ext4: Switch to non delalloc mode when we are low on free blocks count.
[deliverable/linux.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "mballoc.h"
25 /*
26 * MUSTDO:
27 * - test ext4_ext_search_left() and ext4_ext_search_right()
28 * - search for metadata in few groups
29 *
30 * TODO v4:
31 * - normalization should take into account whether file is still open
32 * - discard preallocations if no free space left (policy?)
33 * - don't normalize tails
34 * - quota
35 * - reservation for superuser
36 *
37 * TODO v3:
38 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
39 * - track min/max extents in each group for better group selection
40 * - mb_mark_used() may allocate chunk right after splitting buddy
41 * - tree of groups sorted by number of free blocks
42 * - error handling
43 */
44
45 /*
46 * The allocation request involve request for multiple number of blocks
47 * near to the goal(block) value specified.
48 *
49 * During initialization phase of the allocator we decide to use the group
50 * preallocation or inode preallocation depending on the size file. The
51 * size of the file could be the resulting file size we would have after
52 * allocation or the current file size which ever is larger. If the size is
53 * less that sbi->s_mb_stream_request we select the group
54 * preallocation. The default value of s_mb_stream_request is 16
55 * blocks. This can also be tuned via
56 * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57 * of number of blocks.
58 *
59 * The main motivation for having small file use group preallocation is to
60 * ensure that we have small file closer in the disk.
61 *
62 * First stage the allocator looks at the inode prealloc list
63 * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64 * this particular inode. The inode prealloc space is represented as:
65 *
66 * pa_lstart -> the logical start block for this prealloc space
67 * pa_pstart -> the physical start block for this prealloc space
68 * pa_len -> lenght for this prealloc space
69 * pa_free -> free space available in this prealloc space
70 *
71 * The inode preallocation space is used looking at the _logical_ start
72 * block. If only the logical file block falls within the range of prealloc
73 * space we will consume the particular prealloc space. This make sure that
74 * that the we have contiguous physical blocks representing the file blocks
75 *
76 * The important thing to be noted in case of inode prealloc space is that
77 * we don't modify the values associated to inode prealloc space except
78 * pa_free.
79 *
80 * If we are not able to find blocks in the inode prealloc space and if we
81 * have the group allocation flag set then we look at the locality group
82 * prealloc space. These are per CPU prealloc list repreasented as
83 *
84 * ext4_sb_info.s_locality_groups[smp_processor_id()]
85 *
86 * The reason for having a per cpu locality group is to reduce the contention
87 * between CPUs. It is possible to get scheduled at this point.
88 *
89 * The locality group prealloc space is used looking at whether we have
90 * enough free space (pa_free) withing the prealloc space.
91 *
92 * If we can't allocate blocks via inode prealloc or/and locality group
93 * prealloc then we look at the buddy cache. The buddy cache is represented
94 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95 * mapped to the buddy and bitmap information regarding different
96 * groups. The buddy information is attached to buddy cache inode so that
97 * we can access them through the page cache. The information regarding
98 * each group is loaded via ext4_mb_load_buddy. The information involve
99 * block bitmap and buddy information. The information are stored in the
100 * inode as:
101 *
102 * { page }
103 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
104 *
105 *
106 * one block each for bitmap and buddy information. So for each group we
107 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108 * blocksize) blocks. So it can have information regarding groups_per_page
109 * which is blocks_per_page/2
110 *
111 * The buddy cache inode is not stored on disk. The inode is thrown
112 * away when the filesystem is unmounted.
113 *
114 * We look for count number of blocks in the buddy cache. If we were able
115 * to locate that many free blocks we return with additional information
116 * regarding rest of the contiguous physical block available
117 *
118 * Before allocating blocks via buddy cache we normalize the request
119 * blocks. This ensure we ask for more blocks that we needed. The extra
120 * blocks that we get after allocation is added to the respective prealloc
121 * list. In case of inode preallocation we follow a list of heuristics
122 * based on file size. This can be found in ext4_mb_normalize_request. If
123 * we are doing a group prealloc we try to normalize the request to
124 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125 * 512 blocks. This can be tuned via
126 * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127 * terms of number of blocks. If we have mounted the file system with -O
128 * stripe=<value> option the group prealloc request is normalized to the
129 * stripe value (sbi->s_stripe)
130 *
131 * The regular allocator(using the buddy cache) support few tunables.
132 *
133 * /proc/fs/ext4/<partition>/min_to_scan
134 * /proc/fs/ext4/<partition>/max_to_scan
135 * /proc/fs/ext4/<partition>/order2_req
136 *
137 * The regular allocator use buddy scan only if the request len is power of
138 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139 * value of s_mb_order2_reqs can be tuned via
140 * /proc/fs/ext4/<partition>/order2_req. If the request len is equal to
141 * stripe size (sbi->s_stripe), we try to search for contigous block in
142 * stripe size. This should result in better allocation on RAID setup. If
143 * not we search in the specific group using bitmap for best extents. The
144 * tunable min_to_scan and max_to_scan controll the behaviour here.
145 * min_to_scan indicate how long the mballoc __must__ look for a best
146 * extent and max_to_scanindicate how long the mballoc __can__ look for a
147 * best extent in the found extents. Searching for the blocks starts with
148 * the group specified as the goal value in allocation context via
149 * ac_g_ex. Each group is first checked based on the criteria whether it
150 * can used for allocation. ext4_mb_good_group explains how the groups are
151 * checked.
152 *
153 * Both the prealloc space are getting populated as above. So for the first
154 * request we will hit the buddy cache which will result in this prealloc
155 * space getting filled. The prealloc space is then later used for the
156 * subsequent request.
157 */
158
159 /*
160 * mballoc operates on the following data:
161 * - on-disk bitmap
162 * - in-core buddy (actually includes buddy and bitmap)
163 * - preallocation descriptors (PAs)
164 *
165 * there are two types of preallocations:
166 * - inode
167 * assiged to specific inode and can be used for this inode only.
168 * it describes part of inode's space preallocated to specific
169 * physical blocks. any block from that preallocated can be used
170 * independent. the descriptor just tracks number of blocks left
171 * unused. so, before taking some block from descriptor, one must
172 * make sure corresponded logical block isn't allocated yet. this
173 * also means that freeing any block within descriptor's range
174 * must discard all preallocated blocks.
175 * - locality group
176 * assigned to specific locality group which does not translate to
177 * permanent set of inodes: inode can join and leave group. space
178 * from this type of preallocation can be used for any inode. thus
179 * it's consumed from the beginning to the end.
180 *
181 * relation between them can be expressed as:
182 * in-core buddy = on-disk bitmap + preallocation descriptors
183 *
184 * this mean blocks mballoc considers used are:
185 * - allocated blocks (persistent)
186 * - preallocated blocks (non-persistent)
187 *
188 * consistency in mballoc world means that at any time a block is either
189 * free or used in ALL structures. notice: "any time" should not be read
190 * literally -- time is discrete and delimited by locks.
191 *
192 * to keep it simple, we don't use block numbers, instead we count number of
193 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194 *
195 * all operations can be expressed as:
196 * - init buddy: buddy = on-disk + PAs
197 * - new PA: buddy += N; PA = N
198 * - use inode PA: on-disk += N; PA -= N
199 * - discard inode PA buddy -= on-disk - PA; PA = 0
200 * - use locality group PA on-disk += N; PA -= N
201 * - discard locality group PA buddy -= PA; PA = 0
202 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203 * is used in real operation because we can't know actual used
204 * bits from PA, only from on-disk bitmap
205 *
206 * if we follow this strict logic, then all operations above should be atomic.
207 * given some of them can block, we'd have to use something like semaphores
208 * killing performance on high-end SMP hardware. let's try to relax it using
209 * the following knowledge:
210 * 1) if buddy is referenced, it's already initialized
211 * 2) while block is used in buddy and the buddy is referenced,
212 * nobody can re-allocate that block
213 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214 * bit set and PA claims same block, it's OK. IOW, one can set bit in
215 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216 * block
217 *
218 * so, now we're building a concurrency table:
219 * - init buddy vs.
220 * - new PA
221 * blocks for PA are allocated in the buddy, buddy must be referenced
222 * until PA is linked to allocation group to avoid concurrent buddy init
223 * - use inode PA
224 * we need to make sure that either on-disk bitmap or PA has uptodate data
225 * given (3) we care that PA-=N operation doesn't interfere with init
226 * - discard inode PA
227 * the simplest way would be to have buddy initialized by the discard
228 * - use locality group PA
229 * again PA-=N must be serialized with init
230 * - discard locality group PA
231 * the simplest way would be to have buddy initialized by the discard
232 * - new PA vs.
233 * - use inode PA
234 * i_data_sem serializes them
235 * - discard inode PA
236 * discard process must wait until PA isn't used by another process
237 * - use locality group PA
238 * some mutex should serialize them
239 * - discard locality group PA
240 * discard process must wait until PA isn't used by another process
241 * - use inode PA
242 * - use inode PA
243 * i_data_sem or another mutex should serializes them
244 * - discard inode PA
245 * discard process must wait until PA isn't used by another process
246 * - use locality group PA
247 * nothing wrong here -- they're different PAs covering different blocks
248 * - discard locality group PA
249 * discard process must wait until PA isn't used by another process
250 *
251 * now we're ready to make few consequences:
252 * - PA is referenced and while it is no discard is possible
253 * - PA is referenced until block isn't marked in on-disk bitmap
254 * - PA changes only after on-disk bitmap
255 * - discard must not compete with init. either init is done before
256 * any discard or they're serialized somehow
257 * - buddy init as sum of on-disk bitmap and PAs is done atomically
258 *
259 * a special case when we've used PA to emptiness. no need to modify buddy
260 * in this case, but we should care about concurrent init
261 *
262 */
263
264 /*
265 * Logic in few words:
266 *
267 * - allocation:
268 * load group
269 * find blocks
270 * mark bits in on-disk bitmap
271 * release group
272 *
273 * - use preallocation:
274 * find proper PA (per-inode or group)
275 * load group
276 * mark bits in on-disk bitmap
277 * release group
278 * release PA
279 *
280 * - free:
281 * load group
282 * mark bits in on-disk bitmap
283 * release group
284 *
285 * - discard preallocations in group:
286 * mark PAs deleted
287 * move them onto local list
288 * load on-disk bitmap
289 * load group
290 * remove PA from object (inode or locality group)
291 * mark free blocks in-core
292 *
293 * - discard inode's preallocations:
294 */
295
296 /*
297 * Locking rules
298 *
299 * Locks:
300 * - bitlock on a group (group)
301 * - object (inode/locality) (object)
302 * - per-pa lock (pa)
303 *
304 * Paths:
305 * - new pa
306 * object
307 * group
308 *
309 * - find and use pa:
310 * pa
311 *
312 * - release consumed pa:
313 * pa
314 * group
315 * object
316 *
317 * - generate in-core bitmap:
318 * group
319 * pa
320 *
321 * - discard all for given object (inode, locality group):
322 * object
323 * pa
324 * group
325 *
326 * - discard all for given group:
327 * group
328 * pa
329 * group
330 * object
331 *
332 */
333
334 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
335 {
336 #if BITS_PER_LONG == 64
337 *bit += ((unsigned long) addr & 7UL) << 3;
338 addr = (void *) ((unsigned long) addr & ~7UL);
339 #elif BITS_PER_LONG == 32
340 *bit += ((unsigned long) addr & 3UL) << 3;
341 addr = (void *) ((unsigned long) addr & ~3UL);
342 #else
343 #error "how many bits you are?!"
344 #endif
345 return addr;
346 }
347
348 static inline int mb_test_bit(int bit, void *addr)
349 {
350 /*
351 * ext4_test_bit on architecture like powerpc
352 * needs unsigned long aligned address
353 */
354 addr = mb_correct_addr_and_bit(&bit, addr);
355 return ext4_test_bit(bit, addr);
356 }
357
358 static inline void mb_set_bit(int bit, void *addr)
359 {
360 addr = mb_correct_addr_and_bit(&bit, addr);
361 ext4_set_bit(bit, addr);
362 }
363
364 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
365 {
366 addr = mb_correct_addr_and_bit(&bit, addr);
367 ext4_set_bit_atomic(lock, bit, addr);
368 }
369
370 static inline void mb_clear_bit(int bit, void *addr)
371 {
372 addr = mb_correct_addr_and_bit(&bit, addr);
373 ext4_clear_bit(bit, addr);
374 }
375
376 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378 addr = mb_correct_addr_and_bit(&bit, addr);
379 ext4_clear_bit_atomic(lock, bit, addr);
380 }
381
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384 int fix = 0, ret, tmpmax;
385 addr = mb_correct_addr_and_bit(&fix, addr);
386 tmpmax = max + fix;
387 start += fix;
388
389 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390 if (ret > max)
391 return max;
392 return ret;
393 }
394
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397 int fix = 0, ret, tmpmax;
398 addr = mb_correct_addr_and_bit(&fix, addr);
399 tmpmax = max + fix;
400 start += fix;
401
402 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403 if (ret > max)
404 return max;
405 return ret;
406 }
407
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410 char *bb;
411
412 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413 BUG_ON(max == NULL);
414
415 if (order > e4b->bd_blkbits + 1) {
416 *max = 0;
417 return NULL;
418 }
419
420 /* at order 0 we see each particular block */
421 *max = 1 << (e4b->bd_blkbits + 3);
422 if (order == 0)
423 return EXT4_MB_BITMAP(e4b);
424
425 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427
428 return bb;
429 }
430
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433 int first, int count)
434 {
435 int i;
436 struct super_block *sb = e4b->bd_sb;
437
438 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439 return;
440 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
441 for (i = 0; i < count; i++) {
442 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443 ext4_fsblk_t blocknr;
444 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445 blocknr += first + i;
446 blocknr +=
447 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448
449 ext4_error(sb, __func__, "double-free of inode"
450 " %lu's block %llu(bit %u in group %lu)\n",
451 inode ? inode->i_ino : 0, blocknr,
452 first + i, e4b->bd_group);
453 }
454 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455 }
456 }
457
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460 int i;
461
462 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 return;
464 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
465 for (i = 0; i < count; i++) {
466 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468 }
469 }
470
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 unsigned char *b1, *b2;
475 int i;
476 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 b2 = (unsigned char *) bitmap;
478 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 if (b1[i] != b2[i]) {
480 printk(KERN_ERR "corruption in group %lu "
481 "at byte %u(%u): %x in copy != %x "
482 "on disk/prealloc\n",
483 e4b->bd_group, i, i * 8, b1[i], b2[i]);
484 BUG();
485 }
486 }
487 }
488 }
489
490 #else
491 static inline void mb_free_blocks_double(struct inode *inode,
492 struct ext4_buddy *e4b, int first, int count)
493 {
494 return;
495 }
496 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
497 int first, int count)
498 {
499 return;
500 }
501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 {
503 return;
504 }
505 #endif
506
507 #ifdef AGGRESSIVE_CHECK
508
509 #define MB_CHECK_ASSERT(assert) \
510 do { \
511 if (!(assert)) { \
512 printk(KERN_EMERG \
513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514 function, file, line, # assert); \
515 BUG(); \
516 } \
517 } while (0)
518
519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
520 const char *function, int line)
521 {
522 struct super_block *sb = e4b->bd_sb;
523 int order = e4b->bd_blkbits + 1;
524 int max;
525 int max2;
526 int i;
527 int j;
528 int k;
529 int count;
530 struct ext4_group_info *grp;
531 int fragments = 0;
532 int fstart;
533 struct list_head *cur;
534 void *buddy;
535 void *buddy2;
536
537 if (!test_opt(sb, MBALLOC))
538 return 0;
539
540 {
541 static int mb_check_counter;
542 if (mb_check_counter++ % 100 != 0)
543 return 0;
544 }
545
546 while (order > 1) {
547 buddy = mb_find_buddy(e4b, order, &max);
548 MB_CHECK_ASSERT(buddy);
549 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
550 MB_CHECK_ASSERT(buddy2);
551 MB_CHECK_ASSERT(buddy != buddy2);
552 MB_CHECK_ASSERT(max * 2 == max2);
553
554 count = 0;
555 for (i = 0; i < max; i++) {
556
557 if (mb_test_bit(i, buddy)) {
558 /* only single bit in buddy2 may be 1 */
559 if (!mb_test_bit(i << 1, buddy2)) {
560 MB_CHECK_ASSERT(
561 mb_test_bit((i<<1)+1, buddy2));
562 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
563 MB_CHECK_ASSERT(
564 mb_test_bit(i << 1, buddy2));
565 }
566 continue;
567 }
568
569 /* both bits in buddy2 must be 0 */
570 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
571 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
572
573 for (j = 0; j < (1 << order); j++) {
574 k = (i * (1 << order)) + j;
575 MB_CHECK_ASSERT(
576 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
577 }
578 count++;
579 }
580 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
581 order--;
582 }
583
584 fstart = -1;
585 buddy = mb_find_buddy(e4b, 0, &max);
586 for (i = 0; i < max; i++) {
587 if (!mb_test_bit(i, buddy)) {
588 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
589 if (fstart == -1) {
590 fragments++;
591 fstart = i;
592 }
593 continue;
594 }
595 fstart = -1;
596 /* check used bits only */
597 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
598 buddy2 = mb_find_buddy(e4b, j, &max2);
599 k = i >> j;
600 MB_CHECK_ASSERT(k < max2);
601 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
602 }
603 }
604 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
605 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
606
607 grp = ext4_get_group_info(sb, e4b->bd_group);
608 buddy = mb_find_buddy(e4b, 0, &max);
609 list_for_each(cur, &grp->bb_prealloc_list) {
610 ext4_group_t groupnr;
611 struct ext4_prealloc_space *pa;
612 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
613 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
614 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
615 for (i = 0; i < pa->pa_len; i++)
616 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
617 }
618 return 0;
619 }
620 #undef MB_CHECK_ASSERT
621 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
622 __FILE__, __func__, __LINE__)
623 #else
624 #define mb_check_buddy(e4b)
625 #endif
626
627 /* FIXME!! need more doc */
628 static void ext4_mb_mark_free_simple(struct super_block *sb,
629 void *buddy, unsigned first, int len,
630 struct ext4_group_info *grp)
631 {
632 struct ext4_sb_info *sbi = EXT4_SB(sb);
633 unsigned short min;
634 unsigned short max;
635 unsigned short chunk;
636 unsigned short border;
637
638 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
639
640 border = 2 << sb->s_blocksize_bits;
641
642 while (len > 0) {
643 /* find how many blocks can be covered since this position */
644 max = ffs(first | border) - 1;
645
646 /* find how many blocks of power 2 we need to mark */
647 min = fls(len) - 1;
648
649 if (max < min)
650 min = max;
651 chunk = 1 << min;
652
653 /* mark multiblock chunks only */
654 grp->bb_counters[min]++;
655 if (min > 0)
656 mb_clear_bit(first >> min,
657 buddy + sbi->s_mb_offsets[min]);
658
659 len -= chunk;
660 first += chunk;
661 }
662 }
663
664 static void ext4_mb_generate_buddy(struct super_block *sb,
665 void *buddy, void *bitmap, ext4_group_t group)
666 {
667 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
668 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
669 unsigned short i = 0;
670 unsigned short first;
671 unsigned short len;
672 unsigned free = 0;
673 unsigned fragments = 0;
674 unsigned long long period = get_cycles();
675
676 /* initialize buddy from bitmap which is aggregation
677 * of on-disk bitmap and preallocations */
678 i = mb_find_next_zero_bit(bitmap, max, 0);
679 grp->bb_first_free = i;
680 while (i < max) {
681 fragments++;
682 first = i;
683 i = mb_find_next_bit(bitmap, max, i);
684 len = i - first;
685 free += len;
686 if (len > 1)
687 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
688 else
689 grp->bb_counters[0]++;
690 if (i < max)
691 i = mb_find_next_zero_bit(bitmap, max, i);
692 }
693 grp->bb_fragments = fragments;
694
695 if (free != grp->bb_free) {
696 ext4_error(sb, __func__,
697 "EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
698 group, free, grp->bb_free);
699 /*
700 * If we intent to continue, we consider group descritor
701 * corrupt and update bb_free using bitmap value
702 */
703 grp->bb_free = free;
704 }
705
706 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
707
708 period = get_cycles() - period;
709 spin_lock(&EXT4_SB(sb)->s_bal_lock);
710 EXT4_SB(sb)->s_mb_buddies_generated++;
711 EXT4_SB(sb)->s_mb_generation_time += period;
712 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
713 }
714
715 /* The buddy information is attached the buddy cache inode
716 * for convenience. The information regarding each group
717 * is loaded via ext4_mb_load_buddy. The information involve
718 * block bitmap and buddy information. The information are
719 * stored in the inode as
720 *
721 * { page }
722 * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
723 *
724 *
725 * one block each for bitmap and buddy information.
