ext4: Switch to non delalloc mode when we are low on free blocks count.
[deliverable/linux.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include "ext4_jbd2.h"
40 #include "xattr.h"
41 #include "acl.h"
42 #include "ext4_extents.h"
43
44 #define MPAGE_DA_EXTENT_TAIL 0x01
45
46 static inline int ext4_begin_ordered_truncate(struct inode *inode,
47 loff_t new_size)
48 {
49 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
50 new_size);
51 }
52
53 static void ext4_invalidatepage(struct page *page, unsigned long offset);
54
55 /*
56 * Test whether an inode is a fast symlink.
57 */
58 static int ext4_inode_is_fast_symlink(struct inode *inode)
59 {
60 int ea_blocks = EXT4_I(inode)->i_file_acl ?
61 (inode->i_sb->s_blocksize >> 9) : 0;
62
63 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
64 }
65
66 /*
67 * The ext4 forget function must perform a revoke if we are freeing data
68 * which has been journaled. Metadata (eg. indirect blocks) must be
69 * revoked in all cases.
70 *
71 * "bh" may be NULL: a metadata block may have been freed from memory
72 * but there may still be a record of it in the journal, and that record
73 * still needs to be revoked.
74 */
75 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
76 struct buffer_head *bh, ext4_fsblk_t blocknr)
77 {
78 int err;
79
80 might_sleep();
81
82 BUFFER_TRACE(bh, "enter");
83
84 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
85 "data mode %lx\n",
86 bh, is_metadata, inode->i_mode,
87 test_opt(inode->i_sb, DATA_FLAGS));
88
89 /* Never use the revoke function if we are doing full data
90 * journaling: there is no need to, and a V1 superblock won't
91 * support it. Otherwise, only skip the revoke on un-journaled
92 * data blocks. */
93
94 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
95 (!is_metadata && !ext4_should_journal_data(inode))) {
96 if (bh) {
97 BUFFER_TRACE(bh, "call jbd2_journal_forget");
98 return ext4_journal_forget(handle, bh);
99 }
100 return 0;
101 }
102
103 /*
104 * data!=journal && (is_metadata || should_journal_data(inode))
105 */
106 BUFFER_TRACE(bh, "call ext4_journal_revoke");
107 err = ext4_journal_revoke(handle, blocknr, bh);
108 if (err)
109 ext4_abort(inode->i_sb, __func__,
110 "error %d when attempting revoke", err);
111 BUFFER_TRACE(bh, "exit");
112 return err;
113 }
114
115 /*
116 * Work out how many blocks we need to proceed with the next chunk of a
117 * truncate transaction.
118 */
119 static unsigned long blocks_for_truncate(struct inode *inode)
120 {
121 ext4_lblk_t needed;
122
123 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
124
125 /* Give ourselves just enough room to cope with inodes in which
126 * i_blocks is corrupt: we've seen disk corruptions in the past
127 * which resulted in random data in an inode which looked enough
128 * like a regular file for ext4 to try to delete it. Things
129 * will go a bit crazy if that happens, but at least we should
130 * try not to panic the whole kernel. */
131 if (needed < 2)
132 needed = 2;
133
134 /* But we need to bound the transaction so we don't overflow the
135 * journal. */
136 if (needed > EXT4_MAX_TRANS_DATA)
137 needed = EXT4_MAX_TRANS_DATA;
138
139 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
140 }
141
142 /*
143 * Truncate transactions can be complex and absolutely huge. So we need to
144 * be able to restart the transaction at a conventient checkpoint to make
145 * sure we don't overflow the journal.
146 *
147 * start_transaction gets us a new handle for a truncate transaction,
148 * and extend_transaction tries to extend the existing one a bit. If
149 * extend fails, we need to propagate the failure up and restart the
150 * transaction in the top-level truncate loop. --sct
151 */
152 static handle_t *start_transaction(struct inode *inode)
153 {
154 handle_t *result;
155
156 result = ext4_journal_start(inode, blocks_for_truncate(inode));
157 if (!IS_ERR(result))
158 return result;
159
160 ext4_std_error(inode->i_sb, PTR_ERR(result));
161 return result;
162 }
163
164 /*
165 * Try to extend this transaction for the purposes of truncation.
166 *
167 * Returns 0 if we managed to create more room. If we can't create more
168 * room, and the transaction must be restarted we return 1.
169 */
170 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
171 {
172 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
173 return 0;
174 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
175 return 0;
176 return 1;
177 }
178
179 /*
180 * Restart the transaction associated with *handle. This does a commit,
181 * so before we call here everything must be consistently dirtied against
182 * this transaction.
183 */
184 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
185 {
186 jbd_debug(2, "restarting handle %p\n", handle);
187 return ext4_journal_restart(handle, blocks_for_truncate(inode));
188 }
189
190 /*
191 * Called at the last iput() if i_nlink is zero.
192 */
193 void ext4_delete_inode(struct inode *inode)
194 {
195 handle_t *handle;
196 int err;
197
198 if (ext4_should_order_data(inode))
199 ext4_begin_ordered_truncate(inode, 0);
200 truncate_inode_pages(&inode->i_data, 0);
201
202 if (is_bad_inode(inode))
203 goto no_delete;
204
205 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
206 if (IS_ERR(handle)) {
207 ext4_std_error(inode->i_sb, PTR_ERR(handle));
208 /*
209 * If we're going to skip the normal cleanup, we still need to
210 * make sure that the in-core orphan linked list is properly
211 * cleaned up.
212 */
213 ext4_orphan_del(NULL, inode);
214 goto no_delete;
215 }
216
217 if (IS_SYNC(inode))
218 handle->h_sync = 1;
219 inode->i_size = 0;
220 err = ext4_mark_inode_dirty(handle, inode);
221 if (err) {
222 ext4_warning(inode->i_sb, __func__,
223 "couldn't mark inode dirty (err %d)", err);
224 goto stop_handle;
225 }
226 if (inode->i_blocks)
227 ext4_truncate(inode);
228
229 /*
230 * ext4_ext_truncate() doesn't reserve any slop when it
231 * restarts journal transactions; therefore there may not be
232 * enough credits left in the handle to remove the inode from
233 * the orphan list and set the dtime field.
234 */
235 if (handle->h_buffer_credits < 3) {
236 err = ext4_journal_extend(handle, 3);
237 if (err > 0)
238 err = ext4_journal_restart(handle, 3);
239 if (err != 0) {
240 ext4_warning(inode->i_sb, __func__,
241 "couldn't extend journal (err %d)", err);
242 stop_handle:
243 ext4_journal_stop(handle);
244 goto no_delete;
245 }
246 }
247
248 /*
249 * Kill off the orphan record which ext4_truncate created.
250 * AKPM: I think this can be inside the above `if'.
251 * Note that ext4_orphan_del() has to be able to cope with the
252 * deletion of a non-existent orphan - this is because we don't
253 * know if ext4_truncate() actually created an orphan record.
254 * (Well, we could do this if we need to, but heck - it works)
255 */
256 ext4_orphan_del(handle, inode);
257 EXT4_I(inode)->i_dtime = get_seconds();
258
259 /*
260 * One subtle ordering requirement: if anything has gone wrong
261 * (transaction abort, IO errors, whatever), then we can still
262 * do these next steps (the fs will already have been marked as
263 * having errors), but we can't free the inode if the mark_dirty
264 * fails.
265 */
266 if (ext4_mark_inode_dirty(handle, inode))
267 /* If that failed, just do the required in-core inode clear. */
268 clear_inode(inode);
269 else
270 ext4_free_inode(handle, inode);
271 ext4_journal_stop(handle);
272 return;
273 no_delete:
274 clear_inode(inode); /* We must guarantee clearing of inode... */
275 }
276
277 typedef struct {
278 __le32 *p;
279 __le32 key;
280 struct buffer_head *bh;
281 } Indirect;
282
283 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
284 {
285 p->key = *(p->p = v);
286 p->bh = bh;
287 }
288
289 /**
290 * ext4_block_to_path - parse the block number into array of offsets
291 * @inode: inode in question (we are only interested in its superblock)
292 * @i_block: block number to be parsed
293 * @offsets: array to store the offsets in
294 * @boundary: set this non-zero if the referred-to block is likely to be
295 * followed (on disk) by an indirect block.
296 *
297 * To store the locations of file's data ext4 uses a data structure common
298 * for UNIX filesystems - tree of pointers anchored in the inode, with
299 * data blocks at leaves and indirect blocks in intermediate nodes.
300 * This function translates the block number into path in that tree -
301 * return value is the path length and @offsets[n] is the offset of
302 * pointer to (n+1)th node in the nth one. If @block is out of range
303 * (negative or too large) warning is printed and zero returned.
304 *
305 * Note: function doesn't find node addresses, so no IO is needed. All
306 * we need to know is the capacity of indirect blocks (taken from the
307 * inode->i_sb).
308 */
309
310 /*
311 * Portability note: the last comparison (check that we fit into triple
312 * indirect block) is spelled differently, because otherwise on an
313 * architecture with 32-bit longs and 8Kb pages we might get into trouble
314 * if our filesystem had 8Kb blocks. We might use long long, but that would
315 * kill us on x86. Oh, well, at least the sign propagation does not matter -
316 * i_block would have to be negative in the very beginning, so we would not
317 * get there at all.
318 */
319
320 static int ext4_block_to_path(struct inode *inode,
321 ext4_lblk_t i_block,
322 ext4_lblk_t offsets[4], int *boundary)
323 {
324 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
325 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
326 const long direct_blocks = EXT4_NDIR_BLOCKS,
327 indirect_blocks = ptrs,
328 double_blocks = (1 << (ptrs_bits * 2));
329 int n = 0;
330 int final = 0;
331
332 if (i_block < 0) {
333 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
334 } else if (i_block < direct_blocks) {
335 offsets[n++] = i_block;
336 final = direct_blocks;
337 } else if ((i_block -= direct_blocks) < indirect_blocks) {
338 offsets[n++] = EXT4_IND_BLOCK;
339 offsets[n++] = i_block;
340 final = ptrs;
341 } else if ((i_block -= indirect_blocks) < double_blocks) {
342 offsets[n++] = EXT4_DIND_BLOCK;
343 offsets[n++] = i_block >> ptrs_bits;
344 offsets[n++] = i_block & (ptrs - 1);
345 final = ptrs;
346 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347 offsets[n++] = EXT4_TIND_BLOCK;
348 offsets[n++] = i_block >> (ptrs_bits * 2);
349 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
350 offsets[n++] = i_block & (ptrs - 1);
351 final = ptrs;
352 } else {
353 ext4_warning(inode->i_sb, "ext4_block_to_path",
354 "block %lu > max",
355 i_block + direct_blocks +
356 indirect_blocks + double_blocks);
357 }
358 if (boundary)
359 *boundary = final - 1 - (i_block & (ptrs - 1));
360 return n;
361 }
362
363 /**
364 * ext4_get_branch - read the chain of indirect blocks leading to data
365 * @inode: inode in question
366 * @depth: depth of the chain (1 - direct pointer, etc.)
367 * @offsets: offsets of pointers in inode/indirect blocks
368 * @chain: place to store the result
369 * @err: here we store the error value
370 *
371 * Function fills the array of triples <key, p, bh> and returns %NULL
372 * if everything went OK or the pointer to the last filled triple
373 * (incomplete one) otherwise. Upon the return chain[i].key contains
374 * the number of (i+1)-th block in the chain (as it is stored in memory,
375 * i.e. little-endian 32-bit), chain[i].p contains the address of that
376 * number (it points into struct inode for i==0 and into the bh->b_data
377 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
378 * block for i>0 and NULL for i==0. In other words, it holds the block
379 * numbers of the chain, addresses they were taken from (and where we can
380 * verify that chain did not change) and buffer_heads hosting these
381 * numbers.
382 *
383 * Function stops when it stumbles upon zero pointer (absent block)
384 * (pointer to last triple returned, *@err == 0)
385 * or when it gets an IO error reading an indirect block
386 * (ditto, *@err == -EIO)
387 * or when it reads all @depth-1 indirect blocks successfully and finds
388 * the whole chain, all way to the data (returns %NULL, *err == 0).
389 *
390 * Need to be called with
391 * down_read(&EXT4_I(inode)->i_data_sem)
392 */
393 static Indirect *ext4_get_branch(struct inode *inode, int depth,
394 ext4_lblk_t *offsets,
395 Indirect chain[4], int *err)
396 {
397 struct super_block *sb = inode->i_sb;
398 Indirect *p = chain;
399 struct buffer_head *bh;
400
401 *err = 0;
402 /* i_data is not going away, no lock needed */
403 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
404 if (!p->key)
405 goto no_block;
406 while (--depth) {
407 bh = sb_bread(sb, le32_to_cpu(p->key));
408 if (!bh)
409 goto failure;
410 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
411 /* Reader: end */
412 if (!p->key)
413 goto no_block;
414 }
415 return NULL;
416
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
421 }
422
423 /**
424 * ext4_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
427 *
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
435 *
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
440 *
441 * Caller must make sure that @ind is valid and will stay that way.
442 */
443 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
444 {
445 struct ext4_inode_info *ei = EXT4_I(inode);
446 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext4_fsblk_t bg_start;
449 ext4_fsblk_t last_block;
450 ext4_grpblk_t colour;
451
452 /* Try to find previous block */
453 for (p = ind->p - 1; p >= start; p--) {
454 if (*p)
455 return le32_to_cpu(*p);
456 }
457
458 /* No such thing, so let's try location of indirect block */
459 if (ind->bh)
460 return ind->bh->b_blocknr;
461
462 /*
463 * It is going to be referred to from the inode itself? OK, just put it
464 * into the same cylinder group then.
465 */
466 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
467 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
468
469 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
470 colour = (current->pid % 16) *
471 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
472 else
473 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
474 return bg_start + colour;
475 }
476
477 /**
478 * ext4_find_goal - find a preferred place for allocation.
479 * @inode: owner
480 * @block: block we want
481 * @partial: pointer to the last triple within a chain
482 *
483 * Normally this function find the preferred place for block allocation,
484 * returns it.
485 */
486 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
487 Indirect *partial)
488 {
489 struct ext4_block_alloc_info *block_i;
490
491 block_i = EXT4_I(inode)->i_block_alloc_info;
492
493 /*
494 * try the heuristic for sequential allocation,
495 * failing that at least try to get decent locality.
496 */
497 if (block_i && (block == block_i->last_alloc_logical_block + 1)
498 && (block_i->last_alloc_physical_block != 0)) {
499 return block_i->last_alloc_physical_block + 1;
500 }
501
502 return ext4_find_near(inode, partial);
503 }
504
505 /**
506 * ext4_blks_to_allocate: Look up the block map and count the number
507 * of direct blocks need to be allocated for the given branch.
508 *
509 * @branch: chain of indirect blocks
510 * @k: number of blocks need for indirect blocks
511 * @blks: number of data blocks to be mapped.
512 * @blocks_to_boundary: the offset in the indirect block
513 *
514 * return the total number of blocks to be allocate, including the
515 * direct and indirect blocks.
516 */
517 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
518 int blocks_to_boundary)
519 {
520 unsigned long count = 0;
521
522 /*
523 * Simple case, [t,d]Indirect block(s) has not allocated yet
524 * then it's clear blocks on that path have not allocated
525 */
526 if (k > 0) {
527 /* right now we don't handle cross boundary allocation */
528 if (blks < blocks_to_boundary + 1)
529 count += blks;
530 else
531 count += blocks_to_boundary + 1;
532 return count;
533 }
534
535 count++;
536 while (count < blks && count <= blocks_to_boundary &&
537 le32_to_cpu(*(branch[0].p + count)) == 0) {
538 count++;
539 }
540 return count;
541 }
542
543 /**
544 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
545 * @indirect_blks: the number of blocks need to allocate for indirect
546 * blocks
547 *
548 * @new_blocks: on return it will store the new block numbers for
549 * the indirect blocks(if needed) and the first direct block,
550 * @blks: on return it will store the total number of allocated
551 * direct blocks
552 */
553 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
554 ext4_lblk_t iblock, ext4_fsblk_t goal,
555 int indirect_blks, int blks,
556 ext4_fsblk_t new_blocks[4], int *err)
557 {
558 int target, i;
559 unsigned long count = 0, blk_allocated = 0;
560 int index = 0;
561 ext4_fsblk_t current_block = 0;
562 int ret = 0;
563
564 /*
565 * Here we try to allocate the requested multiple blocks at once,
566 * on a best-effort basis.
567 * To build a branch, we should allocate blocks for
568 * the indirect blocks(if not allocated yet), and at least
569 * the first direct block of this branch. That's the
570 * minimum number of blocks need to allocate(required)
571 */
572 /* first we try to allocate the indirect blocks */
573 target = indirect_blks;
574 while (target > 0) {
575 count = target;
576 /* allocating blocks for indirect blocks and direct blocks */
577 current_block = ext4_new_meta_blocks(handle, inode,
578 goal, &count, err);
579 if (*err)
580 goto failed_out;
581
582 target -= count;
583 /* allocate blocks for indirect blocks */
584 while (index < indirect_blks && count) {
585 new_blocks[index++] = current_block++;
586 count--;
587 }
588 if (count > 0) {
589 /*
590 * save the new block number
591 * for the first direct block
592 */
593 new_blocks[index] = current_block;
594 printk(KERN_INFO "%s returned more blocks than "
595 "requested\n", __func__);
596 WARN_ON(1);
597 break;
598 }
599 }
600
601 target = blks - count ;
602 blk_allocated = count;
603 if (!target)
604 goto allocated;
605 /* Now allocate data blocks */
606 count = target;
607 /* allocating blocks for data blocks */
608 current_block = ext4_new_blocks(handle, inode, iblock,
609 goal, &count, err);
610 if (*err && (target == blks)) {
611 /*
612 * if the allocation failed and we didn't allocate
613 * any blocks before
614 */
615 goto failed_out;
616 }
617 if (!*err) {
618 if (target == blks) {
619 /*
620 * save the new block number
621 * for the first direct block
622 */
623 new_blocks[index] = current_block;
624 }
625 blk_allocated += count;
626 }
627 allocated:
628 /* total number of blocks allocated for direct blocks */
629 ret = blk_allocated;
630 *err = 0;
631 return ret;
632 failed_out:
633 for (i = 0; i < index; i++)
634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 return ret;
636 }
637
638 /**
639 * ext4_alloc_branch - allocate and set up a chain of blocks.
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
645 *
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
650 * the same format as ext4_get_branch() would do. We are calling it after
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
653 * picture as after the successful ext4_get_block(), except that in one
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
657 *
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661 * as described above and return 0.
662 */
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
667 {
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
675
676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
680
681 branch[0].key = cpu_to_le32(new_blocks[0]);
682 /*
683 * metadata blocks and data blocks are allocated.
684 */
685 for (n = 1; n <= indirect_blks; n++) {
686 /*
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
690 */
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
695 err = ext4_journal_get_create_access(handle, bh);
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
700 }
701
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
706 if (n == indirect_blks) {
707 current_block = new_blocks[n];
708 /*
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
712 */
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
715 }
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
719
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
722 if (err)
723 goto failed;
724 }
725 *blks = num;
726 return err;
727 failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731 ext4_journal_forget(handle, branch[i].bh);
732 }
733 for (i = 0; i < indirect_blks; i++)
734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
735
736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
737
738 return err;
739 }
740
741 /**
742 * ext4_splice_branch - splice the allocated branch onto inode.
