151 if (!to_free)
1152 return; /* Nothing to release, exit */
1153
1154 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1155
1156 trace_ext4_da_release_space(inode, to_free);
1157 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1158 /*
1159 * if there aren't enough reserved blocks, then the
1160 * counter is messed up somewhere. Since this
1161 * function is called from invalidate page, it's
1162 * harmless to return without any action.
1163 */
1164 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1165 "ino %lu, to_free %d with only %d reserved "
1166 "data blocks\n", inode->i_ino, to_free,
1167 ei->i_reserved_data_blocks);
1168 WARN_ON(1);
1169 to_free = ei->i_reserved_data_blocks;
1170 }
1171 ei->i_reserved_data_blocks -= to_free;
1172
1173 if (ei->i_reserved_data_blocks == 0) {
1174 /*
1175 * We can release all of the reserved metadata blocks
1176 * only when we have written all of the delayed
1177 * allocation blocks.
1178 * Note that in case of bigalloc, i_reserved_meta_blocks,
1179 * i_reserved_data_blocks, etc. refer to number of clusters.
1180 */
1181 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1182 ei->i_reserved_meta_blocks);
1183 ei->i_reserved_meta_blocks = 0;
1184 ei->i_da_metadata_calc_len = 0;
1185 }
1186
1187 /* update fs dirty data blocks counter */
1188 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1189
1190 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1191
1192 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1193 }
1194
1195 static void ext4_da_page_release_reservation(struct page *page,
1196 unsigned long offset)
1197 {
1198 int to_release = 0;
1199 struct buffer_head *head, *bh;
1200 unsigned int curr_off = 0;
1201 struct inode *inode = page->mapping->host;
1202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203 int num_clusters;
1204
1205 head = page_buffers(page);
1206 bh = head;
1207 do {
1208 unsigned int next_off = curr_off + bh->b_size;
1209
1210 if ((offset <= curr_off) && (buffer_delay(bh))) {
1211 to_release++;
1212 clear_buffer_delay(bh);
1213 clear_buffer_da_mapped(bh);
1214 }
1215 curr_off = next_off;
1216 } while ((bh = bh->b_this_page) != head);
1217
1218 /* If we have released all the blocks belonging to a cluster, then we
1219 * need to release the reserved space for that cluster. */
1220 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1221 while (num_clusters > 0) {
1222 ext4_fsblk_t lblk;
1223 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1224 ((num_clusters - 1) << sbi->s_cluster_bits);
1225 if (sbi->s_cluster_ratio == 1 ||
1226 !ext4_find_delalloc_cluster(inode, lblk, 1))
1227 ext4_da_release_space(inode, 1);
1228
1229 num_clusters--;
1230 }
1231 }
1232
1233 /*
1234 * Delayed allocation stuff
1235 */
1236
1237 /*
1238 * mpage_da_submit_io - walks through extent of pages and try to write
1239 * them with writepage() call back
1240 *
1241 * @mpd->inode: inode
1242 * @mpd->first_page: first page of the extent
1243 * @mpd->next_page: page after the last page of the extent
1244 *
1245 * By the time mpage_da_submit_io() is called we expect all blocks
1246 * to be allocated. this may be wrong if allocation failed.
1247 *
1248 * As pages are already locked by write_cache_pages(), we can't use it
1249 */
1250 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1251 struct ext4_map_blocks *map)
1252 {
1253 struct pagevec pvec;
1254 unsigned long index, end;
1255 int ret = 0, err, nr_pages, i;
1256 struct inode *inode = mpd->inode;
1257 struct address_space *mapping = inode->i_mapping;
1258 loff_t size = i_size_read(inode);
1259 unsigned int len, block_start;
1260 struct buffer_head *bh, *page_bufs = NULL;
1261 int journal_data = ext4_should_journal_data(inode);
1262 sector_t pblock = 0, cur_logical = 0;
1263 struct ext4_io_submit io_submit;
1264
1265 BUG_ON(mpd->next_page <= mpd->first_page);
1266 memset(&io_submit, 0, sizeof(io_submit));
1267 /*
1268 * We need to start from the first_page to the next_page - 1
1269 * to make sure we also write the mapped dirty buffer_heads.
1270 * If we look at mpd->b_blocknr we would only be looking
1271 * at the currently mapped buffer_heads.
1272 */
1273 index = mpd->first_page;
1274 end = mpd->next_page - 1;
1275
1276 pagevec_init(&pvec, 0);
1277 while (index <= end) {
1278 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1279 if (nr_pages == 0)
1280 break;
1281 for (i = 0; i < nr_pages; i++) {
1282 int commit_write = 0, skip_page = 0;
1283 struct page *page = pvec.pages[i];
1284
1285 index = page->index;
1286 if (index > end)
1287 break;
1288
1289 if (index == size >> PAGE_CACHE_SHIFT)
1290 len = size & ~PAGE_CACHE_MASK;
1291 else
1292 len = PAGE_CACHE_SIZE;
1293 if (map) {
1294 cur_logical = index << (PAGE_CACHE_SHIFT -
1295 inode->i_blkbits);
1296 pblock = map->m_pblk + (cur_logical -
1297 map->m_lblk);
1298 }
1299 index++;
1300
1301 BUG_ON(!PageLocked(page));
1302 BUG_ON(PageWriteback(page));
1303
1304 /*
1305 * If the page does not have buffers (for
1306 * whatever reason), try to create them using
1307 * __block_write_begin. If this fails,
1308 * skip the page and move on.
1309 */
1310 if (!page_has_buffers(page)) {
1311 if (__block_write_begin(page, 0, len,
1312 noalloc_get_block_write)) {
1313 skip_page:
1314 unlock_page(page);
1315 continue;
1316 }
1317 commit_write = 1;
1318 }
1319
1320 bh = page_bufs = page_buffers(page);
1321 block_start = 0;
1322 do {
1323 if (!bh)
1324 goto skip_page;
1325 if (map && (cur_logical >= map->m_lblk) &&
1326 (cur_logical <= (map->m_lblk +
1327 (map->m_len - 1)))) {
1328 if (buffer_delay(bh)) {
1329 clear_buffer_delay(bh);
1330 bh->b_blocknr = pblock;
1331 }
1332 if (buffer_da_mapped(bh))
1333 clear_buffer_da_mapped(bh);
1334 if (buffer_unwritten(bh) ||
1335 buffer_mapped(bh))
1336 BUG_ON(bh->b_blocknr != pblock);
1337 if (map->m_flags & EXT4_MAP_UNINIT)
1338 set_buffer_uninit(bh);
1339 clear_buffer_unwritten(bh);
1340 }
1341
1342 /* skip page if block allocation undone */
1343 if (buffer_delay(bh) || buffer_unwritten(bh))
1344 skip_page = 1;
1345 bh = bh->b_this_page;
1346 block_start += bh->b_size;
1347 cur_logical++;
1348 pblock++;
1349 } while (bh != page_bufs);
1350
1351 if (skip_page)
1352 goto skip_page;
1353
1354 if (commit_write)
1355 /* mark the buffer_heads as dirty & uptodate */
1356 block_commit_write(page, 0, len);
1357
1358 clear_page_dirty_for_io(page);
1359 /*
1360 * Delalloc doesn't support data journalling,
1361 * but eventually maybe we'll lift this
1362 * restriction.
1363 */
1364 if (unlikely(journal_data && PageChecked(page)))
1365 err = __ext4_journalled_writepage(page, len);
1366 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1367 err = ext4_bio_write_page(&io_submit, page,
1368 len, mpd->wbc);
1369 else if (buffer_uninit(page_bufs)) {
1370 ext4_set_bh_endio(page_bufs, inode);
1371 err = block_write_full_page_endio(page,
1372 noalloc_get_block_write,
1373 mpd->wbc, ext4_end_io_buffer_write);
1374 } else
1375 err = block_write_full_page(page,
1376 noalloc_get_block_write, mpd->wbc);
1377
1378 if (!err)
1379 mpd->pages_written++;
1380 /*
1381 * In error case, we have to continue because
1382 * remaining pages are still locked
1383 */
1384 if (ret == 0)
1385 ret = err;
1386 }
1387 pagevec_release(&pvec);
1388 }
1389 ext4_io_submit(&io_submit);
1390 return ret;
1391 }
1392
1393 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1394 {
1395 int nr_pages, i;
1396 pgoff_t index, end;
1397 struct pagevec pvec;
1398 struct inode *inode = mpd->inode;
1399 struct address_space *mapping = inode->i_mapping;
1400
1401 index = mpd->first_page;
1402 end = mpd->next_page - 1;
1403 while (index <= end) {
1404 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1405 if (nr_pages == 0)
1406 break;
1407 for (i = 0; i < nr_pages; i++) {
1408 struct page *page = pvec.pages[i];
1409 if (page->index > end)
1410 break;
1411 BUG_ON(!PageLocked(page));
1412 BUG_ON(PageWriteback(page));
1413 block_invalidatepage(page, 0);
1414 ClearPageUptodate(page);
1415 unlock_page(page);
1416 }
1417 index = pvec.pages[nr_pages - 1]->index + 1;
1418 pagevec_release(&pvec);
1419 }
1420 return;
1421 }
1422
1423 static void ext4_print_free_blocks(struct inode *inode)
1424 {
1425 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1426 printk(KERN_CRIT "Total free blocks count %lld\n",
1427 EXT4_C2B(EXT4_SB(inode->i_sb),
1428 ext4_count_free_clusters(inode->i_sb)));
1429 printk(KERN_CRIT "Free/Dirty block details\n");
1430 printk(KERN_CRIT "free_blocks=%lld\n",
1431 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1432 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1433 printk(KERN_CRIT "dirty_blocks=%lld\n",
1434 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1435 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1436 printk(KERN_CRIT "Block reservation details\n");
1437 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1438 EXT4_I(inode)->i_reserved_data_blocks);
1439 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1440 EXT4_I(inode)->i_reserved_meta_blocks);
1441 return;
1442 }
1443
1444 /*
1445 * mpage_da_map_and_submit - go through given space, map them
1446 * if necessary, and then submit them for I/O
1447 *
1448 * @mpd - bh describing space
1449 *
1450 * The function skips space we know is already mapped to disk blocks.
1451 *
1452 */
1453 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1454 {
1455 int err, blks, get_blocks_flags;
1456 struct ext4_map_blocks map, *mapp = NULL;
1457 sector_t next = mpd->b_blocknr;
1458 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1459 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1460 handle_t *handle = NULL;
1461
1462 /*
1463 * If the blocks are mapped already, or we couldn't accumulate
1464 * any blocks, then proceed immediately to the submission stage.
1465 */
1466 if ((mpd->b_size == 0) ||
1467 ((mpd->b_state & (1 << BH_Mapped)) &&
1468 !(mpd->b_state & (1 << BH_Delay)) &&
1469 !(mpd->b_state & (1 << BH_Unwritten))))
1470 goto submit_io;
1471
1472 handle = ext4_journal_current_handle();
1473 BUG_ON(!handle);
1474
1475 /*
1476 * Call ext4_map_blocks() to allocate any delayed allocation
1477 * blocks, or to convert an uninitialized extent to be
1478 * initialized (in the case where we have written into
1479 * one or more preallocated blocks).
1480 *
1481 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1482 * indicate that we are on the delayed allocation path. This
1483 * affects functions in many different parts of the allocation
1484 * call path. This flag exists primarily because we don't
1485 * want to change *many* call functions, so ext4_map_blocks()
1486 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1487 * inode's allocation semaphore is taken.
1488 *
1489 * If the blocks in questions were delalloc blocks, set
1490 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1491 * variables are updated after the blocks have been allocated.
1492 */
1493 map.m_lblk = next;
1494 map.m_len = max_blocks;
1495 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1496 if (ext4_should_dioread_nolock(mpd->inode))
1497 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1498 if (mpd->b_state & (1 << BH_Delay))
1499 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1500
1501 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1502 if (blks < 0) {
1503 struct super_block *sb = mpd->inode->i_sb;
1504
1505 err = blks;
1506 /*
1507 * If get block returns EAGAIN or ENOSPC and there
1508 * appears to be free blocks we will just let
1509 * mpage_da_submit_io() unlock all of the pages.
1510 */
1511 if (err == -EAGAIN)
1512 goto submit_io;
1513
1514 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1515 mpd->retval = err;
1516 goto submit_io;
1517 }
1518
1519 /*
1520 * get block failure will cause us to loop in
1521 * writepages, because a_ops->writepage won't be able
1522 * to make progress. The page will be redirtied by
1523 * writepage and writepages will again try to write
1524 * the same.
1525 */
1526 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1527 ext4_msg(sb, KERN_CRIT,
1528 "delayed block allocation failed for inode %lu "
1529 "at logical offset %llu with max blocks %zd "
1530 "with error %d", mpd->inode->i_ino,
1531 (unsigned long long) next,
1532 mpd->b_size >> mpd->inode->i_blkbits, err);
1533 ext4_msg(sb, KERN_CRIT,
1534 "This should not happen!! Data will be lost\n");
1535 if (err == -ENOSPC)
1536 ext4_print_free_blocks(mpd->inode);
1537 }
1538 /* invalidate all the pages */
1539 ext4_da_block_invalidatepages(mpd);
1540
1541 /* Mark this page range as having been completed */
1542 mpd->io_done = 1;
1543 return;
1544 }
1545 BUG_ON(blks == 0);
1546
1547 mapp = &map;
1548 if (map.m_flags & EXT4_MAP_NEW) {
1549 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1550 int i;
1551
1552 for (i = 0; i < map.m_len; i++)
1553 unmap_underlying_metadata(bdev, map.m_pblk + i);
1554
1555 if (ext4_should_order_data(mpd->inode)) {
1556 err = ext4_jbd2_file_inode(handle, mpd->inode);
1557 if (err) {
1558 /* Only if the journal is aborted */
1559 mpd->retval = err;
1560 goto submit_io;
1561 }
1562 }
1563 }
1564
1565 /*
1566 * Update on-disk size along with block allocation.