726 * So for each group we take up 2 blocks. A page can
727 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
728 * So it can have information regarding groups_per_page which
729 * is blocks_per_page/2
730 */
731
732 static int ext4_mb_init_cache(struct page *page, char *incore)
733 {
734 int blocksize;
735 int blocks_per_page;
736 int groups_per_page;
737 int err = 0;
738 int i;
739 ext4_group_t first_group;
740 int first_block;
741 struct super_block *sb;
742 struct buffer_head *bhs;
743 struct buffer_head **bh;
744 struct inode *inode;
745 char *data;
746 char *bitmap;
747
748 mb_debug("init page %lu\n", page->index);
749
750 inode = page->mapping->host;
751 sb = inode->i_sb;
752 blocksize = 1 << inode->i_blkbits;
753 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
754
755 groups_per_page = blocks_per_page >> 1;
756 if (groups_per_page == 0)
757 groups_per_page = 1;
758
759 /* allocate buffer_heads to read bitmaps */
760 if (groups_per_page > 1) {
761 err = -ENOMEM;
762 i = sizeof(struct buffer_head *) * groups_per_page;
763 bh = kzalloc(i, GFP_NOFS);
764 if (bh == NULL)
765 goto out;
766 } else
767 bh = &bhs;
768
769 first_group = page->index * blocks_per_page / 2;
770
771 /* read all groups the page covers into the cache */
772 for (i = 0; i < groups_per_page; i++) {
773 struct ext4_group_desc *desc;
774
775 if (first_group + i >= EXT4_SB(sb)->s_groups_count)
776 break;
777
778 err = -EIO;
779 desc = ext4_get_group_desc(sb, first_group + i, NULL);
780 if (desc == NULL)
781 goto out;
782
783 err = -ENOMEM;
784 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
785 if (bh[i] == NULL)
786 goto out;
787
788 if (bh_uptodate_or_lock(bh[i]))
789 continue;
790
791 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
792 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
793 ext4_init_block_bitmap(sb, bh[i],
794 first_group + i, desc);
795 set_buffer_uptodate(bh[i]);
796 unlock_buffer(bh[i]);
797 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
798 continue;
799 }
800 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
801 get_bh(bh[i]);
802 bh[i]->b_end_io = end_buffer_read_sync;
803 submit_bh(READ, bh[i]);
804 mb_debug("read bitmap for group %lu\n", first_group + i);
805 }
806
807 /* wait for I/O completion */
808 for (i = 0; i < groups_per_page && bh[i]; i++)
809 wait_on_buffer(bh[i]);
810
811 err = -EIO;
812 for (i = 0; i < groups_per_page && bh[i]; i++)
813 if (!buffer_uptodate(bh[i]))
814 goto out;
815
816 err = 0;
817 first_block = page->index * blocks_per_page;
818 for (i = 0; i < blocks_per_page; i++) {
819 int group;
820 struct ext4_group_info *grinfo;
821
822 group = (first_block + i) >> 1;
823 if (group >= EXT4_SB(sb)->s_groups_count)
824 break;
825
826 /*
827 * data carry information regarding this
828 * particular group in the format specified
829 * above
830 *
831 */
832 data = page_address(page) + (i * blocksize);
833 bitmap = bh[group - first_group]->b_data;
834
835 /*
836 * We place the buddy block and bitmap block
837 * close together
838 */
839 if ((first_block + i) & 1) {
840 /* this is block of buddy */
841 BUG_ON(incore == NULL);
842 mb_debug("put buddy for group %u in page %lu/%x\n",
843 group, page->index, i * blocksize);
844 memset(data, 0xff, blocksize);
845 grinfo = ext4_get_group_info(sb, group);
846 grinfo->bb_fragments = 0;
847 memset(grinfo->bb_counters, 0,
848 sizeof(unsigned short)*(sb->s_blocksize_bits+2));
849 /*
850 * incore got set to the group block bitmap below
851 */
852 ext4_mb_generate_buddy(sb, data, incore, group);
853 incore = NULL;
854 } else {
855 /* this is block of bitmap */
856 BUG_ON(incore != NULL);
857 mb_debug("put bitmap for group %u in page %lu/%x\n",
858 group, page->index, i * blocksize);
859
860 /* see comments in ext4_mb_put_pa() */
861 ext4_lock_group(sb, group);
862 memcpy(data, bitmap, blocksize);
863
864 /* mark all preallocated blks used in in-core bitmap */
865 ext4_mb_generate_from_pa(sb, data, group);
866 ext4_unlock_group(sb, group);
867
868 /* set incore so that the buddy information can be
869 * generated using this
870 */
871 incore = data;
872 }
873 }
874 SetPageUptodate(page);
875
876 out:
877 if (bh) {
878 for (i = 0; i < groups_per_page && bh[i]; i++)
879 brelse(bh[i]);
880 if (bh != &bhs)
881 kfree(bh);
882 }
883 return err;
884 }
885
886 static noinline_for_stack int
887 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
888 struct ext4_buddy *e4b)
889 {
890 struct ext4_sb_info *sbi = EXT4_SB(sb);
891 struct inode *inode = sbi->s_buddy_cache;
892 int blocks_per_page;
893 int block;
894 int pnum;
895 int poff;
896 struct page *page;
897 int ret;
898
899 mb_debug("load group %lu\n", group);
900
901 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
902
903 e4b->bd_blkbits = sb->s_blocksize_bits;
904 e4b->bd_info = ext4_get_group_info(sb, group);
905 e4b->bd_sb = sb;
906 e4b->bd_group = group;
907 e4b->bd_buddy_page = NULL;
908 e4b->bd_bitmap_page = NULL;
909
910 /*
911 * the buddy cache inode stores the block bitmap
912 * and buddy information in consecutive blocks.
913 * So for each group we need two blocks.
914 */
915 block = group * 2;
916 pnum = block / blocks_per_page;
917 poff = block % blocks_per_page;
918
919 /* we could use find_or_create_page(), but it locks page
920 * what we'd like to avoid in fast path ... */
921 page = find_get_page(inode->i_mapping, pnum);
922 if (page == NULL || !PageUptodate(page)) {
923 if (page)
924 page_cache_release(page);
925 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
926 if (page) {
927 BUG_ON(page->mapping != inode->i_mapping);
928 if (!PageUptodate(page)) {
929 ret = ext4_mb_init_cache(page, NULL);
930 if (ret) {
931 unlock_page(page);
932 goto err;
933 }
934 mb_cmp_bitmaps(e4b, page_address(page) +
935 (poff * sb->s_blocksize));
936 }
937 unlock_page(page);
938 }
939 }
940 if (page == NULL || !PageUptodate(page)) {
941 ret = -EIO;
942 goto err;
943 }
944 e4b->bd_bitmap_page = page;
945 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
946 mark_page_accessed(page);
947
948 block++;
949 pnum = block / blocks_per_page;
950 poff = block % blocks_per_page;
951
952 page = find_get_page(inode->i_mapping, pnum);
953 if (page == NULL || !PageUptodate(page)) {
954 if (page)
955 page_cache_release(page);
956 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
957 if (page) {
958 BUG_ON(page->mapping != inode->i_mapping);
959 if (!PageUptodate(page)) {
960 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
961 if (ret) {
962 unlock_page(page);
963 goto err;
964 }
965 }
966 unlock_page(page);
967 }
968 }
969 if (page == NULL || !PageUptodate(page)) {
970 ret = -EIO;
971 goto err;
972 }
973 e4b->bd_buddy_page = page;
974 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
975 mark_page_accessed(page);
976
977 BUG_ON(e4b->bd_bitmap_page == NULL);
978 BUG_ON(e4b->bd_buddy_page == NULL);
979
980 return 0;
981
982 err:
983 if (e4b->bd_bitmap_page)
984 page_cache_release(e4b->bd_bitmap_page);
985 if (e4b->bd_buddy_page)
986 page_cache_release(e4b->bd_buddy_page);
987 e4b->bd_buddy = NULL;
988 e4b->bd_bitmap = NULL;
989 return ret;
990 }
991
992 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
993 {
994 if (e4b->bd_bitmap_page)
995 page_cache_release(e4b->bd_bitmap_page);
996 if (e4b->bd_buddy_page)
997 page_cache_release(e4b->bd_buddy_page);
998 }
999
1000
1001 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1002 {
1003 int order = 1;
1004 void *bb;
1005
1006 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1007 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1008
1009 bb = EXT4_MB_BUDDY(e4b);
1010 while (order <= e4b->bd_blkbits + 1) {
1011 block = block >> 1;
1012 if (!mb_test_bit(block, bb)) {
1013 /* this block is part of buddy of order 'order' */
1014 return order;
1015 }
1016 bb += 1 << (e4b->bd_blkbits - order);
1017 order++;
1018 }
1019 return 0;
1020 }
1021
1022 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1023 {
1024 __u32 *addr;
1025
1026 len = cur + len;
1027 while (cur < len) {
1028 if ((cur & 31) == 0 && (len - cur) >= 32) {
1029 /* fast path: clear whole word at once */
1030 addr = bm + (cur >> 3);
1031 *addr = 0;
1032 cur += 32;
1033 continue;
1034 }
1035 mb_clear_bit_atomic(lock, cur, bm);
1036 cur++;
1037 }
1038 }
1039
1040 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1041 {
1042 __u32 *addr;
1043
1044 len = cur + len;
1045 while (cur < len) {
1046 if ((cur & 31) == 0 && (len - cur) >= 32) {
1047 /* fast path: set whole word at once */
1048 addr = bm + (cur >> 3);
1049 *addr = 0xffffffff;
1050 cur += 32;
1051 continue;
1052 }
1053 mb_set_bit_atomic(lock, cur, bm);
1054 cur++;
1055 }
1056 }
1057
1058 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1059 int first, int count)
1060 {
1061 int block = 0;
1062 int max = 0;
1063 int order;
1064 void *buddy;
1065 void *buddy2;
1066 struct super_block *sb = e4b->bd_sb;
1067
1068 BUG_ON(first + count > (sb->s_blocksize << 3));
1069 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1070 mb_check_buddy(e4b);
1071 mb_free_blocks_double(inode, e4b, first, count);
1072
1073 e4b->bd_info->bb_free += count;
1074 if (first < e4b->bd_info->bb_first_free)
1075 e4b->bd_info->bb_first_free = first;
1076
1077 /* let's maintain fragments counter */
1078 if (first != 0)
1079 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1080 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1081 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1082 if (block && max)
1083 e4b->bd_info->bb_fragments--;
1084 else if (!block && !max)
1085 e4b->bd_info->bb_fragments++;
1086
1087 /* let's maintain buddy itself */
1088 while (count-- > 0) {
1089 block = first++;
1090 order = 0;
1091
1092 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1093 ext4_fsblk_t blocknr;
1094 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1095 blocknr += block;
1096 blocknr +=
1097 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1098 ext4_unlock_group(sb, e4b->bd_group);
1099 ext4_error(sb, __func__, "double-free of inode"
1100 " %lu's block %llu(bit %u in group %lu)\n",
1101 inode ? inode->i_ino : 0, blocknr, block,
1102 e4b->bd_group);
1103 ext4_lock_group(sb, e4b->bd_group);
1104 }
1105 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1106 e4b->bd_info->bb_counters[order]++;
1107
1108 /* start of the buddy */
1109 buddy = mb_find_buddy(e4b, order, &max);
1110
1111 do {
1112 block &= ~1UL;
1113 if (mb_test_bit(block, buddy) ||
1114 mb_test_bit(block + 1, buddy))
1115 break;
1116
1117 /* both the buddies are free, try to coalesce them */
1118 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1119
1120 if (!buddy2)
1121 break;
1122
1123 if (order > 0) {
1124 /* for special purposes, we don't set
1125 * free bits in bitmap */
1126 mb_set_bit(block, buddy);
1127 mb_set_bit(block + 1, buddy);
1128 }
1129 e4b->bd_info->bb_counters[order]--;
1130 e4b->bd_info->bb_counters[order]--;
1131
1132 block = block >> 1;
1133 order++;
1134 e4b->bd_info->bb_counters[order]++;
1135
1136 mb_clear_bit(block, buddy2);
1137 buddy = buddy2;
1138 } while (1);
1139 }
1140 mb_check_buddy(e4b);
1141 }
1142
1143 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1144 int needed, struct ext4_free_extent *ex)
1145 {
1146 int next = block;
1147 int max;
1148 int ord;
1149 void *buddy;
1150
1151 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1152 BUG_ON(ex == NULL);
1153
1154 buddy = mb_find_buddy(e4b, order, &max);
1155 BUG_ON(buddy == NULL);
1156 BUG_ON(block >= max);
1157 if (mb_test_bit(block, buddy)) {
1158 ex->fe_len = 0;
1159 ex->fe_start = 0;
1160 ex->fe_group = 0;
1161 return 0;
1162 }
1163
1164 /* FIXME dorp order completely ? */
1165 if (likely(order == 0)) {
1166 /* find actual order */
1167 order = mb_find_order_for_block(e4b, block);
1168 block = block >> order;
1169 }
1170
1171 ex->fe_len = 1 << order;
1172 ex->fe_start = block << order;
1173 ex->fe_group = e4b->bd_group;
1174
1175 /* calc difference from given start */
1176 next = next - ex->fe_start;
1177 ex->fe_len -= next;
1178 ex->fe_start += next;
1179
1180 while (needed > ex->fe_len &&
1181 (buddy = mb_find_buddy(e4b, order, &max))) {
1182
1183 if (block + 1 >= max)
1184 break;
1185
1186 next = (block + 1) * (1 << order);
1187 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1188 break;
1189
1190 ord = mb_find_order_for_block(e4b, next);
1191
1192 order = ord;
1193 block = next >> order;
1194 ex->fe_len += 1 << order;
1195 }
1196
1197 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1198 return ex->fe_len;
1199 }
1200
1201 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1202 {
1203 int ord;
1204 int mlen = 0;
1205 int max = 0;
1206 int cur;
1207 int start = ex->fe_start;
1208 int len = ex->fe_len;
1209 unsigned ret = 0;
1210 int len0 = len;
1211 void *buddy;
1212
1213 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1214 BUG_ON(e4b->bd_group != ex->fe_group);
1215 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1216 mb_check_buddy(e4b);
1217 mb_mark_used_double(e4b, start, len);
1218
1219 e4b->bd_info->bb_free -= len;
1220 if (e4b->bd_info->bb_first_free == start)
1221 e4b->bd_info->bb_first_free += len;
1222
1223 /* let's maintain fragments counter */
1224 if (start != 0)
1225 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1226 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1227 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1228 if (mlen && max)
1229 e4b->bd_info->bb_fragments++;
1230 else if (!mlen && !max)
1231 e4b->bd_info->bb_fragments--;
1232
1233 /* let's maintain buddy itself */
1234 while (len) {
1235 ord = mb_find_order_for_block(e4b, start);
1236
1237 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1238 /* the whole chunk may be allocated at once! */
1239 mlen = 1 << ord;
1240 buddy = mb_find_buddy(e4b, ord, &max);
1241 BUG_ON((start >> ord) >= max);
1242 mb_set_bit(start >> ord, buddy);
1243 e4b->bd_info->bb_counters[ord]--;
1244 start += mlen;
1245 len -= mlen;
1246 BUG_ON(len < 0);
1247 continue;
1248 }
1249
1250 /* store for history */
1251 if (ret == 0)
1252 ret = len | (ord << 16);
1253
1254 /* we have to split large buddy */
1255 BUG_ON(ord <= 0);
1256 buddy = mb_find_buddy(e4b, ord, &max);
1257 mb_set_bit(start >> ord, buddy);
1258 e4b->bd_info->bb_counters[ord]--;
1259
1260 ord--;
1261 cur = (start >> ord) & ~1U;
1262 buddy = mb_find_buddy(e4b, ord, &max);
1263 mb_clear_bit(cur, buddy);
1264 mb_clear_bit(cur + 1, buddy);
1265 e4b->bd_info->bb_counters[ord]++;
1266 e4b->bd_info->bb_counters[ord]++;
1267 }
1268
1269 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1270 EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1271 mb_check_buddy(e4b);
1272
1273 return ret;
1274 }
1275
1276 /*
1277 * Must be called under group lock!