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
746 * ext4_alloc_branch)
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
750 *
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
754 */
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756 ext4_lblk_t block, Indirect *where, int num, int blks)
757 {
758 int i;
759 int err = 0;
760 struct ext4_block_alloc_info *block_i;
761 ext4_fsblk_t current_block;
762
763 block_i = EXT4_I(inode)->i_block_alloc_info;
764 /*
765 * If we're splicing into a [td]indirect block (as opposed to the
766 * inode) then we need to get write access to the [td]indirect block
767 * before the splice.
768 */
769 if (where->bh) {
770 BUFFER_TRACE(where->bh, "get_write_access");
771 err = ext4_journal_get_write_access(handle, where->bh);
772 if (err)
773 goto err_out;
774 }
775 /* That's it */
776
777 *where->p = where->key;
778
779 /*
780 * Update the host buffer_head or inode to point to more just allocated
781 * direct blocks blocks
782 */
783 if (num == 0 && blks > 1) {
784 current_block = le32_to_cpu(where->key) + 1;
785 for (i = 1; i < blks; i++)
786 *(where->p + i) = cpu_to_le32(current_block++);
787 }
788
789 /*
790 * update the most recently allocated logical & physical block
791 * in i_block_alloc_info, to assist find the proper goal block for next
792 * allocation
793 */
794 if (block_i) {
795 block_i->last_alloc_logical_block = block + blks - 1;
796 block_i->last_alloc_physical_block =
797 le32_to_cpu(where[num].key) + blks - 1;
798 }
799
800 /* We are done with atomic stuff, now do the rest of housekeeping */
801
802 inode->i_ctime = ext4_current_time(inode);
803 ext4_mark_inode_dirty(handle, inode);
804
805 /* had we spliced it onto indirect block? */
806 if (where->bh) {
807 /*
808 * If we spliced it onto an indirect block, we haven't
809 * altered the inode. Note however that if it is being spliced
810 * onto an indirect block at the very end of the file (the
811 * file is growing) then we *will* alter the inode to reflect
812 * the new i_size. But that is not done here - it is done in
813 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
814 */
815 jbd_debug(5, "splicing indirect only\n");
816 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
817 err = ext4_journal_dirty_metadata(handle, where->bh);
818 if (err)
819 goto err_out;
820 } else {
821 /*
822 * OK, we spliced it into the inode itself on a direct block.
823 * Inode was dirtied above.
824 */
825 jbd_debug(5, "splicing direct\n");
826 }
827 return err;
828
829 err_out:
830 for (i = 1; i <= num; i++) {
831 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
832 ext4_journal_forget(handle, where[i].bh);
833 ext4_free_blocks(handle, inode,
834 le32_to_cpu(where[i-1].key), 1, 0);
835 }
836 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
837
838 return err;
839 }
840
841 /*
842 * Allocation strategy is simple: if we have to allocate something, we will
843 * have to go the whole way to leaf. So let's do it before attaching anything
844 * to tree, set linkage between the newborn blocks, write them if sync is
845 * required, recheck the path, free and repeat if check fails, otherwise
846 * set the last missing link (that will protect us from any truncate-generated
847 * removals - all blocks on the path are immune now) and possibly force the
848 * write on the parent block.
849 * That has a nice additional property: no special recovery from the failed
850 * allocations is needed - we simply release blocks and do not touch anything
851 * reachable from inode.
852 *
853 * `handle' can be NULL if create == 0.
854 *
855 * return > 0, # of blocks mapped or allocated.
856 * return = 0, if plain lookup failed.
857 * return < 0, error case.
858 *
859 *
860 * Need to be called with
861 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
862 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
863 */
864 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
865 ext4_lblk_t iblock, unsigned long maxblocks,
866 struct buffer_head *bh_result,
867 int create, int extend_disksize)
868 {
869 int err = -EIO;
870 ext4_lblk_t offsets[4];
871 Indirect chain[4];
872 Indirect *partial;
873 ext4_fsblk_t goal;
874 int indirect_blks;
875 int blocks_to_boundary = 0;
876 int depth;
877 struct ext4_inode_info *ei = EXT4_I(inode);
878 int count = 0;
879 ext4_fsblk_t first_block = 0;
880 loff_t disksize;
881
882
883 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
884 J_ASSERT(handle != NULL || create == 0);
885 depth = ext4_block_to_path(inode, iblock, offsets,
886 &blocks_to_boundary);
887
888 if (depth == 0)
889 goto out;
890
891 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
892
893 /* Simplest case - block found, no allocation needed */
894 if (!partial) {
895 first_block = le32_to_cpu(chain[depth - 1].key);
896 clear_buffer_new(bh_result);
897 count++;
898 /*map more blocks*/
899 while (count < maxblocks && count <= blocks_to_boundary) {
900 ext4_fsblk_t blk;
901
902 blk = le32_to_cpu(*(chain[depth-1].p + count));
903
904 if (blk == first_block + count)
905 count++;
906 else
907 break;
908 }
909 goto got_it;
910 }
911
912 /* Next simple case - plain lookup or failed read of indirect block */
913 if (!create || err == -EIO)
914 goto cleanup;
915
916 /*
917 * Okay, we need to do block allocation. Lazily initialize the block
918 * allocation info here if necessary
919 */
920 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
921 ext4_init_block_alloc_info(inode);
922
923 goal = ext4_find_goal(inode, iblock, partial);
924
925 /* the number of blocks need to allocate for [d,t]indirect blocks */
926 indirect_blks = (chain + depth) - partial - 1;
927
928 /*
929 * Next look up the indirect map to count the totoal number of
930 * direct blocks to allocate for this branch.
931 */
932 count = ext4_blks_to_allocate(partial, indirect_blks,
933 maxblocks, blocks_to_boundary);
934 /*
935 * Block out ext4_truncate while we alter the tree
936 */
937 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
938 &count, goal,
939 offsets + (partial - chain), partial);
940
941 /*
942 * The ext4_splice_branch call will free and forget any buffers
943 * on the new chain if there is a failure, but that risks using
944 * up transaction credits, especially for bitmaps where the
945 * credits cannot be returned. Can we handle this somehow? We
946 * may need to return -EAGAIN upwards in the worst case. --sct
947 */
948 if (!err)
949 err = ext4_splice_branch(handle, inode, iblock,
950 partial, indirect_blks, count);
951 /*
952 * i_disksize growing is protected by i_data_sem. Don't forget to
953 * protect it if you're about to implement concurrent
954 * ext4_get_block() -bzzz
955 */
956 if (!err && extend_disksize) {
957 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
958 if (disksize > i_size_read(inode))
959 disksize = i_size_read(inode);
960 if (disksize > ei->i_disksize)
961 ei->i_disksize = disksize;
962 }
963 if (err)
964 goto cleanup;
965
966 set_buffer_new(bh_result);
967 got_it:
968 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
969 if (count > blocks_to_boundary)
970 set_buffer_boundary(bh_result);
971 err = count;
972 /* Clean up and exit */
973 partial = chain + depth - 1; /* the whole chain */
974 cleanup:
975 while (partial > chain) {
976 BUFFER_TRACE(partial->bh, "call brelse");
977 brelse(partial->bh);
978 partial--;
979 }
980 BUFFER_TRACE(bh_result, "returned");
981 out:
982 return err;
983 }
984
985 /*
986 * Calculate the number of metadata blocks need to reserve
987 * to allocate @blocks for non extent file based file
988 */
989 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
990 {
991 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
992 int ind_blks, dind_blks, tind_blks;
993
994 /* number of new indirect blocks needed */
995 ind_blks = (blocks + icap - 1) / icap;
996
997 dind_blks = (ind_blks + icap - 1) / icap;
998
999 tind_blks = 1;
1000
1001 return ind_blks + dind_blks + tind_blks;
1002 }
1003
1004 /*
1005 * Calculate the number of metadata blocks need to reserve
1006 * to allocate given number of blocks
1007 */
1008 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1009 {
1010 if (!blocks)
1011 return 0;
1012
1013 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1014 return ext4_ext_calc_metadata_amount(inode, blocks);
1015
1016 return ext4_indirect_calc_metadata_amount(inode, blocks);
1017 }
1018
1019 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1020 {
1021 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1022 int total, mdb, mdb_free;
1023
1024 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1025 /* recalculate the number of metablocks still need to be reserved */
1026 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1027 mdb = ext4_calc_metadata_amount(inode, total);
1028
1029 /* figure out how many metablocks to release */
1030 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1031 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1032
1033 if (mdb_free) {
1034 /* Account for allocated meta_blocks */
1035 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1036
1037 /* update fs dirty blocks counter */
1038 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1039 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1040 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1041 }
1042
1043 /* update per-inode reservations */
1044 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1045 EXT4_I(inode)->i_reserved_data_blocks -= used;
1046
1047 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1048 }
1049
1050 /*
1051 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1052 * and returns if the blocks are already mapped.
1053 *
1054 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1055 * and store the allocated blocks in the result buffer head and mark it
1056 * mapped.
1057 *
1058 * If file type is extents based, it will call ext4_ext_get_blocks(),
1059 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1060 * based files
1061 *
1062 * On success, it returns the number of blocks being mapped or allocate.
1063 * if create==0 and the blocks are pre-allocated and uninitialized block,
1064 * the result buffer head is unmapped. If the create ==1, it will make sure
1065 * the buffer head is mapped.
1066 *
1067 * It returns 0 if plain look up failed (blocks have not been allocated), in
1068 * that casem, buffer head is unmapped
1069 *
1070 * It returns the error in case of allocation failure.
1071 */
1072 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1073 unsigned long max_blocks, struct buffer_head *bh,
1074 int create, int extend_disksize, int flag)
1075 {
1076 int retval;
1077
1078 clear_buffer_mapped(bh);
1079
1080 /*
1081 * Try to see if we can get the block without requesting
1082 * for new file system block.
1083 */
1084 down_read((&EXT4_I(inode)->i_data_sem));
1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1086 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1087 bh, 0, 0);
1088 } else {
1089 retval = ext4_get_blocks_handle(handle,
1090 inode, block, max_blocks, bh, 0, 0);
1091 }
1092 up_read((&EXT4_I(inode)->i_data_sem));
1093
1094 /* If it is only a block(s) look up */
1095 if (!create)
1096 return retval;
1097
1098 /*
1099 * Returns if the blocks have already allocated
1100 *
1101 * Note that if blocks have been preallocated
1102 * ext4_ext_get_block() returns th create = 0
1103 * with buffer head unmapped.
1104 */
1105 if (retval > 0 && buffer_mapped(bh))
1106 return retval;
1107
1108 /*
1109 * New blocks allocate and/or writing to uninitialized extent
1110 * will possibly result in updating i_data, so we take
1111 * the write lock of i_data_sem, and call get_blocks()
1112 * with create == 1 flag.
1113 */
1114 down_write((&EXT4_I(inode)->i_data_sem));
1115
1116 /*
1117 * if the caller is from delayed allocation writeout path
1118 * we have already reserved fs blocks for allocation
1119 * let the underlying get_block() function know to
1120 * avoid double accounting
1121 */
1122 if (flag)
1123 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1124 /*
1125 * We need to check for EXT4 here because migrate
1126 * could have changed the inode type in between
1127 */
1128 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1129 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1130 bh, create, extend_disksize);
1131 } else {
1132 retval = ext4_get_blocks_handle(handle, inode, block,
1133 max_blocks, bh, create, extend_disksize);
1134
1135 if (retval > 0 && buffer_new(bh)) {
1136 /*
1137 * We allocated new blocks which will result in
1138 * i_data's format changing. Force the migrate
1139 * to fail by clearing migrate flags
1140 */
1141 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1142 ~EXT4_EXT_MIGRATE;
1143 }
1144 }
1145
1146 if (flag) {
1147 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1148 /*
1149 * Update reserved blocks/metadata blocks
1150 * after successful block allocation
1151 * which were deferred till now
1152 */
1153 if ((retval > 0) && buffer_delay(bh))
1154 ext4_da_update_reserve_space(inode, retval);
1155 }
1156
1157 up_write((&EXT4_I(inode)->i_data_sem));
1158 return retval;
1159 }
1160
1161 /* Maximum number of blocks we map for direct IO at once. */
1162 #define DIO_MAX_BLOCKS 4096
1163
1164 static int ext4_get_block(struct inode *inode, sector_t iblock,
1165 struct buffer_head *bh_result, int create)
1166 {
1167 handle_t *handle = ext4_journal_current_handle();
1168 int ret = 0, started = 0;
1169 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1170 int dio_credits;
1171
1172 if (create && !handle) {
1173 /* Direct IO write... */
1174 if (max_blocks > DIO_MAX_BLOCKS)
1175 max_blocks = DIO_MAX_BLOCKS;
1176 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1177 handle = ext4_journal_start(inode, dio_credits);
1178 if (IS_ERR(handle)) {
1179 ret = PTR_ERR(handle);
1180 goto out;
1181 }
1182 started = 1;
1183 }
1184
1185 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1186 max_blocks, bh_result, create, 0, 0);
1187 if (ret > 0) {
1188 bh_result->b_size = (ret << inode->i_blkbits);
1189 ret = 0;
1190 }
1191 if (started)
1192 ext4_journal_stop(handle);
1193 out:
1194 return ret;
1195 }
1196
1197 /*
1198 * `handle' can be NULL if create is zero
1199 */
1200 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1201 ext4_lblk_t block, int create, int *errp)
1202 {
1203 struct buffer_head dummy;
1204 int fatal = 0, err;
1205
1206 J_ASSERT(handle != NULL || create == 0);
1207
1208 dummy.b_state = 0;
1209 dummy.b_blocknr = -1000;
1210 buffer_trace_init(&dummy.b_history);
1211 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1212 &dummy, create, 1, 0);
1213 /*
1214 * ext4_get_blocks_handle() returns number of blocks
1215 * mapped. 0 in case of a HOLE.
1216 */
1217 if (err > 0) {
1218 if (err > 1)
1219 WARN_ON(1);
1220 err = 0;
1221 }
1222 *errp = err;
1223 if (!err && buffer_mapped(&dummy)) {
1224 struct buffer_head *bh;
1225 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1226 if (!bh) {
1227 *errp = -EIO;
1228 goto err;
1229 }
1230 if (buffer_new(&dummy)) {
1231 J_ASSERT(create != 0);
1232 J_ASSERT(handle != NULL);
1233
1234 /*
1235 * Now that we do not always journal data, we should
1236 * keep in mind whether this should always journal the
1237 * new buffer as metadata. For now, regular file
1238 * writes use ext4_get_block instead, so it's not a
1239 * problem.
1240 */
1241 lock_buffer(bh);
1242 BUFFER_TRACE(bh, "call get_create_access");
1243 fatal = ext4_journal_get_create_access(handle, bh);
1244 if (!fatal && !buffer_uptodate(bh)) {
1245 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1246 set_buffer_uptodate(bh);
1247 }
1248 unlock_buffer(bh);
1249 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1250 err = ext4_journal_dirty_metadata(handle, bh);
1251 if (!fatal)
1252 fatal = err;
1253 } else {
1254 BUFFER_TRACE(bh, "not a new buffer");
1255 }
1256 if (fatal) {
1257 *errp = fatal;
1258 brelse(bh);
1259 bh = NULL;
1260 }
1261 return bh;
1262 }
1263 err:
1264 return NULL;
1265 }
1266
1267 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1268 ext4_lblk_t block, int create, int *err)
1269 {
1270 struct buffer_head *bh;
1271
1272 bh = ext4_getblk(handle, inode, block, create, err);
1273 if (!bh)
1274 return bh;
1275 if (buffer_uptodate(bh))
1276 return bh;
1277 ll_rw_block(READ_META, 1, &bh);
1278 wait_on_buffer(bh);
1279 if (buffer_uptodate(bh))
1280 return bh;
1281 put_bh(bh);
1282 *err = -EIO;
1283 return NULL;
1284 }
1285
1286 static int walk_page_buffers(handle_t *handle,
1287 struct buffer_head *head,
1288 unsigned from,
1289 unsigned to,
1290 int *partial,
1291 int (*fn)(handle_t *handle,
1292 struct buffer_head *bh))
1293 {
1294 struct buffer_head *bh;
1295 unsigned block_start, block_end;
1296 unsigned blocksize = head->b_size;
1297 int err, ret = 0;
1298 struct buffer_head *next;
1299
1300 for (bh = head, block_start = 0;
1301 ret == 0 && (bh != head || !block_start);
1302 block_start = block_end, bh = next)
1303 {
1304 next = bh->b_this_page;
1305 block_end = block_start + blocksize;
1306 if (block_end <= from || block_start >= to) {
1307 if (partial && !buffer_uptodate(bh))
1308 *partial = 1;
1309 continue;
1310 }
1311 err = (*fn)(handle, bh);
1312 if (!ret)
1313 ret = err;
1314 }
1315 return ret;
1316 }
1317
1318 /*
1319 * To preserve ordering, it is essential that the hole instantiation and
1320 * the data write be encapsulated in a single transaction. We cannot
1321 * close off a transaction and start a new one between the ext4_get_block()
1322 * and the commit_write(). So doing the jbd2_journal_start at the start of
1323 * prepare_write() is the right place.
1324 *
1325 * Also, this function can nest inside ext4_writepage() ->
1326 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1327 * has generated enough buffer credits to do the whole page. So we won't
1328 * block on the journal in that case, which is good, because the caller may
1329 * be PF_MEMALLOC.
1330 *
1331 * By accident, ext4 can be reentered when a transaction is open via
1332 * quota file writes. If we were to commit the transaction while thus
1333 * reentered, there can be a deadlock - we would be holding a quota
1334 * lock, and the commit would never complete if another thread had a
1335 * transaction open and was blocking on the quota lock - a ranking
1336 * violation.
1337 *
1338 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1339 * will _not_ run commit under these circumstances because handle->h_ref
1340 * is elevated. We'll still have enough credits for the tiny quotafile
1341 * write.