1567 */
1568 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1569 if (disksize > i_size_read(mpd->inode))
1570 disksize = i_size_read(mpd->inode);
1571 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1572 ext4_update_i_disksize(mpd->inode, disksize);
1573 err = ext4_mark_inode_dirty(handle, mpd->inode);
1574 if (err)
1575 ext4_error(mpd->inode->i_sb,
1576 "Failed to mark inode %lu dirty",
1577 mpd->inode->i_ino);
1578 }
1579
1580 submit_io:
1581 mpage_da_submit_io(mpd, mapp);
1582 mpd->io_done = 1;
1583 }
1584
1585 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1586 (1 << BH_Delay) | (1 << BH_Unwritten))
1587
1588 /*
1589 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1590 *
1591 * @mpd->lbh - extent of blocks
1592 * @logical - logical number of the block in the file
1593 * @bh - bh of the block (used to access block's state)
1594 *
1595 * the function is used to collect contig. blocks in same state
1596 */
1597 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1598 sector_t logical, size_t b_size,
1599 unsigned long b_state)
1600 {
1601 sector_t next;
1602 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1603
1604 /*
1605 * XXX Don't go larger than mballoc is willing to allocate
1606 * This is a stopgap solution. We eventually need to fold
1607 * mpage_da_submit_io() into this function and then call
1608 * ext4_map_blocks() multiple times in a loop
1609 */
1610 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1611 goto flush_it;
1612
1613 /* check if thereserved journal credits might overflow */
1614 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1615 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1616 /*
1617 * With non-extent format we are limited by the journal
1618 * credit available. Total credit needed to insert
1619 * nrblocks contiguous blocks is dependent on the
1620 * nrblocks. So limit nrblocks.
1621 */
1622 goto flush_it;
1623 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1624 EXT4_MAX_TRANS_DATA) {
1625 /*
1626 * Adding the new buffer_head would make it cross the
1627 * allowed limit for which we have journal credit
1628 * reserved. So limit the new bh->b_size
1629 */
1630 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1631 mpd->inode->i_blkbits;
1632 /* we will do mpage_da_submit_io in the next loop */
1633 }
1634 }
1635 /*
1636 * First block in the extent
1637 */
1638 if (mpd->b_size == 0) {
1639 mpd->b_blocknr = logical;
1640 mpd->b_size = b_size;
1641 mpd->b_state = b_state & BH_FLAGS;
1642 return;
1643 }
1644
1645 next = mpd->b_blocknr + nrblocks;
1646 /*
1647 * Can we merge the block to our big extent?
1648 */
1649 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1650 mpd->b_size += b_size;
1651 return;
1652 }
1653
1654 flush_it:
1655 /*
1656 * We couldn't merge the block to our extent, so we
1657 * need to flush current extent and start new one
1658 */
1659 mpage_da_map_and_submit(mpd);
1660 return;
1661 }
1662
1663 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1664 {
1665 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1666 }
1667
1668 /*
1669 * This function is grabs code from the very beginning of
1670 * ext4_map_blocks, but assumes that the caller is from delayed write
1671 * time. This function looks up the requested blocks and sets the
1672 * buffer delay bit under the protection of i_data_sem.
1673 */
1674 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1675 struct ext4_map_blocks *map,
1676 struct buffer_head *bh)
1677 {
1678 int retval;
1679 sector_t invalid_block = ~((sector_t) 0xffff);
1680
1681 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1682 invalid_block = ~0;
1683
1684 map->m_flags = 0;
1685 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1686 "logical block %lu\n", inode->i_ino, map->m_len,
1687 (unsigned long) map->m_lblk);
1688 /*
1689 * Try to see if we can get the block without requesting a new
1690 * file system block.
1691 */
1692 down_read((&EXT4_I(inode)->i_data_sem));
1693 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1694 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1695 else
1696 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1697
1698 if (retval == 0) {
1699 /*
1700 * XXX: __block_prepare_write() unmaps passed block,
1701 * is it OK?
1702 */
1703 /* If the block was allocated from previously allocated cluster,
1704 * then we dont need to reserve it again. */
1705 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1706 retval = ext4_da_reserve_space(inode, iblock);
1707 if (retval)
1708 /* not enough space to reserve */
1709 goto out_unlock;
1710 }
1711
1712 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1713 * and it should not appear on the bh->b_state.
1714 */
1715 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1716
1717 map_bh(bh, inode->i_sb, invalid_block);
1718 set_buffer_new(bh);
1719 set_buffer_delay(bh);
1720 }
1721
1722 out_unlock:
1723 up_read((&EXT4_I(inode)->i_data_sem));
1724
1725 return retval;
1726 }
1727
1728 /*
1729 * This is a special get_blocks_t callback which is used by
1730 * ext4_da_write_begin(). It will either return mapped block or
1731 * reserve space for a single block.
1732 *
1733 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1734 * We also have b_blocknr = -1 and b_bdev initialized properly
1735 *
1736 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1737 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1738 * initialized properly.
1739 */
1740 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1741 struct buffer_head *bh, int create)
1742 {
1743 struct ext4_map_blocks map;
1744 int ret = 0;
1745
1746 BUG_ON(create == 0);
1747 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1748
1749 map.m_lblk = iblock;
1750 map.m_len = 1;
1751
1752 /*
1753 * first, we need to know whether the block is allocated already
1754 * preallocated blocks are unmapped but should treated
1755 * the same as allocated blocks.
1756 */
1757 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1758 if (ret <= 0)
1759 return ret;
1760
1761 map_bh(bh, inode->i_sb, map.m_pblk);
1762 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1763
1764 if (buffer_unwritten(bh)) {
1765 /* A delayed write to unwritten bh should be marked
1766 * new and mapped. Mapped ensures that we don't do
1767 * get_block multiple times when we write to the same
1768 * offset and new ensures that we do proper zero out
1769 * for partial write.
1770 */
1771 set_buffer_new(bh);
1772 set_buffer_mapped(bh);
1773 }
1774 return 0;
1775 }
1776
1777 /*
1778 * This function is used as a standard get_block_t calback function
1779 * when there is no desire to allocate any blocks. It is used as a
1780 * callback function for block_write_begin() and block_write_full_page().
1781 * These functions should only try to map a single block at a time.
1782 *
1783 * Since this function doesn't do block allocations even if the caller
1784 * requests it by passing in create=1, it is critically important that
1785 * any caller checks to make sure that any buffer heads are returned
1786 * by this function are either all already mapped or marked for
1787 * delayed allocation before calling block_write_full_page(). Otherwise,
1788 * b_blocknr could be left unitialized, and the page write functions will
1789 * be taken by surprise.
1790 */
1791 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1792 struct buffer_head *bh_result, int create)
1793 {
1794 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1795 return _ext4_get_block(inode, iblock, bh_result, 0);
1796 }
1797
1798 static int bget_one(handle_t *handle, struct buffer_head *bh)
1799 {
1800 get_bh(bh);
1801 return 0;
1802 }
1803
1804 static int bput_one(handle_t *handle, struct buffer_head *bh)
1805 {
1806 put_bh(bh);
1807 return 0;
1808 }
1809
1810 static int __ext4_journalled_writepage(struct page *page,
1811 unsigned int len)
1812 {
1813 struct address_space *mapping = page->mapping;
1814 struct inode *inode = mapping->host;
1815 struct buffer_head *page_bufs;
1816 handle_t *handle = NULL;
1817 int ret = 0;
1818 int err;
1819
1820 ClearPageChecked(page);
1821 page_bufs = page_buffers(page);
1822 BUG_ON(!page_bufs);
1823 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1824 /* As soon as we unlock the page, it can go away, but we have
1825 * references to buffers so we are safe */
1826 unlock_page(page);
1827
1828 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1829 if (IS_ERR(handle)) {
1830 ret = PTR_ERR(handle);
1831 goto out;
1832 }
1833
1834 BUG_ON(!ext4_handle_valid(handle));
1835
1836 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1837 do_journal_get_write_access);
1838
1839 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1840 write_end_fn);
1841 if (ret == 0)
1842 ret = err;
1843 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1844 err = ext4_journal_stop(handle);
1845 if (!ret)
1846 ret = err;
1847
1848 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1849 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1850 out:
1851 return ret;
1852 }
1853
1854 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1855 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1856
1857 /*
1858 * Note that we don't need to start a transaction unless we're journaling data
1859 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1860 * need to file the inode to the transaction's list in ordered mode because if
1861 * we are writing back data added by write(), the inode is already there and if
1862 * we are writing back data modified via mmap(), no one guarantees in which
1863 * transaction the data will hit the disk. In case we are journaling data, we
1864 * cannot start transaction directly because transaction start ranks above page
1865 * lock so we have to do some magic.
1866 *
1867 * This function can get called via...
1868 * - ext4_da_writepages after taking page lock (have journal handle)
1869 * - journal_submit_inode_data_buffers (no journal handle)
1870 * - shrink_page_list via pdflush (no journal handle)
1871 * - grab_page_cache when doing write_begin (have journal handle)
1872 *
1873 * We don't do any block allocation in this function. If we have page with
1874 * multiple blocks we need to write those buffer_heads that are mapped. This
1875 * is important for mmaped based write. So if we do with blocksize 1K
1876 * truncate(f, 1024);
1877 * a = mmap(f, 0, 4096);
1878 * a[0] = 'a';
1879 * truncate(f, 4096);
1880 * we have in the page first buffer_head mapped via page_mkwrite call back
1881 * but other bufer_heads would be unmapped but dirty(dirty done via the
1882 * do_wp_page). So writepage should write the first block. If we modify
1883 * the mmap area beyond 1024 we will again get a page_fault and the
1884 * page_mkwrite callback will do the block allocation and mark the
1885 * buffer_heads mapped.
1886 *
1887 * We redirty the page if we have any buffer_heads that is either delay or
1888 * unwritten in the page.
1889 *
1890 * We can get recursively called as show below.
1891 *
1892 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1893 * ext4_writepage()
1894 *
1895 * But since we don't do any block allocation we should not deadlock.
1896 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1897 */
1898 static int ext4_writepage(struct page *page,
1899 struct writeback_control *wbc)
1900 {
1901 int ret = 0, commit_write = 0;
1902 loff_t size;
1903 unsigned int len;
1904 struct buffer_head *page_bufs = NULL;
1905 struct inode *inode = page->mapping->host;
1906
1907 trace_ext4_writepage(page);
1908 size = i_size_read(inode);
1909 if (page->index == size >> PAGE_CACHE_SHIFT)
1910 len = size & ~PAGE_CACHE_MASK;
1911 else
1912 len = PAGE_CACHE_SIZE;
1913
1914 /*
1915 * If the page does not have buffers (for whatever reason),
1916 * try to create them using __block_write_begin. If this
1917 * fails, redirty the page and move on.
1918 */
1919 if (!page_has_buffers(page)) {
1920 if (__block_write_begin(page, 0, len,
1921 noalloc_get_block_write)) {
1922 redirty_page:
1923 redirty_page_for_writepage(wbc, page);
1924 unlock_page(page);
1925 return 0;
1926 }
1927 commit_write = 1;
1928 }
1929 page_bufs = page_buffers(page);
1930 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1931 ext4_bh_delay_or_unwritten)) {
1932 /*
1933 * We don't want to do block allocation, so redirty
1934 * the page and return. We may reach here when we do
1935 * a journal commit via journal_submit_inode_data_buffers.
1936 * We can also reach here via shrink_page_list
1937 */
1938 goto redirty_page;
1939 }
1940 if (commit_write)
1941 /* now mark the buffer_heads as dirty and uptodate */
1942 block_commit_write(page, 0, len);
1943
1944 if (PageChecked(page) && ext4_should_journal_data(inode))
1945 /*
1946 * It's mmapped pagecache. Add buffers and journal it. There
1947 * doesn't seem much point in redirtying the page here.
1948 */
1949 return __ext4_journalled_writepage(page, len);
1950
1951 if (buffer_uninit(page_bufs)) {
1952 ext4_set_bh_endio(page_bufs, inode);
1953 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1954 wbc, ext4_end_io_buffer_write);
1955 } else
1956 ret = block_write_full_page(page, noalloc_get_block_write,
1957 wbc);
1958
1959 return ret;
1960 }
1961
1962 /*
1963 * This is called via ext4_da_writepages() to
1964 * calculate the total number of credits to reserve to fit
1965 * a single extent allocation into a single transaction,
1966 * ext4_da_writpeages() will loop calling this before
1967 * the block allocation.
1968 */
1969
1970 static int ext4_da_writepages_trans_blocks(struct inode *inode)
1971 {
1972 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1973
1974 /*
1975 * With non-extent format the journal credit needed to
1976 * insert nrblocks contiguous block is dependent on
1977 * number of contiguous block. So we will limit
1978 * number of contiguous block to a sane value
1979 */
1980 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
1981 (max_blocks > EXT4_MAX_TRANS_DATA))
1982 max_blocks = EXT4_MAX_TRANS_DATA;
1983
1984 return ext4_chunk_trans_blocks(inode, max_blocks);
1985 }
1986
1987 /*
1988 * write_cache_pages_da - walk the list of dirty pages of the given
1989 * address space and accumulate pages that need writing, and call
1990 * mpage_da_map_and_submit to map a single contiguous memory region
1991 * and then write them.
1992 */
1993 static int write_cache_pages_da(struct address_space *mapping,
1994 struct writeback_control *wbc,
1995 struct mpage_da_data *mpd,
1996 pgoff_t *done_index)
1997 {
1998 struct buffer_head *bh, *head;
1999 struct inode *inode = mapping->host;
2000 struct pagevec pvec;
2001 unsigned int nr_pages;
2002 sector_t logical;
2003 pgoff_t index, end;
2004 long nr_to_write = wbc->nr_to_write;
2005 int i, tag, ret = 0;
2006
2007 memset(mpd, 0, sizeof(struct mpage_da_data));
2008 mpd->wbc = wbc;
2009 mpd->inode = inode;
2010 pagevec_init(&pvec, 0);
2011 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2012 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2013
2014 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2015 tag = PAGECACHE_TAG_TOWRITE;
2016 else
2017 tag = PAGECACHE_TAG_DIRTY;
2018
2019 *done_index = index;
2020 while (index <= end) {
2021 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2022 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2023 if (nr_pages == 0)
2024 return 0;
2025
2026 for (i = 0; i < nr_pages; i++) {
2027 struct page *page = pvec.pages[i];
2028
2029 /*
2030 * At this point, the page may be truncated or
2031 * invalidated (changing page->mapping to NULL), or
2032 * even swizzled back from swapper_space to tmpfs file
2033 * mapping. However, page->index will not change
2034 * because we have a reference on the page.