1278 */
1279 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1280 struct ext4_buddy *e4b)
1281 {
1282 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1283 int ret;
1284
1285 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1286 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1287
1288 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1289 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1290 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1291
1292 /* preallocation can change ac_b_ex, thus we store actually
1293 * allocated blocks for history */
1294 ac->ac_f_ex = ac->ac_b_ex;
1295
1296 ac->ac_status = AC_STATUS_FOUND;
1297 ac->ac_tail = ret & 0xffff;
1298 ac->ac_buddy = ret >> 16;
1299
1300 /* XXXXXXX: SUCH A HORRIBLE **CK */
1301 /*FIXME!! Why ? */
1302 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1303 get_page(ac->ac_bitmap_page);
1304 ac->ac_buddy_page = e4b->bd_buddy_page;
1305 get_page(ac->ac_buddy_page);
1306
1307 /* store last allocated for subsequent stream allocation */
1308 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1309 spin_lock(&sbi->s_md_lock);
1310 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1311 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1312 spin_unlock(&sbi->s_md_lock);
1313 }
1314 }
1315
1316 /*
1317 * regular allocator, for general purposes allocation
1318 */
1319
1320 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1321 struct ext4_buddy *e4b,
1322 int finish_group)
1323 {
1324 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1325 struct ext4_free_extent *bex = &ac->ac_b_ex;
1326 struct ext4_free_extent *gex = &ac->ac_g_ex;
1327 struct ext4_free_extent ex;
1328 int max;
1329
1330 /*
1331 * We don't want to scan for a whole year
1332 */
1333 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1334 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1335 ac->ac_status = AC_STATUS_BREAK;
1336 return;
1337 }
1338
1339 /*
1340 * Haven't found good chunk so far, let's continue
1341 */
1342 if (bex->fe_len < gex->fe_len)
1343 return;
1344
1345 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1346 && bex->fe_group == e4b->bd_group) {
1347 /* recheck chunk's availability - we don't know
1348 * when it was found (within this lock-unlock
1349 * period or not) */
1350 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1351 if (max >= gex->fe_len) {
1352 ext4_mb_use_best_found(ac, e4b);
1353 return;
1354 }
1355 }
1356 }
1357
1358 /*
1359 * The routine checks whether found extent is good enough. If it is,
1360 * then the extent gets marked used and flag is set to the context
1361 * to stop scanning. Otherwise, the extent is compared with the
1362 * previous found extent and if new one is better, then it's stored
1363 * in the context. Later, the best found extent will be used, if
1364 * mballoc can't find good enough extent.
1365 *
1366 * FIXME: real allocation policy is to be designed yet!
1367 */
1368 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1369 struct ext4_free_extent *ex,
1370 struct ext4_buddy *e4b)
1371 {
1372 struct ext4_free_extent *bex = &ac->ac_b_ex;
1373 struct ext4_free_extent *gex = &ac->ac_g_ex;
1374
1375 BUG_ON(ex->fe_len <= 0);
1376 BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1377 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1378 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1379
1380 ac->ac_found++;
1381
1382 /*
1383 * The special case - take what you catch first
1384 */
1385 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1386 *bex = *ex;
1387 ext4_mb_use_best_found(ac, e4b);
1388 return;
1389 }
1390
1391 /*
1392 * Let's check whether the chuck is good enough
1393 */
1394 if (ex->fe_len == gex->fe_len) {
1395 *bex = *ex;
1396 ext4_mb_use_best_found(ac, e4b);
1397 return;
1398 }
1399
1400 /*
1401 * If this is first found extent, just store it in the context
1402 */
1403 if (bex->fe_len == 0) {
1404 *bex = *ex;
1405 return;
1406 }
1407
1408 /*
1409 * If new found extent is better, store it in the context
1410 */
1411 if (bex->fe_len < gex->fe_len) {
1412 /* if the request isn't satisfied, any found extent
1413 * larger than previous best one is better */
1414 if (ex->fe_len > bex->fe_len)
1415 *bex = *ex;
1416 } else if (ex->fe_len > gex->fe_len) {
1417 /* if the request is satisfied, then we try to find
1418 * an extent that still satisfy the request, but is
1419 * smaller than previous one */
1420 if (ex->fe_len < bex->fe_len)
1421 *bex = *ex;
1422 }
1423
1424 ext4_mb_check_limits(ac, e4b, 0);
1425 }
1426
1427 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1428 struct ext4_buddy *e4b)
1429 {
1430 struct ext4_free_extent ex = ac->ac_b_ex;
1431 ext4_group_t group = ex.fe_group;
1432 int max;
1433 int err;
1434
1435 BUG_ON(ex.fe_len <= 0);
1436 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1437 if (err)
1438 return err;
1439
1440 ext4_lock_group(ac->ac_sb, group);
1441 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1442
1443 if (max > 0) {
1444 ac->ac_b_ex = ex;
1445 ext4_mb_use_best_found(ac, e4b);
1446 }
1447
1448 ext4_unlock_group(ac->ac_sb, group);
1449 ext4_mb_release_desc(e4b);
1450
1451 return 0;
1452 }
1453
1454 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1455 struct ext4_buddy *e4b)
1456 {
1457 ext4_group_t group = ac->ac_g_ex.fe_group;
1458 int max;
1459 int err;
1460 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1461 struct ext4_super_block *es = sbi->s_es;
1462 struct ext4_free_extent ex;
1463
1464 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1465 return 0;
1466
1467 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1468 if (err)
1469 return err;
1470
1471 ext4_lock_group(ac->ac_sb, group);
1472 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1473 ac->ac_g_ex.fe_len, &ex);
1474
1475 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1476 ext4_fsblk_t start;
1477
1478 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1479 ex.fe_start + le32_to_cpu(es->s_first_data_block);
1480 /* use do_div to get remainder (would be 64-bit modulo) */
1481 if (do_div(start, sbi->s_stripe) == 0) {
1482 ac->ac_found++;
1483 ac->ac_b_ex = ex;
1484 ext4_mb_use_best_found(ac, e4b);
1485 }
1486 } else if (max >= ac->ac_g_ex.fe_len) {
1487 BUG_ON(ex.fe_len <= 0);
1488 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1489 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1490 ac->ac_found++;
1491 ac->ac_b_ex = ex;
1492 ext4_mb_use_best_found(ac, e4b);
1493 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1494 /* Sometimes, caller may want to merge even small
1495 * number of blocks to an existing extent */
1496 BUG_ON(ex.fe_len <= 0);
1497 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1498 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1499 ac->ac_found++;
1500 ac->ac_b_ex = ex;
1501 ext4_mb_use_best_found(ac, e4b);
1502 }
1503 ext4_unlock_group(ac->ac_sb, group);
1504 ext4_mb_release_desc(e4b);
1505
1506 return 0;
1507 }
1508
1509 /*
1510 * The routine scans buddy structures (not bitmap!) from given order
1511 * to max order and tries to find big enough chunk to satisfy the req
1512 */
1513 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1514 struct ext4_buddy *e4b)
1515 {
1516 struct super_block *sb = ac->ac_sb;
1517 struct ext4_group_info *grp = e4b->bd_info;
1518 void *buddy;
1519 int i;
1520 int k;
1521 int max;
1522
1523 BUG_ON(ac->ac_2order <= 0);
1524 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1525 if (grp->bb_counters[i] == 0)
1526 continue;
1527
1528 buddy = mb_find_buddy(e4b, i, &max);
1529 BUG_ON(buddy == NULL);
1530
1531 k = mb_find_next_zero_bit(buddy, max, 0);
1532 BUG_ON(k >= max);
1533
1534 ac->ac_found++;
1535
1536 ac->ac_b_ex.fe_len = 1 << i;
1537 ac->ac_b_ex.fe_start = k << i;
1538 ac->ac_b_ex.fe_group = e4b->bd_group;
1539
1540 ext4_mb_use_best_found(ac, e4b);
1541
1542 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1543
1544 if (EXT4_SB(sb)->s_mb_stats)
1545 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1546
1547 break;
1548 }
1549 }
1550
1551 /*
1552 * The routine scans the group and measures all found extents.
1553 * In order to optimize scanning, caller must pass number of
1554 * free blocks in the group, so the routine can know upper limit.
1555 */
1556 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1557 struct ext4_buddy *e4b)
1558 {
1559 struct super_block *sb = ac->ac_sb;
1560 void *bitmap = EXT4_MB_BITMAP(e4b);
1561 struct ext4_free_extent ex;
1562 int i;
1563 int free;
1564
1565 free = e4b->bd_info->bb_free;
1566 BUG_ON(free <= 0);
1567
1568 i = e4b->bd_info->bb_first_free;
1569
1570 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1571 i = mb_find_next_zero_bit(bitmap,
1572 EXT4_BLOCKS_PER_GROUP(sb), i);
1573 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1574 /*
1575 * IF we have corrupt bitmap, we won't find any
1576 * free blocks even though group info says we
1577 * we have free blocks
1578 */
1579 ext4_error(sb, __func__, "%d free blocks as per "
1580 "group info. But bitmap says 0\n",
1581 free);
1582 break;
1583 }
1584
1585 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1586 BUG_ON(ex.fe_len <= 0);
1587 if (free < ex.fe_len) {
1588 ext4_error(sb, __func__, "%d free blocks as per "
1589 "group info. But got %d blocks\n",
1590 free, ex.fe_len);
1591 /*
1592 * The number of free blocks differs. This mostly
1593 * indicate that the bitmap is corrupt. So exit
1594 * without claiming the space.
1595 */
1596 break;
1597 }
1598
1599 ext4_mb_measure_extent(ac, &ex, e4b);
1600
1601 i += ex.fe_len;
1602 free -= ex.fe_len;
1603 }
1604
1605 ext4_mb_check_limits(ac, e4b, 1);
1606 }
1607
1608 /*
1609 * This is a special case for storages like raid5
1610 * we try to find stripe-aligned chunks for stripe-size requests
1611 * XXX should do so at least for multiples of stripe size as well
1612 */
1613 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1614 struct ext4_buddy *e4b)
1615 {
1616 struct super_block *sb = ac->ac_sb;
1617 struct ext4_sb_info *sbi = EXT4_SB(sb);
1618 void *bitmap = EXT4_MB_BITMAP(e4b);
1619 struct ext4_free_extent ex;
1620 ext4_fsblk_t first_group_block;
1621 ext4_fsblk_t a;
1622 ext4_grpblk_t i;
1623 int max;
1624
1625 BUG_ON(sbi->s_stripe == 0);
1626
1627 /* find first stripe-aligned block in group */
1628 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1629 + le32_to_cpu(sbi->s_es->s_first_data_block);
1630 a = first_group_block + sbi->s_stripe - 1;
1631 do_div(a, sbi->s_stripe);
1632 i = (a * sbi->s_stripe) - first_group_block;
1633
1634 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1635 if (!mb_test_bit(i, bitmap)) {
1636 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1637 if (max >= sbi->s_stripe) {
1638 ac->ac_found++;
1639 ac->ac_b_ex = ex;
1640 ext4_mb_use_best_found(ac, e4b);
1641 break;
1642 }
1643 }
1644 i += sbi->s_stripe;
1645 }
1646 }
1647
1648 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1649 ext4_group_t group, int cr)
1650 {
1651 unsigned free, fragments;
1652 unsigned i, bits;
1653 struct ext4_group_desc *desc;
1654 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1655
1656 BUG_ON(cr < 0 || cr >= 4);
1657 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1658
1659 free = grp->bb_free;
1660 fragments = grp->bb_fragments;
1661 if (free == 0)
1662 return 0;
1663 if (fragments == 0)
1664 return 0;
1665
1666 switch (cr) {
1667 case 0:
1668 BUG_ON(ac->ac_2order == 0);
1669 /* If this group is uninitialized, skip it initially */
1670 desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1671 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1672 return 0;
1673
1674 bits = ac->ac_sb->s_blocksize_bits + 1;
1675 for (i = ac->ac_2order; i <= bits; i++)
1676 if (grp->bb_counters[i] > 0)
1677 return 1;
1678 break;
1679 case 1:
1680 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1681 return 1;
1682 break;
1683 case 2:
1684 if (free >= ac->ac_g_ex.fe_len)
1685 return 1;
1686 break;
1687 case 3:
1688 return 1;
1689 default:
1690 BUG();
1691 }
1692
1693 return 0;
1694 }
1695
1696 static noinline_for_stack int
1697 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1698 {
1699 ext4_group_t group;
1700 ext4_group_t i;
1701 int cr;
1702 int err = 0;
1703 int bsbits;
1704 struct ext4_sb_info *sbi;
1705 struct super_block *sb;
1706 struct ext4_buddy e4b;
1707 loff_t size, isize;
1708
1709 sb = ac->ac_sb;
1710 sbi = EXT4_SB(sb);
1711 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1712
1713 /* first, try the goal */
1714 err = ext4_mb_find_by_goal(ac, &e4b);
1715 if (err || ac->ac_status == AC_STATUS_FOUND)
1716 goto out;
1717
1718 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1719 goto out;
1720
1721 /*
1722 * ac->ac2_order is set only if the fe_len is a power of 2
1723 * if ac2_order is set we also set criteria to 0 so that we
1724 * try exact allocation using buddy.
1725 */
1726 i = fls(ac->ac_g_ex.fe_len);
1727 ac->ac_2order = 0;
1728 /*
1729 * We search using buddy data only if the order of the request
1730 * is greater than equal to the sbi_s_mb_order2_reqs
1731 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1732 */
1733 if (i >= sbi->s_mb_order2_reqs) {
1734 /*
1735 * This should tell if fe_len is exactly power of 2
1736 */
1737 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1738 ac->ac_2order = i - 1;
1739 }
1740
1741 bsbits = ac->ac_sb->s_blocksize_bits;
1742 /* if stream allocation is enabled, use global goal */
1743 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1744 isize = i_size_read(ac->ac_inode) >> bsbits;
1745 if (size < isize)
1746 size = isize;
1747
1748 if (size < sbi->s_mb_stream_request &&
1749 (ac->ac_flags & EXT4_MB_HINT_DATA)) {
1750 /* TBD: may be hot point */
1751 spin_lock(&sbi->s_md_lock);
1752 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1753 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1754 spin_unlock(&sbi->s_md_lock);
1755 }
1756 /* Let's just scan groups to find more-less suitable blocks */
1757 cr = ac->ac_2order ? 0 : 1;
1758 /*
1759 * cr == 0 try to get exact allocation,
1760 * cr == 3 try to get anything
1761 */
1762 repeat:
1763 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1764 ac->ac_criteria = cr;
1765 /*
1766 * searching for the right group start
1767 * from the goal value specified
1768 */
1769 group = ac->ac_g_ex.fe_group;
1770
1771 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
1772 struct ext4_group_info *grp;
1773 struct ext4_group_desc *desc;
1774
1775 if (group == EXT4_SB(sb)->s_groups_count)
1776 group = 0;
1777
1778 /* quick check to skip empty groups */
1779 grp = ext4_get_group_info(ac->ac_sb, group);
1780 if (grp->bb_free == 0)
1781 continue;
1782
1783 /*
1784 * if the group is already init we check whether it is
1785 * a good group and if not we don't load the buddy
1786 */
1787 if (EXT4_MB_GRP_NEED_INIT(grp)) {
1788 /*
1789 * we need full data about the group
1790 * to make a good selection
1791 */
1792 err = ext4_mb_load_buddy(sb, group, &e4b);
1793 if (err)
1794 goto out;
1795 ext4_mb_release_desc(&e4b);
1796 }
1797
1798 /*
1799 * If the particular group doesn't satisfy our
1800 * criteria we continue with the next group
1801 */
1802 if (!ext4_mb_good_group(ac, group, cr))
1803 continue;
1804
1805 err = ext4_mb_load_buddy(sb, group, &e4b);
1806 if (err)
1807 goto out;
1808
1809 ext4_lock_group(sb, group);
1810 if (!ext4_mb_good_group(ac, group, cr)) {
1811 /* someone did allocation from this group */
1812 ext4_unlock_group(sb, group);
1813 ext4_mb_release_desc(&e4b);
1814 continue;
1815 }
1816
1817 ac->ac_groups_scanned++;
1818 desc = ext4_get_group_desc(sb, group, NULL);
1819 if (cr == 0 || (desc->bg_flags &
1820 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
1821 ac->ac_2order != 0))
1822 ext4_mb_simple_scan_group(ac, &e4b);
1823 else if (cr == 1 &&
1824 ac->ac_g_ex.fe_len == sbi->s_stripe)
1825 ext4_mb_scan_aligned(ac, &e4b);
1826 else
1827 ext4_mb_complex_scan_group(ac, &e4b);
1828
1829 ext4_unlock_group(sb, group);
1830 ext4_mb_release_desc(&e4b);
1831
1832 if (ac->ac_status != AC_STATUS_CONTINUE)
1833 break;
1834 }
1835 }
1836
1837 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
1838 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1839 /*
1840 * We've been searching too long. Let's try to allocate
1841 * the best chunk we've found so far
1842 */
1843
1844 ext4_mb_try_best_found(ac, &e4b);
1845 if (ac->ac_status != AC_STATUS_FOUND) {
1846 /*
1847 * Someone more lucky has already allocated it.