1342 */
1343 static int do_journal_get_write_access(handle_t *handle,
1344 struct buffer_head *bh)
1345 {
1346 if (!buffer_mapped(bh) || buffer_freed(bh))
1347 return 0;
1348 return ext4_journal_get_write_access(handle, bh);
1349 }
1350
1351 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1352 loff_t pos, unsigned len, unsigned flags,
1353 struct page **pagep, void **fsdata)
1354 {
1355 struct inode *inode = mapping->host;
1356 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1357 handle_t *handle;
1358 int retries = 0;
1359 struct page *page;
1360 pgoff_t index;
1361 unsigned from, to;
1362
1363 index = pos >> PAGE_CACHE_SHIFT;
1364 from = pos & (PAGE_CACHE_SIZE - 1);
1365 to = from + len;
1366
1367 retry:
1368 handle = ext4_journal_start(inode, needed_blocks);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1371 goto out;
1372 }
1373
1374 page = __grab_cache_page(mapping, index);
1375 if (!page) {
1376 ext4_journal_stop(handle);
1377 ret = -ENOMEM;
1378 goto out;
1379 }
1380 *pagep = page;
1381
1382 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1383 ext4_get_block);
1384
1385 if (!ret && ext4_should_journal_data(inode)) {
1386 ret = walk_page_buffers(handle, page_buffers(page),
1387 from, to, NULL, do_journal_get_write_access);
1388 }
1389
1390 if (ret) {
1391 unlock_page(page);
1392 ext4_journal_stop(handle);
1393 page_cache_release(page);
1394 }
1395
1396 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1397 goto retry;
1398 out:
1399 return ret;
1400 }
1401
1402 /* For write_end() in data=journal mode */
1403 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1404 {
1405 if (!buffer_mapped(bh) || buffer_freed(bh))
1406 return 0;
1407 set_buffer_uptodate(bh);
1408 return ext4_journal_dirty_metadata(handle, bh);
1409 }
1410
1411 /*
1412 * We need to pick up the new inode size which generic_commit_write gave us
1413 * `file' can be NULL - eg, when called from page_symlink().
1414 *
1415 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1416 * buffers are managed internally.
1417 */
1418 static int ext4_ordered_write_end(struct file *file,
1419 struct address_space *mapping,
1420 loff_t pos, unsigned len, unsigned copied,
1421 struct page *page, void *fsdata)
1422 {
1423 handle_t *handle = ext4_journal_current_handle();
1424 struct inode *inode = mapping->host;
1425 int ret = 0, ret2;
1426
1427 ret = ext4_jbd2_file_inode(handle, inode);
1428
1429 if (ret == 0) {
1430 /*
1431 * generic_write_end() will run mark_inode_dirty() if i_size
1432 * changes. So let's piggyback the i_disksize mark_inode_dirty
1433 * into that.
1434 */
1435 loff_t new_i_size;
1436
1437 new_i_size = pos + copied;
1438 if (new_i_size > EXT4_I(inode)->i_disksize)
1439 EXT4_I(inode)->i_disksize = new_i_size;
1440 ret2 = generic_write_end(file, mapping, pos, len, copied,
1441 page, fsdata);
1442 copied = ret2;
1443 if (ret2 < 0)
1444 ret = ret2;
1445 }
1446 ret2 = ext4_journal_stop(handle);
1447 if (!ret)
1448 ret = ret2;
1449
1450 return ret ? ret : copied;
1451 }
1452
1453 static int ext4_writeback_write_end(struct file *file,
1454 struct address_space *mapping,
1455 loff_t pos, unsigned len, unsigned copied,
1456 struct page *page, void *fsdata)
1457 {
1458 handle_t *handle = ext4_journal_current_handle();
1459 struct inode *inode = mapping->host;
1460 int ret = 0, ret2;
1461 loff_t new_i_size;
1462
1463 new_i_size = pos + copied;
1464 if (new_i_size > EXT4_I(inode)->i_disksize)
1465 EXT4_I(inode)->i_disksize = new_i_size;
1466
1467 ret2 = generic_write_end(file, mapping, pos, len, copied,
1468 page, fsdata);
1469 copied = ret2;
1470 if (ret2 < 0)
1471 ret = ret2;
1472
1473 ret2 = ext4_journal_stop(handle);
1474 if (!ret)
1475 ret = ret2;
1476
1477 return ret ? ret : copied;
1478 }
1479
1480 static int ext4_journalled_write_end(struct file *file,
1481 struct address_space *mapping,
1482 loff_t pos, unsigned len, unsigned copied,
1483 struct page *page, void *fsdata)
1484 {
1485 handle_t *handle = ext4_journal_current_handle();
1486 struct inode *inode = mapping->host;
1487 int ret = 0, ret2;
1488 int partial = 0;
1489 unsigned from, to;
1490
1491 from = pos & (PAGE_CACHE_SIZE - 1);
1492 to = from + len;
1493
1494 if (copied < len) {
1495 if (!PageUptodate(page))
1496 copied = 0;
1497 page_zero_new_buffers(page, from+copied, to);
1498 }
1499
1500 ret = walk_page_buffers(handle, page_buffers(page), from,
1501 to, &partial, write_end_fn);
1502 if (!partial)
1503 SetPageUptodate(page);
1504 if (pos+copied > inode->i_size)
1505 i_size_write(inode, pos+copied);
1506 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1508 EXT4_I(inode)->i_disksize = inode->i_size;
1509 ret2 = ext4_mark_inode_dirty(handle, inode);
1510 if (!ret)
1511 ret = ret2;
1512 }
1513
1514 unlock_page(page);
1515 ret2 = ext4_journal_stop(handle);
1516 if (!ret)
1517 ret = ret2;
1518 page_cache_release(page);
1519
1520 return ret ? ret : copied;
1521 }
1522
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1524 {
1525 int retries = 0;
1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 unsigned long md_needed, mdblocks, total = 0;
1528
1529 /*
1530 * recalculate the amount of metadata blocks to reserve
1531 * in order to allocate nrblocks
1532 * worse case is one extent per block
1533 */
1534 repeat:
1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 mdblocks = ext4_calc_metadata_amount(inode, total);
1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 total = md_needed + nrblocks;
1542
1543 if (ext4_claim_free_blocks(sbi, total)) {
1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546 yield();
1547 goto repeat;
1548 }
1549 return -ENOSPC;
1550 }
1551 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1553
1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 return 0; /* success */
1556 }
1557
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1559 {
1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 int total, mdb, mdb_free, release;
1562
1563 if (!to_free)
1564 return; /* Nothing to release, exit */
1565
1566 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1567
1568 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1569 /*
1570 * if there is no reserved blocks, but we try to free some
1571 * then the counter is messed up somewhere.
1572 * but since this function is called from invalidate
1573 * page, it's harmless to return without any action
1574 */
1575 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576 "blocks for inode %lu, but there is no reserved "
1577 "data blocks\n", to_free, inode->i_ino);
1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 return;
1580 }
1581
1582 /* recalculate the number of metablocks still need to be reserved */
1583 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584 mdb = ext4_calc_metadata_amount(inode, total);
1585
1586 /* figure out how many metablocks to release */
1587 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1589
1590 release = to_free + mdb_free;
1591
1592 /* update fs dirty blocks counter for truncate case */
1593 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1594
1595 /* update per-inode reservations */
1596 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1598
1599 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1602 }
1603
1604 static void ext4_da_page_release_reservation(struct page *page,
1605 unsigned long offset)
1606 {
1607 int to_release = 0;
1608 struct buffer_head *head, *bh;
1609 unsigned int curr_off = 0;
1610
1611 head = page_buffers(page);
1612 bh = head;
1613 do {
1614 unsigned int next_off = curr_off + bh->b_size;
1615
1616 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617 to_release++;
1618 clear_buffer_delay(bh);
1619 }
1620 curr_off = next_off;
1621 } while ((bh = bh->b_this_page) != head);
1622 ext4_da_release_space(page->mapping->host, to_release);
1623 }
1624
1625 /*
1626 * Delayed allocation stuff
1627 */
1628
1629 struct mpage_da_data {
1630 struct inode *inode;
1631 struct buffer_head lbh; /* extent of blocks */
1632 unsigned long first_page, next_page; /* extent of pages */
1633 get_block_t *get_block;
1634 struct writeback_control *wbc;
1635 int io_done;
1636 long pages_written;
1637 };
1638
1639 /*
1640 * mpage_da_submit_io - walks through extent of pages and try to write
1641 * them with writepage() call back
1642 *
1643 * @mpd->inode: inode
1644 * @mpd->first_page: first page of the extent
1645 * @mpd->next_page: page after the last page of the extent
1646 * @mpd->get_block: the filesystem's block mapper function
1647 *
1648 * By the time mpage_da_submit_io() is called we expect all blocks
1649 * to be allocated. this may be wrong if allocation failed.
1650 *
1651 * As pages are already locked by write_cache_pages(), we can't use it
1652 */
1653 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1654 {
1655 struct address_space *mapping = mpd->inode->i_mapping;
1656 int ret = 0, err, nr_pages, i;
1657 unsigned long index, end;
1658 struct pagevec pvec;
1659
1660 BUG_ON(mpd->next_page <= mpd->first_page);
1661 pagevec_init(&pvec, 0);
1662 index = mpd->first_page;
1663 end = mpd->next_page - 1;
1664
1665 while (index <= end) {
1666 /* XXX: optimize tail */
1667 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668 if (nr_pages == 0)
1669 break;
1670 for (i = 0; i < nr_pages; i++) {
1671 struct page *page = pvec.pages[i];
1672
1673 index = page->index;
1674 if (index > end)
1675 break;
1676 index++;
1677
1678 err = mapping->a_ops->writepage(page, mpd->wbc);
1679 if (!err)
1680 mpd->pages_written++;
1681 /*
1682 * In error case, we have to continue because
1683 * remaining pages are still locked
1684 * XXX: unlock and re-dirty them?
1685 */
1686 if (ret == 0)
1687 ret = err;
1688 }
1689 pagevec_release(&pvec);
1690 }
1691 return ret;
1692 }
1693
1694 /*
1695 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1696 *
1697 * @mpd->inode - inode to walk through
1698 * @exbh->b_blocknr - first block on a disk
1699 * @exbh->b_size - amount of space in bytes
1700 * @logical - first logical block to start assignment with
1701 *
1702 * the function goes through all passed space and put actual disk
1703 * block numbers into buffer heads, dropping BH_Delay
1704 */
1705 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1706 struct buffer_head *exbh)
1707 {
1708 struct inode *inode = mpd->inode;
1709 struct address_space *mapping = inode->i_mapping;
1710 int blocks = exbh->b_size >> inode->i_blkbits;
1711 sector_t pblock = exbh->b_blocknr, cur_logical;
1712 struct buffer_head *head, *bh;
1713 pgoff_t index, end;
1714 struct pagevec pvec;
1715 int nr_pages, i;
1716
1717 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1718 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720
1721 pagevec_init(&pvec, 0);
1722
1723 while (index <= end) {
1724 /* XXX: optimize tail */
1725 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1726 if (nr_pages == 0)
1727 break;
1728 for (i = 0; i < nr_pages; i++) {
1729 struct page *page = pvec.pages[i];
1730
1731 index = page->index;
1732 if (index > end)
1733 break;
1734 index++;
1735
1736 BUG_ON(!PageLocked(page));
1737 BUG_ON(PageWriteback(page));
1738 BUG_ON(!page_has_buffers(page));
1739
1740 bh = page_buffers(page);
1741 head = bh;
1742
1743 /* skip blocks out of the range */
1744 do {
1745 if (cur_logical >= logical)
1746 break;
1747 cur_logical++;
1748 } while ((bh = bh->b_this_page) != head);
1749
1750 do {
1751 if (cur_logical >= logical + blocks)
1752 break;
1753 if (buffer_delay(bh)) {
1754 bh->b_blocknr = pblock;
1755 clear_buffer_delay(bh);
1756 bh->b_bdev = inode->i_sb->s_bdev;
1757 } else if (buffer_unwritten(bh)) {
1758 bh->b_blocknr = pblock;
1759 clear_buffer_unwritten(bh);
1760 set_buffer_mapped(bh);
1761 set_buffer_new(bh);
1762 bh->b_bdev = inode->i_sb->s_bdev;
1763 } else if (buffer_mapped(bh))
1764 BUG_ON(bh->b_blocknr != pblock);
1765
1766 cur_logical++;
1767 pblock++;
1768 } while ((bh = bh->b_this_page) != head);
1769 }
1770 pagevec_release(&pvec);
1771 }
1772 }
1773
1774
1775 /*
1776 * __unmap_underlying_blocks - just a helper function to unmap
1777 * set of blocks described by @bh
1778 */
1779 static inline void __unmap_underlying_blocks(struct inode *inode,
1780 struct buffer_head *bh)
1781 {
1782 struct block_device *bdev = inode->i_sb->s_bdev;
1783 int blocks, i;
1784
1785 blocks = bh->b_size >> inode->i_blkbits;
1786 for (i = 0; i < blocks; i++)
1787 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1788 }
1789
1790 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1791 sector_t logical, long blk_cnt)
1792 {
1793 int nr_pages, i;
1794 pgoff_t index, end;
1795 struct pagevec pvec;
1796 struct inode *inode = mpd->inode;
1797 struct address_space *mapping = inode->i_mapping;
1798
1799 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1800 end = (logical + blk_cnt - 1) >>
1801 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1802 while (index <= end) {
1803 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1804 if (nr_pages == 0)
1805 break;
1806 for (i = 0; i < nr_pages; i++) {
1807 struct page *page = pvec.pages[i];
1808 index = page->index;
1809 if (index > end)
1810 break;
1811 index++;
1812
1813 BUG_ON(!PageLocked(page));
1814 BUG_ON(PageWriteback(page));
1815 block_invalidatepage(page, 0);
1816 ClearPageUptodate(page);
1817 unlock_page(page);
1818 }
1819 }
1820 return;
1821 }
1822
1823 /*
1824 * mpage_da_map_blocks - go through given space
1825 *
1826 * @mpd->lbh - bh describing space
1827 * @mpd->get_block - the filesystem's block mapper function
1828 *
1829 * The function skips space we know is already mapped to disk blocks.
1830 *
1831 */
1832 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1833 {
1834 int err = 0;
1835 struct buffer_head new;
1836 struct buffer_head *lbh = &mpd->lbh;
1837 sector_t next = lbh->b_blocknr;
1838
1839 /*
1840 * We consider only non-mapped and non-allocated blocks
1841 */
1842 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1843 return 0;
1844 new.b_state = lbh->b_state;
1845 new.b_blocknr = 0;
1846 new.b_size = lbh->b_size;
1847 /*
1848 * If we didn't accumulate anything
1849 * to write simply return
1850 */
1851 if (!new.b_size)
1852 return 0;
1853 err = mpd->get_block(mpd->inode, next, &new, 1);
1854 if (err) {
1855
1856 /* If get block returns with error
1857 * we simply return. Later writepage
1858 * will redirty the page and writepages
1859 * will find the dirty page again
1860 */
1861 if (err == -EAGAIN)
1862 return 0;
1863 /*
1864 * get block failure will cause us
1865 * to loop in writepages. Because
1866 * a_ops->writepage won't be able to
1867 * make progress. The page will be redirtied
1868 * by writepage and writepages will again
1869 * try to write the same.
1870 */
1871 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1872 "at logical offset %llu with max blocks "
1873 "%zd with error %d\n",
1874 __func__, mpd->inode->i_ino,
1875 (unsigned long long)next,
1876 lbh->b_size >> mpd->inode->i_blkbits, err);
1877 printk(KERN_EMERG "This should not happen.!! "
1878 "Data will be lost\n");
1879 if (err == -ENOSPC) {
1880 printk(KERN_CRIT "Total free blocks count %lld\n",
1881 ext4_count_free_blocks(mpd->inode->i_sb));
1882 }
1883 /* invlaidate all the pages */
1884 ext4_da_block_invalidatepages(mpd, next,
1885 lbh->b_size >> mpd->inode->i_blkbits);
1886 return err;
1887 }
1888 BUG_ON(new.b_size == 0);
1889
1890 if (buffer_new(&new))
1891 __unmap_underlying_blocks(mpd->inode, &new);
1892
1893 /*
1894 * If blocks are delayed marked, we need to
1895 * put actual blocknr and drop delayed bit
1896 */
1897 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1898 mpage_put_bnr_to_bhs(mpd, next, &new);
1899
1900 return 0;
1901 }
1902
1903 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1904 (1 << BH_Delay) | (1 << BH_Unwritten))
1905
1906 /*
1907 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1908 *
1909 * @mpd->lbh - extent of blocks
1910 * @logical - logical number of the block in the file
1911 * @bh - bh of the block (used to access block's state)
1912 *
1913 * the function is used to collect contig. blocks in same state
1914 */
1915 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1916 sector_t logical, struct buffer_head *bh)
1917 {
1918 sector_t next;
1919 size_t b_size = bh->b_size;
1920 struct buffer_head *lbh = &mpd->lbh;
1921 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1922
1923 /* check if thereserved journal credits might overflow */
1924 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1925 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1926 /*
1927 * With non-extent format we are limited by the journal
1928 * credit available. Total credit needed to insert
1929 * nrblocks contiguous blocks is dependent on the
1930 * nrblocks. So limit nrblocks.
1931 */
1932 goto flush_it;
1933 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1934 EXT4_MAX_TRANS_DATA) {
1935 /*
1936 * Adding the new buffer_head would make it cross the
1937 * allowed limit for which we have journal credit
1938 * reserved. So limit the new bh->b_size
1939 */
1940 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1941 mpd->inode->i_blkbits;
1942 /* we will do mpage_da_submit_io in the next loop */
1943 }
1944 }
1945 /*
1946 * First block in the extent
1947 */
1948 if (lbh->b_size == 0) {
1949 lbh->b_blocknr = logical;
1950 lbh->b_size = b_size;
1951 lbh->b_state = bh->b_state & BH_FLAGS;
1952 return;
1953 }
1954
1955 next = lbh->b_blocknr + nrblocks;
1956 /*
1957 * Can we merge the block to our big extent?
1958 */
1959 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1960 lbh->b_size += b_size;
1961 return;
1962 }
1963
1964 flush_it:
1965 /*
1966 * We couldn't merge the block to our extent, so we
1967 * need to flush current extent and start new one
1968 */
1969 if (mpage_da_map_blocks(mpd) == 0)
1970 mpage_da_submit_io(mpd);
1971 mpd->io_done = 1;
1972 return;
1973 }
1974
1975 /*
1976 * __mpage_da_writepage - finds extent of pages and blocks
1977 *
1978 * @page: page to consider
1979 * @wbc: not used, we just follow rules
1980 * @data: context
1981 *
1982 * The function finds extents of pages and scan them for all blocks.
1983 */
1984 static int __mpage_da_writepage(struct page *page,
1985 struct writeback_control *wbc, void *data)
1986 {
1987 struct mpage_da_data *mpd = data;
1988 struct inode *inode = mpd->inode;
1989 struct buffer_head *bh, *head, fake;
1990 sector_t logical;
1991
1992 if (mpd->io_done) {
1993 /*
1994 * Rest of the page in the page_vec
1995 * redirty then and skip then. We will
1996 * try to to write them again after
1997 * starting a new transaction
1998 */
1999 redirty_page_for_writepage(wbc, page);
2000 unlock_page(page);
2001 return MPAGE_DA_EXTENT_TAIL;
2002 }
2003 /*
2004 * Can we merge this page to current extent?
2005 */
2006 if (mpd->next_page != page->index) {
2007 /*
2008 * Nope, we can't. So, we map non-allocated blocks
2009 * and start IO on them using writepage()
2010 */
2011 if (mpd->next_page != mpd->first_page) {
2012 if (mpage_da_map_blocks(mpd) == 0)
2013 mpage_da_submit_io(mpd);
2014 /*
2015 * skip rest of the page in the page_vec
2016 */
2017 mpd->io_done = 1;
2018 redirty_page_for_writepage(wbc, page);
2019 unlock_page(page);
2020 return MPAGE_DA_EXTENT_TAIL;
2021 }
2022
2023 /*
2024 * Start next extent of pages ...