2035 */
2036 if (page->index > end)
2037 goto out;
2038
2039 *done_index = page->index + 1;
2040
2041 /*
2042 * If we can't merge this page, and we have
2043 * accumulated an contiguous region, write it
2044 */
2045 if ((mpd->next_page != page->index) &&
2046 (mpd->next_page != mpd->first_page)) {
2047 mpage_da_map_and_submit(mpd);
2048 goto ret_extent_tail;
2049 }
2050
2051 lock_page(page);
2052
2053 /*
2054 * If the page is no longer dirty, or its
2055 * mapping no longer corresponds to inode we
2056 * are writing (which means it has been
2057 * truncated or invalidated), or the page is
2058 * already under writeback and we are not
2059 * doing a data integrity writeback, skip the page
2060 */
2061 if (!PageDirty(page) ||
2062 (PageWriteback(page) &&
2063 (wbc->sync_mode == WB_SYNC_NONE)) ||
2064 unlikely(page->mapping != mapping)) {
2065 unlock_page(page);
2066 continue;
2067 }
2068
2069 wait_on_page_writeback(page);
2070 BUG_ON(PageWriteback(page));
2071
2072 if (mpd->next_page != page->index)
2073 mpd->first_page = page->index;
2074 mpd->next_page = page->index + 1;
2075 logical = (sector_t) page->index <<
2076 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077
2078 if (!page_has_buffers(page)) {
2079 mpage_add_bh_to_extent(mpd, logical,
2080 PAGE_CACHE_SIZE,
2081 (1 << BH_Dirty) | (1 << BH_Uptodate));
2082 if (mpd->io_done)
2083 goto ret_extent_tail;
2084 } else {
2085 /*
2086 * Page with regular buffer heads,
2087 * just add all dirty ones
2088 */
2089 head = page_buffers(page);
2090 bh = head;
2091 do {
2092 BUG_ON(buffer_locked(bh));
2093 /*
2094 * We need to try to allocate
2095 * unmapped blocks in the same page.
2096 * Otherwise we won't make progress
2097 * with the page in ext4_writepage
2098 */
2099 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2100 mpage_add_bh_to_extent(mpd, logical,
2101 bh->b_size,
2102 bh->b_state);
2103 if (mpd->io_done)
2104 goto ret_extent_tail;
2105 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2106 /*
2107 * mapped dirty buffer. We need
2108 * to update the b_state
2109 * because we look at b_state
2110 * in mpage_da_map_blocks. We
2111 * don't update b_size because
2112 * if we find an unmapped
2113 * buffer_head later we need to
2114 * use the b_state flag of that
2115 * buffer_head.
2116 */
2117 if (mpd->b_size == 0)
2118 mpd->b_state = bh->b_state & BH_FLAGS;
2119 }
2120 logical++;
2121 } while ((bh = bh->b_this_page) != head);
2122 }
2123
2124 if (nr_to_write > 0) {
2125 nr_to_write--;
2126 if (nr_to_write == 0 &&
2127 wbc->sync_mode == WB_SYNC_NONE)
2128 /*
2129 * We stop writing back only if we are
2130 * not doing integrity sync. In case of
2131 * integrity sync we have to keep going
2132 * because someone may be concurrently
2133 * dirtying pages, and we might have
2134 * synced a lot of newly appeared dirty
2135 * pages, but have not synced all of the
2136 * old dirty pages.
2137 */
2138 goto out;
2139 }
2140 }
2141 pagevec_release(&pvec);
2142 cond_resched();
2143 }
2144 return 0;
2145 ret_extent_tail:
2146 ret = MPAGE_DA_EXTENT_TAIL;
2147 out:
2148 pagevec_release(&pvec);
2149 cond_resched();
2150 return ret;
2151 }
2152
2153
2154 static int ext4_da_writepages(struct address_space *mapping,
2155 struct writeback_control *wbc)
2156 {
2157 pgoff_t index;
2158 int range_whole = 0;
2159 handle_t *handle = NULL;
2160 struct mpage_da_data mpd;
2161 struct inode *inode = mapping->host;
2162 int pages_written = 0;
2163 unsigned int max_pages;
2164 int range_cyclic, cycled = 1, io_done = 0;
2165 int needed_blocks, ret = 0;
2166 long desired_nr_to_write, nr_to_writebump = 0;
2167 loff_t range_start = wbc->range_start;
2168 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2169 pgoff_t done_index = 0;
2170 pgoff_t end;
2171 struct blk_plug plug;
2172
2173 trace_ext4_da_writepages(inode, wbc);
2174
2175 /*
2176 * No pages to write? This is mainly a kludge to avoid starting
2177 * a transaction for special inodes like journal inode on last iput()
2178 * because that could violate lock ordering on umount
2179 */
2180 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2181 return 0;
2182
2183 /*
2184 * If the filesystem has aborted, it is read-only, so return
2185 * right away instead of dumping stack traces later on that
2186 * will obscure the real source of the problem. We test
2187 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2188 * the latter could be true if the filesystem is mounted
2189 * read-only, and in that case, ext4_da_writepages should
2190 * *never* be called, so if that ever happens, we would want
2191 * the stack trace.
2192 */
2193 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2194 return -EROFS;
2195
2196 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2197 range_whole = 1;
2198
2199 range_cyclic = wbc->range_cyclic;
2200 if (wbc->range_cyclic) {
2201 index = mapping->writeback_index;
2202 if (index)
2203 cycled = 0;
2204 wbc->range_start = index << PAGE_CACHE_SHIFT;
2205 wbc->range_end = LLONG_MAX;
2206 wbc->range_cyclic = 0;
2207 end = -1;
2208 } else {
2209 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2210 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2211 }
2212
2213 /*
2214 * This works around two forms of stupidity. The first is in
2215 * the writeback code, which caps the maximum number of pages
2216 * written to be 1024 pages. This is wrong on multiple
2217 * levels; different architectues have a different page size,
2218 * which changes the maximum amount of data which gets
2219 * written. Secondly, 4 megabytes is way too small. XFS
2220 * forces this value to be 16 megabytes by multiplying
2221 * nr_to_write parameter by four, and then relies on its
2222 * allocator to allocate larger extents to make them
2223 * contiguous. Unfortunately this brings us to the second
2224 * stupidity, which is that ext4's mballoc code only allocates
2225 * at most 2048 blocks. So we force contiguous writes up to
2226 * the number of dirty blocks in the inode, or
2227 * sbi->max_writeback_mb_bump whichever is smaller.
2228 */
2229 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2230 if (!range_cyclic && range_whole) {
2231 if (wbc->nr_to_write == LONG_MAX)
2232 desired_nr_to_write = wbc->nr_to_write;
2233 else
2234 desired_nr_to_write = wbc->nr_to_write * 8;
2235 } else
2236 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2237 max_pages);
2238 if (desired_nr_to_write > max_pages)
2239 desired_nr_to_write = max_pages;
2240
2241 if (wbc->nr_to_write < desired_nr_to_write) {
2242 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2243 wbc->nr_to_write = desired_nr_to_write;
2244 }
2245
2246 retry:
2247 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2248 tag_pages_for_writeback(mapping, index, end);
2249
2250 blk_start_plug(&plug);
2251 while (!ret && wbc->nr_to_write > 0) {
2252
2253 /*
2254 * we insert one extent at a time. So we need
2255 * credit needed for single extent allocation.
2256 * journalled mode is currently not supported
2257 * by delalloc
2258 */
2259 BUG_ON(ext4_should_journal_data(inode));
2260 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2261
2262 /* start a new transaction*/
2263 handle = ext4_journal_start(inode, needed_blocks);
2264 if (IS_ERR(handle)) {
2265 ret = PTR_ERR(handle);
2266 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2267 "%ld pages, ino %lu; err %d", __func__,
2268 wbc->nr_to_write, inode->i_ino, ret);
2269 goto out_writepages;
2270 }
2271
2272 /*
2273 * Now call write_cache_pages_da() to find the next
2274 * contiguous region of logical blocks that need
2275 * blocks to be allocated by ext4 and submit them.
2276 */
2277 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2278 /*
2279 * If we have a contiguous extent of pages and we
2280 * haven't done the I/O yet, map the blocks and submit
2281 * them for I/O.
2282 */
2283 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2284 mpage_da_map_and_submit(&mpd);
2285 ret = MPAGE_DA_EXTENT_TAIL;
2286 }
2287 trace_ext4_da_write_pages(inode, &mpd);
2288 wbc->nr_to_write -= mpd.pages_written;
2289
2290 ext4_journal_stop(handle);
2291
2292 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2293 /* commit the transaction which would
2294 * free blocks released in the transaction
2295 * and try again
2296 */
2297 jbd2_journal_force_commit_nested(sbi->s_journal);
2298 ret = 0;
2299 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2300 /*
2301 * Got one extent now try with rest of the pages.
2302 * If mpd.retval is set -EIO, journal is aborted.
2303 * So we don't need to write any more.
2304 */
2305 pages_written += mpd.pages_written;
2306 ret = mpd.retval;
2307 io_done = 1;
2308 } else if (wbc->nr_to_write)
2309 /*
2310 * There is no more writeout needed
2311 * or we requested for a noblocking writeout
2312 * and we found the device congested
2313 */
2314 break;
2315 }
2316 blk_finish_plug(&plug);
2317 if (!io_done && !cycled) {
2318 cycled = 1;
2319 index = 0;
2320 wbc->range_start = index << PAGE_CACHE_SHIFT;
2321 wbc->range_end = mapping->writeback_index - 1;
2322 goto retry;
2323 }
2324
2325 /* Update index */
2326 wbc->range_cyclic = range_cyclic;
2327 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2328 /*
2329 * set the writeback_index so that range_cyclic
2330 * mode will write it back later
2331 */
2332 mapping->writeback_index = done_index;
2333
2334 out_writepages:
2335 wbc->nr_to_write -= nr_to_writebump;
2336 wbc->range_start = range_start;
2337 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2338 return ret;
2339 }
2340
2341 #define FALL_BACK_TO_NONDELALLOC 1
2342 static int ext4_nonda_switch(struct super_block *sb)
2343 {
2344 s64 free_blocks, dirty_blocks;
2345 struct ext4_sb_info *sbi = EXT4_SB(sb);
2346
2347 /*
2348 * switch to non delalloc mode if we are running low
2349 * on free block. The free block accounting via percpu
2350 * counters can get slightly wrong with percpu_counter_batch getting
2351 * accumulated on each CPU without updating global counters
2352 * Delalloc need an accurate free block accounting. So switch
2353 * to non delalloc when we are near to error range.
2354 */
2355 free_blocks = EXT4_C2B(sbi,
2356 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2357 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2358 if (2 * free_blocks < 3 * dirty_blocks ||
2359 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2360 /*
2361 * free block count is less than 150% of dirty blocks
2362 * or free blocks is less than watermark
2363 */
2364 return 1;
2365 }
2366 /*
2367 * Even if we don't switch but are nearing capacity,
2368 * start pushing delalloc when 1/2 of free blocks are dirty.
2369 */
2370 if (free_blocks < 2 * dirty_blocks)
2371 writeback_inodes_sb_if_idle(sb);
2372
2373 return 0;
2374 }
2375
2376 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2377 loff_t pos, unsigned len, unsigned flags,
2378 struct page **pagep, void **fsdata)
2379 {
2380 int ret, retries = 0;
2381 struct page *page;
2382 pgoff_t index;
2383 struct inode *inode = mapping->host;
2384 handle_t *handle;
2385 loff_t page_len;
2386
2387 index = pos >> PAGE_CACHE_SHIFT;
2388
2389 if (ext4_nonda_switch(inode->i_sb)) {
2390 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2391 return ext4_write_begin(file, mapping, pos,
2392 len, flags, pagep, fsdata);
2393 }
2394 *fsdata = (void *)0;
2395 trace_ext4_da_write_begin(inode, pos, len, flags);
2396 retry:
2397 /*
2398 * With delayed allocation, we don't log the i_disksize update
2399 * if there is delayed block allocation. But we still need
2400 * to journalling the i_disksize update if writes to the end
2401 * of file which has an already mapped buffer.
2402 */
2403 handle = ext4_journal_start(inode, 1);
2404 if (IS_ERR(handle)) {
2405 ret = PTR_ERR(handle);
2406 goto out;
2407 }
2408 /* We cannot recurse into the filesystem as the transaction is already
2409 * started */
2410 flags |= AOP_FLAG_NOFS;
2411
2412 page = grab_cache_page_write_begin(mapping, index, flags);
2413 if (!page) {
2414 ext4_journal_stop(handle);
2415 ret = -ENOMEM;
2416 goto out;
2417 }
2418 *pagep = page;
2419
2420 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2421 if (ret < 0) {
2422 unlock_page(page);
2423 ext4_journal_stop(handle);
2424 page_cache_release(page);
2425 /*
2426 * block_write_begin may have instantiated a few blocks
2427 * outside i_size. Trim these off again. Don't need
2428 * i_size_read because we hold i_mutex.
2429 */
2430 if (pos + len > inode->i_size)
2431 ext4_truncate_failed_write(inode);
2432 } else {
2433 page_len = pos & (PAGE_CACHE_SIZE - 1);
2434 if (page_len > 0) {
2435 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2436 inode, page, pos - page_len, page_len,
2437 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2438 }
2439 }
2440
2441 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2442 goto retry;
2443 out:
2444 return ret;
2445 }
2446
2447 /*
2448 * Check if we should update i_disksize
2449 * when write to the end of file but not require block allocation
2450 */
2451 static int ext4_da_should_update_i_disksize(struct page *page,
2452 unsigned long offset)
2453 {
2454 struct buffer_head *bh;
2455 struct inode *inode = page->mapping->host;
2456 unsigned int idx;
2457 int i;
2458
2459 bh = page_buffers(page);
2460 idx = offset >> inode->i_blkbits;
2461
2462 for (i = 0; i < idx; i++)
2463 bh = bh->b_this_page;
2464
2465 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2466 return 0;
2467 return 1;
2468 }
2469
2470 static int ext4_da_write_end(struct file *file,
2471 struct address_space *mapping,
2472 loff_t pos, unsigned len, unsigned copied,
2473 struct page *page, void *fsdata)
2474 {
2475 struct inode *inode = mapping->host;
2476 int ret = 0, ret2;
2477 handle_t *handle = ext4_journal_current_handle();
2478 loff_t new_i_size;
2479 unsigned long start, end;
2480 int write_mode = (int)(unsigned long)fsdata;
2481 loff_t page_len;
2482
2483 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2484 if (ext4_should_order_data(inode)) {
2485 return ext4_ordered_write_end(file, mapping, pos,
2486 len, copied, page, fsdata);
2487 } else if (ext4_should_writeback_data(inode)) {
2488 return ext4_writeback_write_end(file, mapping, pos,
2489 len, copied, page, fsdata);
2490 } else {
2491 BUG();
2492 }
2493 }
2494
2495 trace_ext4_da_write_end(inode, pos, len, copied);
2496 start = pos & (PAGE_CACHE_SIZE - 1);
2497 end = start + copied - 1;
2498
2499 /*
2500 * generic_write_end() will run mark_inode_dirty() if i_size
2501 * changes. So let's piggyback the i_disksize mark_inode_dirty
2502 * into that.