1848 * The only thing we can do is just take first
1849 * found block(s)
1850 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
1851 */
1852 ac->ac_b_ex.fe_group = 0;
1853 ac->ac_b_ex.fe_start = 0;
1854 ac->ac_b_ex.fe_len = 0;
1855 ac->ac_status = AC_STATUS_CONTINUE;
1856 ac->ac_flags |= EXT4_MB_HINT_FIRST;
1857 cr = 3;
1858 atomic_inc(&sbi->s_mb_lost_chunks);
1859 goto repeat;
1860 }
1861 }
1862 out:
1863 return err;
1864 }
1865
1866 #ifdef EXT4_MB_HISTORY
1867 struct ext4_mb_proc_session {
1868 struct ext4_mb_history *history;
1869 struct super_block *sb;
1870 int start;
1871 int max;
1872 };
1873
1874 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
1875 struct ext4_mb_history *hs,
1876 int first)
1877 {
1878 if (hs == s->history + s->max)
1879 hs = s->history;
1880 if (!first && hs == s->history + s->start)
1881 return NULL;
1882 while (hs->orig.fe_len == 0) {
1883 hs++;
1884 if (hs == s->history + s->max)
1885 hs = s->history;
1886 if (hs == s->history + s->start)
1887 return NULL;
1888 }
1889 return hs;
1890 }
1891
1892 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
1893 {
1894 struct ext4_mb_proc_session *s = seq->private;
1895 struct ext4_mb_history *hs;
1896 int l = *pos;
1897
1898 if (l == 0)
1899 return SEQ_START_TOKEN;
1900 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1901 if (!hs)
1902 return NULL;
1903 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
1904 return hs;
1905 }
1906
1907 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
1908 loff_t *pos)
1909 {
1910 struct ext4_mb_proc_session *s = seq->private;
1911 struct ext4_mb_history *hs = v;
1912
1913 ++*pos;
1914 if (v == SEQ_START_TOKEN)
1915 return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1916 else
1917 return ext4_mb_history_skip_empty(s, ++hs, 0);
1918 }
1919
1920 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
1921 {
1922 char buf[25], buf2[25], buf3[25], *fmt;
1923 struct ext4_mb_history *hs = v;
1924
1925 if (v == SEQ_START_TOKEN) {
1926 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
1927 "%-5s %-2s %-5s %-5s %-5s %-6s\n",
1928 "pid", "inode", "original", "goal", "result", "found",
1929 "grps", "cr", "flags", "merge", "tail", "broken");
1930 return 0;
1931 }
1932
1933 if (hs->op == EXT4_MB_HISTORY_ALLOC) {
1934 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
1935 "%-5u %-5s %-5u %-6u\n";
1936 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1937 hs->result.fe_start, hs->result.fe_len,
1938 hs->result.fe_logical);
1939 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1940 hs->orig.fe_start, hs->orig.fe_len,
1941 hs->orig.fe_logical);
1942 sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
1943 hs->goal.fe_start, hs->goal.fe_len,
1944 hs->goal.fe_logical);
1945 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
1946 hs->found, hs->groups, hs->cr, hs->flags,
1947 hs->merged ? "M" : "", hs->tail,
1948 hs->buddy ? 1 << hs->buddy : 0);
1949 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
1950 fmt = "%-5u %-8u %-23s %-23s %-23s\n";
1951 sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1952 hs->result.fe_start, hs->result.fe_len,
1953 hs->result.fe_logical);
1954 sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1955 hs->orig.fe_start, hs->orig.fe_len,
1956 hs->orig.fe_logical);
1957 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
1958 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
1959 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1960 hs->result.fe_start, hs->result.fe_len);
1961 seq_printf(seq, "%-5u %-8u %-23s discard\n",
1962 hs->pid, hs->ino, buf2);
1963 } else if (hs->op == EXT4_MB_HISTORY_FREE) {
1964 sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1965 hs->result.fe_start, hs->result.fe_len);
1966 seq_printf(seq, "%-5u %-8u %-23s free\n",
1967 hs->pid, hs->ino, buf2);
1968 }
1969 return 0;
1970 }
1971
1972 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
1973 {
1974 }
1975
1976 static struct seq_operations ext4_mb_seq_history_ops = {
1977 .start = ext4_mb_seq_history_start,
1978 .next = ext4_mb_seq_history_next,
1979 .stop = ext4_mb_seq_history_stop,
1980 .show = ext4_mb_seq_history_show,
1981 };
1982
1983 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
1984 {
1985 struct super_block *sb = PDE(inode)->data;
1986 struct ext4_sb_info *sbi = EXT4_SB(sb);
1987 struct ext4_mb_proc_session *s;
1988 int rc;
1989 int size;
1990
1991 if (unlikely(sbi->s_mb_history == NULL))
1992 return -ENOMEM;
1993 s = kmalloc(sizeof(*s), GFP_KERNEL);
1994 if (s == NULL)
1995 return -ENOMEM;
1996 s->sb = sb;
1997 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
1998 s->history = kmalloc(size, GFP_KERNEL);
1999 if (s->history == NULL) {
2000 kfree(s);
2001 return -ENOMEM;
2002 }
2003
2004 spin_lock(&sbi->s_mb_history_lock);
2005 memcpy(s->history, sbi->s_mb_history, size);
2006 s->max = sbi->s_mb_history_max;
2007 s->start = sbi->s_mb_history_cur % s->max;
2008 spin_unlock(&sbi->s_mb_history_lock);
2009
2010 rc = seq_open(file, &ext4_mb_seq_history_ops);
2011 if (rc == 0) {
2012 struct seq_file *m = (struct seq_file *)file->private_data;
2013 m->private = s;
2014 } else {
2015 kfree(s->history);
2016 kfree(s);
2017 }
2018 return rc;
2019
2020 }
2021
2022 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2023 {
2024 struct seq_file *seq = (struct seq_file *)file->private_data;
2025 struct ext4_mb_proc_session *s = seq->private;
2026 kfree(s->history);
2027 kfree(s);
2028 return seq_release(inode, file);
2029 }
2030
2031 static ssize_t ext4_mb_seq_history_write(struct file *file,
2032 const char __user *buffer,
2033 size_t count, loff_t *ppos)
2034 {
2035 struct seq_file *seq = (struct seq_file *)file->private_data;
2036 struct ext4_mb_proc_session *s = seq->private;
2037 struct super_block *sb = s->sb;
2038 char str[32];
2039 int value;
2040
2041 if (count >= sizeof(str)) {
2042 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2043 "mb_history", (int)sizeof(str));
2044 return -EOVERFLOW;
2045 }
2046
2047 if (copy_from_user(str, buffer, count))
2048 return -EFAULT;
2049
2050 value = simple_strtol(str, NULL, 0);
2051 if (value < 0)
2052 return -ERANGE;
2053 EXT4_SB(sb)->s_mb_history_filter = value;
2054
2055 return count;
2056 }
2057
2058 static struct file_operations ext4_mb_seq_history_fops = {
2059 .owner = THIS_MODULE,
2060 .open = ext4_mb_seq_history_open,
2061 .read = seq_read,
2062 .write = ext4_mb_seq_history_write,
2063 .llseek = seq_lseek,
2064 .release = ext4_mb_seq_history_release,
2065 };
2066
2067 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2068 {
2069 struct super_block *sb = seq->private;
2070 struct ext4_sb_info *sbi = EXT4_SB(sb);
2071 ext4_group_t group;
2072
2073 if (*pos < 0 || *pos >= sbi->s_groups_count)
2074 return NULL;
2075
2076 group = *pos + 1;
2077 return (void *) group;
2078 }
2079
2080 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2081 {
2082 struct super_block *sb = seq->private;
2083 struct ext4_sb_info *sbi = EXT4_SB(sb);
2084 ext4_group_t group;
2085
2086 ++*pos;
2087 if (*pos < 0 || *pos >= sbi->s_groups_count)
2088 return NULL;
2089 group = *pos + 1;
2090 return (void *) group;;
2091 }
2092
2093 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2094 {
2095 struct super_block *sb = seq->private;
2096 long group = (long) v;
2097 int i;
2098 int err;
2099 struct ext4_buddy e4b;
2100 struct sg {
2101 struct ext4_group_info info;
2102 unsigned short counters[16];
2103 } sg;
2104
2105 group--;
2106 if (group == 0)
2107 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2108 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2109 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2110 "group", "free", "frags", "first",
2111 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2112 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2113
2114 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2115 sizeof(struct ext4_group_info);
2116 err = ext4_mb_load_buddy(sb, group, &e4b);
2117 if (err) {
2118 seq_printf(seq, "#%-5lu: I/O error\n", group);
2119 return 0;
2120 }
2121 ext4_lock_group(sb, group);
2122 memcpy(&sg, ext4_get_group_info(sb, group), i);
2123 ext4_unlock_group(sb, group);
2124 ext4_mb_release_desc(&e4b);
2125
2126 seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
2127 sg.info.bb_fragments, sg.info.bb_first_free);
2128 for (i = 0; i <= 13; i++)
2129 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2130 sg.info.bb_counters[i] : 0);
2131 seq_printf(seq, " ]\n");
2132
2133 return 0;
2134 }
2135
2136 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2137 {
2138 }
2139
2140 static struct seq_operations ext4_mb_seq_groups_ops = {
2141 .start = ext4_mb_seq_groups_start,
2142 .next = ext4_mb_seq_groups_next,
2143 .stop = ext4_mb_seq_groups_stop,
2144 .show = ext4_mb_seq_groups_show,
2145 };
2146
2147 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2148 {
2149 struct super_block *sb = PDE(inode)->data;
2150 int rc;
2151
2152 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2153 if (rc == 0) {
2154 struct seq_file *m = (struct seq_file *)file->private_data;
2155 m->private = sb;
2156 }
2157 return rc;
2158
2159 }
2160
2161 static struct file_operations ext4_mb_seq_groups_fops = {
2162 .owner = THIS_MODULE,
2163 .open = ext4_mb_seq_groups_open,
2164 .read = seq_read,
2165 .llseek = seq_lseek,
2166 .release = seq_release,
2167 };
2168
2169 static void ext4_mb_history_release(struct super_block *sb)
2170 {
2171 struct ext4_sb_info *sbi = EXT4_SB(sb);
2172
2173 remove_proc_entry("mb_groups", sbi->s_mb_proc);
2174 remove_proc_entry("mb_history", sbi->s_mb_proc);
2175
2176 kfree(sbi->s_mb_history);
2177 }
2178
2179 static void ext4_mb_history_init(struct super_block *sb)
2180 {
2181 struct ext4_sb_info *sbi = EXT4_SB(sb);
2182 int i;
2183
2184 if (sbi->s_mb_proc != NULL) {
2185 proc_create_data("mb_history", S_IRUGO, sbi->s_mb_proc,
2186 &ext4_mb_seq_history_fops, sb);
2187 proc_create_data("mb_groups", S_IRUGO, sbi->s_mb_proc,
2188 &ext4_mb_seq_groups_fops, sb);
2189 }
2190
2191 sbi->s_mb_history_max = 1000;
2192 sbi->s_mb_history_cur = 0;
2193 spin_lock_init(&sbi->s_mb_history_lock);
2194 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2195 sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2196 /* if we can't allocate history, then we simple won't use it */
2197 }
2198
2199 static noinline_for_stack void
2200 ext4_mb_store_history(struct ext4_allocation_context *ac)
2201 {
2202 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2203 struct ext4_mb_history h;
2204
2205 if (unlikely(sbi->s_mb_history == NULL))
2206 return;
2207
2208 if (!(ac->ac_op & sbi->s_mb_history_filter))
2209 return;
2210
2211 h.op = ac->ac_op;
2212 h.pid = current->pid;
2213 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2214 h.orig = ac->ac_o_ex;
2215 h.result = ac->ac_b_ex;
2216 h.flags = ac->ac_flags;
2217 h.found = ac->ac_found;
2218 h.groups = ac->ac_groups_scanned;
2219 h.cr = ac->ac_criteria;
2220 h.tail = ac->ac_tail;
2221 h.buddy = ac->ac_buddy;
2222 h.merged = 0;
2223 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2224 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2225 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2226 h.merged = 1;
2227 h.goal = ac->ac_g_ex;
2228 h.result = ac->ac_f_ex;
2229 }
2230
2231 spin_lock(&sbi->s_mb_history_lock);
2232 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2233 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2234 sbi->s_mb_history_cur = 0;
2235 spin_unlock(&sbi->s_mb_history_lock);
2236 }
2237
2238 #else
2239 #define ext4_mb_history_release(sb)
2240 #define ext4_mb_history_init(sb)
2241 #endif
2242
2243
2244 /* Create and initialize ext4_group_info data for the given group. */
2245 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2246 struct ext4_group_desc *desc)
2247 {
2248 int i, len;
2249 int metalen = 0;
2250 struct ext4_sb_info *sbi = EXT4_SB(sb);
2251 struct ext4_group_info **meta_group_info;
2252
2253 /*
2254 * First check if this group is the first of a reserved block.
2255 * If it's true, we have to allocate a new table of pointers
2256 * to ext4_group_info structures
2257 */
2258 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2259 metalen = sizeof(*meta_group_info) <<
2260 EXT4_DESC_PER_BLOCK_BITS(sb);
2261 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2262 if (meta_group_info == NULL) {
2263 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2264 "buddy group\n");
2265 goto exit_meta_group_info;
2266 }
2267 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2268 meta_group_info;
2269 }
2270
2271 /*
2272 * calculate needed size. if change bb_counters size,
2273 * don't forget about ext4_mb_generate_buddy()
2274 */
2275 len = offsetof(typeof(**meta_group_info),
2276 bb_counters[sb->s_blocksize_bits + 2]);
2277
2278 meta_group_info =
2279 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2280 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2281
2282 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2283 if (meta_group_info[i] == NULL) {
2284 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2285 goto exit_group_info;
2286 }
2287 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2288 &(meta_group_info[i]->bb_state));
2289
2290 /*
2291 * initialize bb_free to be able to skip
2292 * empty groups without initialization
2293 */
2294 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2295 meta_group_info[i]->bb_free =
2296 ext4_free_blocks_after_init(sb, group, desc);
2297 } else {
2298 meta_group_info[i]->bb_free =
2299 le16_to_cpu(desc->bg_free_blocks_count);
2300 }
2301
2302 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2303
2304 #ifdef DOUBLE_CHECK
2305 {
2306 struct buffer_head *bh;
2307 meta_group_info[i]->bb_bitmap =
2308 kmalloc(sb->s_blocksize, GFP_KERNEL);
2309 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2310 bh = ext4_read_block_bitmap(sb, group);
2311 BUG_ON(bh == NULL);
2312 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2313 sb->s_blocksize);
2314 put_bh(bh);
2315 }
2316 #endif
2317
2318 return 0;
2319
2320 exit_group_info:
2321 /* If a meta_group_info table has been allocated, release it now */
2322 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2323 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2324 exit_meta_group_info:
2325 return -ENOMEM;
2326 } /* ext4_mb_add_groupinfo */
2327
2328 /*
2329 * Add a group to the existing groups.
2330 * This function is used for online resize
2331 */
2332 int ext4_mb_add_more_groupinfo(struct super_block *sb, ext4_group_t group,
2333 struct ext4_group_desc *desc)
2334 {
2335 struct ext4_sb_info *sbi = EXT4_SB(sb);
2336 struct inode *inode = sbi->s_buddy_cache;
2337 int blocks_per_page;
2338 int block;
2339 int pnum;
2340 struct page *page;
2341 int err;
2342
2343 /* Add group based on group descriptor*/
2344 err = ext4_mb_add_groupinfo(sb, group, desc);
2345 if (err)
2346 return err;
2347
2348 /*
2349 * Cache pages containing dynamic mb_alloc datas (buddy and bitmap
2350 * datas) are set not up to date so that they will be re-initilaized
2351 * during the next call to ext4_mb_load_buddy
2352 */
2353
2354 /* Set buddy page as not up to date */
2355 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
2356 block = group * 2;
2357 pnum = block / blocks_per_page;
2358 page = find_get_page(inode->i_mapping, pnum);
2359 if (page != NULL) {
2360 ClearPageUptodate(page);
2361 page_cache_release(page);
2362 }
2363
2364 /* Set bitmap page as not up to date */
2365 block++;
2366 pnum = block / blocks_per_page;
2367 page = find_get_page(inode->i_mapping, pnum);
2368 if (page != NULL) {
2369 ClearPageUptodate(page);
2370 page_cache_release(page);
2371 }
2372
2373 return 0;
2374 }
2375
2376 /*
2377 * Update an existing group.
2378 * This function is used for online resize
2379 */
2380 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2381 {
2382 grp->bb_free += add;
2383 }
2384
2385 static int ext4_mb_init_backend(struct super_block *sb)
2386 {
2387 ext4_group_t i;
2388 int metalen;
2389 struct ext4_sb_info *sbi = EXT4_SB(sb);
2390 struct ext4_super_block *es = sbi->s_es;
2391 int num_meta_group_infos;
2392 int num_meta_group_infos_max;
2393 int array_size;
2394 struct ext4_group_info **meta_group_info;
2395 struct ext4_group_desc *desc;
2396
2397 /* This is the number of blocks used by GDT */
2398 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2399 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2400
2401 /*
2402 * This is the total number of blocks used by GDT including
2403 * the number of reserved blocks for GDT.
2404 * The s_group_info array is allocated with this value
2405 * to allow a clean online resize without a complex
2406 * manipulation of pointer.
2407 * The drawback is the unused memory when no resize
2408 * occurs but it's very low in terms of pages
2409 * (see comments below)
2410 * Need to handle this properly when META_BG resizing is allowed
2411 */
2412 num_meta_group_infos_max = num_meta_group_infos +
2413 le16_to_cpu(es->s_reserved_gdt_blocks);
2414
2415 /*
2416 * array_size is the size of s_group_info array. We round it
2417 * to the next power of two because this approximation is done
2418 * internally by kmalloc so we can have some more memory
2419 * for free here (e.g. may be used for META_BG resize).