2025 */
2026 mpd->first_page = page->index;
2027
2028 /*
2029 * ... and blocks
2030 */
2031 mpd->lbh.b_size = 0;
2032 mpd->lbh.b_state = 0;
2033 mpd->lbh.b_blocknr = 0;
2034 }
2035
2036 mpd->next_page = page->index + 1;
2037 logical = (sector_t) page->index <<
2038 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039
2040 if (!page_has_buffers(page)) {
2041 /*
2042 * There is no attached buffer heads yet (mmap?)
2043 * we treat the page asfull of dirty blocks
2044 */
2045 bh = &fake;
2046 bh->b_size = PAGE_CACHE_SIZE;
2047 bh->b_state = 0;
2048 set_buffer_dirty(bh);
2049 set_buffer_uptodate(bh);
2050 mpage_add_bh_to_extent(mpd, logical, bh);
2051 if (mpd->io_done)
2052 return MPAGE_DA_EXTENT_TAIL;
2053 } else {
2054 /*
2055 * Page with regular buffer heads, just add all dirty ones
2056 */
2057 head = page_buffers(page);
2058 bh = head;
2059 do {
2060 BUG_ON(buffer_locked(bh));
2061 if (buffer_dirty(bh) &&
2062 (!buffer_mapped(bh) || buffer_delay(bh))) {
2063 mpage_add_bh_to_extent(mpd, logical, bh);
2064 if (mpd->io_done)
2065 return MPAGE_DA_EXTENT_TAIL;
2066 }
2067 logical++;
2068 } while ((bh = bh->b_this_page) != head);
2069 }
2070
2071 return 0;
2072 }
2073
2074 /*
2075 * mpage_da_writepages - walk the list of dirty pages of the given
2076 * address space, allocates non-allocated blocks, maps newly-allocated
2077 * blocks to existing bhs and issue IO them
2078 *
2079 * @mapping: address space structure to write
2080 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2081 * @get_block: the filesystem's block mapper function.
2082 *
2083 * This is a library function, which implements the writepages()
2084 * address_space_operation.
2085 */
2086 static int mpage_da_writepages(struct address_space *mapping,
2087 struct writeback_control *wbc,
2088 get_block_t get_block)
2089 {
2090 struct mpage_da_data mpd;
2091 long to_write;
2092 int ret;
2093
2094 if (!get_block)
2095 return generic_writepages(mapping, wbc);
2096
2097 mpd.wbc = wbc;
2098 mpd.inode = mapping->host;
2099 mpd.lbh.b_size = 0;
2100 mpd.lbh.b_state = 0;
2101 mpd.lbh.b_blocknr = 0;
2102 mpd.first_page = 0;
2103 mpd.next_page = 0;
2104 mpd.get_block = get_block;
2105 mpd.io_done = 0;
2106 mpd.pages_written = 0;
2107
2108 to_write = wbc->nr_to_write;
2109
2110 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2111
2112 /*
2113 * Handle last extent of pages
2114 */
2115 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2116 if (mpage_da_map_blocks(&mpd) == 0)
2117 mpage_da_submit_io(&mpd);
2118 }
2119
2120 wbc->nr_to_write = to_write - mpd.pages_written;
2121 return ret;
2122 }
2123
2124 /*
2125 * this is a special callback for ->write_begin() only
2126 * it's intention is to return mapped block or reserve space
2127 */
2128 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2129 struct buffer_head *bh_result, int create)
2130 {
2131 int ret = 0;
2132
2133 BUG_ON(create == 0);
2134 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2135
2136 /*
2137 * first, we need to know whether the block is allocated already
2138 * preallocated blocks are unmapped but should treated
2139 * the same as allocated blocks.
2140 */
2141 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2142 if ((ret == 0) && !buffer_delay(bh_result)) {
2143 /* the block isn't (pre)allocated yet, let's reserve space */
2144 /*
2145 * XXX: __block_prepare_write() unmaps passed block,
2146 * is it OK?
2147 */
2148 ret = ext4_da_reserve_space(inode, 1);
2149 if (ret)
2150 /* not enough space to reserve */
2151 return ret;
2152
2153 map_bh(bh_result, inode->i_sb, 0);
2154 set_buffer_new(bh_result);
2155 set_buffer_delay(bh_result);
2156 } else if (ret > 0) {
2157 bh_result->b_size = (ret << inode->i_blkbits);
2158 ret = 0;
2159 }
2160
2161 return ret;
2162 }
2163 #define EXT4_DELALLOC_RSVED 1
2164 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2165 struct buffer_head *bh_result, int create)
2166 {
2167 int ret;
2168 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2169 loff_t disksize = EXT4_I(inode)->i_disksize;
2170 handle_t *handle = NULL;
2171
2172 handle = ext4_journal_current_handle();
2173 if (!handle) {
2174 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2175 bh_result, 0, 0, 0);
2176 BUG_ON(!ret);
2177 } else {
2178 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2179 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2180 }
2181
2182 if (ret > 0) {
2183 bh_result->b_size = (ret << inode->i_blkbits);
2184
2185 /*
2186 * Update on-disk size along with block allocation
2187 * we don't use 'extend_disksize' as size may change
2188 * within already allocated block -bzzz
2189 */
2190 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2191 if (disksize > i_size_read(inode))
2192 disksize = i_size_read(inode);
2193 if (disksize > EXT4_I(inode)->i_disksize) {
2194 /*
2195 * XXX: replace with spinlock if seen contended -bzzz
2196 */
2197 down_write(&EXT4_I(inode)->i_data_sem);
2198 if (disksize > EXT4_I(inode)->i_disksize)
2199 EXT4_I(inode)->i_disksize = disksize;
2200 up_write(&EXT4_I(inode)->i_data_sem);
2201
2202 if (EXT4_I(inode)->i_disksize == disksize) {
2203 ret = ext4_mark_inode_dirty(handle, inode);
2204 return ret;
2205 }
2206 }
2207 ret = 0;
2208 }
2209 return ret;
2210 }
2211
2212 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2213 {
2214 /*
2215 * unmapped buffer is possible for holes.
2216 * delay buffer is possible with delayed allocation
2217 */
2218 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2219 }
2220
2221 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2222 struct buffer_head *bh_result, int create)
2223 {
2224 int ret = 0;
2225 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2226
2227 /*
2228 * we don't want to do block allocation in writepage
2229 * so call get_block_wrap with create = 0
2230 */
2231 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2232 bh_result, 0, 0, 0);
2233 if (ret > 0) {
2234 bh_result->b_size = (ret << inode->i_blkbits);
2235 ret = 0;
2236 }
2237 return ret;
2238 }
2239
2240 /*
2241 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2242 * get called via journal_submit_inode_data_buffers (no journal handle)
2243 * get called via shrink_page_list via pdflush (no journal handle)
2244 * or grab_page_cache when doing write_begin (have journal handle)
2245 */
2246 static int ext4_da_writepage(struct page *page,
2247 struct writeback_control *wbc)
2248 {
2249 int ret = 0;
2250 loff_t size;
2251 unsigned long len;
2252 struct buffer_head *page_bufs;
2253 struct inode *inode = page->mapping->host;
2254
2255 size = i_size_read(inode);
2256 if (page->index == size >> PAGE_CACHE_SHIFT)
2257 len = size & ~PAGE_CACHE_MASK;
2258 else
2259 len = PAGE_CACHE_SIZE;
2260
2261 if (page_has_buffers(page)) {
2262 page_bufs = page_buffers(page);
2263 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2264 ext4_bh_unmapped_or_delay)) {
2265 /*
2266 * We don't want to do block allocation
2267 * So redirty the page and return
2268 * We may reach here when we do a journal commit
2269 * via journal_submit_inode_data_buffers.
2270 * If we don't have mapping block we just ignore
2271 * them. We can also reach here via shrink_page_list
2272 */
2273 redirty_page_for_writepage(wbc, page);
2274 unlock_page(page);
2275 return 0;
2276 }
2277 } else {
2278 /*
2279 * The test for page_has_buffers() is subtle:
2280 * We know the page is dirty but it lost buffers. That means
2281 * that at some moment in time after write_begin()/write_end()
2282 * has been called all buffers have been clean and thus they
2283 * must have been written at least once. So they are all
2284 * mapped and we can happily proceed with mapping them
2285 * and writing the page.
2286 *
2287 * Try to initialize the buffer_heads and check whether
2288 * all are mapped and non delay. We don't want to
2289 * do block allocation here.
2290 */
2291 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2292 ext4_normal_get_block_write);
2293 if (!ret) {
2294 page_bufs = page_buffers(page);
2295 /* check whether all are mapped and non delay */
2296 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2297 ext4_bh_unmapped_or_delay)) {
2298 redirty_page_for_writepage(wbc, page);
2299 unlock_page(page);
2300 return 0;
2301 }
2302 } else {
2303 /*
2304 * We can't do block allocation here
2305 * so just redity the page and unlock
2306 * and return
2307 */
2308 redirty_page_for_writepage(wbc, page);
2309 unlock_page(page);
2310 return 0;
2311 }
2312 }
2313
2314 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2315 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2316 else
2317 ret = block_write_full_page(page,
2318 ext4_normal_get_block_write,
2319 wbc);
2320
2321 return ret;
2322 }
2323
2324 /*
2325 * This is called via ext4_da_writepages() to
2326 * calulate the total number of credits to reserve to fit
2327 * a single extent allocation into a single transaction,
2328 * ext4_da_writpeages() will loop calling this before
2329 * the block allocation.
2330 */
2331
2332 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2333 {
2334 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2335
2336 /*
2337 * With non-extent format the journal credit needed to
2338 * insert nrblocks contiguous block is dependent on
2339 * number of contiguous block. So we will limit
2340 * number of contiguous block to a sane value
2341 */
2342 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2343 (max_blocks > EXT4_MAX_TRANS_DATA))
2344 max_blocks = EXT4_MAX_TRANS_DATA;
2345
2346 return ext4_chunk_trans_blocks(inode, max_blocks);
2347 }
2348
2349 static int ext4_da_writepages(struct address_space *mapping,
2350 struct writeback_control *wbc)
2351 {
2352 handle_t *handle = NULL;
2353 loff_t range_start = 0;
2354 struct inode *inode = mapping->host;
2355 int needed_blocks, ret = 0, nr_to_writebump = 0;
2356 long to_write, pages_skipped = 0;
2357 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2358
2359 /*
2360 * No pages to write? This is mainly a kludge to avoid starting
2361 * a transaction for special inodes like journal inode on last iput()
2362 * because that could violate lock ordering on umount
2363 */
2364 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2365 return 0;
2366 /*
2367 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2368 * This make sure small files blocks are allocated in
2369 * single attempt. This ensure that small files
2370 * get less fragmented.
2371 */
2372 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2373 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2374 wbc->nr_to_write = sbi->s_mb_stream_request;
2375 }
2376
2377 if (!wbc->range_cyclic)
2378 /*
2379 * If range_cyclic is not set force range_cont
2380 * and save the old writeback_index
2381 */
2382 wbc->range_cont = 1;
2383
2384 range_start = wbc->range_start;
2385 pages_skipped = wbc->pages_skipped;
2386
2387 restart_loop:
2388 to_write = wbc->nr_to_write;
2389 while (!ret && to_write > 0) {
2390
2391 /*
2392 * we insert one extent at a time. So we need
2393 * credit needed for single extent allocation.
2394 * journalled mode is currently not supported
2395 * by delalloc
2396 */
2397 BUG_ON(ext4_should_journal_data(inode));
2398 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2399
2400 /* start a new transaction*/
2401 handle = ext4_journal_start(inode, needed_blocks);
2402 if (IS_ERR(handle)) {
2403 ret = PTR_ERR(handle);
2404 printk(KERN_EMERG "%s: jbd2_start: "
2405 "%ld pages, ino %lu; err %d\n", __func__,
2406 wbc->nr_to_write, inode->i_ino, ret);
2407 dump_stack();
2408 goto out_writepages;
2409 }
2410 if (ext4_should_order_data(inode)) {
2411 /*
2412 * With ordered mode we need to add
2413 * the inode to the journal handl
2414 * when we do block allocation.
2415 */
2416 ret = ext4_jbd2_file_inode(handle, inode);
2417 if (ret) {
2418 ext4_journal_stop(handle);
2419 goto out_writepages;
2420 }
2421 }
2422
2423 to_write -= wbc->nr_to_write;
2424 ret = mpage_da_writepages(mapping, wbc,
2425 ext4_da_get_block_write);
2426 ext4_journal_stop(handle);
2427 if (ret == MPAGE_DA_EXTENT_TAIL) {
2428 /*
2429 * got one extent now try with
2430 * rest of the pages
2431 */
2432 to_write += wbc->nr_to_write;
2433 ret = 0;
2434 } else if (wbc->nr_to_write) {
2435 /*
2436 * There is no more writeout needed
2437 * or we requested for a noblocking writeout
2438 * and we found the device congested
2439 */
2440 to_write += wbc->nr_to_write;
2441 break;
2442 }
2443 wbc->nr_to_write = to_write;
2444 }
2445
2446 if (wbc->range_cont && (pages_skipped != wbc->pages_skipped)) {
2447 /* We skipped pages in this loop */
2448 wbc->range_start = range_start;
2449 wbc->nr_to_write = to_write +
2450 wbc->pages_skipped - pages_skipped;
2451 wbc->pages_skipped = pages_skipped;
2452 goto restart_loop;
2453 }
2454
2455 out_writepages:
2456 wbc->nr_to_write = to_write - nr_to_writebump;
2457 wbc->range_start = range_start;
2458 return ret;
2459 }
2460
2461 #define FALL_BACK_TO_NONDELALLOC 1
2462 static int ext4_nonda_switch(struct super_block *sb)
2463 {
2464 s64 free_blocks, dirty_blocks;
2465 struct ext4_sb_info *sbi = EXT4_SB(sb);
2466
2467 /*
2468 * switch to non delalloc mode if we are running low
2469 * on free block. The free block accounting via percpu
2470 * counters can get slightly wrong with FBC_BATCH getting
2471 * accumulated on each CPU without updating global counters
2472 * Delalloc need an accurate free block accounting. So switch
2473 * to non delalloc when we are near to error range.
2474 */
2475 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2476 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2477 if (2 * free_blocks < 3 * dirty_blocks ||
2478 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2479 /*
2480 * free block count is less that 150% of dirty blocks
2481 * or free blocks is less that watermark
2482 */
2483 return 1;
2484 }
2485 return 0;
2486 }
2487
2488 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2489 loff_t pos, unsigned len, unsigned flags,
2490 struct page **pagep, void **fsdata)
2491 {
2492 int ret, retries = 0;
2493 struct page *page;
2494 pgoff_t index;
2495 unsigned from, to;
2496 struct inode *inode = mapping->host;
2497 handle_t *handle;
2498
2499 index = pos >> PAGE_CACHE_SHIFT;
2500 from = pos & (PAGE_CACHE_SIZE - 1);
2501 to = from + len;
2502
2503 if (ext4_nonda_switch(inode->i_sb)) {
2504 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2505 return ext4_write_begin(file, mapping, pos,
2506 len, flags, pagep, fsdata);
2507 }
2508 *fsdata = (void *)0;
2509 retry:
2510 /*
2511 * With delayed allocation, we don't log the i_disksize update
2512 * if there is delayed block allocation. But we still need
2513 * to journalling the i_disksize update if writes to the end
2514 * of file which has an already mapped buffer.
2515 */
2516 handle = ext4_journal_start(inode, 1);
2517 if (IS_ERR(handle)) {
2518 ret = PTR_ERR(handle);
2519 goto out;
2520 }
2521
2522 page = __grab_cache_page(mapping, index);
2523 if (!page) {
2524 ext4_journal_stop(handle);
2525 ret = -ENOMEM;
2526 goto out;
2527 }
2528 *pagep = page;
2529
2530 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2531 ext4_da_get_block_prep);
2532 if (ret < 0) {
2533 unlock_page(page);
2534 ext4_journal_stop(handle);
2535 page_cache_release(page);
2536 }
2537
2538 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2539 goto retry;
2540 out:
2541 return ret;
2542 }
2543
2544 /*
2545 * Check if we should update i_disksize
2546 * when write to the end of file but not require block allocation
2547 */
2548 static int ext4_da_should_update_i_disksize(struct page *page,
2549 unsigned long offset)
2550 {
2551 struct buffer_head *bh;
2552 struct inode *inode = page->mapping->host;
2553 unsigned int idx;
2554 int i;
2555
2556 bh = page_buffers(page);
2557 idx = offset >> inode->i_blkbits;
2558
2559 for (i = 0; i < idx; i++)
2560 bh = bh->b_this_page;
2561
2562 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2563 return 0;
2564 return 1;
2565 }
2566
2567 static int ext4_da_write_end(struct file *file,
2568 struct address_space *mapping,
2569 loff_t pos, unsigned len, unsigned copied,
2570 struct page *page, void *fsdata)
2571 {
2572 struct inode *inode = mapping->host;
2573 int ret = 0, ret2;
2574 handle_t *handle = ext4_journal_current_handle();
2575 loff_t new_i_size;
2576 unsigned long start, end;
2577 int write_mode = (int)(unsigned long)fsdata;
2578
2579 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2580 if (ext4_should_order_data(inode)) {
2581 return ext4_ordered_write_end(file, mapping, pos,
2582 len, copied, page, fsdata);
2583 } else if (ext4_should_writeback_data(inode)) {
2584 return ext4_writeback_write_end(file, mapping, pos,
2585 len, copied, page, fsdata);
2586 } else {
2587 BUG();
2588 }
2589 }
2590
2591 start = pos & (PAGE_CACHE_SIZE - 1);
2592 end = start + copied - 1;
2593
2594 /*
2595 * generic_write_end() will run mark_inode_dirty() if i_size
2596 * changes. So let's piggyback the i_disksize mark_inode_dirty
2597 * into that.
2598 */
2599
2600 new_i_size = pos + copied;
2601 if (new_i_size > EXT4_I(inode)->i_disksize) {
2602 if (ext4_da_should_update_i_disksize(page, end)) {
2603 down_write(&EXT4_I(inode)->i_data_sem);
2604 if (new_i_size > EXT4_I(inode)->i_disksize) {
2605 /*
2606 * Updating i_disksize when extending file
2607 * without needing block allocation
2608 */
2609 if (ext4_should_order_data(inode))
2610 ret = ext4_jbd2_file_inode(handle,
2611 inode);
2612
2613 EXT4_I(inode)->i_disksize = new_i_size;
2614 }
2615 up_write(&EXT4_I(inode)->i_data_sem);
2616 }
2617 }
2618 ret2 = generic_write_end(file, mapping, pos, len, copied,
2619 page, fsdata);
2620 copied = ret2;
2621 if (ret2 < 0)
2622 ret = ret2;
2623 ret2 = ext4_journal_stop(handle);
2624 if (!ret)
2625 ret = ret2;
2626
2627 return ret ? ret : copied;
2628 }
2629
2630 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2631 {
2632 /*
2633 * Drop reserved blocks
2634 */
2635 BUG_ON(!PageLocked(page));
2636 if (!page_has_buffers(page))
2637 goto out;
2638
2639 ext4_da_page_release_reservation(page, offset);
2640
2641 out:
2642 ext4_invalidatepage(page, offset);
2643
2644 return;
2645 }
2646
2647
2648 /*
2649 * bmap() is special. It gets used by applications such as lilo and by
2650 * the swapper to find the on-disk block of a specific piece of data.