2503 */
2504
2505 new_i_size = pos + copied;
2506 if (new_i_size > EXT4_I(inode)->i_disksize) {
2507 if (ext4_da_should_update_i_disksize(page, end)) {
2508 down_write(&EXT4_I(inode)->i_data_sem);
2509 if (new_i_size > EXT4_I(inode)->i_disksize) {
2510 /*
2511 * Updating i_disksize when extending file
2512 * without needing block allocation
2513 */
2514 if (ext4_should_order_data(inode))
2515 ret = ext4_jbd2_file_inode(handle,
2516 inode);
2517
2518 EXT4_I(inode)->i_disksize = new_i_size;
2519 }
2520 up_write(&EXT4_I(inode)->i_data_sem);
2521 /* We need to mark inode dirty even if
2522 * new_i_size is less that inode->i_size
2523 * bu greater than i_disksize.(hint delalloc)
2524 */
2525 ext4_mark_inode_dirty(handle, inode);
2526 }
2527 }
2528 ret2 = generic_write_end(file, mapping, pos, len, copied,
2529 page, fsdata);
2530
2531 page_len = PAGE_CACHE_SIZE -
2532 ((pos + copied - 1) & (PAGE_CACHE_SIZE - 1));
2533
2534 if (page_len > 0) {
2535 ret = ext4_discard_partial_page_buffers_no_lock(handle,
2536 inode, page, pos + copied - 1, page_len,
2537 EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED);
2538 }
2539
2540 copied = ret2;
2541 if (ret2 < 0)
2542 ret = ret2;
2543 ret2 = ext4_journal_stop(handle);
2544 if (!ret)
2545 ret = ret2;
2546
2547 return ret ? ret : copied;
2548 }
2549
2550 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2551 {
2552 /*
2553 * Drop reserved blocks
2554 */
2555 BUG_ON(!PageLocked(page));
2556 if (!page_has_buffers(page))
2557 goto out;
2558
2559 ext4_da_page_release_reservation(page, offset);
2560
2561 out:
2562 ext4_invalidatepage(page, offset);
2563
2564 return;
2565 }
2566
2567 /*
2568 * Force all delayed allocation blocks to be allocated for a given inode.
2569 */
2570 int ext4_alloc_da_blocks(struct inode *inode)
2571 {
2572 trace_ext4_alloc_da_blocks(inode);
2573
2574 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2575 !EXT4_I(inode)->i_reserved_meta_blocks)
2576 return 0;
2577
2578 /*
2579 * We do something simple for now. The filemap_flush() will
2580 * also start triggering a write of the data blocks, which is
2581 * not strictly speaking necessary (and for users of
2582 * laptop_mode, not even desirable). However, to do otherwise
2583 * would require replicating code paths in:
2584 *
2585 * ext4_da_writepages() ->
2586 * write_cache_pages() ---> (via passed in callback function)
2587 * __mpage_da_writepage() -->
2588 * mpage_add_bh_to_extent()
2589 * mpage_da_map_blocks()
2590 *
2591 * The problem is that write_cache_pages(), located in
2592 * mm/page-writeback.c, marks pages clean in preparation for
2593 * doing I/O, which is not desirable if we're not planning on
2594 * doing I/O at all.
2595 *
2596 * We could call write_cache_pages(), and then redirty all of
2597 * the pages by calling redirty_page_for_writepage() but that
2598 * would be ugly in the extreme. So instead we would need to
2599 * replicate parts of the code in the above functions,
2600 * simplifying them because we wouldn't actually intend to
2601 * write out the pages, but rather only collect contiguous
2602 * logical block extents, call the multi-block allocator, and
2603 * then update the buffer heads with the block allocations.
2604 *
2605 * For now, though, we'll cheat by calling filemap_flush(),
2606 * which will map the blocks, and start the I/O, but not
2607 * actually wait for the I/O to complete.
2608 */
2609 return filemap_flush(inode->i_mapping);
2610 }
2611
2612 /*
2613 * bmap() is special. It gets used by applications such as lilo and by
2614 * the swapper to find the on-disk block of a specific piece of data.
2615 *
2616 * Naturally, this is dangerous if the block concerned is still in the
2617 * journal. If somebody makes a swapfile on an ext4 data-journaling
2618 * filesystem and enables swap, then they may get a nasty shock when the
2619 * data getting swapped to that swapfile suddenly gets overwritten by
2620 * the original zero's written out previously to the journal and
2621 * awaiting writeback in the kernel's buffer cache.
2622 *
2623 * So, if we see any bmap calls here on a modified, data-journaled file,
2624 * take extra steps to flush any blocks which might be in the cache.
2625 */
2626 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2627 {
2628 struct inode *inode = mapping->host;
2629 journal_t *journal;
2630 int err;
2631
2632 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2633 test_opt(inode->i_sb, DELALLOC)) {
2634 /*
2635 * With delalloc we want to sync the file
2636 * so that we can make sure we allocate
2637 * blocks for file
2638 */
2639 filemap_write_and_wait(mapping);
2640 }
2641
2642 if (EXT4_JOURNAL(inode) &&
2643 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2644 /*
2645 * This is a REALLY heavyweight approach, but the use of
2646 * bmap on dirty files is expected to be extremely rare:
2647 * only if we run lilo or swapon on a freshly made file
2648 * do we expect this to happen.
2649 *
2650 * (bmap requires CAP_SYS_RAWIO so this does not
2651 * represent an unprivileged user DOS attack --- we'd be
2652 * in trouble if mortal users could trigger this path at
2653 * will.)
2654 *
2655 * NB. EXT4_STATE_JDATA is not set on files other than
2656 * regular files. If somebody wants to bmap a directory
2657 * or symlink and gets confused because the buffer
2658 * hasn't yet been flushed to disk, they deserve
2659 * everything they get.
2660 */
2661
2662 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2663 journal = EXT4_JOURNAL(inode);
2664 jbd2_journal_lock_updates(journal);
2665 err = jbd2_journal_flush(journal);
2666 jbd2_journal_unlock_updates(journal);
2667
2668 if (err)
2669 return 0;
2670 }
2671
2672 return generic_block_bmap(mapping, block, ext4_get_block);
2673 }
2674
2675 static int ext4_readpage(struct file *file, struct page *page)
2676 {
2677 trace_ext4_readpage(page);
2678 return mpage_readpage(page, ext4_get_block);
2679 }
2680
2681 static int
2682 ext4_readpages(struct file *file, struct address_space *mapping,
2683 struct list_head *pages, unsigned nr_pages)
2684 {
2685 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2686 }
2687
2688 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2689 {
2690 struct buffer_head *head, *bh;
2691 unsigned int curr_off = 0;
2692
2693 if (!page_has_buffers(page))
2694 return;
2695 head = bh = page_buffers(page);
2696 do {
2697 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2698 && bh->b_private) {
2699 ext4_free_io_end(bh->b_private);
2700 bh->b_private = NULL;
2701 bh->b_end_io = NULL;
2702 }
2703 curr_off = curr_off + bh->b_size;
2704 bh = bh->b_this_page;
2705 } while (bh != head);
2706 }
2707
2708 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2709 {
2710 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2711
2712 trace_ext4_invalidatepage(page, offset);
2713
2714 /*
2715 * free any io_end structure allocated for buffers to be discarded
2716 */
2717 if (ext4_should_dioread_nolock(page->mapping->host))
2718 ext4_invalidatepage_free_endio(page, offset);
2719 /*
2720 * If it's a full truncate we just forget about the pending dirtying
2721 */
2722 if (offset == 0)
2723 ClearPageChecked(page);
2724
2725 if (journal)
2726 jbd2_journal_invalidatepage(journal, page, offset);
2727 else
2728 block_invalidatepage(page, offset);
2729 }
2730
2731 static int ext4_releasepage(struct page *page, gfp_t wait)
2732 {
2733 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2734
2735 trace_ext4_releasepage(page);
2736
2737 WARN_ON(PageChecked(page));
2738 if (!page_has_buffers(page))
2739 return 0;
2740 if (journal)
2741 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2742 else
2743 return try_to_free_buffers(page);
2744 }
2745
2746 /*
2747 * ext4_get_block used when preparing for a DIO write or buffer write.
2748 * We allocate an uinitialized extent if blocks haven't been allocated.
2749 * The extent will be converted to initialized after the IO is complete.
2750 */
2751 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2752 struct buffer_head *bh_result, int create)
2753 {
2754 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2755 inode->i_ino, create);
2756 return _ext4_get_block(inode, iblock, bh_result,
2757 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2758 }
2759
2760 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2761 ssize_t size, void *private, int ret,
2762 bool is_async)
2763 {
2764 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2765 ext4_io_end_t *io_end = iocb->private;
2766 struct workqueue_struct *wq;
2767 unsigned long flags;
2768 struct ext4_inode_info *ei;
2769
2770 /* if not async direct IO or dio with 0 bytes write, just return */
2771 if (!io_end || !size)
2772 goto out;
2773
2774 ext_debug("ext4_end_io_dio(): io_end 0x%p"
2775 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2776 iocb->private, io_end->inode->i_ino, iocb, offset,
2777 size);
2778
2779 /* if not aio dio with unwritten extents, just free io and return */
2780 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2781 ext4_free_io_end(io_end);
2782 iocb->private = NULL;
2783 out:
2784 if (is_async)
2785 aio_complete(iocb, ret, 0);
2786 inode_dio_done(inode);
2787 return;
2788 }
2789
2790 io_end->offset = offset;
2791 io_end->size = size;
2792 if (is_async) {
2793 io_end->iocb = iocb;
2794 io_end->result = ret;
2795 }
2796 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2797
2798 /* Add the io_end to per-inode completed aio dio list*/
2799 ei = EXT4_I(io_end->inode);
2800 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2801 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2802 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
2803
2804 /* queue the work to convert unwritten extents to written */
2805 queue_work(wq, &io_end->work);
2806 iocb->private = NULL;
2807
2808 /* XXX: probably should move into the real I/O completion handler */
2809 inode_dio_done(inode);
2810 }
2811
2812 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2813 {
2814 ext4_io_end_t *io_end = bh->b_private;
2815 struct workqueue_struct *wq;
2816 struct inode *inode;
2817 unsigned long flags;
2818
2819 if (!test_clear_buffer_uninit(bh) || !io_end)
2820 goto out;
2821
2822 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2823 printk("sb umounted, discard end_io request for inode %lu\n",
2824 io_end->inode->i_ino);
2825 ext4_free_io_end(io_end);
2826 goto out;
2827 }
2828
2829 /*
2830 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2831 * but being more careful is always safe for the future change.
2832 */
2833 inode = io_end->inode;
2834 ext4_set_io_unwritten_flag(inode, io_end);
2835
2836 /* Add the io_end to per-inode completed io list*/
2837 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2838 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2839 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2840
2841 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2842 /* queue the work to convert unwritten extents to written */
2843 queue_work(wq, &io_end->work);
2844 out:
2845 bh->b_private = NULL;
2846 bh->b_end_io = NULL;
2847 clear_buffer_uninit(bh);
2848 end_buffer_async_write(bh, uptodate);
2849 }
2850
2851 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2852 {
2853 ext4_io_end_t *io_end;
2854 struct page *page = bh->b_page;
2855 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2856 size_t size = bh->b_size;
2857
2858 retry:
2859 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2860 if (!io_end) {
2861 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2862 schedule();
2863 goto retry;
2864 }
2865 io_end->offset = offset;
2866 io_end->size = size;
2867 /*
2868 * We need to hold a reference to the page to make sure it
2869 * doesn't get evicted before ext4_end_io_work() has a chance
2870 * to convert the extent from written to unwritten.
2871 */
2872 io_end->page = page;
2873 get_page(io_end->page);
2874
2875 bh->b_private = io_end;
2876 bh->b_end_io = ext4_end_io_buffer_write;
2877 return 0;
2878 }
2879
2880 /*
2881 * For ext4 extent files, ext4 will do direct-io write to holes,
2882 * preallocated extents, and those write extend the file, no need to
2883 * fall back to buffered IO.
2884 *
2885 * For holes, we fallocate those blocks, mark them as uninitialized
2886 * If those blocks were preallocated, we mark sure they are splited, but
2887 * still keep the range to write as uninitialized.
2888 *
2889 * The unwrritten extents will be converted to written when DIO is completed.
2890 * For async direct IO, since the IO may still pending when return, we
2891 * set up an end_io call back function, which will do the conversion
2892 * when async direct IO completed.
2893 *
2894 * If the O_DIRECT write will extend the file then add this inode to the
2895 * orphan list. So recovery will truncate it back to the original size
2896 * if the machine crashes during the write.
2897 *
2898 */
2899 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2900 const struct iovec *iov, loff_t offset,
2901 unsigned long nr_segs)
2902 {
2903 struct file *file = iocb->ki_filp;
2904 struct inode *inode = file->f_mapping->host;
2905 ssize_t ret;
2906 size_t count = iov_length(iov, nr_segs);
2907
2908 loff_t final_size = offset + count;
2909 if (rw == WRITE && final_size <= inode->i_size) {
2910 /*
2911 * We could direct write to holes and fallocate.
2912 *
2913 * Allocated blocks to fill the hole are marked as uninitialized
2914 * to prevent parallel buffered read to expose the stale data
2915 * before DIO complete the data IO.
2916 *
2917 * As to previously fallocated extents, ext4 get_block
2918 * will just simply mark the buffer mapped but still
2919 * keep the extents uninitialized.
2920 *
2921 * for non AIO case, we will convert those unwritten extents
2922 * to written after return back from blockdev_direct_IO.
2923 *
2924 * for async DIO, the conversion needs to be defered when
2925 * the IO is completed. The ext4 end_io callback function
2926 * will be called to take care of the conversion work.
2927 * Here for async case, we allocate an io_end structure to
2928 * hook to the iocb.
2929 */
2930 iocb->private = NULL;
2931 EXT4_I(inode)->cur_aio_dio = NULL;
2932 if (!is_sync_kiocb(iocb)) {
2933 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
2934 if (!iocb->private)
2935 return -ENOMEM;
2936 /*
2937 * we save the io structure for current async
2938 * direct IO, so that later ext4_map_blocks()
2939 * could flag the io structure whether there
2940 * is a unwritten extents needs to be converted
2941 * when IO is completed.
2942 */
2943 EXT4_I(inode)->cur_aio_dio = iocb->private;
2944 }
2945
2946 ret = __blockdev_direct_IO(rw, iocb, inode,
2947 inode->i_sb->s_bdev, iov,
2948 offset, nr_segs,
2949 ext4_get_block_write,
2950 ext4_end_io_dio,
2951 NULL,
2952 DIO_LOCKING | DIO_SKIP_HOLES);
2953 if (iocb->private)
2954 EXT4_I(inode)->cur_aio_dio = NULL;
2955 /*
2956 * The io_end structure takes a reference to the inode,
2957 * that structure needs to be destroyed and the
2958 * reference to the inode need to be dropped, when IO is
2959 * complete, even with 0 byte write, or failed.
2960 *
2961 * In the successful AIO DIO case, the io_end structure will be
2962 * desctroyed and the reference to the inode will be dropped
2963 * after the end_io call back function is called.
2964 *
2965 * In the case there is 0 byte write, or error case, since
2966 * VFS direct IO won't invoke the end_io call back function,
2967 * we need to free the end_io structure here.