2420 */
2421 array_size = 1;
2422 while (array_size < sizeof(*sbi->s_group_info) *
2423 num_meta_group_infos_max)
2424 array_size = array_size << 1;
2425 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2426 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2427 * So a two level scheme suffices for now. */
2428 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2429 if (sbi->s_group_info == NULL) {
2430 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2431 return -ENOMEM;
2432 }
2433 sbi->s_buddy_cache = new_inode(sb);
2434 if (sbi->s_buddy_cache == NULL) {
2435 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2436 goto err_freesgi;
2437 }
2438 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2439
2440 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2441 for (i = 0; i < num_meta_group_infos; i++) {
2442 if ((i + 1) == num_meta_group_infos)
2443 metalen = sizeof(*meta_group_info) *
2444 (sbi->s_groups_count -
2445 (i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2446 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2447 if (meta_group_info == NULL) {
2448 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2449 "buddy group\n");
2450 goto err_freemeta;
2451 }
2452 sbi->s_group_info[i] = meta_group_info;
2453 }
2454
2455 for (i = 0; i < sbi->s_groups_count; i++) {
2456 desc = ext4_get_group_desc(sb, i, NULL);
2457 if (desc == NULL) {
2458 printk(KERN_ERR
2459 "EXT4-fs: can't read descriptor %lu\n", i);
2460 goto err_freebuddy;
2461 }
2462 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2463 goto err_freebuddy;
2464 }
2465
2466 return 0;
2467
2468 err_freebuddy:
2469 while (i-- > 0)
2470 kfree(ext4_get_group_info(sb, i));
2471 i = num_meta_group_infos;
2472 err_freemeta:
2473 while (i-- > 0)
2474 kfree(sbi->s_group_info[i]);
2475 iput(sbi->s_buddy_cache);
2476 err_freesgi:
2477 kfree(sbi->s_group_info);
2478 return -ENOMEM;
2479 }
2480
2481 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2482 {
2483 struct ext4_sb_info *sbi = EXT4_SB(sb);
2484 unsigned i, j;
2485 unsigned offset;
2486 unsigned max;
2487 int ret;
2488
2489 if (!test_opt(sb, MBALLOC))
2490 return 0;
2491
2492 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2493
2494 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2495 if (sbi->s_mb_offsets == NULL) {
2496 clear_opt(sbi->s_mount_opt, MBALLOC);
2497 return -ENOMEM;
2498 }
2499 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2500 if (sbi->s_mb_maxs == NULL) {
2501 clear_opt(sbi->s_mount_opt, MBALLOC);
2502 kfree(sbi->s_mb_maxs);
2503 return -ENOMEM;
2504 }
2505
2506 /* order 0 is regular bitmap */
2507 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2508 sbi->s_mb_offsets[0] = 0;
2509
2510 i = 1;
2511 offset = 0;
2512 max = sb->s_blocksize << 2;
2513 do {
2514 sbi->s_mb_offsets[i] = offset;
2515 sbi->s_mb_maxs[i] = max;
2516 offset += 1 << (sb->s_blocksize_bits - i);
2517 max = max >> 1;
2518 i++;
2519 } while (i <= sb->s_blocksize_bits + 1);
2520
2521 /* init file for buddy data */
2522 ret = ext4_mb_init_backend(sb);
2523 if (ret != 0) {
2524 clear_opt(sbi->s_mount_opt, MBALLOC);
2525 kfree(sbi->s_mb_offsets);
2526 kfree(sbi->s_mb_maxs);
2527 return ret;
2528 }
2529
2530 spin_lock_init(&sbi->s_md_lock);
2531 INIT_LIST_HEAD(&sbi->s_active_transaction);
2532 INIT_LIST_HEAD(&sbi->s_closed_transaction);
2533 INIT_LIST_HEAD(&sbi->s_committed_transaction);
2534 spin_lock_init(&sbi->s_bal_lock);
2535
2536 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2537 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2538 sbi->s_mb_stats = MB_DEFAULT_STATS;
2539 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2540 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2541 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2542 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2543
2544 i = sizeof(struct ext4_locality_group) * nr_cpu_ids;
2545 sbi->s_locality_groups = kmalloc(i, GFP_KERNEL);
2546 if (sbi->s_locality_groups == NULL) {
2547 clear_opt(sbi->s_mount_opt, MBALLOC);
2548 kfree(sbi->s_mb_offsets);
2549 kfree(sbi->s_mb_maxs);
2550 return -ENOMEM;
2551 }
2552 for (i = 0; i < nr_cpu_ids; i++) {
2553 struct ext4_locality_group *lg;
2554 lg = &sbi->s_locality_groups[i];
2555 mutex_init(&lg->lg_mutex);
2556 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2557 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2558 spin_lock_init(&lg->lg_prealloc_lock);
2559 }
2560
2561 ext4_mb_init_per_dev_proc(sb);
2562 ext4_mb_history_init(sb);
2563
2564 printk(KERN_INFO "EXT4-fs: mballoc enabled\n");
2565 return 0;
2566 }
2567
2568 /* need to called with ext4 group lock (ext4_lock_group) */
2569 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2570 {
2571 struct ext4_prealloc_space *pa;
2572 struct list_head *cur, *tmp;
2573 int count = 0;
2574
2575 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2576 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2577 list_del(&pa->pa_group_list);
2578 count++;
2579 kfree(pa);
2580 }
2581 if (count)
2582 mb_debug("mballoc: %u PAs left\n", count);
2583
2584 }
2585
2586 int ext4_mb_release(struct super_block *sb)
2587 {
2588 ext4_group_t i;
2589 int num_meta_group_infos;
2590 struct ext4_group_info *grinfo;
2591 struct ext4_sb_info *sbi = EXT4_SB(sb);
2592
2593 if (!test_opt(sb, MBALLOC))
2594 return 0;
2595
2596 /* release freed, non-committed blocks */
2597 spin_lock(&sbi->s_md_lock);
2598 list_splice_init(&sbi->s_closed_transaction,
2599 &sbi->s_committed_transaction);
2600 list_splice_init(&sbi->s_active_transaction,
2601 &sbi->s_committed_transaction);
2602 spin_unlock(&sbi->s_md_lock);
2603 ext4_mb_free_committed_blocks(sb);
2604
2605 if (sbi->s_group_info) {
2606 for (i = 0; i < sbi->s_groups_count; i++) {
2607 grinfo = ext4_get_group_info(sb, i);
2608 #ifdef DOUBLE_CHECK
2609 kfree(grinfo->bb_bitmap);
2610 #endif
2611 ext4_lock_group(sb, i);
2612 ext4_mb_cleanup_pa(grinfo);
2613 ext4_unlock_group(sb, i);
2614 kfree(grinfo);
2615 }
2616 num_meta_group_infos = (sbi->s_groups_count +
2617 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2618 EXT4_DESC_PER_BLOCK_BITS(sb);
2619 for (i = 0; i < num_meta_group_infos; i++)
2620 kfree(sbi->s_group_info[i]);
2621 kfree(sbi->s_group_info);
2622 }
2623 kfree(sbi->s_mb_offsets);
2624 kfree(sbi->s_mb_maxs);
2625 if (sbi->s_buddy_cache)
2626 iput(sbi->s_buddy_cache);
2627 if (sbi->s_mb_stats) {
2628 printk(KERN_INFO
2629 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2630 atomic_read(&sbi->s_bal_allocated),
2631 atomic_read(&sbi->s_bal_reqs),
2632 atomic_read(&sbi->s_bal_success));
2633 printk(KERN_INFO
2634 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2635 "%u 2^N hits, %u breaks, %u lost\n",
2636 atomic_read(&sbi->s_bal_ex_scanned),
2637 atomic_read(&sbi->s_bal_goals),
2638 atomic_read(&sbi->s_bal_2orders),
2639 atomic_read(&sbi->s_bal_breaks),
2640 atomic_read(&sbi->s_mb_lost_chunks));
2641 printk(KERN_INFO
2642 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2643 sbi->s_mb_buddies_generated++,
2644 sbi->s_mb_generation_time);
2645 printk(KERN_INFO
2646 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2647 atomic_read(&sbi->s_mb_preallocated),
2648 atomic_read(&sbi->s_mb_discarded));
2649 }
2650
2651 kfree(sbi->s_locality_groups);
2652
2653 ext4_mb_history_release(sb);
2654 ext4_mb_destroy_per_dev_proc(sb);
2655
2656 return 0;
2657 }
2658
2659 static noinline_for_stack void
2660 ext4_mb_free_committed_blocks(struct super_block *sb)
2661 {
2662 struct ext4_sb_info *sbi = EXT4_SB(sb);
2663 int err;
2664 int i;
2665 int count = 0;
2666 int count2 = 0;
2667 struct ext4_free_metadata *md;
2668 struct ext4_buddy e4b;
2669
2670 if (list_empty(&sbi->s_committed_transaction))
2671 return;
2672
2673 /* there is committed blocks to be freed yet */
2674 do {
2675 /* get next array of blocks */
2676 md = NULL;
2677 spin_lock(&sbi->s_md_lock);
2678 if (!list_empty(&sbi->s_committed_transaction)) {
2679 md = list_entry(sbi->s_committed_transaction.next,
2680 struct ext4_free_metadata, list);
2681 list_del(&md->list);
2682 }
2683 spin_unlock(&sbi->s_md_lock);
2684
2685 if (md == NULL)
2686 break;
2687
2688 mb_debug("gonna free %u blocks in group %lu (0x%p):",
2689 md->num, md->group, md);
2690
2691 err = ext4_mb_load_buddy(sb, md->group, &e4b);
2692 /* we expect to find existing buddy because it's pinned */
2693 BUG_ON(err != 0);
2694
2695 /* there are blocks to put in buddy to make them really free */
2696 count += md->num;
2697 count2++;
2698 ext4_lock_group(sb, md->group);
2699 for (i = 0; i < md->num; i++) {
2700 mb_debug(" %u", md->blocks[i]);
2701 mb_free_blocks(NULL, &e4b, md->blocks[i], 1);
2702 }
2703 mb_debug("\n");
2704 ext4_unlock_group(sb, md->group);
2705
2706 /* balance refcounts from ext4_mb_free_metadata() */
2707 page_cache_release(e4b.bd_buddy_page);
2708 page_cache_release(e4b.bd_bitmap_page);
2709
2710 kfree(md);
2711 ext4_mb_release_desc(&e4b);
2712
2713 } while (md);
2714
2715 mb_debug("freed %u blocks in %u structures\n", count, count2);
2716 }
2717
2718 #define EXT4_MB_STATS_NAME "stats"
2719 #define EXT4_MB_MAX_TO_SCAN_NAME "max_to_scan"
2720 #define EXT4_MB_MIN_TO_SCAN_NAME "min_to_scan"
2721 #define EXT4_MB_ORDER2_REQ "order2_req"
2722 #define EXT4_MB_STREAM_REQ "stream_req"
2723 #define EXT4_MB_GROUP_PREALLOC "group_prealloc"
2724
2725
2726
2727 #define MB_PROC_FOPS(name) \
2728 static int ext4_mb_##name##_proc_show(struct seq_file *m, void *v) \
2729 { \
2730 struct ext4_sb_info *sbi = m->private; \
2731 \
2732 seq_printf(m, "%ld\n", sbi->s_mb_##name); \
2733 return 0; \
2734 } \
2735 \
2736 static int ext4_mb_##name##_proc_open(struct inode *inode, struct file *file)\
2737 { \
2738 return single_open(file, ext4_mb_##name##_proc_show, PDE(inode)->data);\
2739 } \
2740 \
2741 static ssize_t ext4_mb_##name##_proc_write(struct file *file, \
2742 const char __user *buf, size_t cnt, loff_t *ppos) \
2743 { \
2744 struct ext4_sb_info *sbi = PDE(file->f_path.dentry->d_inode)->data;\
2745 char str[32]; \
2746 long value; \
2747 if (cnt >= sizeof(str)) \
2748 return -EINVAL; \
2749 if (copy_from_user(str, buf, cnt)) \
2750 return -EFAULT; \
2751 value = simple_strtol(str, NULL, 0); \
2752 if (value <= 0) \
2753 return -ERANGE; \
2754 sbi->s_mb_##name = value; \
2755 return cnt; \
2756 } \
2757 \
2758 static const struct file_operations ext4_mb_##name##_proc_fops = { \
2759 .owner = THIS_MODULE, \
2760 .open = ext4_mb_##name##_proc_open, \
2761 .read = seq_read, \
2762 .llseek = seq_lseek, \
2763 .release = single_release, \
2764 .write = ext4_mb_##name##_proc_write, \
2765 };
2766
2767 MB_PROC_FOPS(stats);
2768 MB_PROC_FOPS(max_to_scan);
2769 MB_PROC_FOPS(min_to_scan);
2770 MB_PROC_FOPS(order2_reqs);
2771 MB_PROC_FOPS(stream_request);
2772 MB_PROC_FOPS(group_prealloc);
2773
2774 #define MB_PROC_HANDLER(name, var) \
2775 do { \
2776 proc = proc_create_data(name, mode, sbi->s_mb_proc, \
2777 &ext4_mb_##var##_proc_fops, sbi); \
2778 if (proc == NULL) { \
2779 printk(KERN_ERR "EXT4-fs: can't to create %s\n", name); \
2780 goto err_out; \
2781 } \
2782 } while (0)
2783
2784 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2785 {
2786 mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2787 struct ext4_sb_info *sbi = EXT4_SB(sb);
2788 struct proc_dir_entry *proc;
2789 char devname[64];
2790
2791 if (proc_root_ext4 == NULL) {
2792 sbi->s_mb_proc = NULL;
2793 return -EINVAL;
2794 }
2795 bdevname(sb->s_bdev, devname);
2796 sbi->s_mb_proc = proc_mkdir(devname, proc_root_ext4);
2797
2798 MB_PROC_HANDLER(EXT4_MB_STATS_NAME, stats);
2799 MB_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, max_to_scan);
2800 MB_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, min_to_scan);
2801 MB_PROC_HANDLER(EXT4_MB_ORDER2_REQ, order2_reqs);
2802 MB_PROC_HANDLER(EXT4_MB_STREAM_REQ, stream_request);
2803 MB_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, group_prealloc);
2804
2805 return 0;
2806
2807 err_out:
2808 printk(KERN_ERR "EXT4-fs: Unable to create %s\n", devname);
2809 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2810 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2811 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2812 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2813 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2814 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2815 remove_proc_entry(devname, proc_root_ext4);
2816 sbi->s_mb_proc = NULL;
2817
2818 return -ENOMEM;
2819 }
2820
2821 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2822 {
2823 struct ext4_sb_info *sbi = EXT4_SB(sb);
2824 char devname[64];
2825
2826 if (sbi->s_mb_proc == NULL)
2827 return -EINVAL;
2828
2829 bdevname(sb->s_bdev, devname);
2830 remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2831 remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2832 remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2833 remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2834 remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2835 remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2836 remove_proc_entry(devname, proc_root_ext4);
2837
2838 return 0;
2839 }
2840
2841 int __init init_ext4_mballoc(void)
2842 {
2843 ext4_pspace_cachep =
2844 kmem_cache_create("ext4_prealloc_space",
2845 sizeof(struct ext4_prealloc_space),
2846 0, SLAB_RECLAIM_ACCOUNT, NULL);
2847 if (ext4_pspace_cachep == NULL)
2848 return -ENOMEM;
2849
2850 ext4_ac_cachep =
2851 kmem_cache_create("ext4_alloc_context",
2852 sizeof(struct ext4_allocation_context),
2853 0, SLAB_RECLAIM_ACCOUNT, NULL);
2854 if (ext4_ac_cachep == NULL) {
2855 kmem_cache_destroy(ext4_pspace_cachep);
2856 return -ENOMEM;
2857 }
2858 #ifdef CONFIG_PROC_FS
2859 proc_root_ext4 = proc_mkdir("fs/ext4", NULL);
2860 if (proc_root_ext4 == NULL)
2861 printk(KERN_ERR "EXT4-fs: Unable to create fs/ext4\n");
2862 #endif
2863 return 0;
2864 }
2865
2866 void exit_ext4_mballoc(void)
2867 {
2868 /* XXX: synchronize_rcu(); */
2869 kmem_cache_destroy(ext4_pspace_cachep);
2870 kmem_cache_destroy(ext4_ac_cachep);
2871 #ifdef CONFIG_PROC_FS
2872 remove_proc_entry("fs/ext4", NULL);
2873 #endif
2874 }
2875
2876
2877 /*
2878 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2879 * Returns 0 if success or error code
2880 */
2881 static noinline_for_stack int
2882 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2883 handle_t *handle, unsigned long reserv_blks)
2884 {
2885 struct buffer_head *bitmap_bh = NULL;
2886 struct ext4_super_block *es;
2887 struct ext4_group_desc *gdp;
2888 struct buffer_head *gdp_bh;
2889 struct ext4_sb_info *sbi;
2890 struct super_block *sb;
2891 ext4_fsblk_t block;
2892 int err, len;
2893
2894 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2895 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2896
2897 sb = ac->ac_sb;
2898 sbi = EXT4_SB(sb);
2899 es = sbi->s_es;
2900
2901
2902 err = -EIO;
2903 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2904 if (!bitmap_bh)
2905 goto out_err;
2906
2907 err = ext4_journal_get_write_access(handle, bitmap_bh);
2908 if (err)
2909 goto out_err;
2910
2911 err = -EIO;
2912 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2913 if (!gdp)
2914 goto out_err;
2915
2916 ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
2917 gdp->bg_free_blocks_count);
2918
2919 err = ext4_journal_get_write_access(handle, gdp_bh);
2920 if (err)
2921 goto out_err;
2922
2923 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2924 + ac->ac_b_ex.fe_start
2925 + le32_to_cpu(es->s_first_data_block);
2926
2927 len = ac->ac_b_ex.fe_len;
2928 if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
2929 in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
2930 in_range(block, ext4_inode_table(sb, gdp),
2931 EXT4_SB(sb)->s_itb_per_group) ||
2932 in_range(block + len - 1, ext4_inode_table(sb, gdp),
2933 EXT4_SB(sb)->s_itb_per_group)) {
2934 ext4_error(sb, __func__,
2935 "Allocating block in system zone - block = %llu",
2936 block);
2937 /* File system mounted not to panic on error
2938 * Fix the bitmap and repeat the block allocation
2939 * We leak some of the blocks here.
2940 */
2941 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
2942 bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2943 ac->ac_b_ex.fe_len);
2944 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2945 if (!err)
2946 err = -EAGAIN;
2947 goto out_err;
2948 }
2949 #ifdef AGGRESSIVE_CHECK
2950 {
2951 int i;
2952 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2953 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2954 bitmap_bh->b_data));
2955 }
2956 }
2957 #endif
2958 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
2959 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
2960
2961 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2962 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2963 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2964 gdp->bg_free_blocks_count =
2965 cpu_to_le16(ext4_free_blocks_after_init(sb,
2966 ac->ac_b_ex.fe_group,
2967 gdp));
2968 }
2969 le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
2970 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2971 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2972 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2973 /*
2974 * Now reduce the dirty block count also. Should not go negative
2975 */
2976 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2977 /* release all the reserved blocks if non delalloc */
2978 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2979 else
2980 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
2981 ac->ac_b_ex.fe_len);
2982
2983 if (sbi->s_log_groups_per_flex) {
2984 ext4_group_t flex_group = ext4_flex_group(sbi,
2985 ac->ac_b_ex.fe_group);
2986 spin_lock(sb_bgl_lock(sbi, flex_group));
2987 sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
2988 spin_unlock(sb_bgl_lock(sbi, flex_group));
2989 }
2990
2991 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2992 if (err)
2993 goto out_err;
2994 err = ext4_journal_dirty_metadata(handle, gdp_bh);
2995
2996 out_err:
2997 sb->s_dirt = 1;
2998 brelse(bitmap_bh);
2999 return err;
3000 }
3001
3002 /*
3003 * here we normalize request for locality group
3004 * Group request are normalized to s_strip size if we set the same via mount
3005 * option. If not we set it to s_mb_group_prealloc which can be configured via
3006 * /proc/fs/ext4/<partition>/group_prealloc
3007 *
3008 * XXX: should we try to preallocate more than the group has now?