2651 *
2652 * Naturally, this is dangerous if the block concerned is still in the
2653 * journal. If somebody makes a swapfile on an ext4 data-journaling
2654 * filesystem and enables swap, then they may get a nasty shock when the
2655 * data getting swapped to that swapfile suddenly gets overwritten by
2656 * the original zero's written out previously to the journal and
2657 * awaiting writeback in the kernel's buffer cache.
2658 *
2659 * So, if we see any bmap calls here on a modified, data-journaled file,
2660 * take extra steps to flush any blocks which might be in the cache.
2661 */
2662 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2663 {
2664 struct inode *inode = mapping->host;
2665 journal_t *journal;
2666 int err;
2667
2668 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2669 test_opt(inode->i_sb, DELALLOC)) {
2670 /*
2671 * With delalloc we want to sync the file
2672 * so that we can make sure we allocate
2673 * blocks for file
2674 */
2675 filemap_write_and_wait(mapping);
2676 }
2677
2678 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2679 /*
2680 * This is a REALLY heavyweight approach, but the use of
2681 * bmap on dirty files is expected to be extremely rare:
2682 * only if we run lilo or swapon on a freshly made file
2683 * do we expect this to happen.
2684 *
2685 * (bmap requires CAP_SYS_RAWIO so this does not
2686 * represent an unprivileged user DOS attack --- we'd be
2687 * in trouble if mortal users could trigger this path at
2688 * will.)
2689 *
2690 * NB. EXT4_STATE_JDATA is not set on files other than
2691 * regular files. If somebody wants to bmap a directory
2692 * or symlink and gets confused because the buffer
2693 * hasn't yet been flushed to disk, they deserve
2694 * everything they get.
2695 */
2696
2697 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2698 journal = EXT4_JOURNAL(inode);
2699 jbd2_journal_lock_updates(journal);
2700 err = jbd2_journal_flush(journal);
2701 jbd2_journal_unlock_updates(journal);
2702
2703 if (err)
2704 return 0;
2705 }
2706
2707 return generic_block_bmap(mapping, block, ext4_get_block);
2708 }
2709
2710 static int bget_one(handle_t *handle, struct buffer_head *bh)
2711 {
2712 get_bh(bh);
2713 return 0;
2714 }
2715
2716 static int bput_one(handle_t *handle, struct buffer_head *bh)
2717 {
2718 put_bh(bh);
2719 return 0;
2720 }
2721
2722 /*
2723 * Note that we don't need to start a transaction unless we're journaling data
2724 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2725 * need to file the inode to the transaction's list in ordered mode because if
2726 * we are writing back data added by write(), the inode is already there and if
2727 * we are writing back data modified via mmap(), noone guarantees in which
2728 * transaction the data will hit the disk. In case we are journaling data, we
2729 * cannot start transaction directly because transaction start ranks above page
2730 * lock so we have to do some magic.
2731 *
2732 * In all journaling modes block_write_full_page() will start the I/O.
2733 *
2734 * Problem:
2735 *
2736 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2737 * ext4_writepage()
2738 *
2739 * Similar for:
2740 *
2741 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2742 *
2743 * Same applies to ext4_get_block(). We will deadlock on various things like
2744 * lock_journal and i_data_sem
2745 *
2746 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2747 * allocations fail.
2748 *
2749 * 16May01: If we're reentered then journal_current_handle() will be
2750 * non-zero. We simply *return*.
2751 *
2752 * 1 July 2001: @@@ FIXME:
2753 * In journalled data mode, a data buffer may be metadata against the
2754 * current transaction. But the same file is part of a shared mapping
2755 * and someone does a writepage() on it.
2756 *
2757 * We will move the buffer onto the async_data list, but *after* it has
2758 * been dirtied. So there's a small window where we have dirty data on
2759 * BJ_Metadata.
2760 *
2761 * Note that this only applies to the last partial page in the file. The
2762 * bit which block_write_full_page() uses prepare/commit for. (That's
2763 * broken code anyway: it's wrong for msync()).
2764 *
2765 * It's a rare case: affects the final partial page, for journalled data
2766 * where the file is subject to bith write() and writepage() in the same
2767 * transction. To fix it we'll need a custom block_write_full_page().
2768 * We'll probably need that anyway for journalling writepage() output.
2769 *
2770 * We don't honour synchronous mounts for writepage(). That would be
2771 * disastrous. Any write() or metadata operation will sync the fs for
2772 * us.
2773 *
2774 */
2775 static int __ext4_normal_writepage(struct page *page,
2776 struct writeback_control *wbc)
2777 {
2778 struct inode *inode = page->mapping->host;
2779
2780 if (test_opt(inode->i_sb, NOBH))
2781 return nobh_writepage(page,
2782 ext4_normal_get_block_write, wbc);
2783 else
2784 return block_write_full_page(page,
2785 ext4_normal_get_block_write,
2786 wbc);
2787 }
2788
2789 static int ext4_normal_writepage(struct page *page,
2790 struct writeback_control *wbc)
2791 {
2792 struct inode *inode = page->mapping->host;
2793 loff_t size = i_size_read(inode);
2794 loff_t len;
2795
2796 J_ASSERT(PageLocked(page));
2797 if (page->index == size >> PAGE_CACHE_SHIFT)
2798 len = size & ~PAGE_CACHE_MASK;
2799 else
2800 len = PAGE_CACHE_SIZE;
2801
2802 if (page_has_buffers(page)) {
2803 /* if page has buffers it should all be mapped
2804 * and allocated. If there are not buffers attached
2805 * to the page we know the page is dirty but it lost
2806 * buffers. That means that at some moment in time
2807 * after write_begin() / write_end() has been called
2808 * all buffers have been clean and thus they must have been
2809 * written at least once. So they are all mapped and we can
2810 * happily proceed with mapping them and writing the page.
2811 */
2812 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2813 ext4_bh_unmapped_or_delay));
2814 }
2815
2816 if (!ext4_journal_current_handle())
2817 return __ext4_normal_writepage(page, wbc);
2818
2819 redirty_page_for_writepage(wbc, page);
2820 unlock_page(page);
2821 return 0;
2822 }
2823
2824 static int __ext4_journalled_writepage(struct page *page,
2825 struct writeback_control *wbc)
2826 {
2827 struct address_space *mapping = page->mapping;
2828 struct inode *inode = mapping->host;
2829 struct buffer_head *page_bufs;
2830 handle_t *handle = NULL;
2831 int ret = 0;
2832 int err;
2833
2834 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2835 ext4_normal_get_block_write);
2836 if (ret != 0)
2837 goto out_unlock;
2838
2839 page_bufs = page_buffers(page);
2840 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2841 bget_one);
2842 /* As soon as we unlock the page, it can go away, but we have
2843 * references to buffers so we are safe */
2844 unlock_page(page);
2845
2846 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2847 if (IS_ERR(handle)) {
2848 ret = PTR_ERR(handle);
2849 goto out;
2850 }
2851
2852 ret = walk_page_buffers(handle, page_bufs, 0,
2853 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2854
2855 err = walk_page_buffers(handle, page_bufs, 0,
2856 PAGE_CACHE_SIZE, NULL, write_end_fn);
2857 if (ret == 0)
2858 ret = err;
2859 err = ext4_journal_stop(handle);
2860 if (!ret)
2861 ret = err;
2862
2863 walk_page_buffers(handle, page_bufs, 0,
2864 PAGE_CACHE_SIZE, NULL, bput_one);
2865 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2866 goto out;
2867
2868 out_unlock:
2869 unlock_page(page);
2870 out:
2871 return ret;
2872 }
2873
2874 static int ext4_journalled_writepage(struct page *page,
2875 struct writeback_control *wbc)
2876 {
2877 struct inode *inode = page->mapping->host;
2878 loff_t size = i_size_read(inode);
2879 loff_t len;
2880
2881 J_ASSERT(PageLocked(page));
2882 if (page->index == size >> PAGE_CACHE_SHIFT)
2883 len = size & ~PAGE_CACHE_MASK;
2884 else
2885 len = PAGE_CACHE_SIZE;
2886
2887 if (page_has_buffers(page)) {
2888 /* if page has buffers it should all be mapped
2889 * and allocated. If there are not buffers attached
2890 * to the page we know the page is dirty but it lost
2891 * buffers. That means that at some moment in time
2892 * after write_begin() / write_end() has been called
2893 * all buffers have been clean and thus they must have been
2894 * written at least once. So they are all mapped and we can
2895 * happily proceed with mapping them and writing the page.
2896 */
2897 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2898 ext4_bh_unmapped_or_delay));
2899 }
2900
2901 if (ext4_journal_current_handle())
2902 goto no_write;
2903
2904 if (PageChecked(page)) {
2905 /*
2906 * It's mmapped pagecache. Add buffers and journal it. There
2907 * doesn't seem much point in redirtying the page here.
2908 */
2909 ClearPageChecked(page);
2910 return __ext4_journalled_writepage(page, wbc);
2911 } else {
2912 /*
2913 * It may be a page full of checkpoint-mode buffers. We don't
2914 * really know unless we go poke around in the buffer_heads.
2915 * But block_write_full_page will do the right thing.
2916 */
2917 return block_write_full_page(page,
2918 ext4_normal_get_block_write,
2919 wbc);
2920 }
2921 no_write:
2922 redirty_page_for_writepage(wbc, page);
2923 unlock_page(page);
2924 return 0;
2925 }
2926
2927 static int ext4_readpage(struct file *file, struct page *page)
2928 {
2929 return mpage_readpage(page, ext4_get_block);
2930 }
2931
2932 static int
2933 ext4_readpages(struct file *file, struct address_space *mapping,
2934 struct list_head *pages, unsigned nr_pages)
2935 {
2936 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2937 }
2938
2939 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2940 {
2941 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2942
2943 /*
2944 * If it's a full truncate we just forget about the pending dirtying
2945 */
2946 if (offset == 0)
2947 ClearPageChecked(page);
2948
2949 jbd2_journal_invalidatepage(journal, page, offset);
2950 }
2951
2952 static int ext4_releasepage(struct page *page, gfp_t wait)
2953 {
2954 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2955
2956 WARN_ON(PageChecked(page));
2957 if (!page_has_buffers(page))
2958 return 0;
2959 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2960 }
2961
2962 /*
2963 * If the O_DIRECT write will extend the file then add this inode to the
2964 * orphan list. So recovery will truncate it back to the original size
2965 * if the machine crashes during the write.
2966 *
2967 * If the O_DIRECT write is intantiating holes inside i_size and the machine
2968 * crashes then stale disk data _may_ be exposed inside the file. But current
2969 * VFS code falls back into buffered path in that case so we are safe.
2970 */
2971 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2972 const struct iovec *iov, loff_t offset,
2973 unsigned long nr_segs)
2974 {
2975 struct file *file = iocb->ki_filp;
2976 struct inode *inode = file->f_mapping->host;
2977 struct ext4_inode_info *ei = EXT4_I(inode);
2978 handle_t *handle;
2979 ssize_t ret;
2980 int orphan = 0;
2981 size_t count = iov_length(iov, nr_segs);
2982
2983 if (rw == WRITE) {
2984 loff_t final_size = offset + count;
2985
2986 if (final_size > inode->i_size) {
2987 /* Credits for sb + inode write */
2988 handle = ext4_journal_start(inode, 2);
2989 if (IS_ERR(handle)) {
2990 ret = PTR_ERR(handle);
2991 goto out;
2992 }
2993 ret = ext4_orphan_add(handle, inode);
2994 if (ret) {
2995 ext4_journal_stop(handle);
2996 goto out;
2997 }
2998 orphan = 1;
2999 ei->i_disksize = inode->i_size;
3000 ext4_journal_stop(handle);
3001 }
3002 }
3003
3004 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3005 offset, nr_segs,
3006 ext4_get_block, NULL);
3007
3008 if (orphan) {
3009 int err;
3010
3011 /* Credits for sb + inode write */
3012 handle = ext4_journal_start(inode, 2);
3013 if (IS_ERR(handle)) {
3014 /* This is really bad luck. We've written the data
3015 * but cannot extend i_size. Bail out and pretend
3016 * the write failed... */
3017 ret = PTR_ERR(handle);
3018 goto out;
3019 }
3020 if (inode->i_nlink)
3021 ext4_orphan_del(handle, inode);
3022 if (ret > 0) {
3023 loff_t end = offset + ret;
3024 if (end > inode->i_size) {
3025 ei->i_disksize = end;
3026 i_size_write(inode, end);
3027 /*
3028 * We're going to return a positive `ret'
3029 * here due to non-zero-length I/O, so there's
3030 * no way of reporting error returns from
3031 * ext4_mark_inode_dirty() to userspace. So
3032 * ignore it.
3033 */
3034 ext4_mark_inode_dirty(handle, inode);
3035 }
3036 }
3037 err = ext4_journal_stop(handle);
3038 if (ret == 0)
3039 ret = err;
3040 }
3041 out:
3042 return ret;
3043 }
3044
3045 /*
3046 * Pages can be marked dirty completely asynchronously from ext4's journalling
3047 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3048 * much here because ->set_page_dirty is called under VFS locks. The page is
3049 * not necessarily locked.
3050 *
3051 * We cannot just dirty the page and leave attached buffers clean, because the
3052 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3053 * or jbddirty because all the journalling code will explode.
3054 *
3055 * So what we do is to mark the page "pending dirty" and next time writepage
3056 * is called, propagate that into the buffers appropriately.
3057 */
3058 static int ext4_journalled_set_page_dirty(struct page *page)
3059 {
3060 SetPageChecked(page);
3061 return __set_page_dirty_nobuffers(page);
3062 }
3063
3064 static const struct address_space_operations ext4_ordered_aops = {
3065 .readpage = ext4_readpage,
3066 .readpages = ext4_readpages,
3067 .writepage = ext4_normal_writepage,
3068 .sync_page = block_sync_page,
3069 .write_begin = ext4_write_begin,
3070 .write_end = ext4_ordered_write_end,
3071 .bmap = ext4_bmap,
3072 .invalidatepage = ext4_invalidatepage,
3073 .releasepage = ext4_releasepage,
3074 .direct_IO = ext4_direct_IO,
3075 .migratepage = buffer_migrate_page,
3076 .is_partially_uptodate = block_is_partially_uptodate,
3077 };
3078
3079 static const struct address_space_operations ext4_writeback_aops = {
3080 .readpage = ext4_readpage,
3081 .readpages = ext4_readpages,
3082 .writepage = ext4_normal_writepage,
3083 .sync_page = block_sync_page,
3084 .write_begin = ext4_write_begin,
3085 .write_end = ext4_writeback_write_end,
3086 .bmap = ext4_bmap,
3087 .invalidatepage = ext4_invalidatepage,
3088 .releasepage = ext4_releasepage,
3089 .direct_IO = ext4_direct_IO,
3090 .migratepage = buffer_migrate_page,
3091 .is_partially_uptodate = block_is_partially_uptodate,
3092 };
3093
3094 static const struct address_space_operations ext4_journalled_aops = {
3095 .readpage = ext4_readpage,
3096 .readpages = ext4_readpages,
3097 .writepage = ext4_journalled_writepage,
3098 .sync_page = block_sync_page,
3099 .write_begin = ext4_write_begin,
3100 .write_end = ext4_journalled_write_end,
3101 .set_page_dirty = ext4_journalled_set_page_dirty,
3102 .bmap = ext4_bmap,
3103 .invalidatepage = ext4_invalidatepage,
3104 .releasepage = ext4_releasepage,
3105 .is_partially_uptodate = block_is_partially_uptodate,
3106 };
3107
3108 static const struct address_space_operations ext4_da_aops = {
3109 .readpage = ext4_readpage,
3110 .readpages = ext4_readpages,
3111 .writepage = ext4_da_writepage,
3112 .writepages = ext4_da_writepages,
3113 .sync_page = block_sync_page,
3114 .write_begin = ext4_da_write_begin,
3115 .write_end = ext4_da_write_end,
3116 .bmap = ext4_bmap,
3117 .invalidatepage = ext4_da_invalidatepage,
3118 .releasepage = ext4_releasepage,
3119 .direct_IO = ext4_direct_IO,
3120 .migratepage = buffer_migrate_page,
3121 .is_partially_uptodate = block_is_partially_uptodate,
3122 };
3123
3124 void ext4_set_aops(struct inode *inode)
3125 {
3126 if (ext4_should_order_data(inode) &&
3127 test_opt(inode->i_sb, DELALLOC))
3128 inode->i_mapping->a_ops = &ext4_da_aops;
3129 else if (ext4_should_order_data(inode))
3130 inode->i_mapping->a_ops = &ext4_ordered_aops;
3131 else if (ext4_should_writeback_data(inode) &&
3132 test_opt(inode->i_sb, DELALLOC))
3133 inode->i_mapping->a_ops = &ext4_da_aops;
3134 else if (ext4_should_writeback_data(inode))
3135 inode->i_mapping->a_ops = &ext4_writeback_aops;
3136 else
3137 inode->i_mapping->a_ops = &ext4_journalled_aops;
3138 }
3139
3140 /*
3141 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3142 * up to the end of the block which corresponds to `from'.
3143 * This required during truncate. We need to physically zero the tail end
3144 * of that block so it doesn't yield old data if the file is later grown.
3145 */
3146 int ext4_block_truncate_page(handle_t *handle,
3147 struct address_space *mapping, loff_t from)
3148 {
3149 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3150 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3151 unsigned blocksize, length, pos;
3152 ext4_lblk_t iblock;
3153 struct inode *inode = mapping->host;
3154 struct buffer_head *bh;
3155 struct page *page;
3156 int err = 0;
3157
3158 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3159 if (!page)
3160 return -EINVAL;
3161
3162 blocksize = inode->i_sb->s_blocksize;
3163 length = blocksize - (offset & (blocksize - 1));
3164 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3165
3166 /*
3167 * For "nobh" option, we can only work if we don't need to
3168 * read-in the page - otherwise we create buffers to do the IO.