2968 */
2969 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2970 ext4_free_io_end(iocb->private);
2971 iocb->private = NULL;
2972 } else if (ret > 0 && ext4_test_inode_state(inode,
2973 EXT4_STATE_DIO_UNWRITTEN)) {
2974 int err;
2975 /*
2976 * for non AIO case, since the IO is already
2977 * completed, we could do the conversion right here
2978 */
2979 err = ext4_convert_unwritten_extents(inode,
2980 offset, ret);
2981 if (err < 0)
2982 ret = err;
2983 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
2984 }
2985 return ret;
2986 }
2987
2988 /* for write the the end of file case, we fall back to old way */
2989 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2990 }
2991
2992 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2993 const struct iovec *iov, loff_t offset,
2994 unsigned long nr_segs)
2995 {
2996 struct file *file = iocb->ki_filp;
2997 struct inode *inode = file->f_mapping->host;
2998 ssize_t ret;
2999
3000 /*
3001 * If we are doing data journalling we don't support O_DIRECT
3002 */
3003 if (ext4_should_journal_data(inode))
3004 return 0;
3005
3006 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3007 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3008 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3009 else
3010 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3011 trace_ext4_direct_IO_exit(inode, offset,
3012 iov_length(iov, nr_segs), rw, ret);
3013 return ret;
3014 }
3015
3016 /*
3017 * Pages can be marked dirty completely asynchronously from ext4's journalling
3018 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3019 * much here because ->set_page_dirty is called under VFS locks. The page is
3020 * not necessarily locked.
3021 *
3022 * We cannot just dirty the page and leave attached buffers clean, because the
3023 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3024 * or jbddirty because all the journalling code will explode.
3025 *
3026 * So what we do is to mark the page "pending dirty" and next time writepage
3027 * is called, propagate that into the buffers appropriately.
3028 */
3029 static int ext4_journalled_set_page_dirty(struct page *page)
3030 {
3031 SetPageChecked(page);
3032 return __set_page_dirty_nobuffers(page);
3033 }
3034
3035 static const struct address_space_operations ext4_ordered_aops = {
3036 .readpage = ext4_readpage,
3037 .readpages = ext4_readpages,
3038 .writepage = ext4_writepage,
3039 .write_begin = ext4_write_begin,
3040 .write_end = ext4_ordered_write_end,
3041 .bmap = ext4_bmap,
3042 .invalidatepage = ext4_invalidatepage,
3043 .releasepage = ext4_releasepage,
3044 .direct_IO = ext4_direct_IO,
3045 .migratepage = buffer_migrate_page,
3046 .is_partially_uptodate = block_is_partially_uptodate,
3047 .error_remove_page = generic_error_remove_page,
3048 };
3049
3050 static const struct address_space_operations ext4_writeback_aops = {
3051 .readpage = ext4_readpage,
3052 .readpages = ext4_readpages,
3053 .writepage = ext4_writepage,
3054 .write_begin = ext4_write_begin,
3055 .write_end = ext4_writeback_write_end,
3056 .bmap = ext4_bmap,
3057 .invalidatepage = ext4_invalidatepage,
3058 .releasepage = ext4_releasepage,
3059 .direct_IO = ext4_direct_IO,
3060 .migratepage = buffer_migrate_page,
3061 .is_partially_uptodate = block_is_partially_uptodate,
3062 .error_remove_page = generic_error_remove_page,
3063 };
3064
3065 static const struct address_space_operations ext4_journalled_aops = {
3066 .readpage = ext4_readpage,
3067 .readpages = ext4_readpages,
3068 .writepage = ext4_writepage,
3069 .write_begin = ext4_write_begin,
3070 .write_end = ext4_journalled_write_end,
3071 .set_page_dirty = ext4_journalled_set_page_dirty,
3072 .bmap = ext4_bmap,
3073 .invalidatepage = ext4_invalidatepage,
3074 .releasepage = ext4_releasepage,
3075 .direct_IO = ext4_direct_IO,
3076 .is_partially_uptodate = block_is_partially_uptodate,
3077 .error_remove_page = generic_error_remove_page,
3078 };
3079
3080 static const struct address_space_operations ext4_da_aops = {
3081 .readpage = ext4_readpage,
3082 .readpages = ext4_readpages,
3083 .writepage = ext4_writepage,
3084 .writepages = ext4_da_writepages,
3085 .write_begin = ext4_da_write_begin,
3086 .write_end = ext4_da_write_end,
3087 .bmap = ext4_bmap,
3088 .invalidatepage = ext4_da_invalidatepage,
3089 .releasepage = ext4_releasepage,
3090 .direct_IO = ext4_direct_IO,
3091 .migratepage = buffer_migrate_page,
3092 .is_partially_uptodate = block_is_partially_uptodate,
3093 .error_remove_page = generic_error_remove_page,
3094 };
3095
3096 void ext4_set_aops(struct inode *inode)
3097 {
3098 if (ext4_should_order_data(inode) &&
3099 test_opt(inode->i_sb, DELALLOC))
3100 inode->i_mapping->a_ops = &ext4_da_aops;
3101 else if (ext4_should_order_data(inode))
3102 inode->i_mapping->a_ops = &ext4_ordered_aops;
3103 else if (ext4_should_writeback_data(inode) &&
3104 test_opt(inode->i_sb, DELALLOC))
3105 inode->i_mapping->a_ops = &ext4_da_aops;
3106 else if (ext4_should_writeback_data(inode))
3107 inode->i_mapping->a_ops = &ext4_writeback_aops;
3108 else
3109 inode->i_mapping->a_ops = &ext4_journalled_aops;
3110 }
3111
3112
3113 /*
3114 * ext4_discard_partial_page_buffers()
3115 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3116 * This function finds and locks the page containing the offset
3117 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3118 * Calling functions that already have the page locked should call
3119 * ext4_discard_partial_page_buffers_no_lock directly.
3120 */
3121 int ext4_discard_partial_page_buffers(handle_t *handle,
3122 struct address_space *mapping, loff_t from,
3123 loff_t length, int flags)
3124 {
3125 struct inode *inode = mapping->host;
3126 struct page *page;
3127 int err = 0;
3128
3129 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3130 mapping_gfp_mask(mapping) & ~__GFP_FS);
3131 if (!page)
3132 return -ENOMEM;
3133
3134 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3135 from, length, flags);
3136
3137 unlock_page(page);
3138 page_cache_release(page);
3139 return err;
3140 }
3141
3142 /*
3143 * ext4_discard_partial_page_buffers_no_lock()
3144 * Zeros a page range of length 'length' starting from offset 'from'.
3145 * Buffer heads that correspond to the block aligned regions of the
3146 * zeroed range will be unmapped. Unblock aligned regions
3147 * will have the corresponding buffer head mapped if needed so that
3148 * that region of the page can be updated with the partial zero out.
3149 *
3150 * This function assumes that the page has already been locked. The
3151 * The range to be discarded must be contained with in the given page.
3152 * If the specified range exceeds the end of the page it will be shortened
3153 * to the end of the page that corresponds to 'from'. This function is
3154 * appropriate for updating a page and it buffer heads to be unmapped and
3155 * zeroed for blocks that have been either released, or are going to be
3156 * released.
3157 *
3158 * handle: The journal handle
3159 * inode: The files inode
3160 * page: A locked page that contains the offset "from"
3161 * from: The starting byte offset (from the begining of the file)
3162 * to begin discarding
3163 * len: The length of bytes to discard
3164 * flags: Optional flags that may be used:
3165 *
3166 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3167 * Only zero the regions of the page whose buffer heads
3168 * have already been unmapped. This flag is appropriate
3169 * for updateing the contents of a page whose blocks may
3170 * have already been released, and we only want to zero
3171 * out the regions that correspond to those released blocks.
3172 *
3173 * Returns zero on sucess or negative on failure.
3174 */
3175 int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3176 struct inode *inode, struct page *page, loff_t from,
3177 loff_t length, int flags)
3178 {
3179 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3180 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3181 unsigned int blocksize, max, pos;
3182 ext4_lblk_t iblock;
3183 struct buffer_head *bh;
3184 int err = 0;
3185
3186 blocksize = inode->i_sb->s_blocksize;
3187 max = PAGE_CACHE_SIZE - offset;
3188
3189 if (index != page->index)
3190 return -EINVAL;
3191
3192 /*
3193 * correct length if it does not fall between
3194 * 'from' and the end of the page
3195 */
3196 if (length > max || length < 0)
3197 length = max;
3198
3199 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3200
3201 if (!page_has_buffers(page)) {
3202 /*
3203 * If the range to be discarded covers a partial block
3204 * we need to get the page buffers. This is because
3205 * partial blocks cannot be released and the page needs
3206 * to be updated with the contents of the block before
3207 * we write the zeros on top of it.
3208 */
3209 if (!(from & (blocksize - 1)) ||
3210 !((from + length) & (blocksize - 1))) {
3211 create_empty_buffers(page, blocksize, 0);
3212 } else {
3213 /*
3214 * If there are no partial blocks,
3215 * there is nothing to update,
3216 * so we can return now
3217 */
3218 return 0;
3219 }
3220 }
3221
3222 /* Find the buffer that contains "offset" */
3223 bh = page_buffers(page);
3224 pos = blocksize;
3225 while (offset >= pos) {
3226 bh = bh->b_this_page;
3227 iblock++;
3228 pos += blocksize;
3229 }
3230
3231 pos = offset;
3232 while (pos < offset + length) {
3233 unsigned int end_of_block, range_to_discard;
3234
3235 err = 0;
3236
3237 /* The length of space left to zero and unmap */
3238 range_to_discard = offset + length - pos;
3239
3240 /* The length of space until the end of the block */
3241 end_of_block = blocksize - (pos & (blocksize-1));
3242
3243 /*
3244 * Do not unmap or zero past end of block
3245 * for this buffer head
3246 */
3247 if (range_to_discard > end_of_block)
3248 range_to_discard = end_of_block;
3249
3250
3251 /*
3252 * Skip this buffer head if we are only zeroing unampped
3253 * regions of the page
3254 */
3255 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3256 buffer_mapped(bh))
3257 goto next;
3258
3259 /* If the range is block aligned, unmap */
3260 if (range_to_discard == blocksize) {
3261 clear_buffer_dirty(bh);
3262 bh->b_bdev = NULL;
3263 clear_buffer_mapped(bh);
3264 clear_buffer_req(bh);
3265 clear_buffer_new(bh);
3266 clear_buffer_delay(bh);
3267 clear_buffer_unwritten(bh);
3268 clear_buffer_uptodate(bh);
3269 zero_user(page, pos, range_to_discard);
3270 BUFFER_TRACE(bh, "Buffer discarded");
3271 goto next;
3272 }
3273
3274 /*
3275 * If this block is not completely contained in the range
3276 * to be discarded, then it is not going to be released. Because
3277 * we need to keep this block, we need to make sure this part
3278 * of the page is uptodate before we modify it by writeing
3279 * partial zeros on it.
3280 */
3281 if (!buffer_mapped(bh)) {
3282 /*
3283 * Buffer head must be mapped before we can read
3284 * from the block
3285 */
3286 BUFFER_TRACE(bh, "unmapped");
3287 ext4_get_block(inode, iblock, bh, 0);
3288 /* unmapped? It's a hole - nothing to do */
3289 if (!buffer_mapped(bh)) {
3290 BUFFER_TRACE(bh, "still unmapped");
3291 goto next;
3292 }
3293 }
3294
3295 /* Ok, it's mapped. Make sure it's up-to-date */
3296 if (PageUptodate(page))
3297 set_buffer_uptodate(bh);
3298
3299 if (!buffer_uptodate(bh)) {
3300 err = -EIO;
3301 ll_rw_block(READ, 1, &bh);
3302 wait_on_buffer(bh);
3303 /* Uhhuh. Read error. Complain and punt.*/
3304 if (!buffer_uptodate(bh))
3305 goto next;
3306 }
3307
3308 if (ext4_should_journal_data(inode)) {
3309 BUFFER_TRACE(bh, "get write access");
3310 err = ext4_journal_get_write_access(handle, bh);
3311 if (err)
3312 goto next;
3313 }
3314
3315 zero_user(page, pos, range_to_discard);
3316
3317 err = 0;
3318 if (ext4_should_journal_data(inode)) {
3319 err = ext4_handle_dirty_metadata(handle, inode, bh);
3320 } else
3321 mark_buffer_dirty(bh);
3322
3323 BUFFER_TRACE(bh, "Partial buffer zeroed");
3324 next:
3325 bh = bh->b_this_page;
3326 iblock++;
3327 pos += range_to_discard;
3328 }
3329
3330 return err;
3331 }
3332
3333 /*
3334 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3335 * up to the end of the block which corresponds to `from'.
3336 * This required during truncate. We need to physically zero the tail end
3337 * of that block so it doesn't yield old data if the file is later grown.