3009 */
3010 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3011 {
3012 struct super_block *sb = ac->ac_sb;
3013 struct ext4_locality_group *lg = ac->ac_lg;
3014
3015 BUG_ON(lg == NULL);
3016 if (EXT4_SB(sb)->s_stripe)
3017 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3018 else
3019 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3020 mb_debug("#%u: goal %u blocks for locality group\n",
3021 current->pid, ac->ac_g_ex.fe_len);
3022 }
3023
3024 /*
3025 * Normalization means making request better in terms of
3026 * size and alignment
3027 */
3028 static noinline_for_stack void
3029 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3030 struct ext4_allocation_request *ar)
3031 {
3032 int bsbits, max;
3033 ext4_lblk_t end;
3034 loff_t size, orig_size, start_off;
3035 ext4_lblk_t start, orig_start;
3036 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3037 struct ext4_prealloc_space *pa;
3038
3039 /* do normalize only data requests, metadata requests
3040 do not need preallocation */
3041 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3042 return;
3043
3044 /* sometime caller may want exact blocks */
3045 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3046 return;
3047
3048 /* caller may indicate that preallocation isn't
3049 * required (it's a tail, for example) */
3050 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3051 return;
3052
3053 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3054 ext4_mb_normalize_group_request(ac);
3055 return ;
3056 }
3057
3058 bsbits = ac->ac_sb->s_blocksize_bits;
3059
3060 /* first, let's learn actual file size
3061 * given current request is allocated */
3062 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3063 size = size << bsbits;
3064 if (size < i_size_read(ac->ac_inode))
3065 size = i_size_read(ac->ac_inode);
3066
3067 /* max size of free chunks */
3068 max = 2 << bsbits;
3069
3070 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3071 (req <= (size) || max <= (chunk_size))
3072
3073 /* first, try to predict filesize */
3074 /* XXX: should this table be tunable? */
3075 start_off = 0;
3076 if (size <= 16 * 1024) {
3077 size = 16 * 1024;
3078 } else if (size <= 32 * 1024) {
3079 size = 32 * 1024;
3080 } else if (size <= 64 * 1024) {
3081 size = 64 * 1024;
3082 } else if (size <= 128 * 1024) {
3083 size = 128 * 1024;
3084 } else if (size <= 256 * 1024) {
3085 size = 256 * 1024;
3086 } else if (size <= 512 * 1024) {
3087 size = 512 * 1024;
3088 } else if (size <= 1024 * 1024) {
3089 size = 1024 * 1024;
3090 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3091 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3092 (21 - bsbits)) << 21;
3093 size = 2 * 1024 * 1024;
3094 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3095 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3096 (22 - bsbits)) << 22;
3097 size = 4 * 1024 * 1024;
3098 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3099 (8<<20)>>bsbits, max, 8 * 1024)) {
3100 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3101 (23 - bsbits)) << 23;
3102 size = 8 * 1024 * 1024;
3103 } else {
3104 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3105 size = ac->ac_o_ex.fe_len << bsbits;
3106 }
3107 orig_size = size = size >> bsbits;
3108 orig_start = start = start_off >> bsbits;
3109
3110 /* don't cover already allocated blocks in selected range */
3111 if (ar->pleft && start <= ar->lleft) {
3112 size -= ar->lleft + 1 - start;
3113 start = ar->lleft + 1;
3114 }
3115 if (ar->pright && start + size - 1 >= ar->lright)
3116 size -= start + size - ar->lright;
3117
3118 end = start + size;
3119
3120 /* check we don't cross already preallocated blocks */
3121 rcu_read_lock();
3122 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3123 unsigned long pa_end;
3124
3125 if (pa->pa_deleted)
3126 continue;
3127 spin_lock(&pa->pa_lock);
3128 if (pa->pa_deleted) {
3129 spin_unlock(&pa->pa_lock);
3130 continue;
3131 }
3132
3133 pa_end = pa->pa_lstart + pa->pa_len;
3134
3135 /* PA must not overlap original request */
3136 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3137 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3138
3139 /* skip PA normalized request doesn't overlap with */
3140 if (pa->pa_lstart >= end) {
3141 spin_unlock(&pa->pa_lock);
3142 continue;
3143 }
3144 if (pa_end <= start) {
3145 spin_unlock(&pa->pa_lock);
3146 continue;
3147 }
3148 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3149
3150 if (pa_end <= ac->ac_o_ex.fe_logical) {
3151 BUG_ON(pa_end < start);
3152 start = pa_end;
3153 }
3154
3155 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3156 BUG_ON(pa->pa_lstart > end);
3157 end = pa->pa_lstart;
3158 }
3159 spin_unlock(&pa->pa_lock);
3160 }
3161 rcu_read_unlock();
3162 size = end - start;
3163
3164 /* XXX: extra loop to check we really don't overlap preallocations */
3165 rcu_read_lock();
3166 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3167 unsigned long pa_end;
3168 spin_lock(&pa->pa_lock);
3169 if (pa->pa_deleted == 0) {
3170 pa_end = pa->pa_lstart + pa->pa_len;
3171 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3172 }
3173 spin_unlock(&pa->pa_lock);
3174 }
3175 rcu_read_unlock();
3176
3177 if (start + size <= ac->ac_o_ex.fe_logical &&
3178 start > ac->ac_o_ex.fe_logical) {
3179 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3180 (unsigned long) start, (unsigned long) size,
3181 (unsigned long) ac->ac_o_ex.fe_logical);
3182 }
3183 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3184 start > ac->ac_o_ex.fe_logical);
3185 BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3186
3187 /* now prepare goal request */
3188
3189 /* XXX: is it better to align blocks WRT to logical
3190 * placement or satisfy big request as is */
3191 ac->ac_g_ex.fe_logical = start;
3192 ac->ac_g_ex.fe_len = size;
3193
3194 /* define goal start in order to merge */
3195 if (ar->pright && (ar->lright == (start + size))) {
3196 /* merge to the right */
3197 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3198 &ac->ac_f_ex.fe_group,
3199 &ac->ac_f_ex.fe_start);
3200 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3201 }
3202 if (ar->pleft && (ar->lleft + 1 == start)) {
3203 /* merge to the left */
3204 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3205 &ac->ac_f_ex.fe_group,
3206 &ac->ac_f_ex.fe_start);
3207 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3208 }
3209
3210 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3211 (unsigned) orig_size, (unsigned) start);
3212 }
3213
3214 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3215 {
3216 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3217
3218 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3219 atomic_inc(&sbi->s_bal_reqs);
3220 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3221 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3222 atomic_inc(&sbi->s_bal_success);
3223 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3224 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3225 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3226 atomic_inc(&sbi->s_bal_goals);
3227 if (ac->ac_found > sbi->s_mb_max_to_scan)
3228 atomic_inc(&sbi->s_bal_breaks);
3229 }
3230
3231 ext4_mb_store_history(ac);
3232 }
3233
3234 /*
3235 * use blocks preallocated to inode
3236 */
3237 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3238 struct ext4_prealloc_space *pa)
3239 {
3240 ext4_fsblk_t start;
3241 ext4_fsblk_t end;
3242 int len;
3243
3244 /* found preallocated blocks, use them */
3245 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3246 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3247 len = end - start;
3248 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3249 &ac->ac_b_ex.fe_start);
3250 ac->ac_b_ex.fe_len = len;
3251 ac->ac_status = AC_STATUS_FOUND;
3252 ac->ac_pa = pa;
3253
3254 BUG_ON(start < pa->pa_pstart);
3255 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3256 BUG_ON(pa->pa_free < len);
3257 pa->pa_free -= len;
3258
3259 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3260 }
3261
3262 /*
3263 * use blocks preallocated to locality group
3264 */
3265 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3266 struct ext4_prealloc_space *pa)
3267 {
3268 unsigned int len = ac->ac_o_ex.fe_len;
3269
3270 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3271 &ac->ac_b_ex.fe_group,
3272 &ac->ac_b_ex.fe_start);
3273 ac->ac_b_ex.fe_len = len;
3274 ac->ac_status = AC_STATUS_FOUND;
3275 ac->ac_pa = pa;
3276
3277 /* we don't correct pa_pstart or pa_plen here to avoid
3278 * possible race when the group is being loaded concurrently
3279 * instead we correct pa later, after blocks are marked
3280 * in on-disk bitmap -- see ext4_mb_release_context()
3281 * Other CPUs are prevented from allocating from this pa by lg_mutex
3282 */
3283 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3284 }
3285
3286 /*
3287 * Return the prealloc space that have minimal distance
3288 * from the goal block. @cpa is the prealloc
3289 * space that is having currently known minimal distance
3290 * from the goal block.
3291 */
3292 static struct ext4_prealloc_space *
3293 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3294 struct ext4_prealloc_space *pa,
3295 struct ext4_prealloc_space *cpa)
3296 {
3297 ext4_fsblk_t cur_distance, new_distance;
3298
3299 if (cpa == NULL) {
3300 atomic_inc(&pa->pa_count);
3301 return pa;
3302 }
3303 cur_distance = abs(goal_block - cpa->pa_pstart);
3304 new_distance = abs(goal_block - pa->pa_pstart);
3305
3306 if (cur_distance < new_distance)
3307 return cpa;
3308
3309 /* drop the previous reference */
3310 atomic_dec(&cpa->pa_count);
3311 atomic_inc(&pa->pa_count);
3312 return pa;
3313 }
3314
3315 /*
3316 * search goal blocks in preallocated space
3317 */
3318 static noinline_for_stack int
3319 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3320 {
3321 int order, i;
3322 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3323 struct ext4_locality_group *lg;
3324 struct ext4_prealloc_space *pa, *cpa = NULL;
3325 ext4_fsblk_t goal_block;
3326
3327 /* only data can be preallocated */
3328 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3329 return 0;
3330
3331 /* first, try per-file preallocation */
3332 rcu_read_lock();
3333 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3334
3335 /* all fields in this condition don't change,
3336 * so we can skip locking for them */
3337 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3338 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3339 continue;
3340
3341 /* found preallocated blocks, use them */
3342 spin_lock(&pa->pa_lock);
3343 if (pa->pa_deleted == 0 && pa->pa_free) {
3344 atomic_inc(&pa->pa_count);
3345 ext4_mb_use_inode_pa(ac, pa);
3346 spin_unlock(&pa->pa_lock);
3347 ac->ac_criteria = 10;
3348 rcu_read_unlock();
3349 return 1;
3350 }
3351 spin_unlock(&pa->pa_lock);
3352 }
3353 rcu_read_unlock();
3354
3355 /* can we use group allocation? */
3356 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3357 return 0;
3358
3359 /* inode may have no locality group for some reason */
3360 lg = ac->ac_lg;
3361 if (lg == NULL)
3362 return 0;
3363 order = fls(ac->ac_o_ex.fe_len) - 1;
3364 if (order > PREALLOC_TB_SIZE - 1)
3365 /* The max size of hash table is PREALLOC_TB_SIZE */
3366 order = PREALLOC_TB_SIZE - 1;
3367
3368 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3369 ac->ac_g_ex.fe_start +
3370 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3371 /*
3372 * search for the prealloc space that is having
3373 * minimal distance from the goal block.
3374 */
3375 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3376 rcu_read_lock();
3377 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3378 pa_inode_list) {
3379 spin_lock(&pa->pa_lock);
3380 if (pa->pa_deleted == 0 &&
3381 pa->pa_free >= ac->ac_o_ex.fe_len) {
3382
3383 cpa = ext4_mb_check_group_pa(goal_block,
3384 pa, cpa);
3385 }
3386 spin_unlock(&pa->pa_lock);
3387 }
3388 rcu_read_unlock();
3389 }
3390 if (cpa) {
3391 ext4_mb_use_group_pa(ac, cpa);
3392 ac->ac_criteria = 20;
3393 return 1;
3394 }
3395 return 0;
3396 }
3397
3398 /*
3399 * the function goes through all preallocation in this group and marks them
3400 * used in in-core bitmap. buddy must be generated from this bitmap
3401 * Need to be called with ext4 group lock (ext4_lock_group)
3402 */
3403 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3404 ext4_group_t group)
3405 {
3406 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3407 struct ext4_prealloc_space *pa;
3408 struct list_head *cur;
3409 ext4_group_t groupnr;
3410 ext4_grpblk_t start;
3411 int preallocated = 0;
3412 int count = 0;
3413 int len;
3414
3415 /* all form of preallocation discards first load group,
3416 * so the only competing code is preallocation use.
3417 * we don't need any locking here
3418 * notice we do NOT ignore preallocations with pa_deleted
3419 * otherwise we could leave used blocks available for
3420 * allocation in buddy when concurrent ext4_mb_put_pa()
3421 * is dropping preallocation
3422 */
3423 list_for_each(cur, &grp->bb_prealloc_list) {
3424 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3425 spin_lock(&pa->pa_lock);
3426 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3427 &groupnr, &start);
3428 len = pa->pa_len;
3429 spin_unlock(&pa->pa_lock);
3430 if (unlikely(len == 0))
3431 continue;
3432 BUG_ON(groupnr != group);
3433 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3434 bitmap, start, len);
3435 preallocated += len;
3436 count++;
3437 }
3438 mb_debug("prellocated %u for group %lu\n", preallocated, group);
3439 }
3440
3441 static void ext4_mb_pa_callback(struct rcu_head *head)
3442 {
3443 struct ext4_prealloc_space *pa;
3444 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3445 kmem_cache_free(ext4_pspace_cachep, pa);
3446 }
3447
3448 /*
3449 * drops a reference to preallocated space descriptor
3450 * if this was the last reference and the space is consumed
3451 */
3452 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3453 struct super_block *sb, struct ext4_prealloc_space *pa)
3454 {
3455 unsigned long grp;
3456
3457 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3458 return;
3459
3460 /* in this short window concurrent discard can set pa_deleted */
3461 spin_lock(&pa->pa_lock);
3462 if (pa->pa_deleted == 1) {
3463 spin_unlock(&pa->pa_lock);
3464 return;
3465 }
3466
3467 pa->pa_deleted = 1;
3468 spin_unlock(&pa->pa_lock);
3469
3470 /* -1 is to protect from crossing allocation group */
3471 ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3472
3473 /*
3474 * possible race:
3475 *
3476 * P1 (buddy init) P2 (regular allocation)
3477 * find block B in PA
3478 * copy on-disk bitmap to buddy
3479 * mark B in on-disk bitmap
3480 * drop PA from group
3481 * mark all PAs in buddy
3482 *
3483 * thus, P1 initializes buddy with B available. to prevent this
3484 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3485 * against that pair
3486 */
3487 ext4_lock_group(sb, grp);
3488 list_del(&pa->pa_group_list);
3489 ext4_unlock_group(sb, grp);
3490
3491 spin_lock(pa->pa_obj_lock);
3492 list_del_rcu(&pa->pa_inode_list);
3493 spin_unlock(pa->pa_obj_lock);
3494
3495 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3496 }
3497
3498 /*
3499 * creates new preallocated space for given inode
3500 */
3501 static noinline_for_stack int
3502 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3503 {
3504 struct super_block *sb = ac->ac_sb;
3505 struct ext4_prealloc_space *pa;
3506 struct ext4_group_info *grp;
3507 struct ext4_inode_info *ei;
3508
3509 /* preallocate only when found space is larger then requested */
3510 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3511 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3512 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3513
3514 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3515 if (pa == NULL)
3516 return -ENOMEM;
3517
3518 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3519 int winl;
3520 int wins;
3521 int win;
3522 int offs;
3523
3524 /* we can't allocate as much as normalizer wants.
3525 * so, found space must get proper lstart
3526 * to cover original request */
3527 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3528 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3529
3530 /* we're limited by original request in that
3531 * logical block must be covered any way
3532 * winl is window we can move our chunk within */
3533 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3534
3535 /* also, we should cover whole original request */
3536 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3537
3538 /* the smallest one defines real window */
3539 win = min(winl, wins);
3540
3541 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3542 if (offs && offs < win)
3543 win = offs;
3544
3545 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3546 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3547 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3548 }
3549
3550 /* preallocation can change ac_b_ex, thus we store actually
3551 * allocated blocks for history */
3552 ac->ac_f_ex = ac->ac_b_ex;
3553
3554 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3555 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3556 pa->pa_len = ac->ac_b_ex.fe_len;
3557 pa->pa_free = pa->pa_len;
3558 atomic_set(&pa->pa_count, 1);
3559 spin_lock_init(&pa->pa_lock);
3560 pa->pa_deleted = 0;
3561 pa->pa_linear = 0;
3562
3563 mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3564 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3565
3566 ext4_mb_use_inode_pa(ac, pa);
3567 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3568
3569 ei = EXT4_I(ac->ac_inode);
3570 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3571
3572 pa->pa_obj_lock = &ei->i_prealloc_lock;
3573 pa->pa_inode = ac->ac_inode;
3574
3575 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3576 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3577 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3578
3579 spin_lock(pa->pa_obj_lock);
3580 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3581 spin_unlock(pa->pa_obj_lock);
3582
3583 return 0;
3584 }
3585
3586 /*
3587 * creates new preallocated space for locality group inodes belongs to
3588 */
3589 static noinline_for_stack int
3590 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3591 {
3592 struct super_block *sb = ac->ac_sb;
3593 struct ext4_locality_group *lg;
3594 struct ext4_prealloc_space *pa;
3595 struct ext4_group_info *grp;
3596
3597 /* preallocate only when found space is larger then requested */
3598 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3599 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3600 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3601
3602 BUG_ON(ext4_pspace_cachep == NULL);
3603 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3604 if (pa == NULL)
3605 return -ENOMEM;
3606
3607 /* preallocation can change ac_b_ex, thus we store actually
3608 * allocated blocks for history */
3609 ac->ac_f_ex = ac->ac_b_ex;
3610
3611 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3612 pa->pa_lstart = pa->pa_pstart;
3613 pa->pa_len = ac->ac_b_ex.fe_len;
3614 pa->pa_free = pa->pa_len;
3615 atomic_set(&pa->pa_count, 1);
3616 spin_lock_init(&pa->pa_lock);
3617 INIT_LIST_HEAD(&pa->pa_inode_list);
3618 pa->pa_deleted = 0;
3619 pa->pa_linear = 1;
3620
3621 mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3622 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3623
3624 ext4_mb_use_group_pa(ac, pa);
3625 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3626
3627 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3628 lg = ac->ac_lg;
3629 BUG_ON(lg == NULL);
3630
3631 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3632 pa->pa_inode = NULL;
3633
3634 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3635 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3636 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3637
3638 /*
3639 * We will later add the new pa to the right bucket
3640 * after updating the pa_free in ext4_mb_release_context
3641 */
3642 return 0;
3643 }
3644
3645 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3646 {
3647 int err;
3648
3649 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3650 err = ext4_mb_new_group_pa(ac);
3651 else
3652 err = ext4_mb_new_inode_pa(ac);
3653 return err;
3654 }
3655
3656 /*
3657 * finds all unused blocks in on-disk bitmap, frees them in
3658 * in-core bitmap and buddy.