3169 */
3170 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3171 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3172 zero_user(page, offset, length);
3173 set_page_dirty(page);
3174 goto unlock;
3175 }
3176
3177 if (!page_has_buffers(page))
3178 create_empty_buffers(page, blocksize, 0);
3179
3180 /* Find the buffer that contains "offset" */
3181 bh = page_buffers(page);
3182 pos = blocksize;
3183 while (offset >= pos) {
3184 bh = bh->b_this_page;
3185 iblock++;
3186 pos += blocksize;
3187 }
3188
3189 err = 0;
3190 if (buffer_freed(bh)) {
3191 BUFFER_TRACE(bh, "freed: skip");
3192 goto unlock;
3193 }
3194
3195 if (!buffer_mapped(bh)) {
3196 BUFFER_TRACE(bh, "unmapped");
3197 ext4_get_block(inode, iblock, bh, 0);
3198 /* unmapped? It's a hole - nothing to do */
3199 if (!buffer_mapped(bh)) {
3200 BUFFER_TRACE(bh, "still unmapped");
3201 goto unlock;
3202 }
3203 }
3204
3205 /* Ok, it's mapped. Make sure it's up-to-date */
3206 if (PageUptodate(page))
3207 set_buffer_uptodate(bh);
3208
3209 if (!buffer_uptodate(bh)) {
3210 err = -EIO;
3211 ll_rw_block(READ, 1, &bh);
3212 wait_on_buffer(bh);
3213 /* Uhhuh. Read error. Complain and punt. */
3214 if (!buffer_uptodate(bh))
3215 goto unlock;
3216 }
3217
3218 if (ext4_should_journal_data(inode)) {
3219 BUFFER_TRACE(bh, "get write access");
3220 err = ext4_journal_get_write_access(handle, bh);
3221 if (err)
3222 goto unlock;
3223 }
3224
3225 zero_user(page, offset, length);
3226
3227 BUFFER_TRACE(bh, "zeroed end of block");
3228
3229 err = 0;
3230 if (ext4_should_journal_data(inode)) {
3231 err = ext4_journal_dirty_metadata(handle, bh);
3232 } else {
3233 if (ext4_should_order_data(inode))
3234 err = ext4_jbd2_file_inode(handle, inode);
3235 mark_buffer_dirty(bh);
3236 }
3237
3238 unlock:
3239 unlock_page(page);
3240 page_cache_release(page);
3241 return err;
3242 }
3243
3244 /*
3245 * Probably it should be a library function... search for first non-zero word
3246 * or memcmp with zero_page, whatever is better for particular architecture.
3247 * Linus?
3248 */
3249 static inline int all_zeroes(__le32 *p, __le32 *q)
3250 {
3251 while (p < q)
3252 if (*p++)
3253 return 0;
3254 return 1;
3255 }
3256
3257 /**
3258 * ext4_find_shared - find the indirect blocks for partial truncation.
3259 * @inode: inode in question
3260 * @depth: depth of the affected branch
3261 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3262 * @chain: place to store the pointers to partial indirect blocks
3263 * @top: place to the (detached) top of branch
3264 *
3265 * This is a helper function used by ext4_truncate().
3266 *
3267 * When we do truncate() we may have to clean the ends of several
3268 * indirect blocks but leave the blocks themselves alive. Block is
3269 * partially truncated if some data below the new i_size is refered
3270 * from it (and it is on the path to the first completely truncated
3271 * data block, indeed). We have to free the top of that path along
3272 * with everything to the right of the path. Since no allocation
3273 * past the truncation point is possible until ext4_truncate()
3274 * finishes, we may safely do the latter, but top of branch may
3275 * require special attention - pageout below the truncation point
3276 * might try to populate it.
3277 *
3278 * We atomically detach the top of branch from the tree, store the
3279 * block number of its root in *@top, pointers to buffer_heads of
3280 * partially truncated blocks - in @chain[].bh and pointers to
3281 * their last elements that should not be removed - in
3282 * @chain[].p. Return value is the pointer to last filled element
3283 * of @chain.
3284 *
3285 * The work left to caller to do the actual freeing of subtrees:
3286 * a) free the subtree starting from *@top
3287 * b) free the subtrees whose roots are stored in
3288 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3289 * c) free the subtrees growing from the inode past the @chain[0].
3290 * (no partially truncated stuff there). */
3291
3292 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3293 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3294 {
3295 Indirect *partial, *p;
3296 int k, err;
3297
3298 *top = 0;
3299 /* Make k index the deepest non-null offest + 1 */
3300 for (k = depth; k > 1 && !offsets[k-1]; k--)
3301 ;
3302 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3303 /* Writer: pointers */
3304 if (!partial)
3305 partial = chain + k-1;
3306 /*
3307 * If the branch acquired continuation since we've looked at it -
3308 * fine, it should all survive and (new) top doesn't belong to us.
3309 */
3310 if (!partial->key && *partial->p)
3311 /* Writer: end */
3312 goto no_top;
3313 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3314 ;
3315 /*
3316 * OK, we've found the last block that must survive. The rest of our
3317 * branch should be detached before unlocking. However, if that rest
3318 * of branch is all ours and does not grow immediately from the inode
3319 * it's easier to cheat and just decrement partial->p.
3320 */
3321 if (p == chain + k - 1 && p > chain) {
3322 p->p--;
3323 } else {
3324 *top = *p->p;
3325 /* Nope, don't do this in ext4. Must leave the tree intact */
3326 #if 0
3327 *p->p = 0;
3328 #endif
3329 }
3330 /* Writer: end */
3331
3332 while (partial > p) {
3333 brelse(partial->bh);
3334 partial--;
3335 }
3336 no_top:
3337 return partial;
3338 }
3339
3340 /*
3341 * Zero a number of block pointers in either an inode or an indirect block.
3342 * If we restart the transaction we must again get write access to the
3343 * indirect block for further modification.
3344 *
3345 * We release `count' blocks on disk, but (last - first) may be greater
3346 * than `count' because there can be holes in there.
3347 */
3348 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3349 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3350 unsigned long count, __le32 *first, __le32 *last)
3351 {
3352 __le32 *p;
3353 if (try_to_extend_transaction(handle, inode)) {
3354 if (bh) {
3355 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3356 ext4_journal_dirty_metadata(handle, bh);
3357 }
3358 ext4_mark_inode_dirty(handle, inode);
3359 ext4_journal_test_restart(handle, inode);
3360 if (bh) {
3361 BUFFER_TRACE(bh, "retaking write access");
3362 ext4_journal_get_write_access(handle, bh);
3363 }
3364 }
3365
3366 /*
3367 * Any buffers which are on the journal will be in memory. We find
3368 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3369 * on them. We've already detached each block from the file, so
3370 * bforget() in jbd2_journal_forget() should be safe.
3371 *
3372 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3373 */
3374 for (p = first; p < last; p++) {
3375 u32 nr = le32_to_cpu(*p);
3376 if (nr) {
3377 struct buffer_head *tbh;
3378
3379 *p = 0;
3380 tbh = sb_find_get_block(inode->i_sb, nr);
3381 ext4_forget(handle, 0, inode, tbh, nr);
3382 }
3383 }
3384
3385 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3386 }
3387
3388 /**
3389 * ext4_free_data - free a list of data blocks
3390 * @handle: handle for this transaction
3391 * @inode: inode we are dealing with
3392 * @this_bh: indirect buffer_head which contains *@first and *@last
3393 * @first: array of block numbers
3394 * @last: points immediately past the end of array
3395 *
3396 * We are freeing all blocks refered from that array (numbers are stored as
3397 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3398 *
3399 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3400 * blocks are contiguous then releasing them at one time will only affect one
3401 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3402 * actually use a lot of journal space.
3403 *
3404 * @this_bh will be %NULL if @first and @last point into the inode's direct
3405 * block pointers.
3406 */
3407 static void ext4_free_data(handle_t *handle, struct inode *inode,
3408 struct buffer_head *this_bh,
3409 __le32 *first, __le32 *last)
3410 {
3411 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3412 unsigned long count = 0; /* Number of blocks in the run */
3413 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3414 corresponding to
3415 block_to_free */
3416 ext4_fsblk_t nr; /* Current block # */
3417 __le32 *p; /* Pointer into inode/ind
3418 for current block */
3419 int err;
3420
3421 if (this_bh) { /* For indirect block */
3422 BUFFER_TRACE(this_bh, "get_write_access");
3423 err = ext4_journal_get_write_access(handle, this_bh);
3424 /* Important: if we can't update the indirect pointers
3425 * to the blocks, we can't free them. */
3426 if (err)
3427 return;
3428 }
3429
3430 for (p = first; p < last; p++) {
3431 nr = le32_to_cpu(*p);
3432 if (nr) {
3433 /* accumulate blocks to free if they're contiguous */
3434 if (count == 0) {
3435 block_to_free = nr;
3436 block_to_free_p = p;
3437 count = 1;
3438 } else if (nr == block_to_free + count) {
3439 count++;
3440 } else {
3441 ext4_clear_blocks(handle, inode, this_bh,
3442 block_to_free,
3443 count, block_to_free_p, p);
3444 block_to_free = nr;
3445 block_to_free_p = p;
3446 count = 1;
3447 }
3448 }
3449 }
3450
3451 if (count > 0)
3452 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3453 count, block_to_free_p, p);
3454
3455 if (this_bh) {
3456 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3457
3458 /*
3459 * The buffer head should have an attached journal head at this
3460 * point. However, if the data is corrupted and an indirect
3461 * block pointed to itself, it would have been detached when
3462 * the block was cleared. Check for this instead of OOPSing.
3463 */
3464 if (bh2jh(this_bh))
3465 ext4_journal_dirty_metadata(handle, this_bh);
3466 else
3467 ext4_error(inode->i_sb, __func__,
3468 "circular indirect block detected, "
3469 "inode=%lu, block=%llu",
3470 inode->i_ino,
3471 (unsigned long long) this_bh->b_blocknr);
3472 }
3473 }
3474
3475 /**
3476 * ext4_free_branches - free an array of branches
3477 * @handle: JBD handle for this transaction
3478 * @inode: inode we are dealing with
3479 * @parent_bh: the buffer_head which contains *@first and *@last
3480 * @first: array of block numbers
3481 * @last: pointer immediately past the end of array
3482 * @depth: depth of the branches to free
3483 *
3484 * We are freeing all blocks refered from these branches (numbers are
3485 * stored as little-endian 32-bit) and updating @inode->i_blocks
3486 * appropriately.
3487 */
3488 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3489 struct buffer_head *parent_bh,
3490 __le32 *first, __le32 *last, int depth)
3491 {
3492 ext4_fsblk_t nr;
3493 __le32 *p;
3494
3495 if (is_handle_aborted(handle))
3496 return;
3497
3498 if (depth--) {
3499 struct buffer_head *bh;
3500 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3501 p = last;
3502 while (--p >= first) {
3503 nr = le32_to_cpu(*p);
3504 if (!nr)
3505 continue; /* A hole */
3506
3507 /* Go read the buffer for the next level down */
3508 bh = sb_bread(inode->i_sb, nr);
3509
3510 /*
3511 * A read failure? Report error and clear slot
3512 * (should be rare).
3513 */
3514 if (!bh) {
3515 ext4_error(inode->i_sb, "ext4_free_branches",
3516 "Read failure, inode=%lu, block=%llu",
3517 inode->i_ino, nr);
3518 continue;
3519 }
3520
3521 /* This zaps the entire block. Bottom up. */
3522 BUFFER_TRACE(bh, "free child branches");
3523 ext4_free_branches(handle, inode, bh,
3524 (__le32 *) bh->b_data,
3525 (__le32 *) bh->b_data + addr_per_block,
3526 depth);
3527
3528 /*
3529 * We've probably journalled the indirect block several
3530 * times during the truncate. But it's no longer
3531 * needed and we now drop it from the transaction via
3532 * jbd2_journal_revoke().
3533 *
3534 * That's easy if it's exclusively part of this
3535 * transaction. But if it's part of the committing
3536 * transaction then jbd2_journal_forget() will simply
3537 * brelse() it. That means that if the underlying
3538 * block is reallocated in ext4_get_block(),
3539 * unmap_underlying_metadata() will find this block
3540 * and will try to get rid of it. damn, damn.
3541 *
3542 * If this block has already been committed to the
3543 * journal, a revoke record will be written. And
3544 * revoke records must be emitted *before* clearing
3545 * this block's bit in the bitmaps.
3546 */
3547 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3548
3549 /*
3550 * Everything below this this pointer has been
3551 * released. Now let this top-of-subtree go.
3552 *
3553 * We want the freeing of this indirect block to be
3554 * atomic in the journal with the updating of the
3555 * bitmap block which owns it. So make some room in
3556 * the journal.
3557 *
3558 * We zero the parent pointer *after* freeing its
3559 * pointee in the bitmaps, so if extend_transaction()
3560 * for some reason fails to put the bitmap changes and
3561 * the release into the same transaction, recovery
3562 * will merely complain about releasing a free block,
3563 * rather than leaking blocks.
3564 */
3565 if (is_handle_aborted(handle))
3566 return;
3567 if (try_to_extend_transaction(handle, inode)) {
3568 ext4_mark_inode_dirty(handle, inode);
3569 ext4_journal_test_restart(handle, inode);
3570 }
3571
3572 ext4_free_blocks(handle, inode, nr, 1, 1);
3573
3574 if (parent_bh) {
3575 /*
3576 * The block which we have just freed is
3577 * pointed to by an indirect block: journal it
3578 */
3579 BUFFER_TRACE(parent_bh, "get_write_access");
3580 if (!ext4_journal_get_write_access(handle,
3581 parent_bh)){
3582 *p = 0;
3583 BUFFER_TRACE(parent_bh,
3584 "call ext4_journal_dirty_metadata");
3585 ext4_journal_dirty_metadata(handle,
3586 parent_bh);
3587 }
3588 }
3589 }
3590 } else {
3591 /* We have reached the bottom of the tree. */
3592 BUFFER_TRACE(parent_bh, "free data blocks");
3593 ext4_free_data(handle, inode, parent_bh, first, last);
3594 }
3595 }
3596
3597 int ext4_can_truncate(struct inode *inode)
3598 {
3599 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3600 return 0;
3601 if (S_ISREG(inode->i_mode))
3602 return 1;
3603 if (S_ISDIR(inode->i_mode))
3604 return 1;
3605 if (S_ISLNK(inode->i_mode))
3606 return !ext4_inode_is_fast_symlink(inode);
3607 return 0;
3608 }
3609
3610 /*
3611 * ext4_truncate()
3612 *
3613 * We block out ext4_get_block() block instantiations across the entire
3614 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3615 * simultaneously on behalf of the same inode.
3616 *
3617 * As we work through the truncate and commmit bits of it to the journal there
3618 * is one core, guiding principle: the file's tree must always be consistent on
3619 * disk. We must be able to restart the truncate after a crash.
3620 *
3621 * The file's tree may be transiently inconsistent in memory (although it
3622 * probably isn't), but whenever we close off and commit a journal transaction,
3623 * the contents of (the filesystem + the journal) must be consistent and
3624 * restartable. It's pretty simple, really: bottom up, right to left (although
3625 * left-to-right works OK too).
3626 *
3627 * Note that at recovery time, journal replay occurs *before* the restart of
3628 * truncate against the orphan inode list.
3629 *
3630 * The committed inode has the new, desired i_size (which is the same as
3631 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3632 * that this inode's truncate did not complete and it will again call
3633 * ext4_truncate() to have another go. So there will be instantiated blocks
3634 * to the right of the truncation point in a crashed ext4 filesystem. But
3635 * that's fine - as long as they are linked from the inode, the post-crash
3636 * ext4_truncate() run will find them and release them.
3637 */
3638 void ext4_truncate(struct inode *inode)
3639 {
3640 handle_t *handle;
3641 struct ext4_inode_info *ei = EXT4_I(inode);
3642 __le32 *i_data = ei->i_data;
3643 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3644 struct address_space *mapping = inode->i_mapping;
3645 ext4_lblk_t offsets[4];
3646 Indirect chain[4];
3647 Indirect *partial;
3648 __le32 nr = 0;
3649 int n;
3650 ext4_lblk_t last_block;
3651 unsigned blocksize = inode->i_sb->s_blocksize;
3652
3653 if (!ext4_can_truncate(inode))
3654 return;
3655
3656 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3657 ext4_ext_truncate(inode);
3658 return;
3659 }
3660
3661 handle = start_transaction(inode);
3662 if (IS_ERR(handle))
3663 return; /* AKPM: return what? */
3664
3665 last_block = (inode->i_size + blocksize-1)
3666 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3667
3668 if (inode->i_size & (blocksize - 1))
3669 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3670 goto out_stop;
3671
3672 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3673 if (n == 0)
3674 goto out_stop; /* error */
3675
3676 /*
3677 * OK. This truncate is going to happen. We add the inode to the
3678 * orphan list, so that if this truncate spans multiple transactions,
3679 * and we crash, we will resume the truncate when the filesystem
3680 * recovers. It also marks the inode dirty, to catch the new size.
3681 *
3682 * Implication: the file must always be in a sane, consistent
3683 * truncatable state while each transaction commits.
3684 */
3685 if (ext4_orphan_add(handle, inode))
3686 goto out_stop;
3687
3688 /*
3689 * From here we block out all ext4_get_block() callers who want to
3690 * modify the block allocation tree.
3691 */
3692 down_write(&ei->i_data_sem);
3693
3694 ext4_discard_reservation(inode);
3695
3696 /*
3697 * The orphan list entry will now protect us from any crash which
3698 * occurs before the truncate completes, so it is now safe to propagate
3699 * the new, shorter inode size (held for now in i_size) into the
3700 * on-disk inode. We do this via i_disksize, which is the value which
3701 * ext4 *really* writes onto the disk inode.
3702 */
3703 ei->i_disksize = inode->i_size;
3704
3705 if (n == 1) { /* direct blocks */
3706 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3707 i_data + EXT4_NDIR_BLOCKS);
3708 goto do_indirects;
3709 }
3710
3711 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3712 /* Kill the top of shared branch (not detached) */
3713 if (nr) {
3714 if (partial == chain) {
3715 /* Shared branch grows from the inode */
3716 ext4_free_branches(handle, inode, NULL,
3717 &nr, &nr+1, (chain+n-1) - partial);
3718 *partial->p = 0;
3719 /*
3720 * We mark the inode dirty prior to restart,
3721 * and prior to stop. No need for it here.
3722 */
3723 } else {
3724 /* Shared branch grows from an indirect block */
3725 BUFFER_TRACE(partial->bh, "get_write_access");
3726 ext4_free_branches(handle, inode, partial->bh,
3727 partial->p,
3728 partial->p+1, (chain+n-1) - partial);
3729 }
3730 }
3731 /* Clear the ends of indirect blocks on the shared branch */
3732 while (partial > chain) {
3733 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3734 (__le32*)partial->bh->b_data+addr_per_block,
3735 (chain+n-1) - partial);
3736 BUFFER_TRACE(partial->bh, "call brelse");
3737 brelse (partial->bh);
3738 partial--;
3739 }
3740 do_indirects:
3741 /* Kill the remaining (whole) subtrees */
3742 switch (offsets[0]) {
3743 default:
3744 nr = i_data[EXT4_IND_BLOCK];
3745 if (nr) {
3746 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3747 i_data[EXT4_IND_BLOCK] = 0;
3748 }
3749 case EXT4_IND_BLOCK:
3750 nr = i_data[EXT4_DIND_BLOCK];
3751 if (nr) {
3752 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3753 i_data[EXT4_DIND_BLOCK] = 0;
3754 }
3755 case EXT4_DIND_BLOCK:
3756 nr = i_data[EXT4_TIND_BLOCK];
3757 if (nr) {
3758 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3759 i_data[EXT4_TIND_BLOCK] = 0;
3760 }
3761 case EXT4_TIND_BLOCK:
3762 ;
3763 }
3764
3765 up_write(&ei->i_data_sem);
3766 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3767 ext4_mark_inode_dirty(handle, inode);
3768
3769 /*
3770 * In a multi-transaction truncate, we only make the final transaction
3771 * synchronous
3772 */
3773 if (IS_SYNC(inode))
3774 handle->h_sync = 1;
3775 out_stop:
3776 /*
3777 * If this was a simple ftruncate(), and the file will remain alive
3778 * then we need to clear up the orphan record which we created above.