3338 */
3339 int ext4_block_truncate_page(handle_t *handle,
3340 struct address_space *mapping, loff_t from)
3341 {
3342 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3343 unsigned length;
3344 unsigned blocksize;
3345 struct inode *inode = mapping->host;
3346
3347 blocksize = inode->i_sb->s_blocksize;
3348 length = blocksize - (offset & (blocksize - 1));
3349
3350 return ext4_block_zero_page_range(handle, mapping, from, length);
3351 }
3352
3353 /*
3354 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3355 * starting from file offset 'from'. The range to be zero'd must
3356 * be contained with in one block. If the specified range exceeds
3357 * the end of the block it will be shortened to end of the block
3358 * that cooresponds to 'from'
3359 */
3360 int ext4_block_zero_page_range(handle_t *handle,
3361 struct address_space *mapping, loff_t from, loff_t length)
3362 {
3363 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3364 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3365 unsigned blocksize, max, pos;
3366 ext4_lblk_t iblock;
3367 struct inode *inode = mapping->host;
3368 struct buffer_head *bh;
3369 struct page *page;
3370 int err = 0;
3371
3372 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3373 mapping_gfp_mask(mapping) & ~__GFP_FS);
3374 if (!page)
3375 return -ENOMEM;
3376
3377 blocksize = inode->i_sb->s_blocksize;
3378 max = blocksize - (offset & (blocksize - 1));
3379
3380 /*
3381 * correct length if it does not fall between
3382 * 'from' and the end of the block
3383 */
3384 if (length > max || length < 0)
3385 length = max;
3386
3387 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3388
3389 if (!page_has_buffers(page))
3390 create_empty_buffers(page, blocksize, 0);
3391
3392 /* Find the buffer that contains "offset" */
3393 bh = page_buffers(page);
3394 pos = blocksize;
3395 while (offset >= pos) {
3396 bh = bh->b_this_page;
3397 iblock++;
3398 pos += blocksize;
3399 }
3400
3401 err = 0;
3402 if (buffer_freed(bh)) {
3403 BUFFER_TRACE(bh, "freed: skip");
3404 goto unlock;
3405 }
3406
3407 if (!buffer_mapped(bh)) {
3408 BUFFER_TRACE(bh, "unmapped");
3409 ext4_get_block(inode, iblock, bh, 0);
3410 /* unmapped? It's a hole - nothing to do */
3411 if (!buffer_mapped(bh)) {
3412 BUFFER_TRACE(bh, "still unmapped");
3413 goto unlock;
3414 }
3415 }
3416
3417 /* Ok, it's mapped. Make sure it's up-to-date */
3418 if (PageUptodate(page))
3419 set_buffer_uptodate(bh);
3420
3421 if (!buffer_uptodate(bh)) {
3422 err = -EIO;
3423 ll_rw_block(READ, 1, &bh);
3424 wait_on_buffer(bh);
3425 /* Uhhuh. Read error. Complain and punt. */
3426 if (!buffer_uptodate(bh))
3427 goto unlock;
3428 }
3429
3430 if (ext4_should_journal_data(inode)) {
3431 BUFFER_TRACE(bh, "get write access");
3432 err = ext4_journal_get_write_access(handle, bh);
3433 if (err)
3434 goto unlock;
3435 }
3436
3437 zero_user(page, offset, length);
3438
3439 BUFFER_TRACE(bh, "zeroed end of block");
3440
3441 err = 0;
3442 if (ext4_should_journal_data(inode)) {
3443 err = ext4_handle_dirty_metadata(handle, inode, bh);
3444 } else
3445 mark_buffer_dirty(bh);
3446
3447 unlock:
3448 unlock_page(page);
3449 page_cache_release(page);
3450 return err;
3451 }
3452
3453 int ext4_can_truncate(struct inode *inode)
3454 {
3455 if (S_ISREG(inode->i_mode))
3456 return 1;
3457 if (S_ISDIR(inode->i_mode))
3458 return 1;
3459 if (S_ISLNK(inode->i_mode))
3460 return !ext4_inode_is_fast_symlink(inode);
3461 return 0;
3462 }
3463
3464 /*
3465 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3466 * associated with the given offset and length
3467 *
3468 * @inode: File inode
3469 * @offset: The offset where the hole will begin
3470 * @len: The length of the hole
3471 *
3472 * Returns: 0 on sucess or negative on failure
3473 */
3474
3475 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3476 {
3477 struct inode *inode = file->f_path.dentry->d_inode;
3478 if (!S_ISREG(inode->i_mode))
3479 return -ENOTSUPP;
3480
3481 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3482 /* TODO: Add support for non extent hole punching */
3483 return -ENOTSUPP;
3484 }
3485
3486 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3487 /* TODO: Add support for bigalloc file systems */
3488 return -ENOTSUPP;
3489 }
3490
3491 return ext4_ext_punch_hole(file, offset, length);
3492 }
3493
3494 /*
3495 * ext4_truncate()
3496 *
3497 * We block out ext4_get_block() block instantiations across the entire
3498 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3499 * simultaneously on behalf of the same inode.
3500 *
3501 * As we work through the truncate and commmit bits of it to the journal there
3502 * is one core, guiding principle: the file's tree must always be consistent on
3503 * disk. We must be able to restart the truncate after a crash.
3504 *
3505 * The file's tree may be transiently inconsistent in memory (although it
3506 * probably isn't), but whenever we close off and commit a journal transaction,
3507 * the contents of (the filesystem + the journal) must be consistent and
3508 * restartable. It's pretty simple, really: bottom up, right to left (although
3509 * left-to-right works OK too).
3510 *
3511 * Note that at recovery time, journal replay occurs *before* the restart of
3512 * truncate against the orphan inode list.
3513 *
3514 * The committed inode has the new, desired i_size (which is the same as
3515 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3516 * that this inode's truncate did not complete and it will again call
3517 * ext4_truncate() to have another go. So there will be instantiated blocks
3518 * to the right of the truncation point in a crashed ext4 filesystem. But
3519 * that's fine - as long as they are linked from the inode, the post-crash
3520 * ext4_truncate() run will find them and release them.
3521 */
3522 void ext4_truncate(struct inode *inode)
3523 {
3524 trace_ext4_truncate_enter(inode);
3525
3526 if (!ext4_can_truncate(inode))
3527 return;
3528
3529 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3530
3531 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3532 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3533
3534 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3535 ext4_ext_truncate(inode);
3536 else
3537 ext4_ind_truncate(inode);
3538
3539 trace_ext4_truncate_exit(inode);
3540 }
3541
3542 /*
3543 * ext4_get_inode_loc returns with an extra refcount against the inode's
3544 * underlying buffer_head on success. If 'in_mem' is true, we have all
3545 * data in memory that is needed to recreate the on-disk version of this
3546 * inode.
3547 */
3548 static int __ext4_get_inode_loc(struct inode *inode,
3549 struct ext4_iloc *iloc, int in_mem)
3550 {
3551 struct ext4_group_desc *gdp;
3552 struct buffer_head *bh;
3553 struct super_block *sb = inode->i_sb;
3554 ext4_fsblk_t block;
3555 int inodes_per_block, inode_offset;
3556
3557 iloc->bh = NULL;
3558 if (!ext4_valid_inum(sb, inode->i_ino))
3559 return -EIO;
3560
3561 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3562 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3563 if (!gdp)
3564 return -EIO;
3565
3566 /*
3567 * Figure out the offset within the block group inode table
3568 */
3569 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3570 inode_offset = ((inode->i_ino - 1) %
3571 EXT4_INODES_PER_GROUP(sb));
3572 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3573 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3574
3575 bh = sb_getblk(sb, block);
3576 if (!bh) {
3577 EXT4_ERROR_INODE_BLOCK(inode, block,
3578 "unable to read itable block");
3579 return -EIO;
3580 }
3581 if (!buffer_uptodate(bh)) {
3582 lock_buffer(bh);
3583
3584 /*
3585 * If the buffer has the write error flag, we have failed
3586 * to write out another inode in the same block. In this
3587 * case, we don't have to read the block because we may
3588 * read the old inode data successfully.
3589 */
3590 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3591 set_buffer_uptodate(bh);
3592
3593 if (buffer_uptodate(bh)) {
3594 /* someone brought it uptodate while we waited */
3595 unlock_buffer(bh);
3596 goto has_buffer;
3597 }
3598
3599 /*
3600 * If we have all information of the inode in memory and this
3601 * is the only valid inode in the block, we need not read the
3602 * block.
3603 */
3604 if (in_mem) {
3605 struct buffer_head *bitmap_bh;
3606 int i, start;
3607
3608 start = inode_offset & ~(inodes_per_block - 1);
3609
3610 /* Is the inode bitmap in cache? */
3611 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3612 if (!bitmap_bh)
3613 goto make_io;
3614
3615 /*
3616 * If the inode bitmap isn't in cache then the
3617 * optimisation may end up performing two reads instead
3618 * of one, so skip it.
3619 */
3620 if (!buffer_uptodate(bitmap_bh)) {
3621 brelse(bitmap_bh);
3622 goto make_io;
3623 }
3624 for (i = start; i < start + inodes_per_block; i++) {
3625 if (i == inode_offset)
3626 continue;
3627 if (ext4_test_bit(i, bitmap_bh->b_data))
3628 break;
3629 }
3630 brelse(bitmap_bh);
3631 if (i == start + inodes_per_block) {
3632 /* all other inodes are free, so skip I/O */
3633 memset(bh->b_data, 0, bh->b_size);
3634 set_buffer_uptodate(bh);
3635 unlock_buffer(bh);
3636 goto has_buffer;
3637 }
3638 }
3639
3640 make_io:
3641 /*
3642 * If we need to do any I/O, try to pre-readahead extra
3643 * blocks from the inode table.
3644 */
3645 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3646 ext4_fsblk_t b, end, table;
3647 unsigned num;
3648
3649 table = ext4_inode_table(sb, gdp);
3650 /* s_inode_readahead_blks is always a power of 2 */
3651 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3652 if (table > b)
3653 b = table;
3654 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3655 num = EXT4_INODES_PER_GROUP(sb);
3656 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3657 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3658 num -= ext4_itable_unused_count(sb, gdp);
3659 table += num / inodes_per_block;
3660 if (end > table)
3661 end = table;
3662 while (b <= end)
3663 sb_breadahead(sb, b++);
3664 }
3665
3666 /*
3667 * There are other valid inodes in the buffer, this inode
3668 * has in-inode xattrs, or we don't have this inode in memory.
3669 * Read the block from disk.
3670 */
3671 trace_ext4_load_inode(inode);
3672 get_bh(bh);
3673 bh->b_end_io = end_buffer_read_sync;
3674 submit_bh(READ_META, bh);
3675 wait_on_buffer(bh);
3676 if (!buffer_uptodate(bh)) {
3677 EXT4_ERROR_INODE_BLOCK(inode, block,
3678 "unable to read itable block");
3679 brelse(bh);
3680 return -EIO;
3681 }
3682 }
3683 has_buffer:
3684 iloc->bh = bh;
3685 return 0;
3686 }
3687
3688 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3689 {
3690 /* We have all inode data except xattrs in memory here. */
3691 return __ext4_get_inode_loc(inode, iloc,
3692 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3693 }
3694
3695 void ext4_set_inode_flags(struct inode *inode)
3696 {
3697 unsigned int flags = EXT4_I(inode)->i_flags;
3698
3699 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3700 if (flags & EXT4_SYNC_FL)
3701 inode->i_flags |= S_SYNC;
3702 if (flags & EXT4_APPEND_FL)
3703 inode->i_flags |= S_APPEND;
3704 if (flags & EXT4_IMMUTABLE_FL)
3705 inode->i_flags |= S_IMMUTABLE;
3706 if (flags & EXT4_NOATIME_FL)
3707 inode->i_flags |= S_NOATIME;
3708 if (flags & EXT4_DIRSYNC_FL)
3709 inode->i_flags |= S_DIRSYNC;
3710 }
3711
3712 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3713 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3714 {
3715 unsigned int vfs_fl;
3716 unsigned long old_fl, new_fl;
3717
3718 do {
3719 vfs_fl = ei->vfs_inode.i_flags;
3720 old_fl = ei->i_flags;
3721 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3722 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3723 EXT4_DIRSYNC_FL);
3724 if (vfs_fl & S_SYNC)
3725 new_fl |= EXT4_SYNC_FL;
3726 if (vfs_fl & S_APPEND)
3727 new_fl |= EXT4_APPEND_FL;
3728 if (vfs_fl & S_IMMUTABLE)
3729 new_fl |= EXT4_IMMUTABLE_FL;
3730 if (vfs_fl & S_NOATIME)
3731 new_fl |= EXT4_NOATIME_FL;
3732 if (vfs_fl & S_DIRSYNC)
3733 new_fl |= EXT4_DIRSYNC_FL;
3734 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3735 }
3736
3737 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3738 struct ext4_inode_info *ei)
3739 {
3740 blkcnt_t i_blocks ;
3741 struct inode *inode = &(ei->vfs_inode);
3742 struct super_block *sb = inode->i_sb;
3743
3744 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3745 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3746 /* we are using combined 48 bit field */
3747 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3748 le32_to_cpu(raw_inode->i_blocks_lo);
3749 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3750 /* i_blocks represent file system block size */
3751 return i_blocks << (inode->i_blkbits - 9);
3752 } else {
3753 return i_blocks;
3754 }
3755 } else {
3756 return le32_to_cpu(raw_inode->i_blocks_lo);
3757 }
3758 }
3759
3760 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3761 {
3762 struct ext4_iloc iloc;
3763 struct ext4_inode *raw_inode;
3764 struct ext4_inode_info *ei;
3765 struct inode *inode;
3766 journal_t *journal = EXT4_SB(sb)->s_journal;
3767 long ret;
3768 int block;
3769
3770 inode = iget_locked(sb, ino);
3771 if (!inode)
3772 return ERR_PTR(-ENOMEM);
3773 if (!(inode->i_state & I_NEW))
3774 return inode;
3775
3776 ei = EXT4_I(inode);
3777 iloc.bh = NULL;
3778
3779 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3780 if (ret < 0)
3781 goto bad_inode;
3782 raw_inode = ext4_raw_inode(&iloc);
3783 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3784 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3785 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3786 if (!(test_opt(inode->i_sb, NO_UID32))) {
3787 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3788 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3789 }
3790 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
3791
3792 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3793 ei->i_dir_start_lookup = 0;
3794 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3795 /* We now have enough fields to check if the inode was active or not.
3796 * This is needed because nfsd might try to access dead inodes
3797 * the test is that same one that e2fsck uses
3798 * NeilBrown 1999oct15
3799 */
3800 if (inode->i_nlink == 0) {
3801 if (inode->i_mode == 0 ||
3802 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3803 /* this inode is deleted */
3804 ret = -ESTALE;
3805 goto bad_inode;
3806 }
3807 /* The only unlinked inodes we let through here have
3808 * valid i_mode and are being read by the orphan
3809 * recovery code: that's fine, we're about to complete
3810 * the process of deleting those. */
3811 }
3812 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3813 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3814 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3815 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3816 ei->i_file_acl |=
3817 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3818 inode->i_size = ext4_isize(raw_inode);
3819 ei->i_disksize = inode->i_size;
3820 #ifdef CONFIG_QUOTA
3821 ei->i_reserved_quota = 0;
3822 #endif
3823 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3824 ei->i_block_group = iloc.block_group;
3825 ei->i_last_alloc_group = ~0;
3826 /*
3827 * NOTE! The in-memory inode i_data array is in little-endian order
3828 * even on big-endian machines: we do NOT byteswap the block numbers!
3829 */
3830 for (block = 0; block < EXT4_N_BLOCKS; block++)
3831 ei->i_data[block] = raw_inode->i_block[block];
3832 INIT_LIST_HEAD(&ei->i_orphan);
3833
3834 /*
3835 * Set transaction id's of transactions that have to be committed
3836 * to finish f[data]sync. We set them to currently running transaction
3837 * as we cannot be sure that the inode or some of its metadata isn't
3838 * part of the transaction - the inode could have been reclaimed and
3839 * now it is reread from disk.