3659 * @pa must be unlinked from inode and group lists, so that
3660 * nobody else can find/use it.
3661 * the caller MUST hold group/inode locks.
3662 * TODO: optimize the case when there are no in-core structures yet
3663 */
3664 static noinline_for_stack int
3665 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3666 struct ext4_prealloc_space *pa,
3667 struct ext4_allocation_context *ac)
3668 {
3669 struct super_block *sb = e4b->bd_sb;
3670 struct ext4_sb_info *sbi = EXT4_SB(sb);
3671 unsigned long end;
3672 unsigned long next;
3673 ext4_group_t group;
3674 ext4_grpblk_t bit;
3675 sector_t start;
3676 int err = 0;
3677 int free = 0;
3678
3679 BUG_ON(pa->pa_deleted == 0);
3680 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3681 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3682 end = bit + pa->pa_len;
3683
3684 if (ac) {
3685 ac->ac_sb = sb;
3686 ac->ac_inode = pa->pa_inode;
3687 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3688 }
3689
3690 while (bit < end) {
3691 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3692 if (bit >= end)
3693 break;
3694 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3695 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3696 le32_to_cpu(sbi->s_es->s_first_data_block);
3697 mb_debug(" free preallocated %u/%u in group %u\n",
3698 (unsigned) start, (unsigned) next - bit,
3699 (unsigned) group);
3700 free += next - bit;
3701
3702 if (ac) {
3703 ac->ac_b_ex.fe_group = group;
3704 ac->ac_b_ex.fe_start = bit;
3705 ac->ac_b_ex.fe_len = next - bit;
3706 ac->ac_b_ex.fe_logical = 0;
3707 ext4_mb_store_history(ac);
3708 }
3709
3710 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3711 bit = next + 1;
3712 }
3713 if (free != pa->pa_free) {
3714 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3715 pa, (unsigned long) pa->pa_lstart,
3716 (unsigned long) pa->pa_pstart,
3717 (unsigned long) pa->pa_len);
3718 ext4_error(sb, __func__, "free %u, pa_free %u\n",
3719 free, pa->pa_free);
3720 /*
3721 * pa is already deleted so we use the value obtained
3722 * from the bitmap and continue.
3723 */
3724 }
3725 atomic_add(free, &sbi->s_mb_discarded);
3726
3727 return err;
3728 }
3729
3730 static noinline_for_stack int
3731 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3732 struct ext4_prealloc_space *pa,
3733 struct ext4_allocation_context *ac)
3734 {
3735 struct super_block *sb = e4b->bd_sb;
3736 ext4_group_t group;
3737 ext4_grpblk_t bit;
3738
3739 if (ac)
3740 ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3741
3742 BUG_ON(pa->pa_deleted == 0);
3743 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3744 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3745 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3746 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3747
3748 if (ac) {
3749 ac->ac_sb = sb;
3750 ac->ac_inode = NULL;
3751 ac->ac_b_ex.fe_group = group;
3752 ac->ac_b_ex.fe_start = bit;
3753 ac->ac_b_ex.fe_len = pa->pa_len;
3754 ac->ac_b_ex.fe_logical = 0;
3755 ext4_mb_store_history(ac);
3756 }
3757
3758 return 0;
3759 }
3760
3761 /*
3762 * releases all preallocations in given group
3763 *
3764 * first, we need to decide discard policy:
3765 * - when do we discard
3766 * 1) ENOSPC
3767 * - how many do we discard
3768 * 1) how many requested
3769 */
3770 static noinline_for_stack int
3771 ext4_mb_discard_group_preallocations(struct super_block *sb,
3772 ext4_group_t group, int needed)
3773 {
3774 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3775 struct buffer_head *bitmap_bh = NULL;
3776 struct ext4_prealloc_space *pa, *tmp;
3777 struct ext4_allocation_context *ac;
3778 struct list_head list;
3779 struct ext4_buddy e4b;
3780 int err;
3781 int busy = 0;
3782 int free = 0;
3783
3784 mb_debug("discard preallocation for group %lu\n", group);
3785
3786 if (list_empty(&grp->bb_prealloc_list))
3787 return 0;
3788
3789 bitmap_bh = ext4_read_block_bitmap(sb, group);
3790 if (bitmap_bh == NULL) {
3791 ext4_error(sb, __func__, "Error in reading block "
3792 "bitmap for %lu\n", group);
3793 return 0;
3794 }
3795
3796 err = ext4_mb_load_buddy(sb, group, &e4b);
3797 if (err) {
3798 ext4_error(sb, __func__, "Error in loading buddy "
3799 "information for %lu\n", group);
3800 put_bh(bitmap_bh);
3801 return 0;
3802 }
3803
3804 if (needed == 0)
3805 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3806
3807 INIT_LIST_HEAD(&list);
3808 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3809 repeat:
3810 ext4_lock_group(sb, group);
3811 list_for_each_entry_safe(pa, tmp,
3812 &grp->bb_prealloc_list, pa_group_list) {
3813 spin_lock(&pa->pa_lock);
3814 if (atomic_read(&pa->pa_count)) {
3815 spin_unlock(&pa->pa_lock);
3816 busy = 1;
3817 continue;
3818 }
3819 if (pa->pa_deleted) {
3820 spin_unlock(&pa->pa_lock);
3821 continue;
3822 }
3823
3824 /* seems this one can be freed ... */
3825 pa->pa_deleted = 1;
3826
3827 /* we can trust pa_free ... */
3828 free += pa->pa_free;
3829
3830 spin_unlock(&pa->pa_lock);
3831
3832 list_del(&pa->pa_group_list);
3833 list_add(&pa->u.pa_tmp_list, &list);
3834 }
3835
3836 /* if we still need more blocks and some PAs were used, try again */
3837 if (free < needed && busy) {
3838 busy = 0;
3839 ext4_unlock_group(sb, group);
3840 /*
3841 * Yield the CPU here so that we don't get soft lockup
3842 * in non preempt case.
3843 */
3844 yield();
3845 goto repeat;
3846 }
3847
3848 /* found anything to free? */
3849 if (list_empty(&list)) {
3850 BUG_ON(free != 0);
3851 goto out;
3852 }
3853
3854 /* now free all selected PAs */
3855 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3856
3857 /* remove from object (inode or locality group) */
3858 spin_lock(pa->pa_obj_lock);
3859 list_del_rcu(&pa->pa_inode_list);
3860 spin_unlock(pa->pa_obj_lock);
3861
3862 if (pa->pa_linear)
3863 ext4_mb_release_group_pa(&e4b, pa, ac);
3864 else
3865 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3866
3867 list_del(&pa->u.pa_tmp_list);
3868 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3869 }
3870
3871 out:
3872 ext4_unlock_group(sb, group);
3873 if (ac)
3874 kmem_cache_free(ext4_ac_cachep, ac);
3875 ext4_mb_release_desc(&e4b);
3876 put_bh(bitmap_bh);
3877 return free;
3878 }
3879
3880 /*
3881 * releases all non-used preallocated blocks for given inode
3882 *
3883 * It's important to discard preallocations under i_data_sem
3884 * We don't want another block to be served from the prealloc
3885 * space when we are discarding the inode prealloc space.
3886 *
3887 * FIXME!! Make sure it is valid at all the call sites
3888 */
3889 void ext4_mb_discard_inode_preallocations(struct inode *inode)
3890 {
3891 struct ext4_inode_info *ei = EXT4_I(inode);
3892 struct super_block *sb = inode->i_sb;
3893 struct buffer_head *bitmap_bh = NULL;
3894 struct ext4_prealloc_space *pa, *tmp;
3895 struct ext4_allocation_context *ac;
3896 ext4_group_t group = 0;
3897 struct list_head list;
3898 struct ext4_buddy e4b;
3899 int err;
3900
3901 if (!test_opt(sb, MBALLOC) || !S_ISREG(inode->i_mode)) {
3902 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3903 return;
3904 }
3905
3906 mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3907
3908 INIT_LIST_HEAD(&list);
3909
3910 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3911 repeat:
3912 /* first, collect all pa's in the inode */
3913 spin_lock(&ei->i_prealloc_lock);
3914 while (!list_empty(&ei->i_prealloc_list)) {
3915 pa = list_entry(ei->i_prealloc_list.next,
3916 struct ext4_prealloc_space, pa_inode_list);
3917 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3918 spin_lock(&pa->pa_lock);
3919 if (atomic_read(&pa->pa_count)) {
3920 /* this shouldn't happen often - nobody should
3921 * use preallocation while we're discarding it */
3922 spin_unlock(&pa->pa_lock);
3923 spin_unlock(&ei->i_prealloc_lock);
3924 printk(KERN_ERR "uh-oh! used pa while discarding\n");
3925 WARN_ON(1);
3926 schedule_timeout_uninterruptible(HZ);
3927 goto repeat;
3928
3929 }
3930 if (pa->pa_deleted == 0) {
3931 pa->pa_deleted = 1;
3932 spin_unlock(&pa->pa_lock);
3933 list_del_rcu(&pa->pa_inode_list);
3934 list_add(&pa->u.pa_tmp_list, &list);
3935 continue;
3936 }
3937
3938 /* someone is deleting pa right now */
3939 spin_unlock(&pa->pa_lock);
3940 spin_unlock(&ei->i_prealloc_lock);
3941
3942 /* we have to wait here because pa_deleted
3943 * doesn't mean pa is already unlinked from
3944 * the list. as we might be called from
3945 * ->clear_inode() the inode will get freed
3946 * and concurrent thread which is unlinking
3947 * pa from inode's list may access already
3948 * freed memory, bad-bad-bad */
3949
3950 /* XXX: if this happens too often, we can
3951 * add a flag to force wait only in case
3952 * of ->clear_inode(), but not in case of
3953 * regular truncate */
3954 schedule_timeout_uninterruptible(HZ);
3955 goto repeat;
3956 }
3957 spin_unlock(&ei->i_prealloc_lock);
3958
3959 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3960 BUG_ON(pa->pa_linear != 0);
3961 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3962
3963 err = ext4_mb_load_buddy(sb, group, &e4b);
3964 if (err) {
3965 ext4_error(sb, __func__, "Error in loading buddy "
3966 "information for %lu\n", group);
3967 continue;
3968 }
3969
3970 bitmap_bh = ext4_read_block_bitmap(sb, group);
3971 if (bitmap_bh == NULL) {
3972 ext4_error(sb, __func__, "Error in reading block "
3973 "bitmap for %lu\n", group);
3974 ext4_mb_release_desc(&e4b);
3975 continue;
3976 }
3977
3978 ext4_lock_group(sb, group);
3979 list_del(&pa->pa_group_list);
3980 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3981 ext4_unlock_group(sb, group);
3982
3983 ext4_mb_release_desc(&e4b);
3984 put_bh(bitmap_bh);
3985
3986 list_del(&pa->u.pa_tmp_list);
3987 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3988 }
3989 if (ac)
3990 kmem_cache_free(ext4_ac_cachep, ac);
3991 }
3992
3993 /*
3994 * finds all preallocated spaces and return blocks being freed to them
3995 * if preallocated space becomes full (no block is used from the space)
3996 * then the function frees space in buddy
3997 * XXX: at the moment, truncate (which is the only way to free blocks)
3998 * discards all preallocations
3999 */
4000 static void ext4_mb_return_to_preallocation(struct inode *inode,
4001 struct ext4_buddy *e4b,
4002 sector_t block, int count)
4003 {
4004 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4005 }
4006 #ifdef MB_DEBUG
4007 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4008 {
4009 struct super_block *sb = ac->ac_sb;
4010 ext4_group_t i;
4011
4012 printk(KERN_ERR "EXT4-fs: Can't allocate:"
4013 " Allocation context details:\n");
4014 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4015 ac->ac_status, ac->ac_flags);
4016 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4017 "best %lu/%lu/%lu@%lu cr %d\n",
4018 (unsigned long)ac->ac_o_ex.fe_group,
4019 (unsigned long)ac->ac_o_ex.fe_start,
4020 (unsigned long)ac->ac_o_ex.fe_len,
4021 (unsigned long)ac->ac_o_ex.fe_logical,
4022 (unsigned long)ac->ac_g_ex.fe_group,
4023 (unsigned long)ac->ac_g_ex.fe_start,
4024 (unsigned long)ac->ac_g_ex.fe_len,
4025 (unsigned long)ac->ac_g_ex.fe_logical,
4026 (unsigned long)ac->ac_b_ex.fe_group,
4027 (unsigned long)ac->ac_b_ex.fe_start,
4028 (unsigned long)ac->ac_b_ex.fe_len,
4029 (unsigned long)ac->ac_b_ex.fe_logical,
4030 (int)ac->ac_criteria);
4031 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4032 ac->ac_found);
4033 printk(KERN_ERR "EXT4-fs: groups: \n");
4034 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4035 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4036 struct ext4_prealloc_space *pa;
4037 ext4_grpblk_t start;
4038 struct list_head *cur;
4039 ext4_lock_group(sb, i);
4040 list_for_each(cur, &grp->bb_prealloc_list) {
4041 pa = list_entry(cur, struct ext4_prealloc_space,
4042 pa_group_list);
4043 spin_lock(&pa->pa_lock);
4044 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4045 NULL, &start);
4046 spin_unlock(&pa->pa_lock);
4047 printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4048 start, pa->pa_len);
4049 }
4050 ext4_unlock_group(sb, i);
4051
4052 if (grp->bb_free == 0)
4053 continue;
4054 printk(KERN_ERR "%lu: %d/%d \n",
4055 i, grp->bb_free, grp->bb_fragments);
4056 }
4057 printk(KERN_ERR "\n");
4058 }
4059 #else
4060 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4061 {
4062 return;
4063 }
4064 #endif
4065
4066 /*
4067 * We use locality group preallocation for small size file. The size of the
4068 * file is determined by the current size or the resulting size after
4069 * allocation which ever is larger
4070 *
4071 * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4072 */
4073 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4074 {
4075 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4076 int bsbits = ac->ac_sb->s_blocksize_bits;
4077 loff_t size, isize;
4078
4079 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4080 return;
4081
4082 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4083 isize = i_size_read(ac->ac_inode) >> bsbits;
4084 size = max(size, isize);
4085
4086 /* don't use group allocation for large files */
4087 if (size >= sbi->s_mb_stream_request)
4088 return;
4089
4090 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4091 return;
4092
4093 BUG_ON(ac->ac_lg != NULL);
4094 /*
4095 * locality group prealloc space are per cpu. The reason for having
4096 * per cpu locality group is to reduce the contention between block
4097 * request from multiple CPUs.
4098 */
4099 ac->ac_lg = &sbi->s_locality_groups[get_cpu()];
4100 put_cpu();
4101
4102 /* we're going to use group allocation */
4103 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4104
4105 /* serialize all allocations in the group */
4106 mutex_lock(&ac->ac_lg->lg_mutex);
4107 }
4108
4109 static noinline_for_stack int
4110 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4111 struct ext4_allocation_request *ar)
4112 {
4113 struct super_block *sb = ar->inode->i_sb;
4114 struct ext4_sb_info *sbi = EXT4_SB(sb);
4115 struct ext4_super_block *es = sbi->s_es;
4116 ext4_group_t group;
4117 unsigned long len;
4118 unsigned long goal;
4119 ext4_grpblk_t block;
4120
4121 /* we can't allocate > group size */
4122 len = ar->len;
4123
4124 /* just a dirty hack to filter too big requests */
4125 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4126 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4127
4128 /* start searching from the goal */
4129 goal = ar->goal;
4130 if (goal < le32_to_cpu(es->s_first_data_block) ||
4131 goal >= ext4_blocks_count(es))
4132 goal = le32_to_cpu(es->s_first_data_block);
4133 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4134
4135 /* set up allocation goals */
4136 ac->ac_b_ex.fe_logical = ar->logical;
4137 ac->ac_b_ex.fe_group = 0;
4138 ac->ac_b_ex.fe_start = 0;
4139 ac->ac_b_ex.fe_len = 0;
4140 ac->ac_status = AC_STATUS_CONTINUE;
4141 ac->ac_groups_scanned = 0;
4142 ac->ac_ex_scanned = 0;
4143 ac->ac_found = 0;
4144 ac->ac_sb = sb;
4145 ac->ac_inode = ar->inode;
4146 ac->ac_o_ex.fe_logical = ar->logical;
4147 ac->ac_o_ex.fe_group = group;
4148 ac->ac_o_ex.fe_start = block;
4149 ac->ac_o_ex.fe_len = len;
4150 ac->ac_g_ex.fe_logical = ar->logical;
4151 ac->ac_g_ex.fe_group = group;
4152 ac->ac_g_ex.fe_start = block;
4153 ac->ac_g_ex.fe_len = len;
4154 ac->ac_f_ex.fe_len = 0;
4155 ac->ac_flags = ar->flags;
4156 ac->ac_2order = 0;
4157 ac->ac_criteria = 0;
4158 ac->ac_pa = NULL;
4159 ac->ac_bitmap_page = NULL;
4160 ac->ac_buddy_page = NULL;
4161 ac->ac_lg = NULL;
4162
4163 /* we have to define context: we'll we work with a file or
4164 * locality group. this is a policy, actually */
4165 ext4_mb_group_or_file(ac);
4166
4167 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4168 "left: %u/%u, right %u/%u to %swritable\n",
4169 (unsigned) ar->len, (unsigned) ar->logical,
4170 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4171 (unsigned) ar->lleft, (unsigned) ar->pleft,
4172 (unsigned) ar->lright, (unsigned) ar->pright,
4173 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4174 return 0;
4175
4176 }
4177
4178 static noinline_for_stack void
4179 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4180 struct ext4_locality_group *lg,
4181 int order, int total_entries)
4182 {
4183 ext4_group_t group = 0;
4184 struct ext4_buddy e4b;
4185 struct list_head discard_list;
4186 struct ext4_prealloc_space *pa, *tmp;
4187 struct ext4_allocation_context *ac;
4188
4189 mb_debug("discard locality group preallocation\n");
4190
4191 INIT_LIST_HEAD(&discard_list);
4192 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4193
4194 spin_lock(&lg->lg_prealloc_lock);
4195 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4196 pa_inode_list) {
4197 spin_lock(&pa->pa_lock);
4198 if (atomic_read(&pa->pa_count)) {
4199 /*
4200 * This is the pa that we just used
4201 * for block allocation. So don't
4202 * free that
4203 */
4204 spin_unlock(&pa->pa_lock);
4205 continue;
4206 }
4207 if (pa->pa_deleted) {
4208 spin_unlock(&pa->pa_lock);
4209 continue;
4210 }
4211 /* only lg prealloc space */
4212 BUG_ON(!pa->pa_linear);
4213
4214 /* seems this one can be freed ... */
4215 pa->pa_deleted = 1;
4216 spin_unlock(&pa->pa_lock);
4217
4218 list_del_rcu(&pa->pa_inode_list);
4219 list_add(&pa->u.pa_tmp_list, &discard_list);
4220
4221 total_entries--;
4222 if (total_entries <= 5) {
4223 /*
4224 * we want to keep only 5 entries
4225 * allowing it to grow to 8. This
4226 * mak sure we don't call discard
4227 * soon for this list.