3779 * However, if this was a real unlink then we were called by
3780 * ext4_delete_inode(), and we allow that function to clean up the
3781 * orphan info for us.
3782 */
3783 if (inode->i_nlink)
3784 ext4_orphan_del(handle, inode);
3785
3786 ext4_journal_stop(handle);
3787 }
3788
3789 static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3790 unsigned long ino, struct ext4_iloc *iloc)
3791 {
3792 ext4_group_t block_group;
3793 unsigned long offset;
3794 ext4_fsblk_t block;
3795 struct ext4_group_desc *gdp;
3796
3797 if (!ext4_valid_inum(sb, ino)) {
3798 /*
3799 * This error is already checked for in namei.c unless we are
3800 * looking at an NFS filehandle, in which case no error
3801 * report is needed
3802 */
3803 return 0;
3804 }
3805
3806 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
3807 gdp = ext4_get_group_desc(sb, block_group, NULL);
3808 if (!gdp)
3809 return 0;
3810
3811 /*
3812 * Figure out the offset within the block group inode table
3813 */
3814 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3815 EXT4_INODE_SIZE(sb);
3816 block = ext4_inode_table(sb, gdp) +
3817 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
3818
3819 iloc->block_group = block_group;
3820 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
3821 return block;
3822 }
3823
3824 /*
3825 * ext4_get_inode_loc returns with an extra refcount against the inode's
3826 * underlying buffer_head on success. If 'in_mem' is true, we have all
3827 * data in memory that is needed to recreate the on-disk version of this
3828 * inode.
3829 */
3830 static int __ext4_get_inode_loc(struct inode *inode,
3831 struct ext4_iloc *iloc, int in_mem)
3832 {
3833 ext4_fsblk_t block;
3834 struct buffer_head *bh;
3835
3836 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
3837 if (!block)
3838 return -EIO;
3839
3840 bh = sb_getblk(inode->i_sb, block);
3841 if (!bh) {
3842 ext4_error (inode->i_sb, "ext4_get_inode_loc",
3843 "unable to read inode block - "
3844 "inode=%lu, block=%llu",
3845 inode->i_ino, block);
3846 return -EIO;
3847 }
3848 if (!buffer_uptodate(bh)) {
3849 lock_buffer(bh);
3850
3851 /*
3852 * If the buffer has the write error flag, we have failed
3853 * to write out another inode in the same block. In this
3854 * case, we don't have to read the block because we may
3855 * read the old inode data successfully.
3856 */
3857 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3858 set_buffer_uptodate(bh);
3859
3860 if (buffer_uptodate(bh)) {
3861 /* someone brought it uptodate while we waited */
3862 unlock_buffer(bh);
3863 goto has_buffer;
3864 }
3865
3866 /*
3867 * If we have all information of the inode in memory and this
3868 * is the only valid inode in the block, we need not read the
3869 * block.
3870 */
3871 if (in_mem) {
3872 struct buffer_head *bitmap_bh;
3873 struct ext4_group_desc *desc;
3874 int inodes_per_buffer;
3875 int inode_offset, i;
3876 ext4_group_t block_group;
3877 int start;
3878
3879 block_group = (inode->i_ino - 1) /
3880 EXT4_INODES_PER_GROUP(inode->i_sb);
3881 inodes_per_buffer = bh->b_size /
3882 EXT4_INODE_SIZE(inode->i_sb);
3883 inode_offset = ((inode->i_ino - 1) %
3884 EXT4_INODES_PER_GROUP(inode->i_sb));
3885 start = inode_offset & ~(inodes_per_buffer - 1);
3886
3887 /* Is the inode bitmap in cache? */
3888 desc = ext4_get_group_desc(inode->i_sb,
3889 block_group, NULL);
3890 if (!desc)
3891 goto make_io;
3892
3893 bitmap_bh = sb_getblk(inode->i_sb,
3894 ext4_inode_bitmap(inode->i_sb, desc));
3895 if (!bitmap_bh)
3896 goto make_io;
3897
3898 /*
3899 * If the inode bitmap isn't in cache then the
3900 * optimisation may end up performing two reads instead
3901 * of one, so skip it.
3902 */
3903 if (!buffer_uptodate(bitmap_bh)) {
3904 brelse(bitmap_bh);
3905 goto make_io;
3906 }
3907 for (i = start; i < start + inodes_per_buffer; i++) {
3908 if (i == inode_offset)
3909 continue;
3910 if (ext4_test_bit(i, bitmap_bh->b_data))
3911 break;
3912 }
3913 brelse(bitmap_bh);
3914 if (i == start + inodes_per_buffer) {
3915 /* all other inodes are free, so skip I/O */
3916 memset(bh->b_data, 0, bh->b_size);
3917 set_buffer_uptodate(bh);
3918 unlock_buffer(bh);
3919 goto has_buffer;
3920 }
3921 }
3922
3923 make_io:
3924 /*
3925 * There are other valid inodes in the buffer, this inode
3926 * has in-inode xattrs, or we don't have this inode in memory.
3927 * Read the block from disk.
3928 */
3929 get_bh(bh);
3930 bh->b_end_io = end_buffer_read_sync;
3931 submit_bh(READ_META, bh);
3932 wait_on_buffer(bh);
3933 if (!buffer_uptodate(bh)) {
3934 ext4_error(inode->i_sb, "ext4_get_inode_loc",
3935 "unable to read inode block - "
3936 "inode=%lu, block=%llu",
3937 inode->i_ino, block);
3938 brelse(bh);
3939 return -EIO;
3940 }
3941 }
3942 has_buffer:
3943 iloc->bh = bh;
3944 return 0;
3945 }
3946
3947 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3948 {
3949 /* We have all inode data except xattrs in memory here. */
3950 return __ext4_get_inode_loc(inode, iloc,
3951 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
3952 }
3953
3954 void ext4_set_inode_flags(struct inode *inode)
3955 {
3956 unsigned int flags = EXT4_I(inode)->i_flags;
3957
3958 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3959 if (flags & EXT4_SYNC_FL)
3960 inode->i_flags |= S_SYNC;
3961 if (flags & EXT4_APPEND_FL)
3962 inode->i_flags |= S_APPEND;
3963 if (flags & EXT4_IMMUTABLE_FL)
3964 inode->i_flags |= S_IMMUTABLE;
3965 if (flags & EXT4_NOATIME_FL)
3966 inode->i_flags |= S_NOATIME;
3967 if (flags & EXT4_DIRSYNC_FL)
3968 inode->i_flags |= S_DIRSYNC;
3969 }
3970
3971 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3972 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3973 {
3974 unsigned int flags = ei->vfs_inode.i_flags;
3975
3976 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3977 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3978 if (flags & S_SYNC)
3979 ei->i_flags |= EXT4_SYNC_FL;
3980 if (flags & S_APPEND)
3981 ei->i_flags |= EXT4_APPEND_FL;
3982 if (flags & S_IMMUTABLE)
3983 ei->i_flags |= EXT4_IMMUTABLE_FL;
3984 if (flags & S_NOATIME)
3985 ei->i_flags |= EXT4_NOATIME_FL;
3986 if (flags & S_DIRSYNC)
3987 ei->i_flags |= EXT4_DIRSYNC_FL;
3988 }
3989 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3990 struct ext4_inode_info *ei)
3991 {
3992 blkcnt_t i_blocks ;
3993 struct inode *inode = &(ei->vfs_inode);
3994 struct super_block *sb = inode->i_sb;
3995
3996 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3997 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3998 /* we are using combined 48 bit field */
3999 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4000 le32_to_cpu(raw_inode->i_blocks_lo);
4001 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4002 /* i_blocks represent file system block size */
4003 return i_blocks << (inode->i_blkbits - 9);
4004 } else {
4005 return i_blocks;
4006 }
4007 } else {
4008 return le32_to_cpu(raw_inode->i_blocks_lo);
4009 }
4010 }
4011
4012 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4013 {
4014 struct ext4_iloc iloc;
4015 struct ext4_inode *raw_inode;
4016 struct ext4_inode_info *ei;
4017 struct buffer_head *bh;
4018 struct inode *inode;
4019 long ret;
4020 int block;
4021
4022 inode = iget_locked(sb, ino);
4023 if (!inode)
4024 return ERR_PTR(-ENOMEM);
4025 if (!(inode->i_state & I_NEW))
4026 return inode;
4027
4028 ei = EXT4_I(inode);
4029 #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
4030 ei->i_acl = EXT4_ACL_NOT_CACHED;
4031 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4032 #endif
4033 ei->i_block_alloc_info = NULL;
4034
4035 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4036 if (ret < 0)
4037 goto bad_inode;
4038 bh = iloc.bh;
4039 raw_inode = ext4_raw_inode(&iloc);
4040 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4041 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4042 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4043 if (!(test_opt(inode->i_sb, NO_UID32))) {
4044 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4045 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4046 }
4047 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4048
4049 ei->i_state = 0;
4050 ei->i_dir_start_lookup = 0;
4051 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4052 /* We now have enough fields to check if the inode was active or not.
4053 * This is needed because nfsd might try to access dead inodes
4054 * the test is that same one that e2fsck uses
4055 * NeilBrown 1999oct15
4056 */
4057 if (inode->i_nlink == 0) {
4058 if (inode->i_mode == 0 ||
4059 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4060 /* this inode is deleted */
4061 brelse(bh);
4062 ret = -ESTALE;
4063 goto bad_inode;
4064 }
4065 /* The only unlinked inodes we let through here have
4066 * valid i_mode and are being read by the orphan
4067 * recovery code: that's fine, we're about to complete
4068 * the process of deleting those. */
4069 }
4070 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4071 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4072 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4073 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4074 cpu_to_le32(EXT4_OS_HURD)) {
4075 ei->i_file_acl |=
4076 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4077 }
4078 inode->i_size = ext4_isize(raw_inode);
4079 ei->i_disksize = inode->i_size;
4080 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4081 ei->i_block_group = iloc.block_group;
4082 /*
4083 * NOTE! The in-memory inode i_data array is in little-endian order
4084 * even on big-endian machines: we do NOT byteswap the block numbers!
4085 */
4086 for (block = 0; block < EXT4_N_BLOCKS; block++)
4087 ei->i_data[block] = raw_inode->i_block[block];
4088 INIT_LIST_HEAD(&ei->i_orphan);
4089
4090 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4091 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4092 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4093 EXT4_INODE_SIZE(inode->i_sb)) {
4094 brelse(bh);
4095 ret = -EIO;
4096 goto bad_inode;
4097 }
4098 if (ei->i_extra_isize == 0) {
4099 /* The extra space is currently unused. Use it. */
4100 ei->i_extra_isize = sizeof(struct ext4_inode) -
4101 EXT4_GOOD_OLD_INODE_SIZE;
4102 } else {
4103 __le32 *magic = (void *)raw_inode +
4104 EXT4_GOOD_OLD_INODE_SIZE +
4105 ei->i_extra_isize;
4106 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4107 ei->i_state |= EXT4_STATE_XATTR;
4108 }
4109 } else
4110 ei->i_extra_isize = 0;
4111
4112 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4113 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4114 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4115 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4116
4117 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4119 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4120 inode->i_version |=
4121 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4122 }
4123
4124 if (S_ISREG(inode->i_mode)) {
4125 inode->i_op = &ext4_file_inode_operations;
4126 inode->i_fop = &ext4_file_operations;
4127 ext4_set_aops(inode);
4128 } else if (S_ISDIR(inode->i_mode)) {
4129 inode->i_op = &ext4_dir_inode_operations;
4130 inode->i_fop = &ext4_dir_operations;
4131 } else if (S_ISLNK(inode->i_mode)) {
4132 if (ext4_inode_is_fast_symlink(inode))
4133 inode->i_op = &ext4_fast_symlink_inode_operations;
4134 else {
4135 inode->i_op = &ext4_symlink_inode_operations;
4136 ext4_set_aops(inode);
4137 }
4138 } else {
4139 inode->i_op = &ext4_special_inode_operations;
4140 if (raw_inode->i_block[0])
4141 init_special_inode(inode, inode->i_mode,
4142 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4143 else
4144 init_special_inode(inode, inode->i_mode,
4145 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4146 }
4147 brelse(iloc.bh);
4148 ext4_set_inode_flags(inode);
4149 unlock_new_inode(inode);
4150 return inode;
4151
4152 bad_inode:
4153 iget_failed(inode);
4154 return ERR_PTR(ret);
4155 }
4156
4157 static int ext4_inode_blocks_set(handle_t *handle,
4158 struct ext4_inode *raw_inode,
4159 struct ext4_inode_info *ei)
4160 {
4161 struct inode *inode = &(ei->vfs_inode);
4162 u64 i_blocks = inode->i_blocks;
4163 struct super_block *sb = inode->i_sb;
4164 int err = 0;
4165
4166 if (i_blocks <= ~0U) {
4167 /*
4168 * i_blocks can be represnted in a 32 bit variable
4169 * as multiple of 512 bytes
4170 */
4171 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4172 raw_inode->i_blocks_high = 0;
4173 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4174 } else if (i_blocks <= 0xffffffffffffULL) {
4175 /*
4176 * i_blocks can be represented in a 48 bit variable
4177 * as multiple of 512 bytes
4178 */
4179 err = ext4_update_rocompat_feature(handle, sb,
4180 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4181 if (err)
4182 goto err_out;
4183 /* i_block is stored in the split 48 bit fields */
4184 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4185 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4186 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4187 } else {
4188 /*
4189 * i_blocks should be represented in a 48 bit variable
4190 * as multiple of file system block size
4191 */
4192 err = ext4_update_rocompat_feature(handle, sb,
4193 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4194 if (err)
4195 goto err_out;
4196 ei->i_flags |= EXT4_HUGE_FILE_FL;
4197 /* i_block is stored in file system block size */
4198 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4199 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4200 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4201 }
4202 err_out:
4203 return err;
4204 }
4205
4206 /*
4207 * Post the struct inode info into an on-disk inode location in the
4208 * buffer-cache. This gobbles the caller's reference to the
4209 * buffer_head in the inode location struct.
4210 *
4211 * The caller must have write access to iloc->bh.
4212 */
4213 static int ext4_do_update_inode(handle_t *handle,
4214 struct inode *inode,
4215 struct ext4_iloc *iloc)
4216 {
4217 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4218 struct ext4_inode_info *ei = EXT4_I(inode);
4219 struct buffer_head *bh = iloc->bh;
4220 int err = 0, rc, block;
4221
4222 /* For fields not not tracking in the in-memory inode,
4223 * initialise them to zero for new inodes. */
4224 if (ei->i_state & EXT4_STATE_NEW)
4225 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4226
4227 ext4_get_inode_flags(ei);
4228 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4229 if (!(test_opt(inode->i_sb, NO_UID32))) {
4230 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4231 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4232 /*
4233 * Fix up interoperability with old kernels. Otherwise, old inodes get
4234 * re-used with the upper 16 bits of the uid/gid intact
4235 */
4236 if (!ei->i_dtime) {
4237 raw_inode->i_uid_high =
4238 cpu_to_le16(high_16_bits(inode->i_uid));
4239 raw_inode->i_gid_high =
4240 cpu_to_le16(high_16_bits(inode->i_gid));
4241 } else {
4242 raw_inode->i_uid_high = 0;
4243 raw_inode->i_gid_high = 0;
4244 }
4245 } else {
4246 raw_inode->i_uid_low =
4247 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4248 raw_inode->i_gid_low =
4249 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4250 raw_inode->i_uid_high = 0;
4251 raw_inode->i_gid_high = 0;
4252 }
4253 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4254
4255 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4256 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4257 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4258 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4259
4260 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4261 goto out_brelse;
4262 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4263 /* clear the migrate flag in the raw_inode */
4264 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4265 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4266 cpu_to_le32(EXT4_OS_HURD))
4267 raw_inode->i_file_acl_high =
4268 cpu_to_le16(ei->i_file_acl >> 32);
4269 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4270 ext4_isize_set(raw_inode, ei->i_disksize);
4271 if (ei->i_disksize > 0x7fffffffULL) {
4272 struct super_block *sb = inode->i_sb;
4273 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4274 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4275 EXT4_SB(sb)->s_es->s_rev_level ==
4276 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4277 /* If this is the first large file
4278 * created, add a flag to the superblock.
4279 */
4280 err = ext4_journal_get_write_access(handle,
4281 EXT4_SB(sb)->s_sbh);
4282 if (err)
4283 goto out_brelse;
4284 ext4_update_dynamic_rev(sb);
4285 EXT4_SET_RO_COMPAT_FEATURE(sb,
4286 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4287 sb->s_dirt = 1;
4288 handle->h_sync = 1;
4289 err = ext4_journal_dirty_metadata(handle,
4290 EXT4_SB(sb)->s_sbh);
4291 }
4292 }
4293 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4294 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4295 if (old_valid_dev(inode->i_rdev)) {
4296 raw_inode->i_block[0] =
4297 cpu_to_le32(old_encode_dev(inode->i_rdev));
4298 raw_inode->i_block[1] = 0;
4299 } else {
4300 raw_inode->i_block[0] = 0;
4301 raw_inode->i_block[1] =
4302 cpu_to_le32(new_encode_dev(inode->i_rdev));
4303 raw_inode->i_block[2] = 0;
4304 }
4305 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4306 raw_inode->i_block[block] = ei->i_data[block];
4307
4308 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4309 if (ei->i_extra_isize) {
4310 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4311 raw_inode->i_version_hi =
4312 cpu_to_le32(inode->i_version >> 32);
4313 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4314 }
4315
4316
4317 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4318 rc = ext4_journal_dirty_metadata(handle, bh);
4319 if (!err)
4320 err = rc;
4321 ei->i_state &= ~EXT4_STATE_NEW;
4322
4323 out_brelse:
4324 brelse(bh);
4325 ext4_std_error(inode->i_sb, err);
4326 return err;
4327 }
4328
4329 /*
4330 * ext4_write_inode()
4331 *
4332 * We are called from a few places:
4333 *
4334 * - Within generic_file_write() for O_SYNC files.
4335 * Here, there will be no transaction running. We wait for any running
4336 * trasnaction to commit.
4337 *
4338 * - Within sys_sync(), kupdate and such.
4339 * We wait on commit, if tol to.
4340 *
4341 * - Within prune_icache() (PF_MEMALLOC == true)
4342 * Here we simply return. We can't afford to block kswapd on the
4343 * journal commit.
4344 *
4345 * In all cases it is actually safe for us to return without doing anything,
4346 * because the inode has been copied into a raw inode buffer in
4347 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4348 * knfsd.