3840 */
3841 if (journal) {
3842 transaction_t *transaction;
3843 tid_t tid;
3844
3845 read_lock(&journal->j_state_lock);
3846 if (journal->j_running_transaction)
3847 transaction = journal->j_running_transaction;
3848 else
3849 transaction = journal->j_committing_transaction;
3850 if (transaction)
3851 tid = transaction->t_tid;
3852 else
3853 tid = journal->j_commit_sequence;
3854 read_unlock(&journal->j_state_lock);
3855 ei->i_sync_tid = tid;
3856 ei->i_datasync_tid = tid;
3857 }
3858
3859 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3860 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3861 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3862 EXT4_INODE_SIZE(inode->i_sb)) {
3863 ret = -EIO;
3864 goto bad_inode;
3865 }
3866 if (ei->i_extra_isize == 0) {
3867 /* The extra space is currently unused. Use it. */
3868 ei->i_extra_isize = sizeof(struct ext4_inode) -
3869 EXT4_GOOD_OLD_INODE_SIZE;
3870 } else {
3871 __le32 *magic = (void *)raw_inode +
3872 EXT4_GOOD_OLD_INODE_SIZE +
3873 ei->i_extra_isize;
3874 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3875 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3876 }
3877 } else
3878 ei->i_extra_isize = 0;
3879
3880 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3881 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3882 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3883 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3884
3885 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3886 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3887 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3888 inode->i_version |=
3889 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3890 }
3891
3892 ret = 0;
3893 if (ei->i_file_acl &&
3894 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3895 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3896 ei->i_file_acl);
3897 ret = -EIO;
3898 goto bad_inode;
3899 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3900 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3901 (S_ISLNK(inode->i_mode) &&
3902 !ext4_inode_is_fast_symlink(inode)))
3903 /* Validate extent which is part of inode */
3904 ret = ext4_ext_check_inode(inode);
3905 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3906 (S_ISLNK(inode->i_mode) &&
3907 !ext4_inode_is_fast_symlink(inode))) {
3908 /* Validate block references which are part of inode */
3909 ret = ext4_ind_check_inode(inode);
3910 }
3911 if (ret)
3912 goto bad_inode;
3913
3914 if (S_ISREG(inode->i_mode)) {
3915 inode->i_op = &ext4_file_inode_operations;
3916 inode->i_fop = &ext4_file_operations;
3917 ext4_set_aops(inode);
3918 } else if (S_ISDIR(inode->i_mode)) {
3919 inode->i_op = &ext4_dir_inode_operations;
3920 inode->i_fop = &ext4_dir_operations;
3921 } else if (S_ISLNK(inode->i_mode)) {
3922 if (ext4_inode_is_fast_symlink(inode)) {
3923 inode->i_op = &ext4_fast_symlink_inode_operations;
3924 nd_terminate_link(ei->i_data, inode->i_size,
3925 sizeof(ei->i_data) - 1);
3926 } else {
3927 inode->i_op = &ext4_symlink_inode_operations;
3928 ext4_set_aops(inode);
3929 }
3930 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3931 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3932 inode->i_op = &ext4_special_inode_operations;
3933 if (raw_inode->i_block[0])
3934 init_special_inode(inode, inode->i_mode,
3935 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3936 else
3937 init_special_inode(inode, inode->i_mode,
3938 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3939 } else {
3940 ret = -EIO;
3941 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3942 goto bad_inode;
3943 }
3944 brelse(iloc.bh);
3945 ext4_set_inode_flags(inode);
3946 unlock_new_inode(inode);
3947 return inode;
3948
3949 bad_inode:
3950 brelse(iloc.bh);
3951 iget_failed(inode);
3952 return ERR_PTR(ret);
3953 }
3954
3955 static int ext4_inode_blocks_set(handle_t *handle,
3956 struct ext4_inode *raw_inode,
3957 struct ext4_inode_info *ei)
3958 {
3959 struct inode *inode = &(ei->vfs_inode);
3960 u64 i_blocks = inode->i_blocks;
3961 struct super_block *sb = inode->i_sb;
3962
3963 if (i_blocks <= ~0U) {
3964 /*
3965 * i_blocks can be represnted in a 32 bit variable
3966 * as multiple of 512 bytes
3967 */
3968 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3969 raw_inode->i_blocks_high = 0;
3970 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3971 return 0;
3972 }
3973 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3974 return -EFBIG;
3975
3976 if (i_blocks <= 0xffffffffffffULL) {
3977 /*
3978 * i_blocks can be represented in a 48 bit variable
3979 * as multiple of 512 bytes
3980 */
3981 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3982 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3983 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3984 } else {
3985 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3986 /* i_block is stored in file system block size */
3987 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3988 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3989 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3990 }
3991 return 0;
3992 }
3993
3994 /*
3995 * Post the struct inode info into an on-disk inode location in the
3996 * buffer-cache. This gobbles the caller's reference to the
3997 * buffer_head in the inode location struct.
3998 *
3999 * The caller must have write access to iloc->bh.
4000 */
4001 static int ext4_do_update_inode(handle_t *handle,
4002 struct inode *inode,
4003 struct ext4_iloc *iloc)
4004 {
4005 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4006 struct ext4_inode_info *ei = EXT4_I(inode);
4007 struct buffer_head *bh = iloc->bh;
4008 int err = 0, rc, block;
4009
4010 /* For fields not not tracking in the in-memory inode,
4011 * initialise them to zero for new inodes. */
4012 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4013 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4014
4015 ext4_get_inode_flags(ei);
4016 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4017 if (!(test_opt(inode->i_sb, NO_UID32))) {
4018 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4019 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4020 /*
4021 * Fix up interoperability with old kernels. Otherwise, old inodes get
4022 * re-used with the upper 16 bits of the uid/gid intact
4023 */
4024 if (!ei->i_dtime) {
4025 raw_inode->i_uid_high =
4026 cpu_to_le16(high_16_bits(inode->i_uid));
4027 raw_inode->i_gid_high =
4028 cpu_to_le16(high_16_bits(inode->i_gid));
4029 } else {
4030 raw_inode->i_uid_high = 0;
4031 raw_inode->i_gid_high = 0;
4032 }
4033 } else {
4034 raw_inode->i_uid_low =
4035 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4036 raw_inode->i_gid_low =
4037 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4038 raw_inode->i_uid_high = 0;
4039 raw_inode->i_gid_high = 0;
4040 }
4041 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4042
4043 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4044 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4045 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4046 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4047
4048 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4049 goto out_brelse;
4050 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4051 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4052 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4053 cpu_to_le32(EXT4_OS_HURD))
4054 raw_inode->i_file_acl_high =
4055 cpu_to_le16(ei->i_file_acl >> 32);
4056 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4057 ext4_isize_set(raw_inode, ei->i_disksize);
4058 if (ei->i_disksize > 0x7fffffffULL) {
4059 struct super_block *sb = inode->i_sb;
4060 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4061 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4062 EXT4_SB(sb)->s_es->s_rev_level ==
4063 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4064 /* If this is the first large file
4065 * created, add a flag to the superblock.
4066 */
4067 err = ext4_journal_get_write_access(handle,
4068 EXT4_SB(sb)->s_sbh);
4069 if (err)
4070 goto out_brelse;
4071 ext4_update_dynamic_rev(sb);
4072 EXT4_SET_RO_COMPAT_FEATURE(sb,
4073 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4074 sb->s_dirt = 1;
4075 ext4_handle_sync(handle);
4076 err = ext4_handle_dirty_metadata(handle, NULL,
4077 EXT4_SB(sb)->s_sbh);
4078 }
4079 }
4080 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4081 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4082 if (old_valid_dev(inode->i_rdev)) {
4083 raw_inode->i_block[0] =
4084 cpu_to_le32(old_encode_dev(inode->i_rdev));
4085 raw_inode->i_block[1] = 0;
4086 } else {
4087 raw_inode->i_block[0] = 0;
4088 raw_inode->i_block[1] =
4089 cpu_to_le32(new_encode_dev(inode->i_rdev));
4090 raw_inode->i_block[2] = 0;
4091 }
4092 } else
4093 for (block = 0; block < EXT4_N_BLOCKS; block++)
4094 raw_inode->i_block[block] = ei->i_data[block];
4095
4096 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4097 if (ei->i_extra_isize) {
4098 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4099 raw_inode->i_version_hi =
4100 cpu_to_le32(inode->i_version >> 32);
4101 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4102 }
4103
4104 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4105 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4106 if (!err)
4107 err = rc;
4108 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4109
4110 ext4_update_inode_fsync_trans(handle, inode, 0);
4111 out_brelse:
4112 brelse(bh);
4113 ext4_std_error(inode->i_sb, err);
4114 return err;
4115 }
4116
4117 /*
4118 * ext4_write_inode()
4119 *
4120 * We are called from a few places:
4121 *
4122 * - Within generic_file_write() for O_SYNC files.
4123 * Here, there will be no transaction running. We wait for any running
4124 * trasnaction to commit.
4125 *
4126 * - Within sys_sync(), kupdate and such.
4127 * We wait on commit, if tol to.
4128 *
4129 * - Within prune_icache() (PF_MEMALLOC == true)
4130 * Here we simply return. We can't afford to block kswapd on the
4131 * journal commit.
4132 *
4133 * In all cases it is actually safe for us to return without doing anything,
4134 * because the inode has been copied into a raw inode buffer in
4135 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4136 * knfsd.
4137 *
4138 * Note that we are absolutely dependent upon all inode dirtiers doing the
4139 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4140 * which we are interested.
4141 *
4142 * It would be a bug for them to not do this. The code:
4143 *
4144 * mark_inode_dirty(inode)
4145 * stuff();
4146 * inode->i_size = expr;
4147 *
4148 * is in error because a kswapd-driven write_inode() could occur while
4149 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4150 * will no longer be on the superblock's dirty inode list.
4151 */
4152 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4153 {
4154 int err;
4155
4156 if (current->flags & PF_MEMALLOC)
4157 return 0;
4158
4159 if (EXT4_SB(inode->i_sb)->s_journal) {
4160 if (ext4_journal_current_handle()) {
4161 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4162 dump_stack();
4163 return -EIO;
4164 }
4165
4166 if (wbc->sync_mode != WB_SYNC_ALL)
4167 return 0;
4168
4169 err = ext4_force_commit(inode->i_sb);
4170 } else {
4171 struct ext4_iloc iloc;
4172
4173 err = __ext4_get_inode_loc(inode, &iloc, 0);
4174 if (err)
4175 return err;
4176 if (wbc->sync_mode == WB_SYNC_ALL)
4177 sync_dirty_buffer(iloc.bh);
4178 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4179 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4180 "IO error syncing inode");
4181 err = -EIO;
4182 }
4183 brelse(iloc.bh);
4184 }
4185 return err;
4186 }
4187
4188 /*
4189 * ext4_setattr()
4190 *
4191 * Called from notify_change.
4192 *
4193 * We want to trap VFS attempts to truncate the file as soon as
4194 * possible. In particular, we want to make sure that when the VFS
4195 * shrinks i_size, we put the inode on the orphan list and modify
4196 * i_disksize immediately, so that during the subsequent flushing of
4197 * dirty pages and freeing of disk blocks, we can guarantee that any
4198 * commit will leave the blocks being flushed in an unused state on
4199 * disk. (On recovery, the inode will get truncated and the blocks will
4200 * be freed, so we have a strong guarantee that no future commit will
4201 * leave these blocks visible to the user.)
4202 *
4203 * Another thing we have to assure is that if we are in ordered mode
4204 * and inode is still attached to the committing transaction, we must
4205 * we start writeout of all the dirty pages which are being truncated.
4206 * This way we are sure that all the data written in the previous
4207 * transaction are already on disk (truncate waits for pages under
4208 * writeback).
4209 *
4210 * Called with inode->i_mutex down.
4211 */
4212 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4213 {
4214 struct inode *inode = dentry->d_inode;
4215 int error, rc = 0;
4216 int orphan = 0;
4217 const unsigned int ia_valid = attr->ia_valid;
4218
4219 error = inode_change_ok(inode, attr);
4220 if (error)
4221 return error;
4222
4223 if (is_quota_modification(inode, attr))
4224 dquot_initialize(inode);
4225 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4226 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4227 handle_t *handle;
4228
4229 /* (user+group)*(old+new) structure, inode write (sb,
4230 * inode block, ? - but truncate inode update has it) */
4231 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4232 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4233 if (IS_ERR(handle)) {
4234 error = PTR_ERR(handle);
4235 goto err_out;
4236 }
4237 error = dquot_transfer(inode, attr);
4238 if (error) {
4239 ext4_journal_stop(handle);
4240 return error;
4241 }
4242 /* Update corresponding info in inode so that everything is in
4243 * one transaction */
4244 if (attr->ia_valid & ATTR_UID)
4245 inode->i_uid = attr->ia_uid;
4246 if (attr->ia_valid & ATTR_GID)
4247 inode->i_gid = attr->ia_gid;
4248 error = ext4_mark_inode_dirty(handle, inode);
4249 ext4_journal_stop(handle);
4250 }
4251
4252 if (attr->ia_valid & ATTR_SIZE) {
4253 inode_dio_wait(inode);
4254
4255 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4256 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4257
4258 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4259 return -EFBIG;
4260 }
4261 }
4262
4263 if (S_ISREG(inode->i_mode) &&
4264 attr->ia_valid & ATTR_SIZE &&
4265 (attr->ia_size < inode->i_size)) {
4266 handle_t *handle;
4267
4268 handle = ext4_journal_start(inode, 3);
4269 if (IS_ERR(handle)) {
4270 error = PTR_ERR(handle);
4271 goto err_out;
4272 }
4273 if (ext4_handle_valid(handle)) {
4274 error = ext4_orphan_add(handle, inode);
4275 orphan = 1;
4276 }
4277 EXT4_I(inode)->i_disksize = attr->ia_size;
4278 rc = ext4_mark_inode_dirty(handle, inode);
4279 if (!error)
4280 error = rc;
4281 ext4_journal_stop(handle);
4282
4283 if (ext4_should_order_data(inode)) {
4284 error = ext4_begin_ordered_truncate(inode,
4285 attr->ia_size);
4286 if (error) {
4287 /* Do as much error cleanup as possible */
4288 handle = ext4_journal_start(inode, 3);
4289 if (IS_ERR(handle)) {
4290 ext4_orphan_del(NULL, inode);
4291 goto err_out;
4292 }
4293 ext4_orphan_del(handle, inode);
4294 orphan = 0;
4295 ext4_journal_stop(handle);
4296 goto err_out;
4297 }
4298 }
4299 }
4300
4301 if (attr->ia_valid & ATTR_SIZE) {
4302 if (attr->ia_size != i_size_read(inode)) {
4303 truncate_setsize(inode, attr->ia_size);
4304 ext4_truncate(inode);
4305 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4306 ext4_truncate(inode);
4307 }
4308
4309 if (!rc) {
4310 setattr_copy(inode, attr);
4311 mark_inode_dirty(inode);
4312 }
4313
4314 /*
4315 * If the call to ext4_truncate failed to get a transaction handle at
4316 * all, we need to clean up the in-core orphan list manually.