4228 */
4229 break;
4230 }
4231 }
4232 spin_unlock(&lg->lg_prealloc_lock);
4233
4234 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4235
4236 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4237 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4238 ext4_error(sb, __func__, "Error in loading buddy "
4239 "information for %lu\n", group);
4240 continue;
4241 }
4242 ext4_lock_group(sb, group);
4243 list_del(&pa->pa_group_list);
4244 ext4_mb_release_group_pa(&e4b, pa, ac);
4245 ext4_unlock_group(sb, group);
4246
4247 ext4_mb_release_desc(&e4b);
4248 list_del(&pa->u.pa_tmp_list);
4249 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4250 }
4251 if (ac)
4252 kmem_cache_free(ext4_ac_cachep, ac);
4253 }
4254
4255 /*
4256 * We have incremented pa_count. So it cannot be freed at this
4257 * point. Also we hold lg_mutex. So no parallel allocation is
4258 * possible from this lg. That means pa_free cannot be updated.
4259 *
4260 * A parallel ext4_mb_discard_group_preallocations is possible.
4261 * which can cause the lg_prealloc_list to be updated.
4262 */
4263
4264 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4265 {
4266 int order, added = 0, lg_prealloc_count = 1;
4267 struct super_block *sb = ac->ac_sb;
4268 struct ext4_locality_group *lg = ac->ac_lg;
4269 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4270
4271 order = fls(pa->pa_free) - 1;
4272 if (order > PREALLOC_TB_SIZE - 1)
4273 /* The max size of hash table is PREALLOC_TB_SIZE */
4274 order = PREALLOC_TB_SIZE - 1;
4275 /* Add the prealloc space to lg */
4276 rcu_read_lock();
4277 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4278 pa_inode_list) {
4279 spin_lock(&tmp_pa->pa_lock);
4280 if (tmp_pa->pa_deleted) {
4281 spin_unlock(&pa->pa_lock);
4282 continue;
4283 }
4284 if (!added && pa->pa_free < tmp_pa->pa_free) {
4285 /* Add to the tail of the previous entry */
4286 list_add_tail_rcu(&pa->pa_inode_list,
4287 &tmp_pa->pa_inode_list);
4288 added = 1;
4289 /*
4290 * we want to count the total
4291 * number of entries in the list
4292 */
4293 }
4294 spin_unlock(&tmp_pa->pa_lock);
4295 lg_prealloc_count++;
4296 }
4297 if (!added)
4298 list_add_tail_rcu(&pa->pa_inode_list,
4299 &lg->lg_prealloc_list[order]);
4300 rcu_read_unlock();
4301
4302 /* Now trim the list to be not more than 8 elements */
4303 if (lg_prealloc_count > 8) {
4304 ext4_mb_discard_lg_preallocations(sb, lg,
4305 order, lg_prealloc_count);
4306 return;
4307 }
4308 return ;
4309 }
4310
4311 /*
4312 * release all resource we used in allocation
4313 */
4314 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4315 {
4316 struct ext4_prealloc_space *pa = ac->ac_pa;
4317 if (pa) {
4318 if (pa->pa_linear) {
4319 /* see comment in ext4_mb_use_group_pa() */
4320 spin_lock(&pa->pa_lock);
4321 pa->pa_pstart += ac->ac_b_ex.fe_len;
4322 pa->pa_lstart += ac->ac_b_ex.fe_len;
4323 pa->pa_free -= ac->ac_b_ex.fe_len;
4324 pa->pa_len -= ac->ac_b_ex.fe_len;
4325 spin_unlock(&pa->pa_lock);
4326 /*
4327 * We want to add the pa to the right bucket.
4328 * Remove it from the list and while adding
4329 * make sure the list to which we are adding
4330 * doesn't grow big.
4331 */
4332 if (likely(pa->pa_free)) {
4333 spin_lock(pa->pa_obj_lock);
4334 list_del_rcu(&pa->pa_inode_list);
4335 spin_unlock(pa->pa_obj_lock);
4336 ext4_mb_add_n_trim(ac);
4337 }
4338 }
4339 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4340 }
4341 if (ac->ac_bitmap_page)
4342 page_cache_release(ac->ac_bitmap_page);
4343 if (ac->ac_buddy_page)
4344 page_cache_release(ac->ac_buddy_page);
4345 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4346 mutex_unlock(&ac->ac_lg->lg_mutex);
4347 ext4_mb_collect_stats(ac);
4348 return 0;
4349 }
4350
4351 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4352 {
4353 ext4_group_t i;
4354 int ret;
4355 int freed = 0;
4356
4357 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4358 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4359 freed += ret;
4360 needed -= ret;
4361 }
4362
4363 return freed;
4364 }
4365
4366 /*
4367 * Main entry point into mballoc to allocate blocks
4368 * it tries to use preallocation first, then falls back
4369 * to usual allocation
4370 */
4371 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4372 struct ext4_allocation_request *ar, int *errp)
4373 {
4374 int freed;
4375 struct ext4_allocation_context *ac = NULL;
4376 struct ext4_sb_info *sbi;
4377 struct super_block *sb;
4378 ext4_fsblk_t block = 0;
4379 unsigned long inquota;
4380 unsigned long reserv_blks = 0;
4381
4382 sb = ar->inode->i_sb;
4383 sbi = EXT4_SB(sb);
4384
4385 if (!test_opt(sb, MBALLOC)) {
4386 block = ext4_old_new_blocks(handle, ar->inode, ar->goal,
4387 &(ar->len), errp);
4388 return block;
4389 }
4390 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4391 /*
4392 * With delalloc we already reserved the blocks
4393 */
4394 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4395 /* let others to free the space */
4396 yield();
4397 ar->len = ar->len >> 1;
4398 }
4399 if (!ar->len) {
4400 *errp = -ENOSPC;
4401 return 0;
4402 }
4403 reserv_blks = ar->len;
4404 }
4405 while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4406 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4407 ar->len--;
4408 }
4409 if (ar->len == 0) {
4410 *errp = -EDQUOT;
4411 return 0;
4412 }
4413 inquota = ar->len;
4414
4415 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4416 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4417
4418 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4419 if (!ac) {
4420 ar->len = 0;
4421 *errp = -ENOMEM;
4422 goto out1;
4423 }
4424
4425 ext4_mb_poll_new_transaction(sb, handle);
4426
4427 *errp = ext4_mb_initialize_context(ac, ar);
4428 if (*errp) {
4429 ar->len = 0;
4430 goto out2;
4431 }
4432
4433 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4434 if (!ext4_mb_use_preallocated(ac)) {
4435 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4436 ext4_mb_normalize_request(ac, ar);
4437 repeat:
4438 /* allocate space in core */
4439 ext4_mb_regular_allocator(ac);
4440
4441 /* as we've just preallocated more space than
4442 * user requested orinally, we store allocated
4443 * space in a special descriptor */
4444 if (ac->ac_status == AC_STATUS_FOUND &&
4445 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4446 ext4_mb_new_preallocation(ac);
4447 }
4448
4449 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4450 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4451 if (*errp == -EAGAIN) {
4452 ac->ac_b_ex.fe_group = 0;
4453 ac->ac_b_ex.fe_start = 0;
4454 ac->ac_b_ex.fe_len = 0;
4455 ac->ac_status = AC_STATUS_CONTINUE;
4456 goto repeat;
4457 } else if (*errp) {
4458 ac->ac_b_ex.fe_len = 0;
4459 ar->len = 0;
4460 ext4_mb_show_ac(ac);
4461 } else {
4462 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4463 ar->len = ac->ac_b_ex.fe_len;
4464 }
4465 } else {
4466 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4467 if (freed)
4468 goto repeat;
4469 *errp = -ENOSPC;
4470 ac->ac_b_ex.fe_len = 0;
4471 ar->len = 0;
4472 ext4_mb_show_ac(ac);
4473 }
4474
4475 ext4_mb_release_context(ac);
4476
4477 out2:
4478 kmem_cache_free(ext4_ac_cachep, ac);
4479 out1:
4480 if (ar->len < inquota)
4481 DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4482
4483 return block;
4484 }
4485 static void ext4_mb_poll_new_transaction(struct super_block *sb,
4486 handle_t *handle)
4487 {
4488 struct ext4_sb_info *sbi = EXT4_SB(sb);
4489
4490 if (sbi->s_last_transaction == handle->h_transaction->t_tid)
4491 return;
4492
4493 /* new transaction! time to close last one and free blocks for
4494 * committed transaction. we know that only transaction can be
4495 * active, so previos transaction can be being logged and we
4496 * know that transaction before previous is known to be already
4497 * logged. this means that now we may free blocks freed in all
4498 * transactions before previous one. hope I'm clear enough ... */
4499
4500 spin_lock(&sbi->s_md_lock);
4501 if (sbi->s_last_transaction != handle->h_transaction->t_tid) {
4502 mb_debug("new transaction %lu, old %lu\n",
4503 (unsigned long) handle->h_transaction->t_tid,
4504 (unsigned long) sbi->s_last_transaction);
4505 list_splice_init(&sbi->s_closed_transaction,
4506 &sbi->s_committed_transaction);
4507 list_splice_init(&sbi->s_active_transaction,
4508 &sbi->s_closed_transaction);
4509 sbi->s_last_transaction = handle->h_transaction->t_tid;
4510 }
4511 spin_unlock(&sbi->s_md_lock);
4512
4513 ext4_mb_free_committed_blocks(sb);
4514 }
4515
4516 static noinline_for_stack int
4517 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4518 ext4_group_t group, ext4_grpblk_t block, int count)
4519 {
4520 struct ext4_group_info *db = e4b->bd_info;
4521 struct super_block *sb = e4b->bd_sb;
4522 struct ext4_sb_info *sbi = EXT4_SB(sb);
4523 struct ext4_free_metadata *md;
4524 int i;
4525
4526 BUG_ON(e4b->bd_bitmap_page == NULL);
4527 BUG_ON(e4b->bd_buddy_page == NULL);
4528
4529 ext4_lock_group(sb, group);
4530 for (i = 0; i < count; i++) {
4531 md = db->bb_md_cur;
4532 if (md && db->bb_tid != handle->h_transaction->t_tid) {
4533 db->bb_md_cur = NULL;
4534 md = NULL;
4535 }
4536
4537 if (md == NULL) {
4538 ext4_unlock_group(sb, group);
4539 md = kmalloc(sizeof(*md), GFP_NOFS);
4540 if (md == NULL)
4541 return -ENOMEM;
4542 md->num = 0;
4543 md->group = group;
4544
4545 ext4_lock_group(sb, group);
4546 if (db->bb_md_cur == NULL) {
4547 spin_lock(&sbi->s_md_lock);
4548 list_add(&md->list, &sbi->s_active_transaction);
4549 spin_unlock(&sbi->s_md_lock);
4550 /* protect buddy cache from being freed,
4551 * otherwise we'll refresh it from
4552 * on-disk bitmap and lose not-yet-available
4553 * blocks */
4554 page_cache_get(e4b->bd_buddy_page);
4555 page_cache_get(e4b->bd_bitmap_page);
4556 db->bb_md_cur = md;
4557 db->bb_tid = handle->h_transaction->t_tid;
4558 mb_debug("new md 0x%p for group %lu\n",
4559 md, md->group);
4560 } else {
4561 kfree(md);
4562 md = db->bb_md_cur;
4563 }
4564 }
4565
4566 BUG_ON(md->num >= EXT4_BB_MAX_BLOCKS);
4567 md->blocks[md->num] = block + i;
4568 md->num++;
4569 if (md->num == EXT4_BB_MAX_BLOCKS) {
4570 /* no more space, put full container on a sb's list */
4571 db->bb_md_cur = NULL;
4572 }
4573 }
4574 ext4_unlock_group(sb, group);
4575 return 0;
4576 }
4577
4578 /*
4579 * Main entry point into mballoc to free blocks
4580 */
4581 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4582 unsigned long block, unsigned long count,
4583 int metadata, unsigned long *freed)
4584 {
4585 struct buffer_head *bitmap_bh = NULL;
4586 struct super_block *sb = inode->i_sb;
4587 struct ext4_allocation_context *ac = NULL;
4588 struct ext4_group_desc *gdp;
4589 struct ext4_super_block *es;
4590 unsigned long overflow;
4591 ext4_grpblk_t bit;
4592 struct buffer_head *gd_bh;
4593 ext4_group_t block_group;
4594 struct ext4_sb_info *sbi;
4595 struct ext4_buddy e4b;
4596 int err = 0;
4597 int ret;
4598
4599 *freed = 0;
4600
4601 ext4_mb_poll_new_transaction(sb, handle);
4602
4603 sbi = EXT4_SB(sb);
4604 es = EXT4_SB(sb)->s_es;
4605 if (block < le32_to_cpu(es->s_first_data_block) ||
4606 block + count < block ||
4607 block + count > ext4_blocks_count(es)) {
4608 ext4_error(sb, __func__,
4609 "Freeing blocks not in datazone - "
4610 "block = %lu, count = %lu", block, count);
4611 goto error_return;
4612 }
4613
4614 ext4_debug("freeing block %lu\n", block);
4615
4616 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4617 if (ac) {
4618 ac->ac_op = EXT4_MB_HISTORY_FREE;
4619 ac->ac_inode = inode;
4620 ac->ac_sb = sb;
4621 }
4622
4623 do_more:
4624 overflow = 0;
4625 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4626
4627 /*
4628 * Check to see if we are freeing blocks across a group
4629 * boundary.
4630 */
4631 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4632 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4633 count -= overflow;
4634 }
4635 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4636 if (!bitmap_bh) {
4637 err = -EIO;
4638 goto error_return;
4639 }
4640 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4641 if (!gdp) {
4642 err = -EIO;
4643 goto error_return;
4644 }
4645
4646 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4647 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4648 in_range(block, ext4_inode_table(sb, gdp),
4649 EXT4_SB(sb)->s_itb_per_group) ||
4650 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4651 EXT4_SB(sb)->s_itb_per_group)) {
4652
4653 ext4_error(sb, __func__,
4654 "Freeing blocks in system zone - "
4655 "Block = %lu, count = %lu", block, count);
4656 /* err = 0. ext4_std_error should be a no op */
4657 goto error_return;
4658 }
4659
4660 BUFFER_TRACE(bitmap_bh, "getting write access");
4661 err = ext4_journal_get_write_access(handle, bitmap_bh);
4662 if (err)
4663 goto error_return;
4664
4665 /*
4666 * We are about to modify some metadata. Call the journal APIs
4667 * to unshare ->b_data if a currently-committing transaction is
4668 * using it
4669 */
4670 BUFFER_TRACE(gd_bh, "get_write_access");
4671 err = ext4_journal_get_write_access(handle, gd_bh);
4672 if (err)
4673 goto error_return;
4674
4675 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4676 if (err)
4677 goto error_return;
4678
4679 #ifdef AGGRESSIVE_CHECK
4680 {
4681 int i;
4682 for (i = 0; i < count; i++)
4683 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4684 }
4685 #endif
4686 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4687 bit, count);
4688
4689 /* We dirtied the bitmap block */
4690 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4691 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
4692
4693 if (ac) {
4694 ac->ac_b_ex.fe_group = block_group;
4695 ac->ac_b_ex.fe_start = bit;
4696 ac->ac_b_ex.fe_len = count;
4697 ext4_mb_store_history(ac);
4698 }
4699
4700 if (metadata) {
4701 /* blocks being freed are metadata. these blocks shouldn't
4702 * be used until this transaction is committed */
4703 ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
4704 } else {
4705 ext4_lock_group(sb, block_group);
4706 mb_free_blocks(inode, &e4b, bit, count);
4707 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4708 ext4_unlock_group(sb, block_group);
4709 }
4710
4711 spin_lock(sb_bgl_lock(sbi, block_group));
4712 le16_add_cpu(&gdp->bg_free_blocks_count, count);
4713 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4714 spin_unlock(sb_bgl_lock(sbi, block_group));
4715 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4716
4717 if (sbi->s_log_groups_per_flex) {
4718 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4719 spin_lock(sb_bgl_lock(sbi, flex_group));
4720 sbi->s_flex_groups[flex_group].free_blocks += count;
4721 spin_unlock(sb_bgl_lock(sbi, flex_group));
4722 }
4723
4724 ext4_mb_release_desc(&e4b);
4725
4726 *freed += count;
4727
4728 /* And the group descriptor block */
4729 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4730 ret = ext4_journal_dirty_metadata(handle, gd_bh);
4731 if (!err)
4732 err = ret;
4733
4734 if (overflow && !err) {
4735 block += count;
4736 count = overflow;
4737 put_bh(bitmap_bh);
4738 goto do_more;
4739 }
4740 sb->s_dirt = 1;
4741 error_return:
4742 brelse(bitmap_bh);
4743 ext4_std_error(sb, err);
4744 if (ac)
4745 kmem_cache_free(ext4_ac_cachep, ac);
4746 return;
4747 }
This page took 0.142484 seconds and 5 git commands to generate.