4349 *
4350 * Note that we are absolutely dependent upon all inode dirtiers doing the
4351 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4352 * which we are interested.
4353 *
4354 * It would be a bug for them to not do this. The code:
4355 *
4356 * mark_inode_dirty(inode)
4357 * stuff();
4358 * inode->i_size = expr;
4359 *
4360 * is in error because a kswapd-driven write_inode() could occur while
4361 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4362 * will no longer be on the superblock's dirty inode list.
4363 */
4364 int ext4_write_inode(struct inode *inode, int wait)
4365 {
4366 if (current->flags & PF_MEMALLOC)
4367 return 0;
4368
4369 if (ext4_journal_current_handle()) {
4370 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4371 dump_stack();
4372 return -EIO;
4373 }
4374
4375 if (!wait)
4376 return 0;
4377
4378 return ext4_force_commit(inode->i_sb);
4379 }
4380
4381 /*
4382 * ext4_setattr()
4383 *
4384 * Called from notify_change.
4385 *
4386 * We want to trap VFS attempts to truncate the file as soon as
4387 * possible. In particular, we want to make sure that when the VFS
4388 * shrinks i_size, we put the inode on the orphan list and modify
4389 * i_disksize immediately, so that during the subsequent flushing of
4390 * dirty pages and freeing of disk blocks, we can guarantee that any
4391 * commit will leave the blocks being flushed in an unused state on
4392 * disk. (On recovery, the inode will get truncated and the blocks will
4393 * be freed, so we have a strong guarantee that no future commit will
4394 * leave these blocks visible to the user.)
4395 *
4396 * Another thing we have to assure is that if we are in ordered mode
4397 * and inode is still attached to the committing transaction, we must
4398 * we start writeout of all the dirty pages which are being truncated.
4399 * This way we are sure that all the data written in the previous
4400 * transaction are already on disk (truncate waits for pages under
4401 * writeback).
4402 *
4403 * Called with inode->i_mutex down.
4404 */
4405 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4406 {
4407 struct inode *inode = dentry->d_inode;
4408 int error, rc = 0;
4409 const unsigned int ia_valid = attr->ia_valid;
4410
4411 error = inode_change_ok(inode, attr);
4412 if (error)
4413 return error;
4414
4415 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4416 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4417 handle_t *handle;
4418
4419 /* (user+group)*(old+new) structure, inode write (sb,
4420 * inode block, ? - but truncate inode update has it) */
4421 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4422 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4423 if (IS_ERR(handle)) {
4424 error = PTR_ERR(handle);
4425 goto err_out;
4426 }
4427 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4428 if (error) {
4429 ext4_journal_stop(handle);
4430 return error;
4431 }
4432 /* Update corresponding info in inode so that everything is in
4433 * one transaction */
4434 if (attr->ia_valid & ATTR_UID)
4435 inode->i_uid = attr->ia_uid;
4436 if (attr->ia_valid & ATTR_GID)
4437 inode->i_gid = attr->ia_gid;
4438 error = ext4_mark_inode_dirty(handle, inode);
4439 ext4_journal_stop(handle);
4440 }
4441
4442 if (attr->ia_valid & ATTR_SIZE) {
4443 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4444 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4445
4446 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4447 error = -EFBIG;
4448 goto err_out;
4449 }
4450 }
4451 }
4452
4453 if (S_ISREG(inode->i_mode) &&
4454 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4455 handle_t *handle;
4456
4457 handle = ext4_journal_start(inode, 3);
4458 if (IS_ERR(handle)) {
4459 error = PTR_ERR(handle);
4460 goto err_out;
4461 }
4462
4463 error = ext4_orphan_add(handle, inode);
4464 EXT4_I(inode)->i_disksize = attr->ia_size;
4465 rc = ext4_mark_inode_dirty(handle, inode);
4466 if (!error)
4467 error = rc;
4468 ext4_journal_stop(handle);
4469
4470 if (ext4_should_order_data(inode)) {
4471 error = ext4_begin_ordered_truncate(inode,
4472 attr->ia_size);
4473 if (error) {
4474 /* Do as much error cleanup as possible */
4475 handle = ext4_journal_start(inode, 3);
4476 if (IS_ERR(handle)) {
4477 ext4_orphan_del(NULL, inode);
4478 goto err_out;
4479 }
4480 ext4_orphan_del(handle, inode);
4481 ext4_journal_stop(handle);
4482 goto err_out;
4483 }
4484 }
4485 }
4486
4487 rc = inode_setattr(inode, attr);
4488
4489 /* If inode_setattr's call to ext4_truncate failed to get a
4490 * transaction handle at all, we need to clean up the in-core
4491 * orphan list manually. */
4492 if (inode->i_nlink)
4493 ext4_orphan_del(NULL, inode);
4494
4495 if (!rc && (ia_valid & ATTR_MODE))
4496 rc = ext4_acl_chmod(inode);
4497
4498 err_out:
4499 ext4_std_error(inode->i_sb, error);
4500 if (!error)
4501 error = rc;
4502 return error;
4503 }
4504
4505 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4506 struct kstat *stat)
4507 {
4508 struct inode *inode;
4509 unsigned long delalloc_blocks;
4510
4511 inode = dentry->d_inode;
4512 generic_fillattr(inode, stat);
4513
4514 /*
4515 * We can't update i_blocks if the block allocation is delayed
4516 * otherwise in the case of system crash before the real block
4517 * allocation is done, we will have i_blocks inconsistent with
4518 * on-disk file blocks.
4519 * We always keep i_blocks updated together with real
4520 * allocation. But to not confuse with user, stat
4521 * will return the blocks that include the delayed allocation
4522 * blocks for this file.
4523 */
4524 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4525 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4526 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4527
4528 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4529 return 0;
4530 }
4531
4532 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4533 int chunk)
4534 {
4535 int indirects;
4536
4537 /* if nrblocks are contiguous */
4538 if (chunk) {
4539 /*
4540 * With N contiguous data blocks, it need at most
4541 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4542 * 2 dindirect blocks
4543 * 1 tindirect block
4544 */
4545 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4546 return indirects + 3;
4547 }
4548 /*
4549 * if nrblocks are not contiguous, worse case, each block touch
4550 * a indirect block, and each indirect block touch a double indirect
4551 * block, plus a triple indirect block
4552 */
4553 indirects = nrblocks * 2 + 1;
4554 return indirects;
4555 }
4556
4557 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4558 {
4559 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4560 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4561 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4562 }
4563 /*
4564 * Account for index blocks, block groups bitmaps and block group
4565 * descriptor blocks if modify datablocks and index blocks
4566 * worse case, the indexs blocks spread over different block groups
4567 *
4568 * If datablocks are discontiguous, they are possible to spread over
4569 * different block groups too. If they are contiugous, with flexbg,
4570 * they could still across block group boundary.
4571 *
4572 * Also account for superblock, inode, quota and xattr blocks
4573 */
4574 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4575 {
4576 int groups, gdpblocks;
4577 int idxblocks;
4578 int ret = 0;
4579
4580 /*
4581 * How many index blocks need to touch to modify nrblocks?
4582 * The "Chunk" flag indicating whether the nrblocks is
4583 * physically contiguous on disk
4584 *
4585 * For Direct IO and fallocate, they calls get_block to allocate
4586 * one single extent at a time, so they could set the "Chunk" flag
4587 */
4588 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4589
4590 ret = idxblocks;
4591
4592 /*
4593 * Now let's see how many group bitmaps and group descriptors need
4594 * to account
4595 */
4596 groups = idxblocks;
4597 if (chunk)
4598 groups += 1;
4599 else
4600 groups += nrblocks;
4601
4602 gdpblocks = groups;
4603 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4604 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4605 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4606 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4607
4608 /* bitmaps and block group descriptor blocks */
4609 ret += groups + gdpblocks;
4610
4611 /* Blocks for super block, inode, quota and xattr blocks */
4612 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4613
4614 return ret;
4615 }
4616
4617 /*
4618 * Calulate the total number of credits to reserve to fit
4619 * the modification of a single pages into a single transaction,
4620 * which may include multiple chunks of block allocations.
4621 *
4622 * This could be called via ext4_write_begin()
4623 *
4624 * We need to consider the worse case, when
4625 * one new block per extent.
4626 */
4627 int ext4_writepage_trans_blocks(struct inode *inode)
4628 {
4629 int bpp = ext4_journal_blocks_per_page(inode);
4630 int ret;
4631
4632 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4633
4634 /* Account for data blocks for journalled mode */
4635 if (ext4_should_journal_data(inode))
4636 ret += bpp;
4637 return ret;
4638 }
4639
4640 /*
4641 * Calculate the journal credits for a chunk of data modification.
4642 *
4643 * This is called from DIO, fallocate or whoever calling
4644 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4645 *
4646 * journal buffers for data blocks are not included here, as DIO
4647 * and fallocate do no need to journal data buffers.
4648 */
4649 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4650 {
4651 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4652 }
4653
4654 /*
4655 * The caller must have previously called ext4_reserve_inode_write().
4656 * Give this, we know that the caller already has write access to iloc->bh.
4657 */
4658 int ext4_mark_iloc_dirty(handle_t *handle,
4659 struct inode *inode, struct ext4_iloc *iloc)
4660 {
4661 int err = 0;
4662
4663 if (test_opt(inode->i_sb, I_VERSION))
4664 inode_inc_iversion(inode);
4665
4666 /* the do_update_inode consumes one bh->b_count */
4667 get_bh(iloc->bh);
4668
4669 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4670 err = ext4_do_update_inode(handle, inode, iloc);
4671 put_bh(iloc->bh);
4672 return err;
4673 }
4674
4675 /*
4676 * On success, We end up with an outstanding reference count against
4677 * iloc->bh. This _must_ be cleaned up later.
4678 */
4679
4680 int
4681 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4682 struct ext4_iloc *iloc)
4683 {
4684 int err = 0;
4685 if (handle) {
4686 err = ext4_get_inode_loc(inode, iloc);
4687 if (!err) {
4688 BUFFER_TRACE(iloc->bh, "get_write_access");
4689 err = ext4_journal_get_write_access(handle, iloc->bh);
4690 if (err) {
4691 brelse(iloc->bh);
4692 iloc->bh = NULL;
4693 }
4694 }
4695 }
4696 ext4_std_error(inode->i_sb, err);
4697 return err;
4698 }
4699
4700 /*
4701 * Expand an inode by new_extra_isize bytes.
4702 * Returns 0 on success or negative error number on failure.
4703 */
4704 static int ext4_expand_extra_isize(struct inode *inode,
4705 unsigned int new_extra_isize,
4706 struct ext4_iloc iloc,
4707 handle_t *handle)
4708 {
4709 struct ext4_inode *raw_inode;
4710 struct ext4_xattr_ibody_header *header;
4711 struct ext4_xattr_entry *entry;
4712
4713 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4714 return 0;
4715
4716 raw_inode = ext4_raw_inode(&iloc);
4717
4718 header = IHDR(inode, raw_inode);
4719 entry = IFIRST(header);
4720
4721 /* No extended attributes present */
4722 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4723 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4724 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4725 new_extra_isize);
4726 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4727 return 0;
4728 }
4729
4730 /* try to expand with EAs present */
4731 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4732 raw_inode, handle);
4733 }
4734
4735 /*
4736 * What we do here is to mark the in-core inode as clean with respect to inode
4737 * dirtiness (it may still be data-dirty).
4738 * This means that the in-core inode may be reaped by prune_icache
4739 * without having to perform any I/O. This is a very good thing,
4740 * because *any* task may call prune_icache - even ones which
4741 * have a transaction open against a different journal.
4742 *
4743 * Is this cheating? Not really. Sure, we haven't written the
4744 * inode out, but prune_icache isn't a user-visible syncing function.
4745 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4746 * we start and wait on commits.
4747 *
4748 * Is this efficient/effective? Well, we're being nice to the system
4749 * by cleaning up our inodes proactively so they can be reaped
4750 * without I/O. But we are potentially leaving up to five seconds'
4751 * worth of inodes floating about which prune_icache wants us to
4752 * write out. One way to fix that would be to get prune_icache()
4753 * to do a write_super() to free up some memory. It has the desired
4754 * effect.
4755 */
4756 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4757 {
4758 struct ext4_iloc iloc;
4759 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4760 static unsigned int mnt_count;
4761 int err, ret;
4762
4763 might_sleep();
4764 err = ext4_reserve_inode_write(handle, inode, &iloc);
4765 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4766 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4767 /*
4768 * We need extra buffer credits since we may write into EA block
4769 * with this same handle. If journal_extend fails, then it will
4770 * only result in a minor loss of functionality for that inode.
4771 * If this is felt to be critical, then e2fsck should be run to
4772 * force a large enough s_min_extra_isize.
4773 */
4774 if ((jbd2_journal_extend(handle,
4775 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4776 ret = ext4_expand_extra_isize(inode,
4777 sbi->s_want_extra_isize,
4778 iloc, handle);
4779 if (ret) {
4780 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4781 if (mnt_count !=
4782 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4783 ext4_warning(inode->i_sb, __func__,
4784 "Unable to expand inode %lu. Delete"
4785 " some EAs or run e2fsck.",
4786 inode->i_ino);
4787 mnt_count =
4788 le16_to_cpu(sbi->s_es->s_mnt_count);
4789 }
4790 }
4791 }
4792 }
4793 if (!err)
4794 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4795 return err;
4796 }
4797
4798 /*
4799 * ext4_dirty_inode() is called from __mark_inode_dirty()
4800 *
4801 * We're really interested in the case where a file is being extended.
4802 * i_size has been changed by generic_commit_write() and we thus need
4803 * to include the updated inode in the current transaction.
4804 *
4805 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4806 * are allocated to the file.
4807 *
4808 * If the inode is marked synchronous, we don't honour that here - doing
4809 * so would cause a commit on atime updates, which we don't bother doing.
4810 * We handle synchronous inodes at the highest possible level.
4811 */
4812 void ext4_dirty_inode(struct inode *inode)
4813 {
4814 handle_t *current_handle = ext4_journal_current_handle();
4815 handle_t *handle;
4816
4817 handle = ext4_journal_start(inode, 2);
4818 if (IS_ERR(handle))
4819 goto out;
4820 if (current_handle &&
4821 current_handle->h_transaction != handle->h_transaction) {
4822 /* This task has a transaction open against a different fs */
4823 printk(KERN_EMERG "%s: transactions do not match!\n",
4824 __func__);
4825 } else {
4826 jbd_debug(5, "marking dirty. outer handle=%p\n",
4827 current_handle);
4828 ext4_mark_inode_dirty(handle, inode);
4829 }
4830 ext4_journal_stop(handle);
4831 out:
4832 return;
4833 }
4834
4835 #if 0
4836 /*
4837 * Bind an inode's backing buffer_head into this transaction, to prevent
4838 * it from being flushed to disk early. Unlike
4839 * ext4_reserve_inode_write, this leaves behind no bh reference and
4840 * returns no iloc structure, so the caller needs to repeat the iloc
4841 * lookup to mark the inode dirty later.
4842 */
4843 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4844 {
4845 struct ext4_iloc iloc;
4846
4847 int err = 0;
4848 if (handle) {
4849 err = ext4_get_inode_loc(inode, &iloc);
4850 if (!err) {
4851 BUFFER_TRACE(iloc.bh, "get_write_access");
4852 err = jbd2_journal_get_write_access(handle, iloc.bh);
4853 if (!err)
4854 err = ext4_journal_dirty_metadata(handle,
4855 iloc.bh);
4856 brelse(iloc.bh);
4857 }
4858 }
4859 ext4_std_error(inode->i_sb, err);
4860 return err;
4861 }
4862 #endif
4863
4864 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4865 {
4866 journal_t *journal;
4867 handle_t *handle;
4868 int err;
4869
4870 /*
4871 * We have to be very careful here: changing a data block's
4872 * journaling status dynamically is dangerous. If we write a
4873 * data block to the journal, change the status and then delete
4874 * that block, we risk forgetting to revoke the old log record
4875 * from the journal and so a subsequent replay can corrupt data.
4876 * So, first we make sure that the journal is empty and that
4877 * nobody is changing anything.
4878 */
4879
4880 journal = EXT4_JOURNAL(inode);
4881 if (is_journal_aborted(journal))
4882 return -EROFS;
4883
4884 jbd2_journal_lock_updates(journal);
4885 jbd2_journal_flush(journal);
4886
4887 /*
4888 * OK, there are no updates running now, and all cached data is
4889 * synced to disk. We are now in a completely consistent state
4890 * which doesn't have anything in the journal, and we know that
4891 * no filesystem updates are running, so it is safe to modify
4892 * the inode's in-core data-journaling state flag now.
4893 */
4894
4895 if (val)
4896 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4897 else
4898 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4899 ext4_set_aops(inode);
4900
4901 jbd2_journal_unlock_updates(journal);
4902
4903 /* Finally we can mark the inode as dirty. */
4904
4905 handle = ext4_journal_start(inode, 1);
4906 if (IS_ERR(handle))
4907 return PTR_ERR(handle);
4908
4909 err = ext4_mark_inode_dirty(handle, inode);
4910 handle->h_sync = 1;
4911 ext4_journal_stop(handle);
4912 ext4_std_error(inode->i_sb, err);
4913
4914 return err;
4915 }
4916
4917 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4918 {
4919 return !buffer_mapped(bh);
4920 }
4921
4922 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4923 {
4924 loff_t size;
4925 unsigned long len;
4926 int ret = -EINVAL;
4927 void *fsdata;
4928 struct file *file = vma->vm_file;
4929 struct inode *inode = file->f_path.dentry->d_inode;
4930 struct address_space *mapping = inode->i_mapping;
4931
4932 /*
4933 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4934 * get i_mutex because we are already holding mmap_sem.
4935 */
4936 down_read(&inode->i_alloc_sem);
4937 size = i_size_read(inode);
4938 if (page->mapping != mapping || size <= page_offset(page)
4939 || !PageUptodate(page)) {
4940 /* page got truncated from under us? */
4941 goto out_unlock;
4942 }
4943 ret = 0;
4944 if (PageMappedToDisk(page))
4945 goto out_unlock;
4946
4947 if (page->index == size >> PAGE_CACHE_SHIFT)
4948 len = size & ~PAGE_CACHE_MASK;
4949 else
4950 len = PAGE_CACHE_SIZE;
4951
4952 if (page_has_buffers(page)) {
4953 /* return if we have all the buffers mapped */
4954 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4955 ext4_bh_unmapped))
4956 goto out_unlock;
4957 }
4958 /*
4959 * OK, we need to fill the hole... Do write_begin write_end
4960 * to do block allocation/reservation.We are not holding
4961 * inode.i__mutex here. That allow * parallel write_begin,
4962 * write_end call. lock_page prevent this from happening
4963 * on the same page though
4964 */
4965 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4966 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
4967 if (ret < 0)
4968 goto out_unlock;
4969 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4970 len, len, page, fsdata);
4971 if (ret < 0)
4972 goto out_unlock;
4973 ret = 0;
4974 out_unlock:
4975 up_read(&inode->i_alloc_sem);
4976 return ret;
4977 }
This page took 0.13516 seconds and 5 git commands to generate.