4317 */
4318 if (orphan && inode->i_nlink)
4319 ext4_orphan_del(NULL, inode);
4320
4321 if (!rc && (ia_valid & ATTR_MODE))
4322 rc = ext4_acl_chmod(inode);
4323
4324 err_out:
4325 ext4_std_error(inode->i_sb, error);
4326 if (!error)
4327 error = rc;
4328 return error;
4329 }
4330
4331 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4332 struct kstat *stat)
4333 {
4334 struct inode *inode;
4335 unsigned long delalloc_blocks;
4336
4337 inode = dentry->d_inode;
4338 generic_fillattr(inode, stat);
4339
4340 /*
4341 * We can't update i_blocks if the block allocation is delayed
4342 * otherwise in the case of system crash before the real block
4343 * allocation is done, we will have i_blocks inconsistent with
4344 * on-disk file blocks.
4345 * We always keep i_blocks updated together with real
4346 * allocation. But to not confuse with user, stat
4347 * will return the blocks that include the delayed allocation
4348 * blocks for this file.
4349 */
4350 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4351
4352 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4353 return 0;
4354 }
4355
4356 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4357 {
4358 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4359 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4360 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4361 }
4362
4363 /*
4364 * Account for index blocks, block groups bitmaps and block group
4365 * descriptor blocks if modify datablocks and index blocks
4366 * worse case, the indexs blocks spread over different block groups
4367 *
4368 * If datablocks are discontiguous, they are possible to spread over
4369 * different block groups too. If they are contiuguous, with flexbg,
4370 * they could still across block group boundary.
4371 *
4372 * Also account for superblock, inode, quota and xattr blocks
4373 */
4374 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4375 {
4376 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4377 int gdpblocks;
4378 int idxblocks;
4379 int ret = 0;
4380
4381 /*
4382 * How many index blocks need to touch to modify nrblocks?
4383 * The "Chunk" flag indicating whether the nrblocks is
4384 * physically contiguous on disk
4385 *
4386 * For Direct IO and fallocate, they calls get_block to allocate
4387 * one single extent at a time, so they could set the "Chunk" flag
4388 */
4389 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4390
4391 ret = idxblocks;
4392
4393 /*
4394 * Now let's see how many group bitmaps and group descriptors need
4395 * to account
4396 */
4397 groups = idxblocks;
4398 if (chunk)
4399 groups += 1;
4400 else
4401 groups += nrblocks;
4402
4403 gdpblocks = groups;
4404 if (groups > ngroups)
4405 groups = ngroups;
4406 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4407 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4408
4409 /* bitmaps and block group descriptor blocks */
4410 ret += groups + gdpblocks;
4411
4412 /* Blocks for super block, inode, quota and xattr blocks */
4413 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4414
4415 return ret;
4416 }
4417
4418 /*
4419 * Calculate the total number of credits to reserve to fit
4420 * the modification of a single pages into a single transaction,
4421 * which may include multiple chunks of block allocations.
4422 *
4423 * This could be called via ext4_write_begin()
4424 *
4425 * We need to consider the worse case, when
4426 * one new block per extent.
4427 */
4428 int ext4_writepage_trans_blocks(struct inode *inode)
4429 {
4430 int bpp = ext4_journal_blocks_per_page(inode);
4431 int ret;
4432
4433 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4434
4435 /* Account for data blocks for journalled mode */
4436 if (ext4_should_journal_data(inode))
4437 ret += bpp;
4438 return ret;
4439 }
4440
4441 /*
4442 * Calculate the journal credits for a chunk of data modification.
4443 *
4444 * This is called from DIO, fallocate or whoever calling
4445 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4446 *
4447 * journal buffers for data blocks are not included here, as DIO
4448 * and fallocate do no need to journal data buffers.
4449 */
4450 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4451 {
4452 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4453 }
4454
4455 /*
4456 * The caller must have previously called ext4_reserve_inode_write().
4457 * Give this, we know that the caller already has write access to iloc->bh.
4458 */
4459 int ext4_mark_iloc_dirty(handle_t *handle,
4460 struct inode *inode, struct ext4_iloc *iloc)
4461 {
4462 int err = 0;
4463
4464 if (test_opt(inode->i_sb, I_VERSION))
4465 inode_inc_iversion(inode);
4466
4467 /* the do_update_inode consumes one bh->b_count */
4468 get_bh(iloc->bh);
4469
4470 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4471 err = ext4_do_update_inode(handle, inode, iloc);
4472 put_bh(iloc->bh);
4473 return err;
4474 }
4475
4476 /*
4477 * On success, We end up with an outstanding reference count against
4478 * iloc->bh. This _must_ be cleaned up later.
4479 */
4480
4481 int
4482 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4483 struct ext4_iloc *iloc)
4484 {
4485 int err;
4486
4487 err = ext4_get_inode_loc(inode, iloc);
4488 if (!err) {
4489 BUFFER_TRACE(iloc->bh, "get_write_access");
4490 err = ext4_journal_get_write_access(handle, iloc->bh);
4491 if (err) {
4492 brelse(iloc->bh);
4493 iloc->bh = NULL;
4494 }
4495 }
4496 ext4_std_error(inode->i_sb, err);
4497 return err;
4498 }
4499
4500 /*
4501 * Expand an inode by new_extra_isize bytes.
4502 * Returns 0 on success or negative error number on failure.
4503 */
4504 static int ext4_expand_extra_isize(struct inode *inode,
4505 unsigned int new_extra_isize,
4506 struct ext4_iloc iloc,
4507 handle_t *handle)
4508 {
4509 struct ext4_inode *raw_inode;
4510 struct ext4_xattr_ibody_header *header;
4511
4512 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4513 return 0;
4514
4515 raw_inode = ext4_raw_inode(&iloc);
4516
4517 header = IHDR(inode, raw_inode);
4518
4519 /* No extended attributes present */
4520 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4521 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4522 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4523 new_extra_isize);
4524 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4525 return 0;
4526 }
4527
4528 /* try to expand with EAs present */
4529 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4530 raw_inode, handle);
4531 }
4532
4533 /*
4534 * What we do here is to mark the in-core inode as clean with respect to inode
4535 * dirtiness (it may still be data-dirty).
4536 * This means that the in-core inode may be reaped by prune_icache
4537 * without having to perform any I/O. This is a very good thing,
4538 * because *any* task may call prune_icache - even ones which
4539 * have a transaction open against a different journal.
4540 *
4541 * Is this cheating? Not really. Sure, we haven't written the
4542 * inode out, but prune_icache isn't a user-visible syncing function.
4543 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4544 * we start and wait on commits.
4545 *
4546 * Is this efficient/effective? Well, we're being nice to the system
4547 * by cleaning up our inodes proactively so they can be reaped
4548 * without I/O. But we are potentially leaving up to five seconds'
4549 * worth of inodes floating about which prune_icache wants us to
4550 * write out. One way to fix that would be to get prune_icache()
4551 * to do a write_super() to free up some memory. It has the desired
4552 * effect.
4553 */
4554 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4555 {
4556 struct ext4_iloc iloc;
4557 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4558 static unsigned int mnt_count;
4559 int err, ret;
4560
4561 might_sleep();
4562 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4563 err = ext4_reserve_inode_write(handle, inode, &iloc);
4564 if (ext4_handle_valid(handle) &&
4565 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4566 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4567 /*
4568 * We need extra buffer credits since we may write into EA block
4569 * with this same handle. If journal_extend fails, then it will
4570 * only result in a minor loss of functionality for that inode.
4571 * If this is felt to be critical, then e2fsck should be run to
4572 * force a large enough s_min_extra_isize.
4573 */
4574 if ((jbd2_journal_extend(handle,
4575 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4576 ret = ext4_expand_extra_isize(inode,
4577 sbi->s_want_extra_isize,
4578 iloc, handle);
4579 if (ret) {
4580 ext4_set_inode_state(inode,
4581 EXT4_STATE_NO_EXPAND);
4582 if (mnt_count !=
4583 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4584 ext4_warning(inode->i_sb,
4585 "Unable to expand inode %lu. Delete"
4586 " some EAs or run e2fsck.",
4587 inode->i_ino);
4588 mnt_count =
4589 le16_to_cpu(sbi->s_es->s_mnt_count);
4590 }
4591 }
4592 }
4593 }
4594 if (!err)
4595 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4596 return err;
4597 }
4598
4599 /*
4600 * ext4_dirty_inode() is called from __mark_inode_dirty()
4601 *
4602 * We're really interested in the case where a file is being extended.
4603 * i_size has been changed by generic_commit_write() and we thus need
4604 * to include the updated inode in the current transaction.
4605 *
4606 * Also, dquot_alloc_block() will always dirty the inode when blocks
4607 * are allocated to the file.
4608 *
4609 * If the inode is marked synchronous, we don't honour that here - doing
4610 * so would cause a commit on atime updates, which we don't bother doing.
4611 * We handle synchronous inodes at the highest possible level.
4612 */
4613 void ext4_dirty_inode(struct inode *inode, int flags)
4614 {
4615 handle_t *handle;
4616
4617 handle = ext4_journal_start(inode, 2);
4618 if (IS_ERR(handle))
4619 goto out;
4620
4621 ext4_mark_inode_dirty(handle, inode);
4622
4623 ext4_journal_stop(handle);
4624 out:
4625 return;
4626 }
4627
4628 #if 0
4629 /*
4630 * Bind an inode's backing buffer_head into this transaction, to prevent
4631 * it from being flushed to disk early. Unlike
4632 * ext4_reserve_inode_write, this leaves behind no bh reference and
4633 * returns no iloc structure, so the caller needs to repeat the iloc
4634 * lookup to mark the inode dirty later.
4635 */
4636 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4637 {
4638 struct ext4_iloc iloc;
4639
4640 int err = 0;
4641 if (handle) {
4642 err = ext4_get_inode_loc(inode, &iloc);
4643 if (!err) {
4644 BUFFER_TRACE(iloc.bh, "get_write_access");
4645 err = jbd2_journal_get_write_access(handle, iloc.bh);
4646 if (!err)
4647 err = ext4_handle_dirty_metadata(handle,
4648 NULL,
4649 iloc.bh);
4650 brelse(iloc.bh);
4651 }
4652 }
4653 ext4_std_error(inode->i_sb, err);
4654 return err;
4655 }
4656 #endif
4657
4658 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4659 {
4660 journal_t *journal;
4661 handle_t *handle;
4662 int err;
4663
4664 /*
4665 * We have to be very careful here: changing a data block's
4666 * journaling status dynamically is dangerous. If we write a
4667 * data block to the journal, change the status and then delete
4668 * that block, we risk forgetting to revoke the old log record
4669 * from the journal and so a subsequent replay can corrupt data.
4670 * So, first we make sure that the journal is empty and that
4671 * nobody is changing anything.
4672 */
4673
4674 journal = EXT4_JOURNAL(inode);
4675 if (!journal)
4676 return 0;
4677 if (is_journal_aborted(journal))
4678 return -EROFS;
4679
4680 jbd2_journal_lock_updates(journal);
4681 jbd2_journal_flush(journal);
4682
4683 /*
4684 * OK, there are no updates running now, and all cached data is
4685 * synced to disk. We are now in a completely consistent state
4686 * which doesn't have anything in the journal, and we know that
4687 * no filesystem updates are running, so it is safe to modify
4688 * the inode's in-core data-journaling state flag now.
4689 */
4690
4691 if (val)
4692 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4693 else
4694 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4695 ext4_set_aops(inode);
4696
4697 jbd2_journal_unlock_updates(journal);
4698
4699 /* Finally we can mark the inode as dirty. */
4700
4701 handle = ext4_journal_start(inode, 1);
4702 if (IS_ERR(handle))
4703 return PTR_ERR(handle);
4704
4705 err = ext4_mark_inode_dirty(handle, inode);
4706 ext4_handle_sync(handle);
4707 ext4_journal_stop(handle);
4708 ext4_std_error(inode->i_sb, err);
4709
4710 return err;
4711 }
4712
4713 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4714 {
4715 return !buffer_mapped(bh);
4716 }
4717
4718 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4719 {
4720 struct page *page = vmf->page;
4721 loff_t size;
4722 unsigned long len;
4723 int ret;
4724 struct file *file = vma->vm_file;
4725 struct inode *inode = file->f_path.dentry->d_inode;
4726 struct address_space *mapping = inode->i_mapping;
4727 handle_t *handle;
4728 get_block_t *get_block;
4729 int retries = 0;
4730
4731 /*
4732 * This check is racy but catches the common case. We rely on
4733 * __block_page_mkwrite() to do a reliable check.
4734 */
4735 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4736 /* Delalloc case is easy... */
4737 if (test_opt(inode->i_sb, DELALLOC) &&
4738 !ext4_should_journal_data(inode) &&
4739 !ext4_nonda_switch(inode->i_sb)) {
4740 do {
4741 ret = __block_page_mkwrite(vma, vmf,
4742 ext4_da_get_block_prep);
4743 } while (ret == -ENOSPC &&
4744 ext4_should_retry_alloc(inode->i_sb, &retries));
4745 goto out_ret;
4746 }
4747
4748 lock_page(page);
4749 size = i_size_read(inode);
4750 /* Page got truncated from under us? */
4751 if (page->mapping != mapping || page_offset(page) > size) {
4752 unlock_page(page);
4753 ret = VM_FAULT_NOPAGE;
4754 goto out;
4755 }
4756
4757 if (page->index == size >> PAGE_CACHE_SHIFT)
4758 len = size & ~PAGE_CACHE_MASK;
4759 else
4760 len = PAGE_CACHE_SIZE;
4761 /*
4762 * Return if we have all the buffers mapped. This avoids the need to do
4763 * journal_start/journal_stop which can block and take a long time
4764 */
4765 if (page_has_buffers(page)) {
4766 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4767 ext4_bh_unmapped)) {
4768 /* Wait so that we don't change page under IO */
4769 wait_on_page_writeback(page);
4770 ret = VM_FAULT_LOCKED;
4771 goto out;
4772 }
4773 }
4774 unlock_page(page);
4775 /* OK, we need to fill the hole... */
4776 if (ext4_should_dioread_nolock(inode))
4777 get_block = ext4_get_block_write;
4778 else
4779 get_block = ext4_get_block;
4780 retry_alloc:
4781 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4782 if (IS_ERR(handle)) {
4783 ret = VM_FAULT_SIGBUS;
4784 goto out;
4785 }
4786 ret = __block_page_mkwrite(vma, vmf, get_block);
4787 if (!ret && ext4_should_journal_data(inode)) {
4788 if (walk_page_buffers(handle, page_buffers(page), 0,
4789 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4790 unlock_page(page);
4791 ret = VM_FAULT_SIGBUS;
4792 ext4_journal_stop(handle);
4793 goto out;
4794 }
4795 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4796 }
4797 ext4_journal_stop(handle);
4798 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4799 goto retry_alloc;
4800 out_ret:
4801 ret = block_page_mkwrite_return(ret);
4802 out:
4803 return ret;
4804 }
This page took 0.191591 seconds and 5 git commands to generate.